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Abstract

Field Programmable Gate Arrays (FPGAs) were first introduced circa 1980, and they held the

promise of delivering performance levels associated with customized circuits, but with productiv-

ity levels more closely associated with software development. Achieving both performance and

productivity objectives has been a long standing challenge problem for the reconfigurable com-

puting community and remains unsolved today. On one hand, Vendor supplied design flows have

tended towards achieving the high levels of performance through gate level customization, but

at the cost of very low productivity. On the other hand, FPGA densities are following Moore’s

law and and can now support complete multiprocessor system architectures. Thus FPGAs can be

turned into an architecture with programmable processors which brings productivity but sacrifices

the peak performance advantages of custom circuits. In this thesis we explore how the two use

cases can be combined to achieve the best from both.

The flexibility of the FPGAs to host a heterogeneous multiprocessor system with different types

of programmable processors and custom accelerators allows the software developers to design a

platform that matches the unique performance needs of their application. However, currently no

automated approaches are publicly available to create such heterogeneous architectures as well as

the software support for these platforms. Creating base architectures, configuring multiple tool

chains, and repetitive engineering design efforts can and should be automated. This thesis in-

troduces Heterogeneous Extensible Multiprocessor System (HEMPS) template approach which

allows an FPGA to be programmed with productivity levels close to those associated with parallel

processing, and with performance levels close to those associated with customized circuits. The

work in this thesis introduces an ArchGen script to automate the generation of HEMPS systems

as well as a library of portable and self tuning polymorphic functions. These tools will abstract

away the HW/SW co-design details and provide a transparent programming language to capture

different levels of parallelisms, without sacrificing productivity or portability.
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Chapter 1

Motivation

ESL (Electronic system level) Design is an umbrella term for tools and methods that allow design-

ers with software programming skills to easily implement their ideas in programmable hardware

(like FPGAs) without having to learn traditional hardware design techniques. This enables pro-

grammers to access the performance potential of the FPGA through standard programming models

on a heterogeneous chip multiprocessor system. This augments the FPGA traditional ability to

provide performance increases through custom circuit implementations to bringing performance

through scalable parallelism. The use of programmable components and runtime systems brings

advancements in application portability and platform reuse. It also brings increased designer pro-

ductivity; the historical Achilles heel of FPGA hardware design flows. Similarly, HLS tools are

bringing similar performance and productivity advancements through their ability in generating

custom circuit from sequential code to designers, even those with no hardware design expertise,

to rapidly create accelerators. Recent work in middleware and operating systems support for dy-

namic reconfiguration is bringing new abilities to increase system performance and increase gate

utilizations under a more unified virtual machine model. Although existing physical FPGA compo-

nents can support these capabilities together, no unifying design flows, abstractions, programming

models or runtime systems have yet evolved to enable their simultaneous use. As a result these

capabilities are still treated largely as distinct and stand alone use cases for FPGA’s. The ability

to combine these capabilities can bring significant performance advantages to a widening group of

designers, and that is what we are trying to address in this thesis work.

The big motivation here is basically how to make FPGAs as accessible as a typical CPU to SW

developers. In other words, when a SW developer writes his application code on a typical CPU,

they can simply compile the code, no matter which system they are using, and all the complexities

of the CPU architecture is abstracted away from him. For example, the software developer does

1
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Figure 1.1: Three areas that should be addressed to achieve abstraction in FPGAs

not have to know if the system has a quad core intel CPU, or just a single core AMD CPU. Also

he/she does not have to know about memory hierarchy or bus interconnect or DMA controller, etc.

This all comes form abstraction. Basically, all the details of HW architecture is abstracted away

from SW developer and the compiler tool chain takes care of enabling the notion of ”Writing code

once and running it everywhere”.

However, despite this great productivity and portability brought to SW developers by a typical

CPU, the performance still remains an issue. First off, the HW can not be customized to accelerate

some portions of the code to take advantage of data level parallelism. Also, the number of general

purpose processors is fixed and limited, hence limiting the maximum thread level parallelism avail-

able in user’s code. Here is when FPGAs unique capabilities can help with both customized HW

to leverage data level parallelism, and customized multi-core processor system to leverage thread

level parallelism. Unlike other alternatives such as GPU boards that require the SW developer to

rewrite the whole code in other languages like CUDA, there is no such hassle when it comes to
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heterogeneous multiprocessor systems on FPGA.

FPGA’s complexity and reconfigurability comes with a price that if not addressed and ab-

stracted away from the end users, will dramatically reduce their usage in SW developers commu-

nity. In order to work with FPGAs, one should have some basic information about HW architecture

and Digital design, and most SW developers lack this knowledge. The ideal case would be to have

the same productivity and portability as a typical CPU, therefor three areas should be addressed:

• Generating the HW platform bitstream requires broad knowledge in HW architecture and

digital design and familiarity with CAD tools. All of these complexities should be auto-

mated. This can be done by a HW tool-chain which receives a high level specification file

( like the number and type of processors, accelerators,etc) and spits out the final bitstream.

This high-level specification file is either manually written or automatically extracted from

user’s code. Fig 1.1.a shows this first side of abstraction.

• The application code should be compiled to run on any CHMPs platform without the need

for the user to change the application. This compilation flow should be aware of the platform

details to generate an optimized binary file. Also, during runtime the operating system should

smartly auto-tune the application to fully leverage the resources available on this platform

including general purpose processors, customized accelerators and partial reconfiguration

slots. Fig 1.1.b illustrates this aspect of abstraction.

• In order to transparently take advantage of customized HW circuits (aka accelerators), the

integration of new accelerators to the existing HW/SW flow should be fully automated. In

other words, the SW developer should only provide the C code for the function they want

to accelerate (or even the VHDL code, if available) and they should not be concerned about

how this accelerator is going to be modeled, integrated and communicate with the rest of the

system. Fig 1.1.c show this crucial part of abstraction.

In sum, abstraction is the key if FPGA’s are going to be widely used and accepted in SW

developers community. The HW/SW flow should be automated and optimized based on application
3
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code to abstract away the details from SW developer. This thesis tries to investigate how this

productivity and portability can be achieved in FPGA-based CHMPs. The entire flow is shown if

Figure 1.2. First of all, the accelerators are extracted from the C code and then they are used to

generate the HW platform. Finally, the HW platform along with the accelerator drivers is used to

compile the application into final binary file.

In this thesis, I will argue that the formation of CHMPs system with extensible processor

nodes, defined as a processor plus partial reconfigurable slot, can be automated and will cover

a very broad range of accelerator use cases with minimal performance loss compared to a fully

custom designed architecture. The complexities of different organizations of accelerators can be

made transparent and portable through operating system and middleware abstractions. I believe

that Heterogeneous Extensible Multiprocessor Systems (HEMPS) can address dark silicon without
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sacrificing portability and productivity. HEMPS systems are flexible and general enough to abstract

the platform complexities from SW developers and also their generation can be automated. They

provide the SW users with the HW architecture which supports different levels of parallelism and

a transparent programming language.

Designers of real time and embedded systems are continually challenged to provide new sys-

tem capabilities that can meet the expanding requirements and increased computational needs of

each new proposed system, but at a decreasing price/performance ratio. FPGAs have become im-

portant components contributing to the creation of a family of Commercial Off the Shelf (COTS)

hardware platforms for future real time and embedded systems. FPGAs densities are maturing to

allow a complete CHMPS system. The system software for FPGAs must provide a fairly gen-

eral set of capabilities to support the widening range of applications, but must also be capable of

providing the specialized support required to satisfy a particular application’s interfacing and per-

formance needs. Creating such a capability for real time and embedded systems applications is a

difficult challenge in part, because it requires the simultaneous satisfaction of apparently contra-

dictory forces; generalization and specialization. However new architecture and run time systems

support is needed to enable the model to scale within systems containing 10’s to 100’s of compute

components. This thesis investigates the run time services and new architecture to enable devel-

opers to express applications that seamlessly scale across specialized large CHMPs systems using

the generalized scalable and portable multi-threaded programming model.

Current HW/SW co-design in FPGA-based CHMP systems lack portability and productivity.

These two issues has made SW developers community reluctant to switch to FPGAs from general

purpose processors. To achieve portability the platform complexities like partial reconfiguration,

custom HW circuits and soft and hard IPs should be abstracted away from SW developers . This

makes the FPGAs capabilities transparent to the end users. There are also some challenges in the

way of productivity. First off, dealing with the CAD tools require a fair amount understanding

of HW architecture and digital design, which calls for automating the generation of HW platform

. Secondly, as the system grows in complexity, fine/coarse grained hand partitioning of the tasks
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among different computational nodes gets more time consuming . Finally, there has not been much

effort in providing accelerators with stack management and pointer support as SW programmers

are used to C-like capabilities.

At the same time, lack of parallelism and power issues has led to Dark silicon problem, forcing

general purpose community to consider heterogeneous systems. This great potential opportunity

for FPGAs has not been exploited due to lack of both a transparent programming language to

capture different levels of parallelism, and the HW architecture which supports different levels of

parallelism. There has been a large efforts in how to seamlessly integrate accelerators in a heteroge-

neous system to combine thread level parallelism and data level parallelism. However, most often

this has led to decreasing the productivity and portability. There are three challenges in address-

ing both efficiency and accessibility at the same time: Abstracting away the complexities of CAD

tools, Abstracting away the details of HW platform and finally easy integration of accelerators to

the existing system.

1.1 Abstracting away the complexities of CAD tools

One of the main advantages of a FPGA is it’s ability to allow designers to create custom circuits at

design time. This same advantage has also been one of its main disadvantages; the use of FPGAs

requires hardware design skills and the use of hardware centric Computer Aided Design (CAD)

tools. This makes FPGAs unaccessible for most software programmers and domain experts. One of

the challenges in reconfigurable computing for over two decades has been focused on how FPGAs

can be accessed and used through more generalized software development languages, tools, and

development flows.

To begin with, one might ask whether generating a general HW platform be automated to spare

users from dealing with CAD tools? In other words, based on a high-level specification file that

specifies the number of processors, type of accelerators and the type of interconnect we want to

generate the final bitstream that is ready to be download on FPGA. Ideally this specification file

should be tailored for the SW developer’s code. This spares users from dealing with CAD tools,
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which require a fair amount understanding of HW architecture and digital design. Automating

this type of effort will enable researchers to address scientific questions quicker, and with an en-

hanced ability to increase experimentation across a broader range of configurations. Automating

the creation of standard CHMPs architectures also makes it easier to port and maintain the stan-

dard operating systems and middleware that bring the fundamental software engineering tenets of

portability and reuse onto FPGA based CHMPs system. In the absence of this automated flow, each

CHMP system must be created by hand within a CAD tool. For such custom systems this results in

long development times and limits the creation of parallel architectures to hardware designers who

possess knowledge of digital design, HW/SW co-design, and parallel computer architectures. Ad-

ditional efforts are required to either create a new, or modify and port an existing operating system

and standard middleware run time libraries for each CHMP system. The level of effort to recreate

base hardware architectures and run time protocol stacks by hand also makes it nearly impractical

for different researchers to reproduce systems to make fair comparisons; a fundamental component

of good scientific experimentation.

New design flows for CHMP systems will be required that are architecture centric and exist an

abstraction level above High Level Synthesis. These types of architecture centric flows are now

trending within System on Chip (SoC) design practices. These practices follow a two phase design

process that minimizes hardware development time and effort. In the first phase a base platform is

constructed with standard programmable processor cores, memory hierarchies and interconnects.

This first phase minimizes design costs through IP reuse and replacement of custom components

with re-programmable processor cores. These base platforms are then optimized in the second

phase through tuning of extensible cores and finally the addition of a small number of custom

components necessary to enable the system to meet all performance requirements. The malleability

of the FPGA fabric combined with the increased transistor densities allow designers to follow this

same approach for constructing CHMP systems. First a base system can be constructed with

soft IP programmable processor cores, and support components available through vendor specific

as well as free libraries such as opencores [36]. Once the base system is configured designers
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can optimize components and create any additional accelerators that would be required to meet a

specific applications performance requirements. While current FPGA vendors are addressing IP

reuse and component integration within their CAD tools automating the creation of a base system

would be better performed outside of any specific vendor flow to maintain design portability. To

achieve true vendor neutrality will require new intermediate representations of system architectures

that can then be translated into multiple vendor specific formats. The new flow for generating

hardware platform should provide following benefits:

• Complexity/Productivity by automating the generation of flexible CHMP systems automated

• Portability Should be able to provide HW architecture for ”write code once and run any-

where”.

• Avoiding Dark Silicon Transistor Utilization and Efficiency (or Dark Silicon), through partial

reconfigurable accelerators and/or power aware thread scheduling

1.2 Abstracting away the details of HW platform: Portable code

The second challenge in FPGAs is lack of abstraction, productivity and accessibility. To achieve

portability the platform complexities like partial reconfiguration, custom HW circuits and soft

and hard IPs and HLS tools should be abstracted away from SW developers. This makes the

FPGAs capabilities transparent to the end users. While the general purpose processors provide

users with more productivity and more abstraction compared to FPGAs, the FPGAs capabilities

are not transparent to the users. This leads to less productivity in FPGAs. Therefore, abstracting

both HW/SW design in FPGAs is the key to popularize FPGAs among SW developers community.

Emerging programming models for CHMP systems elevate architecture details up into the source

code. This increases the complexity of the design process, eliminates portability and can result in

inefficient designs.

One way to tackle this problem is to create libraries that abstract the need for programmers to

be aware of processors/accelerators and how they are configured within a particular heterogeneous
8



platform. These callable compute patterns should self tune for each system. These calls are running

on extensible processor nodes and enable the reusing through high level architecture abstraction

and runtime tuning. We call thesePolymorphic functions.

Polymorphic functions remain portable across CHMP systems, and enable a transparent and

autonomous fine-grained HW/SW partitioning. This approach reinstates portability through poly-

morphic functions, and provides infrastructure for an adaptive runtime system that can perform

runtime profiling and dynamic scheduling across systems with different combinations of hetero-

geneous resources. The combination of polymorphic functions, runtime profiling and adaptive

heterogeneous scheduling eliminates the need for designers to exhaustively explore a multidimen-

sional search through static profiling and can result in better resource utilization and performance

for CHMP systems with different combinations of processors, and static and partially reconfig-

urable accelerators. This new portable programming model based on Polymorphic functions can

abstract all heterogeneous resource differences out of the source code. Also the run time sys-

tem profiles and adaptively partitions the high level application onto any combination of available

heterogeneous resources.

1.3 Easy integration of accelerators into the existing system

FPGA densities continue to follow Moore’s law and are now sufficient to support large CHMP

systems. These systems can be populated with tailored mixes of compute resources, such as scalar,

single instruction multiple data (SIMD) and vector processors, as well as custom accelerators to

meet the specialization needs of each application. This combination of heterogeneous compu-

tational nodes allow a complete CHMPS system on FPGAs. However, the side effect of this

complexity is how to integrate the customized circuit into CHMPs. On one hand, the accelerator

developer should not be concerned about low level details of how the accelerator is going to com-

municate and transfer data with the rest of the system. On the other hand, the accelerator developer

should be given a flexibility in the number of BRAMs and FIFO interfaces needed. Also, how the

accelerator is going to be accessed and harnessed should not left to the end user. The challenge
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is how to make the integration of the accelerator into the existing system as easy and efficient as

possible. This helps with both productivity and performance.

1.3.1 Modeling accelerators

On-chip accelerators can be classified into two classes: 1)tightly coupled accelerators where the

accelerator is attached to a particular core and can only be accessed by that core. 2) loosely cou-

pled accelerators, which the accelerator is an independent entity which can be shared and accessed

among multiple cores [24]. There have been many proposals on how to model, program, and inte-

grate accelerators into a scalable multiprocessor framework. At one end of the spectrum are loosely

coupled accelerators that can be viewed as shared system components. At the other end of the spec-

trum are tightly coupled accelerators that can be viewed as extensions of a single processors ISA.

To date, these two ends of the spectrum have been viewed as distinct classes of accelerators, with

separate requirements for how the interface into system services, how they should be abstracted

for programmers, what granularity of parallelism each type can efficiently support.

Meanwhile, The multithreaded programming model has evolved to enable programmers to

combine software threads running on a processor with hardware threads implemented as custom

accelerators within the reconfigurable fabric. Enabling hardware accelerators to be represented

as threads was a significant step in enabling software programmers to access the potential of an

FPGA from a familiar scalable parallel programming model. Traditional approaches provided a

finite state machine version of a Hardware Abstraction Layer (HAL) to allow hardware threads

to interface into the multithreaded programming model. So the accelerators used a custom HW

finite state machine version of a Hardware Abstraction Layer to interface into the multithreaded

programming model.

1.3.2 The traditional solution: FSM based HAL for loosely coupled accelerators

While the policies of the multithreaded programming model were defined to explicitly allow the

expression of scalable parallelism, HALs as supporting mechanisms make inefficient use of hard-
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ware resources and impose restrictions on the level of parallelism that can be exploited. HALs are

defined to provide system services for accelerators that are modeled at the coarse grained thread

level. This can lead designers to synthesize a thread that includes sequential instructions that oc-

cupy gates and provide little to no performance increases.

While FSM based HALs for loosely coupled accelerators were appropriate for platform FPGA’s

with small numbers of processors and hardware threads, the implementation approaches are not

viable for todays larger CHMP systems. The model supported a thread as the finest granularity

of concurrent component supported. This required FPGA resources to support the sequential por-

tions of a thread, and limited the thread to contain only a subset of functionality that could be

synthesized. Implementations used finite state machines within a custom hardware interface to

provide each thread with the system functionality required to interface and interact with the oper-

ating system. The size of the custom hardware interface grew as more state machines were added

to provide a full range of functionality. FSM based HALs was acceptable for interfacing a thread

but has limitations for next generation systems that may require moving functionality across the

HW/SW boundary, better support of languages such as C that require a stack, ease of expansion

and modification.

An FSM based HALs for loosely coupled accelerators abstracted custom HW as a hardware

resident thread that accessed key operating system services such as mutex operations, as well as

providing access to a linear address space, through a series of hardware based finite state machines

encapsulated within a virtual abstraction layer. This allowed a complete thread body to be imple-

mented as a hardware thread and seamlessly interact with all other software and hardware resident

threads throughout the system. This model proves inefficient in resource usage, restrictive in sup-

porting different accelerator models and for dynamic scheduling and resource allocation. First,

any change to the operating system services required a redesign and re synthesis of the hardware

resident virtual abstraction layer. Further the size of the virtual abstraction layer quickly grows

greater than the size of a standard processor such as MicroBlaze. Additionally resources are re-

quired to implement the complete, and not just the computationally intensive portions of the thread
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Figure 1.3: Loosely coupled accelerators Vs. Extensible processor.

yielding large accelerators. In sum, the drawbacks of HW threads implemented as loosely coupled

accelerators with FSM based HAL approach are:

• changing or adding new features to HW thread interface requires HDL re-designing and

re-synthesizing. It is not only time consuming, but also results in a bigger size Hardware.

• There is no fine grained HW/SW partitioning. The entire thread should be either run in HW

or SW, which as a side effect results in a bigger HW threads with no added benefit for the

sequential part of the thread.

• There is no support for Stack management for HW accelerator, which stops some algorithms

like Quicksort to be implemented in hardware.

• Integrating new HW cores into system with different interfaces is hindered by what HW

thread interface dictates.

1.4 Extensible processor

Can a single processor-accelerator combination unify the varying use cases of accelerators within

FPGA based CHMPs systems? This node can work as the basic block of automatically generated
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CHMPs systems, as well as autonomously executing the portable code targeting these systems.

A processor-based HAL has the potential to unify hardware and software threads, provides stack

management and pointer support plus distributed OS and RPC services for the accelerator. Im-

plementing the HAL using a general purpose processor instead of a custom finite state machine

provides increased flexibility and productivity. Also Using a general purpose processor as a front

end in place of a custom circuit eliminates the need to distinguish between a hardware and software

thread. All system components can be viewed as extensible processors and support any combina-

tion of hardware and software threads. Using a general purpose processor as a front end to the

hardware accelerator turns a dedicated hardware thread into a much more flexible extensible pro-

cessor. This extensible processor nodes can be combined to form a HEMPS system and directly

ties to our first argument of automating the generation of CHMPS systems. A CHMP system can

be built using extensible processors with static or partially reconfigurable accelerators, and DMA

controllers for fast data transfers. It unifies both models of loosely coupled and tightly coupled

accelerator in one architecture, as well as providing portability for applications. Figure1.3.b shows

a high level view of an Extensible processor

Allowing the accelerator to be connected directly to a processor also extends the earlier model

of loosely coupled accelerators across a system bus to also include tightly coupled access from

the processor’s register set. Each extensible processor can be used as both a loosely coupled

or tightly coupled accelerator. This unifies the two models that have traditionally been treated

separately. In short, an extensible processor model provides a more efficient implementation of

a HW-based HAL, provides capabilities needed to standard programming models and languages,

allows systems to scale, and extends the accelerator’s use case.

Moreover, there has not been much effort in providing accelerators with stack management

and pointer support as SW programmers are used to C-like capabilities. Extensible general pur-

pose processors serves two purposes : Running the sequential part of the thread and autonomously

assigning only the parallelizable part of it its attached HW accelerator. The general purpose pro-

cessor in this node has the potential to provide stack management and other optimization services
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like RPC, overlapping data transfer with computation, etc for the HW accelerator.
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Chapter 2

Introduction

The continued increase in fabrication densities of FPGAs are yielding devices that can support

CHMPs architectures. Current generations of FPGA’s such as the Xilinx VC707 can support over

a hundred processors on a chip. As an example, the hthreads in the cloud project now makes

bitstreams publicly downloadable for systems with up to 150 Microblaze processors. Bitstreams

for accelerator rich MPSoPC’s are available for systems with up to 36 Microblaze processors

plus 36 partial reconfiguration slots are also available [21]. FPGA based CHMPs systems offer

the advantage of allowing designers to include custom compute components such as accelerators

into systems with scalable numbers of programmable processors to meet challenging application

performance needs. To increase designer productivity commercially available C to HDL tools

are available to translate portions of the application C code, such as loops, to be synthesized into

accelerators [11]. Even though the transistor densities of commercially available FPGA’s contain

sufficient gates to support large and heterogeneously diverse MPSoPC systems, and C to gates

capabilities are becoming common, how to form and program such large and heterogeneously

diverse architectures is not fully understood. The question is who and how is going to use these

resources available on FPGAs?

CHMP systems represent a new era in reconfigurable computing with system architectures

that can bring the performance benefits of an application specific design but driven and accessible

through familiar scalable programming models. Enabling these systems to be used by application

developers will require new capabilities in processor centric design automation, more adaptive

runtime systems, and new middleware abstractions within concurrent programming models.

To explore this thesis statement of this work, I want to investigate the following set of questions:

• Can the creation of CHMPS systems with programmable processors plus custom accelerators

be automated without sacrificing the ability to customize systems ?
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• Can the platform complexities of an accelerator rich CHMPs system be abstracted to re-

enable the notion of ”writing code once, and run everywhere”?.

• Can a single processor-accelerator combination unify the varying use cases of accelerators

within FPGA based CHMPs systems ?

2.1 The need for making FPGA’s accessible to SW developers

The United States Bureau of Labor Statistics reported that in 2010 there were approximately 82,000

hardware engineers and over 1.2 M software programmers [10]. Although the densities and capa-

bilities of FPGAs continue to grow, the lack of standard operating systems support and software

centric programming models has continued to hinder their adoption by this large cadre of software

programmers. FPGA based operating systems researchers have addressing the issue of FPGA

accessibility for software programmers for the better part of two decades.

SW programmers should be spared of details of hardware platform in FPGAs. This is a multi-

faceted problem. First off, there should be a model as to how to integrate custom HW into a multi-

core system. Second, how to automate the generation of such a heterogeneous multi core system.

And finally, how to compile the application for different heterogeneous multi core systems without

the need to change the application or putting platform-specific details up into the application.

Having said all of these, the basic question is what should a basic computational node look like in

a heterogeneous multi node system? The organization of the computation node would be the basic
16



block for generating the HW platform as well as the compile flow. Most recently the architecture

community has been advocating accelerator rich heterogeneous multiprocessor architectures called

chip heterogeneous multiprocessors (CHMPs). These types of systems are gaining interest within

the FPGA community as well. One open research issue is how custom accelerators should be

interfaced into CHMPS architectures and abstracted within a higher level programming model.

2.2 Dark Silicon challenge

The increased capabilities offered by a CHMP system does come at the costs of increased com-

plexity for designers in constructing the base system, decreased code/design portability, and an

increased potential to fall victim to ”dark silicon” [28]. Dark Silicon refers to transistors on a

chip that are not used due to two inter-related issues; lack of available parallelism and fixed power

budgets [28]. Dark silicon places limits on an applications ability to achieve desired speedups and

prevents the application from scaling across generations of chips that can provide increased tran-

sistor densities. In response to dark silicon the general purpose computing community has already

transitioned from homogeneous many-cores to chip heterogeneous multiprocessors. These systems

contain scalable mixes of CPU’s, GPU’s, extensible processors and accelerators to better exploit all

levels of parallelism and provide better energy efficiencies [42]. Reconfigurable computing bases,

such as FPGA’s are not immune from dark silicon. FPGA densities are already sufficient to host

a complete heterogeneous chip multiprocessor [12, 58]. This use case represents an interesting

convergence between the general purpose and reconfigurable computing communities, albeit from

opposite directions.

Current dark silicon concerns for FPGA’s stem more from a lack of available parallelism than

fixed power budgets. Current process technologies are not yet violating Dennard scaling [26],

where achievable transistor density levels would require turning off a portion of the chip to meet

fixed power budgets. Chip vendors are now seeking to use modern process technologies such as

Intel’s 14nm fabrication lines that may cause FPGA densities to violate Dennard scaling in the near

future. Current dark silicon concerns for FPGA’s result from idle transistors that are not supporting
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parallelism. Dark silicon can appear even within heterogeneous chip multiprocessor systems. First,

mismatches between the user visible higher level programming model and the actual capabilities of

the heterogeneous resources will result in underutilization. Second, changes in runtime behaviors

of the application or underlying system can lower utilization. Third, modifications or updates to

the original application can effect the underlying architectures ability to exploit new behaviors.

Thus a key challenge in keeping transistors at high utilization levels becomes a runtime issue.

FPGA components support the capability of allowing portions of the gates to be dynamically

reconfigured during runtime. This promises to address the issue of ”dark silicon” or portions of

the chip that are not being used that now plague standard manycore architectures. Accelerators

and components can be paged into the silicon on demand by the operating system during runtime.

Reconfiguring transistors during runtime has the potential to increase transistor utilization. This

is conceptually similar to current multithreading techniques that context switch multiple threads

across a shared processor resource to increase utilization. The difference is primarily in what is

swapped in and out; binary executables or bitstreams. The same application that has been parti-

tioned into hardware and software components, profiled and tuned for maximum performance on a

specific architecture will have to be re-tuned, partitioned, profiled and optimized if the configura-

tion of the underlying CHMP changes. This is counter to the software worlds desire to write once,

run anywhere.S Applications optimized for one particular architecture configuration may not run

well on another. Architecture configurations can vary during runtime . A partitioning that is opti-

mized based on the availability of accelerators or a vector processor would not perform efficiently

if these resources were busy and the application was alternatively mapped onto a set of general pur-

pose processors. Further programmers cannot know how the system will exhibit non-deterministic

behaviors during runtime.

2.3 Modeling and abstracting the accelerators in a CHMPS architecture

One avenue of research has focused on using the multithreaded programming model as a unifying

abstraction over Hardware/Software co-designed applications within an FPGA. This approach was
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proposed in 2003 by [49, 63] and has continued to gain in popularity [45, 19, 39, 65, 41]. The

appeal of the model is it’s ability to view physical accelerators as abstract threads. The model

defines standard policies such as mutex and semaphore operations that allow multiple accelerators

to run concurrently within the FPGA, synchronize with other threads (accelerators) and share data.

The HAL was required to provide hardware threads with equivalent system call interfaces into

standard Pthreads APIs. This includes as acquiring and releasing a mutex, transferring data, and

support communications with other threads running throughout the system. One of the promises of

FPGAs was the ability to deliver performance levels close to those associated with custom circuits,

and this has to be harnessed by SW programmers.

The FPGA based operating systems research community has been investigating the use of the

multithreaded programming model as a unifying framework. In this model custom hardware ac-

celerators are abstracted as detached hardware threads. The flexibility of the model allows multiple

accelerators to be defined and operate concurrently within the FPGA. This extends the earlier use

case of FPGA as a single detached accelerator treated as as co-processor to an external CPU.

An important aspect of the model is the separation of policy and mechanism. Policies such

as those defined in the Pthreads standard, are accessed through Application Programmer Interface

(API) calls. System designers are free to implement the APIs using platform specific mechanisms.

On commercial desktop systems, mechanisms are built using existing hardware and protocols, the

processors Instruction Set Architecture (ISA) and Application Binary Interface (ABI) definitions,

and standard software protocol stacks. FPGA operating systems researchers had no such set of

predefined hardware components, protocol stacks, or ISA and ABI’s. Thus a challenge for first

generation efforts focused on defining these standard types of mechanisms encapsulated within an

additional hardware component call a Hardware Abstraction Layer (HAL). The HAL served to

provide a set of standard register interfaces to replace soft traps for access to the mechanisms, and

sets of finite state machines to replace non-existent software system service libraries. These first

generation efforts were successful in validating the approach. However this HAL suffers resource

inefficiencies, limits the granularity of parallelism that can be supported, and presents difficulties
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in modifying and updating the system service interfaces and mechanisms.

This model extended the historical view of a FPGA as a single accelerator by allowing acceler-

ators to operate concurrently with other software and hardware threads. Operating system services

were provided for the hardware threads through HAL, which extend OS services to hardware ac-

celerators connected on the system bus. The HAL Abstraction layers have evolved for supporting

a standalone custom HW such as a thread. These HALs are implemented as a series of finite state

machines that provide the hardware threads with the equivalent of libraries of linkable software

system calls. The HAL allowed the hardware thread to request standard operating system services

such as acquiring and releasing a mutex, or share data with other software and hardware threads

running throughout the system. It also allowed the accelerator to be viewed as a schedulable de-

tached thread by the runtime system. The HAL was fundamental in allowing programmers to

use the multithreaded programming model to create multiple accelerators. Those accelerators can

operate as concurrent threads running independently throughout the FPGA fabric.

The definition and use of the HAL has enabled accelerators to be viewed a threads, and has

allowed the accelerator access to important policies such as requesting mutexes and semaphores

that are critical to the model. However it does not remain faithful to the full separation of pol-

icy versus mechanism which is important for portability. The use of a HAL indirectly requires

application developers to code and treat hardware threads differently from software threads. The

run time system must also distinguish and schedule hardware and software threads differently.

The size HAL will grows as additional functionality or system services are added. Finally, un-

like system software that can be easily modified and quickly compiled, changes to the HW-based

HAL required low level circuit design skills and resynthesis. In other words, while this approach

successfully abstracted the HW/SW boundary from the programmer and enables multiple loosely

coupled accelerators to interact with the runtime system, it suffered several disadvantages. First,

the granularity of the computation mapped into the accelerator was at the coarse grained thread

level. Sequential sections of code contained within the thread body became synthesized as part of

the hardware accelerator. This results an inefficient use of the FPGA resources. Second, the size of
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a HW-based HAL can become large if sufficient OS service functionality is included to allow the

accelerator to appear to the system as an independent stand alone detached thread. Additionally,

unlike system software that can be easily modified and quickly compiled, changes to the HW-based

HAL required low level circuit design and resynthesis. Each time more functionality is added the

size of HAL increases.

In this thesis we try to see if a hardware HAL can be replaced with more flexible and pro-

grammable extensible processors. On our Xilinx based systems, we form an extensible processor

with a Microblaze, set of standard FSL links, and three scratch pad BRAMs. The extensible pro-

cessor provides the following additional capabilities over the first generation hardware based HAL.

First, The size of a HAL will grow in proportion to the functionality placed into the HAL. Cur-

rent HAL’s routinely occupy more gates than a soft IP processor such as the Microblaze. Changes

or additions to the system services requires hardware redesign and synthesis, a level of hardware

design skill that is beyond most operating systems designers. The use of a hardware HAL has the

secondary effect of imposing inefficient usage of transistors within the user code that was mapped

and synthesized within the accelerator; even the sequential portion of the thread needs synthesized.

The use of the HAL also required the accelerator house the complete thread. This places restric-

tions on the application code within the thread body to be synthesized. Most hardware HALs do

not include the additional finite state machines and local memories to provide stack support for the

hardware thread. This prevents designers from mapping thread code that contained function calls

or allocated locate variables from a stack into hardware. Either the thread body must be re-written

or the thread designated as a software thread.

We want to investigate whether the hardware HAL that sits in front of an accelerator can be

replaced with a programmable processor to form a much more flexible and efficient extensible pro-

cessor. The extensible processor allows the uniformity of the multithreaded programming model

to be restored. Programmers no longer need to draw a distinction between threads that will run

in software or hardware. All types of threads can run on an extensible processor. The run time

scheduler can then map any thread onto any available extensible processor. An extensible pro-
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cessor allows a single thread to be split across the HW/SW boundary. The sequential portions of

the thread run on the processor, and the computationally intensive portions of the thread can run

on the accelerator to leverage data level parallelism. We investigate the possible resource savings

this approach can provide over hardware based HALs, as well as the HW/SW partitioning which

might provide interesting counter intuitive run time results. I think replacing custom hardware

with a programmable processor can result in increased performance. Finally we try to see how

the extensible processors stack can be used by the accelerator to allow code that contains function

calls and local variables to be synthesized and mapped into the accelerator. This can increase the

usage of the accelerator to threads that contain function calls, recursion, and local variables. We

also explore performance results for systems built on extensible processor to see if it can scale into

100’s of processors and accelerators, and can be programmed using concurrent threads.

As far as providing accelerators with operating system services goes, there are two approaches.

One approach used a full Linux stack running on a master processor [63, 45, 39, 65]. Operating

system services are executed on the Linux stack on behalf of the accelerators. This approach re-

quired the HAL to include RPC call support to communicate with wrapper functions that executed

on the Linux stack running on the master. This approach introduced additional latencies for ac-

celerators accessing the OS services running on the master node, and from sequentializing service

requests. The second approach sought to reduce latencies by distributing more OS services into the

HAL [19]. This approach reduced access latencies and eliminated the sequential server bottleneck.

In the work, we follow the second approach as it is more scalable.

In this thesis, we try to show how a HW-based HAL can be replaced by a CPU-based HAL.

Without any loss of functionality we show how a general purpose processor such as a MicroB-

laze can be used as a plug-in replacement for a HW-based HAL. Replacing custom hardware with

a programmable processor brings the obvious benefits of increased productivity and flexibility.

Changes and updates to system services can be achieved through software compilation instead

of hardware synthesis. Interestingly hardware savings are provided as the MicroBlaze processor

requires fewer gates than a typical HW-based HAL [15]. Also the size of the accelerator can be
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reduced by moving the sequential portion of the thread out of hardware and into the MicroBlaze.

Importantly combining a general purpose processor with an accelerator forms a very flexible ex-

tensible processor. Replacing the custom hardware based HAL with a programmable processor

can increase performance, productivity and flexibility, while reducing overall area size. The ex-

tensible processor can still be used in it’s original role of providing system services to a detached

hardware accelerator thread. It also allows the accelerator to become more tightly coupled with the

processor. This allows the size of the accelerator to be reduced by moving the sequential portion

of the thread out of hardware and execute on the Microblaze.

An extensible processor is in a better position to support the needs of higher level programming

languages as well as better support scalability within the system and multithreaded programming

model. The standard processor’s stack can be used to support function calls and recursion within

the accelerator. The ability to migrate additional OS services into the HAL without increasing

circuit size allows each extensible processor to assume more autonomous behavior. This eliminates

the need for a HW-based HAL to provide remote procedural calls (RPC) to system services that are

provided within a full OS stack running remotely on a master processor. An extensible processor

also removes the need to draw distinction between a hardware and software thread; an extensible

processor can execute any combination of software and hardware.

We try to remodel the accelerator as an extensible processor implemented through a tight cou-

pling between the static or dynamic accelerator and a front end processor. This model has the

potential to be resource efficient, portable, and better supports dynamic partitioning and allocation

of resources. Without any loss of functionality the Microblaze can be simply viewed as a plug in

replacement for the hardware virtual abstraction layer. Changes to the operating system can be

realized through software compilation in place of hardware synthesis. Further resource savings are

achieved as the sequential portion of a thread can be migrated out of hardware and into software

executing within the Microblaze. An extensible processor model now widens the use of the accel-

erator to exploit a greater range of parallelism, from fine grained data level parallelism, through

VLIW, and instruction fusion. Importantly this allows better resource utilization and support for
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dynamic tuning. Each extensible processor is now available to run any thread, with the choice

of using an accelerator being made autonomously on each processor. Under dynamic reconfig-

uration each processor can make an independent decision to download a new bitstream into it’s

partial reconfiguration area. After introducing this notion of Extensible processor, we use it in a

multiprocessor system with ICAP and DMA engines tailored to each node.

2.4 Need for a general heterogeneous multiprocessor system

We try to integrate multiple extensible processors to form a new class of multiprocessor archi-

tecture we call Heterogeneous Extensible Multiprocessor Systems (HEMPS). HEMPS systems

support both thread level parallelism (TLP) through the multiple processors, as well as data level

parallelism (DLP) within the accelerator extensions. The operating system for HEMPS should sup-

port the seamless use of static or partially reconfigurable accelerators to enable portability across

different heterogeneous multiprocessor systems. Our standard HEMPS systems include multiple

DMA controllers to support fast transfer of data between memory as well as partial bitstreams.

HEMPS system unifies both models of loosely and tightly coupled accelerators. From an architec-

ture perspective a HEMPS system is chip heterogeneous multiprocessor system built on extensible

processor nodes. This allows the system to exploit a wide range of parallelism from coarse grained

threads running across the scalable numbers of processors, to fine grain parallelism within the

accelerator extensions to each processor. The HEMPS model allows accelerators to be included

statically or dynamically by the operating system under partial reconfiguration rules. The static or

dynamic accelerators are both visible by the operating system as schedulable sharable resources,

or as dedicated extensions to a processors ISA. Within a HEMPS system any accelerator can be

used in both roles. The HEMPS architecture provides portability and efficiency over CHMPS. In

a HEMPS system we target an MIMD/accelerator model. The MIMD model provides thread level

parallelism across the multiple processors, with the ability to accelerate execution of each thread

by extending each processor with custom accelerators. However, required designer skills necessary

to construct a complex heterogeneous multiprocessor systems change from digital logic to those
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associated with creating a complete parallel architecture.

The fact that FPGAs support a complete CHMP system within a single programmable chip [23],

represents an interesting convergence with the general purpose computing community. General

purpose computing community is pursuing heterogeneous manycore architectures to combat dark

silicon [28]. The malleability of the FPGA fabric offers designers the advantage of tailoring a

CHMP system with different numbers and types of processing elements and accelerators to meet

the specific performance needs of each application. This allows FPGA-based CHMPs to be built

that are tailored to the exact types of parallelism that may be available in each application. How-

ever, creating these systems would be too hard for a typical SW developer. So from the HW point

of view, automating the generation of CHMP systems is a must. Moreover, From SW point of

view, familiar concurrency models such as asynchronous threads can be used over scalable num-

bers of general purpose programmable processors. Data level parallelism can then be exploited on

programmable vector and array processors as well as within co-processor accelerators. This type

of automation allows the creation of complex heterogeneous chip multiprocessors by software de-

signers and significantly reduces the time and complexity of creating complete Systems on chip

(SoC) systems. As far as Hardware design goes for these CHMP systems, creating the base archi-

tecture within the FPGA is becoming easier. Through the availability of standard IP components,

and tools that can automate the assembly of the IP components into a complete CHMP architec-

ture. Vendors routinely supply soft IP components such as buses, interrupt and I/O components

as well as programmable processors such as the MicroBlaze [4].Community efforts are provid-

ing additional soft IP components such as vector processors as well as libraries of open source

accelerators [36].

Vendor tools allow users to build systems with dynamically reconfigurable accelerators. All of

these, care calling for automated tools to eliminate the need to hand assemble architectures within

vendor CAD tools. From the application designers perspective, FPGA based CHMPs systems

hold the promise of exploiting any and all levels of parallelism that may exist in their application.

Familiar concurrency models such as asynchronous threads can be used over scalable numbers
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of general purpose programmable processors. Data level parallelism can then be exploited on

programmable vector and array processors as well as within co-processor accelerators. Even Very

Long Instruction Word (VLIW) and custom, or fused, instructions can be supported in hardware

accelerators.

CHMPs systems hold the promise of providing a rich set of scalable general purpose and cus-

tomizable processing components for designers to field systems that can meet challenging real

time functionality, timing, and energy requirements. The malleability of the FPGA substrate al-

lows designers to reduce design time by first adopting reusable base systems of scalable heteroge-

neous programmable processors and then augment these base systems with additional performance

boosting custom accelerators or tuned processors. Partial reconfiguration, or the ability to swap

accelerators into and out of a running system adds additional advantages for future FPGA based

CHMP systems. The use of partial reconfiguration techniques can boost overall system efficiency

through increasing the utilization of transistors. This may well become an important factor in ad-

dressing energy efficiency [44], and play an important role in offsetting ”dark silicon” or transistors

that cannot be used due to lack of parallelism or chip power restrictions [28].

These CHMPs powerful platforms can be customized with scalable numbers and types of gen-

eral purpose, extensible, and custom heterogeneous programmable processors, as well as custom

hardware accelerators to meet the demanding needs of each application. Figure 2.2 shows the

range of systems that can be realized within a modern FPGA. While these platforms offer design-

ers significant flexibility in the types and numbers of components than can be integrated into an

architecture this same flexibility introduces new challenges for designers when attempting to write

efficient applications that are portable on, across and between different systems. Figure 2.2 shows

the relationship between designer effort and and system complexity. FPGA’s can host simple scalar

processor systems with linear address space models. Designs can be easily developed and modeled

using historical software development approaches. Once the application is developed, profiled and

optimized, it remains fully portable through simple recompilation if the processor within the FPGA

is upgraded or changed. Researchers have successfully enabled CPU based SMP multiprocessor
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Figure 2.2: Performance Vs. complexity of the system

systems with linear address spaces within modern FPGAs. Familiar middleware such as Pthreads

have been used to abstract the set of multiple homogeneous compute components into a single

unified architecture continuing to offer the important notion of portability. Concurrency issues

associated with the multithreaded or message passing programming models introduces additional

complexity into the application development process. However these models extend the impor-

tant notion of portability across multiprocessor architecture families with homogeneous compute

resources.

The capabilities of CHMPs systems bring with them new challenges during architecture as-

sembly as well as application design. Architecture assembly is focused on determining a proper

set of heterogeneous resources to best meet the needs of an application. Wide selections of soft IP

components are now available, ranging from general purpose processors, vector processors, and

extensible processors along with the traditional approach of creating custom accelerators. This

wide selection of disparate components coupled with the ability to integrate tens to hundreds of

these components across different memory and interconnect configurations within a single FPGA

makes this process extremely challenging even for experts in multiprocessor architecture design.

Once chosen, the components must then be assembled into the complete system, debugged, and

tested. Current design flows force this development process to occur by hand within vendor spe-
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cific CAD flows. This development process is time consuming, error prone and prevents portability

of the architecture between generations of vendor specific chips as well as across vendor platforms.

Long synthesis times must be tolerated each time the architecture is updated or changed. All of

these challenges call for automating the generation of HW platform, as we later discuss in the

approach section.

2.5 Portability of the applications over different CHMPS systems

CHMPs systems increase the complexity of the application design process. Applications opti-

mized for one particular architecture configuration may not run well on another. Architecture

configurations can vary during runtime as the runtime scheduler changes the numbers and types of

processors and accelerators available. A partitioning that is optimized based on the availability of

accelerators or a vector processor would not perform efficiently if these resources were busy and

the application was alternatively mapped onto a set of general purpose processors. The complexity

offered by a CHMP system with Designers cannot cost effectively engage in exhaustive profil-

ing of combinatorial numbers of code partitionings and mappings for systems with large numbers

of heterogeneous processor/accelerator mixes, interconnect and memory hierarchy combinations.

Further programmers cannot know how the system will exhibit non-deterministic behaviors dur-

ing runtime for systems with 100s of mixed processor types and complex interconnects within a

single, let alone across multiple unique platforms. Code should be written once by the application

developer targeting a uniform abstract architecture and be portable across all vendor platforms.

Constructing a CHMP hardware platform is becoming easier, but developing and tuning appli-

cations to run efficiently across a multiprocessor system with heterogeneous resources is becoming

harder. Once coded, profiled, and tuned a time critical application should be reusable and portable

between systems and across generational platforms. Emerging programming models for hetero-

geneous systems such as OpenCL [6] prevent an application from being portable across processor

specific boundaries. The introduction of heterogeneous compute resources prevents designers from

developing applications that are portable and reusable, fundamental tenet’s of best practice meth-
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ods in software engineering. Using such programming models requires developers to decompose,

evaluate and tune each application by hand for each unique configuration of heterogeneous re-

sources. If the resources change the developer must reevaluate how the application was originally

decomposed, coded, and mapped across the resources. This strict binding of application kernel

to resource prevents the runtime system from attempting to increase overall system utilization by

dynamically repartitioning and re-scheduling the application on available resources. Thus binding

specific application kernels to specific heterogeneous resources can introduce performance bottle-

necks, and impose substantial design times for developers to iteratively hand code, profile, and

tune each application. As the complexity of future CHMPs systems increases the effort required to

exhaustively develop, profile, and tune an application will quickly become prohibitive.

Several issues need to be resolved to bring portability and reuse to FPGA based CHMPs sys-

tems. First, our traditional compilation flow must be modified. Current compilation flows target

producing executables for a single ISA that is portable across all processors within the system.

CHMPs systems may split an application across groups of processors with different ISA’s. This

requires new approaches for generating multiple ISA versions of source code, cross linking func-

tions, and resolving differences in Application Binary Interfaces (ABIs). Our ability to bring

application portability through uniform software abstractions will significantly increase designer’s

productivity. The programming model abstractions and runtime systems that have brought porta-

bility and reuse for systems with homogeneous processor resources are not being pursued for

CHMPs systems, and not yet available for systems with mixes of heterogeneous processors. Dif-

ferences in processor ABI’s have prevented the adoption of single unifying operating system im-

ages such as Linux on CHMP’s systems. For example, different processor atomic operations such

as load linked, store conditional are not compatible with test and set. This prevents standard oper-

ating systems from providing synchronization primitives across heterogeneous resources. Conse-

quently, Differences in each processors and accelerators capabilities require architecture dependent

coding practices that eliminate the runtime schedulers ability to map any application kernel to any

available resource.
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Interestingly the flexibility of CHMPs systems has introduced a paradox for the programming

community. A new class of heterogeneous programming models evidenced by [6], has emerged

to support statically configured CHMPs systems. A common trend within these heterogeneous

programming models is to reverse the long established practice of increasing portability and pro-

ductivity through higher levels of abstractions. and are only applicable thus far to systems with

combinations of statically defined hardware, (i.e. CPUs, and GPUs). Programmers must once

again study the underlying architecture and introduce architecture specific code to achieve near

optimal performance. This is occurring as many of these programming models lack the automated

mechanisms for profiling and tuning an application to the system’s available resources. A lack

of automated tuning capability is particularly detrimental for FPGA’s that allow resources to be

modified. Data must explicitly be marshaled between different memory partitions, and parallelism

must be expressed using pragma’s and processor specific data parallel constructs. Some of the

platform specific requirements result from lessons learned during the prior parallel processing era

that showed compilers could only achieve marginal success in automatically extracting data level

parallelism from sequential code. This has an unfortunate effect on programmer productivity and

application portability. One cannot rely on the programming model and the operating system (OS)

to ensure their application remains portable across CHMP systems. Programmers must actively

engage in hand partitioning and exhaustive static profiling of the application to find an optimal

partitioning on a given CHMP system.

Systems radically increase the dimensionally of the design space in which designers must work

to efficient applications upon which portability in homogeneous systems was achieved. Instead

application developers must posses detailed knowledge of each architecture to write efficient ap-

plications. New heterogeneous compilation techniques as well as additional development time is

required to explicitly decompose an application into unique code sections using the non-portable

constructs and pragmas to expose parallelism in forms suitable for each heterogeneous proces-

sor resource. Differences in processor ABI’s prevent the adoption of a single unifying operating

system such as Linux to abstract the heterogeneous resources. Developers must possess detailed

30



knowledge of the memory hierarchy and include explicit data marshaling commands within their

application code. Thus code written for earlier homogeneous SMP systems is not only not portable

between homogeneous and heterogeneous systems, but also not portable across different heteroge-

neous systems. This lack of portability also challenges the historical development approach of at-

tempting to statically optimize the application through user profiling and tuning. The search space

that a user would have to explore to experimentally decompose, profile and rework the application

for a system with 10’s to 100’s of heterogeneous resources grows exponentially. The introduction

of heterogeneous concurrency also introduces probabilistic operating behaviors across buses and

interconnects that cannot be exhaustively evaluated using static profiling techniques.

This is a concern as the complexity of writing explicit data parallel code proved very complex

for the average programmer and importantly, resulted in non-portable code. The parallel processing

community moved away from this approach towards cheap clusters comprised of scalable numbers

of homogeneous processors accessed through scalable and portable programming models. In par-

ticular the multithreaded programming model gained popularity as a unifying model and has been

used within the reconfigurable computing community for enabling custom hardware threads within

the FPGA fabric to seamlessly interact with software threads running on CPU’s [16, 45, 63, 65].

These models are requiring programmers within their code to exploit the different levels of par-

allelism supported by the heterogeneous resources. History does show the necessity of explicitly

exposing parallelism using data parallel constructs and pragmas within the source code. Program-

mers must once again learn low level details about each architecture and pursue mixed coding styles

to meet the specific needs of each different processor or groups of processing elements. Emerging

heterogeneous programming models are once again requiring Emerging CHMPs architectures are

motivating a resurgence back to programming models that include explicit and processor specific

parallel constructs. This has an unfortunate effect on programmer productivity; they cannot rely

on the programming model (such as Pthreads) and operating system to enable their application

code to be fully portable. They must now code to the machine, engage in tedious and exhaustive

design space exploration and run exhaustive profile traces to optimize for each particular set of
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heterogeneous resources. History also shows that this approach eliminates portability and neg-

atively effects designer productivity. Hand partitioning cannot account for the probabilistic run

time behaviors that result from asynchronous concurrency models running threads across 100’s of

processors. As the number of available processors changes during run time how a function is de-

composed into concurrent threads will also change. On todays CHMPs systems with relatively few

numbers and types of heterogeneous processors, this is just an inconvenience that can be overcome

with diligence. However for future systems with 100’s of mixed types of processors, accelerators,

multi-tiered memory hierarchies and complex interconnects the complexity of hand partitioning

and profiling applications for all potential runtime eventualities becomes intractable.

Even verifying correct operation of a concurrent application is problematic as the observed be-

havior of a statically tuned concurrent application is not guaranteed repeatable under our traditional

asynchronous concurrency models. Buses and interconnects can exhibit probabilistic behaviors as

data transfer requirements throughout the system varies. Thus while this philosophical switch may

help bridge the transition from homogeneous to heterogeneous systems, it may ultimately prove

as only a stop gap measure until more traditional programming models emerge that can restore

portability. Resolving heterogeneity at its root is a piece of a much bigger puzzle that will drive

long term operating system research agendas. Creating such a new programming model is not an

easy task. Processors with heterogeneous ISA’s prevent the use of standard atomic operations and

require adherence to different ABI’s. Early programming models abstracted all resources. This

allowed programmers to express thread level parallelism without regard to specific processors, in-

terconnects or memory implementations. The runtime system was free to map any thread to any

processor transparently to the application designer. Chip heterogeneous multiprocessors with dif-

ferent numbers and types of programmable processors and custom accelerators have broken this

clean model. Emerging heterogeneous programming models require designers to be aware of and

program for specific processor types, memory hierarchies and develop and decompose their source

code for specific configurations. In other words, Programmers no longer have the convenience of

a linear address space and must now explicitly marshall data between different memory tiers.
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Thus a fundamental question is has the introduction of chip heterogeneous multiprocessors

now eliminated our ability to write portable and scalable applications. This work investigates how a

traditional unified machine model can be reinstated over chip heterogeneous multiprocessors based

on extensible processor node. My approach is to first adopt and then minimally modify a traditional

Pthreads compliant runtime system (based on Hthread [19] ) to seamlessly run across FPGA based

multiprocessors systems with differing numbers and types of programmable processors, as well

static and dynamically reconfigurable accelerators.

As a simple example, processor specific atomic operations such as load linked and store conditional,

and test and set are not compatible. Throughout the scalar processing and homogeneous manycore

eras, operating systems and programming models abstracted all architecture details away from the

programmer under a unified programming model. This was a fundamental capability that enabled

portability and reuse; the very cornerstones of software productivity. The use of homogeneous

resources then allowed the runtime system to perform dynamic load balancing. These new pro-

gramming models still rely on traditional operating systems and Pthreads that still avoid and do not

resolve heterogeneity. Developers must be aware of, and code to, specific numbers and types of

processors. Control flow within require programmers to explicitly set up and control the execution

of processor specific application code that will run on the heterogeneous slave processors. These

models also requires programmers to explicitly marshal data between levels of the memory hier-

archy from within their source code. These models do not resolve lower level heterogeneous ISA

issues but instead avoid them by restricting the use of standard synchronization primitives such

as mutexes between different processor types. In short, these types of heterogeneous program-

ming models enforce a philosophical reverse away increasing abstraction and backwards towards

promoting lower level machine details up into the application code. The optimal number of pro-

cessors, static and dynamic accelerators, and combinations of these resources that should be used

for an application cannot guaranteed to be known until runtime. Instead the optimal combinations

and types of resources that should be used will vary during runtime. In some instances static map-

pings of the source code to static and dynamic accelerators or even multiple processors can result

33



in poor utilization of resources, and poor overall performance. Further the source code would

have to be statically profiled, configured and optimized for each different platform or composition

of resources. To enable portability we have extended the notion of polymorphism to traditional

functions and threads. The policy of a polymorphic thread create or function call remains con-

sistent and independent of the numbers and types of resources. Machine specific information is

encapsulated within the body of the function. This allows the higher level application program to

be portable across any CHMP system. Resource scheduling decisions are built into each function

that allows the operating system to select and schedule different combinations of implementation

methods based on runtime information and available resources.

In sum, The complexity of designing and verifying systems with 100’s of mixed types of pro-

cessors within hierarchical memory structures and complex interconnect networks will soon be

beyond the capabilities of most application developers and even digital hardware designers. The

same application that has been has been partitioned into hardware and software components, pro-

filed and tuned for maximum performance on a specific architecture will have to be re-tuned parti-

tioned, profiled and optimized if the configuration of the underlying CHMP architecture changes.

This is counter to the software worlds desire to write once, run anywhere.

2.6 Example

The increasing flexibility offered by future generations of CHMPs architectures and the lack of a

seamless and portable programming model will continue to negatively effect development time and

cost, and developer productivity. Applications for earlier systems with homogeneous processors

could be written, profiled, and optimized once, and then remain portable as device technologies

provided generational systems with additional processor resources. Imposing the need for learning

and mixing processor specific coding styles and specifics of each architecture will require the ap-

plication be rewritten, profiled, and optimized each time a new generational offering is provided,

or when a new component is added to an existing system. Designer effort may require multiple it-

erations of tedious by hand hardware/software partitioning’s as the hardware resources change. As
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the number of heterogeneous resources that can be placed on a chip increases the search space that

must be investigated for seeking an optimal partitioning of the application also increases. Even

after extensive design space exploration, profiling, and benchmarking there is still no guarantee

that the runtime behavior of the fielded system would be optimal, or match the desired behaviors

observed on the bench. Just because a custom accelerator is available does not imply that it’s use

will always provide optimal performance. When to use an accelerator depends on the communica-

tion to computation ratio for the accelerator. In cases it might take more time to transfer data, setup

and control the accelerator than simply executing the application in software. The decision to use

or not use an accelerator will change dynamically during runtime. Consider an accelerator created

to support a simple sort function. At times the function may be called on short lists of data that

could be processed quicker in software on a single processor, or as a series of software threads.

At other times the same sort function may called to process larger data sets where the overhead

of data transfer and control would be amortized through pipelining or overlapping DMA transfers

with the operation of the accelerator. Even this decision can vary based on the presence or absence

of DMA engines and memory transfer times. Under partial reconfiguration the decision when to

use the accelerator must also account for the additional overhead of transferring the bitstream if

the accelerator has not previously been loaded.

Once optimized for a target CHMP architecture any change would require a rework of the ap-

plication. runtime behaviors observed on the bench for concurrent applications in general can vary

significantly from the deployed system. Asynchronous concurrency and conditional code intro-

duce probabilistic timing behaviors. Probabilistic behaviors are implicit within our asynchronous

concurrency models, and appear when communications patterns vary across shared interconnects.

When the application is statically bound to specific resources the runtime system cannot adjust for

these probabilistic behaviors.

Optimally partitioning an application into concurrent threads or tasks is one dimension of a

design search space, determining under what conditions an existing accelerator should be invoked

is a second, and determining if a portion of the FPGA should be reconfigured using partial recon-
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figuration is yet a third. Clearly the dimensionality of the search space grows as the heterogeneity

and size of our CHMPs systems grow. Consider a simple case of sorting an array in a system

consisting of general purpose processors (MicroBlaze [4]), and hardware accelerators . We have

two different accelerator for sorting the data, the bubble sort(342 LUTs, 195 FFs with 500 us PR

overhead), which is faster for smaller data sizes and the Quicksort(900 LUTs, 372 FFs with 1250

us PR overhead) which is faster for bigger data sizes. Let us assume in a CHMPS system, a host

processor spawns threads to sort data on slave processors. Each slave might have either no ac-

celerator, or a static or a partially reconfigurable sort accelerator (either Bubblesort or Quicksort

Accelerator) attached to it. Figure 5.15 shows the results of sorting data in hardware (Bubblesort

and Quicksort accelerators) and software (MicroBlaze running Quicksort algorithm). Also shown

are the sorting times in cases where partial reconfiguration (PR) is necessary. As it can be seen in

this figure, that the optimal decision of how to perform the sorting is dependent on the system con-

figuration at the moment as well as the data size of the array. For example, if the size of the array

is larger than 1k, then the Quicksort accelerator is faster. If it is less than 1k, then the Bubblesort

accelerator is faster. However, if the size of the array is less then 256, sorting the data in software

is faster than in Bubblesort hardware accelerator if partial reconfiguration overhead were to be in-

cluded. Traversing this multidimensional search space continues to become more challenging as

the heterogeneity and size of a CHMP’s system grows.

Fig. 2.4 shows the execution time for adding two Vectors. Top: Thread level parallelism, in

which the whole task is divided between 1-6 slave processors. Buttom: Data level parallelism in

which the slave processor can either add the vectors in SW or using its vector add HW accelerator

(With/with partial reconfiguration overhead). This shows how complex the design exploration

would be, consider the effort required to write and profile a simple vector addition operation on

a system with six general purpose processors. A vector function can be written that divides work

equally across processors for any vector length. Figure 2.6 on right, shows execution times taken on

a simple SMP system built within a Xilinx Virtex 6 (ML605). These real results show the optimal

number of processors that should be used varies based on the length of the vector. For a vector
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Figure 2.3: Performance of different implemnation of Sort in HW and SW

length of 240 the optimal partitioning should be 3 and not 6 processors, and for vectors of lengths

960, 1920, and 3840, 5 processors. To know this, the programmer would have had to explore

the design space through repetitive profiling runs and embed complex decision making code for

this one particular system. This would not be intuitive for the programmer. To know this, the

programmer would have had to explore the design space through repetitive profiling runs and then

embed complex decision making code for this one particular system. The design space exploration

and profiling would have to be repeated if the architecture changed. Finding the optimal number

of processors will be affected by additional factors including specific processor types and bus

organizations. Even an exhaustive profiling could not account for the probabilistic behaviors that

do occur during run time. Probabilistic behaviors arise due to many factors; from dynamically

changing bus traffic patterns to just the non-repeatable nature of the asynchronous concurrency

programming model itself. Finding the optimal numbers of processors would be impossible for

systems with 100’s of processors.

And the final example, shows that attempting to hand profile and optimize code becomes more
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difficult when systems contain different numbers and types of accelerators. If an accelerator were

present the programmer would be apt to always use it. Figure 5.14 on left shows the execution time

for the vector operation on three systems; one with a processor, one with a processor plus static

vector accelerator, and one with a processor plus a dynamically reconfigured vector accelerator.

Clearly always invoking the accelerator if under partial reconfiguration rules would not give the

best performance. The timing results also show that if the system possessed self awareness and

learned that the bitstream had previously been loaded then the decision to use the accelerator

changes. The ”chunks” labels refer to the optimal block size of DMA transfers for pipelining data

into this particular accelerator. The optimal block size does change and would require additional

code to set up the DMA transfers based on the length of the vector. Optimal block sizes would

naturally change for different accelerators as well as systems. The need for these types of trade-

off analyses is well understood. However the knowledge of the need does not make the process of

experimentally finding such types of crossover points through hand profiling any less difficult. The

decision when to invoke this or any other partially reconfigurable accelerator will vary depending
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on the size of the data sets, bitstreams, and computation time. Finding the crossover point would

have to be determined for every partially reconfigurable accelerator under many combinations of

parameters on every system. Even if a system has partial reconfiguration capabilities it would be

better to compute the vector operation in software for data set sizes less than 512 elements. When

the data set size is greater than 512 performance can still be enhanced even when including the

overhead of bitstream loading.

2.7 Need for new programming model and runtime tuning

As motivated by previous examples, we aim to create a special library calls that can be used

inside the body of threads created by the user. The extensible processor provides the necessary

infrastructure for these library calls to run. We call these library calls polymorphic functions ,as

the actual execution of them is transparent to the user and will be determined during runtime.

Basically, the idea is the programmer just calls SORT() or VECTORADD() in the body of the

thread, and leaves the rest the runtime system. First of all, The runtime system tries to find a

slave whose current accelerator matches to the first polymorphic function call in the body of the

thread. Second, the slaves autonomously decide how to run polymorphic function calls in the

thread assigned to them. We predict that polymorphism enables portability, while also allowing

the run time system to transparently deliver increased performance as the complexity of the design

space increases. We believe this programming model hold promise for programmers facing future

CHMPs systems with 100’s of heterogeneous resources.

I believe that extensible processor provides the necessary infrastructure to include self-awareness

into a run time system, which in turn can effectively navigate this multidimensional search space

and be used in place of hand profiling. In this theis work we try to show how building intelligence

and learning capabilities into a run time system can effectively navigate a multidimensional search

space and be used in place of hand profiling. The run time system can perform the partitioning

and scheduling of an application across what it sees as available processors and invokes acceler-

ators based on run time variables and learned system configurations. Any runtime system cannot
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decompose an application or migrate functions between heterogeneous resources if the program-

mer has statically bound particular sections of the source code to specific resources. To resolve

this a co-ordination layer is needed where all resource specific information and methods can be

encapsulated as linkable library routines. These routines can be invoked by the user through poly-

morphic functions. Our co-ordination layer is implemented using POSIX threads (Pthreads). I

will have runtime results for standard and polymorphic calls running on a variety of experimental

systems built with different numbers and combinations of processors, with/without static and dy-

namic accelerators. I think that the use of polymorphism enables portability, while also allowing

the runtime system to transparently deliver increased performance as the complexity of the design

space increases. Run time system can map portable polymorphic functions to allow the application

to take better advantage of each systems set of available resources compared to by hand methods.

2.8 Contribution of this work

This thesis is aiming to make the following contributions to achieve portability of the applications

across different HEMPS systems:

1. Extensible processor: Introducing a new way to interface with accelerators in a heteroge-

neous system using extensible processors which provide both fine-grained HW/SW parti-

tioning of different portions of the code as well as Stack management and other services for

accelerators.

2. Transparent Partial Reconfiguration: The runtime system allows all slave processors to au-

tonomously make scheduling decisions and transfer bitstreams for partially reconfiguring

local accelerators. The decision as to when and how to use a dynamic accelerator is based

on run time profiling data and performed transparently by the runtime system. Our model

seamlessly supports data level parallelism within static as well as dynamic accelerators using

partial reconfiguration. We abstract the decision to use, the setup and transfer of bitstreams,

and control of dynamic accelerators within the runtime system.
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3. Automated generation of Heterogeneous Extensible Multiprocessor Systems: including ex-

tensible processor nodes which have the capability to autonomously and efficiently run

portable applications. The application is portable on all different HEMPS systems, regard-

less of numbers of slave processors with dynamic or static Accelerators. The code is not only

portable across different platforms, but also it will take advantage of any possible thread level

parallelism and data level parallelism to achieve the best performance by using available ac-

celerators, partially reconfigurable regions and slave processors.

4. Portable programming model: Extends the Pthreads programming model to support hetero-

geneous thread and data level parallelism. Polymorphic functions are introduced that are

configured during runtime across heterogeneous resources such as standard processors, vec-

tor processors, and static and partially reconfigurable accelerators. These polymorphic func-

tions provide transparent partial reconfigurations, fast DMA transfers and pipelining of data

transfers with accelerator computation. The extended model still allows unaltered legacy

applications to be run seamlessly across systems with different mixes of heterogeneous re-

sources. This programming model unifies support for thread and data level parallelism al-

lowing unaltered applications to be run seamlessly across systems with different mixes of

heterogeneous resources. Our model seamlessly supports data level parallelism within static

as well as dynamic accelerators using partial reconfiguration.

5. Polymorphic Functions: Functions that are both portable and can be dynamically tuned for

any combination of software and hardware accelerators. The library functions tune the trans-

fer of data sets into variable size data sets that can be DMA’ed into buffers and local scratch

pad memories based on the applications dynamic parameters. Tuning considers the over-

head of transferring dynamic accelerator bitstreams within a software/hardware partitioning.

A library of polymorphic functions for computationally intensive parts of the application is

provided for the user. This makes the code portable across any HEMPS systems.

6. Runtime tuning: A runtime system that supports our portable programming model to run
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more effectively as the complexity of the system grows. It performs resource-aware schedul-

ing and dynamic profiling of the application, and learns about the applications resource re-

quirements to increase overall system performance compared to by hand static mappings.

It also increases the utilization of all heterogeneous resources to provide a more efficient

mapping of the application.

42



Chapter 3

Background

Field Programmable Gate Arrays (FPGAs) have long held the promise of delivering performance

levels close to those associated with custom designed Application Specific Integrated Circuits

(ASICs) but with productivity levels more closely associated with developing software. While

the literature validates the performance side of the argument, the ability to deliver these perfor-

mance levels with the ease of developing software remains an open area of research. One approach

to resolving the general issues of designer productivity and accessibility for software programmers

is to abstract the FPGA under a familiar modern parallel programming model and operating sys-

tem. For example ReconOS [45] and hthreads [18] implemented a programming model based on

Pthreads to abstract the hardware/software boundary.

The introduction of Platform FPGAs circa 2003 provided single chip FPGA components that

contained diffused IP such as multipliers, BRAMs, and hard processor cores to compete in the

growing system on chip market. These CHMP systems allow system designers to mix hard proces-

sors, soft processors, 3rd Party IP, or custom hardware cores all within a single FPGA. However

achieving interkernel communication without sacrificing performance remained an issue. Soft-

ware developed for these platform FPGAs sought to abstract both generalized software running

on a processor and specialized hardware accelerators as threads under the visibility and control

of a generalized run time system [49]. Under the multithreaded programming model any thread,

including a custom hardware accelerator could be scheduled by the run time system, and synchro-

nize and share data with all other threads. This thesis is addressing a significant advancement in

resolving the contradictory forces of generalization and specialization within FPGAs.

The same thing is true in the realm of Real-Time and Embedded Control Systems (RTECS).

Designers of RTECS are continually challenged to provide new system capabilities that can meet

the expanding requirements and increased computational needs of each new proposed system, but
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at a decreasing price/performance ratio. RTEC designers continually struggle to balance these

opposing forces of generalization and specialization. At one end of the spectrum CHMPs systems

are already being created with standard programmable processors. These systems support the use

of standard system software to provide a fairly general set of capabilities to support generalized use

across widening ranges of applications, At the other end of the spectrum CHMPs systems support

the historic role of FPGA’s allowing designers to create specialized standalone custom accelerators

controlled by an external master processor. Creating systems with combinations of programmable

processors and specialized components bring the best of both worlds to RTEC designers.

Creating CHMPs systems with programmable processors bring designers generalization, whereas

including custom components such as accelerators or tailoring the numbers and types of proces-

sors can bring specialization. Recently emerging CPU/FPGA hybrid chips are becoming extremely

important components contributing to the creation of a family of Counter off the shelfs( COTS)

hardware platforms for future RTEC systems. Creating such a capability for RTEC applications

is a difficult challenge in part, because it requires the simultaneous satisfaction of apparently con-

tradictory forces: generalization and specialization. FPGA’s have always offered designers the

advantage of specialization. Within CHMPs systems the numbers and types of processors as well

as accelerators can be tailored to best match an applications set of unique and challenging require-

ments. If density increases continue to follow Moore’s law we can realistically expect single chip

FPGA’s to comfortably host CHMP systems with up to 100 compute elements within a decade.

Multiple avenues of research have evolved to enable programmers and application designers

to more easily adopt these powerful FPGA chips into a wide range of applications. The poten-

tial performance benefits brought by increased densities do come at the cost of increased design

complexities. Configuring millions of gates into a multiprocessor architecture is significantly more

complex than forming state machines and digital circuits within a few thousand gates. Research in

tool flows are seeking to handle complexity through abstraction. Work such as architecture tem-

plates and hthreads in the cloud [21] have been investigating higher architecture level abstractions

and automation capabilities to ease the design effort of creating a complete chip heterogeneous
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multiprocessor system. Work in programming models and runtime systems have been investigat-

ing how to support access to the gates through familiar programming abstractions instead of low

level digital design and circuit synthesis techniques. The ability to host complete multiprocessor

systems with scalable numbers of compute engines is also motivating new research in resource

scheduling. New work is emerging in self aware scheduling that seeks to avoid creating Dark Sil-

icon, which put an end to manycore scaling and is responsible for the shift to heterogeneous chip

multiprocessors in the general computing domain [28]. Advancements have also been occurring

along the more historical C to gates, custom hardware synthesis path allowing C like languages to

drive the generation of custom gates [70, 50, 11].

The multithreaded programming model has proven effective for abstracting hardware and soft-

ware computations running on an FPGA configured as a multiprocessor system on programmable

chip [49, 63, 45, 39, 65, 57, 22]. The model allows hardware accelerators to be treated as detached

threads that can synchronize and share data with all other threads. The importance of the model is

also increasing with interest in porting newly evolving heterogeneous computation models such as

OpenCL [6] over FPGAs. OpenCL implementations rely on standard multithreaded programming

middleware packages such as pthreads to provide concurrency support.

Work in the general purpose computing communities for heterogeneous programming mod-

els and the supporting frameworks are all pointing towards new approaches to bring portability

and scalability for systems with combinations of CPUs and GPUs [38, 13, 6, 48, 27]. In the re-

configurable communities, the better PR support for adaptable applications has led to a growing

interest in self-aware and adaptive operating systems for FPGA-based heterogeneous multiproces-

sor systems. Projects such as SPREAD [65], Configuration Access Port OS (CAP-OS) [32], and

ReconOS [33] typify approaches that seek to adaptively migrate threads (or tasks) created from

a user’s application onto available combinations of general purpose processors and specialized

hardware. For example, during runtime the CAP-OS dynamically instantiates new hardware with

application demand. Similarly to this work, both SPREAD and ReconOS unify software and hard-

ware threads under a multithreaded programming model. This enables the OS to adaptively switch
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from software to hardware threads during runtime.

However, Much of these works perform all decisions and resource management services on

a centralized (master) processor. Tasks or threads executing onto specialized hardware or other

slave processors request OS services through remote procedural calls (RPC) to wrapper or delegate

software threads running on the master. For the work presented here, scheduling decisions between

hardware and software computation are localized to a lightweight extension of the OS running on

each slave processor. This enables greater autonomy to be utilized and greater concurrency to be

achieved, but most importantly it leads to more scalable designs. By augmenting reconfigurable

regions to general purpose processors, the runtime system in this work provide greater application

adaptability during runtime.

Self-adaptive systems also may require the load-balancing of software and hardware tasks

in order to achieve an optimal solution for the given application. Some of these works, as in

[65, 32, 53, 37], compute the hardware-software partitioning schemes partially offline during com-

pile time. Many do not account for variable parameters that occur during runtime (e.g. resource

contention) but simply perform hardware/software partitioning on estimated execution times. In

contrast, the work proposed here utilizes an online profiling and partitioning scheme, where infor-

mation is learned about previous execution history and used for more appropriate hardware/soft-

ware partitioning. In this way, variable runtime parameters that may affect this profiling informa-

tion can be used to more effectively partition the application.

3.1 Modeling accelerators in a CHMP system

FPGAs have a rich history in serving as application accelerators. Early work such as PRISM [66]

pioneered the use of an FPGA based accelerator that was loosely coupled from the program con-

trol flow executing on a external CPU. On-chip accelerators can be classified into two classes:

1)tightly coupled accelerators where the accelerator is attached to a particular core and can only be

accessed by that core. 2) loosely coupled accelerators, which the accelerator is an independent en-

tity which can be shared and accessed among multiple cores [24]. In contrast to the loosely coupled
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approach, projects like DISC [68] as well as GARP [20] pursued modeling an FPGA based accel-

erator as being tightly coupled within a processors ISA. Pursuit of this approach largely ebbed for

a decade within the reconfigurable computing community. However Tensilica continued to evolve

this model as an extensible processor within the general purpose computing community. Tensilica

showed the benefits of exploiting fused and VLIW (Very Long Instruction Word) instructions, as

well as Single Instruction Multiple Data (SIMD) fine grained parallelism as extensions of a proces-

sors ISA. This approach is once again being pursued by work such as VENICE [73] or VESPA [72]

that provides vector extensions to a RISC processor ISA. The advantage of tightly coupling an ac-

celerator within a processors ISA is the ability to share register data and allow the general purpose

processor to implement sequential program control. The disadvantage of this approach is the ac-

celerator is not visible by the operating system as a schedulable and sharable resource.

In general, FPGAs have historically appealed to those wanting to integrate custom hardware

into systems to boost performance. Heterogeneous multiprocessor systems employing a master-

slave thread programming model can exploit thread-level parallelism (TLP) onto coarse-grained

compute units such as heterogeneous processors and custom hardware. Extending the program-

ming model for software application developers to abstract custom HW requires augmenting hard-

ware abstraction layers (HAL) for custom HW. HAL allows the operating system (OS) to transpar-

ently assign threads to either processors(software threads) or custom HW (hardware threads).

Hardware Abstraction Layers (HALs) were created to provide state machine descriptions of

system service libraries accessible by accelerators functioning as hardware threads [17]. HAL’s

are provided as wrappers that contain finite state machine circuit equivalents of software system

services for accelerators. The system services within the HAL allow accelerators to invoke operat-

ing system services and perform memory operations. Two approaches have evolved to determine

the types of system services that needed to be designed into a HAL. The first seeks to minimize

the latency of system services for hard real time systems through hardware/software (HW/SW)

co-design. The HAL is defined to replace software system service libraries with local and low

latency hardware mechanisms [17, 15]. This approach achieves low latencies but at the cost of
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inefficient updates as the HAL has to be re-synthesized when the hardware system service libraries

are modified.

The second approach seeks a better ease of update but at the cost of increased access laten-

cies. Operating system services are provided within a single monolithic kernel, typically a variant

of Linux, running on a centralized master processor [63, 45, 39, 65]. The HAL provides Re-

mote Procedure Call (RPC) type mechanisms on behalf of the accelerator to issue requests for

the software services running on the master node. The cost of this increased ease of update is

the additional latencies of the RPC calls. Centralizing services on a single master node can also

limit the approach’s ability to scale. Most approaches to runtime adaptivity restrict themselves to a

coarse-grained task level, and all OS requests are centrally served on a host processor [65, 32, 55].

While this simplifies load balancing, remote procedural calls (RPC) do not present a scalable solu-

tion. Enabling autonomous heterogeneous resources to make autonomous decisions combats this

centralized scheme.

Overall, FSM-based HALs allow communication between the hardware threads running on

custom HW accelerators and the OS. HAL enables a hardware thread to access system services.

Also, it enables a hardware thread to be integrated into the multiprocessor system as a detached

stand alone thread. The hardware based HAL allowed the loosely coupled accelerators to operate

autonomously and invoke Pthreads equivalent system calls. This does not present a good solu-

tion for two reasons. First, further changes to the HAL requires redesign and recompilation for

the targeted FPGA. This leads to decreased designer productivity. Additionally, area consumption

is increased due to design complexity. Also supporting features such as recursion and memory

allocation can be expensive and inefficient in hardware. Second, custom HW interfaces can not

provide fine-grained HW/SW partitioning. Due to Amdahl’s law, there always exists a percent-

age of a thread that is sequential and may not run best on hardware that is tuned for the parallel

sections of the thread. therefor assigning the entire thread onto custom hardware may not provide

efficient runtime performance. HALs support the synthesis of the complete thread including all

sequential portions, as stand alone hardware accelerators. The size of the HAL along with the need
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to synthesize sequential portions of the application result in poor utilization of transistors.

Ideally, the functionality of a HAL needs to provide distributed low latency services that scale

with the number of compute resources such as those provided by [15] but with updates through

compilation and not synthesis as achieved by [63, 45, 39, 65]. This work shows how SW-based

HALs running on a extensible processor achieves this goal.

Early modeling approaches abstracted an accelerator as a hardware resident thread that ac-

cessed key operating system services such as mutex operations, as well as providing access to a

linear address space, through a series of hardware based finite state machines encapsulated within

a virtual abstraction layer [39, 14, 45]. This allowed a complete thread body to be implemented

as a hardware accelerator and seamlessly interact with all other software and hardware resident

threads throughout the system. This model proves inefficient in resource requirements, restrictive

in supporting different accelerator models and for dynamic scheduling and resource allocation.

First, any change to the operating system services required a redesign and resynthesis of the hard-

ware resident virtual abstraction layer. Further the size of the virtual abstraction layer quickly

grows greater than the size of a standard processor such as our Microblaze. Additionally resources

are required to implement the complete, and not just the computationally intensive portions of the

thread yielding large accelerators. The model restricts the use of the accelerator to thread level

parallelism. The virtual abstraction supports API’s issued from the hardware thread resulting in

the thread operating as a master and the virtual abstraction layer as a slave to the accelerator.

3.2 Chip Heterogeneous Multiprocessor system platforms

The unveiling of a new class of devices called Platform FPGAs, circa 2000, were introduced to

compete in the growing systems-on-chip (SoC) market. Much bigger than their predecessors, they

included diffused blocks of hardware, including blocks of static RAM (SRAM) memory, mul-

tipliers, and programmable processors. The programmable processor, either diffused within the

substrate or loaded as a soft IP core, could now host an operating system (OS) within the chip.

Research such as Hthreads [19], ReconOS [45], and FUSE [39] showed how the multithreaded
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programming model could be used on Platform FPGAs to abstract custom accelerators as hard-

ware resident threads running within a multiprocessor system on chip for real time and embedded

systems. In one sense, multiprocessor operating systems were being created, but with the OS pro-

viding abstraction and concurrency support for accelerators in place of standard programmable

processors.

The general purpose computing community has already transitioned away from homogeneous

manycores to heterogeneous manycores to address the issues of dark silicon. CHMPs architectures

are generating interest within the general purpose computing community to address issues of ”dark

silicon” [28, 42]. They can Provide a broader component base that can exploit multiple levels

of parallelism can increase the utilization of transistor resources [35]. They also include more

focused data processing components such as vector processors and custom accelerators which

leads to a better energy efficiency and can address power issues [69, 44]. Advancements in FPGA

semiconductor fabrication are yielding components that can host complete complete CHMPs. An

FPGA offers additional advantages of customizing the mix of processor types, including custom

accelerators, and supporting dynamic reconfiguration. Researchers have been investigating new

methods for constructing CHMPS architectures, programming models and run time systems, and

the use of such heterogeneous components to enable systems to self configure and operate more

autonomously.

As FPGAs have grown is size and speed, providing software application developers with a

general and flexible HW platform consisting of processors and accelerators have been a matter of

interest. The idea is to spare both SW and HW developers from dealing with low level details

of a CHMP system like bus interconnect, memory communications,etc. Ideally, the developers

should provide their HDL code for accelerators, and leave the rest to automation. For example,

Redsharc [41] provides A HW/SW platform for HW/SW kernels which communicate via streams

or blocks. Its goal is to Simplify development on FPGAs for stream based computing applications.

Other works like SPREAD [65] or FUSE [39], provide user with a flexible HW platform which is

capable of running switchable HW/SW threads.
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The design of a reusable CHMP base system is becoming more efficient through the avail-

ability of IP system level components and evolving architecture level design automation capabil-

ities [21]. A growing selection of system level IP components are being offered by vendors as

well as community efforts. Available vendor specific system level IP components include pro-

grammable processors, standard buses, and system I/O components. The community has been

providing additional IP components to augment the vendor offerings. Additional system IP com-

ponents such as vector and extensible processors, robust interconnects, and tuned accelerators are

freely available through repositories maintained by community efforts such as OpenCores [36] as

well as research institutions [9]. The base system components can be incrementally tuned or aug-

mented with additional accelerators to meet each new applications set of uniques requirements at a

fraction of the cost required to design each new system from scratch. Advancements are occurring

to automate the assembly of the system IP components into a base CHMP architecture. This type of

automated assembly can eliminate the time consuming process of integrating, testing, and debug-

ging components by hand within a vendor specific CAD tool. Access to these tools is being made

easier through cloud delivery [21] in Hthread project. This works tries to extend Arcgen project

in Hthread to include custom hardware and partial reconfiguration, as well as compile flow for the

application code to run on these complex system. This type of automation allows the creation of

complex heterogeneous chip multiprocessors by software designers and significantly reduces the

time and complexity of creating complete Systems on chip (SoC) systems. Additionally advances

in high level synthesis have occurred that allow system designers to analyze and synthesize critical

sections of code into efficient custom accelerators [11].

3.3 Programming models in a CHMP system

In a CHMP system, Heterogeneity has two aspects: Heterogeneous processors, and accelerators.

Historically, Within standard compilation flows, the application and operating system are treated

separately. The application code is compiled for a particular processor ISA without knowledge

of the overall system architecture. Operating system code is linked after compilation to provide
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the policies and mechanisms of the higher level programming model. As code is compiled for

a particular ISA and the operating system cannot abstract over ABI differences, programmers

must develop and tune their applications as non-portable code. Programming models for hetero-

geneous systems such as Cell [51] and Exochi [64] as well as the currently popular OpenCL [6]

and OpenMP [47] enforce this non-portable, architecture specific view up into the code of the ap-

plication developer. Architecture specific coding requirements manifest in requiring designers to

understand hierarchical memory organizations and explicitly marshal data between levels of the

hierarchy. Designers must also be aware of which specific processor resources are available and

code directly to those resources. This is contrasted to the the classic programmer abstraction of a

linear address space and ubiquity of processor resources.

When it comes to including accelerators into a programming model in CHMP system, the

multithreaded programming model has gained in popularity as a unifying framework to abstract

hardware accelerators in hybrid FPGA/CPUs [49, 63, 45, 19, 39, 65, 41]. These first efforts in-

cluded the definition of a HW-based HAL to extend OS services to the loosely coupled hard-

ware accelerators. Additional research has continued to extend the multithreaded programming

model [45, 19, 39, 65, 41]. Two broad approaches have been followed to integrate hardware accel-

erators as threads into this programming model. One popular approach is to use a full Linux stack

running on a master processor and have the hardware accelerator threads request services through

remote procedure calls (RPCs) [63, 45, 39, 65]. The second approach follows more of a microker-

nel design that distributes operating system services into independent concurrent components. This

approach is typified by the hthreads [19] system that migrated synchronization primitives, thread

management, and scheduling into independent hardware cores. This approach also distributes more

operating system services into each HAL to break the bottleneck that can occur using a full Linux

stack on a master processor [15]. In sum, works such as FUSE [39] and ReconOS [45] focused

on how to extend Linux over hardware-software components by adopting a standard Linux kernel

running on a host processor that provides operating systems through RPC mechanisms to threads

running on slave processors. The hthreads hardware microkernel addressed incompatibility issues
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that arise due to ABI differences between processors [19].

My thesis focuses on restoring the idealistic notion that code should be written once by the

application developer and remain portable across any combination of heterogeneous resources.

Our approach is to view all heterogeneous resources as runtime schedulable components under the

uniform multithreaded programming model. This is in direct contrast to evolving programming

models for heterogeneous manycores such as OpenCL [6] that enforce static partitioning of each

application across unique sets of heterogeneous resources, and raise platform specific details of the

memory hierarchy up into the source code. These models eliminate portability, and impose high

levels of effort onto to developers to customize, profile and optimize each application for every

combination of heterogeneous resources. These models further prevent the operating system to

view a systems resources as a pool of dynamically available heterogeneous computing units .

Hthreads and ReconOS allow hardware and software threads to be scheduled and synchronize

under a unified programming model. These approaches provided performance increases through

the use of standard programming models that allowed the parallelism within the application to

increase in relation to the scalable numbers of processors that could be mapped into each new gen-

eration of FPGA’s. Work such as [63, 61, 19] have explored approaches to abstract the differences

between threads running in hardware and software.

Early work on software based high level portable programming models for FPGA’s focused

on abstracting the hardware-software boundary. Work such as [63, 19, 45, 65] are representa-

tive of popular approaches that abstract hardware accelerators as threads that can synchronize and

communicate using typical operating system services. This model allows hardware and software

based threads to synchronize and share data under the Pthreads multithreaded programming model.

Within the general purpose computing community OpenCL [6] has evolved as the standard pro-

gramming model for heterogeneous manycores. Researchers [52] as well as chip vendors [60] are

investigating how to bring FPGA based accelerators under the OpenCL umbrella. OpenCL forces

static partitioning of the application across unique sets of heterogeneous resources, and does not

allow applications to synchronize across heterogeneous compute resources. Platform specific de-
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tails of the memory hierarchy are also raised up into the source code. The OpenCL model thus

eliminates portability across heterogeneous compute components, and imposes additional design

effort for developers to customize, profile and optimize each application for every combination of

heterogeneous resources.

Another aspect of FPGAs that effect programming model is the option of partial reconfigura-

tion. There has long been historical interest in partial reconfiguration [55] and its use in systems

that can dynamically adopt regions based on online task requirements [59]. Partial reconfiguration

is a service provided by the OS and like other OS services, commonly provided on a central-

ized processor. Bitstream loading is similarly controlled by the OS on the centralized processor.

Both [65] and [32] followed this approach incorporating runtime adaptivity through seamless hard-

ware/software task switching. Research efforts break user applications into individual tasks where

additional high-level information such as control/data dependencies, deadlines, estimated execu-

tion times, etc. are used to map them onto the reconfigurable fabric [55, 32]. There, decisions

about reconfiguring or re-using current logic (processors, accelerators, both) on the dynamically

reconfigurable region can be exploited.

Many approaches have taken on the task of supporting run time adaptivity through dynamic

hardware reconfiguration. Many recognize that in order to get best performance per unit of energy,

software applications (or some part of it such as individual tasks in embedded or real time systems)

needs to run on hardware that is tuned for such tasks. They also acknowledge that in order to build

a computing system capable of supporting any task thrown at it, they must battle flexibility with

performance with general purpose processors capable of executing same software applications.

The introduction of dynamic reconfiguration has allowed this group of researches to adapt both

practices in order to combine both flexibility and performance under a single computer architecture.

In sum, the challenge of fielding such systems now lies in developing appropriate higher level

programming model abstractions and runtime scheduling capabilities. The higher level program-

ming model must balance generality with customization, providing a generalized set of abstrac-

tions that allow programmers to express scalable heterogeneous computations. The runtime system
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then needs to efficiently map the heterogeneous computations across available resources, including

general purpose processors, extensible processors and partially reconfigurable accelerators.

3.4 Heterogeneous Run Time Systems

Self-adaptable runtime systems on a reconfigurable platform has traditionally been limited to the

scope of real-time tasks with hard/soft deadlines [59], and streaming applications such as sensor

networks and data collection systems. This work is focused on providing an adaptable runtime sys-

tem for undefined software applications intended to run on a heterogeneous SoC platform. There-

fore, the run time should allow software application portability through generality over an already

dynamic platform. Our work attempts to not favor a particular application domain, allowing the

user to write at a more flexible and granular level (threads). A higher level abstraction is achieved

through this allowing the system to easily adapt to any heterogeneous system.

Heterogeneous systems are challenging our existing run time systems, including binary in-

compatibilities and changes in how the scheduler cannot move threads across resources that are

brought on by heterogeneous executables.Run time systems within homogeneous systems were

designed to interface with a single type of architecture. Resources of these systems interacted with

and executed on the system all in a similar fashion. Therefore, any resource management and task

scheduling only had to resolve for one particular architecture. In consequence, run time flexibility

of enhancing the system’s performance further is limited due to similar resources. Introducing a

mix of heterogeneous resources such as processors of different ISAs and ABI’s can add further im-

provement in performance and power over homogeneous systems, as certain tasks can be optimized

for particular types of architectures. However, run time systems accounting for such heterogeneous

systems also are burden with juggling across interfacing and translating across many architectures.

This is a result of a system where heterogeneous resources can no longer communicate directly

amongst themselves. Hence, the run time system must account for this inability.

When designing a runtime system to include coordination of task/thread scheduling and man-

agement, MPSoPCs have traditionally considered resource availability and task priority alone. De-
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signing MPSoPCs atop of a reconfigurable fabric introduces additional considerations that should

be made in order for near optimal system efficiency. With a system that is reconfigurable during

runtime, the run time system can take advantage of alternative task mapping/scheduling and re-

source allocation. The run time can examine where best to schedule a task as opposed to naively

finding a first available resource(s). This is particularly beneficial for similar tasks scheduled in the

future to reuse these resources that may have been previously reconfigured (and tuned) for such

tasks. In contrast, resource allocation allows the run time system to introduce new logic into the

system during its runtime. Thus, allowing parts of the system to shape to a program’s needs that

best fits it.

3.5 Related Work

3.5.1 RedSharc

The Reconfigurable Data-Stream Hardware Software Architecture (Redsharc) [41] is a program-

ming model designed to meet the performance needs of multi-core systems on a programmable

chip (MCSoPC). Redsharc wraps HW accelerators in a thin HW kernel interface. The HW kernels

and SW kernels communicate via Streams or blocks by custom designed Networks on chips. The

Redsharc API and infrastructure makes it easy for fast kernel integration. Redsharc uses an abstract

API to allow programmers to develop systems of simultaneous kernels, in software or hardware.

Redsharc is A HW/SW platform for HW/SW kernels which communicate via streams or

blocks. Its goal is to Simplify development on FPGAs for stream based computing applications.

Our works is different in that we create threads that can be run on either host processor or on

extensible slave processors. In Redsharc, there are both software and hardware computational

nodes which are called ”kernels”. Kernels are implemented as either software threads running on

a processor, or hardware custom circuits running on the FPGA fabric. Regardless of their type,

kernels communicate via the Redsharcs abstract API, which is based both on a streaming model to

pass data and a block model to exchange index based data. This API have been implemented as a

software library for software kernels and some VHDL components with generics for HW kernels.
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Basically ,the goal of Redsharc is to implement as light-weight as possible. That is why they chose

a streaming system over and MPI or Pthreads based system.

Their API knows two types of kernels, worker and control. There is only one control kernel

in the system which is in charge of creating and managing streams, blocks, and worker kernels.

However, multiple worker kernels can simultaneously exit and process the data elements presented

in streams or blocks.What is important is that because both hardware and software kernels use the

same API, the first stages of application development can be agnostic of where a a particular kernel

is being implemented. The whole system can be viewed as kernels which communicate with each

other as shown in Fig 3.1. Later, the kernels can be implemented either in hardware or software,

depending on the which one is more suitable for this particular kernels task as it is shown in Fig

3.1.

The Hardware Kernel Interface (HWKI) is a thin wrapper that connects hardware kernels and

it implements the Redsharc stream API. This leads to significant productivity, as it enables rapid

kernel integration into new and existing systems. Through the use of HWKI, a kernel developer

can focus on the design of the kernel instead of wasting his time on low level implementation

details of how to access streams and blocks of data. As long as the HW developer sticks to FIFO

and BRAM interfaces, the system designer can easily integrate the new kernels to the system. Fig

3.1 shows an implementation of a Redsharc system with one Microblaze processor and 8 BLAST

HW kernels.

3.5.2 FUSE

In FUSE[39] the custom hardware circuits are integrated into a SoC as a memory mapped IO device

peripheral. This is achieved via a customized HW interface abstracted away by a corresponding

Loadable Kernel Module in the kernel space. Transparent to the user, thread create() will either

runs the entire thread in SW or HW based on resource availability. In other words, the operation

system checks to see if there is a free accelerator for that function. If so, it runs it in HW. The

overhead of loading/unloading the LKM as well as calling OS services to communicate with the
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Figure 3.1: RedSharc System [41]
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Figure 3.2: FUSE [39]

HW accelerators are among the drawbacks of this approach. Plus, there is no fine grained HW/SW

dynamic partitioning. In other words, the entire thread is either running on SW or HW.

Figure 3.2 Left shows the HW interface in FUSE which is more aimed for streaming data.

Figure 3.2 right, shows a typical implementation of a FUSE system with three HW accelerators,

while the Microblaze CPU is running PetaLinux OS. Basically, FUSE provides an API for how

accelerators interface with with and embedded Linux OS with POSIX threads running on a general

purpose processor. Updates made to a HW accelerator’s design results in changes to both its

interfaces and its LKM, so any change to the HW accelerator requires re-synthesizing the HW

accelerator interface on top of changes made in LKM.

3.5.3 SPREAD

SPREAD [65], introduces the idea of switchable HW/SW thread. A thread upon creation can run

on either host processor or on any of the reconfigurable processing units, and some threads can

migrate between HW or SW during their execution time. There is no smart tuning for when a

switchable thread which is running on SW can be migrated to a free Reconfigurable programming

unit(RPU). For example, the PR overhead might nullify the performance improvement resulting

from running the rest of thread in HW. To avoid thrashing, they just had a simple one time max
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Figure 3.3: SPREAD [65]

rule as how many times a thread can be migrated between HW and SW.

There are two interesting ideas in SPREAD. First, A thread can be switched to HW during its

runtime using stub thread. Whereas, in most approaches like FUSE or ReconOS this decision can

only be made once at the start of the thread. Second, Non switchable HW threads can preempt the

switchable ones based on priority to meet the real time constraints.

Basically, the operating system will transparently make following decisions when thread create()

is called in user’s program: If the attributes of the thread is switchable and there is no RPU available

then it is run on SW. But when a RPU is available, it is assigned to a free RPU ( PR is performed if

the current bitstream loaded does not match to what the thread needs). It can be run to completion

or it can be preempted by a non switchable HW thread and the rest is run in SW. If the thread was

non-switchable HW thread then it will be run on an available RPU. If there is none, then it will

preempt a switchable thread that is running on HW or a HW thread with lower priority.

Figure 3.3 shows there are three kind of threads in SPREAD: HW hthreads running on Recon-

figurable programming unit(RPU), SW threads running on CPU and switchable threads that can

60



Figure 3.4: SPREAD system with three HW accelerators [65]

run on either SW or HW.

Figure 3.4 Left shows the SPREAD HW interface. As the name of SPREAD indicates, the HW

interface is tailored for Streaming-based communications. There are two fixed streaming interfaces

for each RPU. The one on the side is for HW-¿HW communication and the one on top is for HW

-¿ SW communication. There is no BRAM interface for the accelerators. This is one caveat of this

system, which makes the accelerator developers limited to two pair of FIFO interfaces. This is the

opposite of RedSharc approach with flexible FIFO/BRAM interfaces which makes HW accelerator

integration to the system easy. Figure 3.4 Right shows and implementation of a SPREAD system

with three HW accelerators with fixed connections which can not be changed during runtime, and

therefor not only free RPUs can be used for any HW/SW switchable thread.

They have a separate interface for point-to-point connections with hardware threads. They keep

track of what PR regions have been reconfigured into runtime and reconfigured into what (what
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hardware resides there) using a configuration cache, which is referred to as resource allocation

table. However, there are some problems with SPREAD. First of all, Having HW threads instead

of HW accelerators is not resource efficient, as the entire thread needs to be mapped in gates,

while only a portion of the code will take advantage of parallelism and the rest is sequential with

no added benefit. Secondly, They use a customized HW Thread interface aka HW-based HAL,

which is inflexible and is big as half of the size of a typical Microblaze.

SPREAD presents a partially reconfigurable system, incorporating runtime adaptivity through

seamless hardware/software task switching. Although the project targets streaming applications

only such as multimedia or cryptographic applications, SPREAD shares a few similarities in run-

time adaptivity support with this Work. They cache runtime partial reconfigurations in order to

minimize the overhead and increase the reuse of runtime allocated resources. Their work dis-

tinguishes several threads that echo similar behavior HEMPS, namely software, hardware, and

switchable threads. Switchable threads contain both hardware and software implementations of

the given thread logic in order to allow for runtime adaptivity due to the needs of the applica-

tion/environment. A thread upon creation can run on either a processor or on the reconfigurable

processing units, or migrate between HW or SW during its execution if it is switchable. However,

runtime tuning is absent from these works as they employ static hardware/software partitioning

during compile time. Therefore, the decision of determining whether partial reconfiguration or

switching a thread between HW and SW brings any performance gain may be not be fully ex-

plored. This becomes a more important runtime decision as the system becomes more complex

and can lead to possible performance degradation. From what was presented, all software threads

execute on a single processor that also executes the OS. As a result of this, software threads do

not operate concurrently and parallelism can only be exploited to the extent of hardware threads

and one software thread. This is in contrast to our approach where software threads can execute

concurrently on several processors within the system, and seamlessly migrate computation to an

attached accelerator or perform computation with it in parallel.
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Figure 3.5: Left: A HW thread in ReconOS . Right:OSIF interface [45]
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3.5.4 ReconOS

Hthreads[19] and ReconOS [45] allow hardware and software threads to co-exist and seamlessly be

scheduled and synchronized under a unified programming model. These approaches provided per-

formance increases through the use of standard programming models that allowed the parallelism

within the application to increase in relation to the scalable numbers of processors that could be

mapped into each new generation of FPGA’s.

ReconOS [45] adopt a standard Linux kernel running on a host processor that provides operat-

ing systems through RPC mechanisms to threads running on slave processors. Basically, ReconOS

uses the traditional approach of HW-based HALs which provide accelerators with Remote pro-

cedure calls (RPC) and other operating system services. On the data side, each HW thread has

one BRAM interface and one pair of FIFO interfaces to exchange data with other HW threads, as

shown in Fig 3.5

Figure 3.6 shows two different implementation of ReconOS. on the left, there are two hard-

ware threads running on Custom HW and two SW threads running on CPU, talking to the rest of

the system thanks to the OS interfaces. On the right, it shows how the HW thread can exchange

streaming data via their OS interfaces. Using threads and common OS services as an abstraction

layer, ReconOS extends the multithreaded programming model of software domain to reconfig-

urable domain.

3.5.5 OpenCL

OpenCL [6] ( Open Computing Language) is a standard for cross-platform, parallel programming

of modern processors , servers and embedded devices. It provides a framework for writing pro-

grams that execute across heterogeneous platforms consisting of CPUs, GPUs, DSPs and FPGAs.

It includes a language for programming these devices, and APIs to control the platform and execute

different task on the available compute devices. There are both using task-based and data-based

parallelism in using OpenCL. It has been adopted by a lot of big names such as Apple, Intel,

Qualcomm, Advanced Micro Devices (AMD), Nvidia, Altera,etc.
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Figure 3.6: Left: ReconOS Two HW threads. Right: thread-to-thread interface [45]

For instance, OpenCL can give an application access to a GPU even when the application is

not the non-graphical computing type. [40] has tried to automatically compile OpenCL programs

into application-specific processors which are running on FPGAs. Also Altera [1] has developed

some tools to translate OpenCL to run on their FPGA devices.

The memory management is explicit in OpenCL. Applications must explicitly transfer data be-

tween different memories. OpenCL does not support recursion, function pointers, etc. OpenCL is

portable across different platforms. However, it runs best when the application is tailored specifi-

cally for that specific platform . Programs written in OpenCL does not always maximize a systems

performance when moving from system to system. This is because the programmer has to explic-

itly specify kernel mapping in their program. Projects such as Bolt have tried to address this by

making more smart run-time decisions.

OpenCL 2.0 spec has recently allowed kernels (threads) to further schedule additional work

on other parts of the system. The OpenCL 2.0 standard has just recently allowed computation to

be redirected to other compute devices. However, the programmer is responsible for making sure

computation migration is the best choice during runtime for a given thread.
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3.5.6 Bolt

Bolt [27] is a library of high level constructs for creating accelerated data parallel applications.

With Bolt, kernel code to be accelerated is written in-line in the C++ source file. Bolt runs on

top of other supporting languages such as OpenCL, but it does not require explicit OpenCL code

within the source file . All initialization and communication with the OpenCL or C++ AMP device

is handled by the library. Bolt also includes common compute-optimized routines such as sort,

scan, transform, and reduce operations.

Bolt Dynamically queries the platform capabilities at startup and selects the accelerated path

(accelerators) if possible. More importantly, it will also run on multi-core CPUS when acceler-

ated path is not available. In sum, projects such as [48, 27] aim to provide the abstractions for

transparently scheduling work across heterogeneous resources.

3.5.7 Cap-OS

Hübner et. al. [32] reported on a runtime adaptive OS referred to as Configuration Access Port

OS (CAP-OS). They argue that the traditional software-tasks scheduling based on resource (pro-

cessor) availability and priority does not suffice for systems with runtime reconfigurable hardware.

Their work addresses task scheduling onto reconfigurable hardware consisting of processors, co-

processors, and accelerators. During design time, applications are defined as a collection of tasks

whereby each are described through a control-data flow graph (CDFG). These applications are

profiled offline for execution time and possible suggestions for hardware implementation oppor-

tunities are presented to the user. The user can choose to provide hardware implementations of

suggested code blocks enabling the runtime system for alternative task placement and scheduling.

Similar to our work, Hübner classifies tasks into three categories according to where execution oc-

curs: software tasks (processors), codesign tasks (processor+hardware accelerator), and hardware

tasks (hardware accelerator). Scheduling of all such tasks occur through the main processor where

CAP-OS executes. Similarly, OS services such as additional hardware resources occur through

this single processor. This is a potential bottleneck, as services are ultimately serialized through
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Figure 3.7: Left: High level view of CAP-OS [32]

the CAP-OS. In contrast, HEMPS does not follow similar remote procedural calls (RPC) to the

OS. Processors within a HEMP system are autonomous such that they can decide whether to run

a given task on itself in software and/or on the attached hardware accelerator. In the case for pro-

cessors having an attached partially reconfigurable (PR) region, processors within a HEMP system

can also decide to reconfigure this region independent of the main processor and other processing

elements within the system.

A high level view of CAP-OS system is shown in Figure 3.7. In sum, CAP-OS [32] requires

user profiling to build up a flow graph (CDFG) that is used for run time scheduling on the main

processor. They use remote procedure calls (RPC) to invoke centralized scheduling decisions that

occur on the main processor. Also software threads are limited to execution on a single processor.

As a result, software threads do not operate concurrently and parallelism only exists through multi-

ple hardware threads and one software thread. This thesis differs in which it supports true software
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concurrency by running software threads in parallel on scalable numbers of heterogeneous slave

processors, as opposed to time slicing on a single central processor. My work is different than

theirs in following aspects:

• They account for heterogeneous reconfigurable regions as opposed to homogeneous regions,

however there is no indication of heterogeneous processors .

• They assume this is a sequential program vs. we already target a multithreaded application.

Also they target C/C++ programs (with MPI) vs Pthreads for us.

• HEMPS is a system that works in reality, however a lot of their work is not yet fully im-

plemented and it is at the theory stage. For instance, they have not implemented a way for

reconfiguring a accelerator on demand during runtime.

• The decision of mapping tasks on either hardware and software appears to be limited to the

main processor that is running their CAP-OS. We allow this level of decision making on top

of independent slave processors to decide allowing for higher levels of concurrency and in

the future, faster aggregate learning.

• They allocate resources given a need. If a software task is ready to be scheduled, and if no

processor is available and won’t be available soon, a new processor is added to the system

during runtime. This is in contrast to our approach where we define during the design stages,

how many processors are present. We consider the cost of reconfiguring such a complex

device, albeit the MicroBlaze is really well optimized .

• They have 3 types of tasks: software tasks (processors), codesign tasks (software+hardware),

and ”pure” hardware tasks (echoes previous hardware accelerator + HWTI in Hthreads ). An

extensible processor is well tailored to run all three of these tasks, not only because an

extensible processor can do fine grained HW/SW partitioning( for software and codesign

tasks) but also it can serve as SW-based HAL for a hardware task running on its attached PR

region.
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• To reconfigure through the ICAP for software tasks, they achieve speeds of 28MB/s (FSL-

ICAP) and 13 MB/s (FSL-FSL). For our codesign tasks we achieve speeds up to 96 MB/s

(DMA-ICAP) for Virtex6 and 380 MB/s for Virtex 7.

3.5.8 Elastic Computing

Elastic Computing, [67] is a heterogeneous programming model which provides transparent, portable

and adaptable computing model over heterogeneous resources and targets the FPGA as an accel-

erator on the whole.

Multi-core heterogeneous systems are becoming increasingly common in domains such as

power embedded systems, high-performance embedded computing and high-performance com-

puting (HPC) systems. Different approaches has been taken to reduce design complexity such as

High level synthesis or new languages to ease parallel programming. The problem that they are ty-

ing to address goes back to the fact that usage of multi-core heterogeneous systems has largely been

limited to device experts, due to significantly increased complexity. Their solution is to provide

a library of specialized elastic functions that separates functionality from implementation details.

Their thesis statement is that elastic functions allow designers to execute the same application code

efficiently on potentially any architecture and for different runtime parameters such as input size,

battery life, etc. Unlike the work in this thesis, they target HPC systems ( including FPGA, GPU

and CPUs) and try to provide Transparency, Portability, Adaptability. A high level view of Elastic

functions is shown in 3.8. It shows an overview of elastic computing, which is enabled by (a)

elastic functions that enable implementation planning to explore and even generate different im-

plementations specialized for parameters such as input size, available resources, etc. (b) When an

executing application calls an elastic function, the elastic computing system selects the quickest

implementation based on the current runtime parameters and available resources. Note that no

changes to the application code are required to use different resources.

Their work assumes the use case model of running applications on a desktop CPU and using

heterogeneous resources such as FPGA GPUs to further boost the performance. They introduce
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Figure 3.8: Elastic Computing [67]

the idea of elastic function libraries. These functions contain one or more implementations varying

on their algorithmic implementation and/or different resources they require (i.e. GPU implemen-

tation only or FPGA). The Authors create a performance profile for all combinations of resources

and implementations based on one elastic function before application start. That way, no over-

head is incurred during application runtime. When it comes to scheduling, they don’t take into

consideration work queuing. Instead the resource with the best performance profile is selected.

This Greedy approach can eventually lead to cases where all the work is assigned to only one

processor/computing resource.

Each elastic functions can have multiple implementation. The implementations can be divided

in two different categories: Independent implementations and dependent implementation. The first

ones are binary executables for a specific combination of resources. For example, a sorting elastic

function may have independent implementations like quick-sort, insertion-sort or merge-sort run-

ning different resource combinations like microprocessor, FPGA, GPU, microprocessor+FPGA

and microprocessor+GPU. On the other hand, Dependent implementations internally call one or

more elastic functions . For example, a dependent implementation of a Sort elastic function may

internally rely on elastic functions for Split, Merge, and Sort. Dependent implementations create

some sort of freedom to create new implementations for different runtime situations. Also, as the
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authors mentioned in the paper :”The main limitation of elastic computing is that improvement in

design productivity depends on the percentage of code that can be defined using elastic functions.”

[67].

Although, both my work and the work presented in Elastic computing, mainly target the same

notion of ”Writing the code once, and running it everywhere”, However The differences between

the work in this thesis and Elastic computing are as follows :

• They target HPC, where FPGA itself is considered as a stand-alone accelerator, whereas in

our approach the FPGA hosts the whole many-core heterogeneous system.

• There is no partial reconfiguration discussed in their work, while we take advantage of this

capability in our Extensible processor.

• All the decisions of choosing the most efficient implementation of a elastic function are

being centralized which leads to bottleneck and runtime overhead. In HEMPS system, this

decisions are being delegated to each extensible processor. This distributed OS makes the

system more scalable when the number of resources grow.

3.5.9 ARC

Jason,et al [24] presents a framework to support accelerator rich CMPS (ARC). ARC tries to

address the following problems:

• How to share loosely coupled accelerators among cores in a many-core system on chip?

• How to service interrupts from accelerators to the cores?

• How to create bigger accelerator out of smaller ones during runtime (Virtualization)?

They refer to growing use of on-chip accelerators in many-core designs, since it helps in:Performance,

Power and Utilization wall( dark silicon). However they claim OS-based management of loosely

coupled accelerators in CMPs is not effective. This is only partially true, as in reality what makes
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Figure 3.9: ARC approach [24]

it ineffective is the centralized decision making in the host processor which creates a bottleneck

and stops scalability. Their solution is to propose HW-based management of loosely coupled ac-

celerators.

They propose an accelerator-rich CMP architecture framework, named ARC,with a low-overhead

resource management scheme that allows accelerators to be shared and virtualized in flexible ways,

is minimally invasive to core designs and finally is friendly for application programs to use.

Figure 3.9 shows the overall architecture of ARC which is composed of cores, accelerators,

the Global Accelerator Manager (GAM), shared L2 cache banks and shared NoC routers between

multiple accelerators. It shows 1. The core requests an enumeration of all accelerators it may

potentially need from the GAM (lcacc-req). The GAM responds with a list of accelerator IDs

and associated estimated wait times. 2. The core sends a sequences of reservations (lcacc-rsv)

for specific accelerators to the GAM. The core waits for the GAM to give it permission to use

these accelerators. The GAM also configures the reserved accelerators for use by the core. 3. The

core writes a task description detailing the computation to be performed to the shared memory.

It then sends a command to the accelerator (lcacc-cmd) identifying the memory address of the

task description. The accelerator loads this task description, and begins working. 4. When the

accelerator finishes working, it notifies the core. The core then sends a message to the GAM
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Figure 3.10: The processor template in TBES [25]

Figure 3.11: TBES tool chain [25]

freeing the accelerator (lcacc-free). All of the mentioned components are connected by the NoC.

GAM is introduced to handle accelerator sharing and arbitration. GAM is performing a sharing

and management scheme which can dynamically determine whether the core should wait to use

an accelerator or should instead choose a software path, based on an estimated waiting time. The

GAM tracks: 1) the types of available accelerators and the number of accelerators of each type;

2) the jobs currently running or waiting to run on accelerators, their starting time and estimated

execution time.
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3.5.10 TBES

TBES :Template-based exploration and synthesis of heterogeneous multiprocessor architecture on

FPGA [25] is another ESL tool to allow designers with software programming skills to easily

implement their ideas in programmable hardware (like FPGAs) without having to learn traditional

hardware design techniques. The inputs to their tool is user’s SW code which is strictly limited

to explicit task-based coding like the one shown in figure 3.11, and a HW template that includes:

static part, design space exploration boundaries, and finer HW details as shown in Figure 3.10. The

hardware template has up to four Microblazes, with each Microblaze can have a HW accelerator

via FSL links.

In TBES, Design space exploration is the cornerstone of the tools. It statically analyzes differ-

ent combination of resource allocation, data mapping on memories and task mapping on processors

to reduce the overall cost and increase performance. They use HLS tools to generate different types

of accelerators and their performance and also use some rough estimation for SW execution times.

They use these execution times to decide which accelerator should be attached to each processor.

Although they claim that the HW platform can be flexible, but the result section is only showing a

limited case of the architecture shown in Figure 3.10.

Our HEMPs approach is different than TBES in many ways, both HW and SW:

• The SW application in our approach is a general multi-threaded application, whereas in

TBES the code is limited to a very specific task-oriented coding style shown in 3.11.

• In TBES The mapping of tasks to processors is static, whereas in our approach we have

runtime coarse/fine grained partitioning based on available resources and runtime variables .

• The accelerators are static, and there is no partial reconfiguration option available in their

flow, which decreases the flexibility and the performance of the design.
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Figure 3.12: SDSoC environmental flow [71]

3.5.11 SDSoC

Sotware Defined System On Chip (SDSoC [71]) is a single point entry and fully automated ap-

proach for HW/SW codesign provided by Xilinx on Zynq platforms. The high level view is shown

in Fig. 3.12.

The user provides a C/C++ application, as well as marking the functions that needs to be

implemented on HW. The tools then takes care of the rest by running Vivado HLS under the hood,

making the interfaces and software package libraries. As a result, the SW developer does not have

to need anything about the details of hardware and FPGA fabric. However, the supported HW

platforms is limited to Zynq board with two ARM cores to run SW threads. Therefore, it lacks the

heterogeneity of enabling user to take advantage of higher thread level parallelism by providing

more cores, or different type of general purpose processors other than ARM cores.
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Figure 3.13: ICN approach [46]

3.5.12 Other works

Authors in [46] presented a system where an operating system executes on a general purpose

processor, and tasks are scheduled onto dynamically reconfigurable tiles arranged in a 2D array

network on an FPGA. Tiles are composed of custom hardware, but the authors mentioned that

they can also be reconfigured to include soft processors. Decoupling task computation within tiles

and the rest of the system allows the authors to concurrently adapt other parts of the system with

ongoing running tasks. The overall architecture of the system is shown in Fig. 3.13. It shows

in an ICN (a), each processor (P) is connected to a router (R). Each processor has access to local

memory (M). In a 2D torus (b), each row and column of routers is connected in a ring, reducing

router complexity with respect to a 2D mesh, in [30]

The work presented in [30] addresses issues with mapping the critical sections of source code

onto hardware, either on coarse-grained or fine-grained components. They propose a methodol-

ogy for partitioning and mapping computationally intensive parts of the code when it runs on top

of reconfigurable hardware blocks of different granularity. Mapping more computational-intensive

parts of the original program is reserved for coarse-grained components, whereas fine-grained com-

ponents are swapped in and out of the FPGA. As shown in Fig. 3.14, they designed a self-adaptable
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Figure 3.14: Generic reconfigurable platform architecture in [30]

task manager on an FPGA for handling real-time tasks and scheduling them accordingly onto more

coarse-grained components (i.e. hard/soft processors, ASIC devices, etc.) and fine-grained compo-

nents (hardware IP that are dynamically reconfigured onto the device during runtime). The authors

attempted to schedule incoming tasks based on priority, the amount of partially reconfigurable re-

gions on the device a task needs, and the current state of other parallel tasks in the system. Their

system is also capable of online learning, logging performance and power in order to improve

future scheduling decisions.

Also, there are other interesting works in HW/SW co-design of loosely and tightly coupled

accelerators:

• Off-chip loosely-coupled Accelerators (Convey [2], Nallatech [5])

• On-chip Tightly coupled accelerators(Garp [34], UltraSPARC [8], Intel’s Larrabee [56],

IBM’s WSP processors [29])

• OS support for accelerator sharing and scheduling (P. Garcia, et al [31])

• Heterogeneous Architectures (EXOCHI [64], SARC [54], HiPPAI [62]), they use SW-based

methodologies to access Accelerators.
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Chapter 4

System Design

This work is orthogonal to techniques that treat the FPGA as a big accelerator controlled by a

separate processor. We try to provide the abstractions, tool flows, and runtime systems to allow

designers to define and program CHMP systems all under more familiar software centric program-

ming models. We base this work on our original hthreads runtime system. A system level thread

scheduler runs on a host processor and maps threads onto the available system resources, including

processors with different ISA’s and hardware threads with HW-based HAL (called HWTI).

This thesis presents HEMPs: Heterogeneous Extensible Multiprocessor system. At the archi-

tecture level HEMPS starts with the automation of the construction of a special CHMP system build

upon extensible processors. At the software level, a compilation and runtime system is provided

that allows the use of the standard Pthreads programming model. System designers with no hard-

ware design experience can use these tools standalone to create heterogeneous chip multiprocessor

systems, and program the system using scalable numbers of asynchronous threads. Beside thread

level parallelism, HEMPs then provides standard interfaces and automated compilation flows to

allow each processor within the multiprocessor system to support custom accelerators. These two

capabilities support an integrated MIMD/accelerator model. The MIMD model provides thread

level parallelism across the multiple processors, with the ability to accelerate execution of each

thread by extending each processor with custom accelerators. Designers can allow the runtime

system to dynamically tune an application based on runtime state. To support dynamic tuning the

HEMPS compilation flow and runtime system supports the inclusion of operating system support

libraries that allow functions to be encapsulated and scheduled during runtime based on perfor-

mance tuning objectives as well as time varying system resource loading. Each library can contain

both a software and hardware method of a function. The runtime system then determines if the

function should be executed on the processor in software, as a static accelerator, or loaded into a
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Figure 4.1: General flow of HW/SW codesign in a HEMPS system

reconfigurable slot and run after doing partial reconfiguration. Figure 4.1 shows the general flow

of HW/SW codesign in a HEMPS system.

This work extends Hthread system to run on a HEMPS system and support autonomous par-

tial reconfiguration and software/hardware co-designed library functions. In a HEMPS system,

hardware accelerators exists statically or dynamically behind a processor, and the runtime system

should be modified to account for accelerators directly attached to slave processors, extending its

resource-driven scheduling. Accelerator utility is driven by simple function calls linked in with a

library. These functions allow execution to continue in software, or if better suited, on an attached

hardware accelerator.

This work tries to create new abstractions and runtime capabilities to self tune applications as

they run across FPGA based heterogeneous chip multiprocessors. This brings the following bene-
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fits. First we enable portability and efficiency for system designers and programmers. Once written

the application program can be tuned by the runtime system to achieve better performance and en-

ergy efficiency across different mixes of processors and accelerators. Second, this eliminates the

time consuming requirement for application developers to deal with CAD tools to build the HW

platform from HW point of view, and spares them from performing exhaustive static profiling and

partitioning from SW point of view. For the first part, the generation of a HEMPS system tailored

for the application is automated. For the second part, based on the resources available the runtime

system identifies and maps the application across the best available combination of processors, ac-

celerators and program mappings, resulting in better performance and energy efficiency compared

to static profiling and mapping.

In this work, the Hthread OS running on HEMPS system allows Software threads to run on

scalable numbers of heterogeneous slave processors. All threads perform service requests locally

to a lightweight extension of the operating system that runs on each extensible processor. Fur-

ther scheduling decisions between hardware and software computations for all threads are made

autonomously on each extensible processor node. Our approach can perform the same migration

of a complete thread body from software to hardware, but with the additional flexibility of allow-

ing a sequential portion of a thread to execute on the slave processor, and dynamically migrating

only the data parallel portion of the thread into hardware. This decision is learned from profiling

information.

4.1 Extensible processor node

4.1.1 Base Hthread system platform

Figure 4.2 illustrates a typical HybridThreads (Hthreads) platform, with Hthread cores being a

HW/SW co-designed microkernel that supports the POSIX threads standard. Some of the OS

core services such as thread scheduling and synchronization are implemented within hardware

for fast, distributed access across both HW and SW threads. The host processor communicates

with Hthread cores to create/join software/hardware threads, as well as synchronization among the
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threads.

The host can also assign threads to run on general purpose slave processors. During compi-

lation flow, each thread function is compiled for both host and slave processors, which can be

of different types. During runtime, based on which processor is going to execute the thread the

corresponding image will be passed to the processor. There is a boot kernel code which runs on

slaves during boot up, and a BRAM called Virtual HWTI BRAM (VHWTI) which both slave and

Hthread core have access to it, and communicate via this BRAM. Hthread cores create a thread by

writing thread information into pre-defined entries in VHWTI , which is constantly checked by the

slaves when it is idle. Then, the slave starts executing the SW thread stored in DRAM ( Each slave

has a ICache to boost the performance), and upon exiting the thread informs the rest of the system

by writing into pre-defined entries in VHWTI.

Figure 4.3 provides an example of an Hthread system when Extensible processor node is added.

As shown in this figure, HW threads execute on custom hardware and are able to access OS ser-
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vices through a local FSM-based HAL referred to as the Hardware Thread Interface (HWTI). On

the other hand, SW threads execute on slave processors through a mailbox and request OS ser-

vices through software library calls. These software library calls translates to simple load/store

operations to the Hthread cores enabling any heterogeneous processor supporting atomic memory

calls to be supported by Hthreads. Further details can be found at [19]. The first two node tem-

plates, HWTI+Accelerator and General purpose MicroBlaze was already tested and working. The

contribution of this thesis is the last node, which is referred to as Extensible processor node.

This work, unifies both loosely coupled and tightly coupled accelerators as an extensible pro-

cessor implemented through a tight coupling between the static or dynamic accelerator and a front

end processor. There is a standard interface using AXIS links between the processor and acceler-

ator for control flow. This model proves resource efficient, portable, and better supports dynamic

partitioning and allocation of resources. As shown in Fig 4.4, Without any loss of functionality

the Microblaze can be simply viewed as a plug in replacement for the hardware virtual abstraction

layer. Changes to the operating system can be realized through software compilation in place of

hardware synthesis. Further resource savings are achieved as the sequential portion of a thread

can be migrated out of hardware and into software executing within the Microblaze. An extensible
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processor model widens the use of the accelerator to exploit a greater range of parallelism espe-

cially fine grained data level parallelism. This allows better resource utilization and support for

dynamic tuning. Each extensible processor is now available to run any thread, with the choice of

using an accelerator being made autonomously on each processor. Under dynamic reconfiguration

each processor can make an independent decision to download a new bitstream into it’s partial

reconfiguration area.

4.1.2 Microblaze-based HAL and API

As shown in Fig. 4.5 Extensible processor is built on the approach followed in the Hthreads system

with hardware threads. These steps were taken to design the extensible processor node

1. The hardware circuitry of the HWTI is replaced by a small operating system kernel stored

in the Microblaze’s local memory. The MicroBlaze replaces the original HWTI’s command,

control, and status circuitry for an accelerator. The Hthreads system provided a traditional

software HAL as part of the operating system that ran on all slave processors. The existing

software HAL performed the exact same functions as the System State Machine in HWTI

and can be adopted with minimal modifications. The following modifications was performed

to completely replace the HWTI VHDL wrapper with the software based HAL running on
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Microblaze:

• First, the five user visible registers shown in Figure 4.5 was replaced by the two Fast

Simplex Links (FSLs) [3] shown in Figure 4.5. This requires rewriting the interface

and modifying the protocol that was provided within the user logic to request services.

The API’s, or system service policies accessible by the accelerator did not change.

However, the invocation protocols was re-defined to use the FSL links.

• Second, the system services implemented as finite state machines within the User State

Machine shown in Figure 4.5 was rewritten in C. The MicroBlaze then monitors the

FSL links, decodes requests, and performs the appropriate system calls on behalf of the

accelerator.

2. One pair of FSL/AXIS links is used for communication between the accelerator and Microb-

laze. Control, configuration, and status commands are transferred using these FSL/AXIS

links between the MicroBlaze’s register file and the accelerator. These links are useful for

exchanging single data items but are not appropriate for supporting fast block transfers of

data into and out of the accelerator. So, it should be mainly used for control flow.

3. Additional dual port BRAMs is provided between the accelerator and the extensible proces-

sor’s local bus. These BRAMs are made visible within the system’s global address space

and accessible by any bus master in the system. The operating system as well as the ap-

plication code running on the MicroBlaze can directly access these memories, or set up

DMA transfers into and out of the memories on behalf of the accelerator. Providing a lo-

cal DMA per extensible processor node also gives each MicroBlaze the flexibility to create

unique access patterns per accelerator, such as strided transfers for matrix operations. The

numbers and length of the BRAMs can be tuned by the system designer for any application

running within an accelerator. The local DMA can also used by the operating system to

load bitstreams into the partially reconfigurable accelerator slot. The data interface of HW

accelerator is general and flexible since it is independent from MicroBlaze. The accelerator
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can have as many FIFOs and BRAM interfaces without MicroBlaze intervention.

4. A set of APIs and a standard interface protocol was defined between Microblaze and accel-

erator. These can be used by accelerators to perform system calls and memory operations,

as well as the run time system on the MicroBlaze to control the the accelerator. The stack of

Microblaze is made accessible to the accelerator through these standard APIs. This allows

accelerators to be written that include functions calls and recursion. Figure 4.6 lists a few

of the more common APIs. The first category of APIs allows the accelerator to declare and

access local variables on the stack. The second category provides APIs for managing the

stack, and returning from function calls. The third category provides APIs for performing

system calls. The complete set of APIs supported are the same as those implemented in

the hthreads HAL.The operating system on the MicroBlaze receives APIs from the acceler-

ator across standard FSL/AXIS links, processes the request, and returns status back to the

accelerator on an FSL link.

5. A VHDL wrapper code was written that will be included in the user logic code of each

accelerator. The wrapper includes states for issuing our standard APIs. New APIs are added

by creating new states. The operating system running on the MicroBlaze identifies requests

from accelerator. System service processing is contained with the case statements. New

APIs and system services are added by writing additional case statements.

Using MicroBlaze instead of HWTI gives us the ability to add more functionalities via software

code way much easier than if we had to do it in HWTI using HDL languages. New functionality

can be added through software modifications compared to earlier requirements of redesigning and

re-synthesizing hardware state machines. MicroBlaze provides RPC, stack management, pointer

support, true recursion and function call for HW circuits like Quicksort accelerator. It also pro-

vides optimizations like overlapping the data transfer to/from BRAMs with data processing by the

accelerator. This means we can have more flexible accelerator with function calls and pointer sup-

port. Sorting is a good example for this case. Quicksort have significant performance compared to
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bubble sort when the size of the array increases, and Quicksort needs stack manager since it has

recursive calls. The only caveat of implementing HAL using flexible processor instead of Custom

HW interface is having more delay in servicing the requests of HW accelerator.

The Top part of Figure 4.6 shows how the operating system on the MicroBlaze receives APIs

from the accelerator across standard FSL links, processes the request, and returns status back to

the accelerator on an FSL link. In this example, the operating system service call performs three

consecutive reads of the FSL, performs the appropriate processing, and returns a single status

response.

The numbers of reads and writes across the FSL link and the processing performed is deter-

mined by the type of service call being implemented. Figures 4.7 and 4.8 show the wrapper

code for constructing API requests in the accelerator and the operating system code running on

the MicroBlaze to process the API requests. Figure 4.7 shows VHDL wrapper code that should

be included in the user logic code of each accelerator. The format of the API request has been

standardized, and includes an op code and up to two arguments. The wrapper includes states for

issuing our standard APIs. New APIs are added by creating new states. The send request state at

the bottom of the wrapper code is a pre-defined state that issues the API request across the FSL

link . This eliminates the need to completely re-design the HW interface. The operating system

running on the MicroBlaze identifies requests through the op code in the sw based hal function

shown in 4.8. System service processing is contained with the case statements. New APIs and

system services are added by writing additional case statements.

Figures 4.8 and 4.7 provide an example of how an accelerator (quicksort in this example)

would be written, called, and executed. The application code shown in the top of Figure 4.8 calls

the quicksort function within the body of a thread. The middle part of the code shows how the

call would be implemented using system service calls running on the MicroBlaze. Note that the

implementation is fully portable and can be run on any extensible processor within the MPSoPC.

The data to be sorted is first DMA’ed from DRAM to the local BRAM using dma data (&data,

&LOCAL BRAM, size). The run time system resolves the physical address location of the local
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-- FSM logic
case (current_state) is

.......
when write_local_var =>

opcode_next <= WRITE_OPCODE
param1_next <= j
param2_next <= val User
return_state <= state_2; Logic
next_state <= send_request; Code

.......
when accelerator_exit =>

opcode_next <= OPCODE_SYSCALL
param1_next <= EXIT_THREAD;
param2_next <= (others=>’0’);
return_state <= idle;
next_state <= send_request;

------------------------------------------------------
when send_request=>

--Send opcode, param1 and param2 via FSL link
FSL_M_data <= opcode &param1;
FSL_M_data <= param2;
--Receive response from Mblaze
mblaze_response <= FSL_S_data; Hardware
--Resume sequencing through FSM . Abstraction
if (opcode = OPCODE_RETURN) then Layer

next_state <= mblaze_response;
else

next_state <= return_state;
end if;

end case;

Figure 4.7: Snippet of VHDL Wrapper Code

BRAM. The accelerator is provided the address of the array and number of elements to be sorted

in BRAM using putfsl(&LOCAL BRAM); putfsl(size). The start command is then issued using

putfsl(GO CMD). After the start command is issued control is transferred to the software based

hardware abstraction layer portion of the operating system by calling the sw based hal() function.

It is worth noting that all of this processing occurs locally and autonomously on each MicroB-

laze processor within the MPSoPC. Thus no centralized bottleneck is present that would restrict

scalability.

The accelerator initiates processing when the putfsl(GO CMD) command is received. The

accelerator can request additional system services within the user state machine description as

shown in the top of Figure 4.7. The send request state at the bottom of Figure 4.7 communicates

system service requests to the sw based hal in the bottom of Figure 4.8. When the accelerator is

finished it transfers a done command to the sw based hal which returns control back to the function

body. The results are DMA’ed back from BRAM to DRAM and control returns to the calling
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void * foo_thread(void* arg) Application Code
{ //Some sequtial work....

quicksort(data[],size);
//Some sequtial work....

}//---------------------------------------------------------
void quicksort(data[],size){ Function Implementation

dma_data (&data , &LOCAL_BRAM , size);
//send start command to accelerator
putfsl(&LOCAL_BRAM); putfsl(size);
putfsl(GO_CMD);
sw_based_hal();
dma_data (&lOCAL_BRAM , &data , size);

} //---------------------------------------------------------
void sw_based_hal(){
do {
getfsl(opcode&param1); getfsl(param2);
switch(opcode)
{ case(OPCODE_WRITE):

stack[frameptr+param1] = param2;
putfslx( 0);

break; Hardware
....... Abstraction
case (OPCODE_SYSCALL) : Layer

switch(param1):
case (EXIT_THREAD):

return (void*)0;
break;
......

break;
} } while (1);}

Figure 4.8: Snippet of Operating System Interface Code

application. used to resume the control back after the request is serviced, unless it is a return

request. In that case, the MicroBlaze retrieves the return state from the stack which was sent to

MicroBlaze during the previous call request. There are three categories of accelerator requests as

shown in Figure 4.6. For the first two ones, MicroBlaze uses its scratch-pad memory as a stack to

enable the accelerator calls different states in its FSM, declare local variables and pointers. Also,

MicroBlaze performs system call requests on behalf of the accelerator. These system calls are

either expensive or time-consuming to implement or mostly sequential, for example mutex lock,

etc. Extensible processor HAL provides the following benefits:

• Enables users to more efficiently exploit finer grained parallelism within a thread body.

• Enables compilation to replace synthesis for HAL based services.

• Reduces the gate requirements of HAL and accelerator circuits.

• Providing accelerators with stack management, pointer support, RPC services and other op-
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Figure 4.9: Extensible processor node with only one accelerator

timization like overlapping data transfer with computation.

• Providing distributed low latency operating system services that can transparently scale with

growing numbers of processors and accelerators. Eliminating the overhead of RPC calls, the

bottleneck of running all services on a centralized master node. As such this approach scales

better for next generation MPSoPC systems.

4.1.3 Data path

Figure 4.9 shows the detailed architecture of an extensible processor node with only one acceler-

ator. The standard interface provides three BRAMs. This interface should remain the same for all

accelerators since it is necessary for partial reconfiguration. Each extensible processor is respon-

sible for managing the flow of data into and out of the BRAMs through a local DMA Engine. For

slave processors equipped with dynamic accelerators, the DMA engine is also used for transferring

new bitstreams to the ICAP for low- latency partial reconfiguration (PR). A wrapper is provided

around the accelerator region that allows the slave processor to query the presence and type of

accelerator, and enables bidirectional communication between the accelerator and slave processor

through the AXIS. This supports autonomous tuning of a thread execution to occur, independent

of other slave processors.
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The three potential architectures of an extensible processor is shown in Fig 4.10. From Left

going to the right, each architecture provides more performance, at the cost of complexity. How-

ever, no matter which one I choose the details should be abstracted away from SW developer. The

first one on the left shows a node that each Microblaze has only one partially reconfigurable accel-

erator with BRAMS shared between the two. The one in the middle, shows that each Microblaze

can have more than one accelerators with their BRAMS shared, however the accelerators can not

communicated directly with each other. The advantage of this over the first one is reducing the

possible number of partial reconfigurations overhead during runtime. Finally the last one shows

the architecture in which the accelerators can communicate with each other via a FIFO intercon-

nect. This leads to better performance over the middle one as it reduces the number of data transfer

back and forth between BRAMS and external DRAM.

Figure 4.9 shows the use of either a PLB or AXI bus for the extensible processor’s local bus,

and FSL/AXIS links for communication with the HW thread. Control, configuration, and status

commands are transferred using the FSL/AXIS links between the MicroBlaze’s register file and

the HW thread. These links are useful for exchanging single data items but are not appropriate

for supporting fast block transfers of data into and out of the accelerator. Figure 4.9 shows how

dual port BRAMs provided are shared between the HW thread and the extensible processor. The

processor uses its local DMA engine to transfer data between DRAM and these BRAMs. These

BRAMs are made visible within the system’s global address space and accessible by any bus master

in the system. As these memories exist within the systems global address space they can also be
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used as FIFO buffers between extensible processors for streaming purposes. The numbers and

length of the BRAMs can be tuned by the system designer for any application running within an

HW thread. The OS as well as the application code running on the MicroBlaze can directly access

these memories, or set up DMA transfers into and out of the memories on behalf of the HW thread.

Providing a local DMA controller per extensible processor node also gives each MicroBlaze the

flexibility to create unique access patterns per HW thread, such as strided transfers for matrix

operations and prefetching data to overlap data transfer with computations . It is also used to

load bitstreams in case HW threads are partially reconfigurable during runtime, and eliminates the

central bottleneck that existed within earlier systems that only allowed a single master processor to

load bitstreams [65]. We have measured transferred rates of 96 Mbytes/sec to transfer bitstreams

into the ICAP on Virtex 6 with ISE tools.

Fig 4.11 shows the general structure of a HEMPS node. Each node consists of a general purpose

processor, which can be soft IP like Microblaze, BRAMs and accelerators, DMA engine, a FIFO

interconnect for accelerator streaming data and local memory and mail box for the Microblaze.

The Microblaze is communicating via a pair of AXIS links with each accelerators for control

flow. The number of the AXIS interface on Microblaze is limited to 16, so is the number of

the accelerator in each node. Accelerators can be either dynamic or static. Each accelerator can

have arbitrary number of BRAMS which is connected to local bus of the node. This gives the

Microblaze the ability to access the data in those BRAMs plus DMAing data from/to DRAM on
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behalf of the accelerator. Also each accelerators can have arbitrary number of FIFO ports to enable

direct streaming between them. This saves the time to DMA data back and forth to DRAM in case

more than one accelerator is processing the same data.

The operating system running on the MicroBlaze controls the transfer of bitstreams into the

accelerator region and data between the DRAM and BRAM’s. This is an advantage over systems

that use hardware HAL’s. In these earlier systems all bitstream and data transfers were controlled

by the operating system running on a master node.

Each Microblaze has 3 local BRAMs. The first one is VHWTI bram which serves as a mailbox

to synchronize the threads assigned to this node. It is accessible by both host processor and Hthread

cores, further details can be found [18]. The second BRAM is a local memory which stores both the

small operating system running on slave Microblaze. It has both the code for a simple bootkernel

to check the VHWTI for thread operations, plus a SW-based HAL code to serve the custom HW

threads assigned to the accelerators. Extensible processor node provide the HAL for custom HW

threads. This unifies the two models of loosely and tightly coupled accelerators. It provides Stack

management, fine grained HW/SW partitioning and distributed OS services. The final BRAMs

are the ones shared between accelerators and Microblaze which can serve as fast access data for

Microblaze since the Data cashe in not enabled ( there is no cache coherency protocol).

The architecture of a Extensible processor node is flexible in a way that only the Microblaze

and it’s local memory and VHWTI brams are needed. Each node can arbitrarily have any number

of dynamic or static accelerators (if any), any number and size of BRAMs for each accelerator, an

optional FIFO interconnect in case more than of the accelerators have FIFO ports. This flexible

structure makes it easy for HW developers to integrate new accelerators into the system, not only

from the interface point of view, but also any stack or pointer management or recursive calls can

be handled by HAL implemented on Microblaze.
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Figure 4.13: The overall architecture of a HEMPS system

4.2 Automating the generation of a HEMPs system

Fig. 4.12 shows how HEMPS system is built upon an Extensible processor node. Fig. 4.13 shows

the overall architecture of a complex HEMPS system. The general architecture of the system is an

Central AXI interconnect with the host processor, Hthread cores, DRAMs and other peripherals are

connected. The nodes are connected to the rest of system by a two-tier AXI interconnect hierarchy.

Each node can have its unique configurations. Fig 4.13 shows nodes with no accelerators, one

accelerator, three accelerators with or without a FIFO interconnect.
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Fig. 4.14 shows a general view of the HEMPS platform. There are some points worth mention-

ing here:

• There is two level of hierarchy to connect nodes. This is because AXI interconnect will not

accept more than 16 masters/slaves.

• each node can be configurable as either a simple Microblaze with no accelerator, or a Mi-

croblaze with an attached accelerator and BRAMS.

• The top level AXI interconnect consists of Host processor, ICAP and Hthread cores. Hthread

cores provide a low-jitter OS support for a multi-threaded application running on host pro-

cessor. ICAP provides the support for dynamic reconfiguration within a HEMPs system

which leads to the added flexibility of accelerating different portions of a thread executing

on slave extensible processors. There is a two-tier hierarchy of AXI interconnect which sup-

ports up 16 groups with 16 nodes per group. The nodes in each group have faster access to

each other’s local memory and BRAMS. We currently build HEMPS systems with up to 36

extensible processor nodes on a Virtex VC707.

Figure 4.15 provides further details on how we included DMA engines for marshaling data

between DRAM and BRAMs or ICAP. Each extensible processor can support a static or par-

tially reconfigurable accelerator attached via standard FSL links. We defined a standard interface
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connection for up to three dual port BRAM blocks (two data input, one data output) for the an ac-

celerator, as well as a dedicated DMA engine for transferring data between BRAMs and DRAM.

Our current HEMPS system contained a central DMA engine that can be directly accessed by all

extensible processors. This can be used for marshaling data into and out of the accelerator as well

as for transferring partial bitstreams into the ICAP at the speed of 96 Mbytes/sec. If the ICAP is

directly mastering the bus, the transfer rate can go up to 232 Mbytes/sec on Xilinx Virtex 6 [43].

Feeding the accelerator the data they need has a big impact on performance of the system, since

DMAing data is the sequential part of the code that can not be parallelized, and therefore Amdahl’s

law limits the speed up we can achieve through TLP or DLP.

Fig. 4.16 shows an example of a HEMPS system with 6 nodes, and each node has a partially

reconfigurable region. Each HEMPs system provides Internal Configuration Access Port (ICAP)

driver support for PR. Theoretically, the ICAP can consume bitstream data up to 100Mhz with

data width of 32 bytes resulting in 400MBs transfers rate if the data is stored into BRAMs, which
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Figure 4.16: A HEMPS system with 6 nodes

is not feasible. Partial reconfiguration speed can achieve speeds up to 232 MB/s when the ICAP

is directly attached to the Multi-Port Memory Controller (MPMC) on a Xilinx Virtex 6 board

[43].However, we just used a DMA engine to transfer partial bitstreams into ICAP, reaching 96

Mbytes/Sec.

The next step was to write a TCL script called Archgen that inputs a high level specification

file and spits out the final bitstream of a HEMPS system defined by the parameters in that file like:

The number of nodes, the type of accelerators, the size of internal BRAMs, etc. The Archgen is

based on a HEMPs node, which is a flexible extensible processor node. The final HEMPS systems

is built by specifying how many of these nodes needed and the customization for each node.

Our tool-chain takes the user provided configuration file shown in Fig 4.17, and invokes the

Vivado tools to build the HEMPS platform. Also, users can use our GUI interface in the cloud

at http://hthreads.csce.uark.edu/ARCHlang/prPages/hemps.html to generate this configuration file.

There are some general parameters like the number of the nodes, the target board and the frequency

of the system. Then all the nodes in each group are being customized. This includes the general

specifications like the type of the processor, the configuration of the processor like Barrel shifter,
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No. Nodes :2
Board :vc707
Frequency: :100 MHz
====================== Group0 ===============================

Type Bsh/Mul/Div/FPU ICACHE -Size No-Accelerators Fifo -interconnect
Node0: MB 1/0/0/0 8k 3 Y

PR Default -ACC BRAMS:No/size FIFO_ports:In/Out PR-moudules
ACC0: Y 3/4k 1/1

[’FFT ’, ’bubblesort ’]
ACC1: N ’matrix -m’ 3/16k 3/3

[ ]
ACC1: Y 2/8k 0/0

[’crc ’, ’bubblesort ’]
----------------------------------------------------------------------------------
Node1: Type Bsh/Mul/Div/FPU ICACHE -Size No-Accelerators Fifo -interconnect

MB 0/0/0/0 4k 0 0

PR Default -ACC BRAMS:No/size FIFO_ports:In/Out PR-moudules
ACC0: N ’Blank ’ 3 /16k 0/0 [ ]

----------------------------------------------------------------------------------
Type Bsh/Mul/Div/FPU ICACHE -Size No-Accelerators Fifo -interconnect

Node2: MB 1/1/1/1 16k 1 0

PR Default -ACC BRAMS:No/size FIFO_ports:In/Out PR-moudules
ACC0: Y 3 /16k 0/0

[’matrix -m’,’crc’, ’vectoradd ’,’vectormul ’]
.........

====================== Group1 ===============================
........

Figure 4.17: The high level specification config file
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Figure 4.18: Archgen in the cloud

multiplier, divider and floating point unit and size of ICache. Also the number of the accelerators

and if there is FIFO interconnect needs to be instantiated. After this, each accelerator can be cus-

tomized to determine if it is partially reconfigurable, what is the size and number of its BRAMS

and the number of in/out FIFO ports. If the accelerator is static then the default accelerator should

be specified, otherwise the PR-modules should be listed so that during the PR flow process, the

partial bitstreams for this region gets generated. If the Microblaze does not have any accelerator,

then a blank accelerator will be instantiated with the desired number of BRAMs. This is neces-

sary because the Microblaze does not have the Dcache enabled and therefor without having local

BRAMS the performance is very low. Some screenshots of th GUI interface are shown in Fig. 4.18

and Fig. 4.19, which will result in the final the config.txt file.

We use PR controller IP which centralizes the bitstream transformations and it can reach up

to 400 Mbyte/Sec for PR data transfer in Virtex 7 tools using PRC IP provided by Xilinx. The

toolchain generates the final full bitstream plus a header file containing of all the partial bitstreams

for the SW application to do partial reconfiguration.
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Figure 4.19: Archgen in the cloud: Customizing the nodes
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The tool will chose the PR region based on the biggest accelerator assigned to that region. For

each PR regions, there are 3 PR region candidates: Small, medium, and big. For example, Matrix

Multiply and Quicksort are bigger than other accelerators like CRC or VectorADD. This helps with

the final resource usage and partial reconfiguration overhead.

4.3 Polymorphic functions library

Polymorphic functions provide the needed separation of policy and mechanisms for next genera-

tion chip heterogeneous multiprocessors. Polymorphic functions run on Extensible processors. We

try to reinstate application portability over CHMPs architectures. Reinstating application portabil-

ity over CHMPs systems cannot be achieved through incremental advancements in just program-

ming languages, or programming models, or runtime systems, or architecture support. Reinstating

portability will require new methods and interactions between abstractions and runtime mecha-

nisms. From the users perspective we retain the semantics of the familiar multithreaded program-

ming model. Figure 4.20 shows the SW toolchain for polymorphic functions.

Previously, runtime tuning within Hthreads was limited to the scope of processor and/or stand-

alone custom hardware availability. With the introduction of a tunable accelerator library, I am

expanding this scope to include a scheduled thread to execute in both hardware and software.

This has the benefit for a slave processor to adapt to its hardware features when executing an

accelerator library call. This allows the runtime system tune the program based on the availability

of software and hardware heterogeneous resources. It is worth mentioning that the learning occurs

transparently to the programmer.

From the application developers perspective, polymorphic functions are simply linkable li-

braries of self tuning functions. Application designers no longer need to hand partition, profile and

tune the functions for each platform or variances in runtime behavior. The functions are tuned and

scheduled by the operating system across optimal sets of heterogeneous resources and accelerators.

A small lightweight operating system running on each slave processor can independently deter-

mine if an attached accelerator is present or dynamically loadable, and if the accelerator should be
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Figure 4.20: SW toolchain for polymorphic functions

used. Accelerator presence and usage information is maintained on each slave processor. Fig. 4.20

shows how the user’s C code (on left) will go through the chain flow to change to the code running

on FPGA which uses polymorphic functions(on the right)

Polymorphic functions allow data-level parallelism (DLP) to occur within the existing multi-

threaded programming model. They are partitioned by the Polymorphic Function Partitioner that

runs autonomously on all slave processors. Whereas the dispatching of threads is centralized on

the host, the decision on how to partition a polymorphic function is made autonomously on each

slave processor. The operating system running on each slave processor makes localized optimiza-

tion decisions thus eliminating the bottleneck that can occur when all decisions must be made in a

centralized fashion on the host processor.

We create libraries that abstract the need for programmers to be aware of processors/accelera-

tors and how they are configured within a particular heterogeneous platform. Each library contain

both a software and hardware method of a function. A small and efficient runtime adaptive re-
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source aware scheduler running on extensible processor will tune this polymorphic functions for

each node. That means during runtime these functions can run in different ways based on available

resources and profiling information. The small operating system can dynamically load and run

accelerators during the execution of the thread, transparent to the user.

Profiling describes the collection and utilization of performance data during runtime. Profiling

is needed here to provide more efficient use of the hardware, as well as to provide more adapt-

able runtime decisions. To address this, a shared table was created that stores profiling data. The

runtime system stores profiled information in the profiling table. This table is used by any poly-

morphic call to tune the system to fit an application’s needs. The profiling table captures prior

execution timing information for polymorphic functions given a certain data size. When invoked,

polymorphic functions utilize this information to make better runtime decisions on whether to ex-

ecute in hardware or in software. Figure 4.21 shows a 2D structure of the profiling table. For each

polymorphic function, the table stores an entry for data sizes (order of 2) between 64 - 4k bytes.

Parameter sizes passed to polymorphic functions are rounded to the nearest data size within this

table. Each entry in the table contains software and hardware execution times. Additionally, an

optimal division factor (chunks) is recorded that allows processors to pipeline DMA transfers with

accelerator computation. This table is initialized by the host at system boot and might be updated

by slave processors during runtime to increase accuracy. Polymorphic functions are generically

written, using runtime profiling information to decide whether to bootstrap to the user provided

function source code or its hardware variant.

An example of a multi-threaded application which uses polymorphic functions is shown in

Fig. 4.22. The polymorphic function poly vector(), in Figure 4.22 shows how slave processors uti-

lize the profiling table. Initially, slave processors determine whether to use an accelerator attached

to it through the function, isHW(). There, software and hardware execution times for the given

polymorphic function are compared. If the slave processor has a dynamic accelerator, the over-

head of PR is also included into the comparison. A boolean value is returned indicating whether

to perform the function in either software or hardware. For dynamically attached accelerators,
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Figure 4.21: Profiling table

isHW() also performs PR if returning true. If the decision to execute in hardware is determined,

processors additionally inquire whether to divide the passed data set into chunks as defined by the

data division factor, to overlap data transfer in chunks with accelerator computation to increase

performance.

Fig. 4.23 shows how the thread running on an extensible processor executes a polymorphic

function. For dynamically reconfigurable systems, slave processors decide whether to swap out

the existing attached accelerator for the appropriate one by comparing software execution time

and the sum of both hardware execution time and PR overhead for the given accelerator library

call. If the slave processor can swap out the existing attached accelerator, it additionally quantifies

whether software execution time is greater than the sum of both hardware execution time and

PR overhead for the given accelerator library call. If so, the slave processor can perform PR

autonomously without any remote procedural calls (RPC) to the host processor. Access to the PR

hardware (ICAP) is synchronized through a global mutex all processors share in the system. When

BRAM space is limited,the division factor field in the profiling table suggests to slave processors
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int main() {
init_profiling_table();
thread_create(foo_thread);
thread_create(bar_thread);
....

}
void * foo_thread() {

poly_vector(&a,&b,&c,size ,ADD);
poly_crc(&data ,size);
poly_sort(&data ,size);

}
void * bar_thread() {

poly_sort(&data ,size);
}
//˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
// Polymorphic Function
void poly_vector( ... ){

bool use_accelerator=isHW(); //Performs PR as well;

if (use_accelerator) {
divide_data_into_chunks();
for ( i < # of chunks ) {

dma_data(chunks[i]);
hw_vector(chunks[i]);

}
}
else

sw_vector();
}

Figure 4.22: A Multi-threaded application with polymorphic functions

an optimal size it can overlap data argument marshalling with hardware accelerator computation

through the use of a DMA engine. This autonomous control increases data-level parallelism in the

system and introduces other opportunities for parallelism and computation efficiency.

Polymorphic functions extend the semantics of a thread body to also support finer grained data

level parallelism that can be exploited on custom hardware accelerators. We preserve the Pthreads

notion of a linear address space . We provide the definition of a polymorphic function that can

be used with the body of a thread function which can then be decomposed into different combi-

nations of software and hardware components based on run time parameters. The approach also

supports backwards compatibility and will run standard Pthreads programs. Thus our approach

brings portability by allowing users to write threads as if they were running on a traditional system

with homogeneous processors and a linear address space. These steps were taken to implement

this new programming model:

1. Both HW version and SW version of functions like:SORT,VECTOR and CRC, Matirx Mul-
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Figure 4.23: The thread running on PE #n calls a polymorphic function.

tiply, IDEA encryption were written. For HW version, It’s either written in FSM like the one

shown in Fig.4.24 or I used Vivado HLs like Fig.4.25.

2. The number of the library calls that we can add to our repository is not limited by anything.

So, the user has the option to add their own polymorphic functions (both HW or SW), or find

the candidate functions in their application and run it through HLS to add new polymorphic

functions to the repository.

3. Polymorphic functions who call other polymorphic functions: One of the advantages of hav-

ing standard polymorphic function is that they can be used to build more complex functions.

So, more complex polymorphic functions will call the simpler ones. This increases produc-

tivity.

4. Some new entries were added to Virtual Hardware Thread Interface (VHWTI) BRAM, so

that during boot time, the extensible processors should indicate whether the attached acceler-
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Figure 4.24: Designing an Accelerator using FSM

ator is partially reconfigurable or not (if any). This information will be written into VHWTI

to be read by host processor. Also, Each slave processor is equipped with a local allowing it

to profile accelerator function calls, whether it be in software or hardware.

5. Before the host starts executing the user’s code, the profiling table which contains SW and

HW execution times for each polymorphic function will be filled . For each polymorphic

function, it runs the function with various data sizes to gets the SW time and HW time for

different chunks ( to find the best DMA overlapping factor).

6. The compilation flow was modified to produce multiple implementation of each polymor-
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Figure 4.25: Designing an Accelerator using Vivado HLS

phic function. A SW version which runs on Microblaze, and a HW driver to control the

accelerator implementing that function.

7. A light weight operating system running on slaves was developed which decomposes each

thread into components that run across the software/hardware boundary. This light weight

OS running on the slave processors exercise additional autonomy, making further localized

scheduling decisions. It autonomously refers to the profiling table to choose the efficient

implementation of the polymorphic function within the thread, based on runtime variables

and system configuration at the moment.

8. Extensible processors store the information of the thread they are running as well as their

attached accelerator to help host processor make better decisions when assigning the threads
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to slaves. For this, entries in Virtual Hardware Thread Interface (VHWTI) BRAM is used, to

record the polymorphic functions call made within the thread , as well as currently attached

accelerator (if any). All of these updates occur concurrently with other slave processors

and allows the host processor to use this updated information immediately when schedul-

ing threads onto slave processors. During runtime, slave processors update those entries in

VHWTI in order to reflect any of its resource changes. In the case of PR, processors that

swap in a new accelerator will update the corresponding VHWTI entry. Unlike a processor

with a reconfigurable slot, for a processor with the static accelerator the currently attached

accelerator will not change.

9. The first time a thread or library function is executed nothing is known about their resource

requirements. When the thread or function executes, the HAL running on the slave processor

should start the process of cataloging key information about execution behavior and resource

usage, specifically the type and frequency of the polymorphic functions called within the

thread. When the function is called again (typically within a loop) the system level thread

manager walks through all free processors checking their HAL to see if this was the last and

hence still resident accelerator connected to any processor.
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Chapter 5

Results

This section provides the results to verify the ability of our HW/SW co-design to re-enable the

notion of writing the code once and run it on any HEMPS platform with extensible processor nodes.

I also show how profiling can increase resource utilization and provide increased performance.

The same program without modification can be efficiently scheduled and run on different HEMPS

systems that contain only general purpose processors, mixes of processors and static accelerators,

and mixes of processors and partial reconfiguration slots.

5.1 Extensible processor node Verification

The extensible processor node was originally implemented using Xilinx 12.3 ISE tools on a ML605

using the older PLB bus for interconnect and FSL bus for point-to-point connection between Mi-

croblaze and HW thread. The current version has been updated using the Vivado 2014.4 tools on

a VC707 using the AXI interconnect and AXIS streaming interface. The measured data transfer

rates between DRAM and BRAMS were 94 Mbytes/sec and 395 Mbytes/sec across the PLB and

AXI4 buses respectively (at 100MHz). The higher transfer rate on the AXI4 bus is a result of sep-

arate read/write data buses, and a higher external memory bandwidth for 7 series Xilinx FPGAs.

Also the partial reconfiguration speed is 96 Mbyte/Sec on Virtex 6 and 380 Mbyte/Sec on Virtex

7. The higher bandwidth on Virtex 7 goes back to both AXI bus protocol that enables reading

and writing at the same time on the bus, as well as a new soft IP named Partial Reconfiguration

Controller (PRC for short) that bursts the data from DRAM to ICAP memory directly.

5.1.1 HAL comparison

Table 5.1 shows a qualitative comparison of the HAL functionality between our extensible proces-

sor approach and other research efforts in this area including FUSE [39], Redsharc [41], SPREAD [65],
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Project HW Data HAL Stack OS and RPC HW/SW
circuit Interface implementation mgt services partitioning

FUSE [39]
ReconOs[45] HW thread Fixed FSM HW-based No Centralized Coarse
SPREAD[65]
HWTI[15] HW thread Fixed FSM HW-based Yes Distributed Coarse
Redsharc [41] Accelerator General Thin Wrapper No Centralized NA
Extensible Accelerator General Software Yes Distributed Coarse
processor MicroBlaze-Based Fine

Table 5.1: Comparison of the HAL functionality

Name Number Number Number
of FF of LUT of BRAM

FUSE – – –
HTI in SPREAD1 723 706 2
OSIF in ReconOS 1430 3043 3

HWTI 947 4399 4
Mblaze2 1395 1100 3

Table 5.2: Comparison between resource utilization of different implementation of HAL.

ReconOS [45], and the Hthreads Hardware Thread Interface (HWTI) [15]. In RedSharc [41] the

accelerators are being accessed by a single processor, and there are no hardware threads. Among all

HALs, Extensible processor is the only one with the ability to have both Coarse and fine grained

HW/SW partitioning. Moreover, FUSE, ReconOS and SPREAD do not provide stack manage-

ment and distributed OS and RPC services for the accelerator, which is available in both HWTI

and extensible processor.

Table 5.2 shows a comparison of resources used for several common HAL implementations.

On average, replacing the HAL with a Microblaze resulted in a 60 reduction in LUTs . Table 5.3

from [19] provides insight into the resource requirements for implementing several key system

calls as state machines. Adding additional calls would increase the size of the HAL. Additional

system calls can be added into the processor with no additional hardware resource penalties.
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Hthreads
Call

Slice Count

create 401
join 356
self 13
equal 69
exit 0
mutex lock 73
mutex trylock 66
mutex unlock 54
cond signal 115
cond broadcast 117
cond wait 197

Table 5.3: Size of selected HWTI system calls [19]

Service Call Latencies

Table 5.4 compares the individual latencies of key service calls. Latencies for reading and writing

local variables and manipulating the stack increased between 10 and 19 clock cycles with an aver-

age increase of 13 clock cycles. This is to be expected when services are implemented in general

purpose software routines instead of dedicated hardware. The system calls shown in Table 5.4

increased between 12 and 208 clock cycles, with an average increase of 72 clock cycles. The large

variance results from different levels of processing complexities necessary to implement each sys-

tem call. The mutex lock and mutex unlock calls as well as thread exit averaged an increase of

15 clock cycles. These calls, specifically mutex lock and mutex unlock would be heavily used if

the HW thread needed to form a critical region and exchange data with other processors and HW

threads. Clearly, how these increased latencies effect overall performance depends on their fre-

quency of use. The 15 clock cycle increase represents a 10 increase in latency overhead compared

to the HWTI. The cond signal and cond wait averaged an increase of 156 clock cycles.
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Accelerator HWTI Mblaze CRC& QuickSort
Request cycles cycles VectorADD
Read 5 15 0 4072
Write 3 17 0 4076
Pop 7 21 0 8147
Push 3 22 0 8147
Declare 3 15 0 4074
Call 5 20 0 4073
Return 9 20 0 4073
mutex lock 144 161 0 0
mutex unlock 144 156 0 0
cond signal 134 235 0 0
cond wait 342 550 0 0
thread exit 3 21 1 1

Table 5.4: Comparison of system services latencies.

5.1.2 Performance

Figure 5.1 shows the two test platforms were built to evaluate the functionality, size, and per-

formance of the extensible processor node Vs. HWTI. The first platform contained the hthreads

HWTI to service custom HW Quicksort). The second platform replaced the HWTI with an extensi-

ble processor node. Both systems were built using the Xilinx ISE Design Suite v12.3, synthesized,

and run on a Xilinx Virtex6 (ML605) Evaluation Board. Both systems included the hthreads mi-

crokernel OS.

To make fair comparisons in performance and size, three BRAM’s were connected to the ac-

celerator in both systems. A dedicated DMA engine was provided for performing data transfers

between DRAM and the BRAMs. Performance and area comparisons of the interfaces as well as

the accelerators were then made between the two systems.

Benchmark Accelerators

We adopted the same three accelerators originally used in Anderson [15] to evaluate the hthreads

HWTI. The three accelerators implemented were quicksort, CRC encryption, and vector add. Our

objective was to perform fair and unbiased comparisons between the HWTI and our extensible
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Figure 5.1: The test platform built for evaluation

processor replacement and not the optimality of the accelerator implementations. Thus we did

not alter or optimize the descriptions of the accelerators. The only required changes were to the

interfaces as discussed below.

The hthreads HWTI contained interface registers (op code and argument registers) written to

by the user logic to request services. The VHDL signal assignment statements used to write these

registers were retargeted to write into our FSL link replacements. No change was made to the order

or number of system service requests.

An interesting and potential advantage of using an extensible processor to replace a hardware

based HAL is the ability to reduce the resources synthesized into the accelerator. This can be ac-

complished by moving sequential code out of hardware and into software. We also experimented

with this type of migration to evaluate both the positive and negative effects on the size and per-

formance of the accelerator.

Next, we compared the performance and area usage of Extensible processor compared to HWTI

[15].
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Accelerator HAL FFs LUTs
CRC HWTI 246 492

MBlaze 92 237
VectorAdd HWTI 331 507

MBlaze 210 260
Quicksort HWTI 304 1054

MBlaze 378 915

Table 5.5: Resource Utilization of Accelerators
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Size and Area Comparison

Table 5.5 and Figure 5.2 show the size of the accelerators was reduced using the extensible pro-

cessor. The accelerator resources were reduced on average by 110 FFs and 200 LUTs. Resource

savings result from the lighter interface of FSLs and a ”thinning” of the hardware wrapper for

the extensible processor compared with HAL. Moving the sequential portions of the thread into

software only resulted in an average reduction of 22 LUTs, and 3 FFs for these accelerators. This

modest reduction is a result of the parallel structure of the accelerators; only a small section of

sequential code was executed at the startup of the accelerators. This size reduction is really im-

portant factor if one wants to do Partial Reconfiguration during runtime. In the case of our CRC,

Vector add and sort HW circuits, The small HW accelerators which are ripped off of their sequen-

tial parts and moved to the MicroBlaze takes about 500 us to swap in and out, while this time is

around 1300 us for HW threads.

Effects on Accelerator Performance

Figures 5.3, 5.5, 5.4 and 5.6 compare the execution times of each of the three benchmark

accelerators. We recoded each accelerator in software and measured the execution time on the

MicroBlaze for comparative purposes.

The CRC and Vector add yielded interesting results. Both accelerators did not use any stack

operations and only a single system call (thread exit). As expected the system call latencies shown

in Table 5.4 had no negative effect on performance. What was not expected was the 40 perfor-

mance increase observed. Analysis showed these performance increases resulted from the ability

to overlap, or pipeline, data transfers issued within the portion of code running on the MicroBlaze

with the computations running within the accelerator. The state machine controller in the HWTI

could only idle the accelerator during the transfer of data.

As a proof of concept, Quicksort was implemented as a HW thread to show use of the stack and

state machine versions of push, pop, call and return built into the hthreads HWTI. For example,for

data size of 2k words, 4072 reads, 4076 writes, 4042 declares, 8147 push and pops, and 4074
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calls and returns were made by Quicksort HW thread. The average latency difference of 13 clock

cycles shown in Table 5.4 for these operations clearly decreased overall performance of Microblaze

HAL , as shown in Fig. 5.7. This represents the real cost of the programmability provided by the

extensible processor.

Analysis Summary

The analysis yielded both expected and unexpected results. The objective of replacing the hardware

HAL with a programmable processor was to increase the flexibility and productivity of updating

system services, and reduce resource requirements by allowing sw/hw partitioning to occur within

and not at the thread level of granularity. It was fully expected that some level of performance

would be lost by replacing custom circuits with a programmable general purpose processor. The

results showed cases where the programmable processor approach yielded higher performance than

the hthreads custom hardware HWTI. In extreme cases as evidenced by quicksort, performance

degradation can be expected.

Table 5.6 list the optimization methods provided to three different HW circuits (used in this

paper) by MicroBlaze.
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HW Stack Pipelining of
ciruit Management Operations
CRC – yes

VectorAdd – Yes
Quicksort Yes –

Table 5.6: the optimization methods provided to three different HW circuits by MicroBlaze

5.2 HEMPS platform results

We are using Vivado 2015.2 toolset, Xilinx VC707 development board which has a Virtex 7

xc7vx485t FPGA. We are builing the following systems using our automated scripts. Systems

with up to 16 nodes, with following accelerators that are build using Vivado HLS 2015.2: Matrix

Multipy, CRC, VectorADD, VectorMultiply and Bubblesort. For simplicity, we only build sys-

tems with nodes that either do not have any accelerator (A simple node) or a static accelerator or

dynamic accelerator. When then nodes are dynamic, each node has all of the five above netlists

during PR flow.

5.2.1 Scalability

We verified our ability to combine extensible processors into a functioning HEMPS system. Here,

we built HEMPS systems with extensible processor nodes . Each node can be viewed as either

processor + co-processor (with CRC accelerator) or SW-based HAL + HW thread (with Quicksort

HW thread). We show the HEMPS system is scalable with the number of the nodes ranging from

one to 32 nodes.

Test platform: HEMPS systems with up to 32 extensible processors were built using Xilinx Vi-

vado 2014.4, synthesized, and run on a Xilinx Virtex7 (VC7047) Evaluation Board. A base system

with six MicroBlaze slave processors was first built using the open-source automated architecture

generation tool accessed at [21]. The base architecture was modified using the Xilinx PlanAhead

tool to include reconfigurable slots for each MicroBlaze to form the extensible processors.

Benchmark: We used CRC accelerator and Quicksort HW thread to show the flexibility of

a HEMPS system. The first application creates SW threads performing CRC encryption. Each
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No. Nodes Acc. Type Synthesis PR flow Total
1 NO Acc 21 mins — 21 mins
4 NO Acc 40 mins — 40 mins
8 NO Acc 71 mins — 71 mins

16 NO Acc 116 mins — 116 mins
1 Dynmic 25 mins 3.5 hours 4 hours
4 Dynimc 49 mins 7 hours 8 hours
8 Dynimc 83 mins 12.5 hours 14 hours

16 Dynimc 140 mins 18 hours 20 hours

Table 5.7: Synthesis time

extensible processor uses its CRC co-processor to boost the performance. Fig. 5.8 and Fig. 5.9

show the results of strong and weak scalability test for encryption of up to 2Mbytes of data using

CRC algorithm by creating SW threads. Fig. 5.10 and Fig. 5.11 show the result of strong and weak

scalability test of an applications sorting an array up to 2Mbytes size by creating HW threads. First

off, the results show the scalability of both systems up to 32 nodes and data sizes of 2 Mbyte. The

sequential part of DMAing data from DRAM to BRAMS is degrading the scalability when the

number of the nodes or the size of data increases beyond the bandwidth of AXI4 bus and external

DRAM. Second off, it shows how extensible processor node unifies both models of loosely and

tightly coupled accelerators under one model.

5.2.2 Synthesis time and resource usage

The PC we are running the tools on is a Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz with 32

GB memory running Ubuntu 14.04. For Systems with Dynamic accelerators, the initial netlist for

accelerators is vectoradd. Then, for the PR flow, all the 5 modules have been added to that region.

During PR flow, we create threads to simultaneously do th PR flow for all netlists. Tables 5.7

and 5.8 show the synthesis times and resource utilization for systems built using Archgen upto 16

nodes with different configurations.

5.2.3 Partial reconfiguration

Figure 5.12 shows the floorplan of the final PR flow for a system with 16 nodes.
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Figure 5.12: Floorplan of a PR system with 16 nodes
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No. Nodes Acc. Type FF LUT BRAMs
1 Static 45816/7.5 39691/13 44/4
4 Static 72893/12 56152/18 100/9
6 Static 89032/14 64286/21 137/13
8 Static 120785/19 85714/28 180/17

16 Static 181676/30 121014/40 322/31

Table 5.8: resource utilization

Storage Transfer Time Bandwidth (MByte/S)
Compact Flash 185 ms 0.24

DRAM 13 ms 3.27
DRAM + DMA 460 us 96

Table 5.9: PR overhead

Table 5.9 shows the Partial Reconfiguration on Virtex 6 time based on where to save the bit-

streams (Bit stream Size is 45Kbyte).

5.3 Polymorphic functions

This section evaluates the portability, productivity and performance of multi-threaded applica-

tions, which use polymorphic functions, running on HEMPS systems. For this part, we show our

approach reinstates portability or the ability for an application developer to write the code once

and run anywhere, and also how dynamic partitioning can result in better resource utilization and

better overall system performance. Tables 5.10 and 5.11 show the performance and resource usage

of two different hardware accelerator for sorting. This shows that choosing the right implementa-

tion of the polymorphic function can and will effect the performance. Figures 5.14 and 5.13 and

5.15 shows the detailed result of our three polymorphic functions with different data sizes.

5.3.1 Portability proof

To show the portability, I ran a simple program shown at Fig. 5.16 on different Hemps systems

with 6 nodes. The program just simply creates threads that run crc polymorphic function. The

program first self identifies the number and type of the nodes and uses these information later

during runtime.
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Data size bubble sort quick sort software
64 150 442 355

128 330 784 693
256 808 1535 1468
512 1966 3034 3228

1024 5263 5775 6759
2048 13345 6206 14253
4096 38204 7057 30908

Table 5.10: Sorting time comparison

accelerator LUT FF
bubble sort 342 195
quick sort 900 372

Table 5.11: resource usage for two different sorting accelerators
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Fig. 5.17 shows the result of the program running on a the mixed system with 6 nodes. The

system is a mixed one with 6 slaves, two of them don’t have any accelerators, two of them have

static accelerators and the last two ones have dynamic accelerators.

Fig. 5.18 shows the result of the program running on a system with 6 nodes and no accelerators.

The system has 6 nodes, with none of the nodes have accelerators.

Fig. 5.19 shows the result of the program running on a static system with 6 nodes. The system

has 6 nodes, with all of them have static accelerators.

Fig. 5.20 shows the result of the program running on a dynamic system with 6 nodes. The

system has 6 nodes, with all of them have dynamic accelerators initially loaded with different

accelerators.

5.3.2 Performance analysis

Test Configurations The following three classes of platforms were created to evaluate the porta-

bility of the programming model and ability of the runtime system to efficiently map the application

across different combinations of heterogeneous resources. Figures 5.21 and 5.22 show the block

diagram of the platforms being tested. The platforms are as follows:

• PlatformxNo: An SMP multiprocessor system with x slave processors.

• PlatformxFixed: A heterogeneous multiprocessor system with x slave processors each hav-

ing a static hardware accelerator attached via Fast Simplex Links (FSL). Three types of
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void * crc_thread(void * arg)
{

data * package = (data *) arg;
poly_crc(package ->dataA ,package ->size);
return (void *) 0;

}
//================================================

int main{
...

for (k =0; k <NUM_AVAILABLE_HETERO_CPUS; k++)
{

//creating Thread on slave CPU #k
thread_create ( &tid, &attr , crc_thread_FUNC_ID , (void * )&package ,k+2,0);
hthread_join(tid, (void *) &ret);

//printing info about how many times the polymorphic functions are done in HW or SW.
print_finer_info();

}
...
}

Figure 5.16: A simple program creating threads that invoke poly crc function.

-----Begin Program -----
There are 6 slave processors in this HEMPS system
Slave #0: Mblaze , With No Accelerator
Slave #1: Mblaze , With No Accelerator
Slave #2: Mblaze , With Static Accelerator: crc
Slave #3: Mblaze , With Static Accelerator: VectorAdd
Slave #4: Mblaze , With Dynamic Accelerator , loaded: crc
Slave #5: Mblaze , With Dynamic Accelerator , loaded: VectorAdd

Creating Hetero Thread (CPU#0)!
Total HW Counter: 0 Total SW Counter: 1 Total PR Counter: 0

Creating Hetero Thread (CPU#1)!
Total HW Counter: 0 Total SW Counter: 2 Total PR Counter: 0

Creating Hetero Thread (CPU#2)!
Total HW Counter: 1 Total SW Counter: 2 Total PR Counter: 0

Creating Hetero Thread (CPU#3)!
Total HW Counter: 1 Total SW Counter: 3 Total PR Counter: 0

Creating Hetero Thread (CPU#4)!
Total HW Counter: 2 Total SW Counter: 3 Total PR Counter: 0

Creating Hetero Thread (CPU#5)!
Total HW Counter: 3 Total SW Counter: 3 Total PR Counter: 1

FINISH

Figure 5.17: A mixed system with 6 nodes
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-----Begin Program -----
There are 6 slave processors in this HEMPS system
Slave #0: Mblaze , With No Accelerator
Slave #1: Mblaze , With No Accelerator
Slave #2: Mblaze , With No Accelerator
Slave #3: Mblaze , With No Accelerator
Slave #4: Mblaze , With No Accelerator
Slave #5: Mblaze , With No Accelerator

Creating Hetero Thread (CPU#0)!
CRC , MB 0, size: 2048*********************************
Total HW Counter: 0
Total SW Counter: 1
Total PR Counter: 0

Creating Hetero Thread (CPU#1)!
CRC , MB 1, size: 2048*********************************
Total HW Counter: 0
Total SW Counter: 2
Total PR Counter: 0

Creating Hetero Thread (CPU#2)!
CRC , MB 2, size: 2048*********************************
Total HW Counter: 0
Total SW Counter: 3
Total PR Counter: 0
-----------------------

Creating Hetero Thread (CPU#3)!
CRC , MB 3, size: 2048*********************************
Total HW Counter: 0
Total SW Counter: 4
Total PR Counter: 0
-----------------------

Creating Hetero Thread (CPU#4)!
CRC , MB 4, size: 2048*********************************
Total HW Counter: 0
Total SW Counter: 5
Total PR Counter: 0
-----------------------

Creating Hetero Thread (CPU#5)!
CRC , MB 5, size: 2048*********************************
Total HW Counter: 0
Total SW Counter: 6
Total PR Counter: 0
-----------------------

FINISH

Figure 5.18: A system with 6 nodes and no accelerators
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-----Begin Program -----
There are 6 slave processors in this HEMPS system
Slave #0: Mblaze , With Static Accelerator : crc
Slave #1: Mblaze , With Static Accelerator : VectorAdd
Slave #2: Mblaze , With Static Accelerator : crc
Slave #3: Mblaze , With Static Accelerator : bubblesort
Slave #4: Mblaze , With Static Accelerator : crc
Slave #5: Mblaze , With Staic Accelerator : matrix_m

Creating Hetero Thread (CPU#0)!
CRC , MB 0, size: 2048*********************************
Total HW Counter: 1
Total SW Counter: 0
Total PR Counter: 0

Creating Hetero Thread (CPU#1)!
CRC , MB 1, size: 2048*********************************
Total HW Counter: 1
Total SW Counter: 1
Total PR Counter: 0

Creating Hetero Thread (CPU#2)!
CRC , MB 2, size: 2048*********************************
Total HW Counter: 2
Total SW Counter: 1
Total PR Counter: 0
-----------------------

Creating Hetero Thread (CPU#3)!
CRC , MB 3, size: 2048*********************************
Total HW Counter: 2
Total SW Counter: 2
Total PR Counter: 0
-----------------------

Creating Hetero Thread (CPU#4)!
CRC , MB 4, size: 2048*********************************
Total HW Counter: 3
Total SW Counter: 2
Total PR Counter: 0
-----------------------

Creating Hetero Thread (CPU#5)!
CRC , MB 5, size: 2048*********************************
Total HW Counter: 3
Total SW Counter: 3
Total PR Counter: 0
-----------------------

FINISH

Figure 5.19: A static system with 6 nodes
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-----Begin Program -----
There are 6 slave processors in this HEMPS system
Slave #0: Mblaze , With Dynamic Accelerator , loaded: bubblesort
Slave #1: Mblaze , With Dynamic Accelerator , loaded: crc
Slave #2: Mblaze , With Dynamic Accelerator , loaded: VectorAdd
Slave #3: Mblaze , With Dynamic Accelerator , loaded: matrix_m
Slave #4: Mblaze , With Dynamic Accelerator , loaded: crc
Slave #5: Mblaze , With Dynamic Accelerator , loaded: vectormul

Creating Hetero Thread (CPU#0)!
CRC , MB 0, size: 2048*********************************
Total HW Counter: 1
Total SW Counter: 0
Total PR Counter: 1

Creating Hetero Thread (CPU#1)!
CRC , MB 1, size: 2048*********************************
Total HW Counter: 2
Total SW Counter: 0
Total PR Counter: 1

Creating Hetero Thread (CPU#2)!
CRC , MB 2, size: 2048*********************************
Total HW Counter: 3
Total SW Counter: 0
Total PR Counter: 2
-----------------------

Creating Hetero Thread (CPU#3)!
CRC , MB 3, size: 2048*********************************
Total HW Counter: 4
Total SW Counter: 0
Total PR Counter: 3
-----------------------

Creating Hetero Thread (CPU#4)!
CRC , MB 4, size: 2048*********************************
Total HW Counter: 5
Total SW Counter: 0
Total PR Counter: 3
-----------------------

Creating Hetero Thread (CPU#5)!
CRC , MB 5, size: 2048*********************************
Total HW Counter: 6
Total SW Counter: 0
Total PR Counter: 4
-----------------------

FINISH

Figure 5.20: A dynamic system with 6 nodes
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Figure 5.21: Platfrom configuration 1

Figure 5.22: Platfrom configuration 2
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accelerators were created: CRC, Sort, and Vector. Each processor had a single accelerator

instantiated. Two processors had CRC, two had Sort, and two had vector accelerators.

• PlatformxPR: The same as PlatformxFixed, but all slave processors had slots created for partial

reconfiguration to load any of the three accelerators.

• Platform3No 3PR, Platform3Fixed 3PR, Platform3No 3Fixed: Mixed heterogeneous multiprocessor

systems with 6 slave processors each having either a partially reconfigurable region, static

hardware accelerator or no accelerator.

All systems were built using Xilinx ISE Design Suite v12.3 and all tests was performed on

a Xilinx Virtex6 (ML605) Evaluation Board. All code was compiled using the heterogeneous

compilation flow previously reported in [7]. [12]. Although the runtime system used in this work

supports the use of heterogeneous processors, only MicroBlaze processors were used due to board

selection. For convenience in this work we used MicroBlaze [4] processors.

Synthetic Benchmark: A synthetic benchmark program was written and executed on all plat-

forms. The synthetic benchmark created approximately 150 threads. Each polymorphic thread

creates a variable number of joinable (on average three) worker threads based on run time informa-

tion. All threads made between one and three polymorphic function calls (poly crc(), poly sort(),

poly vector()). As explained previously, each polymorphic function contained both software and

hardware accelerator implementations. The same hardware version of each accelerator was used

in both systems with fixed or Partially reconfigurable accelerators. The order of the polymorphic

function calls and their data input sizes were randomized. A much simplified pseudocode version

of the benchmark is provided in Figure 5.23.

We use these terms in this section:

Best match found ratio: The percentage of the available accelerator needed for a thread mapped

to a slave processor being present. Higher is better.

HW accelerator usage ratio: The percentage of how many times the polymorphic functions ran

in Hardware accelerators instead of running in Software. Higher is better.
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int main() {
init_profiling_table();
thread_create(foo_thread);
thread_create(bar_thread);
....

}
void * foo_thread() {

poly_vector(&a,&b,&c,size ,ADD);
poly_crc(&data ,size);
poly_sort(&data ,size);

}
void * bar_thread() {

poly_sort(&data ,size);
}
//˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
// Polymorphic Function
void poly_vector( ... ){

bool use_accelerator=isHW(); //Performs PR as well;

if (use_accelerator) {
divide_data_into_chunks();
for ( i < # of chunks ) {

dma_data(chunks[i]);
hw_vector(chunks[i]);

}
}
else

sw_vector();
}

Figure 5.23: Pseudo code for the synthetic benchmark.

PR ratio: The percentage of how many times times partial reconfiguration is done on slave

processors. Lower is better.

Also, We refer to the combination of both Profiling and self-aware scheduling as Runtime

Tuning.

• Data arguments given to accelerator functions are less than 2kB. This avoids the execution

time over bigger sizes of data from dominating the improvements provided by our runtime

system.

• Software threads execute on the host processor, and are currently time-sliced in a round-robin

manner.

• We chose a target of 50 percent slave processor utilization in our system of 6 when creating

threads manually using thread create. Host accelerator calls are blocking, as they can create

an optimal number threads (=¡ 6) within the call.
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• There are three examples of accelerator functions implemented in both software and hard-

ware: CRC, SORT, & VECTOR functions.

• In the beginning, the main function calls online tuning() function which fills the tuning table();

• As mentioned before, once we compile it for any of the platforms, we then use the same elf

file for all other two platforms.

• Since it is synthetic benchmark,we have a average load of keeping just three MicroBlazes

busy. So,before creating any new threads we first wait until at least three slaves are free.

Portability was validated by running the synthetic benchmark unaltered on all platforms. Fig-

ure 5.24 shows the execution times of the synthetic benchmark run on eleven unique platforms.

Each platform contained varying numbers of processors and different combinations of static and

partially reconfigurable accelerators. The correctness of the results were verified using an auto-

mated script that configured and executed each test case, read the runtime results back onto a

workstation and compared against expected results. All results passed. Figure 5.24 demonstrates

how the runtime system transparently tuned the application on all combinations of system re-

sources with no changes to the program. The next section provides a quantitative analysis of the

results. Figure 5.24 shows the more systems gets complex, the more performance is achieved .

Moreover, Runtime Tuning has virtually no effect in simple systems like PlatformxNo and

Platform3Fixed, while it has a great effect in PlatformxPR with the Platform6PR benefiting more than

all other cases since it is the most complex system among all 9 tested platforms. Figure 5.24 shows

that enabling Runtime Tuning in Platform6No only leads to 3 improvement, 11 In Platform6Fixed but

61 in Platform6PR.

As would be expected, the results show relative performance gains as the number of processors

was increased and additional performance boosts provided when accelerators are added. With

portability verified we next sought to understand if our runtime partitioning scheduling approach

would compare favorably with what would be achieved by statically profiling and partitioning the

application on the bench for each for systems with different particular sets of resources.
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Figure 5.24: Execution time for the Synthetic benchmark

The results show that for small systems hand partitioning is as good or better than dynamic

partitioning. As systems grow in complexity dynamic partitioning yields better results. Runtime

tuning consists of self-aware scheduling and runtime profiling. Figure 5.24 shows the performance

gains when these two capabilities were active. The shape of the curves in Figure 5.24 provide in-

sight into the effectiveness of runtime tuning. For systems with processors that have no accelerators

(Platforms1No,3No,6No), exploiting only TLP provides no significant performance differences when

runtime tuning is off or on. This indicates that explicitly hand tuning in one’s application to make

use of all processors matches the same performance gains as runtime tuning. However, naively us-

ing all processors may cause the system to expend unnecessary energy when using less processors

in the same system provides the same benefit. This is what runtime tuning achieves through the

use of profiling information. However a measurable difference can be seen in achieved efficiency

of resource utilization and speedup when the diversity and numbers of resources starts to increase.

With runtime tuning enabled, the execution time monotonically decreased, even as the complexity

of the system grew through the addition of processors, static accelerators, and partially reconfig-

urable accelerators (Platform1No to Platform6PR). as the number of resources increases and static
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Figure 5.25: Synthetic benchmark on Platform6PR: First accelerator hit ratio

groups of accelerators are replaced by partial reconfiguration regions (Platform1No to Platform6PR).

This shows that runtime tuning continually enabled the system to deliver performance gains as re-

sources became more diversified and complex during runtime. This trend holds as systems become

larger through the addition of processors, processors with static accelerators, and finally processors

with partially reconfigurable accelerators. The runtime Tuning enables the polymorphic calls to

wisely choose when and how they use the resources and options available. When runtime tuning

was disabled, some performance increases were observed but still the more complex systems in

average run faster, thanks to the portable programming model which transparently takes advan-

tage of any available resources. However the shape of the curve was no longer monotonic. For

example, from Platform3Fixed to Platform3PR and from Platform6Fixed to Platform6PR, performance

degraded as the diversity of the hardware increased. This shows that as the number and types of

resources within a CHMP system increases, the difficulty of producing near optimal solutions for

all combinations of resources by hand tuning also increases. The following section focuses on the

individual effects of self-aware scheduling and runtime profiling.
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Figure 5.26: Synthetic benchmark on Platform6PR: Speedup

Figure 5.26 shows speedups for the synthetic benchmark running on Platform6PR using the

different runtime tuning options. Figure 5.27 shows the percentage of time the system had to

load an accelerator before it could be used. Figure 5.25 shows the percentage of time that the

system scheduler was able to find the first accelerator needed by a thread already loaded to an

available processor in the system. Turning on either self-aware scheduling or profiling leads to

more speedup, less partial reconfiguration ratio and higher first accelerator hit ratio. As it can be

predicted, enabling both of them leads to better results.

Figure 5.26 shows profiling provides greater speedup than self-aware scheduling. This results

from self-aware scheduling making its scheduling decision based on the first polymorphic function

called in a thread. Conversely, runtime profiling includes decisions for every polymorphic function

called in a thread. that are contained within a thread leads to significantly better speedup and less

partial reconfiguration ratio since it tunes all polymorphic calls in a thread rather than only the first

one.

Figure 5.25 shows that enabling self-aware scheduling learns which accelerator is first used in

each thread. It learns by maintaining a priori history of what accelerators are already loaded when
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scheduling a new thread. achieves a 20 increase in first accelerator hit ratio. This increase is due

to the self-aware scheduler storing first polymorphic function calls within threads and using this

information to reschedule threads at a later time. This provided two benefits. First, slave processors

did not have to decide if the cost of loading a bitstream offset the benefits of using the accelerator

compared to simply executing the function in software. Second, the system was able to reduce

the PR ratio by 11 which reduced the overhead of loading additional bitstreams. The combination

resulted in a 1.15x speedup.

Figure 5.27 shows that enabling profiling reduces the PR ratio by 45 percent. Profiling infor-

mation was used to make a more fine-grained decision as to when to use an accelerator. Figure

5.28 shows the result of a program with 120 threads , Each thread randomly can have up to 3

polymorphic function calls. It shows that the PR ratio decreases while speedup increases. In

some instances, the additional overhead of loading the bitstream would have resulted in a slower

execution time using the accelerator compared to simply executing the polymorphic function in

software. The reduced PR ratio showed that this was the case. Reducing the PR ratio also pro-

vides the system with important secondary benefits. Reducing the number of times bitstreams are
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transferred eases the load on key system resources such as buses, DRAM, and the ICAP. These

resources that otherwise would have used are now available for other processing requests. The net

effect of profiling resulted in a significant 2.2x speedup on Platform6PR.

5.3.3 Evaluating Run Time Profiling

The polymorphic functions need the Training data stored in the tuning table to determine the best

version to be called. The performance gain comes from reducing the number of threads created to

an optimum corresponding to the current platform, as well as significantly reducing the overhead

of Partial reconfiguration by avoiding unnecessary swapping in and out accelerators. Profiling

helps polymorphic calls to Autonomously run in the most efficient way, transparent to the user.

Figure 5.29 isolates the effects of run time profiling. On Platforms6No,6Fixed,6PR , Platform6Fixed and

Platform6PR enabling Profiling information was used effectively by the polymorphic function par-

titioner when determining if bitstreams needed to be loaded. Profiling shows negligible impact
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Figure 5.29: Evaluating profiling effects on polymorphic calls

on Platforms6No,6Fixed. Conversely profiling shows significant impact in Platform6PR. The profiling

information enables polymorphic functions to justify swapping partially reconfigurable accelera-

tors, instead of blindly reloading a bitstream every time an accelerator was invoked. As expected

reducing bitstream transfers leads to better overall performance. Conversely Figure 5.29 clearly

shows with profiling disabled, the performance of Platform6PR is worse than Platform6Fixed. Even

more concerning the performance becomes worse than Platform6No, the system with no accelera-

tors. obtain an increase in performance. When profiling reduces the number of processors used to

increase performance, it also reduces the number of processors generating data transfers and syn-

chronization requests. Reducing unnecessary reloading of bitstreams also eases bus contention.

These resources that otherwise would have used are now available for other processing requests.

Training data stored in the tuning table is being used by both host and slave polymorphic

functions:

1. Using training data for slave polymorphic functions means evaluating software execution

time, and hardware execution time and PR overhead, to decide where computation should
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occur for a specific polymorphic function call. Therefore, it is limited to systems with dy-

namic accelerators. That is why in Figure 5.29 D3 is significantly better than D1, compared

to negligible improvement going from B to B1 and S1 to S3.

2. Using training data for host polymorphic thread create functions means creating an Optimal

number of threads based on runtime variables compared to maximum number of threads.

Although one might think that creating more threads always boosts up performance, Figure

5.29 shows by using the Training data, the performance increases while significantly creating

smaller number of threads. The online Tuning function allows more threads to be created if

there is at least 10 percent performance is gained. This not only leads to a faster execution

time, but also will save power if we turn off the MicroBlazes that we are not scheduling a

thread on them. This idea is more discussed in our other paper. The best Optimal number of

threads is a function of system configuration , and therefor it is different in each of these three

platforms. However,it was hard to get that information for system with Dynamic accelerators

since the Opt.No.Threads is also a function of configuration of the system at the moment.

Therefore, we used the results of static system an estimate for Dynamic system.
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Chapter 6

Conclusion

The multithreaded programming model has been effective in enabling programmers to model ac-

celerators as hardware threads that can synchronize and exchange data with software threads under

the control of the operating system. HW threads need to be provided with an analogous set of

software library middleware written for SW threads to interface with the system. This Hardware

Abstraction Layer (HAL) has been traditionally written via FSM in hardware. The model relies

on the use of a custom HAL to provide the operating system services and data access interfaces

necessary for the hardware thread to seamlessly interact with the rest of the system. Traditional

approaches provided a finite state machine version of a HAL to allow hardware threads to interface

into the multithreaded programming model.

In this paper we argued that CPU-based HAL provides increased flexibility and productivity,

less area usage and better performance compared to traditional HW-based HALs. Replacing the

custom hardware HAL with a general purpose processor software enables the model to better

support the unique types of data and loop level parallelism that may exist within each thread.

Importantly, the combination of a programmable processor and accelerator form a Heterogeneous

Extensible Multiprocessor (HEMP) node that can be replicated to form large Chip Heterogeneous

Multiprocessor Systems. The results showed how a HEMPs system can be used to seamlessly

exploit different types of parallelism within familiar programming patterns.

HEMPS unifies both models of loosely coupled and tightly coupled accelerators in one archi-

tecture, and provides a portable platform for applications. We provided comparison between our

approach and other research efforts in this area. We built HEMPS systems with up to 32 nodes to

support different use cases of custom HW in FPGAs. We showed how we can build scalable and

portable MPSoC systems and provided a detailed analysis of the area and performance comparison

between different HEMPS systems.
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Our original pragmatic objective was to replace custom hardware with a programmable con-

troller to increase productivity and flexibility. However, this pragmatic objective resulted in un-

foreseen changes in how we model, build and program hybrid HW/SW multithreaded processor

systems. Following is the list of benefits of an extensible processor node which provides the basic

structure for HEMPS and polymorphic functions:

• performance: Having a MPSoC system with Extensible processor nodes not only enables

both coarse grained HW/SW partitioning through Thread Level Parallelism (TLP), but also

it enables users to more efficiently exploit finer grained parallelism within a thread body.

It also provides transparent and distributed partial reconfiguration of the accelerator/HW-

thread during the execution of the thread.

• resource usage: The by-product of fine grained HW/SW partitioning is having smaller cus-

tom HW threads, as the sequential part of the thread can be run on the processor. This will

Reduce the gate requirements of accelerator/HW thread circuits.

• Portability: The flexibility of the Extensible processor node provides the infrastructure for

the threads to be run portably via a library of functions with implementations in both HW

and SW.

• Supporting Polymorphic Functions and Fine Grained HW/SW Partitioning: The Extensible

processor enables a fine grained HW/SW partitioning of the thread assigned to it.

Form the hardware point of view, the average SW developers can not deal with the CAD tools

to build a complicated HEMPS system, not to mention the complexities of compiling the code for

a heterogeneous platform. In this work we addressed the problem of FPGA’s lack of accessibility

to SW developers by presenting Archgen script to generate the complete system on chip which can

be accessed in the cloud. We show the results for generating different HEMPs systems using our

toolchain.

From the software point of view, we presented a library of polymorphic functions that re-

stores application portability over HEMPS systems. The programming model eliminates the need
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for programmers to exhaustively profile their machine specific applications. The programming

model enables our runtime system to profile and efficiently create and schedule concurrent threads

on heterogeneous resources. It also allows data level parallelism within each thread. This can

significantly enhance productivity as it moves the burden of profiling and optimizing from the pro-

grammer to the run time system. We also presented run time profiling of the application. Runtime

results gathered from a synthetic benchmark on different system configurations of processors, pro-

cessors and static accelerators, and processor and dynamically reconfigurable accelerators showed

better performance results when making partitioning and SW/HW scheduling decisions during run

time.

6.1 Research Contributions

Engineering Artifacts:

• Extensible processor node

• Transparent partial reconfiguration

• Automated generation of HEMPS systems

• Portable programming model via polymorphic functions

• Runtime tuning

Scientific outcomes:

• New paradigm for accelerator integration into CHMP systems.

• Better performance on FPGAs without sacrificing productivity and portability on FPGAs

• Enable software programmers to use FPGA unique capabilities without the help from hard-

ware engineers

• Reduce impact of Dark Silicon on next generation heterogeneous multiprocessors
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Figure 6.1: HEMPS with loosely coupled accelerators

6.2 Future Work

Future work includes:

• building up libraries of linkable polymorphic representations of common programming pat-

terns.

• Investigating on systems that include additional heterogeneous resources such as soft core

programmable vector processors.

• Creating a set of tools and automated design environment for system programmers to create

and add additional polymorphic functions into our library.

• Investigating on new machine learning approaches to increase the efficiency of our schedul-

ing decisions.

• making all the accelerators accessible by all slaves via a Crossbar switches as shown in

Fig. 6.1. This will further reduce unnecessary Partial reconfiguration, and provides better

resource management. Moreover, it gives us the infrastructure for extending our API to

support chaining of Accelerators and eliminate unnecessary DMAing data back and forth, as
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well as giving us the option of having different sizes of Partial Reconfiguration regions, so

that we efficiently map both small and big accelerators.

• Improving our current runtime tuning by gathering more extensive HW/SW information of

the running system like the bus traffic, ICAP queue status, the static profiling of the software

application and use some machine learning techniques to make more efficient decisions.

• Creating two Hardware co-processors, one to service host processor in smart scheduling,

and the other one for the slaves for slave tuning. Both of them will get the information

from current traffic of ICAP resource, available accelerators, Profiling information of the C

program running, and they might use some machine learning techniques to be able to provide

more accurate information needed by host or slave processors.
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