
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2016

Data Partitioning Methods to Process Queries on Encrypted Data Partitioning Methods to Process Queries on Encrypted

Databases on the Cloud Databases on the Cloud

Osama M. Omran
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Databases and Information Systems Commons

Citation Citation
Omran, O. M. (2016). Data Partitioning Methods to Process Queries on Encrypted Databases on the
Cloud. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1580

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fetd%2F1580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/1580?utm_source=scholarworks.uark.edu%2Fetd%2F1580&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu

Data Partitioning Methods to Process Queries on Encrypted Databases on the Cloud

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Science

By

Osama Ben Omran

University of Garyounis

Bachelor of Science in Computer Science, 1989

University of Teesside

Master of Science in Information Technology, 1998

May 2016

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Dr. Brajendra Panda
Dissertation Director

Dr. Susan Gauch

Committee Member

Dr. Merwin Beavers

Committee Member

Dr. Paul Cronan

Committee Member

ABSTRACT

Many features and advantages have been brought to organizations and computer users by Cloud

computing. It allows different service providers to distribute many applications and services in

an economical way. Consequently, many users and companies have begun using cloud

computing. However, the users and companies are concerned about their data when data are

stored and managed in the Cloud or outsourcing servers. The private data of individual users and

companies is stored and managed by the service providers on the Cloud, which offers services on

the other side of the Internet in terms of its users, and consequently results in privacy concerns

[61]. In this dissertation, a technique has been explored to improve query processing

performance while protecting database tables on a Cloud by encrypting those so that they remain

secure. It shows how to process SQL queries on encrypted databases designed to protect data

from any leakage or attack, even from the service providers. The strategy is to process the query

on the Cloud without having to decrypt the data, and data decryption is performed only at the

client site. Therefore, to achieve efficiency, no more than the exact set of requested data is

returned to the client. In addition, four different techniques have been developed to index and

partition the data. The indexes and partitions of the data are used to select part of the data from

the Cloud or outsource data depending on the required data. The index data can be stored on the

Cloud or server with the encrypted database table. This helps in reducing the entire processing

time, which includes data transfer time from the Cloud to the client and also data decryption and

processing time at the client.

©2016 by Osama Ben Omran

All Rights Reserved

ACKNOLEDGMENTS

Special great thank to my advisor Professor Brajendra Panda for his support and advice in my

research, and for his great guidance and help during pursuing my PhD program. I also would like

to thank Professor Merwin Beavers, Professor Susan Gauch and Professor Paul Cronan for

serving on my committee; it is a complete privilege having you on my dissertation committee. I

also would like to thank my mother and my wife for their great support before and during

pursuing my PhD program. Special thanks go out to the all faculty and staff at the Computer

Science and Computer Engineering department for their effort to learn and give the students

great and wonderful knowledge. Special thanks are extended to the all staff of the University of

Arkansas for all of their help.

DEDICATION

TO MY LATE FATHER…TO HIS PURE SPIRIT AND HEART.

TO MY MOTHER...TO HER BIG HEART.

TO MY WIFE FOR GIVING SUPPORT AND ADVICE…TO THIS WONDERFUL WOMAN.

TO MY KIDS FOR LISTENING TO ME AND DOING GREAT JOB…TO MY LOVELY

BEAUTIFUL KIDS.

TO ALL MY BROTHERS AND SISTERS…TO THIS NICE FAMILY

TO ANYONE WHO SUPPORTING ME...TO THESE KINDLY PEOPLE

TO ALL PEOPLE WHO TRY TO BUILD THE FUTURE…TO THESE GREAT PEOPLE

TABLE OF CONTENTS

1. Introduction ……………………………....………………………………………………….. 1

1.1 Cloud Computing ………………..……………………………………………………..... 1

1.2 Advantages of Cloud Computing ….……………………………………………………. 3

1.3 Data Outsourcing ………………………..………………………………………………. 4

1.4 Information Security ………………………..…………………………………………… 5

1.5 Database Security ………………………………..………….…………………………… 6

1.6 Database-as-a-Service ………………………………..…….……………………………. 6

1.7 Encryption Technique ……………………………………..….…………………………. 7

1.8 Cloud Computing Performance …………………………………..……………………... 7

1.9 Problem Definition …………………………………………………..………………….. 9

1.10 The Contribution of the Dissertation ……………………………………………. 9

1.11 Research Advantages & Goals …………………………………………………. 10

2. Background and Related Work ……………………………………………..……………… 13

2.1 Introduction ………………………………………………………………..…………… 13

2.2 Cloud Computing Vulnerability ………………………………………………..……… 13

2.3 Data Outsourcing and Security Issues ……………………….…………………….…... 14

2.4 Protecting and Executing Outsourced Data …...………………………………….……. 15

2.5 Cloud Computing and Performance ……………………………………..……………... 19

3. Data Protection and Storage ………………………………………………….……………. 21

3.1 Introduction ……………………………………………………………….…………… 21

3.2 Data Outsourcing and Cloud Computing ………………………………….………...… 21

3.3 Data Encryption …………………………………………………………………..……. 22

3.4 Process Query on Encrypted Database Table ………………………………………..… 22

3.5 Data Partitioning Methods ………………….……………………………….…………. 23

3.5.1 Type of Partitioning ……………….…………………………………….……... 24

3.5.2 Partitioning Algorithm …………….……………………………………….…... 31

3.5.3 Applying Data Encryption ……….………………………………….…………. 36

4. Results and Analysis types of Data Partitioning ……….……………………….………….. 38

4.1 Introduction …………………………………………….…………………….………… 38

4.2 Encrypt Data by applying one Type of Partitioning ………..………………………….. 38

4.3 Getting and Decrypting Data from the Cloud ………………….……………………… 39

4.4 Managing the Query by Mapping Conditions ……………………..…………………... 39

4.5 Applying Data Partitioning …………………………………………….…….………… 40

4.5.1 Data Retrieved from A Table Having 100,000 Records with Record Size 68 bytes

………………………………………………………………………………...… 40

4.5.1.1 Running Query on Table Having 100,000 Records with Record Size 68 bytes

………………………………………………………………………………. 41

4.5.1.2 Records Retrieved from Table Having 100,000 Records with Record Size 68

bytes ……………………………..………………………………….……… 43

4.5.2 Data Retrieved from Table Having 100,000 Records with Record Size 168 bytes

……………………………………………………….………………...………... 44

4.5.2.1 Running Query on Table Having 100,000 Records with Record Size 168 bytes

…………………………………………………………….………...………. 45

4.5.2.2 Records Retrieved from Table Having 100,000 Records with Record size 168

bytes …………………………..…………………………………...……….. 47

4.5.3 Data Retrieved from Table Having 100,000 Records with Record Size 468 bytes

…………………………………………………………………………………... 48

4.5.3.1 Running Query on Table Having 100,000 Records with Record Size 468 bytes

………………………………………………………………………………. 50

4.5.3.2 Records Retrieved from Table Having 100,000 Records with Record Size 468

bytes …………………………………………..……………...…………….. 51

4.5.4 Data Retrieved from Table Having 500,000 Records with Record size 68 bytes

…………………………………………………………………………………... 52

4.5.4.1 Running Query on Table Having 500,000 Records with Record Size 68 bytes

………………………………………………………………………………. 53

4.5.4.2 Records Retrieved from Table Having 500,000 Records with Record Size 68

bytes ………………………………………………..……………….……… 54

4.5.5 Data Retrieved from Table Having 500,000 Records with Record Size 168 bytes

………………………………………………….………………….…….…...… 56

4.5.5.1 Running Query on Table Having 500,000 Records with Record Size 168 bytes

………………………………………..…….………………………….…… 56

4.5.5.2 Records Retrieved from Table Having 500,000 Records with Record Size 168

bytes …………………………………………………………………….….. 58

4.5.6 Data Retrieved from Table Having 500,000 Records with Record Size 468 bytes

………………………………………………………………..……………….... 59

4.5.6.1 Running Query on Table Having 500,000 Records with Record Size 468 bytes

………………………………………………………………………………. 59

4.5.6.2 Records Retrieved from Table Having 500,000 Records with Record Size 468

bytes …………………………...………………...…………………………. 61

4.6 Factors affecting Cloud Performance ………...………………..………………………. 62

4.7 Combining Frequency-of-Use Based and Bisection-Tree-Based …..……...…………... 63

4.7.1 Example of Combined Frequency-of-Use and Bisection-Tree-Based ….….…... 66

4.8 Table Fragmentation ………………………………………..………………………….. 69

4.8.1 Method of the Table Fragmentation ………………………………………….... 69

4.8.2 Comparing Table Fragmentation against One Table ……………..……………. 70

5. Conclusion and Future Work ……………………………………………………..………... 72

5.1 Conclusion ………………………………………………………………………..……. 72

5.2 Related ideas ……………………………………..…………………………………….. 73

5.3 Future Work …………………………………………..………………………………... 75

References ………………………………………………………………………………….. 76

LIST OF FIGURES

Figure 1.1 Cloud computing concept ..…………………………………………………………... 3

Figure 1.2 The Dissertation plan ……...………………………………………………………... 12

Figure 3.1 Partition and identification of the Sal and NetSal attributes ……………………….. 24

Figure 3.2 The Log file ………………………………………………………………………… 26

Figure 3.3 Statistical Matrix …………………………………………………………………… 26

Figure 3.4 The result Statistical Matrix (Threshold=25) …...………………………………….. 26

Figure 3.5 Statistical Matrix for Job Title Attribute …………………………………………… 28

Figure 3.6 The result of Statistical Matrix (Threshold=90) …..……………….……………….. 28

Figure 3.7 The result Partitioning Category ………………..……………….…………………. 28

Figure 3.8 The Bisection-Tree ………………..……………...………………………………… 30

Figure 3.9 Partition an attribute into 5 buckets ………………………………………………… 31

Figure 3.10. Running time to encrypt 3000 records for all partition types………………………37

Figure 4.1 Data Retrieval Time from Database Table having 100,000 Records with record size

68 Bytes ………………………………………………………………………………………... 43

Figure 4.2 Records Retrieved from Database Table having 100,000 Records with record size 68

Bytes …………………………………………………………………………………………… 44

Figure 4.3 Records Retrieval Time from Database Table having 100,000 Records with record

size 168 Bytes ………………………………………………………………………………….. 47

Figure 4.4 Records Retrieved from Database Table having 100,000 Records with record size 168

Bytes …………………………………………………………………………………………… 48

Figure 4.5 Records Retrieval Time from Database Table having 100,000 Records with record

size 468 Bytes ………………………………………………………………………………….. 51

Figure 4.6 Records Retrieved from Database Table having 100,000 Records with record size 468

Bytes …………………………………………………………………………………………… 52

Figure 4.7 Records Retrieval Time from Database Table having 500,000 Records with record

size 68 Bytes …………………………………………………………………………………… 54

Figure 4.8 Records Retrieved from Database Table having 500,000 Records with record size 68

Bytes …………………………………………………………………………………………… 55

Figure 4.9 Records Retrieval Time from Database Table having 500,000 Records with record

size 168 Bytes ………………………………………………………………………………….. 57

Figure 4.10 Records Retrieved from Database Table having 500,000 Records with record size

168 Bytes ………………………………………………………………………………………. 59

Figure 4.11 Records Retrieval Time from Database Table having 500,000 Records with record

size 468 Bytes ………………………………………………………………………………….. 61

Figure 4.12 Records Retrieved from Database Table having 500,000 Records with record size

468 Bytes ………………………………………………………………………………………. 62

Figure 4.13 Running Time for Records Retrieved from Database Table having 100,000 to show

the Running Time of Combine Frequency-of-Use-Based and Bisection-Tree Based & Comparing

them without Combining ………………………………………………………………………. 65

Figure 4.14 Retrieved records of Combining Frequency-of-Use-Based and Bisection-Tree Based

& Comparing them without Combining from Database Table having 100,000 Records

……………………………………………………………………………….…………………. 66

Figure 4.15 Frequency-of-Use-Based and Bisection-Tree-Based method ...……………….….. 68

Figure 4.16 Deference between using the table fragmentation and using one table …………... 71

Figure 5.1 Part of A Database ………………………………………………………………….. 74

LIST OF TABLES

Table 2.1 Research Papers ……………………………………………..………………………. 14

Table 3.1 Employee Table ……………………………………………………………..………. 24

Table 3.2 Encrypted Employee Table on the Cloud ……………………………..…………….. 24

Table 3.3 Number of Record …………………………………………………………………... 27

Table 3.4 The result Partitioning Category ………..…...………………………………………. 27

Table 3.5 Statistical Table (Values and their frequency) ……………………………………… 29

Table 3.6 Dividing Values of Frequency on Buckets (Bucket Size=500) ……………………... 29

Table 3.7 The resulting Category ……...……………………………………………………….. 30

Table 3.8 The result of Partitioning Category ………..………………………………………... 31

Table 4.1 Structure of the original Employee table (Record size=68 Bytes) ………………….. 41

Table 4.2 Percentage of data requested by WHERE clauses ……..…………………………… 41

Table 4.3 Running time for each type of partitioning in milliseconds (size=100,000 records with

record size 68 bytes) …………………….……………………………………………………... 42

Table 4.4 Retrieved records in each kind of partitioning (size=100,000 Records)

…………………………………………………………………………………………………... 44

Table 4.5 Structure of the original Employee table (Record size=168 Bytes) ………………… 45

Table 4.6 Percentage of data requested by WHERE clauses ……..…………………………… 45

Table 4.7 Running time for each type of partitioning in milliseconds (size=100,000 records with

record size 168 bytes) ……………………………………………………….…………………. 46

Table 4.8 Retrieved records of each kind of partitioning (size=100,000 Records)

…………………………………………………………………………………………………... 48

Table 4.9 Structure of the original Employee table (Record size=468 Bytes) ………………… 49

Table 4.10 Percentage of data requested by WHERE clauses ……..………………….….……. 49

Table 4.11 Running time for each type of partitioning in milliseconds (size=100,000 records with

record size 468 bytes) …………………………………….……………………………………. 50

Table 4.12 Retrieved records in each kind of partitioning (size=100,000 Records)

…………………………………………………………………………………………………... 52

Table 4.13 Running time for each type of partitioning in milliseconds (size=500,000 records with

record size 68 bytes) ……………………….…………………………………………………... 53

Table 4.14 Retrieved records in each kind of the partitioning (size=500,000 Records)

…………………………………………………………………………………………………... 55

Table 4.15 Running time for each type of partitioning in milliseconds (size=500,000 records with

record size 168 bytes) ………………………………………………………..………………… 57

Table 4.16 Retrieved records in each kind of the partitioning (size=500,000 Records)

…………………………………………………………………………………………………... 58

Table 4.17 Running time for each type of partitioning in milliseconds (size=500,000 records with

record size 468 bytes) …………………………….……………………………………………. 60

Table 4.18 Retrieved records in each kind of the partitioning (size=500,000 Records)

…………………………………………………………………………………………………... 62

Table 4.19 Running Time of Combining Frequency-of-Use-Based and Bisection-Tree-Based &

Comparing them without Combining …………………………………...……………………... 64

Table 4.20 Retrieved records of Combine Frequency-of-Use-Based and Bisection-Tree-Based &

Comparing them without Combining ……………………………………………...…………... 65

Table 4.21 Partition category and Their Frequency …………..……………………………….. 67

Table 4.22 Partitioning Category ………………………………………………………………. 70

1

1. INTRODUCTION

1.1 Cloud Computing

The Internet has been developing very rapidly in the last two decades. There has been a

remarkable growth in the information technology use in every aspect of our lives, and this rapid

growth has produced more challenges to conquer, including the high consumption of energy and

the increased expenses of resources [81]. Therefore, a new technology has to be invented to

avoid extra expenses and make work more efficient, which are the purposes for which Cloud

computing has been invented. With the potential to significantly decrease the costs and, at the

same time, increase productivity, cloud computing is a valuable technology [24]. By improving

its cooperation, agility, and scale, Cloud computing could enable a truly global computing model

over the Internet infrastructure. Furthermore, Cloud computing with its higher performance, can

offer more scalable and fault-tolerant services [61]. Because of its high scalability, Cloud

computing offers unlimited computing resources on demand, which is a service that can

eliminate the need for Cloud service providers to plan the future on hardware provisioning [61].

In fact, Cloud computing has generated significant interest in the industry, though it is still an

evolving paradigm. Cloud computing combines computing technologies and economic benefits

through the evolutionary development of several existing approaches. This includes applications

and spread services as well as information infrastructures, which include groups of computers,

networks, and storage resources [24]. Nevertheless, this potentially revolutionizing computing

paradigm could become a huge failure without appropriate security and privacy solutions

designed for this technology. Security is one of the most important concerns when moving to the

Cloud. Earning users’ trust in Cloud providers occurs by providing the security of data in the

Cloud [11]. Organizations and individuals fear leakage of their data, especially sensitive data,

2

when is stored in a Cloud unless they can be certain the Cloud is secure. As current Cloud

services typically result in data being present in an unencrypted form on a machine owned and

operated by a diverse organization, rather than the data owner, they pose an inherent challenge to

data privacy. There are threats of unauthorized usage of the data by service providers, and there

is the potential for theft of data from data servers in the Cloud. Thus, fears of sensitive data

leakage or loss of privacy is a significant barrier to the adoption of Cloud services. For example,

in 2007, criminals targeted the prominent Cloud service provider Salesforce.com, and succeeded

in stealing customers' emails and addresses through a phishing attack [7]. As a result, some laws

assigned different restrictions on the processing of personal and sensitive information by third

parties; therefore, the use of Cloud services as they are currently being designed is constricted.

Organizations and individuals want to save their money when they move into a Cloud. They try

to reduce the total amount of the expenses when they transfer the data from or to the Cloud. The

total expense of the transfer depends on the workflow execution time, the total amount of data

transmitted from the consumer to the storage resource, the total amount of data transferred from

the storage resource to the consumer, and the storage used at the resource in terms of GB-hours

[63].

There are three Cloud delivery models. These models are software as a service (SaaS), platform

as a service (PaaS), and infrastructure as a service (IaaS). In SaaS, the Cloud providers enable

and provide application software as on-demand services. Therefore, the provider’s applications

can run on a Cloud infrastructure, and it is accessible from various client devices. PaaS enables

programming environments to access and develop additional application building blocks. Such

programming environments have an observable impact on the application architecture, such as

constraints on which services the application can request from an OS [24]. In addition,

3

consumer-created applications installed on the Cloud infrastructure use programming languages

and tools supported by the provider. Finally, in IaaS, the Cloud provider contributes a set of

virtualized infrastructural components such as virtual machines and storage on which customers

can build and run applications. The application will eventually reside on the VM and the virtual

operating system. Figure 1.1 explains the idea of Cloud Computing.

Source: http://www.brighthub.com/environment/green-computing/articles/127086.aspx#imgn_1
Figure 1.1 Cloud computing concept

1.2 Advantages of Cloud Computing

Cloud computing has brought many advantages to people and companies throughout the world.

The following list clarifies some important points in Cloud computing:

 Services or data are hosted on remote infrastructure

4

 Services or data are available from anywhere

 As Services or data are used, the user pays

 Use of software and hardware in economic ways

 Offers unlimited computing resources on demand

 Supports parallel and distributed computing

 Offers unlimited storage capacity

 Improves performance on the user’s computer

 Increases data reliability

 Supports virtualization

1.3 Data Outsourcing

Information outsourcing and dissemination services have recently seen widespread diffusion

because of the growing costs of in-house storage and management of large collections of

sensitive data and the requests for both storage capacity and skilled administrative personnel

[14]. Even though data outsourcing offers many important advantages like reducing management

costs, higher availability, and more effective disaster protection than in-house operations

provide, when data are not under the control of their owners, their confidentiality and integrity

can therefore be at risk. Consequently, a solution to these data protection issues would then

permit users and companies to utilize a dissemination service, offering strong guarantees about

the protection of user privacy against both adversaries breaking into the system and the server

itself. The servers need to perform a computation on their data without revealing the data used in

the computation. Therefore, an effective and safe execution plan for a query computation, with

which the servers can protect their information, has to be determined. Authors in [14] illustrate

that data should be protected also from the server itself. The paper suggests some points: 1) the

5

server must not have any visibility on the data when it executes queries, and the DBMS must

execute queries in encryption form. If the data is split into different fragments, we must have a

technique to join them not on the server, but at the client site to answer any query. 2) We must

have private access to the data, and it should not be possible for an observer or the server to infer

two queries' aims at accessing the same or different data. 3) We must ensure the server does not

improperly modify data, and that the server provides a correct response to queries. 4) A

technique must be developed for enforcing access control in a reliable way to avoid causing a

possible bottleneck and affecting the performance in the system. 5) It is easy to share information

among multiple servers because of communication technologies. Indeed, confidentiality and

privacy cares are still active problems that call for effective and efficient solutions.

1.4 Information Security

Security is an important field in computer science and information systems [83]. It is defined as

feeling safe and protecting from thoughtful or accidental threats on the information, and the

information is protected from access by unauthorized users. At the same time, authorized users

must be able to access the data at any time. Information security means that the procedures and

measures taken to protect data, hardware, software, networks, people, and procedures, which are

involved in generating information [83]. The notion of information security is being established

on Confidentiality, Integrity, and Availability, according to the National Security

Telecommunication and Information Systems Security Committee. Confidentiality means the

prevention of unauthorized users from knowing or accessing secret information and revealing

secret information only to authorized users. Integrity means the data must be consistent and

accurate throughout the system, and we must prevent the system from having invalid data,

redundant data, inconsistent data, and data anomalies. Availability means that the system must be

6

available to authorized users to access the information at any time, and we must secure the

system from external attacks, lack of system protection, lack of disaster recovery because of

system failure, and faulty implementation of authentication processes [83].

1.5 Database Security

Information systems allow business corporations and government institutions to become more

productive and efficient [83]. Organizations use the information to produce and get the right

decisions to improve their work and tasks. Therefore, the organizations must have consistency

and integrity in the data to make the right decisions, and the database administrator must

implement and enforce security at all levels of the database. The database administrator must

know the diverse security access points that can make the database vulnerable in order to protect

valuable data stored in the database [83]. A security access point is a place where database

security must be protected and applied. The security access points include people, applications,

networks, operating systems, database management systems, data files, and data. In summary,

database security is a collection of data constraints, security methods, security policies and

procedures, and security tools blended to implement all necessary measures to secure the

Integrity, Accessibility, and Confidentiality of every access point [83].

1.6 Database-as-a-Service

The previous explanation describes Cloud computing as the use of the internet to host computer

resources instead of maintaining them on local computers, and accessing remote resources and

using them via the internet. A company like Salesforce.com offers a Multi-tenancy technique.

Multi-tenancy is an optimization mechanism for hosted services in which multiple customers

consolidate onto the same operation system, so it will effectively drive down the cost of

computing infrastructure [84]. Database-as-a-Service (DaaS) is a new paradigm for data

7

management, in which a service provider hosts a database as a service, which provides data

definition, storage, backup, and retrieval. This will save the companies from buying expensive

software and hardware [84]. Today, there are many companies that present a DaaS, like Google

Datastore, Amazon, and Microsoft SQL Azure. On the other hand, the new technique should be

developed to protect data from any attack. The security of the data on a Cloud or outsourced data

is the responsibility of both the customer and the provider [84].

1.7 Encryption Technique

Encryption is the process and the operation of encoding or changing a message or any

information so that its meaning is not understandable; the way to bring the information back into

its original form is called decryption [82]. A cryptosystem is a system for encryption and

decryption, which involves a set of rules for how to encrypt the plaintext and how to decrypt the

cipher text [82]. The encryption is used to protect the data and make it particularly hard for an

intruder to find the data useful. Encryption clearly deals with the need for Confidentiality of data

and can be used to ensure Integrity. In general, data that cannot be read, cannot easily be

modified in a meaningful manner [82].

1.8 Cloud Computing Performance

In designing a relational Cloud, resource allocation has become a great challenge. Challenges

include monitoring the resource requirements of each workload, predicting the load multiple

workloads that will produce when run together on a server, passing workloads on to physical

servers, and migrating them between physical nodes [32]. Because of a running database, the

resource monitor captures a number of DBMS and OS statistics. For example, it can define the

memory space required by a workload, so that DBMS can fill the entire buffer pool with pages.

8

A model of CPU, RAM, and disk has been developed to predict the combined resource

requirements when several workloads have been consolidated into a single physical server.

Cloud computing has the following essential characteristics that will affect Cloud performance

[84]:

1. On-demand self-service: Without requiring human interaction with each service provider,

users can order and manage services on the Cloud. This means the availability of a

database at any time and the associated resources occur automatically at the provider.

2. Broad network access: Standard mechanisms and protocols used to access Cloud

services, like computer applications and databases.

3. Resource pooling: Computing resources like storage, CPU processing, memory, network

bandwidth, and virtual machines are provided to serve many users on the Cloud.

4. Rapid elasticity: Resources can be provisioned swiftly and elastically.

5. Measured Service: Resources and services are monitored and controlled automatically by

Cloud systems, and they support optimization of resource usage and pay-as-you-go

business models.

Depending on these characteristics, any database application can run on Cloud computing, and

Cloud computing can run the database application with high efficiency if the Cloud uses high

specification resources like high speed internet and extra memory. For example, the Internet

provides access to a Cloud database and if the speed of the Internet is very high, the response

time to any query will be received rapidly. On the other hand, it is practically impossible to

measure accurately the database processing time on a Cloud database [84].

In [69], researchers say the key to the successful management of resources is local analysis and

global analysis. Local analysis is the identification of the correct configuration of system

9

resources for a client, like CPU and memory, to meet the service level agreements while

optimizing the revenue. A service provider provides global analysis. The service provider has to

classify the decision for how to allocate resources among clients based on the current system

status, such as defining the CPU, memory, and a new database replica.

1.9 Problem Definition

The fears of the users and companies using Cloud computing are summarized in this list:

 Leakage of sensitive data or any other important data

 Attacking the data on the Cloud

 Loss of privacy

 Unauthorized use of data

 Theft of data from storage devices

 Decrypting data on the Cloud

 Excessive data transmission from the Cloud

 Increased cost of use

 Decrypting huge data on the Client site

1.10 The Contribution of the Dissertation

The focus of this dissertation is to investigate how to protect the outsourced data or data on a

Cloud, which allows users and companies to give their data to external servers that then become

responsible for their storage, management, and dissemination. The suggested study will protect

any database table on a Cloud or any external server from any leakage or attack. The research

also focuses on minimizing data transmission from the external server, reducing data processing

time on a client site, and avoiding decryption of unwanted data by decrypting only required data.

The dissertation solution should protect any sensitive information on Cloud computing while

10

maintaining a competitive processing overhead and low price compared to other solutions. One

of the disadvantages of the encryption method is increasing the time of processing when data are

requested by any inquiry from a database table. For example, when we request “select * from

employee where Salary > 10,000”, the Salary field must be decrypted even on unmatched

records, and it will take a long time to decrypt the salary attribute for the whole employee table

[82]. Therefore, the proposed model has been designed to avoid this problem. The model

encrypts the data over a Cloud or data center in order to protect it from any leakage. A technique

has been presented to encrypt the data before it is sent to the Cloud and to execute and run SQL

queries on a Cloud over encrypted data. The strategy is to process the query at the service

provider’s site without having to decrypt the data. Decrypting the data is accomplished only at

the client site to enforce security. In addition, four different techniques have been developed to

index and partition the data. The dissertation will performed simulation analyses of the

approaches to test their effectiveness. The results are provided in the form of graphs and tables to

show and compare the efficiency of the proposed methods. The indexes and partitions of the data

are used to select part of the data from the outsourced data depending on the required data.

Figure 1.2 shows the general idea of the dissertation plan.

1.11 Research Advantages & Goals

The advantages and the goals of the dissertation can be summarized in this list:

 Developing an algorithm to protect data from attack

 Encrypting data on a Cloud by using a standard technique

 Running SQL over encrypted data on a Cloud

 Decrypting data only at the client site

 Minimizing the amount of data transmission from a Cloud

11

 Filtering and giving the right result to the client at the client site

 Reducing data processing at the client site

 Executing SQL queries on a Cloud over encrypted data

 Developing four techniques to partition the data

 Evaluating and comparing the four techniques

12

The Client

The Cloud

Figure 1.2 The Dissertation plan

Client

User

Apply

Special SQL

statement

Secured

Data

Client Application

- Modify SQL query

depending on partition

data on Cloud and send it

to the Cloud.

- Obtain Encrypted

Records from Cloud,

Decrypt Records and

Give Right Result.

Result

Request Query

Encrypted Table (N Records)

On Cloud or Server

Return some

Records of N in

Encrypted Form

13

2. BACKGROUND AND RELATED WORK

2.1 Introduction

Protecting a database table on outsourced databases or on Cloud has proven to be a very

challenging task. It is a very important and difficult research field. Some research has been

conducted over outsourced and Cloud database security as well as how to protect sensitive and

non-sensitive information on outsourced data. While these papers give perfect solutions to the

problem of data outsourcing, many of them depend on increasing the cost of the processing on

the server and the clients’ sites. Little research has been performed on how to protect outsourced

data on Cloud with low processing overhead. Thus, developing mechanisms that protect sensitive

or non-sensitive data in an outsourced database at the lowest cost is a key demand due to the

amount of harm that can be caused by attackers. This research plans to investigate how to protect

outsourced data or data on Cloud with the least processing overhead and at a low cost.

2.2 Cloud Computing Vulnerability

These days’ blog entries, news, and many other publications warn about cloud computing

security risks and threats. Security is cited as the most substantial roadblock for users moving to

cloud computing [65]. Vulnerability is a major factor and is a weakness in the security system.

Cloud computing technologies and applications have vulnerabilities that are prevalent in the

development of the implementations, or are fundamental to the technology like insecure

cryptography [65]. The following are some examples of Cloud vulnerabilities: unauthorized

access to management applications, internet protocol vulnerabilities, data recovery vulnerability,

and metering and billing avoidance. In addition, there are injection vulnerabilities, which process

applications input to execute against the programmer's objectives. Injection vulnerabilities

14

include SQL injection, command injection, and cross-site scripting. Moreover, an attacker might

take a virtual machine image from an untrustworthy source and analyze configuration and code

in detail using administrative rights. This vulnerability can cause OS or application

vulnerabilities to spread over many systems, and can lead to data leakage problems affecting

communication, the physical disk, and Web applications and services.

2.3 Data Outsourcing and Security Issues

The suggested study is to protect any database table on a Cloud from leakage or attack and

maintain efficient processing on the protected data. Therefore, to gain knowledge about this

study and technique, searches, analysis, and reading on data security papers has been conducted.

Many data security papers were found and this study focuses on Cloud computing and securing

data outsourcing. These papers use different techniques to secure and protect data in these

systems. Consequently, the study and search is categorized depending on this kind of security. A

matrix has been developed and presented in Table 2.1. The research papers have been divided

into five topics: Cloud Computing & Performance, Securing Data, Securing Outsourced Data,

Securing Outsourced Data by Categorization, and Security Testing.

Table 2.1 Research Papers

Topic

REFERENCES

Cloud Computing &

Performance

[32][63][65] [67]

[69][70][71][72][73][74][75][76][77][78][79][81][99][100]

Securing Data [5][10][15][21][23][26][29][31][34][35]

[36][40][49][55][59][68][88][96][98]

Securing Outsourced Data [1][2][3][4][6][7][8][9][11][12][13][16][17]

[20][22][24][25][30][33][37][38][39][41][42]

15

[43][44][45][46][47][48][50][61]

[62][64][66][85][89][90][91][92][93][95][97]

Securing Outsourced Data

by Categorization

[14][18][19][28][80][87][101]

Security Testing [27][51][52][53][54][56][57][58][60]

2.4 Protecting and Executing Outsourced Data

Different researchers have introduced different techniques and methods to protect outsourced

data. In [19], the authors designed a technique that protects data against attacks on the service

provider. The paper discusses how that technique executes and runs SQL statements over

encrypted data, and it explains how the technique is designed to run as much of the query as

possible at the service providers’ site on encrypted data. The client site is responsible for

decrypting the data and managing the rest of the query processing to give the user the correct

result. To decrease the computation at the client site, an algebraic framework that divides the

query was designed. The proposed technique processes the query over encrypted data. Each

relation in the database is stored on the server as an encrypted relation, and the technique stores

an index corresponding to the attributes in the relation. The index is used to process any query at

the server. In this paper, we find an example of how to partition an attribute that lies in range [0,

1000] into five partitions by using Equi-width partitioning. Different partition functions may be

used to partition any attribute in a table. The paper suggests using AES, RSA, Blowfish, or DES

methods to encrypt the tuples.

In [14] the authors discuss new privacy and security concerns when users and companies store

their data in external servers, which then become responsible for their storage, management, and

16

distribution. They explain privacy threats in an outsourced database where trust in the service

provider is very low. The paper suggests two methods to protect the data by encrypting the

information outsourced to the server or on splitting information across several servers or tables.

The paper begins by explaining the different issues that need to be investigated in the

relationship between providing privacy and security of data outsourced to external parties. The

paper suggests encrypting the data using either symmetric or asymmetric encryption schemes

before outsourcing them to any server. Encryption can be applied on tables, attributes, or tuples.

In the encrypted representation of the table, it is not possible to extract any subset of the tuples;

so the method demands communication from the requesting client of the whole table involved in

a query, and required an excessive workload for data owners and clients in encrypting and

decrypting data. Additional indexing information is stored together with the encrypted table to

query directly the encrypted data. The indexing information will be used to select specific data to

return from the server in response to a query. This means the server executes a query and returns

a set of encrypted tuples to the client, and the client decrypts them and discards spurious tuples

by executing the remaining query on the client and giving the result to the user. A secure hash

function satisfies important properties that turn out to be fundamental for the definition of an

index. It has these properties: (1) the application of a secure hash function to a given attribute

value always produces the same index value, thus making easy the translation of a query into an

equivalent query on the server on the encrypted data. (2) A secure hash function produces

collisions, meaning that different plaintext values map onto the same index value. This property

guarantees that even if an adversary knows the distribution of plaintext values in the original

database, it is not possible to infer the corresponding plaintext values from the index values, (3) a

secure hash function does not preserve the domain order of the attribute on which it is applied. In

17

addition, the paper suggests two points for defining the indexing method for an attribute. First,

the indexing information must relate to the data to provide an effective query execution

mechanism. Second, designers should not open the door to inference and connecting attacks

because of the relationship between indexes and data.

In [85] the authors developed a framework called ZeroVis to protect outsourced data in the

Cloud and provide confidentiality for information stored in the Cloud. ZeroVis merges the ability

to search over encrypted data with fine-grained access control on outsourced data. Their

framework uses layered encryption in combination with Ciphertext Policy Attribute Based

Encryption (CP-ABE) to support efficient query processing on encrypted data, and they utilized

CP-ABE to control access to data based on the data client's attributes. Researchers created the

ZeroVis framework on two primary building blocks, CP-ABE and CryptDB. CP-ABE generates

the user's secret key by combining a user with a set of descriptive attributes. Users whose

attributes match the access policy can decrypt the data, which is encrypted by an access policy.

CryptDB preserves confidentiality for data stored on an untrusted database server, and it

incorporates an encryption strategy that can adjust the encryption level of each column based on

user queries and query requirements. The framework uses the ZeroVis proxy, which is

responsible for encrypting data and queries, storing the encrypted data, and decrypting query

results. The framework uses an attribute authority to provide authenticated attributes for each

authenticated user and to prevent unauthorized users from sending queries through the

framework.

Authors in [38] describe a model based on a client-based privacy manager in order to decrease

users’ fears of data leakage and loss of privacy. It uses the idea of employing obfuscation and de-

obfuscation of data to reduce the quantity of sensitive information held on the Cloud. The

18

obfuscation and de-obfuscation of the information are managed by a key, which is defined by the

user, and it is not shown to Cloud service providers. Authors in [11] have described an insider

threat in Cloud Relational Database Systems. The paper explains how to develop and make a

knowledgebase in a Cloud Relational Database System to monitor user activities and mitigate

insider threats. The paper suggests three models, which are the Peer-to-Peer model, the

Centralized model and the Mobile-Knowledgebase model, and addresses the conditions under

which they work well to prevent insider threats. Authors in [28] show how to offer means of

protecting information, while guaranteeing its availability to legitimate clients. They offer a

solution for remote querying of encrypted databases on untrusted servers. The solution bases on

the use of indexing information attached to the encrypted database. The indexing is used by the

server to select the data to return in response to a query, without the need for revealing the

database content. The authors provide a method to indexing encrypted data constructed with

efficiency and confidentiality in mind, providing a balance between the two. They also provide a

measure of inference exposure of the encrypted and indexed data that nicely models the problem

in terms of graph automorphisms. They enhance the indexing information to provide for efficient

execution of interval-based queries by adapting the B+-tree structures to the database-service-

provider model usually used inside DBMSs. The proposed index bases on a one-way secure hash

function that takes in input of the plaintext values of an attribute and returns the corresponding

index values, and the hash-based indexing offers more protection because the same index can be

mapped by different plaintext values. Authors in [50] treat some security issues in a cloud

database system. These issues are database and chosen plaintext attack knowledge threat and

database and query result knowledge threat, which happens when an attacker hacks into the

Cloud database. The authors suggest that a data owner must encrypt his data before he sends it to

19

the Cloud. They involve a secret sharing scheme between the client and the Cloud where a

sensitive data item splits into two shares, one kept at the Cloud, which is the encrypted value,

and the second at the client, which is the item key. They suggest a secure query processing

technique and a set of elementary operators to work on relational tables, which contain encrypted

data on the Cloud. The operators are data interoperable and can be used to formulate complex

queries. At the end, only the client can decrypt the requested data.

Authors in [87] suggest an approach to execute and run SQL queries on the Cloud over

encrypted data. The strategy is to process the query at the service providers' site without having

to decrypt the data and achieve efficiency by returning no more than the exact set of requested

data to the client. Decrypting the Data is accomplished at the client site to prevent any leakage at

the Cloud or during transmission. They suggest storing the data on the Cloud in a different

format by using a coding table, and all the attributes of a table are stored as one attribute on the

cloud. In addition, each attribute uses different size code and different coding tables. Authors in

[95] said the key area of concern in the acceptance of the Cloud is the security of the data and a

very high degree of privacy and authentication. Cryptography is one of the important methods to

protect the data in a Cloud database server. The paper suggests using cryptography to provide

various symmetric and asymmetric algorithms to secure the data. The paper presents the

symmetric cryptographic algorithm, which is the Advanced Encryption Standard (AES), and

AES depends on several substitutions, permutation and transformation. It states that the AES

algorithm is a highly secure encryption method.

2.5 Cloud Computing and Performance

Managing and allocating resources among different clients and users intelligently is very

important for system providers, who manage the infrastructure resources in a cost-effective

20

behavior while satisfying the client service level agreements [69]. Authors in [69] concentrate on

this fact to manage the resources in a shared cloud database system and present smart service

level agreements. They suggest using machine-learning techniques to learn a model, which

explains the potential profit margins for each client under several resource allocations. Using this

learned model, the resource allocations are dynamically being regulated by the resource

allocation decision module in order to achieve the optimum profits. The technique proves

efficient for computing predictive models under different hardware resource allocations, like

CPU, memory, and number of replicas in the database systems.

In [73], the researchers say that performance unpredictability becomes the most important

problem in Cloud computing because database investigators implement wall clock experiments,

and database applications offers service level agreements. They suggest a study of the

infrastructure performance variance of Amazon EC2 from different perspectives. They utilize

well-known micro benchmarks to measure performance variance in communication, CPU, and

I/O, and to quantify the impact on real data-intensive applications, they utilized a multi-node

MapReduce application. The authors collected and compared data for an entire month with the

results obtained on a local cluster. The results show that EC2 performance varies a lot and often

falls into two bands having a large performance, and these two bands correspond to the different

virtual system types provided by Amazon.

21

3. DATA PROTECTION AND STORAGE

3.1 Introduction

Companies and users use computers to process and store their data for many reasons. They can

send their data through the internet or share their data through computer networks with different

users. In addition, they can use data outsourcing or Cloud computing to store their data in

external servers. The companies and users are concerned about their stored data, and they want

and desire to protect their data. They only want authorized people to use their data. Some

solutions and techniques can be used to protect the data in the Cloud or on servers. One of the

important solutions to protect information is to use encryption techniques. Data encryption

prevents unauthorized people or intruders from seeing others' data and protects data in storage

devices. By using encryption techniques, no one can read the encrypted data, and only the users

with the decryption key can decrypt it. On the other hand, an efficient technique has to be used to

manage data outsourced or in a Cloud, or companies and users will not use them if responding to

queries takes long time.

3.2 Data Outsourcing and Cloud Computing

A new technique data outsourcing has been developed, because of the rapid evolution of storage,

processing, and communication technologies [14]. Providers and external servers become

responsible for storage, management, and dissemination for any companies or users who give

their data to them. Using data outsourcing decreases the cost of the software and the hardware

and offers high availability. Nevertheless, data are not under control of the companies or users,

and attackers can violate their information. This will affect their confidentiality and integrity. A

22

perfect solution to this issue will allow companies and users to use a dissemination service and

give their data to the providers and servers.

3.3 Data Encryption

Users and companies are concerned about their data when data are stored and managed in a

Cloud or outsourcing servers. The main solution is to encrypt data before they send data to a

Cloud or outsourcing servers to prevent the server or provider from accessing the data that are

stored on its own machines. Data encryption can be performed by using symmetric or

asymmetric encryption schemes. Many suggestions are based on symmetric encryption because

symmetric encryption is cheaper than asymmetric encryption. When a client requests any

information from an encryption table, the client has to request the whole table because it is not

possible to filter the tuples in the encrypted representation of the table. This will require an

excessive workload, demanding encryption and decryption of the data. To decrease this

workload, additional indexing information can be added to the original database table, and these

indexes are stored together with the encrypted tables on the Cloud or the server. The index data

can be used by the database management system to select required data from a server or a Cloud

to be returned in response to a query.

3.4 Processing Query on Encrypted Database Table

The index data can be stored on the Cloud or server with an encrypted database table. This helps

in reducing the entire processing time, which includes data transfer time from the Cloud to the

client and also data decryption and processing time at the client. In the meantime, the data are

protected on the server. This method also avoids decryption of unwanted data by decrypting only

the data requested by a user. This technique can help us to process a query on a Cloud or server

without having to decrypt the data, and data decryption is performed only at the client site to

23

protect the data from any leakage. When the data are being indexed and partitioned by any

technique, the same technique must be used to index and partition the data in a query before the

query is sent to the Cloud or server. Generally, when a user submits a query, he has to map the

query into a server query working on the encrypted table at the server site. Once the server

executes the query, the server will return a set of encrypted records to the client that decrypts

them and chooses only the right records, giving them to the user. Some research has been

discussed in chapter two which use different methods and techniques to partition and index the

data. These papers have also illustrated some important points when defining the indexing.

Definition 1 (Set Partition) [86]. Given a set A and an index set I, then is a partition of

A if

1. for each i I

2. A=

3.

3.5 Data Partitioning Methods

In this research, various ways of storing a database table on a Cloud, where the records are

encrypted and divided into multiple partitions for secure and effective management, have been

studied. The strategy is to process as many queries as possible at a Cloud or server site without

having to decrypt the data. This processing will minimize computation at a client site. Therefore,

minimum processing will be needed at the client site to get the right result. The technique starts

by defining the attributes that will be used in all queries, and these attributes will be processed by

some operations to get the partition categories. By getting the partition categories, each value in

any attribute can be mapped to a specific range. This means to map the domain values of the

attributes into the partition categories, such that these partitions cover the whole domain, and no

two partitions overlap. For example, consider the employee table as shown in Table 3.1, as well

24

as Figure 3.1, which shows the identifiers assigned to the five partitions of the Sal and NetSal

attributes. By using one of the encrypted methods and Figure 3.1, Table 3.1 can be sent as an

encrypted table with extra category information to the Cloud as shown in Table 3.2. The extra

category information is the Sal and NetSal attributes mapping corresponding to the index

partition. For example, if Sal is equal to 450, its corresponding partition is [400, 600]. Since this

partition is mapped to 3, it stores the value “3” as the identifier of the Sal for this tuple.

Similarly, it stores the NetSal attribute with the identifier “2” for the NetSal value 300. For

simplicity, the range of the partition is used as 200 for the two attributes.

 Table 3.1 Employee Table

Figure 3.1 Partition and identification of the Sal and NetSal attributes.

Table 3.2 Encrypted Employee Table on the Cloud

3.5.1 Type of Partitioning

To improve security, each attribute can use a different range of partitions for its values. By using

the category data in the WHERE clause conditions, any query can be run to bring the data from

the encrypted table on the server or the Cloud to the client site. To encrypt the data, one of the

Record No. ID Name Sal NetSal
R1
R2
R3

14 AC 450 300
15 DD 500 375
16 BC 950 550

0 200 400 600 800 1000

1 2 3 4 5

Record No.
R1
R2
R3
...

Whole Record Encrypted
71740103000000007179787871707...
71750404000000007179777071707…
71760203000000007179767671717...

…..

Sal
3
3
5
...

NetSal
2
2
3
...

25

standard algorithms like the Data Encryption Standard (DES), Advanced Encryption Standard

(AES), or Rivest-Shamir-Adleman (RSA) can be used. For the partitioned data, four different

approaches have been proposed to get the partitioning categories as explained below:

1. Frequency of use Based Partition

This kind of partitioning method begins by mining the log file of the database system in a period

of time to be put on a server or Cloud, and by using this process a statistical matrix for all

WHERE clause conditions of queries that will be executed on those tables is generated. This

statistical matrix will be created for each attribute of the data that needs to be partitioned into

categories. Figure 3.2 shows an example of a log file. Figure 3.3 shows the Statistical Matrix for

a salary attribute in a table. It shows how many times a partitioning category has been used in

WHERE conditions. After the statistical matrix is created, the technique eliminates any

partitioning category that is less than a predetermined threshold. Figure 3.4 shows an example of

how the technique eliminates some partitioning categories because they are under the threshold.

Table 3.3 explains the number of records in each partitioning category, and by using this table, it

can demonstrate how getting the smallest partitioning category can improve performance. For

example, partitioning category [800, 1200] has 200 transactions and 30 records from the table; so

in total it has to bring 200 *30 =6000 records from the server table in that given period of time.

However, if we choose partitioning category [400, 1200], it has 20 +30 =50 records and 200

*50=10000 records in that given period of time when a user requests the query looking for a

value between 800 to 1200. Therefore, breaking this category [400, 1200] into two different

categories [400, 800] and [800, 1200] will improve the performance. The net improvement is

10000-6000=4000 records and it will correctly skip retrieval of 4000 records during this period

26

because the technique requests the data only form [800, 1200]. Table 3.4 shows the resulting

partitioning categories.

List all where clause conditions:

Where salary>=400 and salary<=750

Where salary>=400 and salary<=800

Where salary>=400 and salary<=750

Where salary>=700 and salary<=1200

Where salary>=5000 and salary<=7000

Where salary between 1000 and 3000

Where salary>=1200 and salary<=2500

Where salary>=400 and salary<=4000

Where salary>=400 and salary<=800

Where salary between 400 and 2500

Where salary between 2500 and 5000

Where salary>=2500 and salary<=7000

.........

 Figure 3.2 The Log file

Figure 3.3 Statistical Matrix

Partition to 800 1200 2500 4000 5000 7000

Partition From

400 100

(20)

50 200 100 100 50

800 200

(30)

100 200 100 50

1200 300

(30)

200 200 100

2500 300

(25)

200 100

4000 600

(10)

100

5000 200

(5)

 Figure 3.4. The result Statistical Matrix (Threshold=25)

Partition to 750 800 1200 2500 3000 4000 5000 7000

Partition From

400 5 100 50 200 7 100 100 50

700 15 3 1 0 0 5

800 200 100 4 200 100 50

1000 13 10 5 2 5

1200 300 5 200 200 100

2500 5 300 200 100

4000 600 100

5000 200

5500 3

27

Table 3.3 Number of Record

Table 3.4. The Result Partitioning Category

In addition, attributes may have discrete data, which can take only particular values. Discrete

data can be numeric, like numbers of students, and can be categorical, like male or female and

manager or computer programmer. The next example explains how to index and partition

discrete data. For example, consider the attribute Job Title, which has discrete values, and

possible values for this attribute are Manager, Computer Programmer, Database Designer, or

Accountant. After the log file has been studied for this attribute, the Statistical Matrix will be

created, which is shown in Figure 3.5. The method next removes any partition category less than

the predetermined threshold, which is 90. Figure 3.6 confirms this step by eliminating some

partitioning categories that are under 90. After that, it collects all the eliminated categories and

puts them together in one category, or each group in different category depending on the total

number of the frequency for each category. Figure 3.7 shows the result of Partitioning

Categories.

From To No. of

Records

400 800 20

800 1200 30

1200 2500 30

2500 4000 25

4000 5000 10

5000 7000 5

Partitioning Category Category

[400 - 800] 1

[800 - 1200] 2

[1200 - 2500] 3

[2500 - 4000] 4

[4000 - 5000] 5

[5000 - 7000] 6

28

Job Title Manager Computer

Programmer

Database

Designer

Accountant

Manager 250 50 40 200

Computer

Programmer

 30 20 20

Database

Designer

 20 30

Accountant 300

Figure 3.5 Statistical Matrix for Job Title Attribute

Figure 3.6. The result of Statistical Matrix (Threshold=90)

Figure 3.7. The result of Partitioning Category

2. Space Based Partition

This kind of partitioning category starts by counting the frequency of each value in an attribute

of a table that needs to be partitioned and put on the server or the Cloud. The attributes can be

defined by studying the log file. After the values and their frequency have been defined, they will

be stored in a statistical table. This statistical table must be in ascending order before the next

operations start. Table 3.5 shows an example of values and their frequency. Next, the capacity of

a bucket used for each category is defined. This bucket will be used as the size of each partition

category. The technique starts by reading the statistical table from the beginning of the list and

checking the frequency of each value to see if the bucket can store the frequency of each value.

If the size of the bucket is bigger than the size of the frequency, the value of this frequency can

belong to the current bucket. Then the process checks the second value. If the remaining size of

Job Title Manager Accountant

Manager 250 200

Accountant 300

1 2 3

Manager Computer

Programmer

& Database

Designer

Accountant

29

the bucket is bigger than the size of the frequency, the second value will be placed in the current

running cloud category. If the space left in that bucket is not large enough to store the entire

category, it checks the next value, and so on. If the size of any value is greater than the size of

the bucket, it divides the value over many buckets. Table 3.6 depicts an example of this process.

The reason for having the original and Cloud category attributes is that the table works as a

dynamic table where, if the size of any frequency is more than the size of the bucket, it can

update the category data on the Cloud without bringing the data to the client and decrypting the

data to update the table. This idea also works for discrete data because the technique works on

separate values.

Table 3.5 Statistical Table (Values and their frequency)

Value Frequency (Number of Record)

450 100

500 1000

1000 300

2000 200

3000 150

Table 3.6 Dividing Values of Frequency on Buckets (Bucket Size=500)

Value Frequency Original

Category

Cloud Category

450 100 1 1

500 1000 2.2 2 (2.1, 2.2)

1000 300 3 1

2000 200 4 4

3000 150 5 4

3. Mondrian or Bisection Tree Based Partition

This method starts by ordering the data of any attribute that needs to be partitioned and

calculating the median, then dividing the data into two partitions, right and left. It then takes the

median for each partition and divides them into two partitions, right and left. This operation

30

repeats for each partition until the partition satisfies certain termination conditions. To explain

this idea, let us use Table 3.5, which shows the values and their frequency, and the termination

conditions as the total values of the frequency in each group are less than or equal to 500, or

there is only one value in each partition. Figure 3.8 shows how the Bisection-Tree works. For

example, in the second step in Figure 3.8 the group "1000, 2000, and 3000" is divided once

more, because the total value of the frequency is greater than 500, which is 300+200+150=650

records. When it is divided into two groups, the total in the first group, which is 1000, is equal to

300 records, and the second group, which is 2000 and 3000, has 200+150=350 records which is

less than 500. Table 3.7 shows the resulting category. This design will work for discrete data as

well.

The median =1000

 Figure 3.8. The Bisection-Tree.

Table 3.7 The resulting Category

Value Frequency Category

[450] 100 1

[500] 1000 2

[1000] 300 3

[2000 - 3000] 350 4

450, 500, 1000, 2000, 3000

450, 500 1000, 2000, 3000

450 500 1000 2000, 3000

31

4. Histogram Based Partition

Histogram is a method of displaying statistical information, and Equi-width is one of its kinds.

Equi-width technique, which divides the values into buckets of equal width, can be used to

partition the data. This method subtracts minimum value from maximum value for the attribute

that will be partitioned and divides the results by the number of buckets. Authors in [19] used

this technique to partition the data. Figure 3.9 shows the identifiers assigned to the five partitions

of an attribute. In this research, this method will be compared against the previous three methods

to discover the efficiency. Table 3.8 shows the result of the partitioning category.

Figure 3.9 Partition an attribute into 5 buckets.

Table 3.8 The result of Partitioning Category

3.5.2 Partitioning Algorithm

In this part, the four kinds of the partition process are presented as steps of algorithms to show

how to implement each method.

1. Frequency of use Based Partition Algorithm

This algorithm shows how to apply frequency of use based methods. The algorithm starts by

reading the log file at a given time, and at the end, the algorithm gives the partitioning categories.

Input: The log file

Partitioning Category Category

[0 - 200] 1

[200 - 400] 2

[400 - 600] 3

[600 - 800] 4

[800 - 1000] 5

0 200 400 600 800 1000

1 2 3 4 5

32

Output: the resulting is the partitioning category.

1. Initialize Partition set={}

2. Read the log file and collect all WHERE commands for the attribute that needs to be

partitioned and put them in an array called Statistical_Matrix array, which explains

partition from and partition to by counting the frequency of each range.

3. Sort the Statistical_Matrix array by sorting the first column, which describes Partition

From, and first row, which describes Partition To, in ascending order.

4. Define a threshold for minimum value of frequency to eliminate any partition category

less than the threshold.

5. Get new Statistical_Matrix after eliminating any partition category less than the

threshold.

6. List=0 (before the first row in Statistical_Matrix)

7. List=List+Next_Row

a. Take the value from first column as Partition_From with a value of the first

column in the same row that has a number as Partition_To.

b. Range values Partition_From and Partition_To ∉ Partition set

i. Partition set= Partition set U (Partition_From and Partition_To)

(Check Partition set if the range values Partition_From and Partition_To

are not found before; put the range values in Partition set)

8. Go to step 7 if the process has not processed the last row in the Statistical_Matrix array.

9. Collect any domain, which is not found in the Partition set and put them together in one

category or each group in different category.

10. Put random numbers for each partition to get the result partitioning category

33

11. Return (Partition set)

12. End

2. Space Based Partition Algorithm

This algorithm shows how to apply space based methods. The algorithm starts by reading a

database table that needs to be partitioned and put on the Cloud or server, and at the end, the

algorithm gives the partitioning categories.

Input: Database table that contains the attributes to be partitioned.

Output: The partitioning category.

1. Initialize Partition set={}

2. Define the attribute that needs to be partitioned in the database table

3. Put each value and its frequency in the Partition set

4. Sort the Partition set in ascending order

5. Starting from number=1, Give each value in the Partition set an increment number by 1,

and it is called original category

6. List=0 (beginning of the Partition set)

7. List=Main_row+1, bucket_size=Maximum size, Main_row=List

8. If (Cloud_category != space) goto 11.\\ space means has not partitioned it before.

9. Else If (frequency>bucket_size)

a. Number of bucket=┌ (frequency/bucket_size) ┐\\Divide the frequency on number

of buctets

b. Cloud_category=List number of category buckets

c. Put Cloud_category in the Partition set

d. Goto step 11

34

10. If (frequency<=bucket_size)

a. If (Cloud_category != space)

 List=List+1 \\Next row

 goto step 10

b. Cloud_category=original category of the Main_row

c. Put Cloud_category in the Partition set

d. Bucket_size= Bucket_size-frequency \\To get the reminder of the bucket_size

e. List=List+1 \\Next row

f. If (bucket_size>0) go to step 10, else goto step 11

11. If (Main_row != end of the array_freq) goto step 7

12. Return (Partition set)

13. End

3. Mondrian or Bisection Tree Based Partition Algorithm

This algorithm shows how to apply Mondrian or Bisection Tree based methods. The algorithm

starts by reading a database table that needs to be partitioned and stored on the Cloud or server,

and at the end, the algorithm gives the partitioning categories.

Input: Database table that contains the attributes to be partitioned.

Output: The partitioning category.

1. Initialize Partition set={}

2. Define the attribute that need to be partitioned in the database table

3. Put each value and its frequency in an array

4. Sort the array in ascending order

35

5. Define the termination condition (Maximum frequency number of each group after

dividing)

6. Take the median, so there are two groups, left and right partitions

7. If ((frequency of all values in right group <= termination condition) Or (only one value in

the group))

a. Stop dividing

b. If (group of values), Put the smallest number (From value), largest number (To

value), and the category maybe Random number or sequential number in the

Partition set

c. If (there is one value in the group), put the value and the category in the Partition

set

8. If ((frequency of all values in left group <= termination condition) Or (only one value in

the group))

a. Stop dividing

b. If (group of values), put the smallest number (From value), largest number (To

value), and the category (maybe Random number or sequential number) in the

Partition set

c. If (there is one value in the group), put the value and the category in the Partition

set

9. Else Goto step 6

10. Return (Partition set)

11. End

36

4. Histogram Based Partition Algorithm

This algorithm shows how to apply histogram based methods. The algorithm starts by reading a

database table that needs to be partitioned and stored on the Cloud or server, and at the end, the

algorithm gives the partitioning categories.

Input: Database table that has the attribute to be partitioned.

Output: the result is the partitioning category.

1. Initialize Partition set={}

2. Define number of bucket_size

3. Define the maximum and minimum values for the attribute that will be partitioned

4. Range=┌ ((maximum-minimum)/bucket_size) ┐

5. List=minimum value, bucket_no=0

6. List_To=List+Range

7. Put List, List_to, and category number can be Random number or sequential number in

Partition set

8. List=List_To, bucket_no=bucket_no+1

9. If (bucket_no<bucket_size) Goto 6

10. Return (Partition set)

11. End

3.5.3 Applying Data Encryption

Each type of the data partitioning method described in the previous section has been applied on a

relational table in order to evaluate and compare the time of encryption. These methods use an

37

index data, and these index data are stored with the encrypted table on a MySQL server. When

data are sent to the MySQL server, the data are sent in encrypted form using a standard

algorithm. Figure 3.10 shows the consumption time in milliseconds, which is used to encrypt an

employee table that has 3000 records with a record size of 68 bytes, for each type. As can be

seen from the graph, there are different values in encryption time for the same number of records

for each kind. It can be clearly seen that encrypting the table by Frequency-of-Use-Based

partition took the shortest time, and encrypting the table by Space-Based partition took the

longest time.

Figure 3.10. Running time to encrypt 3000 records for all partition types.

94727

96211

95696

95261

93500

94000

94500

95000

95500

96000

96500

Frequency of use Based Space Based Bisection tree Based Histogram Based

Ti
m

e
in

 M
ill

is
ec

o
n

d

Type of Encryption (3000 Records)

38

4. RESULTS AND ANALYSIS TYPES OF DATA PARTITIONING

4.1 Introduction

In chapter three, four types of data partitioning methods have been described with examples and

implementation. These methods can be used for indexing data, and the indexed data will be

stored with the encrypted table on a Cloud or server. The indexed data can be used to increase

the performance when the data are requested from the encrypted table, which is stored on a

Cloud or server. In this research, three new methods have been designed to partition and index

the data. The new techniques are Frequency-of-Use-Based partition, Space-Based partition, and

Mondrian or Bisection-Tree-Based partition. The fourth technique has been used by another

paper [19] and will be used to compare the efficiency with the other three. In this chapter, the

performance results, and the comparison of, the four techniques will be explained. In addition,

these techniques will be compared against both unencrypted and encrypted tables that do not

have category partition, to show the effectiveness.

4.2 Encrypt Data by applying one Type of Partitioning

By studying the log file database queries, the index attributes will be defined for each table.

When data are sent to a Cloud, the data are sent in encrypted form using one of the standard

algorithms. In addition to the encrypted data, additional index attributes are sent to the Cloud

with each record. The index attributes can be found from a category list, which is created when a

whole table is sent to a Cloud or server. The category list is created by applying one of the

partition methods, which are explained in chapter three. The category list is used when data are

encrypted or decrypted, and is used during fetching of information from a Cloud. The category

39

list should be stored on a client site to keep it secret from attackers. Also, in this category list any

numeric variable is transformed into categorical counterparts.

4.3 Getting and Decrypting Data from the Cloud

When a query is defined at a client site to get data from a Cloud, some processing will be done

on the client to modify the query. First, the index attributes and their values will be defined.

Second, the name of index attributes will be changed to the equivalent name on the Cloud. Third,

from the category list for each attribute, each value will be changed to the equivalent value on

the Cloud. The process transforms numeric variables into categorical counterparts. The update

query is sent to the Cloud or server and run on encrypted data. The strategy is to process as much

of the query as possible at the Cloud site without having to decrypt the data. In addition, by

applying this strategy, a set of records will be returned from the Cloud, and this processing will

reduce the number of retrieved records and minimize the computation at the client site.

Therefore, the remainder of the query processing is performed at the client site, by only

decrypting the incoming data and giving the right result to the client, which will improve

performance.

4.4 Managing the Query by Mapping Conditions

The translation of specific conditions in operations must be considered, which means translating

the WHERE command condition to corresponding conditions over a Cloud site. As described

previously, all tables are stored in an encrypted format on a MySQL server, and the numeric

attributes which have to be used in the query conditions are stored depending on range partition.

Therefore, when a user requests information from a Cloud by sending SQL statements from a

client site, the given query has to be modified to be sent to the Cloud to work with the index

partition. All comparison conditions {<, >, =, >=, <=, !=} must be considered, and the condition

40

has to be modified depending on the type of partitioning and the category list. For example, if

there is a condition like (term1 > term2), this condition is managed by finding the maximum

possible value that can be found for the term1 depending on the category list. The maximum

possible value is found by taking the total maximum value from all positive attributes and the

minimum value from all negative attributes depending on the partitioning scale. Next, the

minimum possible value for term2 can be found by taking the total of minimum value from all

positive attributes and the maximum value from all negative attributes depending on the

partitioning scale. Therefore, depending whether the data partition stored on a Cloud is in

encrypted form or not, the designers can generate some different processing to mange any

condition.

4.5 Applying Data Partitioning

Each type of the data partitioning method described in the previous chapter has been applied on a

relational table in order to evaluate and compare their effectiveness. In addition, the four kinds of

data partitioning approaches are compared against the original unencrypted table and also the

encrypted table that has no category data. Thus, six employee tables have been created with

different structures each one satisfying the description in chapter three. All of these tables are

stored on a MySQL server and processed in a simulated cloud environment. As explained in the

following sections, different numbers of records have been created with different record sizes to

achieve the evaluation.

4.5.1 Data Retrieved from A Table Having 100,000 Records with Record Size 68 bytes

In this section, the process to evaluate and compare the different partitioning techniques will be

described using the employee table that has 100,000 records, with record size 68 bytes. These

records have been added randomly to perform the evaluation. Table 4.1 shows the structure of

41

the employee table. In addition to this structure, two indexed attributes are added to test the four

types of data partitioning. Table 4.2 shows different percentage numbers used to define the

number of records retrieved from the employee table on the server, and it shows the WHERE

clauses which were used. To do the evaluation, in addition to the original table, five different

encrypted formats from the employee table have been created to test each type of data

partitioning.

Table 4.1 Structure of the original Employee table (Record size=68 Bytes)

Attribute Name Attribute Type Attribute Size (Byte)

Id int 4

Name Varchar 25

Sal Int 4

NetSal Int 4

Address Varchar 30

Sex char 1

Total= = 68 Byte

Table 4.2 Percentage of data requested by WHERE clauses

 Data requesting % Where Clauses

1 10% Where (Sal>=200 and Sal<300)

2 20% Where (Sal>=800 and Sal<1000)

3 30% Where ((Sal>=1 and Sal<200) or (Sal>=200 and Sal<300))

4 40%
Where ((Sal<1) or (Sal>=450 and Sal<650) or (Sal>=800 and

Sal<1000))

5 50% Where ((Sal>=300 and Sal<650) or (Sal>=650 and Sal<800))

6 60%
Where ((Sal>=0 and Sal<200) or (Sal>=450 and Sal<650) or

(Sal>=800 and Sal<1000))

7 70%
Where ((Sal>=0 and Sal<300) or (Sal>=450 and Sal<650) or

(Sal>=800 and Sal<1000))

4.5.1.1 Running Query on Table Having 100,000 Records with Record Size 68 bytes

The WHERE clauses as explained in Table 4.2 have been applied on the employee table with

different structures depending on the type of the partition used. Table 4.3 shows the running time

for each type of partitioning in milliseconds. Figure 4.1 shows the percentage of the retrieved

42

records from the employee table and the consumption time in milliseconds, which is used to

retrieve the corresponding records for each type. As can be seen from the graph, there are

different values of data retrieval time for the same percentage of records. The encrypted table

without data category took the most time, but it took the longest when 60% of data were

retrieved from the encrypted table with Space-Based category, because the WHERE clause has

many different ranges. The graph also shows that the amount of retrieval time increased steadily

for all types of partitions. In addition, the graph shows the encrypted table with the Bisection-

Tree-Based partition and the encrypted table with Frequency-of-Use-Based partition are more

efficient than the others and are close to the retrieval time from unencrypted table.

Table 4.3 Running time for each type of partitioning in milliseconds (size=100,000 records with

record size 68 bytes).

Data

requestin

g %

Unencrypt

ed Table *

Encrypted Table

without data

Category *

Frequency

use Based *

Space

Based

*

Mondrian or

Bisection tree

Based *

Histogr

am

Based

*

10% 971 1151 967 968 960 984

20% 1021 1199 1001 1027 1016 1029

30% 1068 1189 1065 1055 1050 1068

40% 1113 1235 1115 1151 1104 1153

50% 1140 1247 1166 1171 1154 1160

60% 1192 1246 1186 1256 1200 1233

70% 1211 1302 1237 1286 1247 1278
(*=Running time in Millisecond)

43

Figure 4.1 Data retrieval time from database table having 100,000 Records with record size 68

Bytes.

4.5.1.2 Records Retrieved from Table Having 100,000 Records with Record Size 68 bytes

By applying the WHERE clauses as explained in Table 4.2, the methods are tested using

different percentages of retrieved records. Table 4.4 shows the number of records retrieved in

various cases. Figure 4.2 shows the results in graph form. The graph shows that the encrypted

table without data category retrieves all records, which is 100,000, because the WHERE clause

cannot be applied on the encrypted records. They all are sent to the client site, decrypted, and

then the condition is applied. The graph also shows that Frequency-of-Use-Based partition and

Bisection-Tree-Based partition are more efficient than the others, and the Histogram-Based

partition is the least efficient.

960
980

1000
1020
1040
1060
1080
1100
1120
1140
1160
1180
1200
1220
1240
1260
1280
1300

0% 10% 20% 30% 40% 50% 60% 70% 80%

Ti
m

e
 in

 M
ill

is
e

co
n

d

Percent of records retrieved from Database Table

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category
Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

44

Table 4.4 Retrieved records in each kind of the partitioning (size=100,000 Records).

Figure 4.2 Records Retrieved from Database Table having 100,000 Records with record size 68

Bytes.

4.5.2 Data Retrieved from Table Having 100,000 Records with Record Size 168 bytes

In this section, the process to evaluate and compare the different partitioning techniques will be

explained using the employee table having 100,000 records with record size 168 bytes. Table 4.5

shows the structure of the employee table. Table 4.6 shows different percentage numbers that

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
95000

100000
105000

0% 10% 20% 30% 40% 50% 60% 70% 80%

N
u

m
b

e
r

o
f

R
e

co
rd

s

Original Data Request size

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category
Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

Data

reque

sting

%

Unencryp

ted Table

Encrypted Table

without data

Category

Frequency

of use Based

Space

Based

Mondrian or

Bisection tree

Based

Histogr

am

Based

10% 10131 100000 10131 13857 11145 20194

20% 19954 100000 19954 21690 20161 26278

30% 29997 100000 29997 30538 30696 33616

40% 39907 100000 39907 46013 41080 59637

50% 49940 100000 49940 58613 50733 53592

60% 59773 100000 59773 65701 61448 72956

70% 69904 100000 69904 74568 71776 86493

45

were used to define the number of records retrieved from the employee tables on the server, and

also the WHERE clauses which were used. To do the evaluation, in addition to the original table,

five different encrypted versions of the employee table have been created to evaluate each type

of data partitioning. In addition to this structure, two indexed attributes are added to test the four

types of data partitioning.

Table 4.5 Structure of the original Employee table (Record size=168 Bytes)

Attribute Name Attribute Type Attribute Size (Byte)

id int 4

Name Varchar 25

Sal Int 4

NetSal Int 4

Address Varchar 30

Sex char 1

Note Varchar 100

Total= = 168 Byte

Table 4.6 Percentage of data requested by WHERE clauses

 Data requesting % Where Clause

1 10% Where (Sal>=2000 and Sal<3000)

2 20% Where (Sal>=0 and Sal<2000)

3 30% Where ((Sal>=0 and Sal<2000) or (Sal>=2000 and Sal<3000))

4 40%
Where ((Sal>=4500 and Sal<6500) or (Sal>=8000 and Sal<10000)

)

5 50% Where ((Sal>=3000 and Sal<6500) or (Sal>=6500 and Sal<8000))

6 55% Where ((Sal>=1000 and Sal<3000) or (Sal>=3000 and Sal<6500))

7 70%
Where ((Sal>=3000 and Sal<6500) or (Sal>=6500 and Sal<10000)

)

4.5.2.1 Running Query on Table Having 100,000 Records with Record Size 168 bytes

The WHERE clauses as shown in Table 4.6 have been applied on the employee table with

different structures depending on the type of partition to get the evaluation. Table 4.7 shows the

running time for each type of partitioning in milliseconds. Figure 4.3 shows the percentage of the

retrieved records from the employee tables and the consumption time in milliseconds, which is

46

used to retrieve the corresponding records from each type. As can be seen from the graph, there

are different retrieval time values for the same percentage of records. The encrypted table

without data category took the maximum time. The graph also shows that the amount of retrieval

time increased steadily for all types of partitions. As the graph depicts, the retrieval time is

augmented in the encrypted table with Space-Based partition from 30% to 50%. In addition, the

graph shows the encrypted table with Frequency-of-Use-Based partition and the encrypted table

with Bisection-Tree-Based partition are more efficient than the others. When the amount of

records retrieved are more than 55%, the consumption time for all kinds are almost the same.

Table 4.7 Running time for each type of partitioning in milliseconds (size=100,000 records with

record size 168 bytes)

Data

requesti

ng %

Unencryp

ted Table

*

Encrypted Table

without data

Category *

Frequency

of use

Based *

Space

Based

*

Mondrian or

Bisection tree

Based *

Histo

gram

Based

*

10% 981 1180 985 1093 1000 1021

20% 1058 1256 1070 1094 1069 1078

30% 1116 1312 1151 1188 1145 1153

40% 1153 1370 1225 1354 1226 1258

50% 1214 1554 1291 1384 1286 1298

55% 1243 1573 1335 1389 1338 1365

70% 1391 1633 1544 1571 1565 1570
(*=Running time in Millisecond)

47

Figure 4.3 Records retrieval time from database table having 100,000 records with record size

168 Bytes

4.5.2.2 Records Retrieved from Table Having 100,000 Records with Record size 168 bytes

By applying the WHERE clause as shown in Table 4.6, the methods are tested using different

percentages of retrieved records. Table 4.8 shows the number of records retrieved under various

cases. Figure 4.4 shows the results in graph form. The graph shows that the encrypted table

without data category retrieves all records, which is 100,000, because the WHERE clause cannot

be applied on the encrypted records. They all are sent to the client site, decrypted, and then the

condition is applied. The graph also shows the encrypted table with Frequency-of-Use-Based

partition and the encrypted table with Bisection-Tree-Based partition are more efficient than the

others and are equally efficient as the unencrypted table. The encrypted table with Space-Based

partition and the Histogram-Based partition are the least efficient.

980
1010
1040
1070
1100
1130
1160
1190
1220
1250
1280
1310
1340
1370
1400
1430
1460
1490
1520
1550
1580
1610
1640

0% 10% 20% 30% 40% 50% 60% 70% 80%

Ti
m

e
 in

 M
ill

is
e

co
n

d

Percent of records retrieved from Database Table

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category
Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

48

Table 4.8 Retrieved records in each kind of partitioning (size=100,000 Records).

Data

requestin

g %

Unencry

pted

Table

Encrypted Table

without data

Category

Frequency

of use

Based

Space

Based

Mondrian or

Bisection tree

Based

Histo

gram

Based

10% 10003 100000 10003 11999 10925 20064

20% 19954 100000 19954 20000 20264 19960

30% 29957 100000 29957 29999 30423 33317

40% 40149 100000 40149 51016 41571 53493

50% 50038 100000 50038 56977 50834 53338

55% 54916 100000 54916 59991 56222 60019

70% 70043 100000 70043 75001 70359 73308

Figure 4.4 Records Retrieved from Database Table having 100,000 Records with record size 168

Bytes

4.5.3 Data Retrieved from Table Having 100,000 Records with Record Size 468 bytes

In this part, the procedure to evaluate and compare the different partitioning techniques will be

described using the employee table having 100,000 records with record size 468 bytes. Table 4.9

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

100000

105000

0% 10% 20% 30% 40% 50% 60% 70% 80%

N
u

m
b

e
r

o
f

R
e

co
rd

s

Original Data Request size

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category

Encrypted Tabel with
Space Based Category

Encrypted Tabel with
Mondrian Based
Category

Encrypted Tabel with
Histogram Based
Category

49

shows the structure of the employee table. Table 4.10 shows different percentage numbers that

were used to define the number of records retrieved from the employee table on the server, and it

shows the WHERE commands which were used. To do the evaluation, in addition to the original

table, five different encrypted formats from the employee table have been created to evaluate

each type of data partitioning. Also, two indexed attributes are added to this table to evaluate all

data partitioning types.

Table 4.9 Structure of the original Employee table (Record size=468 Bytes)

Attribute Name Attribute Type Attribute Size (Byte)

id int 4

Name Varchar 25

Sal Int 4

NetSal Int 4

Address Varchar 30

Sex char 1

Note Varchar 100

Description Varchar 300

Total= = 468 Byte

Table 4.10 Percentage of data requested by WHERE clauses

Percentage of data

requesting
Where Clause

1 10% Where (Sal>=2000 and Sal<3000)

2 20% Where (Sal>=4500 and Sal<6500)

3 30%
Where ((Sal>=0 and Sal<2000) or (Sal>=2000 and Sal<3000)

)

4 40%
Where ((Sal>=4500 and Sal<6500) or (Sal>=8000 and

Sal<10000))

5 50%
Where ((Sal>=3000 and Sal<6500) or (Sal>=6500 and

Sal<8000))

6 55%
Where ((Sal>=1000 and Sal<3000) or (Sal>=3000 and

Sal<6500))

7 70%
Where ((Sal>=3000 and Sal<6500) or (Sal>=6500 and

Sal<10000))

50

4.5.3.1 Running Query on Table Having 100,000 Records with Record Size 468 bytes

To get the evaluation the WHERE clauses as explained in Table 4.10 have been applied on the

employee tables with different structures, depending on the type of partition. Table 4.11 shows

the running time for each type of partitioning in milliseconds. Figure 4.5 shows the percentage of

the retrieved records from the employee tables and the consumption time in milliseconds, which

is used to retrieve the requested records for each type. It can be clearly seen that the unencrypted

table took the shortest times, and the encrypted table without data category took the longest

times. The graph demonstrates how retrieval times increased regularly for all partition types. In

addition, the graph illustrates that the encrypted table with Frequency-of-Use-Based category and

the encrypted table with Bisection-Tree-Based category are more efficient than the others.

Table 4.11 Running time for each type partitioning in milliseconds (size=100,000 records with

record size 468 bytes)

Data

requesti

ng %

Unencryp

ted Table

*

Encrypted Table

without data

Category *

Frequency

of use

Based *

Space

Based

*

Mondrian or

Bisection tree

Based *

Histo

gram

Based

*

10% 1065 1332 1077 1129 1089 1124

20% 1169 1655 1186 1309 1189 1220

30% 1314 1704 1373 1397 1367 1403

40% 1413 1792 1477 1645 1474 1540

50% 1496 1912 1584 1681 1593 1613

55% 1618 1957 1716 1778 1723 1750

70% 1743 2083 1940 1967 1927 1923
(*=Running time in Millisecond)

51

Figure 4.5 Records Retrieval Time from Database Table having 100,000 Records with record

size 468 Bytes

4.5.3.2 Records Retrieved from Table Having 100,000 Records with Record Size 468 bytes

By applying the WHERE clauses as shown in Table 4.10, the methods are tested using different

percentages of retrieved records. Table 4.12 shows the number of records retrieved under various

cases. Figure 4.6 shows the results in graph form. The graph shows that the encrypted table

without data category retrieves all records, which is 100,000, because these records must be

fetched each time the WHERE command is applied to decrypt all the records on a client site. The

graph also shows the encrypted table with Frequency-of-Use- Based category and the encrypted

table with Bisection-Tree-Based category are more efficient than the others, and are equal to the

unencrypted table. The graph explains how retrieval times increased regularly for all types of

partitions.

1060
1110
1160
1210
1260
1310
1360
1410
1460
1510
1560
1610
1660
1710
1760
1810
1860
1910
1960
2010
2060
2110

0% 10% 20% 30% 40% 50% 60% 70% 80%

Ti
m

e
 in

 M
ill

is
e

co
n

d

Percent of records retrieved from Database Table

Unencrypted Table

Encrypted Table Without Data
Category

Encrypted Tabel with frequency
of use Based Category

Encrypted Tabel with Space
Based Category

Encrypted Tabel with Mondrian
Based Category

Encrypted Tabel with Histogram
Based Category

52

Table 4.12 Retrieved records in each kind of partitioning (size=100,000 Records)

Data

requestin

g %

Unencry

pted

Table

Encrypted Table

without data

Category

Frequency

of use

Based

Space

Based

Mondrian or

Bisection tree

Based

Histo

gram

Based

10% 10003 100000 10003 11999 10925 20064

20% 20144 100000 20144 29994 21240 26713

30% 29957 100000 29957 29999 30423 33317

40% 40149 100000 40149 52016 41571 53493

50% 50038 100000 50038 56977 50834 53338

55% 54916 100000 54916 59991 56222 60019

70% 70043 100000 70043 75001 70359 73308

Figure 4.6 Records Retrieved from Database Table having 100,000 Records with record size 468

Bytes

4.5.4 Data Retrieved from Table Having 500,000 Records with Record size 68 bytes

In this section, the process to evaluate and compare the different partitioning techniques has been

changed using new parameters. The employee table size is increased to have 500,000 records

with record size 68 bytes. Table 4.1 shows the structure of the employee table. Table 4.2 shows

different percentages have been used to define the number of records retrieved from the tables,

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
95000

100000
105000

0% 10% 20% 30% 40% 50% 60% 70% 80%

N
u

m
b

e
r

o
f

R
e

co
rd

s

Original Data Request size

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category
Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

53

and it shows the WHERE commands which were used. Four different encrypted formats with

indexing attributes from the employee table were used to evaluate each type of data partitioning.

4.5.4.1 Running Query on Table Having 500,000 Records with Record Size 68 bytes

The WHERE clauses as shown in Table 4.2 have been applied on the employee tables with

different structures depending on the type of partition used to get the evaluation. Table 4.13

shows the retrieval time for each type of partitioning in milliseconds. Figure 4.7 shows the

percentage of the retrieved records and the consumption time in milliseconds. As can be seen

from the graph, there are different values in retrieval time for the same percentage. The

unencrypted table has the minimum retrieval time, and for the four kinds of partitions the

encrypted table with Frequency-of-Use-Based category and the encrypted table with Bisection-

Tree-Based category are more efficient. The graph also shows the time increased steadily for all

types of partitions. The encrypted table with Space-Based category has the smallest amount of

data retrieval time when the retrieved data is less than 55%, but it takes a large amount when the

retrieved data is more than 55%. In addition, the graph displays the encrypted table without data

category has the greatest value when the retrieved data less than 55%, but it has a value equal to

the encrypted table with Frequency-of-Use-Based category and the encrypted table with

Bisection-Tree-Based category, when the retrieved data is greater than 55%.

Table 4.13 Running time for each type of partitioning in milliseconds (size=500,000 records with

record size 68 bytes)

Data

requesti

ng %

Unencryp

ted Table

*

Encrypted Table

without data

Category *

Frequency

use Based

*

Space

Based

*

Mondrian or

Bisection tree

Based *

Histogra

m Based

*

10% 1457 2524 1469 1726 1525 1612

20% 1606 2645 1675 1853 1709 1768

30% 1921 2736 2045 2158 2063 2113

40% 2126 2848 2336 2644 2374 2647

50% 2328 3003 2639 2827 2669 2661

60% 2625 3021 2969 3265 2991 3103

54

70% 2796 3161 3118 3457 3198 3320
(*=Running time in Millisecond)

Figure 4.7 Records Retrieval Time from Database Table having 500,000 Records with record

size 68 Bytes

4.5.4.2 Records Retrieved from Table Having 500,000 Records with Record Size 68 bytes

The methods were tested using different percentages of retrieved records by applying the

WHERE clauses as explained in Table 4.2. Table 4.14 shows the number of records retrieved for

each type of partitioning. Figure 4.8 shows the number of records retrieved from the various

tables. As the graph depicts, from the encrypted table without any category all 500,000 records

were retrieved for the same reason as explained before. The graph also shows that the encrypted

table with Histogram-Based category was less efficient than the other types of the partitions.

1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500

0% 10% 20% 30% 40% 50% 60% 70% 80%

Ti
m

e
 in

 M
ill

is
e

co
n

d

Percent of records retrieved from Database

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category
Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

55

Table 4.14 Retrieved records in each kind of partitioning (size=500,000 Records)

Data

requesti

ng %

Unencry

pted

Table

Encrypted Table

without data

Category

Frequency

of use

Based

Space

Based

Mondrian or

Bisection

tree Based

Histogr

am

Based

10% 50655 500000 50655 69285 55725 100970

20% 99770 500000 99770 108450 100805 131390

30% 149985 500000 149985 152690 153480 168080

40% 199535 500000 199535 230065 205400 298185

50% 249700 500000 249700 263785 253665 267960

60% 298865 500000 298865 328505 307240 364780

70% 349520 500000 349520 372840 358880 432465

Figure 4.8 Records Retrieved from Database Table having 500,000 Records with record size 68

Bytes

50500

95450

140400

185350

230300

275250

320200

365150

410100

455050

500000

544950

0% 10% 20% 30% 40% 50% 60% 70% 80%

N
u

m
b

e
r

o
f

R
e

co
rd

s

Original Data Request size

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category

Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

56

4.5.5 Data Retrieved from Table Having 500,000 Records with Record Size 168 bytes

In this section, the size of the record is changed to 168 bytes to evaluate and compare the

different partitioning techniques using the employee table having 500,000 records. Table 4.5

shows the structure of the employee table. Table 4.6 shows the different percentages have been

used to define the number of records retrieved from the employee tables, and shows the WHERE

commands which were used. Four different encrypted formats with indexing attributes from the

employee table were used to evaluate each type of data partitioning.

4.5.5.1 Running Query on Table Having 500,000 Records with Record Size 168 bytes

The WHERE clauses which were explained in Table 4.6 have been applied on the employee

tables with different structures depending on the type of partition used to get the evaluation.

Table 4.15 shows the retrieval time for each type of partitioning in milliseconds. Figure 4.9

shows the percentage of the retrieved records and the consumption time in milliseconds. The

graph shows that the unencrypted table has the smallest amount of data retrieval time, and the

encrypted table without data category has the largest amount. The graph also shows the time

increased steadily for all types of partitions. For the four kinds of partitions, the graph shows the

encrypted table with Frequency-of-Use-Based category and the encrypted table with Bisection-

Tree-Based category are more efficient than the others. In addition, the encrypted table with

Space-Based category is less efficient, especially when the retrieved data is more than 30%.

57

Table 4.15 Running time for each type of partitioning in milliseconds (size=500,000 records with

record size 168 bytes)

Data

requesti

ng %

Unencryp

ted Table

*

Encrypted Table

without data

Category *

Frequency

of use

Based *

Space

Based

*

Mondrian or

Bisection tree

Based *

Histo

gram

Based

*

10% 1602 2932 1665 1887 1743 1987

20% 1939 3222 2170 2288 2202 2218

30% 2240 3446 2689 2817 2412 2748

40% 2646 3921 3073 3781 3161 3373

50% 2941 4127 3597 3845 3617 3681

55% 3100 4365 3770 4008 3752 3851

70% 3445 4533 4345 4543 4332 4446
(*=Running time in Millisecond)

Figure 4.9 Records Retrieval Time from Database Table having 500,000 Records with record

size 168 Bytes

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

0% 10% 20% 30% 40% 50% 60% 70% 80%

Ti
m

e
 in

 M
ill

is
e

co
n

d

Percent of records retrieved from Database

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category

Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

58

4.5.5.2 Records Retrieved from Table Having 500,000 Records with Record Size 168 bytes

Table 4.16 shows the number of records retrieved for each type of partitioning. Figure 4.10

shows the number of records retrieved from the various tables. As the graph depicts, from the

encrypted table without any category all 500,000 records were retrieved for the same reason as

explained before and that because this number of records must be fetched each time the WHERE

clause is applied to decrypt all the records at the client site. The graph also displays that the

encrypted table with Histogram-Based category and encrypted table with Space-Based category

were less efficient than the other types of partitions. On the other hand, the encrypted table with

Frequency-of-Use-Based category and encrypted table with Bisection-Tree-Based category are

more efficient than the rest.

Table 4.16 Retrieved records in each kind of partitioning (size=500,000 Records)

Data

requestin

g %

Unencry

pted

Table

Encrypted Table

without data

Category

Frequency

of use

Based

Space

Based

Mondrian or

Bisection tree

Based

Histogr

am

Based

10% 50015 500000 50015 59995 54625 100320

20% 99770 500000 99770 100000 101320 99800

30% 149785 500000 149785 149995 152115 166585

40% 200745 500000 200745 255080 207855 267465

50% 250190 500000 250190 284885 254170 266690

55% 274580 500000 274580 299955 281110 300095

70% 350215 500000 350215 375005 351795 366540

59

Figure 4.10 Records Retrieved from Database Table having 500,000 Records with record size

168 Bytes

4.5.6 Data Retrieved from Table Having 500,000 Records with Record Size 468 bytes

Next, the size of the record is increased to 468 bytes to evaluate and compare the different

partitioning techniques using the employee table having 500,000 records. Table 4.9 shows the

structure of the employee table. Table 4.10 shows different percentages have been used to define

the number of records retrieved from the tables. Four different encrypted formats with indexing

attributes from the employee table were used to evaluate each type of data partitioning.

4.5.6.1 Running Query on Table Having 500,000 Records with Record Size 468 bytes

The WHERE clauses as explained in table 4.10 have been applied on the employee tables with

different structures depending on the type of partition used to calculate the evaluation. Table 4.17

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

350000

375000

400000

425000

450000

475000

500000

525000

0% 10% 20% 30% 40% 50% 60% 70% 80%

N
u

m
b

e
r

o
f

R
e

co
rd

s

Original Data Request size

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category

Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

60

shows the retrieval time for each type of partitioning in milliseconds. Figure 4.11 shows the

percentage of the retrieved records and the consumption time in milliseconds. The graph shows

that the unencrypted table has the shortest amount of data retrieval time, especially when the

retrieved data grows above 30%, and the encrypted table without data category has the maximum

value and close to the four types of partitions on 70% data retrieved. The graph also shows the

retrieval times increased uniformly for all partition types. For the four kinds of partitions, the

graph shows the encrypted table with Frequency-of-Use-Based category and the encrypted table

with Bisection-Tree-Based category as the most efficient kinds of partitions, and as time

increases they swap efficiency. In addition, the encrypted table with Space-Based category is less

efficient, especially when the retrieved data is more than 20%.

Table 4.17 Running time for each type of partitioning in milliseconds (size=500,000 records with

record size 468 bytes)

Data

requesti

ng %

Unencryp

ted Table

*

Encrypted Table

without data

Category *

Frequency

of use

Based *

Space

Based

*

Mondrian or

Bisection tree

Based *

Histo

gram

Based

*

10% 2431 5693 2552 2830 2572 2919

20% 2989 6182 3173 3900 3291 3772

30% 3783 6421 4054 4415 4000 3824

40% 4031 7146 4341 5279 4602 5074

50% 4683 7393 5228 5825 5351 5311

55% 5147 7791 6067 7102 5842 6642

70% 6492 8047 7530 7831 7609 7605
(*=Running time in Millisecond)

61

Figure 4.11 Records Retrieval Time from Database Table having 500,000 Records with record

size 468 Bytes

4.5.6.2 Records Retrieved from Table Having 500,000 Records with Record Size 468 bytes

Table 4.18 shows the number of records retrieved for each type of partitioning. Figure 4.12

shows the number of records retrieved from the various tables. The graph shows that the

encrypted table without any category retrieved all 500,000 records for the same reason as

explained before. The graph also displays that the encrypted table with Histogram-Based

category and encrypted table with Space-Based category were less efficient than the other types

of partitions, and they switch inefficiency between them. On the other hand, the encrypted table

with Frequency-of-Use-Based category and encrypted table with Bisection-Tree-Based category

are more efficient than the rest.

2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200

0% 10% 20% 30% 40% 50% 60% 70% 80%

Ti
m

e
 in

 M
ill

is
e

co
n

d

Percent of records retrieved from Database

Unencrypted Table

Encrypted Table Without
Data Category

Encrypted Tabel with
frequency of use Based
Category

Encrypted Tabel with Space
Based Category

Encrypted Tabel with
Mondrian Based Category

Encrypted Tabel with
Histogram Based Category

62

Table 4.18 Retrieved records in each kind of partitioning (size=500,000 Records)

Data

requestin

g %

Unencry

pted

Table

Encrypted Table

without data

Category

Frequency

of use

Based

Space

Based

Mondrian or

Bisection tree

Based

Histogr

am

Based

10% 50015 500000 50015 59995 54625 100320

20% 100720 500000 100720 144970 106200 133565

30% 149785 500000 149785 149995 152115 166585

40% 200745 500000 200745 255080 207855 267465

50% 250190 500000 250190 284885 254170 266690

55% 274580 500000 274580 299955 281110 300095

70% 350215 500000 350215 375005 351795 366540

Figure 4.12 Records Retrieved from Database Table having 500,000 Records with record size

468 Bytes

4.6 Factors affecting Cloud Performance

The database system performance is measured under different parameter settings, like range of

the CPU shares, memory size, number of replicas, and arrival rate. The following list will affect

the performance of any application.

50000
75000

100000
125000
150000
175000
200000
225000
250000
275000
300000
325000
350000
375000
400000
425000
450000
475000
500000
525000

0% 10% 20% 30% 40% 50% 60% 70% 80%

N
u

m
b

e
r

o
f

R
e

co
rd

s

Original Data Request size

Unencrypted Table

Encrypted Table Without Data
Category

Encrypted Tabel with frequency
of use Based Category

Encrypted Tabel with Space
Based Category

Encrypted Tabel with Mondrian
Based Category

Encrypted Tabel with
Histogram Based Category

63

 CPU: In [69], researchers explain that if the CPU share increases, the performance will be

improved in a close to linear fashion. Therefore, the four techniques, which are suggested

in this research, can improve the running time. The four techniques can use more than

one processor to work on each partition category and collect the final result for a client.

The results' running time, which are explained before for each type of partitioning, are

run on one processor, so adding more than one processor will improve the performance.

 Memory: Memory is a crucial component for any application. Researchers in [69] show

that increasing memory size will help the performance, and adding more memory does

not help when memory is already larger than a certain threshold.

 Replica: Researchers in [69] demonstrate that increasing the number of replicas will

improve the performance and narrow the chance of queuing delay.

 Network bandwidth: Authors in [100] illustrate that when the bandwidth increases, this

increase will improve the performance.

 Disk I/O (sequential and random): Researchers in [73] say disk I/O will affect the

performance, because many Cloud applications need instances to store intermediate or

transitional results and do some operations on local disks if some operations cannot be

processed in main memory.

In addition, authors in [100] illustrate some other factors that can affect the performance like:

security, recovery, service level agreements, buffer capacity, disk capacity, fault tolerance,

availability, number of users, location of data center, usability, scalability, and workload.

4.7 Combining Frequency-of-Use-Based and Bisection-Tree-Based

From previous results it was clear that the two kinds Frequency-of-Use-Based and Bisection-

Tree-Based partitions are the most efficient kinds of partitions. The Frequency-of-Use-Based

64

method depends on the frequency of the queries as found in the log file. This means all queries

are determined previously, and any change to any query may affect the performance. For

example, Table 4.19, Figure 4.13, Table 4.20, and Figure 4.14 show the running time and

number of retrived records for the Frequency-of-Use-Based and Bisection-Tree-Based methods

while considering normal queries, which is dependent on the main techniques that are clarified in

chapter 3. They also show what will happen if a different range of Frequency-of-Use-Based

partition is used, and how it will affect the performance when the queries are modified. To solve

this issue and improve performance, a combination of the Frequency-of-Use Based and

Bisection-Tree-Based methods can be used to partition the data. Figure 4.13 and Figure 4.14

show a slight difference between the Bisection-Tree-Based method and the combination of the

Frequency-of-Use-Based and the Bisection-Tree-Based approache. This minor difference is

because the percentage of data requested is low; i.e., only 10%. If that number increases to more

than 50%, the difference will be significant.

Table 4.19 Running time of combining Frequency-of-Use-Based and Bisection-Tree-Based &

comparing them without Combining.

Data

requestin

g %

Frequency of use

Based without

changing query *

Different Range of

Frequency use

Based *

Mondrian or

Bisection tree

Based *

Combination

of Frequency

of use Based

and Bisection

tree Based *

10% 985 1065 1017 1005
(*=Running time in Millisecond)

65

Figure 4.13 Running time for records retrieved from database table having 100,000 total Records

in DB to show the running time of combining Frequency-of-Use-Based and Bisection-Tree-

Based & comparing them without combining.

Table 4.20 Retrieved records of combine Frequency-of-Use-Based and Bisection-Tree-Based &

comparing them without combining.

Data

requesting

%

Frequency of use

Based without

changing query

Different Range of

Frequency use

Based

Mondrian or

Bisection tree

Based

Combination

of Frequency

of use Based

and Bisection

tree Based

10% 10003 35182 10886 10605

985

1065

1017

1005

940

960

980

1000

1020

1040

1060

1080

Frequency of use
Based without
changing query

Different Range of
Frequency use

Based

Bisection tree Based Combination of
Frequency of use

Based and Bisection
tree Based

Ti
m

e
 in

 M
ill

is
e

co
n

d

Name of four different type of partition

66

Figure 4.14 Retrieved records of combining Frequency-of-Use-Based and Bisection-Tree-Based

& comparing them without combining from database table having 100,000 Records.

4.7.1 Example of Combined Frequency-of-Use-Based and Bisection-Tree-Based Method

This example clarifies how to use Frequency-of-Use-Based and Bisection-Tree-Based methods

together. The technique begins by mining the log file and completing the same steps used in

Frequency-of-Use-Based partition. For example, Table 4.21 is created after applying the

Frequency-of-Use-Based method, and the number of records in each range are calculated. Before

the category numbers are given to table 4.21, a bucket size is determind to apply Bisection-Tree-

Based method. In this example Bucket size is equal to 3000. The following steps will explian

how to apply Bisection-Tree-Based method in Table 4.21, particularly the partitions [4500-6500]

and [6500-8000]. The first step takes the partitions [4500-6500], and if the number of records in

it is more than the bucket size, it calculates the median, which is equal to (4500+6500)/2=5500.

Thus the partition category [4500-6500] is split into [4500-5500] and [5500-6500]. The process

then checks the partition category [4500-5500], and if the number of records in that range is less

10003

35182

10886 10605

0

5000

10000

15000

20000

25000

30000

35000

40000

Frequency of use
Based without
changing query

Different Range of
Frequency use

Based

Bisection tree Based Combination of
Frequency of use

Based and Bisection
tree Based

N
u

m
b

e
r

o
f

R
e

co
rd

s

Name of four different type of partition

67

than the bucket size, the process takes the next partition category and completes the same

processing. If the number of records in that range is more than the bucket size, the process

calculates the median and divides the range into two different categories, and repeats the process.

Figure 4.15 illustrates this idea. Figure 4.15 also shows how 10%, which is equal to the range

from 6000 to 7000, have been calculated for the query in the Table 4.20. Figure 4.15 shows how

to get the values from 6000 to 7000, and it is explined the partitions [6000-6250], [6250-6500],

[6500-6688], [6688-6875], [6875-7063] which equal to 2508+2475+1899+1866+1857=10605

must be fetched. Therefore, this technique will improve the performance as shown in Table 4.19

and Table 4.20.

Table 4.21 Partition category and their frequency

Partitioning

Category
Frequency (number of records)

[0-1000] 10041

[1000-2000] 9913

[2000-3000] 10003

[3000-4500] 14856

[4500-6500] 20144

[6500-8000] 15038

[8000-10000] 20005

Total 100,000

68

Figure 4.15 Frequency-of-Use-Based and Bisection-Tree-Based method.

Partitioning

Category

[4500-6500]

[6500-8000]

Partitioning

Category

 [4500-5500]

[5500-6500]

[6500-7250]

Frequency

20144

15038

Frequency

10170

9974

7434

Partitioning

Category

 [4500-5000]

[5000-5500]

...

Frequency

5115

5055

...

Partitioning

Category

 [4500-4750]

[4750-5000]

[5000-5250]

Frequency

2531

2584

2499

[5250-5500] 2556

... ...

... ...

[6000-6250] 2508

[6500-6688] 1899

[6688-6875] 1866

[6250-6500] 2475

[6875-7063] 1857

... ...

69

4.8 Table Fragmentation

Table fragmentation can be used to divide the original table into many tables. The table can be

divided using the idea of the horizontal fragmentation, by which a table can be divided into

fragments of tuples. Each fragment has unique rows, and each fragment must have the same

attributes [94]. The reasons for fragmenting a relation or table are to improve the efficiency,

increase the parallelism or concurrency, and increase the security [94]. When table fragmentation

is used, the divided tables are stored in encrypted form without the indexed data. This means, the

size of the data that is stored on a Cloud is reduced because the extra indexed data is not stored

with tables on the Cloud.

4.8.1 Method of the Table Fragmentation

In this research, the horizontal fragmentation can be used to collect each partition category in one

table. Therefore, if the result of the partition category is as explained in Table 4.22, the main

table can be divided into 6 tables depending on the number of the categories. The table can be

divided into more than one attribute category, and the table must be divided depending on the

number of possibilities of all attributes. For example, assume a table is to be divided depending

on two attributes. The first attribute, like the one shown in the Table 4.22, has six possibilities

and another attribute having three possibilities. So, the total number of divisions of the table will

be, 6 possibilities * 3 possibilities= 18 possibilities. Therefore, the table has to be divided into

eighteen tables depending on the two attributes where each partition has one possibility from the

first attribute and one possibility from the second attribute.

70

Table 4.22. Partitioning category

4.8.2 Comparing Table Fragmentation against One Table

This section will explain the difference between using table fragmentation and one table, which

is the whole table. A table having 500,000 records has been used as a whole table to show the

differences, and only some records are returned to the client depending on the category. The

fragmented table, which is one table that has only one category size, is brought from the Cloud to

the client. Figure 4.16 shows the deference between using the table fragmentation and using the

original table. It shows in “one category” only one partitioning table, and 14.86% from the whole

table are brought from the server. In “3 categories,” three tables are brought from partitioning

tables and 50% from the original unfragmented table are brought from the server. In “6

categories,” which mean all data or all categories, which are six tables, and 100% from the whole

table are brought from the server. In addition, “6 categories” explains the time consumed when

any query requests are based on other attributes, not the partition categories. The graph shows

the requested data from the encrypted partitioning table is more efficient than requested data

from the original unfragmented table.

Partitioning

Category

Category

[400 - 800] 1

[800 - 1200] 2

[1200 - 2500] 3

[2500 - 4000] 4

[4000 - 5000] 5

[5000 - 7000] 6

71

Figure 4.16 Deference between using the table fragmentation and using one table.

1542

3322

5388

1918

3597

5519

0

1000

2000

3000

4000

5000

6000

one category 3 categories 6 categories=all Data

Ti
m

e
 in

 M
ill

is
e

co
n

d

Number of Partitioning Tables and One Whole Table

Partitioning Table

Whole Table

72

5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation has studied how to manage and protect any database table on an external server

or on a Cloud. The dissertation has discussed how to improve query processing performance

while protecting database tables on a Cloud by encrypting those so that they remain secure. It

shows how to process SQL queries on encrypted databases designed to protect data from any

leakage or attack, even from service providers. The strategy is to process the query on a server or

a Cloud without having to decrypt the data, and data decryption is performed only at the client

site to enforce security. Additionally, in order to run any SQL query on a Cloud or server in an

efficient way, no more than the required data is returned to the client.

An indexed method is used to increase performance. The index data is stored on the Cloud or the

server with the encrypted database table. This helps in reducing the entire processing time, which

includes data transfer time from the Cloud to the client and also data decryption and processing

time at the client. The technique begins by defining the attributes that will be used in all queries,

and these attributes will be processed by some operations to get the partition categories. The

partition categories are utilized to map any value to a specific range, provided that these

categories cover the whole domain, and no two partitions overlap. Four different techniques have

been developed to index and partition the data. These techniques are Frequency-of-Use-Based

partition, Space-Based partition, Bisection-Tree-Based partition, and Histogram-Based partition.

These methods were illustrated with examples in chapter three. Three techniques, Frequency-of-

Use-Based partition, Space-Based partition, and Bisection-Tree-Based partition have been

compared with the Histogram-Based partition because this technique has been used in paper [19]

73

to compare the efficiency of each technique. In addition, these techniques have been compared

against an unencrypted table and an encrypted table that has no category data. Chapter 4 has

explained some graphs and tables with different percentage numbers of the retrieved records

from a database table to show and compare the efficiency of the proposed methods. The

comparison includes the running time and retrieved records with different number of records in

table and different record sizes. The graphs show that the encrypted table with Frequency-of-

Use-Based partition and the encrypted table with Bisection-Tree-Based partition are the most

efficient kinds of partitions. In addition, the particular issue in chapter four has elucidated how to

improve performance by combining Frequency-of-Use-Based and Bisection-Tree-Based

methods to partition the data.

5.2 Related Ideas

In this section, some ideas will be introduced to show how the partition will be worked and be

used. First, working with more than one related table, consider the relational database schema in

Figure 5.1. The Invoice_Detail table has four attributes and one extra attribute, which is

Index_Partition, used as a partition category on a Cloud for the Invoice_Number attribute.

Therefore, if any table related to Invoice_Detail table is stored on the Cloud, like

Items_Invoice_Detail table, the Index_Partition has to be added to the related table. If a query

requests data from the two tables, such as bringing all the invoice detail items with it, the client

has to generate two queries, one for the Invoice_Detail table and another query for the

Items_Invoice_Detail table. At the client, the two queries have to be joined to give the right

result to the client. For example, assume that the user requests all details about

Invoice_Number=20201. First, the Invoice_Number 20201 is mapped to index partition 2 based

on the stored data. Second, the user sends the query: Select * From Invoice_Detail where

74

Index_Partition=2 and the query: Select * From Items_Invoice_Detail where Index_Partition=2.

Third, running code at the client, like Java, links the two queries and gives the right result to the

user.

Invoice_Detail Table

Invoice_Number Inv_Customer Inv_Date Inv_Total Index_Partition

20201 XXX 12-12-2015 $200.000 2

20202 YYY 12-12-2015 $90.50 2

20205 XXX 12-15-2015 $500.00 5

Items_Invoice_Detail Table

Invoice_Number Item_Number Item_Qty Item_Unit_Price Index_Partition

20201 111222 100 $1.00 2

20201 113456 50 $2.00 2

20202 123099 1 $90.50 2

20205 123444 2 $250.00 5

Figure 5.1 Part of a Database

Second, the technique can use the idea of controlling tables, which is introduced in paper [87].

The idea of controlling tables can be used to protect and check the partitioning data on a Cloud

or server. Therefore, the technique can be applied to use one table to sum all partitioning

attributes in all records, and the second table to sum all columns of partitioning attributes.

Therefore, these tables can be used to define any attempted attacks or find any errors and correct

them.

Third, one of the advantages of Cloud computing is supporting parallel computing, which means

many calculations and works are carried out simultaneously. Therefore, the partition category

technique can benefit from this advantage, and necessary algorithms can be developed to work

on database tables on the Cloud. For example, more than one process can be sent to the Cloud.

Each process will work on one category of each attribute, and all processes will be collected at

the client site to give the result.

75

5.3 Future Work

Authors in [53] present a mutation-based testing approach for SQL injection vulnerabilities,

which is one of the most famous vulnerabilities for web-based applications. They suggest some

mutation operators that used to test an application source code to ensure its quality. The paper

can be used as a future work to test the partition category for any attributes and the degree of the

security of the database tables on the Cloud. Therefore, testing cases and mutation operators can

be designed to test all partition categories for all attributes to be sure the processing of all

partitions is accurate. The test includes the domain values of all the attributes mapped into the

partition categories, whether all partitions can cover the whole domain, and no two partitions

overlap. In addition, the work should include test cases and important steps to ensure the quality

of the partition category.

76

REFERENCES

[1] K. Venkataramana, and M. Padmavathamma, "Multi-Tenant Data Storage Security In

Cloud Using Data Partition Encryption Technique," International Journal of Scientific &

Engineering Research, 2013.

[2] Kleber Vieira, Alexandre Schulter, Carlos Westphall, Carla Westphall, "Intrusion Detection

for Grid and Cloud Computing," IT Professional, vol.12, no. 4, July/August 2010, pp. 38-

43.

[3] S. Pearson, Y. Shen, M. Mowbray, “A privacy manager for cloud computing,” in:

Proceedings of the 1st International Conference on Cloud Computing, CloudCom’09,

Springer-Verlag, Berlin, Heidelberg, 2009, pp. 90–106.

[4] S.A. Almulla and C. Y. Yeun, “Cloud computing security management,” ICESMA, 2010,

pp. 1-7.

[5] Y. Hu, B. Panda, “A data mining approach for database intrusion detection,” in:

Proceedings of 2004 ACM Symposium on Applied Computing, New York, NY, 2004,

pp. 711–716.

[6] Jianneng Cao, Fang-Yu Rao, Mehmet Kuzu, Elisa Bertino, and Murat Kantarcioglu,

"Efficient tree pattern queries on encrypted xml documents," In Proceedings of the Joint

EDBT/ICDT 2013 Workshops, ACM, 2013, pp. 111-120.

[7] Siani Pearson and Azzedine Benameur, "Privacy, security and trust issues arising from

cloud computing," 2nd IEEE International Conference on Cloud Computing Technology

and Science, 2010, pp. 693-702.

[8] Steven Y. Ko, Kyungho Jeon, and Ramsés Morales," The HybrEx model for

confidentiality and privacy in cloud computing," Proc. of HotCloud, 2011.

[9] Qussai Yaseen, Qutaibah Althebyan, and Yaser Jararweh, "PEP-side caching: An insider

threat port," Information Reuse and Integration (IRI), 2013 IEEE 14th International

Conference. IEEE, 2013.

[10] Weihan Li, Brajendra Panda, and Qussai Yaseen, "Malicious Users’ Transactions:

Tackling Insider Threat," Information Security and Privacy Research. Springer Berlin

Heidelberg, 2012, pp. 211-222.

[11] Qussai Yaseen and Brajendra Panda, "Tackling Insider Threat in Cloud Relational

Databases," IEEE/ACM Fifth International Conference on Utility and Cloud Computing,

2012, pp. 215-218.

77

[12] Ajeet Ram Pathak, B. Padmavathi “Analysis of Security Techniques Applied in Database

Outsourcing,” (IJCSIT) International Journal of Computer Science and Information

Technologies, Vol. 5 (1), 2014, pp. 665-670.

[13] Sunil Sanka, Chittaranjan Hota, and Muttukrishnan Rajarajan, "Secure Data Access in

Cloud Computing," In Internet Multimedia Services Architecture and Application

(IMSAA), 2010 IEEE 4th International Conference, 2010, pp. 1-6.

[14] Pierangela Samarati and Sabrina De Capitani di Vimercati, "Data protection in outsourcing

scenarios: Issues and directions," In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security, 2010, pp. 1-14.

[15] Bo Zhao, Benjamin I. P. Rubinstein, Jim gemmell, and Jiaw Han, "A Bayesian approach to

discovering truth from conflicting sources for data integration," August 2012, pp. 550-

561.

[16] Somchart Fugkeaw, “Achieving Privacy and Security in MultiOwner Data Outsourcing,”

In Proc. of IEEE Transactions, 2012, pp. 239-244.

[17] L. Ferretti, F. Pierazzi, M. Colajannni, and M. Marchetti, “Security and confidentiality

solutions for public cloud database services,” in Proc. of the 7th International Conference

on Emerging Security Information, Systems and Technologies, August 2013.

[18] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index for range queries,” in

International Conference on Very Large Data Bases, VLDB, 2004, pp. 720–731.

[19] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Executing sql over encrypted data in the

database-service-provider model,” In Proc. of SIGMOD, 2002, pp. 216–227.

[20] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained

access control in cloud computing,” in Proc. of IEEE INFOCOM’10, San Diego, CA,

USA, March 2010.

[21] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving encryption for numeric

data,” In Proceedings of the 2004 ACM SIGMOD International Conference on

Management of Data, Paris, France, June 2004.

[22] Raluca Ada Popa, Catherine Redfield, and Nickolai Zeldovich, “Cryptdb: protecting

confidentiality with encrypted query processing,” In Proceedings of SOSP, 2011.

[23] David F. C. Brewer and Michael J. Nash, “The Chinese Wall Security Policy,” in

Proceedings of the 1989 IEEE Symposium on Security and Privacy, IEEE Computer

Society Press, Los Alamitos, CA, 1989, pp. 206–218.

78

[24] Hassan Takabi, James B.D. Joshi, and Gail-Joon Ahn, "Security and privacy challenges in

cloud computing environments," IEEE Computer and Reliability Societies,

November/December 2010, pp. 24-31.

[25] Hassan Takabi, James B. D. Joshi, "Policy Management as a Service: An Approach to

Manage Policy Heterogeneity in Cloud Computing Environment," 45th Hawaii

International Conference on System Science, 2012.

[26] Harini Ragavan, and Brajendra Panda, "Mitigation of malicious modifications by insiders

in databases," In Information Systems Security, Springer Berlin Heidelberg, 2011, pp.

337-351.

[27] Yang Haixia, and Nan Zhihong, "A database security testing scheme of web application,"

In Computer Science & Education, 2009. ICCSE'09. 4th International Conference on

Computer Science & Education IEEE, 2009, pp. 953-955.

[28] Ernesto Damiani, S. D. C. D. Vimercati, Sushil Jajodia, Stefano Paraboschi, and

Pierangela Samarati, "Balancing confidentiality and efficiency in untrusted relational

DBMSs," In Proceedings of the 10th ACM conference on Computer and communications

security, ACM, 2003, pp. 93-102.

 [29] Yaseen Q., Panda B., “Knowledge Acquisition and Insider Threat Prediction in Relational

Database Systems,” in Proc. of the International Workshop on Software Security

Processes, Canada, 2009, pp. 450-455.

[30] P. Saripalli and B. Walters, "QUIRC: A Quantitative Impact and Risk Assessment

Framework for Cloud Security," IEEE 3rd International Conference on Cloud

Computing, 2010, pp. 280-288.

[31] Shamir A., “How to share a secret,” Communications of the ACM, vol. 22, no.11, 1979,

pp. 612–613.

[32] C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan, and N.

Zeldovich, "Relational cloud: A database-as-a-service for the cloud," 5th Biennial

Conference on Innovative Data Systems Research, CIDR 2011, January 9-12 2011, pp.

235-240.

[33] C. C. Lo, C. C. Huang, and J. Ku, “Cooperative Intrusion Detection System Framework

for Cloud Computing Networks,” First IEEE International Conference on Ubi-Media

Computing, 2008, pp. 280-284.

[34] Q. Yaseen, B. Panda, "Mitigating Insider Threat without Limiting the Availability in

Concurrent Undeclared Tasks,” Software Security and Reliability (SERE), 2012 IEEE

Sixth International Conference, 20-22 June 2012, pp.235-244.

79

[35] Qussai Yaseen and Brajendra Panda, "Malicious Modification Attacks by Insiders in

Relational Databases: Prediction and Prevention," IEEE Second International Conference

on Privacy, Security, Risk and Trust, August 2010, pp. 849-856.

 [36] Chen, Gang, Ke Chen, and Jinxiang Dong, "A database encryption scheme for enhanced

security and easy sharing," In Computer Supported Cooperative Work in Design, 2006.

CSCWD'06. 10th International Conference, IEEE, 2006, pp. 1-6.

[37] Wassim Itani, Ayman Kayssi, and Ali Chehab, "Privacy as a service: Privacy-aware data

storage and processing in cloud computing architectures." In Dependable, Autonomic and

Secure Computing, 2009, DASC'09, Eighth IEEE International Conference, IEEE, 2009,

pp. 711-716.

[38] Mowbray Miranda and Siani Pearson, "A client-based privacy manager for cloud

computing," Proceedings of the fourth international ICST conference on

COMmunication system softWAre and middlewaRE.ACM, 2009, pp. 1-8.

[39] Jeong-Min Do, You-Jin Song, and Namje Park, "Attribute based Proxy Re-Encryption for

Data Confidentiality in Cloud Computing Environments," In Computers, Networks,

Systems and Industrial Engineering (CNSI), 2011 First ACIS/JNU International

Conference, 2011, pp. 248-251.

[40] Younis A.Younis, Madjid Merabti and Kashif Kifayat, "Secure cloud computing for

critical infrastructure: A survey," Liverpool John Moores University, United Kingdom,

Tech. Rep, 2013.

[41] Parsi Kalpana, and Sudha Singaraju, "Data security in cloud computing using RSA

algorithm," IJRCCT 1, no. 4, 2012, pp. 143-146.

[42] Subedari Mithila, and P. Pradeep Kumar, "Data Security through Confidentiality in Cloud

Computing Environment," Subedari Mithila et al, / (IJCSIT) International Journal of

Computer Science and Information Technologies 2, 2011, pp. 1836-1840.

[43] Juan Du, Wei Wei, Xiaohui Gu, and Ting Yu, "RunTest: assuring integrity of dataflow

processing in cloud computing infrastructures," In Proceedings of the 5th ACM

Symposium on Information, Computer and Communications Security, ACM, 2010, pp.

293-304.

[44] Juan Du, Nidhi Shah, and Xiaohui Gu, "Adaptive data-driven service integrity attestation

for multi-tenant cloud systems," In Proceedings of the Nineteenth International

Workshop on Quality of Service, IEEE Press, 2011, pp. 1–9.

80

[45] Kai Hwang, Sameer Kulkareni, and Yue Hu, "Cloud Security with Virtualized Defense

and Reputation-based Trust Management," In Dependable, Autonomic and Secure

Computing, 2009. DASC'09. Eighth IEEE International Conference on, IEEE, 2009, pp.

717-722.

[46] Sebastian Roschke, Feng Cheng, and Christoph Meinel, "Intrusion Detection in the

Cloud," In Dependable, Autonomic and Secure Computing, 2009. DASC'09. Eighth IEEE

International Conference, IEEE, 2009, pp. 729-734.

[47] Weichao Wang, Zhiwei Li, Rodney Owens, and Bharat Bhargava, "Secure and Efficient

Access to Outsourced Data," In Proceedings of the 2009 ACM workshop on Cloud

computing security, ACM, 2009, pp. 55-66.

[48] Puya Ghazizadeh, Ravi Mukkamala, and Stephan Olariu, "Data Integrity Evaluation in

Cloud Database-as-a-Service," In Services (SERVICES), 2013 IEEE Ninth World

Congress, IEEE, 2013, pp. 280-285.

[49] Nuno Antunes, and Marco Vieira, "Detecting SQL injection vulnerabilities in web

services," In Dependable Computing, 2009. LADC'09. Fourth Latin-American

Symposium, IEEE, 2009, pp. 17-24.

[50] Wai Kit Wong, Ben Kao, David Wai Lok Cheung, Rongbin Li, and Siu Ming Yiu,

"Secure Query Processing with Data Interoperability in a Cloud Database Environment,"

In Proceedings of the 2014 ACM SIGMOD international conference on Management of

data, ACM, 2014, pp. 1395-1406.

[51] Percy Antonio Pari Salas, Padmanabhan Krishnan, and Kelvin J. Ross, "Model-based

security vulnerability testing," In Software Engineering Conference, 2007. ASWEC 2007.

18th Australian, IEEE, 2007, pp. 284-296.

[52] Marco Vieira, Nuno Antunes, and Henrique Madeira, "Using web security scanners to

detect vulnerabilities in web services," In Dependable Systems & Networks, 2009.

DSN'09. IEEE/IFIP International Conference, IEEE, 2009, pp. 566-571.

[53] Hossain Shahriar, and Mohammad Zulkernine, "MUSIC: Mutation-based SQL injection

vulnerability checking," In Quality Software, 2008. QSIC'08. The Eighth International

Conference on Quality Software, IEEE, 2008, pp. 77-86.

[54] Hossain Shahriar, and Mohammad Zulkernine, "Mutation-based testing of buffer overflow

vulnerabilities," In Computer Software and Applications, 2008. COMPSAC'08. 32nd

Annual IEEE International, IEEE, 2008, pp. 979-984.

81

[55] Nuno Laranjeiro, Marco Vieira, and Henrique Madeira, "Protecting Database Centric Web

Services against SQL/XPath Injection Attacks," In Database and Expert Systems

Applications, Springer Berlin Heidelberg, 2009, pp. 271-278.

[56] Ke He, Zhiyong Feng, and Xiaohong Li, "An attack scenario based approach for software

security testing at design stage," In Computer Science and Computational Technology,

2008. ISCSCT'08, vol. 1, IEEE, 2008, pp. 782-787.

[57] Aaron Marback, Hyunsook Do, Ke He, Samuel Kondamarri, and Dianxiang Xu, "Security

test generation using threat trees," In Automation of Software Test, 2009. AST'09, IEEE,

2009, pp. 62-69.

[58] Dazhi Zhang, Donggang Liu, Yu Lei, David Kung, Christoph Csallner, and Wenhua

Wang, "Detecting vulnerabilities in c programs using trace-based testing," In Dependable

Systems and Networks (DSN), 2010 IEEE/IFIP International Conference, IEEE, 2010,

pp. 241-250.

[59] Rafael Bosse Brinhosa, Carlos Becker Westphall, and Carla Merkle Westphall, "A security

framework for input validation," In Emerging Security Information, Systems and

Technologies, 2008. SECURWARE'08. Second International Conference, IEEE, 2008,

pp. 88-92.

[60] Sarah Al-Azzani, and Rami Bahsoon, "Using implied scenarios in security testing,"

In Proceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems,

ACM, 2010, pp. 15-21.

[61] Minqi Zhou, Rong Zhang, Wei Xei, Weining Qian, and Aoying Zhou, "Security and

Privacy in Cloud Computing: A Survey," Sixth International Conference on Semantics,

Knowledge and Grids, November 2010, pp. 105-112.

[62] Hyun-Suk Yu, Yvette E. Gelogo, and Kyung Jung Kim, "Securing Data Storage in Cloud

Computing," Journal of Security Engineering, June 2012, pp. 251-259.

 [63] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good, "The Cost

of Doing Science on the Cloud: The Montage Example," Proceedings of the 2008

ACM/IEEE conference on Supercomputing, 2008, pp. 50.

 [64] Shilpashree Srinivasamurthy, and David Liu, "Survey on cloud computing security,"

In Proc. Conf. on Cloud Computing, CloudCom, vol. 10, 2010.

[65] B. Grobauer, T. Walloschek and E. Stöcker, "Understanding Cloud Computing

Vulnerabilities," IEEE Security and Privacy, vol. 99, 2010.

82

[66] Y. Vijaya Ratna Kumari, T. Bindu Madhavi, and L. Ravi Kumar, "Efficient and Secure

Scheme for Distributed Data Storage Systems," International Journal of Computer

Science and Information Technologies (IJCSIT), Vol. 6 (1), 2015, pp. 839-843.

[67] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang, and

Zhiwei Xu. "RCFile: A Fast and Space-efficient Data Placement Structure in

MapReduce-based Warehouse Systems." In Data Engineering (ICDE), 2011 IEEE 27th

International Conference, IEEE, 2011, pp. 1199-1208.

[68] Bala Iyer, Sharad Mehrotra, Einar Mykletun, Gene Tsudik, and Yonghua Wu. "A

framework for efficient storage security in RDBMS." In Advances in Database

Technology-EDBT 2004, Springer Berlin Heidelberg, 2004, pp. 147-164.

[69] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton Pu, and Hakan

Hacigümüş. "Intelligent management of virtualized resources for database systems in

cloud environment." In Data Engineering (ICDE), 2011 IEEE 27th International

Conference, IEEE, 2011. pp. 87-98.

[70] Liang Zhao, Anna Liu, and Jacky Keung. "Evaluating cloud platform architecture with the

care framework." In Software Engineering Conference (APSEC), 2010 17th Asia Pacific,

IEEE, 2010. pp. 60-69.

[71] Markus Klems, David Bermbach, and Rene Weinert. "A runtime quality measurement

framework for cloud database service systems." In Quality of Information and

Communications Technology (QUATIC), 2012 Eighth International Conference, IEEE,

2012. pp. 38-46.

[72] Indu Arora, and Anu Gupta. "Cloud databases: a paradigm shift in

databases." International J. of Computer Science Issues 9, no. 4, 2012. pp. 77-83.

[73] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. "Runtime measurements in the

cloud: observing, analyzing, and reducing variance."Proceedings of the VLDB

Endowment 3, no. 1-2, 2010. pp. 460-471.

[74] Liang Zhao, Sherif Sakr, Alan Fekete, Hiroshi Wada, and Anna Liu. "Application-

managed database replication on virtualized cloud environments." In Data Engineering

Workshops (ICDEW), 2012 IEEE 28th International Conference, IEEE, 2012, pp. 127-

134.

[75] Thibault Dory, Boris Mejías, P. V. Roy, and Nam-Luc Tran. "Measuring elasticity for

cloud databases." In Proceedings of the The Second International Conference on Cloud

Computing, GRIDs, and Virtualization. 2011.

83

[76] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. "CloudCmp: comparing

public cloud providers." In Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, ACM, 2010. pp. 1-14.

[77] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. "The performance of mapreduce: An

in-depth study." Proceedings of the VLDB Endowment 3, no. 1-2, 2010, pp. 472-483.

[78] Byung Tak Chul, Bhuvan Urgaonkar, and Anand Sivasubramaniam. "To move or not to

move: The economics of cloud computing." In Proceedings of the 3rd USENIX

conference on Hot topics in cloud computing, USENIX Association, 2011, pp. 5-5.

[79] Liangzhe Li, and Le Gruenwald. "Autonomous database partitioning using data mining

on single computers and cluster computers." In Proceedings of the 16th International

Database Engineering & Applications Sysmposium, ACM, 2012, pp. 32-41.

[80] Rohit Jain, and Sunil Prabhakar. "Access control and query verification for untrusted

databases." In Data and Applications Security and Privacy XXVII, Springer Berlin

Heidelberg, 2013, pp. 211-225.

[81] Shuai Zhang, Shufen Zhang, Xuebin Chen, and Xiuzhen Huo. "Cloud computing research

and development trend." In Future Networks, 2010. ICFN'10. Second International

Conference, IEEE, 2010, pp. 93-97.

[82] C. P. Pfleeger and S. L. Pfleeger. Security in Computing (4th Edition). Prentice Hall,

2006.

[83] Hassan A. Afyouni. Database Security and Auditing: Protecting data integrity and

accessibility. Cengage Learning, 2006.

[84] Liang Zhao, Sherif Sakr, Anna Liu, and Athman Bouguettaya. Cloud Data Management.

Springer, 2014.

[85] Michael G. Solomon, Vaidy Sunderam, and Li Xiong, "Towards Secure Cloud Database

with Fine-Grained Access Control." In Data and Applications Security and Privacy

XXVIII, Springer Berlin Heidelberg, 2014, pp. 324-338.

[86] Ralph P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction, 3th

Edition. Addison-Wesley, 1994.

[87] Osama M. Ben Omran, Brajendra Panda. "Efficiently Managing Encrypted Data in Cloud

Databases." In 2015 IEEE 2nd International Conference on Cyber Security and Cloud

Computing, IEEE, 2015, pp. 266-271.

84

[88] Wei Xu, V. N. Venkatakrishnan, R. Sekar, and I. V. Ramakrishnan. "A framework for

building privacy-conscious composite web services." In Web Services, 2006. ICWS'06.

International Conference, IEEE, 2006, pp. 655-662.

[89] Elisa Bertino, Federica Paci, Rodolfo Ferrini, and Ning Shang. "Privacy-preserving Digital

Identity Management for Cloud Computing." IEEE Data Eng. Bull. 32, no. 1, 2009, pp.

21-27.

[90] Osama M Ben Omran, and Brajendra Panda. "A Data Partition Based Model to Enforce

Security in Cloud Database." In Journal of Internet Technology and Secured

Transactions (JITST), Volume 3, Issues 3/4, September/December 2014, 2014.

[91] Osama M. Ben Omran, and Brajendra Panda. "A new technique to partition and manage

data security in cloud databases." In Internet Technology and Secured Transactions

(ICITST), 2014 9th International Conference for, IEEE, 2014, pp. 191-196.

[92] Youssef Gahi, Mouhcine Guennoun, and Khalil El-Khatib. "A secure database system

using homomorphic encryption schemes." arXiv preprint arXiv:1512.03498, 2015.

[93] Swarnalata Bollavarapu, and Kamal Mistry. "Secure Database as a Service-a Review." In

International Journal of Advanced Research in Computer and Communication

Engineering Vol. 4, Issue 3, March 2015, 2015, pp. 425-429.

[94] Thomas M. Connolly, and Carolyn E. Begg. Database systems: a practical approach to

design, implementation, and management. Pearson Education, 2005.

[95] V.R. Pancholi and B.P. Patel 2016. Enhancement of Cloud Computing Security with Secure
Data Storage using AES. International Journal for Innovative Research in Science and
Technology, 2(9), pp. 18-21.

[96] Gurpreet Singh and Supriya "A Study of Encryption Algorithms (RSA, DES, 3DES and AES) for
Information Security." International Journal of Computer Applications Vol. 67, No. 19,
2013, pp. 33-38.

[97] A. Azarudeen, N. Ganesh, R. Dinesh, and R. Ramakrishnan. "Secure Storage using TPC-

C in Cloud." In 2015 JSRSET, Vol. 1, Issue 2, 2015, pp. 58-61.

[98] Kevin D. Bowers, Catherine Hart, Ari Juels, and Nikos Triandopoulos. "Securing the Data

in Big Data Security Analytics." IACR Cryptology ePrint Archive 2013, 2013, pp. 1-14.

[99] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. "Big data and cloud computing:

current state and future opportunities." In Proceedings of the 14th International

Conference on Extending Database Technology, ACM, 2011, pp. 530-533.

85

[100] Niloofar Khanghahi and Reza Ravanmehr. "CLOUD COMPUTING PERFORMANCE

EVALUATION: ISSUES AND CHALLENGES." Comput 5, no. 1, 2013, pp. 29-41.

[101] Einar Mykletun and Gene Tsudik. "Aggregation queries in the database-as-a-service

model." In Data and Applications Security XX, Springer Berlin Heidelberg, 2006, pp. 89-

103.

	Data Partitioning Methods to Process Queries on Encrypted Databases on the Cloud
	Citation

	tmp.1490650211.pdf.Bgmkt

