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Abstract 

Due to the popularity of smart phones and mobile apps, a potential privacy risk with the 

usage of mobile apps is that, from the usage information of mobile apps (e.g., how many hours a 

user plays mobile games in each day), private information about a user’s living habits and 

personal activities can be inferred. To assess this risk, this thesis answers the following research 

question: can the type of a mobile app (e.g., email, web browsing, mobile game, music 

streaming, etc.) used by a user be inferred from the resource (e.g., CPU, memory, network, etc.) 

usage patterns of the mobile app?  

This thesis answers this question for two kinds of systems, a single mobile device and a 

mobile cloud computing system. First, two privacy attacks under the same framework are 

proposed based on supervised learning algorithms. Then these attacks are implemented and 

explored in a mobile device and in a cloud computing environment. Experimental evaluations 

show that the type of app can be inferred with high probability. In particular, the attacks achieve 

up to 100% accuracy on a mobile device, and 66.7% accuracy in the mobile cloud computing 

environment. This study shows that resource usage patterns of mobile apps can be used to infer 

the type of apps being used, and thus can cause privacy leakage if not protected.  
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I. INTRODUCTION 

A. Overview 

With the popularity of smart mobile phones such as iPhone and Android phones, mobile 

apps installed on those phones play an increasingly important role in people’s life, allowing users 

to check emails, play games, listen to music, do online banking, perform online social activities, 

and so on.  

Despite the convenience provided by mobile apps, there is a potential privacy risk with 

the usage of mobile apps. In particular, from the usage information of mobile apps, private 

information about a user’s living habits and personal activities might be inferred. For example, 

the use of game apps can reveal how much time a user spends on playing, and the use of music 

streaming apps can reveal whether a user is a music fan or not. To assess such privacy leakage 

risk, it is important to assess the risk of mobile app usage information being exposed to the 

attacker.    

B. Research Questions    

In this thesis, we want to answer the following research question: can the resource (e.g., 

CPU, memory, network, etc.) usage patterns of a mobile app be used to infer the type of mobile 

app (e.g., email, web browsing, mobile game, music streaming, etc.) being used by a user? We 

answer this question for two kinds of systems, a single mobile device and a mobile cloud 

computing system. 

In particular, the first sub-question that this thesis answers is whether the type of an app 

can be inferred from the resource usage patterns of the app measured on mobile devices. 

Although there are some APIs provided by mobile operating systems (e.g., Android) through 
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which an attacker can get the app currently being used by a user, this attack can be mitigated by 

existing static analysis and dynamic analysis techniques [1].  

 

Instead, we explore a side channel attack that exploits the resource usage patterns of 

mobile apps. We observe that different apps have different resource usage patterns. For example, 

games and email clients may request different rates of CPU cycles or different amounts of 

memory to perform their tasks. Figure 1 shows the CPU usage pattern of two apps Gmail and 

Tetris obtained on Asus Nexus 7 tablet running Android 5.1. Here Gmail is an email client and 

Tetris is a game. It can be seen that the CPU usage pattern of the two apps are very different. The 

maximum CPU load of Gmail is 0.80 (out of 1.0) while the maximum CPU load for Tetris is 

0.40. Moreover, the minimum CPU load of Gmail is 0.00 while that of Tetris is 0.05. The CPU 

usage pattern for Gmail also has longer low-value segments which look almost flat. Such 

difference might be exploited by an attacker who is capable of getting the resource usage pattern 

of a specific app to identify the type of apps being used by a user.  

Gmail Tetris 

	 	
	

Figure 1. CPU Usage Pattern of Two Applications 
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The second sub-question that this thesis answers is whether the type of an app can be 

inferred from the resource usage patterns of the app measured on the cloud server in a mobile 

cloud computing environment. In mobile cloud computing, mobile phones offload some 

computation tasks to cloud servers that have more powerful computing resources than phones. 

Following the growth of mobile devices in the market, mobile cloud computing offerings have 

also grown rapidly. However, this growth has not achieved its expected potential due to security 

and privacy concerns. Cloud servers always know the resource usage of the offloaded 

computation because they are the provider of the computing resources. Thus, there is a 

possibility that the server identifies the type of app offloaded to it. Similar to an electric company 

that does not need to know how we use the electricity in our homes, cloud servers should never 

know what the users are doing on their cloud servers. This knowledge is part of users’ privacy. 

Therefore, the potential privacy leakage resulting from exploiting resource usage patterns of 

offloaded computations should be studied. Unfortunately, this problem has not been addressed in 

the literature.  

Note that for the same app, when it runs in a mobile phone and when it is offloaded to a 

cloud server, its resource usage patterns might be different due to the difference in computer 

architecture and hardware resources between the mobile phone and the cloud server. Thus, the 

two sub-questions should be answered separately.  

C. Contributions 

To answer these two questions, we propose an attack framework with two attack methods 

that exploit the resource usage pattern of mobile apps to identify the type of apps. We also 

explore the attacks on a dataset collected from mobile device and a dataset collected from a 

cloud server. The contribution of this thesis is summarized as follows: 
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1. This thesis explores whether the resource usage pattern of mobile apps can be used to infer 

the type of apps being used. It identifies a side channel attack against mobile user privacy. 

2. This thesis investigates the feasibility of resource usage pattern-based privacy attacks on 

both mobile devices and mobile cloud computing servers, and finds that the type of app 

can be inferred with high probability. These results can deepen our understanding of 

privacy attacks on mobile systems and call for solutions for enhancing privacy in mobile 

phones and mobile cloud computing systems. 

D. Organization of the Thesis 

The remainder of this thesis is organized as follows. Chapter II reviews related work. 

Chapter III describes our attack framework and the two attack methods. Chapter IV and Chapter 

V describe the attacks on a mobile device and in a mobile cloud computing system, respectively. 

Chapter VI concludes the paper and points out future work. 
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II. LITERATURE REVIEW 

Felt et al. (2011) [5] have conducted a mobile malware survey. They concluded that 

mobile malwares are primarily caused by permissions misuse by the applications. They 

discussed security and privacy threats while mobile devices are connected to the Internet and 

misbehaving applications have been installed. These misbehaving applications will send 

sensitive information about their users to the developer of the applications without the users’ 

knowledge. The applications’ developers will use this information for their financial gain, such 

as selling these data to interested third parties. The solutions that are suggested are better 

regulation of publishing mobile applications to the market and warning users to use mobile 

antivirus application and to be more aware when installing new mobile applications. Although it 

seems like a good solution to serious threats, potential security and privacy risks with 

undiscovered side channels such as resource usage patterns and in cloud computing scenarios 

were not discussed. 

Xu et al. (2015) [7] have worked on profiling mobile apps by monitoring network traffic. 

They collect http traces and try to identify the app that generates those traces by using a unique 

identifier (msid=X) in the HTTP header. After finding the unique identifier inside the HTTP 

header, the identifier will be promoted as a signature when the correlation with a particular app is 

high. Then using these apps signatures, they tested their implementation, FLOWR, on real world 

traffic data and apps running on emulator to find the ground truth. They compared both data to 

test the accuracy. FLOWR is capable of identifying 90% of apps without relying on the seed 

signatures [7]. Yao et al. (2015) [8] developed a framework as an improvement to FLOWR. This 

framework is tested on 15 million flows generated by over 700K applications from the Android, 
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iOS, and Nokia market-places and is able to identify over 90% of the applications with 99% 

accuracy on average.  

Similarly, Dai et al. (2013) [23] have worked on identifying Android apps from network 

traces. They proved that it is feasible to identify mobile apps by looking for the key/value that 

corresponds to the app’s name in network traces. Tongaonkar et al. (2013) [27] have done 

similar work using advertisement data flow ID on ad-supported apps. They proved that it is 

feasible to identify the app ID using the key/value found in the advertisement data flow. 

Moreover, their scheme is also able to successfully predict when a type of apps is used. For 

example, news apps are mostly used in the morning. Although these works have similar  goals 

with our work in identifying an app and thus inferring what the user is doing, they do not 

consider CPU usage data which is the focus of our work and they do not consider mobile cloud 

computing scenarios.   

Devarakonda et al. (1989) [25] have worked on predicting how much CPU time and how 

much memory a known program will use. The goal is to help load balancing schemes to perform 

better by predicting the resource usage of a known program. Along that line, Shimizu et al. 

(2009) [26] have done work to predict the CPU time of a known program to better distribute the 

program to  hosts in a distributed computing environment. These works infer the CPU usage of a 

known program. In contrast, our work infers the type of a mobile app from the known CPU 

usage pattern.  

In mobile cloud computing, mobile devices can depend on cloud computing resources 

and cloud storage resources to execute computationally exhaustive tasks such as data mining and 

multimedia processing. Mobile cloud computing has grown rapidly, and this growth trend is 

expected to continue. Khan et al. (2013) describe that mobile cloud subscribers growth is still 
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lower than what had been expected because of security and privacy concerns. Based on a recent 

survey by the International Data Corporation, most IT Executives and CEOs are not interested in 

implementing such services due to the risks associated with security and privacy [2]. Security 

threats have become a barrier to taking advantage of the quick flexibility of the mobile cloud-

computing paradigm. Substantial work has been done in research organizations and academia to 

develop secure mobile cloud computing environments and infrastructures [2]. However, these 

initiatives have not fully addressed the privacy concerns with mobile cloud computing.  

Chun et al. (2011) [3] have developed Clone Cloud, currently the most efficient mobile 

cloud offloading implementation. Chun et al. claimed that Clone Cloud is able to increase 

execution time up to 20 times while decreasing energy intake up to 20-fold. Despite this huge 

gain resulting from adopting mobile cloud technology, security and privacy concerns continue to 

prevent many organizations from adopting it. Therefore, it is essential to identify what has been 

done to mitigate these potential security and privacy risks. It is clear that these risks play a more 

decisive role than the substantial benefits to be gained by adopting mobile cloud computing. 

Moreover, analyzing any potential security and privacy risks that remain must be addressed. Ren 

et al. (2012) [4] have discussed various security challenges in public clouds such as data service 

outsourcing security, computation outsourcing security, trustworthy service metering, access 

control, multi-tenancy, security and privacy, and security overhead. Ren et al. admit that 

answering these challenges is key to successful cloud computing adoption. However, solutions to 

these challenges were not explained.  

Huang and Zhou (2011) [6] have developed a secure framework for mobile cloud 

computing through trust management and private data isolation. The trust management part 

includes identity management, key management, and security policy enforcement. While this 
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solution seems to provide security assurance, it requires one public cloud server to be trusted in 

addition to requiring at least two public cloud providers. Therefore, this solution requires more 

resources to provide its security properties. Moreover, it is still vulnerable to other potential 

privacy leakage by exploiting resource usage patterns. Slamanig (2013) [24] proposed a scheme 

to mitigate privacy leakage in the cloud environment by hiding cloud user’s actual resource 

usage using an upper bound limit and partially blind signed token. However, that scheme only 

considers how long the CPU is used instead of the real-time CPU load profiles. 

To summarize, potential privacy leakage by exploiting resource usage patterns are among 

those unanswered concerns. This thesis aims to investigate the possibility of privacy leakage 

resulting from resource usage patterns.  
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III. ATTACK FRAMEWORK 

This chapter describes the framework of resource usage pattern-based attack.  

A. System Model and Basic Approach 

We assume that the attacker can observe the resource usage time-series of mobile apps 

used by a user. In a mobile device platform, this can be done through installing a resource usage 

monitoring app (or malware) and/or exploiting system functions. For example, the attacker can 

install Android Debug Bridge [13] in its own remote computer. Due to support provided by the 

Android OS, this tool can remotely monitor the CPU and memory usage of apps on the mobile 

device through the network without installing any additional tool on the mobile device. In a 

mobile cloud computing system, the cloud server can be seen as the attacker, and it can observe 

the resource usage of mobile apps offloaded to it. The attacker can also be a third party that has 

gained access to the victim’s resource usage data on the cloud server.  

Given the resource usage data of one app, the attacker wants to learn the type of the app. 

Here type is defined as the category of apps, such as email client, web browser, game, music 

streaming tool, etc. In this thesis, we use type and category in an interchangeable way. There are 

two reasons why the attacker chooses to infer the type of an app instead of what specific app it is. 

First, since apps of the same type might have similar resource usage patterns due to similar user 

usage patterns, it is easier for the attacker to infer the type of an app than to infer which specific 

app it is. Second, although knowing what the app is gives more information about the user, 

knowing the type of the app can also tell much about the user’s life pattern and living habits. For 

example, knowing that a user plays game for 8 hours a day is enough to conclude that the user is 

a game fun or even addicted to game, no matter which games he plays.  
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We also assume that the attacker knows the resource usage pattern of certain apps in each 

type. This is because the attacker can run those apps on his own mobile device or mobile cloud 

computing system and measure their resource usage time-series. Thus, the research problem is, 

with known resource usage time-series of certain apps whose type is also known, given a 

resource usage time-series of an unknown app, how to infer the type of the unknown app. 

To address this problem, we adopt the supervised learning approach [9]. In supervised 

learning, some training data with labels will be used to build a classification model, and this 

model will be used to predict the label of testing data. In this thesis, each data sample is a 

resource usage time-series of an app, with t data points (i.e., t readings of resource usage at t 

continuous time points with constant intervals). Data label is the type of an app. Those known 

apps’ types are known, i.e., their types are known labels. The known apps and their labels are the 

training data. The unknown app’s resource usage time-series are testing data. The learning goal 

is to identify the type (i.e., label) of the unknown app. In particular, two attack methods are 

explored as described below. 

B. Attack Method 1 

In this method, the t data points of each time-series data sample are divided into a number 

of segments where each segment has w data points (w is a system parameter). Each segment of a 

training data sample inherits the label of this training data sample. For example, if a data sample 

in the training data is labeled as Gmail, then all the segments that it is divided into are also 

labeled as Gmail. All the segments of training data samples are input into a supervised learning 

algorithm to build the classification model. To learn the type of a testing data sample with t data 

points, it is also divided into t/w segments with w data points in each segment. Then each of 
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these segments is input to the classification model and is assigned a label after the classification. 

The label that is assigned most times is set as the label for the testing data sample.  

Parameter w will affect the performance of this attack method. Intuitively, if w is too 

small, each segment is too short. Then it cannot capture the inherent fluctuation characteristics of 

an app’s resource usage pattern that can only be observed in a long-enough time window, which 

will lead to poor attack performance. On the other hand, if w is too large, each segment might 

contain too many fluctuation cycles (e.g., CPU usage up and down) of an app’s resource usage 

pattern, which will also lead to poor attack performance due to the coarse grain. Thus, there 

should be a good w in the middle that has the best performance. We will explore the best w in 

experiments. 

There are many supervised learning algorithms that can be used in this method. In this 

thesis, we will explore k-nearest-neighbor, support vector machine, neural networks, 

classification tree, and Random Forests [11, 18]. In our experiments, Random Forests works 

best. Random Forest works by growing many classification trees. To classify a new object from 

an input vector, the input vector will be put in each of the tree in the forest. Then each tree will 

give a classification. In other words, each tree will vote for that class. The forest then decides the 

classification based on the class that has the most votes from all the trees.  

C. Attack Method 2  

This attack method employs the k-nearest-neighbor classification algorithm [16] and 

computes the distance between data samples using the Dynamic Time Warping (DTW) 

algorithm [17]. The idea is to find the k data samples in training data that are closest to the 

testing data sample, and then assign the label that most frequently appears among those k data 

samples as the label of the testing data sample. To determine how close two data samples are to 
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each other, the DTW algorithm is used to compute the distance between them. DTW can 

measure the similarity of time series data that are not best aligned and vary in time or speed. 

Then it will output the distance of two time series data after being aligned in the best way based 

on the similarity of those data. To improve the performance over classic DTW, FastDTW [12] is 

used. 
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IV. PRIVACY LEAKAGE FROM RESOURCE USAGE PATTERNS IN A MOBILE 

DEVICE 

This section explores the proposed attacks on resource usage data collected from a 

mobile device. 

 

A. Dataset collection 

1) Overview 

We first collect the resource usage patterns of mobile apps from a Nexus 7 tablet that 

runs the Android 5.0 operating system. Via USB port, the tablet is connected to a MacBook Pro 

laptop (see Figure 2). The laptop is installed with Android Debug Bridge [13]. Android Debug 

Bridge was developed and provided by Google to help Android developers monitor their apps’ 

performances, including CPU usage and memory allocation. This tool was developed to help 

developers design more efficient applications. However, this capability is used in this work to 

monitor the CPU load and memory consumption of mobile apps. In particular, we use the top 

	
Figure 2. Overview of Attacks in a Mobile Device 
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command, which is available in Android Debug Bridge shell to read the resource usage of the 

Android device in every second. In addition to USB port connection, Android Debug Bridge can 

also be connected to any Android device via WiFi. 

We collect resource usage data from five types of apps. They are the types that are widely 

used by users. Then we choose four most popular apps for each type according to Google Play 

Store. It is more reasonable to test widely used applications to reflect real life scenarios. The 

types and apps in each type are shown in Table I.  

TABLE I.  LIST OF APPS MEASURED 

Type Apps 
Email Client Gmail, Cloud Magic, Mailbox, Boxer 
Games Fruit Ninja, Tetris Blitz, Chess, Bejeweled Blitz 
Cloud Storage Box, Google Drive, Dropbox, One Drive 
Web Browser Chrome, Opera, Dolphin, Firefox 
Music Streaming Service Pandora, Spotify, Rdio, Google Music 

 

We run each app for 10 minutes and collect its resource usage data. When running an 

app, the app performs a set of activities allowed by this app just like a regular user. Details of 

activities performed for each type of app can be seen in Table II. 

TABLE II.  ACTIVITIES FOR EACH TYPE OF APP 

Type Activities 

Email Client 
Checking email, reading email, typing email, sending email, replying email, 
and deleting email. Checking and changing some available setting. 

Games Playing several levels until timer expires. 

Cloud Storage 
Checking contents, opening file, create folder, uploading and downloading 
several files (PDF, image, text, video), copying and moving files between 
folder, and editing text files. 

Web Browser Visiting several usually visited websites, such as www.apple.com, 
www.uark.edu, www.theverge.com, and others. 

Music 
Streaming 
Service 

Playing songs from Taylor Swift radio station and tapping thumb-up or thumb-
down to rate the songs. 
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The resources measured include CPU load (i.e., the percentage of CPU time spent in the 

measured app) and the total memory allocated (i.e., the amount of memory in megabytes 

allocated to the measured app). They are read once per second. 

 To verify the correctness of the collected data, a video of the mobile device screen will be 

recorded in the experiment. This video is used to confirm a causal connection between the 

resource reading and the task that is actually being performed by an app. For example, when the 

send button is pressed in an email client, it should incur higher measured CPU usage than when 

the text in the email client is being typed, since typing the text in an email client requires less 

CPU cycles than sending the email to the network. For another example, a web browser will do 

more computations while downloading and rendering the web pages than when the user is just 

reading the web pages. We manually check the consistency between user operations and the 

measured resource usage to make sure the collected data is correct. 

2) Data Collection and Processing 

 The detailed steps of our data collection method are as follows: 

1. After connecting the Nexus 7 Tablet to the MacBook Pro laptop via USB port, open the 

Terminal app on laptop, and then launch the following top command to record the 

resource usage. Option –m is used to show memory usage and option –d is used to set the 

delay between readings. 

/Applications/sdk/platform-tools/adb shell top -m 10 -d 01.00 > chrome.txt 

2. The output of the above command is saved in the chrome.txt file, and one instance of the 

output is shown in Figure 3. This data contains the resource usage of all running apps in 

one second. The CPU usage, in percentage, can be seen in the column labeled as 

“CPU%”. The amount of memory used, in kilobyte, can be seen in the column labeled as 
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“RSS”. The amount of memory requested, in kilobyte, can be seen in the column labeled 

as “VSS”. The name of application can be seen in the Name column.  

 

3. Then the resource usage of a single app (say, Chrome) can be obtained by selecting 

relevant lines of the raw data with the following command: 

cat chrome.txt | grep com.android.chrome > chrome_clean.txt 

The results are shown in Figure 4. They represent resource usage of the same app at 

different seconds. Each line in this data represents the resource usage of the app in one 

second, except the ones that show different process IDs (highlighted lines in Figure 4) 

which will be aggregated in Step 4. 

 

 

 
Figure 3. A Snapshot of Resource Usage of All Applications  

 
Figure 4. CPU and Memory Usage for an App (Google Chrome) 
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4. Aggregation of multiple-process usage 

The highlighted lines in Figure 4 have different process ID. They represent resource 

usage of different processes that belong to the same app at the same second. Therefore, 

they need to be aggregated as single data point. This phenomenon mostly happens for 

web browser when the user opens several tabs at the same time and other applications 

that utilize OS services. We import these data into Microsoft Excel and then use VBA 

Script to aggregate them. The list of applications that utilize multiple processes can be 

seen in Table III. The list of applications that utilize multiple processes can be seen in 

Table III. 

TABLE III.  LIST OF APPLICATIONS WITH MULTIPLE PROCESSES 

Type Applications 
Email Client Gmail 
Games - 
Cloud Storage Google Drive, Dropbox 
Web Browser Chrome, Opera, Dolphin, Firefox 
Music Streaming Service Rdio, Google Music 

 

5. We add one column on the left and fill it with series of number in second that will be the 

time stamp. Then the final raw data is derived. Figure 5 shows an example.  
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3) Dataset 

The collected data can be drawn as graphs with time (in seconds) as its x-axis and 

resource usage as the y-axis to visualize the pattern. The CPU usage patterns of 20 apps are 

shown in Figure 6 and 7. It can be seen that apps from the same type have similar shapes of CPU 

usage patterns. On the contrary, apps from different types show different shapes of CPU usage 

patterns.  

 
Figure 5. Final Resource Usage Data for an App (Chess) 

	
Google Music Firefox Bejeweled Blitz 

	 	 	
Boxer One Drive 	

	 	

	

Figure 6. 10-minute CPU Usage Patterns of 5 Apps on Mobile Device 
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Box Google Drive Dropbox 

   
Gmail Cloud Magic Mailbox 
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Figure 7. 10-minute CPU Usage Patterns of 15 Apps on Mobile Device 
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B. Results of Attack Method 1 

Three applications from each type will be used as training data to build the classification model. 

One application from each type will be used as testing data to test the accuracy of the model. The 

apps in training data and testing data are shown in Table IV. 

TABLE IV.  LIST OF APPS FOR TRAINING AND TESTING 

Category Applications 
Training Data Testing Data 

Email Client Gmail, Cloud Magic, Mailbox Boxer 
Games Fruit Ninja, Tetris Blitz, Chess  Bejeweled Blitz 
Cloud Storage Box, Google Drive, Dropbox One Drive 
Web Browser Chrome, Opera, Dolphin Firefox 
Music Streaming Service Pandora, Spotify, Rdio Google Music 

 

TABLE V.  ACCURACY OF ATTACK METHOD 1 WITH DIFFERENT CLASSIFICATION ALGORITHMS 
ON MOBILE DEVICE USAGE DATA WHEN W=25 SECONDS 

App (true 
type) 

Classification Results: 
Type (percentage of segments mapped to this type) 

Random 
Forest 

Neural 
Network 

Nearest 
Neighbor 

Support 
Vector 

Machine 

Classification 
Tree 

One Drive 
(Cloud 
Storage) 

Cloud 
Storage 
(66.67%) 

Cloud 
Storage 
(0%) 

Cloud storage 
(11.77%) 

Cloud 
storage (0%) 

Cloud storage 
(29.41%) 

Boxer (Email 
Client) 

Email Client 
(59.09%) 

Email 
Client 
(95.2%) 

Email client 
(61.90%) 

Email client 
(95.24%) 

Email client 
(47.62%) 

Bejeweled 
Blitz 
(Games) 

Games 
(91.30%) 

Games 
(81.8%) 

Games 
(81.82%) 

Games 
(59.09%) Games (68.18%) 

Google 
Music 
(Music 
Streaming) 

Music 
streaming 
(68.18%) 

Music 
streaming 
(0%) 

Music 
streaming 
(61.90%) 

Music 
streaming 
(33.33%) 

Music streaming 
(23.81%) 

Firefox (Web 
Browser) 

Web 
Browser 
(60.87%) 

Web 
Browser 
(81.8%) 

Web Browser 
(9.09%) 

Web 
Browser 
(77.27%) 

Web Browser 
(59.09%) 

Accuracy 5/5 = 100% 3/5 = 60% 3/5 = 60% 3/5 = 60% 2/5 = 40% 
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TABLE VI.  ACCURACY OF ATTACK METHOD 1 WITH DIFFERENT CLASSIFICATION ALGORITHMS 
ON MOBILE DEVICE USAGE DATA WHEN W=40 SECONDS 

App (true 
type) 

Classification Results: 
Type (percentage of segments mapped to this type) 

Random 
Forest 

Neural 
Network 

Nearest 
Neighbor 

Support 
Vector 

Machine 

Classification 
Tree 

One Drive 
(Cloud 
Storage) 

Cloud 
Storage 
(75.0%) 

Cloud 
Storage 
(18.2%) 

Cloud storage 
(45.45%) 

Cloud 
storage (0%) 

Cloud storage 
(45.45%) 

Boxer (Email 
Client) 

Email Client 
(78.6%) 

Email 
Client 
(76.9%) 

Email client 
(69.23%) 

Email client 
(92.31%) 

Email client 
(53.85%) 

Bejeweled 
Blitz 
(Games) 

Games 
(85.7%) 

Games 
(69.2%) Games (100%) Games 

(84.62%) Games (69.23%) 

Google 
Music 
(Music 
Streaming) 

Music 
streaming 
(71.43%) 

Music 
streaming 
(23.1%) 

Music 
streaming 
(53.85%) 

Music 
streaming 
(23.08%) 

Music streaming 
(38.46%) 

Firefox (Web 
Browser) 

Web 
Browser 
(85.7%) 

Web 
Browser 
(46.2%) 

Web Browser 
(15.38%) 

Web 
Browser 
(61.54%) 

Web Browser 
(46.15%) 

Accuracy 5/5 = 100% 3/5 = 60% 3/5 = 60% 3/5 = 60% 2/5 = 40% 
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TABLE VII.  ACCURACY OF ATTACK METHOD 1 WITH DIFFERENT CLASSIFICATION ALGORITHMS 
ON MOBILE DEVICE USAGE DATA WHEN W=50 SECONDS 

App (true 
type) 

Classification Results: 
Type (percentage of segments mapped to this type) 

Random 
Forest 

Neural 
Network 

Nearest 
Neighbor 

Support 
Vector 

Machine 

Classification 
Tree 

One Drive 
(Cloud 
Storage) 

Cloud 
Storage 
(66.67%) 

Cloud 
Storage 
(0%) 

Cloud storage 
(25%) 

Cloud 
storage 
(12.5%) 

Cloud storage 
(62.5%) 

Boxer (Email 
Client) 

Email Client 
(45.45%) 

Email 
Client 
(40%) 

Email client 
(70%) 

Email client 
(90%) 

Email client 
(40%) 

Bejeweled 
Blitz 
(Games) 

Games 
(90.91%) 

Games 
(18.2%) Games (100%) Games 

(81.82%) Games (63.63%) 

Google 
Music 
(Music 
Streaming) 

Music 
streaming 
(45.45%) 

Music 
streaming 
(80%) 

Music 
streaming 
(40%) 

Music 
streaming 
(60%) 

Music streaming 
(30%) 

Firefox (Web 
Browser) 

Web 
Browser 
(66.67%) 

Web 
Browser 
(36.4%) 

Web Browser 
(9.09%) 

Web 
Browser 
(54.54%) 

Web Browser 
(36.36%) 

Accuracy 3/5 = 60% 1/5 = 20% 2/5 = 40% 4/5 = 80% 2/5 = 40% 
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TABLE VIII.  ACCURACY OF ATTACK METHOD 1 WITH DIFFERENT CLASSIFICATION ALGORITHMS 
ON MOBILE DEVICE USAGE DATA WHEN W=60 SECONDS 

App (true 
type) 

Classification Results: 
Type (percentage of segments mapped to this type) 

Random 
Forest 

Neural 
Network 

Nearest 
Neighbor 

Support 
Vector 

Machine 

Classification 
Tree 

One Drive 
(Cloud 
Storage) 

Cloud 
Storage 
(87.5%) 

Cloud 
Storage 
(14.3%) 

Cloud storage 
(0%) 

Cloud 
storage 
(14.28%) 

Cloud storage 
(57.14%) 

Boxer (Email 
Client) 

Email Client 
(50%) 

Email 
Client 
(11.1%) 

Email client 
(66.67%) 

Email client 
(77.78%) 

Email client 
(44.44%) 

Bejeweled 
Blitz 
(Games) 

Games 
(80%) 

Games 
(0%) Games (100%) Games 

(100%) Games (22.22%) 

Google 
Music 
(Music 
Streaming) 

Music 
streaming 
(70%) 

Music 
streaming 
(44.4%) 

Music 
streaming 
(55.55%) 

Music 
streaming 
(44.44%) 

Music streaming 
(44.44%) 

Firefox (Web 
Browser) 

Web 
Browser 
(90%) 

Web 
Browser 
(44.4%) 

Web Browser 
(11.11%) 

Web 
Browser 
(66.67%) 

Web Browser 
(66.67%) 

Accuracy 4/5 = 80% 0/5 = 0% 3/5 = 60% 3/5 = 60% 2/5 = 40% 
 

From Table V-VIII we can see that Random Forest algorithm is superior to other 

algorithms. It gives better overall accuracy. Moreover, Random Forest’s accuracy is distributed 

better across categories. On the contrary, Support Vector Machine accuracy can differ 

significantly between categories (0% for Cloud Storage and 92.3% for Email Client). Then we 

move forward with Random Forest by examining the performance using different values of time 

split window (w). As can be seen in Figure 8, w = 40 seconds is better than other values.  
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Figure 8. The accuracy of Attack Method 1 using different learning algorithms 
 

C. Results of Attack Method 2 

Then we tested Attack Method 2 that uses K-Nearest-Neighbor (KNN) with Dynamic 

Time Warping (DTW) distance since it is one of very good machine learning algorithm that 

works very well on time series data. The results are shown in Table IX. The accuracy with 

3NN+DTW is 80%. We also tested 3NN+DTW on w-sized segments of data sample (similar to 

the Attack Method 1) with w=40, and the results are also shown in Table IX. The accuracy is the 

same as directly applying 3NN+DTW to the entire data samples.  

TABLE IX.  ACCURACY OF 3-NEAREST-NEIGHBORS WITH DYNAMIC TIME WARPING DISTANCE 

Type 3-NN 3-NN on segments with 40 data points 
Email Client √ ✕ 

Games √ √ 

Cloud Storage ✕ √ 

Web Browser √ √ 

Music Streaming Service √ √ 

Accuracy 80% 80% 

 (√: Correct classification. ✕: Wrong Classification) 
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To evaluate the effect of parameter k, we run experiments with different k. As can be 

observed in Figure 9, the best performance is achieved at k=3.  

One factor that might affect the performance of attacks is the number of types 

(categories) and apps considered. Figure 10 shows the accuracy when the number of types 

changes. We first tested using four types of apps including email client, games, cloud storage, 

and web browser. Then we added music streaming service and maps for the fifth and sixth type 

of apps, respectively. The list of the apps can be seen in Table X.  

It can be seen that when the number of types increases, the attack accuracy decreases. 

The reason is that Map apps have similar resource usage patterns with Web Browser apps. 

Generally speaking, when there are many types and apps, the accuracy should be good if there is 

clear distinction in the app functionality between apps’ types. The more similarity between apps, 

the poor accuracy it will be. For example: messenger and email (both do sending and receiving 

messages), web browser and online maps (both do rendering of online pages from a server). 

	
Figure 9. Accuracy of k-Nearest-Neighbors with Dynamic Time Warping Distance under 

Different k’s 
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TABLE X.  LIST OF APPS FOR TRAINING AND TESTING FOR FIGURE 10 

Type Apps 
Training Data Testing Data 

Email Client Gmail, Cloud Magic, Mailbox Boxer 
Games Fruit Ninja, Tetris Blitz, Chess  Bejeweled Blitz 
Cloud Storage Box, Google Drive, Dropbox One Drive 
Web Browser Chrome, Opera, Dolphin Firefox 
Music Streaming Service Pandora, Spotify, Rdio Google Music 
Maps Google Maps, Waze, Mapquest Here Maps 

 
 

  

	
Figure 10. Accuracy of Attack Method 1 and Method 2 When the Number of Types Changes 
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V. PRIVACY LEAKAGE FROM RESOURCE USAGE PATTERNS IN MOBILE 

CLOUD COMPUTING 

This section explores the proposed attacks in a mobile cloud computing environment.  

A. Dataset Collection 

Many mobile cloud computing approaches have been proposed [19, 20, 21, 22]. In a full 

offloading method, the whole app will be offloaded to the cloud server. This method does not 

require access to the app’s source code. On the other hand, in partial offloading the app 

developers can mark which parts of their app will be offloaded. Developers have better 

knowledge on which parts of their applications need to be offloaded. However, this method 

requires access to the app’s source code which we do not have. Therefore, in this work, we 

launch attacks to the full offloading method. 

 To set up the mobile cloud computing testbed using full offloading, we choose the 

COMET full offloading method [14]. COMET is chosen because it is one of the pioneer works 

in full offloading and its source code is made available by the authors [15]. COMET works by 

customizing the Android operating system to allow unmodified multi-threading apps to use more 

machines. It allows threads to migrate freely between the mobile device and the server 

depending on the workload. It also keeps enough information so that the mobile device can 

resume computation upon network failures. Figure 11 shows that the modified DalvikVM on the 

mobile device will communicate back and forth with the DalvikVM on the cloud server. 
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Figure 11. Overview of Attack on Mobile Cloud Using COMET. 

Our testbed consists of one Nexus 7 tablet that serves as the mobile device (i.e., mobile 

cloud computing client) and one Linux-based laptop that serves as the cloud server. They are 

connected via WiFi. We first download and compile the COMET source code on the Linux-

based laptop that satisfies the dependencies in compiling Android operating system source code. 

To support COMET, the CyanogenMod 10 operating system (a variant of Android) is installed 

on the Nexus 7 tablet. Then a modified version of DalvikVM, as a part of COMET, is installed to 

the Nexus 7 tablet, which is able to offload computations to the COMET tool in the laptop.  

 In the single mobile device experiments described in Chapter IV, we collected the 

resource usage data of 20 apps from five types (4 applications per type). However, at the time of 

doing experiments in the cloud computing environment, two apps have been shut down by the 

developer: Rdio, a music streaming service app and Mailbox, an email client. From those 18 

remaining apps, only 9 apps from three types can run on the mobile cloud environment (3 apps 

per type). The offloading method is extending DalvikVM on multi-threading apps to work on 

another machine (cloud server/laptop). The apps that cannot run in cloud computing might not 

have been developed to support multi-threading. 
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Similar to the experiment on the mobile device, the data collection is done using the top 

command run on the cloud server. There are two processes associated with this offloading 

method that can be monitored on the cloud server: DalvikVM, the one responsible for 

computation on the cloud server/laptop and TCPmux, the one responsible for sending data from 

the mobile device/tablet to the cloud server/laptop. In the single mobile device environment, we 

can figure out the CPU usage of a specific application. On the contrary, in the mobile cloud 

environment, we can only monitor the total CPU usage since DalvikVM will be considered as a 

specific application by the Linux operating system in the cloud server.  

B. Dataset 

The CPU usage patterns of mobile apps measured in the cloud server are shown in Figure 

12.  
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As mentioned before, for the same app, when it runs in a mobile device and when it is 

offloaded to a cloud server, its resource usage patterns might be different due to the difference in 

computer architecture and hardware resources between the mobile phone and the cloud server. 

Figure 13 shows the comparison of the CPU usage data of a particular app, Tetris, in the mobile 

cloud environment and in the mobile device. The pattern shapes of those data have some 

similarity. However, the CPU usage of Tetris when it is offloaded to a cloud server is lower. The 

maximum value of its CPU usage when offloaded is 0.25 (out of 1.0) compared to 0.40 (out of 

 
 

Training Data 
 

Testing Data 

Chess Tetris Blitz Bejeweled Blitz 

   
Chrome Opera Firefox 

   
Spotify Pandora Google Music 

   
Figure 12. 10-minute CPU usage patterns in the mobile cloud computing environment 
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1.0) when it runs on a mobile device. Thus, the effectiveness of our proposed attacks in mobile 

cloud settings should also be evaluated separately. 

 

C. Results of Attacks 

Using the CPU usage patterns of the DalvikVM in the cloud server, we evaluated the two 

learning algorithms that have the best performance in the mobile device based evaluation: KNN 

with DTW distance and Random Forest with 40-second data segments.  

As we can see in Table XI and Table XII, Attack Method 2 performs better than Attack 

Method 1. Attack Method 2 can perform twice better than random guess accuracy which is 

33.3%. On the other hand, Attack Method 1 only performs as good as random guess. 

 

 

 

 

 

 

Tetris on Mobile Cloud Tetris on Mobile Device 

	 	
	

Figure 13. CPU Usage Pattern of an app Tetris on Two Platforms. 
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TABLE XI.  ACCURACY OF ATTACK METHOD 1 WITH DIFFERENT CLASSIFICATION ALGORITHMS 
IN MOBILE CLOUD SERVER WHEN W=40 SECONDS 

App (true 
type) 

Classification Results: 
Type (percentage of segments mapped to this type) 

Random 
Forest 

Neural 
Network 

Nearest 
Neighbor 

Support 
Vector 

Machine 

Classification 
Tree 

Bejeweled 

Blitz (Games) 

Games 

(83.33%) 
Games (0%) Games (80%) 

Games 

(80%) 
Games (60%) 

Google Music 

(Music 

Streaming) 

Music 

streaming 

(37.5%) 

Music 

streaming 

(14.3%) 

Music 

streaming 

(28.57%) 

Music 

streaming 

(28.57%) 

Music streaming 

(28.57%) 

Firefox (Web 

Browser) 

Web 

Browser 

(23.33%) 

Web 

Browser 

(63.3%) 

Web Browser 

(23.33%) 

Web 

Browser 

(33.33%) 

Web Browser 

(33.33%) 

Accuracy 
1/3 = 

33.33% 

1/3 = 

33.33% 

1/3 = 33.33% 1/3 = 

33.33% 

1/3 = 33.33% 

 

TABLE XII.  ACCURACY OF ATTACK METHOD 2 K-NEAREST NEIGHBORS WITH DYNAMIC TIME 
WARPING DISTANCE ON CLOUD BASED CPU USAGE DATA 

Category 1-NN 3-NN 
Games √ √ 

Web Browser √ √ 

Music Streaming Service ✕ ✕ 

Accuracy 66.67% 66.67% 

(√: Correct classification. ✕: Wrong Classification) 
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VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

This thesis proposed privacy attacks that can infer the type of a mobile app from the 

resource usage patterns of this app. Through experiments based on datasets collected from a 

mobile device and a mobile cloud computing environment, we showed that the attacks can 

identify the type of mobile app from its resource usage patterns with high accuracy. In the single 

mobile device environment, the accuracy reaches 100%. In the mobile cloud computing 

environment, the accuracy reaches 66.7%. This study discovered that privacy leakage by 

exploiting resource usage patterns is technically feasible. 

B. Future Work 

One future work is to evaluate the attacks with more mobile apps and more types of 

mobile apps in both the mobile device and mobile cloud computing environments, and evaluate 

the attacks by many real-world users for a long time. Another direction is to evaluate the attacks 

for the partial offloading method of mobile cloud computing.  

After evaluating these attacks, further research should be done to develop a 

countermeasure to mitigate these privacy leakages. One possible way would be to create 

additional noise in the resource usage patterns. This noise should be enough to make it 

improbable to distinguish the resource usage pattern of each application. However, it is also 

desirable to keep the cost needed to create this noise at a minimum.  
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