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ABSTRACT 
 

The location arc routing problem (LARP) is a network optimization problem combining 

strategic facility location decisions and tactical or operational vehicle routing decisions for 

customer demand located on arcs of a network. The LARP seeks to locate facilities, or depots, 

and create vehicle delivery routes to minimize costs. The total cost is comprised of three 

components: fixed facility locations costs, fixed route creation (or vehicle acquisition) costs, and 

variable arc traversal costs. The applications of the LARP are varied and often include public 

services such as mail delivery, garbage collection, and street sweeping. In all of these 

applications, the magnitude of customer demand may be unknown at the outset of the problem 

and realized uncertainty can greatly affect the final solution. To the author’s knowledge, there is 

currently no discussion of formulating or solving a LARP with uncertainty. 

This paper presents an iterative tabu search, augment-merge heuristic to solve the LARP 

with stochastic customer demand. Each realization of customer demand for a particular network, 

represented by an individual scenario, was generated using the deterministic mval instances (with 

24-50 nodes and 44-138 arcs) created by Hashemi Doulabi and Seifi (2013) and a truncated 

normal probability distribution. The tabu search phase handles the depot location decisions and 

chooses a set of depots to be used across all scenarios. The augment-merge phase creates a set of 

vehicle routes for each scenario. One-third of the initial experiments resulted in stochastic 

solution costs less than their deterministic counterparts indicating the promising value of 

considering customer demand uncertainty using the proposed stochastic LARP algorithm.  
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1. INTRODUCTION 

1.1. Background and Motivation 

Location-routing problems (LRPs) are a category of network optimization problems 

combining a facility location problem (FLP) – typically a strategic decision to locate a set of 

facilities or depots and allocate customers to each opened facility – and a vehicle routing 

problem (VRP) – usually a tactical or operational decision to determine routes from the depots to 

multiple customers. Often, the objective is to minimize total facility opening costs, fixed vehicle 

or route establishment costs, and variable routing costs. While FLPs and VRPs are often viewed 

as two individual types of problems, considering the interdependency of locating facilities and 

creating routes can have a significant effect on an organization’s logistics costs. Salhi and Rand 

(1989) first showed the suboptimal results of ignoring routing decisions when locating facilities. 

A variation of the LRP is the location arc-routing problem (LARP) that seeks to locate 

facilities and create vehicle routes along arcs of a network instead of between nodes as is the 

case with the discrete LRP. Ghiani and Laporte (2001) also describe the LARP as an extension 

of three classical arc-routing problems (ARPs) – the Chinese postman problem (CPP), the rural 

postman problem (RPP), and the capacitated arc-routing problem (CARP) – with the added task 

of identifying facility locations. As the name implies, the CPP’s origins are in the realm of mail 

delivery and aims to find the shortest route for a single postal carrier to traverse all streets (or 

edges) in a neighborhood. The RPP is similar to the CPP but only requires the carrier (or vehicle) 

to traverse a subset of edges. While the CPP and the RPP are single-depot, single-vehicle 

problems that ignore any customer demand magnitudes and vehicle capacities, the CARP is a 

single-depot, multiple-vehicle problem that incorporates the demand on each edge, accounts for a 

fleet of homogenous vehicles, and imposes a vehicle capacity constraint. Thus, in the same way 
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the LRP can be seen as a combination of the FLP and the VRP, the LARP can be viewed as an 

integration of the FLP and the CARP. 

In addition to mail delivery, the LARP can be applied to other situations where an 

organization needs to locate multiple facilities (e.g., depots, dump sites, transshipment points, 

mail relay boxes, refill vehicles) and create multiple vehicle routes to visit customers in the 

surrounding areas. Such applications of the LARP include newspaper delivery, garbage 

collection, road maintenance, power line or gas main inspections, street sweeping, snow 

plowing, winter road gritting, electric meter reading, and school bus routing. LARP may also be 

extended to airline crew scheduling where facilities represent hubs and arcs represent flight legs. 

One of the first discussions of the LARP, originally named the arc oriented location 

routing problem, was by Levy and Bodin (1989). Building on an algorithm established by 

Laporte (1988), they created a location-allocation-routing (LAR) algorithm that first locates 

depots while minimizing the number of depots opened, then allocates customer arcs to each 

depot given some workload constraints, and finally creates vehicle routes to minimize the total 

deadhead time, or time traversing arcs without satisfying demand. 

While there is a significant amount of research focusing on different variations of the 

FLP, the VRP, the ARP, and the LRP, the LARP is a much less studied problem and to the 

author’s knowledge, there is currently no discussion of formulating or solving a LARP with 

uncertainty. Deterministic LARP models provide a solid foundation for an organization to make 

strategic decisions of citing depots and tactical or operational decisions of creating vehicle 

routes, but usually exact parameter values are unknown. Assuming constant values for 

parameters such as customer demand, travel times or distances, facility capacities, and number of 

vehicles can simplify the problem, but may result in suboptimal solutions. For example, the 
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amount of mail in a neighborhood may change after the post office has been built and alter the 

effectiveness of the established delivery routes. Or, the traffic during a snowstorm may increase 

vehicle travel time and require more snowplows to clear the city’s streets on a given day than 

previously determined. Incorporating the uncertainty of the input parameters to a LARP model 

may provide a better solution than a deterministic model that assumes the parameter values are 

constant. 

1.2. Research Contributions 

The objective of this thesis is to formulate a solution heuristic for a LARP with uncertain 

customer demand to determine the minimum cost option for locating facilities and creating 

vehicle routes. Below is a list of main contributions: 

• Identify a fast CARP heuristic to use in the vehicle routing phase of the LARP. 

• Extend benchmark deterministic LARP instances to include demand uncertainty. 

• Create and implement heuristic software to solve problem instances. 

• Compare the strength of the stochastic LARP solutions to their deterministic 

equivalents and quantify any benefits of considering demand uncertainty. 

• Quantify total computational time and differentiate time spent identifying facility 

locations versus time spent creating vehicle routes. 

2. LITERATURE REVIEW 

The LARP is closely related to many existing problem formulations involving facility 

location and vehicle routing. The purpose of this section is to define the LARP, summarize the 

most relevant related problems, compare and contrast them to the LARP, examine some 

formulations and solution methods currently in the literature, and provide context for the 

contributions for the LARP with uncertain arc demand. 
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2.1. Problem Definition 

The LARP can be defined on a graph 𝐺 = (𝑉, 𝐴) where 𝑉 is a set of vertices and 𝐴 is a 

set of undirected arcs (or edges), directed arcs, or a combination of the two. Each potential depot 

location in 𝑗 ∈ 𝐽, a subset of 𝑉, has an associated fixed establishment and operating cost 𝑓𝑗 and 

capacity 𝑏𝑗. Each arc 𝑎 has an associated non-negative traversal cost 𝑐𝑎 and non-negative 

customer demand 𝑑𝑎 and the arcs with a positive demand comprise 𝑅, a subset of 𝐴, that require 

service. The fleet of vehicles is homogenous with identical capacity 𝑄 and each new vehicle (or 

route) has an associated non-negative fixed cost 𝐹. Each vehicle will leave from a depot, traverse 

a route of arcs to serve customer demand, and return to its original depot. 

The LARP seeks to determine a minimum-cost solution for simultaneously locating 

depots, allocating sets of customer arcs to each depot, and establishing vehicle traversal routes to 

satisfy customer demand given facility and vehicle capacity constraints. The total cost is the sum 

of fixed depot costs, fixed vehicle or route establishment costs, and variable route traversal costs.  

2.2. Facility Location Problems (FLPs) 

The FLP comprises one of the main goals of the LARP – to identify optimal locations for 

facilities or depots. Although a pure FLP is only concerned with siting facilities, this paper will 

use the term FLP interchangeably with the location-allocation problem (LAP) to also include the 

decision of allocating customer demands to each facility. Therefore, a LARP without the vehicle 

arc routing objective is reduced to a FLP. Owen and Daskin (1998) give a comprehensive review 

of this strategic problem and provide integer program formulations for three common static, 

deterministic FLPs: median problems, covering problems, and center (or minimax) problems. 

One type of median problem, the 𝑃-median problem, measures the efficiency of a facility 

location using demand magnitude at each customer node and travel distance between customer 
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nodes and facilities. The problem seeks to locate 𝑃 facilities so as to minimize the total demand-

weighted distance between each facility and the customers it serves. Applications include siting 

warehouses among customer regions or locating switching centers in a communications network. 

The general formulation of this problem is NP-complete but if potential facility locations are 

restricted to the nodes of a network and the value of 𝑃 is fixed, it can be solved in polynomial 

time for a moderate numbers of customers and potential facilities. If 𝑃 is variable, the problem is 

NP-hard. Daskin (2013) proposes several heuristic methods to solve the 𝑃-median problem 

including a myopic algorithm, an exchange heuristic, and a neighborhood search algorithm. 

Covering problems are a formulation of the FLP that emphasize a facility’s availability, 

not its average distance, to a customer. A facility is available, or covers customer demand, if its 

travel distance or time is within a maximum acceptable threshold. For example, locating post 

offices, unemployment centers, and emergency service facilities such as hospitals, fire stations, 

and ambulances necessitates this measure of locational efficiency. Two variations of covering 

problems assume uncapacitated facilities are the set covering problem and the maximal covering 

problem. The set covering problem ignores demand magnitude at each customer node and seeks 

to minimize facility location costs to cover all customer demand within a specified distance of a 

facility. The maximal covering problem incorporates customer demand magnitude at each node 

and aims to maximize the amount of customer demand covered within the acceptable service 

distance. The maximal covering problem can be transformed into a special case of the 𝑃-median 

problem by converting each of the facility-to-customer distances in the 𝑃-median network from 

continuous, non-negative values to binary parameters equal to 0 if the distance is within the 

maximum acceptable threshold and 1 otherwise. The modified 𝑃-median objective is to locate 

facilities to minimize the amount of unserved demand. Because these variants of the covering 
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problem are NP-complete for general networks, they are typically solved by assuming potential 

facility locations coincide with the customer nodes in a network. 

Center problems are a third form of the FLP. The 𝑃-center problem (or minimax 

problem) requires all customer demand to be satisfied and seeks to locate 𝑃 facilities to minimize 

the maximum distance between any demand and its nearest facility. If the maximum distance of 

a 𝑃-center solution is less than a specified maximum acceptable threshold, then there exists a 

maximum covering solution with 𝑃 facilities that serves all demand. Absolute center problems 

allow facilities to be located anywhere on the network while vertex center problems restrict 

facilities to the network nodes. For either variation, if the value of 𝑃 is fixed, then the problem 

can be solved in polynomial time; but if 𝑃 is variable, then it is NP-complete.  

The three aforementioned formulations focus on distance or time between facilities and 

customers but the typical LARP objective is to minimize monetary cost. A fourth type of FLP, 

the fixed charge facility location problem, aligns the FLP objective accordingly. The fixed 

charge facility location problem applies a fixed cost to each facility that is open, removes the 

constraint that 𝑃 facilities must be located, and aims to minimize the sum of the fixed facility 

costs and the variable travel costs. 

In deterministic models, all parameters are assumed to be known. However, in real-life 

applications, every input to the model (e.g., customer demand, travel times or distances, facility 

capacities, costs) has some uncertainty. Owen and Daskin (1998) and Snyder (2006) provide 

thorough investigations into FLP decision-making under uncertainty. There are two established 

methods to incorporate uncertainty – stochastic optimization and robust optimization (or scenario 

planning). 
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If the probability distributions of the uncertain elements are known, then stochastic 

optimization can be used to optimize the expected value of the objective function. Often, the 

objective function for stochastic programs is to minimize the expected cost. 

If there is not enough information to construct probability distributions, then a robust 

approach can be utilized by specifying a number of possible scenarios (or future states) and 

seeking to minimize the maximum regret. Regret is the difference between the optimal solution 

(i.e., the optimal solution for the true scenario that occurs when the uncertainty is realized) and 

the compromised solution. Other possible objectives of a robust FLP are to optimize expected 

performance across all scenarios or minimize the worst-case performance of any one scenario. 

2.3. Vehicle Routing Problems (VRPs) 

In addition to locating facilities on a network and allocating customers, the second main 

goal of the LARP is to establish vehicle routes from each facility to its corresponding customers 

to satisfy service demand. In the case of the LARP, customer demands exist on the network arcs. 

A VRP encompasses customer allocation and vehicle routing where customer demands exist on 

either nodes or arcs. Because the literature often uses VRP to refer specifically to the node 

routing problem (NRP), this paper follows the same naming convention. Thus, by this definition, 

removing the facility location aspect of a LARP and converting customer demand from arcs to 

nodes results in a VRP. 

The classic VRP can be defined on a graph 𝐺 =  (𝑉, 𝐴) where 𝑉 is vertex set and 𝐴 is an 

arc set. The problem seeks to determine minimum cost routes for multiple vehicles from a single 

uncapacitated depot to satisfy customer demand at nodes on the network. The fleet is comprised 

of homogenous vehicles with capacity 𝑄 and customer 𝑗 has an associated non-negative demand 

𝑑𝑗 that cannot be split between vehicles. Each arc (𝑖, 𝑗) has a non-negative traversal cost 𝑐𝑖𝑖 (in 
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e.g., distance, time, or monetary units) for a vehicle to travel from node 𝑖 to node 𝑗. The objective 

is to minimize the sum of the route traversal costs while ensuring each vehicle starts and ends at 

the depot, each customer is visited by exactly one vehicle, and the sum of the customer demand 

of any particular route does not exceed the vehicle’s load capacity. 

Laporte (1992) and El-Sherbeny (2010) review exact solution methods for the VRP and 

Eksioglu et al. (2009) create a taxonomy for the vast VRP realm and identify more than half a 

dozen papers discussing exact methods. However, because the VRP is NP-hard, construction and 

improvement heuristics or metaheuristics are often employed.  

Construction heuristics include route-first cluster second (RFCS) heuristics, cluster-first 

route-second (CFRS) heuristics, and the Clarke-Wright savings heuristic. The first phase of a 

RFCS heuristic creates a single route from the depot through all customer nodes ignoring vehicle 

capacity – i.e., it first solves the traveling salesman problem (TSP), a single depot, single 

uncapacitated vehicle variant of the VRP. In the second phase, it separates customers into 

clusters (or routes) to ensure the total demand of any given route does not exceed the designated 

vehicle capacity. TSP partitioning is an example of a RFCS algorithm. Prins et al. (2014) survey 

a more general form of RFCS heuristics called order first-split second (OFSC) heuristics. In the 

first phase, instead of creating a tour to visit all customers, OFSC heuristics allow the creation of 

a priority list of customers. Prins et al. (2014) also note some advantages of the RFCS (or OFSC) 

approach: a smaller solution space (because the set of lists is smaller than the set of routes), 

flexibility to include additional constraints, and efficiency. 

Instead of routing and then allocating like RFCS heuristics do, CFRS is a two-phase 

construction heuristic that first allocates neighboring customers to ensure demand does not 

exceed vehicle capacity and then determines routes through each customer cluster. The sweep 
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heuristic algorithm popularized by Gillett and Miller (1974) first orders the customers by 

imposing a ray from the depot and sweeping it in a circle through each customers. Then, it 

clusters adjacent customers to satisfy the vehicle capacity constraint and finally it creates the 

routes by solving a TSP for each customer cluster. Fisher and Jaikumar (1981) and Bramel and 

Simchi-Levi (1995) describe two other RFCS heuristics. 

A third commonly used heuristic is the one introduced by Clarke and Wright (1964) and 

recently revisited by Segerstedt (2014). The Clarke-Wright savings heuristic can be divided into 

two phases: construction and improvement. The construction phase initializes the solution by 

creating a single route for each customer. To improve the solution, the algorithm seeks to 

combine separate tours that are feasible with respect to vehicle demand and results in positive 

cost savings. The cost savings for combining two tours is defined by summing the costs of the 

two arcs being removed (the last arc on the first tour and the first arc on the second tour) and 

subtracting the cost of the arc being added (the arc connecting the first tour’s endpoint and the 

second tour’s starting point). The cost savings is calculated for all pairs of nodes and sorted in 

non-increasing order. Starting at the top of the savings list (i.e., the pair of tours whose 

combination results in the greatest cost savings), the algorithm checks if the total customer 

demand of the two routes does not exceed the vehicle capacity. If so, then the combination is 

implemented. This procedure is repeated for every pair in the list with a positive cost savings. 

Often, after an initial set of tours has been created for a VRP, improvement heuristics are 

applied to find a lower cost solution. The improvement heuristics can be move operators that are 

applied to all, or any subset, of routes from the initial solution. Some examples of move 

operators include 𝜆-exchange (also known as 𝜆-opt), remove and reinsert, and swap. A 𝜆-

exchange algorithm calculates the cost of removing 𝜆 arcs from a route and replacing them with 
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a different set of 𝜆 arcs. If this cost is negative (i.e., if the move results in cost savings) and the 

resulting tour does not violate the vehicle capacity constraint nor does it result in sub-tours (tours 

that do not include the depot) or disconnected nodes, then the exchange is implemented. 

A remove and reinsert algorithm removes a customer from its current tour and reinserts it 

in a new location. The new location can be a different location within the same tour or a location 

within another tour. If the cost of removing three arcs and adding three new arcs is negative and 

the total customer demands of each resulting tours does not violate the vehicle capacity, then the 

remove and reinsert move is implemented. 

A third improvement algorithm swaps a customer from one route with another customer 

from a different route resulting in four removed arcs and four newly added arcs. If the cost of the 

swap improves the solution and the two new routes are feasible, then the swap is implemented.  

A more efficient and effective alternative to exact and heuristic methods are 

metaheuristics, another category of approximate algorithms. Metaheuristics are iterative 

processes used to solve optimization problems and combine one or more heuristics with a guided 

search procedure to explore the solution space to find near-optimal solutions (Osman and 

Laporte 1996). Pisinger and Ropke (2007) propose an adaptive large neighborhood search 

metaheuristic to solve five different VRP variations. Laporte (1992), Malandraki and Daskin 

(1992), Laporte et al. (2000), Nagy and Salhi (2005), and El-Sherbeny (2010) summarize the 

details of different heuristic and metaheuristic algorithms for several VRP variations and name 

tabu search as one of the most powerful metaheuristics. 

In addition to the deterministic formulations of the VRP, there exist a variety of 

stochastic formulations accounting for uncertainty. Gendreau et al. (1996), Berhan et al. (2014), 

and Sathyanarayan and Joseph (2014) systematize existing stochastic VRP research papers and 



 11 

present different formulations for VRPs with uncertain customer demand, customer presence and 

demand, and service time. 

2.4. Arc-Routing Problems (ARPs) 

Instead of creating routes to visit customers at nodes as the VRP does, the ARP seeks to 

satisfy customer demand existing along arcs of a network. Ghiani and Laporte (2001) describe 

the vehicle routing portion of the LARP as extensions of the following three classical ARPs: two 

uncapacitated problems, the Chinese postman problem (CPP) and the rural postman problem 

(RPP), and the capacitated arc-routing problem (CARP). CPPs seek to find a minimum cost route 

that traverses all arcs in the network at least once while RPPs traverse only a subset of arcs. 

CARPs incorporate vehicle capacities and thus can include a multi-vehicle fleet. Deadheading is 

when a vehicle traverses a required arc without servicing its demand (i.e., the arc has already 

been serviced by the same vehicle or is being serviced by another vehicle). 

2.4.1. Chinese Postman Problems (CPPs) 

The CPP was named after Chinese mathematician Kwan Mei-Ko (or Guan Meigu) who 

in 1962 studied the problem of devising the shortest cycle for a mailman to service his assigned 

segments before returning to the post office. Given a connected graph, the CPP seeks to find the 

least cost tour that passes through every edge at least once. Determining a CPP solution uses the 

concepts of Eulerian graphs and circuits. 

An Eulerian circuit is one that starts at a node, visits each arc in the graph exactly once 

and each node at least once, and returns to the same node. Ford and Fulkerson (1962) outline the 

following necessary and sufficient conditions for Eulerian graphs. If the graph is undirected, then 

every vertex must have an even degree (i.e., each vertex must have an even number of incident 

edges). If the graph is directed, then every vertex must be symmetric (i.e., the number of edges 
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and arcs entering and leaving each vertex must be equal). If the graph is mixed, then every vertex 

must have an even degree and the graph must be balanced (i.e., for every subset of vertices, the 

difference between the total number of arcs leaving the subset and the total number of arcs 

entering the subset must be less than or equal to the total number of arcs incident with the 

subset). 

CPP algorithms consist of two phases: the first phase converts the graph into an Eulerian 

graph and the second phase determines the best Eulerian route (Eiselt et al. 1995a). If the original 

CPP graph is Eulerian, then the first phase can be skipped and the optimal solution is the cost of 

the Eulerian circuit (i.e., the sum of all arcs in the original graph). However, if the graph does not 

have an Eulerian circuit, then it must be augmented. Undirected graphs are augmented by listing 

all pairs of vertices that have an odd degree, identifying the least cost paths between each pair, 

and adding duplicate, artificial arcs for every arc included in the least cost paths. The augmented 

graph will result in all vertices having an even degree. The optimal cost of the CPP solution is 

the total cost of all edges in the augmented graph (i.e., the total cost of the original and additional 

edges). Augmenting undirected and directed graphs can be solved in polynomial time while 

augmenting mixed graphs is an NP-hard problem. Eiselt et al. (1995a) present methods for 

completing the first phase of a CPP solution for all three types of graphs. They also discuss two 

other NP-hard variations of the CPP: windy (traversal costs across arcs in an undirected graph 

depend on the direction of travel) and hierarchical (arcs are prioritized by required service 

levels). Thimbleby (2003) provides executable Java code to solve a directed CPP. 

After phase one has been completed and the original CPP graph has been converted into 

an Eulerian graph, the second phase is to determine the actual traversal route. In an Eulerian 

graph, the route can be started at any node and return to the same node. Thus, as the graph size 
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increases, the number of possible routes increases. One useful fact is the number of times each 

vertex will appear in a CPP is equal to one-half its degree – i.e., if a vertex has a degree of 6, 

then the vertex should be traversed 3 times in the CPP solution (Greenaway 2004). The only 

exception is the depot node that will be visited one additional time. Hertz and Mittaz (2010) 

present a straightforward route construction algorithm for an undirected CPP. First, identify a 

cycle 𝐶 in the Eulerian graph. If 𝐶 traverses all arcs in the graph, then the solution has been 

obtained. If not, then choose a vertex 𝑣 ∈ 𝐶 and an arc incident to this node that is not in 𝐶 and 

construct a second cycle 𝐶’ such that they have no common arcs. Merge the two routes 𝐶 and 𝐶’ 

by starting at vertex 𝑣, traversing the arcs in 𝐶, then traversing the arcs in 𝐶’, and ending at 𝑣. If 

the merged route traverses all arcs, then the CPP solution is the merged route. Otherwise, 

continue creating additional cycles until all arcs have been traversed. 

The CPP is a single-facility, single-vehicle problem in which the vehicle is uncapacitated 

and all arcs must be traversed. This formulation can be applied to urban settings and provides a 

basis for understanding and developing solution methods for other ARPs, but it is not very 

realistic because organizations do not typically service all customer arcs in a region. The RPP is 

a variation of the CPP that is more applicable to real scenarios because it only requires traversal 

of a subset of arcs in the network. 

2.4.2. Rural Postman Problems (RPPs) 

The RPP consists of a single facility and a single uncapacitated vehicle and seeks to find 

the least cost tour visiting a subset of required arcs. Undirected, directed, and mixed RPPs are all 

NP-hard but are more realistic than CPPs.  

Hertz and Mittaz (2010) present a route construction algorithm for a special type of 

undirected RPPs. First, a sub-network is created by removing all non-required arcs in the original 
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graph. If the remaining required arcs in the sub-network are still connected, then this algorithm 

applies. Convert the sub-network into an Eulerian graph by listing pairs of vertices that have an 

odd degree, identifying the least cost paths between each pair using any arcs from the original 

graph, and adding duplicate, artificial arcs for every arc included in the least cost paths. Then, the 

problem can be solved with any CPP method. 

Hertz and Mittaz (2010) also illustrate the following heuristics presented in other papers: 

a construction algorithm for solving an undirected RPP whose required arcs do not form a 

connected sub-network (Frederickson 1979), a construction algorithm utilizing add moves, an 

improvement algorithm to shorten an existing route, and an algorithm to drop arcs (Hertz 2009);  

Eiselt et al. (1995b) discuss several useful applications of the RPP: street sweeping, snow 

plowing, garbage collection, mail delivery, school bus routing, and electric meter reading. They 

propose formulations for solving three variations: undirected, directed, and mixed (the stacker 

crane problem). Like solving the CPP, RPP solution algorithms include two phases: one to 

augment a graph to make it Eulerian and another to determine the least cost cycle. The first phase 

employs heuristics and the second phase can be solved exactly using TSP techniques. 

While the CPP and RPP assume unlimited vehicle capacity, the CARP discussed in the 

next section accounts for this extra problem constraint present in most real-world problems. 

2.4.3. Capacitated Arc Routing Problems (CARPs) 

Initial discussions of CARP are attributed to Golden and Wong (1981) who expanded 

uncapacitated ARP formulations such as the CPP and RPP and imposed vehicle capacity 

constraints. The classic CARP is a single-facility, multiple-vehicle problem that seeks to find the 

least cost set of routes to traverse a subset of arcs in an undirected network. The fleet is 

comprised of homogenous, capacitated vehicles and each arc must be serviced by exactly one 
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vehicle (i.e., arc demand cannot be split among multiple vehicles). CARPs are NP-hard and 

several classic construction heuristics include construct-strike (Christofides 1973), augment-

merge (Golden and Wong 1981 and Golden et al. 1983), and path-scanning (Golden et al. 1983). 

The CARP is the arc equivalent to the classical node VRP discussed in Section 2.3. The 

VRP can be transformed to a CARP (Golden and Wong 1981) and a CARP can be transformed 

into a capacitated VRP (Longo et al. 2006). In the CARP-to-VRP transformation, the problem is 

solved by introducing two vertices for every required arc in the graph, arbitrarily splitting arc 

demand between these two vertices, and applying any VRP heuristic. However, most CARP 

algorithms do not rely on this transformation. 

One variation of the CARP is referred to as the capacitated Chinese postman problem 

(CCPP) where all arcs, instead of a subset of arcs, have positive demand. The construct-strike 

heuristic originally proposed by Christofides (1973) for the CCPP and revisited by Golden et al. 

(1983) constructs a list of feasible routes and then strikes (or removes) routes from the list to 

iteratively decrease overall cost of the solution.  

Augment-merge is a construction algorithm comprised of three steps. First, it initializes 

the solution by assigning every demand arc to its own route. The initial routes are created by 

computing the shortest path from each arc’s endpoints to the depot. Then, the augment phase 

sorts the list of routes in non-increasing cost order and determines whether a route can be 

augmented. Starting at the top of the list (i.e., the most expensive route), each route is compared 

to all of the remaining lower cost routes. If the higher cost route is already servicing the arcs in 

the lower cost route, then the lower cost route will be removed from the list and its arcs will be 

augmented into the higher cost route, provided the vehicle capacity constraints are not violated. 

The third phase, merge, is similar to the Clarke-Wright savings algorithm for the VRP and seeks 
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to combine pairs of routes that result in positive cost savings. Any routes created in the augment 

phase that have already reached the vehicle capacity limit are ineligible to be merged – only 

routes whose total customer demand is below the capacity constraint can be modified in the third 

phase. A list of cost savings is created for every pair of possible route mergers and sorted in non-

increasing order. The cost savings by merging two routes is the sum of the individual route costs 

minus the cost of the merged route. Starting at the top of the list, every feasible merger (i.e., 

merge every pair of routes that does not violate capacity constraints) is implemented until the 

cost savings are no longer positive. The third phase in its entirety is repeated –routes eligible for 

merging are identified, cost savings for each pair of eligible routes are computed, and feasible 

merges are implemented – until no more merges can be made. 

The path-scanning algorithm constructs vehicle routes for a CARP by starting with a 

path, scanning adjacent arcs to determine the best arc to add to the current path, and repeating the 

scan-then-add process until vehicle capacity is reached. The path is converted into a route by 

adding the shortest path return to the depot. The route construction procedure is repeated until all 

required arcs have been serviced. This algorithm produces five different solutions and chooses 

the set of routes with the lowest cost. Each set of routes is created by using one of five 

optimization criteria. Ensuring the vehicle capacity is not violated, an adjacent arc is added to the 

current path such that 1) the distance per unit remaining demand is minimized; 2) the distance 

per unit remaining demand is maximized; 3) the return distance to the depot is minimized; 4) the 

return distance to the depot is maximized; or 5) the return distance to the depot is maximized if 

the vehicle is less than half-full, otherwise the return distance is minimized. The path-scanning 

algorithm utilizes five different optimization approaches to identify the lowest cost set of routes.  
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Wøhlk (2005) summarizes other CARP construction heuristics including parallel-insert, 

modified construct-strike, randomized path-scanning, and augment-insert. New problem-specific 

heuristics double outer scan, node duplication, and A-ALG algorithms are presented. Also 

included in the review are several metaheuristic methods such as simulated annealing, tabu 

search, genetic algorithms, ant colony system algorithms, and guided local searches.  

Wøhlk (2008) reviews CARP literature from the preceding ten years and summarizes 

exact methods, heuristics, metaheuristics, and lower bounds developed for the classic CARP. 

The survey also discusses eight different formulations of the CARP: on directed/mixed graphs, 

with non-traditional objective functions, with time windows, with multiple depots, with mobile 

depots, with vehicle/site dependencies, with periodic considerations, and with stochastic 

elements.  

Belenguer and Benavent (2003a) introduce an effective cutting plane algorithm to 

compute a lower bound for the CARP and identify four CARP benchmark instances: bccm, gdb, 

kshs, and eglese (Belenguer and Benavent 2003b). The first three sets consist of synthesized data 

while the fourth set of instances is derived from real winter gritting data in Lancashire, United 

Kingdom. 

Perrier et al. (2005) review different CARP solution methods in the context of winter 

road maintenance, namely salt and abrasive spreading operations. They summarize sequential, 

parallel, and CFRS constructive heuristics used in these applications. 

Belengeuer et al. (2006) discuss a formulation of the CARP on a mixed network with 

undirected edges and directed arcs. They present methods for determining a lower bound to the 

problem and mixed CARP (MCARP) variations of the path-scanning, augment-merge, and 

Ulusoy’s heuristic. The first two heuristics are as discussed above. Ulusoy’s heuristic is a RFCS 
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algorithm that first creates a giant route traversing all required arcs ignoring vehicle capacity and 

then splits the route into several smaller feasible routes (Ulusoy 1985). They also discuss a 

memetic algorithm for solving the mixed CARP. 

Polacek et al. (2008) present a variable neighborhood search (VNS) metaheuristic to 

solve a variation of the CARP with intermediate facilities (CARPIF). CARPIFs are situations 

where vehicles start at a depot, perform a service (e.g., waste collection or snow removal) along 

arcs of customer demand, visit intermediate facilities (e.g., specific dumpsites to transfer 

material) along the way, and return to the same depot. 

Stochastic CARPs with uncertain demand have been studied by Christiansen et al. (2009) 

who present an exact branch-and-price algorithm and Laporte et al. (2010) who propose an 

adaptive large neighborhood search metaheuristic. Mei et al. (2010) investigate the effectiveness 

of applying deterministic CARP solution methods to situations with uncertainty and demonstrate 

the algorithms do not provide robust solutions to the stochastic formulation. 

CARPs assume facility locations are fixed and only make vehicle routing and customer 

allocation decisions. To reduce overall logistics costs, LARPs incorporate the strategic decision 

of siting facilities while simultaneously considering vehicle routing. 

2.5. Location Arc-Routing Problems (LARPs) 

LARPs combine facility location decisions discussed in Section 2.2 and arc routing 

decisions presented in Section 2.4.3. These problems seek to locate depots and create vehicle 

routes to service customer demand on arcs in a network. The typical objective of a LARP is to 

minimize total costs comprised of fixed facility location costs, fixed vehicle or route 

establishment costs, and variable arc traversal costs. Levy and Bodin (1989) first presented the 
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LARP as the arc oriented location routing problem and proposed a location-allocation-routing 

algorithm. 

Ghiani and Laporte (1999) formulate a version of the uncapacitated RPP considering 

location decisions, called the location rural postman problem (LRPP), on an undirected graph. 

They show if the LRPP has no upper bounds on the number of depots that can be located or if 

only one depot is located, then the LRPP can be reduced to a classic RPP. Otherwise, they 

outline an exact method of solving the LRPP with an upper bound on the number of depots. 

Ghiani and Laporte (2001) provide a brief survey of LARPs in the context of mail 

delivery, garbage collection, and road maintenance and discuss some related VRP and CARPIF 

heuristics. They posit the best heuristic algorithms construct vehicle routes first and then locate 

facilities, instead of locating facilities and then creating sets of routes. Also, they recommend 

including customer allocation decisions in the routing phase instead of in the facility location 

phase.  

Related to LARPs, the CARP with refill points (CARPRF) seeks to create routes for 

service vehicles to paint and repaint road markings along streets and to visit refill vehicles that 

carry replenishment paint. The refill vehicles are located before service vehicles embark on their 

routes and thus can be considered depots. Amaya et al. (2007) propose an integer linear 

programming model for the CARPRF. 

Hashemi Doulabi and Seifi (2013) present mixed integer programming models and lower 

and upper bounds for single- and multiple-depot LARPs. They also propose an insertion heuristic 

to solve the CARP portion of the problem and combine it with a location-allocation simulated 

annealing heuristic.  
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Lopes et al. (2014) summarize several algorithms to solve the LARP including 

construction heuristics (extended augment-merge and extended merge), improvement heuristics 

(reverse and relocate), and metaheuristics (tabu search-variable neighborhood search, greedy 

randomized adaptive search procedure, and tabu search-greedy randomized adaptive search 

procedure). 

The extended augment-merge (EAM) heuristic, a LARP construction algorithm, is based 

on the CARP augment-merge heuristic discussed in Section 2.4.3 and consists of three phases. 

The first phase, initialization, assigns every required arc (i.e., arc with customer demand) to its 

closest depot until depot capacity is reached. Any unused depots, or depots without assigned 

arcs, are closed. The augment phase sorts the routes in non-increasing cost order. Starting at the 

top of the list (i.e., the highest cost route), it checks if each route traverses any required arcs 

included in any lower cost routes. If so, and if the sum of customer demands of the two routes 

will not exceed the vehicle capacity, it augments (or absorbs) the required arcs of the lower cost 

route into the higher cost route. The third phase, merge, calculates the cost savings for merging 

each pair of routes (similar to the Clarke-Wright savings algorithm for the VRP) and reassigning 

the merged route to each depot. Sorting the cost savings in non-increasing order, it starts at the 

top of the list and merges the pair of routes if the combination does not exceed vehicle or facility 

capacities. After this step is repeated for every possible merger with positive cost savings, the 

EAM algorithm is complete. 

Another LARP construction algorithm Lopes et al. (2014) propose is the extended merge 

(EM) heuristic similar to the algorithm used by Belenguer et al. (2006a) to solve a CARP. If not 

all of the arcs in the network require service, the augment phase of the EAM may introduce 

deadheading costs (or traversal costs along arcs where demand is not serviced) that cannot be 
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overcome by the cost savings gained in the merge phase. Thus, the EM heuristic is like the EAM 

heuristic without the augment step. 

Two improvement heuristics are the reverse heuristic and relocate heuristic. The reverse 

improvement heuristic is performed within each initially constructed feasible route and is 

analogous to the 2-exchange algorithm used to improve VRP solutions. It chooses a sub-

sequence of arcs within a route, reverses its direction, and reinserts it into the original route. If 

the reverse operation results in a cost savings, then the route is updated with the change. This is 

continued within the route until no more cost savings can be found and is repeated for every 

route in the solution. 

The relocate improvement heuristic can be performed within a route or between two 

routes. It chooses a sub-sequence of arcs within a route and relocates it to another position within 

the same route or, if it does not violate vehicle or facility capacities, inserts it into another route. 

The feasible relocation with the largest cost savings is implemented and the procedure is 

repeated for different sub-sequences of arcs and different routes. 

In addition to the more simple construction heuristics, Lopes et al. (2014) present a 

general tabu search-variable neighborhood search (TS-VNS) metaheuristic where tabu search 

(TS) is used to make facility location decisions and VNS is used to make routing decisions. 

Starting with a subset of depots equal to all possible depot locations, the algorithm is 

initialized using the EAM construction heuristic to obtain a feasible solution. Following the VNS 

methods proposed by Polacek et al. (2008) to solve CARPIF, the set of routes is updated by 

shaking using a cross-exchange move – randomly swapping sub-sequences of arcs between 

routes. A local search in the neighborhoods of these two changed routes is performed by using 
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the reverse and relocate improvement heuristics until no more improvements can be made. Then, 

current best solution is used as input for the tabu search (TS) phase. 

The first step in the TS phase is to represent the cumulative customer demand for each 

route determined in the VNS phase as a single client. The smallest insertion cost of each depot 

into each route is computed and used to represent the distance from a depot to a route. The FLP 

is solved to determine the best depot locations for the current routes and the subset of depots is 

updated to be passed back into the VNS phase. 

The algorithm continues iterating between the VNS and TS improvement steps to find a 

better solution. If no improvement is found in the last five iterations, then the subset of depots is 

altered by opening one or two depots and closing another depot, ensuring depot capacities are not 

exceeded. The entire procedure is repeated until a specified number of iterations without 

improvement (suggested to be 10 times the number of arcs in the network) are executed. 

Liu et al. (2008) provide another survey of LARPs and propose stochastic LARPs as an 

area of future research. Similarly, reviews of the related LRP by Nagy and Salhi (2007), Lopes et 

al. (2013), and Prodhon et al. (2014) note the relative lack of research of LARPs compared to 

their node LRP counterparts and suggest stochastic formulations of these problems due to their 

real-world applicability.  

3. TABU SEARCH, AUGMENT-MERGE HEURISTIC 

Given the existing landscape of problems involving depot location and routing decisions, 

two algorithms were chosen to solve the LARP with stochastic demand, uncapacitated facilities, 

and capacitated vehicles. The proposed solution method is an iterative framework with two 

phases to address the two components of the problem.  The first phase uses a tabu search 

metaheuristic to identify the depot locations to be used across all the scenarios and was chosen 
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for its existing applications to the uncapacitated FLP as studied by Michel and Van Hentenryck 

(2004) and Sun (2006). The second phase uses an augment-merge constructive heuristic to create 

a set of vehicle routes for each scenario and was chosen for its computation speed and ease of 

implementation for solving CARPs. 

After a problem is initialized, the tabu search phase uses the sets of vehicle routes for 

each scenario and modifies the set of open depots to minimize total solution cost. This phase 

keeps the group of demand arcs and their respective traversal directions for each route intact, 

only cycling – never rearranging – the order of arcs visited. For example, if a route created 

during the initialization phase is comprised of demand arcs [5, 10, 7, 8 13, 0] with traversal 

directions [1, 1, 2, 1, 2, 2], then a possible rearrangement of the route could be [7, 8, 13, 0, 5, 10] 

with directions [2, 1, 2, 2, 1, 1]. 

Upon completion of one cycle of the tabu search phase, one set of depots is passed to the 

augment-merge phase where new vehicle routes are constructed. This phase does not make 

changes to the depot locations and creates vehicle routes with no regard to the set of vehicle 

routes used prior to this cycle. 

 The algorithm cycles back and forth between these two phases until the total elapsed 

solution time, elapsedTime, reaches a specified maximum time, or maxTime. Figure 1 shows a 

framework of the heuristic. A legend for many of the pertinent parameters is included in Figure 4 

and pseudocode is defined in Figure 5. 
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Figure 1: Tabu Search, Augment-Merge Heuristic Framework 

3.1. Initialization 

The problem is initialized by opening all depots and using the augment-merge heuristic to 

create sets of feasible vehicle routes for each scenario. Figure 2 shows an example of how the 

deterministic arc demands for a particular network are modified to create a stochastic instance 

with three scenarios. An individual route is created for each demand arc, starting from the 

demand arc’s origin node, traversing the demand arc, and then traversing the shortest path to 

return to its origin node.  

After creating these initial trivial routes, to augment the routes, the set of routes is sorted 

in non-increasing cost order. Starting at the top of the list, if a demand arc on a cheaper route is 

already traversed in the return trip of a more expensive route and the combined customer demand 

does not exceed the vehicle capacity, then this demand arc is augmented (or absorbed) into the 

more expensive route and the cheaper route is deleted from the list. This process is repeated for 

each route until the second-to-last route has been checked.  
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Figure 2: Example of Converting a Deterministic Instance to a Stochastic Instance Using 

Scenarios to Represent Demand Uncertainty 

Pairs of adjacent routes (i.e., routes that share at least one node) are merged by building a 

cost savings matrix for each feasible route merger (i.e., if the combined demand of the two routes 

does not violate vehicle capacity). Two routes are merged by inserting the series of demand arcs 

of one route into the other route. If all arcs of either route are undirected, then the merge is 

performed by maintaining the original route direction (forward or reverse) and repeated in the 

opposite direction (reverse or forward). Figure 3 shows an example of a route merger for two 

adjacent routes. The cost savings of any route merger is the sum of the costs of the individual 

routes minus the cost of the merged route. The route merger with the largest cost savings is 

implemented, a new cost savings matrix is created for all new feasible route mergers, and the 

process is repeated until there are no more feasible route mergers with positive cost savings. If 

there are any ties for the largest cost savings, then the route merger that appears first in the 

matrix, or has the lower numbered routes, is chosen. 
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Figure 3: Example of Route Merger for Two Adjacent Routes 

 The total solution cost is the sum of the total routing costs (fixed and variable) for each 

scenario weighted by the scenario’s probability of occurrence plus the total fixed depot location 

costs. After augmenting and merging routes, any depots unused across all scenarios are closed. 

The initialization information includes a vector with the status of each depot – open or closed 

(depotStatuses), an array of the sets of vehicle routes for each scenario (vehRouteScenarios), and 

an array of the sets of total demand to be serviced by each depot in each scenario 

(depotDemandScenarios). Each route in vehRouteScenarios includes the demand arcs to be 

serviced, the directions to traverse the demand arcs, the total cost of the route, the total demand 

to be serviced, the nodes to be visited, and the depot node. The global best solution, bestSolution, 

is initialized with the aforementioned information and is then passed to the iterative loop where 

the solution optimization occurs. 

3.2. Tabu Search Phase 

The tabu search phase takes the set of vehicle routes for each scenario and identifies one 

set of depots to be used across all scenarios. The neighborhood for a particular set of depots is 

created by flipping the status of any one depot at a time, i.e., closing an open depot or opening a 
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closed depot. Starting with the set of depots and routes created from the initialization for the first 

tabu iteration (or from the augment-merge phase in the subsequent tabu iterations), the cost 

savings of performing all possible depot flips is calculated. 

If a depot is closed, all routes previously assigned to it are reassigned to another open 

depot. To determine where the open depot should be located in a route, the open depot is inserted 

between each pair of demand arcs in a route and the resulting routing costs are computed. The 

depot insertion location resulting in the lowest cost is chosen. This process is repeated for all 

open depots and the route is assigned to the depot with the cheapest insertion cost.  

If a depot is opened, the cost of moving each existing route to the newly opened depot is 

calculated. Again, the depot insertion cost is calculated for all possible locations in a route and 

the route is reassigned to the newly opened depot only if the routing cost decreases. 

The cost savings of the current neighbor, currNeighborSavings, is the total routing and 

depot location costs of the previous solution minus the total costs of the new neighbor solution. 

The tabu list stores the flips that were performed in the last 10 iterations. If a flip results in the 

largest cost savings in the cycle (bestNeighborSavings) and the flip is not on the tabu list, then 

the flip is implemented and the best neighbor information, bestNeighborSolution and 

bestNeighborCost, are updated. The aspiration criterion, or criterion that overrides the non-tabu 

flip requirement, is if the new solution cost is less than the overall best-known solution. After a 

flip has been chosen, the neighborhood search procedure is repeated until the number of 

iterations within one cycle of the tabu search phase, tabuIter, reaches its maximum limit, 

maxTabuIter, before continuing to the augment-merge phase. To introduce diversification and 

encourage departure from a local optimum, a random eligible depot flip is chosen every five tabu 
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iterations, similar to the method used by Lopes et al. (2014) in the tabu search phase of their tabu 

search-variable neighborhood search heuristic to solve the deterministic LARP. 

After the end of one tabu search cycle, a set of opened depots and vehicle routes across 

all scenarios with the lowest total solution cost is identified and passed to the augment-merge 

phase. If this cost improves the overall best-known solution, then the best-known solution is 

updated with this new information.  

3.3. Augment-Merge Phase 

The augment-merge phase is very similar to that performed in the initialization phase 

with a few exceptions. The vehicle routes used in the tabu search phase are deleted and new 

trivial routes are created. However, instead of all depots eligible for use, only the open depots 

selected during the most recent tabu search cycle can be assigned routes. Thus, because each 

demand arc’s origin node may not contain an open depot, each demand arc is assigned to the 

depot closest to its origin node. Again, for undirected arcs, the origin node is the lower-numbered 

node. After the trivial routes are created, the routes are augmented and merged as before, but 

unused depots across all scenarios are not closed. After the initialization, depot flips are only 

performed in the tabu search phase, not in the augment-merge phase. This process is repeated for 

numScenarios, the total number of scenarios generated for the instance. Once a set of vehicle 

routes for each scenario has been created, the heuristic revisits the tabu search phase if the time 

limit has not yet been reached, or it exits the iterative loop and ends the algorithm. If the set of 

depots and vehicle routes from the augment-merge phase, currCost, improves the overall best-

known solution, then the best-known solution is updated with this new information. 
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Figure 4: Legend of Tabu Search, Augment-Merge Heuristic Parameter Names 

• bestNeighborCost: Cost of best solution in current neighborhood 
• bestNeighborSavings: Best savings in current neighborhood 
• bestNeighborSolution: Best depotStatuses, depotDemandScenarios, and 

vehRouteScenarios in current neighborhood 
• currNeighborSavings: Cost savings for current neighbor’s depot flip 
• depotDemandScenarios: Array of demand serviced by each depot across each 

scenario 
• depotStatuses: Vector of statuses (open or closed) for each depot 
• elapsedTime: Total elapsed time upon starting implementation of heuristic 
• maxTabuIter: Maximum tabu iteration before exiting tabu search phase 
• maxTime: Maximum elapsed time before exiting tabu search phase 
• numScenarios: Total number of scenarios generated for the instance 
• tabuIter: Counter for current iteration of tabu search phase 
          



 30 

 
Figure 5: Tabu Search, Augment-Merge Heuristic Pseudocode 

INITIALIZATION 
 Generate scenarios from deterministic instance 
 for numScenarios 
  Create sets of trivial routes for each scenario 
  Augment routes 
  Merge routes 
  Close any unused depots 
 end 
 Set bestSolution = currSolution 
 Set bestSolutionCost = currSolutionCost 
  
SOLUTION OPTIMIZATION 
Tabu search locate depots 
 while elapsedTime < maxTime 
  if tabuIter < maxTabuIter 
   bestNeighborSavings = -∞ 
   if mod(tabuIter, 5) equals 0 
    Randomly choose an eligible depot flip 
    if currNeighborSavings > bestNeighborSavings 
     Update bestNeighborSavings, bestNeighborSolution, and tabuList 
    end 
   else 
    for all depots 
     Flip depot and calculate currNeighborSavings 
     if (depot is not on tabuList and currNeighborSavings > 
      bestNeighborSavings) 
     or (depot is on tabuList and currNeighborSolutionCost < 
      bestSolutionCost) 
      Update bestNeighborSavings, bestNeighborSolution, and tabuList 
     end 
    end 
   end 
  end 
 end 
 
 if bestNeighborCost < bestSolutionCost 
  Update bestSolution and bestSolutionCost 
 end 
 
Create vehicle routes 
 for numScenarios 
  Create sets of trivial routes for each scenario 
  Augment routes 
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4. COMPUTATIONAL RESULTS 

4.1. Implementation 

The heuristic was implemented in MATLAB_R2015b using a Intel Core i7-5600U CPU 

with a 2.60-GHz processor, Windows 7 Enterprise, and 16.0 GB of RAM. Two built-in 

MATLAB functions in the Bioinformatics Toolbox were used: graphallshortestpaths to 

determine the shortest path distances between two nodes and graphshortestpath to determine the 

sequence of nodes along the shortest path between two nodes. 

4.2. Instance Generation 

Stochastic instances of the LARP were generated using existing deterministic instances. 

The set of mval instances were created by Hashemi Doulabi and Seifi (2013) and are based on 

CARP instances from Belenguer et al. (2006a). A subset of 10 of the 34 total instances were 

used: each instance with the subscript A (e.g., mval1A, mval2A,…, mval10A). The instances are 

comprised of mixed (i.e., directed and undirected) graphs with 24-50 nodes (i.e., potential depot 

locations), and 44-138 demand arcs. For each of the 10 instances, the pair of origin and 

destination nodes, the traversing (or traversal) cost, and the demand for each arc were used while 

the service cost was ignored. An indicator for directedness was also assigned to each arc – 

undirected arcs (or edges) were assigned a value of 0 and directed arcs were assigned 1. 

To create scenarios for a particular instance, arc demands were generated from a 

truncated normal probability distribution similar to the method used by Laporte et al. (1989) for 

the stochastic LRP. For each arc, the distribution mean was equal to the deterministic demand 

value and the standard deviation was a coefficient times the mean. Any negative values 

generated were replaced by zero. Each scenario’s probability of occurrence was assumed to be 

equal. 
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4.3. Evaluation of Proposed Heuristic on Stochastic vs. Deterministic LARPs 

To evaluate the effectiveness of the proposed tabu search, augment-merge heuristic, 9 

experiments were conducted for each of the 10 instances, resulting in a total of 90 experiments. 

The parameters to be tested were divided into two groups: instance parameters and model 

parameters, summarized in Table 1. 

The values for the three instance parameters were drawn from existing literature and were 

unchanged across the 90 experiments. The fixed vehicle cost (referred to as dumping cost by 

Belenguer et al. 2006a) was 0. As defined by Hashemi Doulabi and Seifi (2013), the fixed depot 

location cost for each instance was calculated using a depot fixed cost factor multiplied by the 

average cost of all arcs in the network. A depot fixed cost factor of 1 was used. To generate the 

scenarios, the variance of the truncated normal probability distribution of each arc demand was 

defined using a standard deviation factor of 1/3 multiplied by the mean. 

There were three model parameters, two of which were varied for experimentation. The 

number of scenarios generated (numScenarios) had values of 10, 30, or 50. The maximum time 

allotted to solve each LARP (maxTime) was 1 hr. The maximum number of tabu search iterations 

(maxTabuIter) was set to 32, 125, or 500. Table 2 summarizes the parameters that were changed 

for each of the 90 experiments. 

One replication of each of the 90 stochastic LARP experiments was conducted using the 

full tabu search, augment-merge heuristic. Similarly, using the deterministic arc demands for 

each instance, the full heuristic was used to solve 90 comparison experiments without stochastic 

scenarios. The depot locations for both stochastic and deterministic versions of each experiment  

were stored and used for further analysis. Figure 6 shows the total solution cost versus time for 

the mval1A experiment with numScenarios = 10 and maxTabuIter = 30. 
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Figure 6: Solution Cost versus Time for Experiment #1 (mval1A, numScenarios = 10, 

maxTabuIter = 30) 

Table 1: Summary of Experiment Parameters 

Category Names Values 

Instance parameters 
vehFixedCost 0 

depotFixedCostFactor 1 
stdDevFactor 1/3 

Model parameters 
numScenarios 10, 30, 50 

maxTime 1 hr 
maxTabuIter 32, 125, 500 

 
To better understand the robustness of these initial solutions to the stochastic instances, 

arc demands for 100 scenarios were generated for each of the 10 instances. Then, for each 

experiment, using the set of depots obtained from the full stochastic heuristic, vehicle routes 

were created using only the augment-merge phase across all 100 scenarios and an updated 

expected total cost was computed. This procedure was repeated using the set of depots obtained 
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from the full deterministic heuristic and its solution cost was compared to its stochastic 

equivalent. 

Of the 90 initial experiments, 30 resulted in a deterministic solution cost higher than its 

corresponding stochastic solution cost, indicating the value of considering variance in customer 

demand. The ratios of deterministic solution cost to stochastic solution cost for these 30 

experiments range from 100.3 – 112.3% as shown in Figure 7. The same 30 experiments were 

observed across 9 of the 10 mval instances showing the potential benefits across a range of 

possible depot locations and numbers of demand arcs. For 2 of the 10 instances (mval5A and 

mval9A), the minimum solution cost using the depots obtained from the stochastic experiment 

was less than its deterministic counterparts.  

Looking at the effect of the model parameters, each of the numScenarios and 

maxTabuIter values are equally represented in the 30 experiments. For the 10 highest solution 

cost ratios, numScenarios of 10 occurs the most frequently with 6 occurrences and maxTabuIter 

of 32 and 125 both appear 4 times. 

As expected, the time spent in the tabu search phase exploring the neighborhood and 

choosing depot locations constituted the majority of the total solution processing time. For the 90 

stochastic experiments, on average, the initialization step took 1.7% of the total solution time, the 

tabu search phase took 84.7%, and the augment-merge phase took 13.6%. 

With customer demand magnitude being the primary difference between the stochastic 

and deterministic instances, the depot locations for the deterministic instances tended to perform 

well for their corresponding stochastic instances if the route capacities were unlikely to violate 

their respective vehicle capacities. In the initial 90 deterministic experiment solutions using the 

full heuristic, less than 3% of the 2045 routes had a probability greater than 0.000001 of 
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exceeding the vehicle capacity. Of this subset, the average probability a route would exceed its 

vehicle capacity was only 32%.  Thus, to further investigate the benefits of incorporating 

customer demand uncertainty in the depot location decisions, another set of 90 experiments was 

conducted using the same mval instances with modified vehicle capacity. The vehicle capacity in 

each instance was replaced with a capacity 1/8 times its original value. The same procedures 

listed above were conducted: 1) a stochastic version of each experiment was solved using the full 

tabu search, augment-merge heuristic; 2) a deterministic version of each experiment was solved 

using the full heuristic; 3) the set of depots obtained from the stochastic version was applied 

across 100 scenarios to evaluate its robustness; and 4) the set of depots obtained from the 

deterministic version was applied across 100 scenarios. 

The modified instances resulted in 33 of the 90 experiments with stochastic solutions 

costs lower than their deterministic counterparts. They also spanned 9 of the 10 instances and 

ranged from just over 100.0% to 110.1%. Compared to the original instances, the number of 

instances in which the minimum solution cost using the depots obtained from the stochastic 

experiment was less than its deterministic counterparts doubled from 2 to 4. This highlights the 

importance of instance information, such as vehicle capacity, in determining whether considering 

customer demand uncertainty is a valuable endeavor.  
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Table 2: List of Experiments  
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Table 3: Comparison of Stochastic and Deterministic Solution Costs Using Depots from 
Original Instances with Full Vehicle Capacity Across 100 Scenarios 

 
 

Expt. 
#

Instance 
Name

numSc
enarios

maxTab
uIter

totCos
t

varRout
eCost

fixedRo
uteCos

t

fixedDe
potCost

totCos
t

varRout
eCost

fixedRo
uteCos

t

fixedDe
potCost

% of 
Stochastic 

Cost
1 mval1A 10 125 283.53 246.80 0.00 36.73 261.03 242.67 0.00 18.36 92.1%
2 mval1A 10 32 263.41 248.72 0.00 14.69 278.88 271.53 0.00 7.35 105.9%
3 mval1A 10 500 295.35 280.66 0.00 14.69 271.24 252.88 0.00 18.36 91.8%
4 mval1A 30 125 283.53 246.80 0.00 36.73 292.56 277.87 0.00 14.69 103.2%
5 mval1A 30 32 283.53 246.80 0.00 36.73 287.54 269.18 0.00 18.36 101.4%
6 mval1A 30 500 277.37 255.33 0.00 22.04 262.31 258.64 0.00 3.67 94.6%
7 mval1A 50 125 299.31 284.62 0.00 14.69 261.03 242.67 0.00 18.36 87.2%
8 mval1A 50 32 300.47 263.74 0.00 36.73 272.48 265.13 0.00 7.35 90.7%
9 mval1A 50 500 295.12 254.72 0.00 40.40 293.39 260.34 0.00 33.05 99.4%
10 mval2A 10 125 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
11 mval2A 10 32 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
12 mval2A 10 500 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
13 mval2A 30 125 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
14 mval2A 30 32 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
15 mval2A 30 500 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
16 mval2A 50 125 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
17 mval2A 50 32 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
18 mval2A 50 500 366.28 327.94 0.00 38.34 366.28 327.94 0.00 38.34 100.0%
19 mval3A 10 125 142.69 123.94 0.00 18.75 145.64 126.89 0.00 18.75 102.1%
20 mval3A 10 32 143.79 126.91 0.00 16.88 143.79 126.91 0.00 16.88 100.0%
21 mval3A 10 500 143.79 126.91 0.00 16.88 135.41 127.91 0.00 7.50 94.2%
22 mval3A 30 125 135.11 121.98 0.00 13.13 133.61 127.98 0.00 5.63 98.9%
23 mval3A 30 32 143.79 126.91 0.00 16.88 142.69 123.94 0.00 18.75 99.2%
24 mval3A 30 500 143.79 126.91 0.00 16.88 143.79 126.91 0.00 16.88 100.0%
25 mval3A 50 125 142.69 123.94 0.00 18.75 142.62 138.87 0.00 3.75 100.0%
26 mval3A 50 32 142.69 123.94 0.00 18.75 133.72 128.09 0.00 5.63 93.7%
27 mval3A 50 500 142.69 123.94 0.00 18.75 142.69 123.94 0.00 18.75 100.0%
28 mval4A 10 125 639.00 599.34 0.00 39.66 655.45 610.83 0.00 44.62 102.6%
29 mval4A 10 32 653.13 623.38 0.00 29.75 653.13 623.38 0.00 29.75 100.0%
30 mval4A 10 500 624.55 589.84 0.00 34.71 661.94 617.32 0.00 44.62 106.0%
31 mval4A 30 125 644.67 619.88 0.00 24.79 607.81 573.10 0.00 34.71 94.3%
32 mval4A 30 32 662.83 633.08 0.00 29.75 638.64 618.81 0.00 19.83 96.4%
33 mval4A 30 500 675.33 615.84 0.00 59.49 639.00 599.34 0.00 39.66 94.6%
34 mval4A 50 125 639.00 599.34 0.00 39.66 653.13 623.38 0.00 29.75 102.2%
35 mval4A 50 32 698.49 663.78 0.00 34.71 652.95 608.33 0.00 44.62 93.5%
36 mval4A 50 500 662.35 597.90 0.00 64.45 670.15 655.28 0.00 14.87 101.2%
37 mval5A 10 125 676.03 637.75 0.00 38.28 757.71 664.74 0.00 92.97 112.1%
38 mval5A 10 32 747.66 665.63 0.00 82.03 757.71 664.74 0.00 92.97 101.3%
39 mval5A 10 500 734.08 668.45 0.00 65.63 817.00 778.72 0.00 38.28 111.3%
40 mval5A 30 125 732.80 667.17 0.00 65.63 729.49 685.74 0.00 43.75 99.5%
41 mval5A 30 32 692.85 643.63 0.00 49.22 694.98 667.64 0.00 27.34 100.3%
42 mval5A 30 500 747.82 682.19 0.00 65.63 753.43 704.21 0.00 49.22 100.8%
43 mval5A 50 125 739.64 663.08 0.00 76.56 723.11 652.02 0.00 71.09 97.8%
44 mval5A 50 32 719.87 681.59 0.00 38.28 725.86 665.70 0.00 60.16 100.8%
45 mval5A 50 500 727.57 661.94 0.00 65.63 703.49 648.80 0.00 54.69 96.7%

STOCHASTIC COSTS DETERMINISTIC COSTS
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Table 3 <continued>: Comparison of Stochastic and Deterministic Solution Costs Using Depots 
from Original Instances with Full Vehicle Capacity Across 100 Scenarios 

 

Expt. 
#
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Name
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enarios

maxTab
uIter

totCos
t

varRout
eCost

fixedRo
uteCos

t

fixedDe
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varRout
eCost

fixedRo
uteCos

t

fixedDe
potCost

% of 
Stochastic 

Cost
46 mval6A 10 125 390.52 363.64 0.00 26.88 386.52 355.80 0.00 30.72 99.0%
47 mval6A 10 32 385.52 354.80 0.00 30.72 357.95 338.75 0.00 19.20 92.8%
48 mval6A 10 500 385.52 354.80 0.00 30.72 390.40 355.83 0.00 34.57 101.3%
49 mval6A 30 125 389.39 362.51 0.00 26.88 386.51 374.99 0.00 11.52 99.3%
50 mval6A 30 32 385.52 354.80 0.00 30.72 393.00 381.48 0.00 11.52 101.9%
51 mval6A 30 500 396.45 365.73 0.00 30.72 390.57 359.85 0.00 30.72 98.5%
52 mval6A 50 125 424.91 340.42 0.00 84.49 390.40 355.83 0.00 34.57 91.9%
53 mval6A 50 32 390.37 355.80 0.00 34.57 392.13 353.72 0.00 38.41 100.5%
54 mval6A 50 500 385.52 354.80 0.00 30.72 390.40 355.83 0.00 34.57 101.3%
55 mval7A 10 125 459.30 425.08 0.00 34.22 491.61 453.59 0.00 38.02 107.0%
56 mval7A 10 32 461.39 427.17 0.00 34.22 483.43 441.60 0.00 41.83 104.8%
57 mval7A 10 500 475.19 429.56 0.00 45.63 419.99 404.78 0.00 15.21 88.4%
58 mval7A 30 125 482.56 440.73 0.00 41.83 503.09 461.26 0.00 41.83 104.3%
59 mval7A 30 32 480.45 434.82 0.00 45.63 474.51 440.29 0.00 34.22 98.8%
60 mval7A 30 500 467.10 402.46 0.00 64.64 463.18 425.16 0.00 38.02 99.2%
61 mval7A 50 125 484.88 446.86 0.00 38.02 480.58 438.75 0.00 41.83 99.1%
62 mval7A 50 32 480.58 438.75 0.00 41.83 444.35 421.54 0.00 22.81 92.5%
63 mval7A 50 500 471.97 395.92 0.00 76.05 432.15 416.94 0.00 15.21 91.6%
64 mval8A 10 125 718.23 685.29 0.00 32.94 652.07 619.13 0.00 32.94 90.8%
65 mval8A 10 32 664.34 631.40 0.00 32.94 650.71 639.73 0.00 10.98 97.9%
66 mval8A 10 500 693.86 655.43 0.00 38.43 714.63 687.18 0.00 27.45 103.0%
67 mval8A 30 125 723.71 685.28 0.00 38.43 652.07 619.13 0.00 32.94 90.1%
68 mval8A 30 32 664.34 631.40 0.00 32.94 714.63 687.18 0.00 27.45 107.6%
69 mval8A 30 500 715.98 677.55 0.00 38.43 714.63 687.18 0.00 27.45 99.8%
70 mval8A 50 125 701.32 657.40 0.00 43.92 714.63 687.18 0.00 27.45 101.9%
71 mval8A 50 32 686.42 620.54 0.00 65.88 715.98 677.55 0.00 38.43 104.3%
72 mval8A 50 500 705.54 623.20 0.00 82.34 655.49 628.04 0.00 27.45 92.9%
73 mval9A 10 125 593.47 525.34 0.00 68.13 583.25 518.08 0.00 65.17 98.3%
74 mval9A 10 32 568.74 509.50 0.00 59.24 583.22 518.05 0.00 65.17 102.5%
75 mval9A 10 500 596.99 534.79 0.00 62.20 582.84 517.67 0.00 65.17 97.6%
76 mval9A 30 125 592.31 527.14 0.00 65.17 579.31 564.50 0.00 14.81 97.8%
77 mval9A 30 32 587.80 522.63 0.00 65.17 586.80 521.63 0.00 65.17 99.8%
78 mval9A 30 500 577.39 518.15 0.00 59.24 580.39 541.88 0.00 38.51 100.5%
79 mval9A 50 125 587.80 522.63 0.00 65.17 579.87 517.67 0.00 62.20 98.7%
80 mval9A 50 32 600.52 529.43 0.00 71.09 578.27 542.72 0.00 35.55 96.3%
81 mval9A 50 500 590.76 522.63 0.00 68.13 606.61 544.41 0.00 62.20 102.7%
82 mval10A 10 125 798.01 754.57 0.00 43.44 784.95 717.81 0.00 67.14 98.4%
83 mval10A 10 32 804.03 740.84 0.00 63.19 799.96 732.82 0.00 67.14 99.5%
84 mval10A 10 500 794.46 747.07 0.00 47.39 746.20 706.71 0.00 39.49 93.9%
85 mval10A 30 125 784.95 717.81 0.00 67.14 792.68 749.24 0.00 43.44 101.0%
86 mval10A 30 32 797.38 746.04 0.00 51.34 753.06 701.72 0.00 51.34 94.4%
87 mval10A 30 500 761.69 686.65 0.00 75.04 778.11 703.07 0.00 75.04 102.2%
88 mval10A 50 125 799.96 732.82 0.00 67.14 735.52 696.03 0.00 39.49 91.9%
89 mval10A 50 32 820.54 753.40 0.00 67.14 753.88 734.13 0.00 19.75 91.9%
90 mval10A 50 500 807.48 740.34 0.00 67.14 795.39 728.25 0.00 67.14 98.5%

STOCHASTIC COSTS DETERMINISTIC COSTS
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Figure 7: Comparison of Stochastic and Deterministic Solution Costs Using Depots from 

Original Instances with Full Vehicle Capacity Across 100 Scenarios 
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Table 4: Comparison of Stochastic and Deterministic Solution Costs Using Depots from 
Modified Instances with 1/8 * Vehicle Capacity Across 100 Scenarios 

 

Expt. 
#

Instance 
Name

numSc
enarios

maxTab
uIter totCost varRout

eCost
fixedRo
uteCost

fixedDe
potCost totCost varRout

eCost
fixedRo
uteCost

fixedDe
potCost

% of 
Stochastic 

Cost
1 mval1A 10 125 322.63 296.92 0.00 25.71 328.04 302.33 0.00 25.71 101.7%
2 mval1A 10 32 309.73 280.35 0.00 29.38 334.40 290.33 0.00 44.07 108.0%
3 mval1A 10 500 329.60 289.20 0.00 40.40 329.59 292.86 0.00 36.73 100.0%
4 mval1A 30 125 320.77 295.06 0.00 25.71 331.80 291.40 0.00 40.40 103.4%
5 mval1A 30 32 337.40 297.00 0.00 40.40 331.95 295.22 0.00 36.73 98.4%
6 mval1A 30 500 322.08 296.37 0.00 25.71 329.99 285.92 0.00 44.07 102.5%
7 mval1A 50 125 300.40 271.02 0.00 29.38 330.73 290.33 0.00 40.40 110.1%
8 mval1A 50 32 320.39 283.66 0.00 36.73 322.65 285.92 0.00 36.73 100.7%
9 mval1A 50 500 331.38 294.65 0.00 36.73 336.33 295.93 0.00 40.40 101.5%
10 mval2A 10 125 460.30 405.53 0.00 54.77 454.26 410.44 0.00 43.82 98.7%
11 mval2A 10 32 461.26 428.40 0.00 32.86 447.62 409.28 0.00 38.34 97.0%
12 mval2A 10 500 451.94 408.12 0.00 43.82 439.48 401.14 0.00 38.34 97.2%
13 mval2A 30 125 473.95 435.61 0.00 38.34 431.17 387.35 0.00 43.82 91.0%
14 mval2A 30 32 461.94 407.17 0.00 54.77 438.36 394.54 0.00 43.82 94.9%
15 mval2A 30 500 441.30 392.00 0.00 49.30 433.59 389.77 0.00 43.82 98.3%
16 mval2A 50 125 457.96 408.66 0.00 49.30 428.21 384.39 0.00 43.82 93.5%
17 mval2A 50 32 462.06 412.76 0.00 49.30 433.59 389.77 0.00 43.82 93.8%
18 mval2A 50 500 469.18 414.41 0.00 54.77 428.21 384.39 0.00 43.82 91.3%
19 mval3A 10 125 162.76 142.13 0.00 20.63 164.39 149.39 0.00 15.00 101.0%
20 mval3A 10 32 155.09 141.96 0.00 13.13 159.35 142.47 0.00 16.88 102.7%
21 mval3A 10 500 163.15 144.40 0.00 18.75 159.38 146.25 0.00 13.13 97.7%
22 mval3A 30 125 151.30 140.05 0.00 11.25 158.67 145.54 0.00 13.13 104.9%
23 mval3A 30 32 163.09 144.34 0.00 18.75 158.67 145.54 0.00 13.13 97.3%
24 mval3A 30 500 158.14 139.39 0.00 18.75 164.39 149.39 0.00 15.00 104.0%
25 mval3A 50 125 157.04 147.66 0.00 9.38 154.27 143.02 0.00 11.25 98.2%
26 mval3A 50 32 153.62 142.37 0.00 11.25 164.39 149.39 0.00 15.00 107.0%
27 mval3A 50 500 168.79 146.29 0.00 22.50 151.39 134.51 0.00 16.88 89.7%
28 mval4A 10 125 712.28 642.87 0.00 69.41 730.35 690.69 0.00 39.66 102.5%
29 mval4A 10 32 763.08 693.67 0.00 69.41 716.69 652.24 0.00 64.45 93.9%
30 mval4A 10 500 722.55 668.01 0.00 54.54 736.49 686.91 0.00 49.58 101.9%
31 mval4A 30 125 740.51 671.10 0.00 69.41 731.82 702.07 0.00 29.75 98.8%
32 mval4A 30 32 727.28 657.87 0.00 69.41 710.79 646.34 0.00 64.45 97.7%
33 mval4A 30 500 731.27 656.90 0.00 74.37 728.59 659.18 0.00 69.41 99.6%
34 mval4A 50 125 712.81 648.36 0.00 64.45 695.52 650.90 0.00 44.62 97.6%
35 mval4A 50 32 747.53 668.20 0.00 79.33 740.40 690.82 0.00 49.58 99.0%
36 mval4A 50 500 725.56 651.19 0.00 74.37 757.01 702.47 0.00 54.54 104.3%
37 mval5A 10 125 878.02 790.52 0.00 87.50 814.69 738.13 0.00 76.56 92.8%
38 mval5A 10 32 837.51 760.95 0.00 76.56 821.57 766.88 0.00 54.69 98.1%
39 mval5A 10 500 876.51 794.48 0.00 82.03 806.04 740.41 0.00 65.63 92.0%
40 mval5A 30 125 838.26 767.17 0.00 71.09 838.33 761.77 0.00 76.56 100.0%
41 mval5A 30 32 840.61 758.58 0.00 82.03 848.86 772.30 0.00 76.56 101.0%
42 mval5A 30 500 839.98 768.89 0.00 71.09 810.32 755.63 0.00 54.69 96.5%
43 mval5A 50 125 838.44 767.35 0.00 71.09 831.16 771.00 0.00 60.16 99.1%
44 mval5A 50 32 856.33 779.77 0.00 76.56 819.37 742.81 0.00 76.56 95.7%
45 mval5A 50 500 815.25 744.16 0.00 71.09 810.43 744.80 0.00 65.63 99.4%

STOCHASTIC COSTS DETERMINISTIC COSTS
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Table 4 <continued>: Comparison of Stochastic and Deterministic Solution Costs Using Depots 
from Modified Instances with 1/8 * Vehicle Capacity Across 100 Scenarios 

 

 

Expt. 
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46 mval6A 10 125 461.94 419.69 0.00 42.25 448.95 399.02 0.00 49.93 97.2%
47 mval6A 10 32 451.63 409.38 0.00 42.25 441.27 414.39 0.00 26.88 97.7%
48 mval6A 10 500 457.81 423.24 0.00 34.57 465.13 422.88 0.00 42.25 101.6%
49 mval6A 30 125 460.36 410.43 0.00 49.93 441.99 392.06 0.00 49.93 96.0%
50 mval6A 30 32 432.78 390.53 0.00 42.25 446.66 392.89 0.00 53.77 103.2%
51 mval6A 30 500 472.14 426.05 0.00 46.09 441.27 399.02 0.00 42.25 93.5%
52 mval6A 50 125 458.63 408.70 0.00 49.93 455.07 432.03 0.00 23.04 99.2%
53 mval6A 50 32 458.22 415.97 0.00 42.25 455.12 405.19 0.00 49.93 99.3%
54 mval6A 50 500 450.65 400.72 0.00 49.93 441.27 399.02 0.00 42.25 97.9%
55 mval7A 10 125 543.29 463.44 0.00 79.85 525.18 456.74 0.00 68.44 96.7%
56 mval7A 10 32 502.33 464.31 0.00 38.02 534.38 469.74 0.00 64.64 106.4%
57 mval7A 10 500 519.09 473.46 0.00 45.63 526.43 484.60 0.00 41.83 101.4%
58 mval7A 30 125 490.56 444.93 0.00 45.63 515.73 466.30 0.00 49.43 105.1%
59 mval7A 30 32 535.13 493.30 0.00 41.83 527.39 462.75 0.00 64.64 98.6%
60 mval7A 30 500 514.77 453.93 0.00 60.84 534.40 469.76 0.00 64.64 103.8%
61 mval7A 50 125 540.23 464.18 0.00 76.05 519.32 481.30 0.00 38.02 96.1%
62 mval7A 50 32 537.99 492.36 0.00 45.63 529.06 494.84 0.00 34.22 98.3%
63 mval7A 50 500 513.98 449.34 0.00 64.64 504.37 454.94 0.00 49.43 98.1%
64 mval8A 10 125 802.71 736.83 0.00 65.88 805.36 744.97 0.00 60.39 100.3%
65 mval8A 10 32 832.15 760.79 0.00 71.36 824.79 742.45 0.00 82.34 99.1%
66 mval8A 10 500 791.51 714.66 0.00 76.85 820.32 759.93 0.00 60.39 103.6%
67 mval8A 30 125 805.93 734.57 0.00 71.36 798.49 738.10 0.00 60.39 99.1%
68 mval8A 30 32 781.61 721.22 0.00 60.39 811.99 746.11 0.00 65.88 103.9%
69 mval8A 30 500 805.49 739.61 0.00 65.88 795.78 713.44 0.00 82.34 98.8%
70 mval8A 50 125 810.92 739.56 0.00 71.36 781.09 715.21 0.00 65.88 96.3%
71 mval8A 50 32 784.14 707.29 0.00 76.85 808.58 742.70 0.00 65.88 103.1%
72 mval8A 50 500 799.15 722.30 0.00 76.85 815.40 749.52 0.00 65.88 102.0%
73 mval9A 10 125 639.25 568.16 0.00 71.09 610.56 548.36 0.00 62.20 95.5%
74 mval9A 10 32 592.52 530.32 0.00 62.20 607.49 542.32 0.00 65.17 102.5%
75 mval9A 10 500 632.92 567.75 0.00 65.17 599.05 533.88 0.00 65.17 94.6%
76 mval9A 30 125 615.87 547.74 0.00 68.13 627.20 562.03 0.00 65.17 101.8%
77 mval9A 30 32 616.61 548.48 0.00 68.13 610.42 545.25 0.00 65.17 99.0%
78 mval9A 30 500 623.95 561.75 0.00 62.20 608.50 546.30 0.00 62.20 97.5%
79 mval9A 50 125 610.39 551.15 0.00 59.24 635.93 573.73 0.00 62.20 104.2%
80 mval9A 50 32 658.80 587.71 0.00 71.09 587.53 525.33 0.00 62.20 89.2%
81 mval9A 50 500 614.14 548.97 0.00 65.17 600.07 526.02 0.00 74.05 97.7%
82 mval10A 10 125 810.33 731.34 0.00 78.99 788.45 748.96 0.00 39.49 97.3%
83 mval10A 10 32 819.59 748.50 0.00 71.09 808.93 749.69 0.00 59.24 98.7%
84 mval10A 10 500 805.69 730.65 0.00 75.04 792.30 721.21 0.00 71.09 98.3%
85 mval10A 30 125 828.16 753.12 0.00 75.04 824.24 757.10 0.00 67.14 99.5%
86 mval10A 30 32 830.14 755.10 0.00 75.04 824.61 749.57 0.00 75.04 99.3%
87 mval10A 30 500 821.16 746.12 0.00 75.04 800.01 760.52 0.00 39.49 97.4%
88 mval10A 50 125 844.21 769.17 0.00 75.04 814.80 743.71 0.00 71.09 96.5%
89 mval10A 50 32 795.01 727.87 0.00 67.14 831.83 760.74 0.00 71.09 104.6%
90 mval10A 50 500 808.84 733.80 0.00 75.04 814.50 755.26 0.00 59.24 100.7%

STOCHASTIC COSTS DETERMINISTIC COSTS
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5. SUMMARY AND CONCLUSIONS 

This paper presented a framework for a tabu search, augment-merge heuristic to solve a 

stochastic LARP – a problem whose objective is to site depots and create vehicle routes given 

uncertain customer demand and minimize overall depot location and routing costs. Different 

scenarios represent the potential realizations of customer demand. The heuristic is split into two 

phases: the tabu search phase seeking to minimize the depot location costs or depot 

removal/insertion costs from/into a given route of customer arcs across scenarios and the 

augment-merge phase aiming to minimize the vehicle routing costs for each scenario given a 

fixed set of depot locations. 

A set of 10 existing deterministic LARP instances were transformed into stochastic 

versions of the problem and 9 experiments with varying number of scenarios (10, 30, 50) and 

maximum tabu iterations (32, 125, 500) were conducted for each. One-third of the initial 90 

experiments showed the potential value of considering stochastic customer demand with a ratio 

of deterministic solution cost to stochastic solution cost greater than 1.  

A second set of 90 experiments was conducted using value the same instance and model 

parameters as the first set of experiments and a modified vehicle capacity 1/8 times its original 

value. Compared to the original instances, the modified versions resulted in twice as many 

instances in which the depots obtained from the stochastic solution outperformed the depots 

obtained from the deterministic solution, indicating the algorithm’s sensitivity to the instance 

input information, such as vehicle capacity. 

These initial experiments show promising value for the proposed stochastic LARP 

algorithm. Because each experiment was conducted only once, performing a larger number 

replications using the full tabu search, augment-merge heuristic for both stochastic and 
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deterministic experiments may help to mitigate any effects of a particularly skewed set of 

scenarios and demonstrate even greater potential benefits. 

Another suggestion for future research is to explore other intensification and 

diversification techniques and investigate different types of neighborhoods to continue 

improving the tabu search phase. For example, when choosing a flip to implement in the 

neighborhood search, instead of choosing the first flip resulting in the lowest savings, a depot 

can be randomly chosen among all flips resulting in positive cost savings. 

The current heuristic spends the majority of its time in the tabu search phase seeking the 

best depot locations, and the augment-merge phase was chosen for its relative solution speed. 

However, the augment-merge portion of the heuristic can also be further improved by allowing 

pairs of non-adjacent routes (i.e., two routes that do not share a common node) to be merged. 

Furthermore, for the scope of this project, the augment-merge heuristic was chosen for its 

computational speed in creating vehicle routes, but given the existing selection of CARP 

algorithms, other methods can be substituted. 

In addition to improving the details of the two phases of the algorithm, instead of 

examining the demand magnitudes in a given instance, demand presence (or absence) on arcs in 

the network is another area for further exploration and could be represented using binary 

variables. 
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