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ABSTRACT 

 

 Ascites syndrome in broiler chickens has developed into a source of economic loss in the 

last three decades.  Intensive selective pressure, and implementation of flock management 

practices, has successfully reduced ascites frequency, but has not eliminated its occurrence.  For 

this reason, it is imperative to better understand the genetic cause to ascites in broiler chickens.  

Previous studies of this magnitude have been attempted, but, thus far, a consensus of genomic 

associations have not been made.  This collection of studies was aimed at identifying and 

interpreting genomic and genetic associations to ascites phenotype specific to a broiler line 

representative of a 1990s elite male line.  A next generation sequencing technique, termed 

genome wide association studies, was initially implemented to identify chromosomal regions 

experiencing correlations with ascetic events in broilers.  Individual loci were then evaluated for 

their impact on resistance and susceptibility, with particular interest in sex effects and parental 

genotypes.  Finally, statistical models were evaluated for their potential use in predicting ascites 

incidence.  Models represent a less time consuming and more cost effective method aimed at 

conserving genetic accuracy in selected breeding programs.  Together, these studies represent 

gains in the current knowledge of ascites genetics and serve as a possible source for novel 

selective breeding practices in an industry setting.
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Domestication 

Molecular and archeological evidence suggests the chicken was domesticated from a 

subspecies of jungle fowl found throughout Southeast Asia, the red jungle fowl (Gallus gallus), 

around 7,000-10,000 years ago (West and Zhou, 1988; Fumihito et al., 1994; Xiang et al., 2014).  

Domestication events occurred independently throughout this region, including China, Indonesia, 

Japan, and India (Liu, et al., 2006; Kanginakudru, et al., 2008).  Diverse use of the chicken, 

including meat and egg production, religious activities, cockfighting, and ornamentation, all 

contribute to the chicken having the most extensive range of all domestic species (Serjeantson, 

2009).  Prior to WWII, chicken meat production was a secondary market for the egg industry 

(National Chicken Council).  With the increased accessibility of feed ingredients amplifying 

poultry availability, and an increase in consumer consumption of poultry meat at a time of red 

meat rationing, both led to the early development of a primitive poultry industry.   

Modernization of the Broiler 

Beginning in the early 20th century, and continuing today, improving management 

techniques, nutritional evaluation, and implementing breeding schemes act as the groundwork 

for improvement in the poultry production industry (Titus, 1941; Hutt, 1949; Griffin and 

Goddard, 1994; Havenstein et al., 2003; Bessei, 2006).  Initial emphasis on mass selection 

resulted in a positive response to economically important traits, because these traits maintained 

high heritabilities.  In commercial broilers this genetic influence led to a rapid positive response 

in pedigreed selection systems (Hunton, 2006).  At the beginning of the development of what is 

considered the precursor to the modern day poultry industry it was realized that a negative 

correlation exists between growth-related traits and reproduction-related traits (Siegel and 

Dunnington, 1985).  For this reason, breeds originally selected as dual-purpose breeds (selection 
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emphasis on meat yield and egg production) were replaced by breeds with specialized selection.  

As a result, in North America today, the Cornish Cross represents a majority of the broiler 

market, whose selection has created a bird that reaches market weight at d 42.   

Consumption of chicken meat has steadily increased since commercially available 

products have been monitored beginning in the mid-1900s.  Chicken meat surpassed beef and 

pork in per capita consumption in pounds per year in the mid 1990’s (MacDonald, 2008). Since 

1929, the pounds of poultry produced in the U.S. has increased almost five-fold (Figure 1-1). A 

reason for the change in eating habits in the U.S. is partially due to the difference in price.  In 

December of 2015 the price of beef per pound averaged $5.50, while the price of chicken 

averaged $1.94 per pound (Hahn, 2016).  

As a result of an increase in demand for chicken meat during the 1940’s selective 

breeding in chickens, through progeny testing, for the purpose of altering quantitative traits, 

began (Hunton, 2006).  Commercial genetic companies formed and began focusing on selection 

efforts for traits affecting disease resistance, meat yield, feed efficiency, egg production, meat 

quality, among others.  Massive gains in economically important traits, specifically breast filet 

yield, have been achieved.  Evidence of this can be seen in feed conversion decline of 4.42 in a 

1957 broiler population to 1.47 in 2003 (Havenstein et al., 2003) and the reduction of time it 

takes for a broiler to reach 1.5kg of live weight in 1925 versus 2005: 120 days to 30 days, 

respectively (Albers, 1998).   In summary, massive changes in management and production 

schemes has led to the commercial broiler of today. 

Modern Breeding Schemes 

Modern broiler breeding companies have developed a broiler breeding and production 

system that can be visually represented in a pyramid scheme (Figure 1-2).  At the top are pure-
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bred pedigreed elite lines.  In the Cobb-Vantress Inc. (Siloam Springs, AR) breeding program 

over 50 performance, production, and general health traits are evaluated from each pedigreed 

offspring (Katanbaf and Hardiman, 2010).  Pedigreed birds will provide parental generations for 

the pure line great grandparent stock, which provides parental generations for the grandparent 

stock (Figure 1-3).  Pure lines at the grandparent level experience the first line crosses in the 

breeding scheme.  What results is a two-way cross representing individuals whose pure line 

heritage are under selection pressure for either growth, yield, and feed conversion ratio (termed 

male lines), or growth, yield, and reproductive traits (termed female lines).  The parent 

generation is the first instance of ownership by production companies.  Finally, commercial 

broilers represent a four-way cross of the male and female two-way cross.  On a world-wide 

basis, it has been estimated that 400,000 pedigreed individuals representing 35-40 pure bred lines 

from various companies at the pedigree level will be the progenitors for approximately 400 

billion commercial broilers (Pollock, 1999). 

Domestication Effects 

Ultimately, dramatic changes experienced in the domestic chicken selected for growth 

did not occur without negatively resulting consequences to the physiology of the birds.  In 

tandem with selection for performance traits, undesirable qualities developed.  Selection for 

rapid growth increases carcass fat, which directly influences leg lameness seen in broilers (Soller 

and Eitan, 1984), fluctuation in muscle characteristic consistency due to alterations in age of 

slaughter and development (Gous, 1986), and increases in disease accumulation, like sudden 

death syndrome (Gardiner, et al., 1988), pulmonary hypertension (Julian, 1993), and negatively 

influences reproductive performance (Anthony, 1998; Emmerson, 1997).  These domestication 
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effects have been the subject of several review articles (Anthony, 1998; Petracci and Cavani, 

2012).   

Heart and Lung Function 

The avian heart is a four chambered system consisting of right and left atria and 

ventricles.  The right ventricle works at a low pressure sending blood through to the lungs for 

oxygenation, while the left ventricle works at a higher pressure as it perfuses blood for systemic 

circulation.  The thickness of the left ventricle is approximately two to three times the thickness 

of the right ventricle (Olkowski et al., 1998; Tekeli, 2014).  The size differential is owed to the 

variation in systolic pressures maintained by the right and left ventricle (Speer, 2016).  As a 

result, the left ventricle is capable of producing a systolic pressure four to five times greater than 

in the right ventricle under normal conditions (King and McLelland, 1984). 

From approximately 40 g at hatch, a broiler chick has the ability to reach up to 4,000 g at 

the processing age of eight weeks (Wideman et al., 2013).  To sustain the physiological needs of 

the bird during the growth phase heart and lung functions must cope with rapid gain.  The 

cardiac output, and subsequent stroke volume, are proportional to body mass in all avian species, 

but these correlations are higher than what is seen in mammals (Grubb, 1983).  Cardiac output 

can be calculated as a function of the bird’s heart rate, and the preload and afterload, or the 

stroke volume.  A broiler heart at hatch has the ability of pumping 8 mL/min, defined as the 

bird’s cardiac output, which averages 200 mL/min of cardiac output per kilogram (Wideman, 

1999).  By eight weeks of age a 4,000 g broiler now must pump 800 mL/min of oxygenated 

blood from the left ventricle into the body.   

Upon re-entry of circulating blood into the right atrium, for the process of re-oxygenating 

the blood, the right ventricle acts to drive the blood from the heart through the lungs via the 
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pulmonary artery through the cardio-pulmonary system.  It is the blood flow through the 

pulmonary vasculature that is used to calculate the pulmonary arterial pressure.  The pulmonary 

artery pressure of a clinically healthy bird is measured around 20 mmHg (Chapman and 

Wideman, 2001).  At this rate, blood travels from the pulmonary artery into the inter- and intra-

parabronchial arterioles.  Unilateral gas exchange takes place through diffusion of oxygen 

between parabronchi networks extending from the parabronchus lumen to the blood capillaries 

filled with pulmonary arterial blood.   

Pulmonary Hypertension Syndrome 

Pulmonary hypertension syndrome (PHS) is one such domestication effect experienced 

by the cardio-pulmonary system that affects high-yield broiler lines.  Symptoms linked to PHS 

has been described consistently in North American since the 1950s (Sanger et al., 1958; 

Schmittle et al., 1958), although, early mentions of flocks of broilers being managed at high 

altitude conditions in Bolivia (Hall and Machicao, 1968) and Peru (Cueva et al., 1974) have also 

occured. Initially, PHS was most common in high elevation environments, but became a frequent 

occurrence in low altitude conditions in the 1980s (Julian, 1993).   

The collection of manifestations that encompass PHS has been termed hydropericardium, 

ascites, water belly, alimentary toxemia, myocarditis, altitude disease, and congestive heart 

failure, among others (Sanger et al., 1958; Hall and Machicao, 1968; Huchzermeyer, 1984; 

Wilson et al., 1988).  Though the terminology used to describe the disease was initially variable, 

PHS, or ascites, is currently the accepted name and will be used interchangeably when described 

here. 
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Development of PHS 

Pulmonary hypertension syndrome is a cascade of adverse changes in a broiler resulting 

from selection for rapid growth and high oxygen demands that is a direct result of selective 

pressures placed on muscle gain through increased growth rate (Julian, 1993; Julian, 2000).  

Affected individuals can be phenotyped as ascites susceptible externally by evaluating the bird 

for lethargy or noting the bird as being cyanotic, or low in oxygen.  Additionally, ascites 

phenotype can be determined internally by presence of fluid in body cavity (Figure 1-4), a 

flaccid right ventricle, and enlarged liver (Olkowski, et al., 1999).   

Broilers diagnosed as pre-ascitic experience an increase in pulmonary artery pressure to ≥ 

45 mmHg (Chapman and Wideman, 2001).  This spike in pressure will result in the pulmonary 

vascular channels experiencing vasodilation.  In mammals, an increase pulmonary artery 

pressure will increase the diameter of the pulmonary capillary by over 100% (Sobin et al., 1972; 

Mazzone, 1980).  In avian species, the pulmonary capillaries are more rigid in structure, and are 

only able to accommodate and increase in capillary diameter of approximately 13% (Watson et 

al., 2008).  Additionally, increase in pressure is associated with abnormalities forming within the 

inter-parabronchial pulmonary artery walls, termed medial hypertrophy (MH; Wagenvoort and 

Wagenvoort, 1970).  The thickening of the artery walls results in the reduction in the amount of 

room available for the blood to flow.  As a reduction in the inside radius of the vessel occurs due 

to MH, Poiseuille’s law describes a simultaneous increase in blood pressure and decrease in flow 

rate. Therefore, as the vessel lumen thickens, the pressure required to push deoxygenated blood 

through the gas exchange system also increases.  The need to push blood faster through the 

systems directly influences negative adverse side effects.  Initially, the right ventricle’s load 

increases as it is forced to increase its cardiac output to compensate for the lack of oxygen being 
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delivered throughout the body.  Subsequently, an increase in flow rate dictates the blood will be 

pushed faster through the blood capillaries (Wideman et al., 2013).  Full diffusion of O2 takes 

place in the first 20-30% length of the capillary.  At an increased flow rate through the 

capillaries, the blood must travel over a longer distance for full gas diffusion to take place.  

These steps indicate the beginning of denying the body of adequate oxygenation, which is 

termed as a hypoxia.   

Chickens in chronic hypoxic environments will experience cardiac hypertrophy of the 

right ventricle, and these birds will have larger hearts than those raised in normal conditions 

(Burton and Smith, 1967). Calculation of the subsequent right ventricle – to – total ventricle 

(RVTV) weight ratio indicates an increase in this value associated with cardiac hypertrophy 

(Figure 1- 5).  In addition, it has been previously shown that the RVTV ratio and the pulmonary 

arterial blood pressure are positively correlated further indicating association between heart 

morphology and cardiac health (Burton, 1968; Chapman and Wideman, 2001). 

In the process of selective breeding broilers while emphasizing economically important 

traits, the growth rate of the heart has decreased in modern broilers when compared to a heritage 

line representative of the 1940s (Schmidt et al., 2009).  Post-hatch to d 14 in both lines show a 

similar heart size to body size ratio.  After d 14 the relative size of the heart to the body remains 

consistent in the heritage line, but a decline in this ratio is seen in modern broilers.  It is probable 

that this decrease in relative size lends itself to a decrease in the cardiac capacity of the broiler, 

which would lead to a higher incidence in heart related ailments, like PHS.    

The growth rate of the heart slows as the bird ages, such that the proportion of the heart 

to the total body weight decreases from hatch to d 42 despite large gains in body mass (Forman 

and Wideman, 2000; Tickle et al., 2014).  Interestingly, increases in blood pressure due to 
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hypoxic conditions is noted in the chicken, but not in naturally occurring avian species, which 

can be contributed to a high level of selection pressures (Faraci, 1986). 

It is estimated today that in broilers raised under conditions to achieve maximum growth 

approximately 3% will be afflicted with pulmonary arterial hypertension (Wideman and Hamal, 

2011).  The underlying mechanisms necessary for the development of PHS are present in modern 

broiler flocks under standard management techniques.  

Methods for inducing PHS for study include both invasive and noninvasive techniques.  

Chronic evaluations include cold temperatures (Lubritz and McPherson, 1994; Acar et al., 1995; 

Wideman et al., 1998; Sato et al., 2002), long photoperiods (Hassanzadeh et al., 2000; Julian, 

1990), and high elevation (Balog et al., 2000a) are chronic events seen in a commercial setting 

that impact the incidence of PHS.   

In cold temperature environments blood viscosity and hematocrit increase in chickens 

(Vogel and Sturkie, 1963; Shlosberg et al., 1996; Stammers et al., 2003).  Rapidly growing 

broilers require a high oxygen demand due to a high metabolic rate, which is further amplified 

by cold temperatures.  Broilers grown at a cooler temperature have a lower body weight 

(Blahova et al., 2007), but ultimately consume more feed than their warm-environment 

counterparts, in order to maintain thermogenesis.  An increase in cardiac output is observed in 

cold-stressed birds to meet increase oxygen demands, but manipulating the delicate 

cardiovascular system can lead to PHS (Julian et al., 1989).   

Light restriction during growth reduces feed consumption in broilers, which slows the 

growth rate (Downs et al., 2006).  Oxygen saturation is known to be higher in lighter broilers 

than in heavier broilers (Julian and Mirsalimi, 1992).  Predisposition to low percent oxygen 
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saturation in the blood dictates that birds whose feed intake is at a maximum level while 

experiencing a long photoperiod are more likely to develop ascites (Lott et al., 1996).   

To replicate elevated conditions, a hypobaric chamber is used to simulate a set elevation 

above sea level through creating a hypoxic environment.  The chamber operates by reducing 

atmospheric pressure, which in turn, reduces the partial pressure of oxygen by approximately 

2.5% for every 1,000 m increase in elevation (Brosnan et al., 2000).  Previously published 

studies have utilized these noninvasive methods as a way to increase the frequency of PHS that 

replicate events that may occur in a normal broiler operation (Owen, et al., 1990; Mirsalimi, et 

al., 1993; Balog et al., 2000a; Balog et al., 2000b; los Santos et al., 2005; Pavlidis et al., 2007; 

Krishnamoorthy et al., 2014).  Out of the techniques previously listed, high elevation is superior 

to other methods when inducing PHS because it does not pose an unideal environment which 

would prevent optimum growth in the broiler.  High elevation also causes PHS at a frequency 

high enough for genetic study as compared to long day lengths.    

In addition to these chronic stressors, acute techniques have been used for assessment of 

ascites resistance.  Acute techniques include micro-particle injections where micro-particles of 

cellulose are injected into the systemic circulatory system (Wideman et al., 2002; Wideman and 

Erf, 2002).  Micro-particles become transplanted into the vasculature of the cardio-pulmonary 

system, which induces systemic hypoxia.  In a second method, users clamp the left pulmonary 

artery (Wideman and Kirby, 1995).  This method is used to increase cardiac output and elicit 

pulmonary hypertension, but proves to be more invasive than micro-particle injections.  Such 

techniques evaluate ascites outcome at a specific point in time in the bird’s development.  

Considering ascites frequency during a snapshot in the growth phase negates consideration of 
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ascites manifestation at all possible times of occurrence when the purpose of assessing ascites is 

to create better selections at the pedigreed level. 

Ultimately, pulmonary hypertension syndrome frequency is reduced in commercial flocks 

through breeding schemes and management techniques like feed restriction (Bolukbasi et al., 

2004) and shorter photoperiods (Lott et al., 1996).  In pedigreed flocks, ascites incidence is 

evaluated, and this information is used to create breeding schemes that act to reduce the overall 

incidence being seen at the commercial broiler level of the production system.  Use of 

environmental management techniques and of genetic breeding programs have gone a long way 

in reducing overall flock incidence.  In 2007, economic loss due to ascites incidence in the 

United States was estimated at $100 million/year (Pavlidis et al.).  The profound economic cost 

is due to the tendency of ascites frequency to be highest in the largest, fastest growing birds, for 

which the greatest amount of feed and the largest time investment have been made.  An updated 

estimation in 2015 indicated economic loss has remained consistent between these two years; 

however, the USDA reported an increase in broiler production of 3.8 billion pounds between 

years 2007 and 2015 (Figure 1-1).  Ultimately, while financial loss due to this disease remains 

economically relevant, it is clear that methods used to reduce ascites incidence have been 

marginally successful.  

Genetics of PHS 

Although shown to be influenced by environmental factors (Julian, 2000), PHS is also 

influenced through genetic parameters (Lubritz and McPherson, 1994; de Greef et al., 2001; 

Wideman and French, 2000).  Incidence has corresponded with increased genetic selection on 

growth rate, live weight, and muscle yield.  The genetic influence on PHS has been illustrated in 

the low to moderate heritability estimates (Moghadam et al., 2001; Lubritz et al., 1995; Druyan 
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et al., 2007), which has led to success in the creation of divergently selected ascites resistant and 

susceptible lines (Pavlidis et al. 2007; Druyan et al., 2009).  In three ascites-induced selected 

male broiler lines, characterized as selections for growth rate and feed efficiency (RG), moderate 

growth and livability (MG), and growth rate and breast yield (YD), Lubritz et al. showed the 

frequency of ascites incidence of the YD line to be approximately 0.15 higher than that of RG 

and MG lines (1995).  Additionally, heritabilities for ascites incidence in these cold-challenged 

lines indicate lines with selection pressures focused on increased yield and growth have higher 

heritabilities, .36 ± .10, .11 ± .08, and .44 ± .09, for RG, MG, and YD, respectively.  The exact 

genetic cause behind ascites incidence has been debated.  While some groups argue for the 

occurrence of one or a few dominant genes (Druyan and Cahaner, 2007; Wideman and French, 

2000), other studies indicate cause for evaluating ascites incidence as a multi-genic disease 

(Rabie et al., 2005; Hamal et al., 2010).   

Krishnamoorthy et al. (2014) used a genome wide association analysis to identify regions 

on chromosome 9 from an F2 generation from a cross of an ascites-selected resistant line and an 

ascites-selected susceptible line cross.  Data indicate a gender-specific effect in relation to the 

line analyzed, and the authors went on to propose two candidate genes responsible for a portion 

of ascites incidence.  Rabie et al. (2005) cited many chromosomal regions as responsible for 

ascites incidence including chromosomes 2, 5, 8, 10, 27, and 28.  Notably, chromosome 9 was 

not implicated as a causal source.  Additionally, Rabie et al. (2005) found an association with 

RVTV ratio and a region on chromosome 2.  Gene expression has also been used as an 

evaluation tool in selectively bred resistant and susceptible lines to determine variations in 

expression of vasoactive mediators using micro-particle challenged birds exhibiting PHS (Hamal 

et al., 2010).  A divergently selected ascites susceptible line exhibited an increase in the 
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expression of vasoconstriction receptors, while an ascites resistant line demonstrated higher 

expression of vasodilators.  These studies indicate advances in the detection of genetic causation 

to PHS. 

Marker Assisted Selection History 

 The process of artificial selection in domestic species has been practiced since initiation 

of domestication.  At the beginning of the poultry industry’s development initial success in trait 

selection was due to economically relevant traits having high heritabilities in the case of body 

weight (Le Bihan-Duval et al., 1998; Sanda et al., 2014; Venturini et al., 2014), breast yield (Le 

Bihan-Duval et al., 1998), and feed conversion (Leenstra and Pit, 1988).  Breeding companies 

were able to place traditional quantitative genetic selection emphasis on these traits by 

maintaining breeding populations that were somewhat closed (Ewart, 1993).  Markers in DNA, 

or marker assisted selection (MAS), used for the purpose of trait selection has been implemented 

in the poultry industry over the last 25 years (Soller, 1994).  Reduced costs associated with DNA 

sequencing and SNP genotyping has made MAS a reliable and attainable approach for industry 

and researchers alike.  Sequencing of 1.1 billion bases in the red jungle fowl genome in 2004 

made application of molecular biology research more readily available (Hillier et al., 2004).  

Identification of 2.8 million single nucleotide polymorphism (SNP) furthered the ability to easily 

conduct molecular based research (Wong et al., 2004).  The publicly available assembly released 

in 2006 (Gallus_gallus-2.1), and subsequent revised assembly in 2011 (Gallus_gallus-4.0) have 

aided development of new scientific techniques useful for selection purposes.  To better illustrate 

that point, a publication search performed using Web of Science™ (Thomas Reuters © 2016) 

using title search terms poultry, chicken, and hen, with subject matter terms consisting of SNP 
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and genome, found a marked increase in the number of publications, consistent with the timeline 

of the publication of the chicken genome (Figure 1-6). 

Marker Assisted Selection in Broilers 

Variations in DNA, such as variations in alleles at a single locus among closely related 

individuals (SNPs) and short DNA sequences that are either inserted or deleted in the genome 

(INDELs) are common tools used in MAS.  Not all DNA variants are considered functional.  

Functional variations are utilized as presumptive quantitative trait loci (QTL) to understand the 

relationship between molecular markers and phenotypic trait data (Kearsey, 1998).  Quantitative 

trait loci alter the coding sequence of the DNA that can affect production, performance, and 

health-related phenotypes.  Therefore, selection programs are based on influencing the frequency 

of advantageous or disadvantageous alleles (Siegel et al., 2006).  In poultry species, the 

identification of novel QTL, in respect to economically important traits, have gone a long way to 

developing new areas of selection to be emphasized in breeding programs (Wolc et al., 2011; 

Godoy et al., 2015; Wolc et al., 2016).  Addition of genotypic information increases the accuracy 

up to 50% over traditional BLUP analyses solely based on phenotypic information (Chen et al., 

2011).  Therefore, genomic selection pressures being applied at the pedigreed level in poultry 

production further accentuates the possibilities of traditional quantitative genetics in the pyramid 

breeding scheme.  It is no coincidence that more gain in broiler market weight has been 

experienced in the industry over the last 25 years when MAS techniques have been available, 

than over the 60 years prior to the 1990s when selection was based solely on classical genetics 

(Figure 1-6).   
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Synopsis 

Ascites incidence in broiler populations can be altered through environmental effects, 

such as increased elevation and temperature stress (Owen et al., 1990; Balog et al., 2003). In 

addition, ascites is influenced through genetic components (Lubritz et al., 1995; Wideman and 

French, 2000).  Adjustments in management and selection practices have been set in place to 

reduce the estimated $100 million per year economic loss seen since 2007 (Pavlidis et al., 2007).  

Still, ascites presents itself as a relevant and economically important disease internationally.  Use 

of MAS in detecting ascites frequency in flocks will provide additional resources in the 

development of fast growing broiler lines that are resistant to health defects.  Our purpose here is 

first, to identify genetic causation to ascites incidence in broiler chicken lines maintained at the 

University of Arkansas since the 1990s, and second, to use prediction based models to 

effectively predict ascites outcome in broilers using a minimally invasive technique.   
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Figure 1-1 Yearly ready - to - cook broiler production with projections for 2016.  Information as 

reported by Economic Research Service/USDA.  
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Figure 1-2. Breeding schemes in modern broiler genetics companies. Adapted from Pollock 

(1999). 
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Figure 1-3. Line crosses experienced at each level in the pyramid breeding scheme. 
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Figure 1-4. The bird on the left is a healthy two-week old broiler.  The body cavity of the broiler 

on the right is distended due to the accumulation of fluid, which indicates the bird has ascites. 
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Figure 1-5. The heart on the left is from a healthy broiler.  The heart on the right is that of a 

boiler affected by ascites.  Hypertrophy of the right ventricle has led a flaccid ventricle and 

rounded heart shape.  The heart on the right has a higher RVTV ratio than that of the left heart 

because of the increase in size of the right ventricle. 
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Figure 1-6.   Molecular genetics relevant publications plotted against the reported market weight 

in lbs). The number of publications per year found using Web of Science search engine.  Search 

terms included chicken, broiler, hen, SNP, and genome.  Projection for 2016 is included.  Pounds 

of the average broiler live weight at market age reported since 1925. Adapted from the U.S. 

Broiler Performance reported by the National Chicken Council. 
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ABSTRACT 

Ascites is a multi-faceted disease commonly observed in fast growing broilers, which is initiated 

when the body is insufficiently oxygenated.  A series of events follow, including an increase in 

pulmonary artery pressure, right ventricle hypertrophy, and accumulation of fluid in the 

abdominal cavity and pericardium.  Advances in management practices along with improved 

selection programs have decreased ascites incidence in modern broilers.  However, ascites 

syndrome remains an economically important disease throughout the world, causing estimated 

losses of $100 million/year.  In this study, a 60K Illumina SNP BeadChip was used to perform a 

series of GWAS (genome wide association study) on the 16th and 18th generation of our relaxed 

(REL) line descended from a commercial elite broiler line beginning in 1995.  Regions 

significantly associated with ascites incidence were identified on chromosome 2 around 70 

megabase pairs (Mbp) and on chromosome Z around 60 Mbp.  Five candidate single nucleotide 

polymorphism (SNP) were evaluated as indicators for these two regions in order to identify 

association with ascites and right ventricle-to-total ventricle weight (RVTV) ratios.  

Chromosome 2 SNPs showed an association with RVTV ratios in males phenotyped as ascites 

resistant and ascites susceptible (P < 0.04).  The chromosome Z region also indicates an 

association to resistant female RVTV values (P < 0.01) and susceptible female RVTV values (P 

< 0.03).  Data also indicate a possible male-specific effect occurring in regards to ascites 

incidence for the Z chromosome region.  Regions of significance identified on chromosomes 2 

and Z described in this study will be used as proposed candidate regions for further investigation 

into the genetics of ascites.  This information will lead to a better understanding of the 

underlying genetics and gene networks contributing to ascites, and thus advances in ascites 

reduction through commercial breeding schemes. 
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INTRODUCTION 

Ascites, or pulmonary hypertension syndrome, encompasses a cascade of adverse affects 

that begins with the impaired ability to adequately oxygenate tissues throughout the body of a 

fast growing broiler and ultimately leads to death (Wideman, 1999; Balog et al., 2000; 

Decuypere et al., 2005; Wideman et al., 2013).  The development of ascites is credited to both 

the genetics of the broiler and external environmental factors (Owen et al., 1990; Lubritz et al., 

1995; Wideman and French, 2000; Balog et al., 2003). The response of the body to the increase 

in oxygen demand is increased blood flow, which leads to overloading of the heart and lungs 

(Julian et al., 1986).  Amplified pressure in the cardiovascular system will advance to eventual 

right ventricle hypertrophy and concludes with right ventricle failure (Huchzermeyer and 

Deruyck, 1986).  Selection schemes and management techniques have been implemented to 

reduce the overall incidence of ascites; however, it remains an economically important disease 

causing an estimated economic loss of $100 million/year (Cooper and Gustin, 2015 personal 

communication, Cobb-Vantress, Inc.).   

Inducing ascites in an experimental setting can be achieved by altering the environment’s 

temperature (Wideman et al., 1998; Sato et al., 2002), air quality (Chineme et al., 1995), and 

altitude (Balog et al., 2000).  The first documentation of ascites occurred in La Paz, Bolivia 

where birds were being raised at an altitude of 3300 m above sea level (Hall and Machicao, 

1968).  An inverse correlation exists between elevation and the partial pressure of O2.  Increasing 

elevation leads to hypoxia, or the reduction of O2 inspired and transferred to the tissues.  In 

broiler chickens the depletion of oxygen in this manner leads to ascites syndrome (Ruiz-Feria 

and Wideman, 2001).  At the University of Arkansas we have used a hypobaric chamber to 
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simulate a high altitude environment as a non-invasive technique to reliably induce ascites 

(Owen et al.,1990; Balog et al., 2000). 

Wideman et al. (2013) proposed that the moderate to high heritabilites of ascites reported 

from multiple studies (Lubritz et al., 1995; Wideman and French, 2000; de Greef, et al., 2001; 

Moghadam et al., 2001; Druyan et al., 2007) are likely due to multiple genes.  Recently, a 

genome wide association study (GWAS) using a 3.4K SNPChip (Muira, et al., 2008) was 

conducted to scan the genome for candidate SNPs associated with ascites in a reciprocal cross 

between divergently selected ascites resistant and ascites susceptible lines developed at the 

University of Arkansas (Krishnamoorthy et al., 2014).  Identification of potential genes relevant 

to sex biased ascites incidence were identified on chromosome 9.  With advances in high 

throughput SNP genotyping assays, followed by the development of a moderate density 60K 

Illumina SNP BeadChip (Groenen et al., 2011), GWAS can be used to more comprehensibly 

evaluate the broiler genome for ascites associated regions.  Here, we report two GWAS for 

ascites phenotype conducted on two different generations of a pedigreed research line derived 

from a commercial elite broiler line and maintained at the University of Arkansas. Single regions 

were identified on two chromosomes that were significantly associated with phenotype for both 

generations.  Single nucleotide polymorphisms for these regions were then used for additional 

genotyping.     

METHODS 

Genome Data 

All chromosomal positions are relative to the November 2011 ICGSC Gallus-gallus-

4.0/galGal4 (GCA_000002315.2) assembly.  
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Bird Stocks and Hypobaric Chamber Trials 

Within the hypobaric chamber four batteries that house 40 identical cages measuring 0.6 

x 0.6 x 0.3 m.  Each cage has access to nipple waterers and trough feeders.  The chamber is 

designed to control simulated altitude, ventilation, and temperature.  For the duration of the trial 

the elevation was set to simulate approximately 2900 m above sea level, or 533 mm of Hg. 

Daily, the elevation was observed with any adjustments being made to maintain the set altitude.  

Chamber airflow was set at 17 m3/min and air filters were changed daily.  The chamber was 

warmed to 92 C prior to introducing the chicks and the temperature was decreased weekly.  The 

birds used for this study are from two different years spanning three generations.  The 16th and 

18th generation were used from a pedigreed elite broiler line that has remained under relaxed 

(REL) selection since 1995 (Pavlidis, et al., 2007).  Chicks were hatched at the University of 

Arkansas hatchery, wing banded and immediately transferred randomly to cages in the hypobaric 

chamber.  For the next six weeks mortality was recorded and necropsies were completed to 

record: probable cause of death, overt visual signs of ascites symptoms, total body weight, heart 

shape, right and total ventricle weight, and gender.  At the end of the six week trial all remaining 

birds were euthanized by cervical dislocation and scored as above.   

DNA Isolation 

 At four days of age 10 µl of blood was extracted from all birds via a lancet puncture 

between the toes.  A rapid DNA isolation method was used to isolate the DNA (Bailes, et al., 

2007).  For GWAS submission crude genomic DNA was purified further using Mackery-Nagel 

Plasmid prep plates for gDNA cleanup kit and quantified using a DyNA Quant from Hoefer and 

Hoechst 33258 fluorescent stain (Thermo Fisher Scientific). 
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Genome Wide Association Study 

   A total of two GWAS were completed on two generations of REL line birds that were 

phenotyped as described above in a six-week hypobaric chamber challenge.  The GWAS was 

conducted by DNA Landmarks (Quebec, Canada) using an Illumina 60K SNPChip on REL line 

males.  Thirty-seven males and 47 females representing REL line generation 16, and 68 males 

from generation 18, were used for this study.   

SNP allele frequencies were calculated independently for resistant and susceptible 

individuals using Microsoft Excel (Microsoft Corp., Redmond, Wa).  Loci with a minor allele 

frequency of less than 0.05 were excluded.  Allele frequencies were used to calculate expected 

genotype counts.  Deviations from Hardy-Weinberg were computed for each locus based on 

observed vs expected genotype counts.  Loci with a P-value less than 0.05 were excluded.  A chi-

square test was performed comparing the actual and expected frequencies for genotypes 

independently for resistant and susceptible phenotype groups.  The P-values obtained from this 

chi-square test were log transformed plotted as 1-log10(P) for visualization. For each locus an 

average 1-Log10(P) was calculated for a sliding window of 10 flanking SNPs.   

Real-Time PCR 

  Specific SNPs were used to develop exonuclease (Taqman® probe) assays for 

quantitative real-time PCR genotyping.  PCR primers and probes, along with annealing 

temperatures are presented in Table 2-1.  Genotyping was competed using a CFX96 Touch Real-

Time PCR Detection System (Bio-Rad Laboratories, Inc., Richmond, CA).  Reaction volume 

totaled 20 µL including 1x Taq-Buffer (50 mM Tris-Cl pH 8.3, 1 mM MgCl2, 30 μg/mL of 

BSA), 0.2 mM MgCl2, 0.2 mM dNTP, 0.2 μM each forward and reverse primers, 0.05 μM each 

probe, 2.5 units of Taq polymerase, and 2 μL of DNA.  A two-step PCR procedure was used as 
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follows: 90°C for 30 seconds, 10 cycles of 90°C for 15 seconds and SNP-specific annealing 

temperature for 30 seconds, followed by 90°C for 15 seconds, SNP-specific annealing 

temperature for 30 second, and a plate read for a total of 30 cycles.    

Statistical Methods 

 Genotyped individuals were evaluated by ascites phenotype and right ventricle-to-total 

ventricle ratio (RVTV).   Genotype frequency was calculated for ascites resistant and susceptible 

individuals by gender.  A chi-square test was performed on expected versus observed counts, 

with a P-value of <0.05 indicating significance.   

The RVTV ratio was calculated based on associated weights recorded during necropsy.  

For each SNP locus a Student’s T-test was used to compare RVTV ratios for each corresponding 

genotype, were resistant and susceptible individuals were compared independently.  Male and 

female RVTV ratios were calculated independently of each other, and RVTV ratios were 

considered significant with a P-value of < 0.05.   

RESULTS 

 After application of quality control filtering the 60K Illumina SNP BeadChip analysis 

resulted in a total of 37,109 informative SNPs.  Of these, 30,650 are mapped to chromosomes 1-

28, and the Z chromosome.  Using 1-Log10P threshold of greater than 2.5, informative regions on 

chromosomes 2 and Z were identified as candidates for investigation into the genetic causes of 

ascites in broilers (P ≤ 0.0316). Out of a total of 4779 SNPs on chromosome 2, 4215 SNP were 

polymorphic in the REL line (Figure 2-1).  A region around 70 megabase pairs (Mbp) appeared 

to show significant association in ascites resistant individuals in both generations.  Similarly, 

1178 of 1385 SNP were informative on the Z chromosome, for which a region of significance 
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was observed around 60 Mbp and detectable in both generations in susceptible individuals 

(Figure 2-2). 

Two representative SNPs from the chromosome 2 region, and 3 from the chromosome Z 

region, were used for further genotype assays on a larger collection of DNAs from the REL line 

(Table 2-2).   For SNP 2.708 in the susceptible males the TT and CC genotype both have higher 

RVTV averages than the heterozygous individuals.  While greater RVTV value equates to a 

higher ascites incidence in TT susceptible males, this trend is not replicated in the lower 

frequency CC genotyped susceptible males.  Right ventricle-to-total ventricle ratios did not vary 

significantly between genotypes on chromosome 2 in females (Table 2-3).  The average RVTV 

for SNP 2.713 for resistant males varied significantly between genotypes (P < 0.05, Table 2-2).  

The GG genotype males have the highest RVTV average ratio for the ascites resistant males, and 

this genotype has the lowest frequency of ascites (GG-29% vs AG-55%, AA-58%; Table 2-2). 

Similarly, homozygous AA genotype susceptible males have a significantly higher RVTV ratio 

(0.47) when compared to AG (0.43) or GG (0.43) individuals.  Overall, the higher RVTV ratio 

for a genotype is associated with the highest percent ascites incidence between all 2.713 

genotypes.  The GG ascites susceptible males maintain an RVTV average approximately equal to 

that of AG genotypes; however, due to the low number of GG susceptible individuals (n = 4), it 

is not significantly different from the RVTV ratios representative of the other genotypes.     

For all three chromosome Z SNPs, females (the heterogametic sex) have only two 

possible genotypes, versus the three possible genotypes found in males.  All Z chromosome 

SNPs in males appear to be statistically similar in RVTV ratio averages across all genotypes.  In 

the case of SNP Z.600 resistant females, the C genotype individuals have significantly higher 

RVTV values (0.32) than T genotype individuals (0.29; Table 2-3).  For the Z.611 locus, 
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susceptible females have higher RVTV values in T genotype compared to C females.  

Interestingly, the variation seen in the RVTV values of both susceptible males and females does 

not correspond to an expected positive correlation in ascites incidence calculations for genotypes 

at every SNP loci.  

No significant differences were detected in Chi-square analyses of observed versus 

expected counts for any genotype from males and females of all five SNP, although, significance 

was approached for GG male genotype on SNP 2.713 and the TT genotype on SNP Z.611 (P-

value = 0.06).  These males also represent the lowest ascites percent incidence compared to all 

other genotypes in both sexes.   

DISCUSSION 

 Multiple GWAS were conducted, spanning two generations in a randomly mated control 

broiler line (REL), to detect loci that showed association with ascites phenotype in both 

generations to identify loci that were robust and consistent in association with ascites.  Ascites 

resistant and susceptible individuals were evaluated on 29 chromosomes using a 60K SNP chip.  

Evaluation of P-values at each SNP loci as an averaged sliding window reduced the overall 

significance seen in a previously completed GWAS focusing on ascites incidence in REL line 

broilers (Krishnamoorthy et al., 2014).  It is important to note that the regions previously 

identified on chromosome 9 were not significant in these analyses.  The prior GWAS used a F2 

cross of the resistant and susceptible lines, which were divergently selected from the predecessor 

of the REL line.  This suggests that epistasis can play a major role in ascites genetics since the F2 

cross GWAS identified different regions than a GWAS in the REL line.   Genome-wide 

association studies provide a powerful insight into the genetic basis for complex diseases; 

however, this genotyping technology is subject to Type 1 and Type 2 errors, depending on 
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correction techniques used (Johnson et al., 2010).  Through use of a sliding window, GWAS P-

values are corrected to account for data sets with high levels of linkage disequilibrium in a 

method less labor intensive than permutation corrections (Gao, 2011).  Ultimately, GWAS 

information from multiple generations provides a better understanding of the chromosomal 

regions that are influencing disease occurrence, rather than focusing on generation-specific loci 

whose associations are merely an artifact of chance in a relaxed-selected line.   

Utilizing the sliding window analysis method, two GWAS conducted on two generations 

of the relaxed selection REL line indicated regions on an autosomal chromosome (2) and a sex 

chromosome (Z) associated with ascites phenotype or cardiac hypertrophy.  Although these 

regions were initially identified as indicators for ascites, their influence on RVTV values is 

equally informative.  The region of significance on chromosome 2 indicates that a variation 

exists in the RVTV ratio between genotypes of candidate SNP.  When the oxygen demand of the 

body increases in a fast growing broiler the right ventricle experiences an increase in workload 

as the cardiac output being transferred to the lungs for future oxygenation increases (Peacock et 

al., 1989).  This results in morphologic changes to the right ventricle that leads to ventricle 

hypertrophy (Burton et al., 1968).   Right ventricle hypertrophy serves as a precursor for the 

development of ascites (Julian et al., 1986).  Single nucleotide polymorphisms whose RVTV 

values are positively correlated to ascites incidence in susceptible individuals may play a larger 

role in a bird’s ascites phenotype, relative to SNPs that do not show such a trend.  RVTV values 

of susceptible individuals that do not follow this trend are not as likely to be directly correlated 

to ascites phenotype.  Rather, these loci, and their associated RVTV ratios may be an artifact of 

linkage disequilibrium.  High RVTV values, coupled with the high incidence of ascites exhibited 
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by CC genotyped individuals for both chromosome 2 SNP in susceptible males, dictate that this 

region can be used as an indicator for the potential of the broiler to develop ascites. 

The region of significance identified on chromosome 2 contains two candidate genes, 

MC4R and CDH6.  MC4R encodes melanocortin-4 receptor that acts as a key regulator in 

appetite and body size (Huszar et al., 1997).  Mouse knockouts for MC4R have elevated food 

intake and maturity-onset obesity (Huszar et al., 1997; Chen et al., 2000).  Additionally, despite 

being associated with obesity, MC4R deficient mice have lower mean arterial pressure and are 

not hypertensive (Tallam et al., 2005; Tallam et al., 2006).  Further, chronic hypothalamic 

stimulation of MC4R in rats increased arterial pressure regardless of food intake and weight gain 

(Kuo et al., 2003).   Therefore, MC4R could play an integral role in regulation of arterial 

pressures associated with ascites in broilers.  CDH6 encodes cadherin 6; critical for the 

development of the renal vesicle and proximal tubule through promotion of mesenchymal to 

epithelial transition during embryogenesis (Cho et al., 1998).  CDH6 is also found as a surface 

receptor protein on platelets (Elrod et al., 2007) and can function in regulating platelet 

aggregation (Edwards et al., 2007).  Inhibition of CDH6 results in a reduction in thrombus 

formation (Dunne et al., 2012).  Therefore, dysregulation of CDH6 could contribute to 

abnormalities in clotting or vascular lesions observed in the lungs during ascites progression in 

broilers (Wideman et al., 2011).   

Within the Z chromosome region we identified in the GWAS, is the gene for myocyte 

enhancer factor 2C (MEF2c) a member of the family of MADS-box transcription factors 

involved in myogenesis and morphogenesis of skeletal, smooth, and cardiac muscle cells (Black 

and Olson, 1998).  MEF2c is the earliest of the MEF2 family to be expressed in the chick, which 

occurs at the beginning of cardiac and skeletal muscle differentiation during embryogenesis 
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(Edmondson et al., 1994).  Embryonic inactivation of MEF2c in mice inhibits formation of the 

right ventricle, and leads to embryonic lethality (Lin et al., 1997).  MEF2C is a key regulator for 

reprogramming fibroblasts to the myocyte lineage (Song et al., 2012) and is known to up 

regulate other genes known for cardiocyte formation, GATA4 and NKX2.5 (Dodou et al., 2004; 

Skerjanc et al., 1998).  While significance did not reach the P-value standard set in this study, 

resistant and susceptible males in this region identified in both GWAS indicate this location may 

be critical to the development of ascites.  Preliminary data suggests that SNP Z.611 homozygous 

T male individuals phenotyped as ascites susceptible approach statistical significance for lower 

RVTV ratios compared to other genotypes (P = 0.074).   

Ascites occurs due to the manifestation of multiple symptoms (Olkowski et al., 1999), 

and thus, is a complex disease, whose occurrence is subject to many genetic factors.  In order to 

aid commercial selection programs in the reduction of ascites, and increase overall heart health, 

information from studies such as the one presented here will elucidate genetic causes to adverse 

attributes evaluated in fast-growing broilers.   
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Table 2-1.  Location of SNP identified from GWAS.  Annealing temperature, forward and reverse primers, and probes also included 

for each SNP. 

 

SNP 

ID Chr 

SNP 

Position 

Reference 

SNP (rs#) 

Reference/ 

Alternative 

Allele 

(Strand) 

Annealing 

Temp (°C) Primer                      Probe 

2.708 2 70835627 14203518 T/C (Fwd) 56.4 
F CTCAGCTGGTCCTGCTAACAT Probe 1 

CTAAAGTATGAGTAtCCAAGTC

TT1 

R TCTGAGGGAGGGAAAAAGGT Probe 2 CTAAAGTATGAGTAcCCAAGTC 

          

2.713 2 71320330 14203691 A/G (Fwd) 52 
F 

TAATGGAAACAACCTCTGTGCTCT

GGA 
Probe 1 

TCCTAtCCTGAAGAAAGAGCAA

ATAAAT 

R GCCTCCCATGTCTTTGGCTTGGA Probe 2 
TCCTAcCCTGAAGAAAGAGCA

AATA 

          

Z.591 Z 59169596 10723172 C/T (Fwd) 67 
F GGGGGATAGAGGAGGCTGGTGT Probe 1 

TAcGACACAATAGGCTTTTCCA

TAAG 

R 
TCACCCTGTCATCGTTTTTGAAAC

ATG 
Probe 2 

TAtGACACAATAGGCTTTTCCA

TAAGT 

          

Z.600 Z 60058344 14748694 T/C (Rev) 68 
F GTCCGGCTCTGTGTCTGCCCTGA Probe 1 

ACaAAGAGTGGAAATATGGAT

TTCCAGCATC 

R 
TCCAACAGAACTCCCTGGTGTTTC

ACC 
Probe 2 

ACgAAGAGTGGAAATATGGAT

TTCCAGCAT 

          

Z.611 Z 61154772 16774018 C/T (Rev) 59 
F 

AGGCATTGCTTCCTTCTGGGAGAA

C 
Probe 1 

TGcTTGGATATTCATAAAGTTC

TCCC 

R 
CAGCTGTTAGTTTGGTGGGGGCTT

T 
Probe 2 

TGtTTGGATATTCATAAAGTTCT
CCCA 

         1Lower case letters indicate loci specific for SNP 

 

 

 

4
3
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Table 2-2.  Data collected from single nucleotide polymorphisms from male individuals on chromosomes 2 and Z.  Included are SNP 

identification names, location, individual counts, percent incidence of ascites-susceptible birds, observed genotypic frequencies, and 

corresponding P-values calculated for Chi-squared tests.  Additionally, RVTV averaged ratios for resistant and susceptible individuals 

are included.  Information for males and females presented separately.   

REL Line Males 

SNP 

ID 

SNP 

Location 

(Chr:Mbp) Genotype 

Ascites 

(%) 

R 

Count 

(N) 

S 

Count 

(N)  

Ra   

Freq 

Sb   

Freq Pval  

R 

RVTV 

Avg 

S    

RVTV 

Avg 

2.708 Gga2:70.83 

TT 62% 

74 81 

 0.35 0.52 0.12  0.31 0.46a 

TC 44%  0.47 0.34 0.21  0.32 0.42b 

CC 46%  0.18 0.14 0.53  0.32 0.49a 

2.713 Gga2:71.32 

AA 58% 

79 93 

 0.42 0.49 0.52  0.30b 0.47a 

AG 55%  0.45 0.47 0.87  0.30b 0.44b 

GG 29%  0.13 0.04 0.06  0.35a 0.44ab 

Z.591 GgaZ:59.169 

CC 37% 

116 86 

 0.28 0.22 0.38  0.29 0.44 

CT 43%  0.42 0.44 0.91  0.31 0.44 

TT 47%  0.28 0.34 0.50  0.29 0.44 

Z.600 GgaZ:60.058 

TT 46% 

189 151 

 0.18 0.19 0.80  0.32 0.45 

TC 46%  0.44 0.48 0.70  0.31 0.44 

CC 42%  0.37 0.33 0.53  0.30 0.45 

Z.611 GgaZ:61.154 

CC 39% 

115 61 

 0.50 0.59 0.41  0.30 0.45 

CT 36%  0.30 0.33 0.79  0.30 0.45 

TT 18%  0.20 0.08 0.06  0.29 0.43 
a R indicates birds that were phenotyped as ascites resistant following a high-altitude challenged hypobaric chamber trial. 
b S indicates birds that were phenotyped as ascites susceptible following a high-altitude challenged hypobaric chamber trial. 
*Means within the same column and with no common superscript differ significantly (P<0.05). 

4
4
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Table 2-3. Data collected from single nucleotide polymorphisms from female individuals on chromosomes 2 and Z.  Included are 

SNP identification names, location, individual counts, percent incidence of ascites-susceptible birds, observed genotypic frequencies, 

and corresponding P-values calculated for Chi-squared tests.  Additionally, RVTV averaged ratios for resistant and susceptible 

individuals are included.  Information for males and females presented separately.  

    

REL Line Females 

SNP 

ID 

SNP 

Location 

(Chr:Mbp) Genotype 

Ascites 

(%) 

R 

Count 

(N) 

S 

Count 

(N)  

Ra   

Freq 

Sb   

Freq Pval  

R 

RVTV 

Avg 

S    

RVTV 

Avg 

2.708 Gga2:70.83 

TT 58% 

78 104 

 0.51 0.54 0.81  0.32 0.46 

TC 57%  0.33 0.34 0.97  0.33 0.47 

CC 52%  0.16 0.12 0.60  0.32 0.48 

2.713 Gga2:71.32 

AA 62% 

86 119 

 0.45 0.53 0.45  0.44 0.44 

AG 52%  0.50 0.39 0.26  0.46 0.46 

GG 69%  0.05 0.08 0.41  0.45 0.45 

Z.591 GgaZ:59.169 
C 46% 

72 69 
 0.46 0.41 0.64  0.28 0.43 

T 51%  0.54 0.59 0.68  0.30 0.43 

Z.600 GgaZ:60.058 
T 45% 

153 143 
 0.42 0.36 0.45  0.29b 0.45 

C 51%  0.58 0.64 0.55  0.32a 0.45 

Z.611 GgaZ:61.154 
C 52% 

73 79 
 0.71 0.71 0.98  0.31 0.43b 

T 52%  0.29 0.29 0.97  0.29 0.46a 
a R indicates birds that were phenotyped as ascites resistant following a high-altitude challenged hypobaric chamber trial. 
b S indicates birds that were phenotyped as ascites susceptible following a high-altitude challenged hypobaric chamber trial. 
*Means within the same column and with no common superscript differ significantly (P<0.05). 

4
5
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Figure 2-1. Genome wide association study results indicate a region of interest around 70 Mbp 

on chromosome 2 in resistant males comparing two generations of REL line individuals.  Single 

nucleotide polymorphism loci are identified as the corresponding Mbp along the chromosome 2.  

Association of SNP loci to ascites resistance is visualized as a 1-LOGP value. 
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Figure 2-2. Genome wide association results indicating a region of interest around 60 Mbp on 

chromosome Z in susceptible males comparing two generations of REL line individuals.  Single 

nucleotide polymorphism loci are identified as the corresponding Mbp along the Z chromosome.  

Association of SNP loci to ascites susceptibility is visualized as a 1-LOGP value. 
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CHAPTER 3 

Marker assisted selection for ascites resistance in broilers using a chromosome Z locus 
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ABSTRACT 

Ascites syndrome, or pulmonary hypertension, in broiler chickens remains an economically 

relevant disease in the poultry industry despite continuous efforts in management practices and 

genetic selection schemes to circumvent adverse effects in the broiler.  Understanding ascites 

genetics will help continue the progress made in reducing ascites frequency that has already been 

achieved through utilizing selection techniques at the pedigree level.  Here, we have assessed a 

single locus in a region of significance evaluated through multi-generational genome wide 

association studies in ascites susceptible individuals.  Initially, a C/T SNP located at 60.058 Mbp 

on chromosome Z indicated association with ascites incidence in male broilers from.  This SNP 

was used to genotype 576 male and female REL line broilers that were phenotyped for ascites in 

a six week trial in a hypobaric chamber.  In both males and females there were no significant 

associations of ascites phenotype with genotype.  However, detectable differences were present 

in the percent of phenotyped ascites resistant male offspring through evaluation of the parent 

genotypes.  There were four possible parental crosses which result in a heterozygote male.  

Interestingly, the CT x CW and TT x CW crosses produce CT male individuals for which 63% 

and 36% of individuals are resistant, respectively.  This data is consistent with a parental allele 

effect (imprinting) influencing ascites outcome; an affect which has never before been found in 

poultry. 
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INTRODUCTION 

 Generations of intensive genetic selection for fast growth and high yield has produced the 

modern broiler.  Broilers of today are more efficient, produce more muscle mass, and less fat 

than the broilers of previous generations (Havenstein et al., 2003; Zuidhof et al., 2014).  

Rigorous selection practices have resulted in changes in the physiology of the broiler compared 

to its ancestor, which lead to novel diseases and disorders (Olkowski et al., 2007; Collins et al., 

2014).  Ascites syndrome in broiler chickens is a disease that is linked to selection pressures for 

economically important traits in meat-type chickens (Julian, 1998).  Ascites is the manifestation 

of multiple unfavorable effects, which culminates in death (Julian, 2000).  Selection is 

traditionally placed on economically important traits.  These selective pressures do not 

emphasize non-economically relevant traits that are essential to the proper physiological function 

of the body, which has led to lung and heart being proportionally smaller to the body in the 

modern broiler (Schmidt et al., 2009).  

Genetic selection against ascites incidence, along with implementation of management 

techniques such as reduced day length (Hassanzadeh et al., 2003) and feed restriction (Acar et 

al., 1995), have aided in the reduction of ascites occurrence over the last two decades.  However, 

ascites remains an economically relevant disease in the poultry industry.  The estimated cost due 

to ascites syndrome was estimated at $100 million per year in North America in 2015 (Tarrant et 

al., in review).   

Genetic selection for resistant broilers includes challenging birds with invasive and non-

invasive techniques to induce ascites (Wideman and Erf, 2002; Pavlidis et al., 2007; Wideman, 

2014).  Birds that prove to be resistant to ascites by displaying resilience to such methods as 

micro-particle injections are used as breeders.  Environmental or overly-invasive challenge 
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techniques which result in ascites phenotyping through necropsy are used to determine family 

data.  Siblings of the birds that do not succumb will become breeders for the next generation, 

which will hopefully provide an increased resistance to the offspring.  These methods for 

selectively breeding resistant broilers are effective because of the genetic component to ascites 

incidence.  Previous studies have indicated specific chromosomal regions associated with ascites 

frequency (Krishnamoorthy, et al., 2014).  Unfortunately, selection for resistance can only go so 

far since resistance may be negatively correlated with production traits.  Pulmonary hypertension 

and right ventricle failure have been positively correlated with body weight (Moghadam et al., 

2001).  Further, feed restriction can reduce ascites incidence, but will result in decreased breast 

yield (Acar et al., 1995).  There are many suggestions for the chromosomal regions associated 

with ascites incidence, but there has yet to be a consensus on such a region in genetically 

independent lines (Rabie et al., 2005; Krishnamoorthy et al., 2014).  The purpose of this study 

was to use a closed population of unselected, relaxed-mated (REL) line birds originating with a 

population of broilers from an elite male line of the 1990s to evaluate a SNP identified from a 

locus on the Z chromosome which has indicated an association with ascites incidence in male 

broilers. 

METHODS 

Genome data 

 All chromosomal positions are relative to the ICGSC Gallus-gallus-4.0/galGal4 

(GCA_000002315.2) assembly published in November 2011 (http://genome.ucsc.edu). 
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Bird stock 

Relaxed (REL) line birds used in this study represent a pedigreed elite male boiler line 

representative of the 1990s (Pavlidis et al., 2007).  The REL line is maintained under unselected 

conditions at the University of Arkansas under IACUC Protocol 15039.   

Hypobaric Chamber Trials 

 A total of 481 male and female REL line broilers were raised in a total of three hypobaric 

chamber trials for a duration of six weeks under IACUC protocol 15040. The chamber houses 

four stainless steel batteries consisting of 10 pens in each battery measuring 0.6 x 0.6 x 0.3 m.  

The pressure was set to simulate approximately 2900 m above sea level.  Temperature and 

ventilation were monitored and adjusted daily in the chamber, in accordance to industry 

standards.  Birds were provided ad libidum feed and water through access to waters and trough 

feeders.   At the end of the six-week trial all birds were necropsied to be phenotyped as ascites 

resistant or susceptible based on cardiac morphometrics and abdominal fluid accumulation. 

Floor Trial and Processing 

 Siblings representing most of the parent genotypic crosses were raised at sea level and 

processed at eight weeks of age.  Birds were allowed ad libidum feed and water.  Weights were 

recorded at d 0, d 14, d28, d35, and d42.  Absolute weights were recorded for whole bird without 

giblets (WOG), ab fat, chilled weight, rack, breast fillet, tenders, wings, and legs.  Percent 

weights were also calculated for breast, dark, fat, and WOG.  Finally, pH and color values (L*, 

a*, and b*) were measured on the right breast fillet.  Each measurement was taken three times, 

and the results were averaged for each individual. 
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Blood Extraction, DNA Isolation, and Genotyping 

Blood was collected from the wing vein in breeders, or from between the toes of chicks at 

four days of age.  DNA was isolated using methods described in Bailes et al. (2007). A 

previously conducted genome wide association study completed was completed on generation 16 

and 18 indicated an association with ascites incidence in male individuals (Tarrant et al., in 

review). Through this study a C/T SNP was identified on the Z chromosome in a region 

indicated significance around 60 Mbp (rs14748694).  To further investigate this locus an 

exonuclease assay, using TaqMan probes, was developed for genotyping this SNP using real-

time PCR as described in Tarrant et al. (in review).  Assay mix included 1x Taq-Buffer (50 mM 

Tris-Cl pH 8.3, 1 mM MgCl 2 , 30 μg/mL of BSA), 0.2 mM MgCl 2 , 0.2 mM dNTP, 0.2 μM 

each forward and reverse primers, 0.05 μM each probe, 2.5 units of Taq polymerase, and 2 μL of 

DNA, for a total volume of 20 μL.  Real time PCR followed two steps of 90°C for 30 seconds, 

10 cycles of 90°C for 15 seconds 68oC for 30 seconds, followed by 30 cycles of 90°C for 15 

seconds, 68°C for 30 seconds with a plate read. 

Statistical Analysis 

 A Chi-squared analysis was used to determine the statistical variation in the raw count 

totals for ascites phenotyped individuals.  Processing values were evaluated using Tukey HSD 

with an alpha value of 0.05. 

RESULTS 

The SNP selected from the previous GWAS studies (Tarrant et al., in review) was 

employed as a representative for the Z chromosomal region around 60 Mbp.  The locus was 

identified as being sex-specific to males.  The two GWAS represent two generations, separated 

by two years, of the REL line birds phenotyped for ascites phenotype.  According to the ICGSC 
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Gallus_gallus-4.0/galGal4 assembly the SNP is approximately 80 kbp upstream of the Ensembl 

gene myocyte enhancement factor – 2 (Mef2c).  Mef2c falls within the MADS-box transcription 

factor family (Black and Olson, 1998).  It is required in the process of myogenesis, specifically 

in the differentiation of ventricular cardiomyocytes (Vong et al., 2006).  The importance of the 

Mef2c gene to healthy heart development can be evaluated in knock out mice, whose loss of the 

Mef2c gene not only reduces the size of the left ventricle, but prevents right ventricle 

development altogether (Lin et al., 1997).   

REL line breeders were genotyped for the SNP and assigned to breeding groups based on 

pre-determined genotypes.  Pooled semen was used to inseminate hens within each group.  Male 

and female breeders within each group were selected to produce offspring of every possible 

genotypic combination for hypobaric trials.  Raw counts of genotypes and their phenotypes from 

the hypobaric challenge are presented in Table 3-1.  Females are the heterogametic sex, 

therefore, they are presented as having only two genotypes, CW and TW.  In male offspring, the 

percent of individuals that were phenotyped as ascites resistant was highest in homozygous C 

individuals, while heterozygous individuals had the lowest percent resistant.   CW genotype 

females exhibit a higher present resistance.  A Chi-squared test was applied to individual counts 

in males and females separately.  Although the percent of resistant individuals for each genotype 

is variable, there are no significant differences in either sex, or between allele frequencies when 

comparing the sexes.  It is likely the relatively low sample size in males and females exhibiting C 

alleles contributes to the lack of significant variation.  It was determined that the lowest 

frequency genotypes in the parent generation were the CC sires and the CW dams.  Compared to 

the CT genotype (0.41) and the TT genotype (0.54) the frequency of CC sires was 0.05.  Further, 
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the CW dam genotype frequency was at 0.26 compared to CW females compared to 0.74 for TW 

dams. 

The region selected for intensive study initially indicted an association with ascites in 

both REL line generations 16 and 18.  Using selected breedings to produce offspring genotyped 

and raised in the hypobaric chamber did not relay findings determined through the GWAS.  To 

understand why regions of significance were detected from the initial GWAS it was then decided 

to examine the parent genotypes.  Table 3-2 shows the parental genotype crosses associated with 

each male genotype outcome. Also shown are the raw counts for all offspring in each cross 

group, raw counts for assignments resistant phenotype offspring, and raw counts for same 

susceptible phenotype offspring.  CC genotype male offspring that are the result of CC x CW 

cross were excluded from further analysis because there were so few representatives.  The CT x 

CW crosses produce male offspring that are genotyped as either CC or CT.  This cross produced 

the individuals that were the most resistant to high altitude challenge (62% and 63%).  Four 

parental crosses result in heterozygote offspring, but crosses are significantly variable in their 

resistance to ascites.  Specifically, the highly resistant CT x CW cross (63%) and the TT x CW 

cross (36%).  Both crosses resulting in TT genotyped male offspring did not vary significantly.  

Female offspring percent resistance was not variable between crosses resulting in CW genotypes, 

or within TW genotypes (Table 3-3).  Though the TW resistant individuals are approximately 

10% lower calculated resistance column of each cross when compared to CW genotyped 

females, these values are not significantly different. 

Appraisal of processing data revealed male genotypes showed no significant differences 

in parts evaluated for absolute weight (Table 3-4), percent of carcass and meat weights (Table 3-

5), or in breast fillet pH and color (Table 3-6).  At d 0 and d 14 significant differences existed in 
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body weight, but these differences are not detectable at d 21, 28, 35 or 42 (Figure 3-1A).  

Processing data was also evaluated as parent genotypic crosses.  CC sires were not included in 

mating combinations used for this study.  Mean male wing and leg weights of the TT x CW cross 

was significantly larger than that of the CT x TW cross (Table 3-7).  The difference of WOG 

weight of TT x CW approaches significance in comparison to CT x TW at a P-value of 0.12.  TT 

x CW males have significantly larger mean body weights at d 0, d 14, and at processing d 42 

(Figure 3-1B).  As would be expected, the TT x CW crosses exhibiting larger mean values are 

associated with a reduced percent of ascites resistance (36%) compared to that of CT x TW 

(57%).  Despite these distinctions, breast and tender weights, percent weights (Table 3-8), and 

breast traits (Table 3-9) showed no significant differences. Homozygous T males which were 

processed that had resulted from a CT x TW or TT x TW cross showed no significant differences 

in any trait measured (Tables 3-10, 11, and 12). 

Female body weights differed at d 0 and d 14 by genotype (Figure 3-2A), but significant 

differences between CW and TW females did not exist in processing trait evaluations (Tables 13, 

14, 15).  Absolute weight values (Table 3-16) and percent weight values (Table 3-17) showed no 

differences in crosses resulting in CW female offspring.  The b* value was greater in CT x CW 

crosses versus CT x TW crosses, but all other breast traits showed no differences (Table 3-18).  

Four crosses were evaluated that are associated with TW female offspring.  For each of the traits 

measured, or calculated, differences did not arise (Tables 3-19, 20, and 21).  Crosses creating 

both CW and TW offspring exhibit significant differences in body weight at d 0, but this 

variation did not exist in any of the other time points measured (Figure 3-2B, C).   
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CONCLUSIONS 

Major changes in the physiology of the chicken have resulted in modern broilers afflicted 

with ascites incidence at an increased rate compared to broilers from 20 years ago (Figure 3-3).  

Broiler mortality due to high altitude challenge in the hypobaric chamber is reported between 

individuals representing the unselected REL line from the 1990s and individuals from two 

modern broiler lines.  By d 34 30% of the REL line birds had succumbed to ascites, while 50% 

of the modern line birds died under high altitude conditions.  This is likely a direct result of 

selective breeding with emphasis on the increase of body weight exhibiting the associated influx 

in ascites incidence due to this selection practice (Krishnamoorthy et al., 2016, unpublished 

data). 

Ultimately, phenotype is a direct result of genotype and the environment.  Of course 

environment plays a pivotal role in the manifestation of disease, as in ascites syndrome in 

broilers.  Induction of ascites through environmental manipulation has been used for the past 

three decades to further explore details in ascites etiology (Julian and Wilson, 1992; Shlosber et 

al., 1996; Ipek and Sahan, 2006; Shi et al., 2014; Tekeli, 2014).   

Genome wide association studies identify regions in the genome that indicate significant 

associations to economically important traits in valuable livestock species (Guo et al., 2012; 

Wang et al., 2014; Reyer et al., 2015; Zhang et al., 2015).  Identification of QTL have indicated 

few complex traits or diseases explored through genome wide association studies are explained 

solely by genetic variation (Altmüller et al., 2001; Manolio et al., 2009).   For this reason there is 

cause to suggest additional sources genetic correlation to traits be explored. 

In concept, paternal and maternal genetic material that is passed to an offspring have an 

equal chance of being active (Barlow and Bartolomei, 2014).  Epigenetics challenges traditional 
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ideas of gene activation.  Epigenetic processes lead to alterations in gene activity, with no 

corresponding changes in the DNA sequence (Weinhold, 2006).   

Maternal effects are defined as the influence on the offspring phenotype due to maternal 

phenotype or genotype (Wolf and Wade, 2009).  Maternal effects for ascites related traits have 

been documented in cold stressed broilers (Pakdel et al., 2005) and in broilers raised in normal 

rearing conditions (Navarro, et al., 2006).  Parent – of – origin – dependent effects indicate that 

gene function is directly related to chromosomal inheritance from the father or the mother (Reik 

and Walter, 2001).  Genomic imprinting is the disparity of genotypic expression owing to the 

source of inheritance of genetic material (Hall, 1997).  Specifically, gene expression of the male 

or female offspring is limited to the chromosome of either parent in diploid organisms if that 

gene is imprinted.  This epigenetic mechanism has been identified in arthropods (Anaka et al., 

2009), marsupials (Renfree et al., 2009), human disorders (Nicholls, 2000; Dong et al., 2005), 

and in economically important livestock species (Thomsen et al., 2004; O'Doherty et al., 2015).  

These effects are caused by processes such as DNA methylation and chromatid modification 

(Weinhold, 2006).   

Conflicting reports of monoallelic (Koski et al., 2000) versus biallelic (O'Neill et al., 

2000) gene expression in chickens indicates that orthologs of known imprinted genes in 

mammals may be expressed epigenetically.  Although epigenetic mechanisms are not well 

described in avian species (Fresard et al., 2013) it is possible that the discrepancy detected in 

ascites resistance between parental crosses for this study are due to underlying epigenetic factors.  

Interestingly, the respective parental crosses for the two ascites – resistant – extreme 

heterozygote male offspring, CT x CW (63% resistance) and TT x CW (36% resistance), do not 

fall into traditional parent – of – origin effects.  Presumably, the CT heterozygous male offspring 
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obtains the T allele from the sire, and the C allele from the dam, in both the CT x CW and TT x 

CW crosses.  This negates the hypothesis that obtaining an allele from the sire or dam influences 

ascites resistance based on the data presented here, but does not completely forgo the conclusion 

that imprinting is at work.  Further, results from processing data obtained from this study 

indicate that the elimination of the most ascites-susceptible cross (TT x CW) would do little to 

impact the economic value of the male bird being produced from the REL line. 
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Table 3-1.  Data collected after the completion of the hypobaric chamber trials.  Individuals 

were genotyped for a C/T SNP on the Z chromosome and phenotyped as ascites resistant or 

susceptible.  A calculated percent of resistant individuals for each genotype is also included. 

 

 

Genotype 

Total  

Count (N) 

Ascites 

Resistant (N) 

Ascites 

Susceptible (N) % Resistant 

Males 

CC 40 25 15 63% 

CT 142 74 68 52% 

TT 88 49 39 56% 

      

Females 
CW 63 35 28 56% 

TW 148 68 80 46% 
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Table 3-2.  Counts of ascites resistant and susceptible males with associated genotype and 

parental genotypic cross.   

 

Genotype 

Parental Crosses 

(Sire x Dam) 

Total 

Count (N) 

Ascites 

Resistant (N) 

Ascites 

Susceptible (N) % Resistant 

CC CT x CW 37 23 14 62%a 

      

CT CT x CW 52 33 19 63%a 

CT CT x TW 40 20 20 50%ab 

CT CC x TW 14 8 6 57%ab 

CT TT x CW 36 13 23 36%b 

      

TT CT x TW 35 19 16 54%ab 

TT TT x TW 53 30 23 57%ab 

 
1Different letter superscripts indicate significant differences (P  0.05). 
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Table 3-3. Counts of ascites resistant and susceptible females with associated genotype and 

parental genotypic cross.   

 

Genotype 

Parental Crosses 

(Sire x Dam) 

Total 

Count (N) 

Ascites 

Resistant (N) 

Ascites 

Susceptible (N) % Resistant 

CW CC x TW 9 5 4 56% 

CW CT x CW 54 30 24 56% 

CW CT x TW 43 23 20 53% 

      

TW CT x CW 36 19 17 53% 

TW CT x TW 50 23 27 46% 

TW TT x CW 32 15 17 47% 

TW TT x TW 66 30 36 45% 
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Table 3-4. Absolute weight means1 for male offspring. 

 

  Male Genotypes 
  CC CT TT 

 % Resistance2 63 52 56 

 N 36 87 57 
A

b
so

lu
te

 W
ei

g
h
ts

 (
g
) 

WOG3 2018 ± 38 2003 ± 24 1946 ± 29 

Ab Fat 96 ± 3 91 ± 2 89 ± 2 

Chilled 2079 ± 40 2059 ± 25 2002 ± 30 

Breast 395 ± 10 391 ± 6 384 ± 8 

Tenders 102 ± 2 102 ± 1 101 ± 2 

Wings 221 ± 3 219 ± 2 214 ± 2 

Legs 299 ± 6 297 ± 3 290 ± 4 

Thighs 396 ± 9 397 ± 5 385 ± 6 

Rack 648 ± 13 636 ± 8 610 ± 10 
 

1Average means ± SE in grams; 2 Percentage mortality due to ascites; 3 Carcass weight without 

giblets.  

 

*Means within the same row with superscripts that differ are significantly different (p<0.05) 
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Table 3-5. Percent weight means1 for male offspring. 

 

  Male Genotypes 
  CC CT TT 

 % Resistance2 63 52 56 

 N 36 87 57 

P
er

ce
n
t 

W
ei

g
h
ts

 

(g
) 

% Breast3 0.1721 ± 0.0025 0.1721 ± 0.0016 0.1728 ± 0.0019 

% WOG4 0.6996 ± 0.0024 0.6995 ± 0.0016 0.6981 ± 0.0019 

% Fat5 0.0335 ± 0.0012 0.0320 ± 0.0008 0.0317 ± 0.0299 

% Dark6 0.2412 ± 0.0026 0.2416 ± 0.0017 0.2410 ± 0.0020 
 

1Average percent means ± SE in grams; 2Percentage mortality due to ascites; 3((Pectoralis Major 

+ Pectoralis Minor)/Dock Weight) *100; 4((WOG)/Dock Weight); 5(Abdominal Fat/Dock 

Weight)*100; 6((Thigh + Leg)/Dock Weight)*100.  
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Table 3-6.  Averaged breast fillet traits for male offspring. 

 

  Male Genotypes 
  CC CT TT 

 % Resistance1 63 52 56 

 N 36 87 57 

B
re

as
t 

T
ra

it
s 

pH 5.86 ± 0.11 5.78 ± 0.06 5.65 ± 0.07 

L* 49.29 ± 0.45 49.43 ± 0.29 49.99 ± 0.34 

a* 4.20 ± 0.16 4.28 ± 0.10 4.20 ± 0.12 

b* 1.19 ± 0.23 1.06 ± 0.15 1.44 ± 0.18 
 

1Percentage mortality due to ascites.  
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Table 3-7.  Absolute weight means1 for parental crosses resulting in heterozygous male offspring. 

 

  CT Offspring 
 Parental Cross CTxCW CTxTW TTxCW 

 % Resistance2 50 57 36 

 N 24 28 24 

A
b
so

lu
te

 W
ei

g
h
ts

 (
g
) 

WOG3 1967 ± 37
ab 1960 ± 40

b
 2087 ± 32

a
 

Ab Fat 93 ± 3 88 ± 4 93 ± 3 

Chilled 2018 ± 38 2028 ± 41 2114 ± 37 

Breast 381 ± 10 390 ± 12 399 ± 10 

Tenders 97 ± 3
ab

 102 ± 3
b
 107 ± 3

a
 

Wings 215 ± 3
b 213 ± 4

b 2279± 3
a 

Legs 291 ± 7
ab 286 ± 5

b 312 ± 5
a 

Thighs 390 ± 11
ab

 383 ± 10
b
 415 ± 9

a
 

Rack 635 ± 14 625 ± 13 649 ± 13 
 

1Average means ± SE in grams; 2 Percentage mortality due to ascites; 3 Carcass weight without 

giblets.  

 

*Means within the same row with superscripts that differ are significantly different (p<0.05) 
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Table 3-8.  Percent weight means1 for parental crosses resulting in heterozygous male offspring. 

 

  CT Offspring 
 Parental Cross CTxCW CTxCW CTxCW 

 % Resistance2 50 57 36 

 N 24 28 24 

P
er

ce
n
t 

W
ei

g
h
ts

 

(g
) 

% Breast3 0.1706 ± 0.0031 0.1752 ± 0.0030 0.1704 ± 0.0023 

% WOG4 0.7023 ± 0.0029 0.6993 ± 0.0033 0.6972 ± 0.0025 

% Fat5 0.0333 ± 0.0012 0.0317 ± 0.0016 0.0317 ± 0.0292 

% Dark6 0.2404 ± 0.0036 0.2391 ± 0.0027 0.2441 ± 0.0028 
 

1Average percent means ± SE in grams; 2Percentage mortality due to ascites; 3((Pectoralis Major 

+ Pectoralis Minor)/Dock Weight) *100; 4((WOG)/Dock Weight); 5(Abdominal Fat/Dock 

Weight)*100; 6((Thigh + Leg)/Dock Weight)*100.  
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Table 3-9.  Averaged breast fillet traits for parental crosses resulting in heterozygous male 

offspring. 

 

                                     CT Offspring 
 Parental Cross CTxCW CTxCW CTxCW 

 % Resistance1 50 57 36 

 N 24 28 24 

B
re

as
t 

T
ra

it
s 

pH 5.84 ± 0.09 5.72 ± 0.08 5.78 ± 0.08 

L* 49.09 ± 0.55 49.22 ± 0.54 49.85 ± 0.40 

a* 4.53 ± 0.18 4.23 ± 0.19 4.14 ± 0.17 

b* 1.22 ± 0.28 0.71 ± 0.27 1.31 ± 0.17 
 

1Percentage mortality due to ascites.  
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Table 3-10.  Absolute weight means1 for parental crosses resulting in homozygous T male 

offspring. 

 

  TT Offspring 
 Parental Cross CTxTW  TTxTW 

 % Resistance2 54  57 

 N 22  35 

A
b
so

lu
te

 W
ei

g
h
ts

 (
g
) 

WOG3 1921 ± 71  1950 ± 43 

Ab Fat 86 ± 5  90 ± 4 

Chilled 1981 ± 75  2001 ± 45 

Breast 385 ± 17  381 ± 11 

Tenders 100 ± 4  101 ± 3 

Wings 210 ± 5  216 ± 4 

Legs 279 ± 10  294 ± 6 

Thighs 372 ± 17  390 ± 8 

Rack 615 ± 23  608 ± 15 
 

1Average means ± SE in grams; 2 Percentage mortality due to ascites; 3 Carcass weight without 

giblets.  
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Table 3-11.  Percent weight means1 for parental crosses resulting in homozygous T male 

offspring. 

 

  TT Offspring 
 Parental Cross CTxTW  TTxTW 

 % Resistance2 54  57 

 N 22  35 

P
er

ce
n
t 

W
ei

g
h
ts

 

(g
) 

% Breast3 0.1752 ± 0.0031  0.1709 ± 0.0031 

% WOG4 0.7010 ± 0.0024  0.6955 ± 0.0028 

% Fat5 0.0308 ± 0.0014  0.0322 ± 0.0013 

% Dark6 0.2355 ± 0.0038  0.2431 ± 0.0020 
 

1Average percent means ± SE in grams; 2Percentage mortality due to ascites; 3((Pectoralis Major 

+ Pectoralis Minor)/Dock Weight) *100; 4((WOG)/Dock Weight); 5(Abdominal Fat/Dock 

Weight)*100; 6((Thigh + Leg)/Dock Weight)*100.  
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Table 3-12.  Averaged breast fillet traits resulting in homozygous T male offspring. 

 

  TT Offspring 
 Parental Cross CTxTW  TTxTW 

 % Resistance1 54  57 

 N 22  35 

B
re

as
t 

T
ra

it
s 

pH 5.58 ± 0.15  5.66 ± 0.10 

L* 50.45 ± 0.70  49.77 ± 0.51 

a* 4.13 ± 0.22  4.22 ± 0.19 

b* 1.37 ± 0.32  1.63 ± 0.28 
 

1Percentage mortality due to ascites.  
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Table 3-13.  Absolute weight means1 for female offspring. 

 

 

  Female Genotypes 
 Parental Cross CW  TW 

 % Resistance2 56  46 

 N 46  147 
A

b
so

lu
te

 W
ei

g
h
ts

 (
g
) 

WOG3 1686 ± 19  1679 ± 16 

Ab Fat 90 ± 3  90 ± 1 

Chilled 1742 ± 20  1742 ± 17 

Breast 345 ± 6  338 ± 4 

Tenders 93 ± 1  94 ± 1 

Wings 183 ± 1  185 ± 1 

Legs 236 ± 2  238 ± 2 

Thighs 318 ± 5  321 ± 4 

Rack 541 ± 8  537 ± 5 
 

1Average means ± SE in grams; 2 Percentage mortality due to ascites; 3 Carcass weight without 

giblets.  
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Table 3-14.  Percent weight means1 for female offspring. 

 

  Female Genotypes 
 Parental Cross CW  TW 

 % Resistance2 56  46 

 N 46  147 

P
er

ce
n
t 

W
ei

g
h
ts

 

(g
) 

% Breast3 0.1822 ± 0.0021  0.1786 ± 0.0013 

% WOG4 0.7001 ± 0.0027  0.6954 ± 0.0015 

% Fat5 0.0376 ± 0.0010  0.0372 ± 0.0007 

% Dark6 0.2302 ± 0.0017  0.2323 ± 0.0013 
 

1Average percent means ± SE in grams; 2Percentage mortality due to ascites; 3((Pectoralis Major 

+ Pectoralis Minor)/Dock Weight) *100; 4((WOG)/Dock Weight); 5(Abdominal Fat/Dock 

Weight)*100; 6((Thigh + Leg)/Dock Weight)*100.  

 

 

 



 

78 

 

Table 3-15.  Averaged breast fillet traits for female offspring. 

 

  Female Genotypes 
 Parental Cross CW  TW 

 % Resistance1 56  46 

 N 46  147 

B
re

as
t 

T
ra

it
s 

pH 5.62 ± 0.09  5.66 ± 0.05 

L* 51.36 ± 0.30  50.89 ± 0.22 

a* 3.75 ± 0.14  3.92 ± 0.07 

b* 2.42 ± 0.20  2.22 ± 0.11 
 

1Percentage mortality due to ascites.  
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Table 3-16.  Absolute weight means1 for parental crosses resulting in hemizygous C female 

offspring. 

 

 

  CW Offspring 
 Parental Cross CTxCW  CTxTW 

 % Resistance2 56  53 

 N 25  21 
A

b
so

lu
te

 W
ei

g
h
ts

 (
g
) 

WOG3 1695 ± 28  1675 ± 27 

Ab Fat 94 ± 4  85 ± 3 

Chilled 1752 ± 29  1730 ± 29 

Breast 345 ± 9  346 ± 8 

Tenders 95 ± 2  91 ± 1 

Wings 183 ± 2  183 ± 2 

Legs 238 ± 3  233 ± 4 

Thighs 324 ± 6  311 ± 7 

Rack 540 ± 11  541 ± 12 
 

 

1Average means ± SE in grams; 2percent mortality due to ascites incidence for each genotype; 
3carcass without giblets.  
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Table 3-17.  Percent weight means1 for parental crosses resulting in hemizygous C female 

offspring. 

 

  CW Offspring 
 Parental Cross CTxCW  CTxTW 

 % Resistance2 56  53 

 N 25  21 

P
er

ce
n
t 

W
ei

g
h
ts

 

(g
) 

% Breast3 0.1811 ± 0.0031  0.1834 ± 0.0026 

% WOG4 0.6977 ± 0.0034  0.7029 ± 0.0044 

% Fat5 0.0392 ± 0.0018  0.0359 ± 0.0013 

% Dark6 0.2315 ± 0.0021  0.2288 ± 0.0027 
 

1Average percent means ± SE in grams; 2Percentage mortality due to ascites; 3((Pectoralis Major 

+ Pectoralis Minor)/Dock Weight) *100; 4((WOG)/Dock Weight); 5(Abdominal Fat/Dock 

Weight)*100; 6((Thigh + Leg)/Dock Weight)*100.  
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Table 3-18.  Averaged breast fillet traits resulting in hemizygous C female offspring. 

 

  CW Offspring 
 Parental Cross CTxCW  CTxTW 

 % Resistance1 56  53 

 N 25  21 

B
re

as
t 

T
ra

it
s 

pH 5.74 ± 0.09  5.45 ± 0.16 

L* 51.45 ± 0.34  51.24 ± 0.52 

a* 3.81 ± 0.23  3.68 ± 0.14 

b* 2.88 ± 0.26a  1.88 ± 0.27b 
 

1Percentage mortality due to ascites.  
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Table 3-19.  Absolute weight means1 for parental crosses resulting in hemizygous T female 

offspring. 

 

  TW Offspring 
 Parental Cross CTxCW CTxTW TTxCW TTxTW 

 % Resistance2 53 46 47 45 

 N 24 29 44 50 

A
b
so

lu
te

 W
ei

g
h
ts

 (
g
) 

WOG3 1700 ± 36 1655 ± 40 1674 ± 29 1687 ± 26 

Ab Fat 94 ± 3 86 ± 3 86 ± 2 94 ± 4 

Chilled 1762 ± 39 1715 ± 42 1747 ± 33 1742 ± 27 

Breast 342 ± 12 341 ± 11 334 ± 7 337 ± 7 

Tenders 94 ± 3 91 ± 2 94 ± 2 94 ± 2 

Wings 186 ± 3 184 ± 3 185 ± 2 185 ± 2 

Legs 241 ± 4 231 ± 6 240 ± 4 238 ± 3 

Thighs 323 ± 8 316 ± 9 326 ± 8 320 ± 6 

Rack 551 ± 12 532 ± 13 531 ± 10 540 ± 9 
 

1Average means ± SE in grams; 2 Percentage mortality due to ascites; 3 Carcass weight without 

giblets.  
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Table 3-20.  Percent weight means1 for parental crosses resulting in hemizygous T female 

offspring. 

 

  TW Offspring 
 Parental Cross CTxCW CTxTW TTxCW TTxTW 

 % Resistance2 53 46 47 45 

 N 24 29 44 50 

P
er

ce
n
t 

W
ei

g
h
ts

 

(g
) 

% Breast3 0.1789 ± 0.0033 0.1810 ± 0.0030 0.1776 ± 0.0019 0.1777 ± 0.0023 

% WOG4 0.7007 ± 0.0030 0.6960 ± 0.0033 0.6948 ± 0.0018 0.6929 ± 0.0033 

% Fat5 0.0388 ± 0.0012 0.0365 ± 0.0011 0.0356 ± 0.0338 0.0381 ± 0.0010 

% Dark6 0.2327 ± 0.0028 0.2306 ± 0.0030 0.2351 ± 0.0022 0.2304 ± 0.0022 
 

1Average percent means ± SE in grams; 2Percentage mortality due to ascites; 3((Pectoralis Major 

+ Pectoralis Minor)/Dock Weight) *100; 4((WOG)/Dock Weight); 5(Abdominal Fat/Dock 

Weight)*100; 6((Thigh + Leg)/Dock Weight)*100.  
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Table 3-21.  Averaged breast fillet traits resulting in hemizygous T female offspring. 

 

  TW Offspring 
 Parental Cross CTxCW CTxTW TTxCW TTxTW 

 % Resistance2 53 46 47 45 

 N 24 29 44 50 

B
re

as
t 

T
ra

it
s 

pH 5.74 ± 0.15 5.67 ± 0.09 5.63 ± 0.09 5.62 ± 0.06 

L* 51.71 ± 0.64 50.93 ± 0.48 50.90 ± 0.37 50.41 ± 0.36 

a* 3.81 ± 0.18 3.84 ± 0.14 4.10 ± 0.11 3.85 ± 0.13 

b* 2.48 ± 0.32 2.33 ± 0.21 2.16 ± 0.20 2.07 ± 0.15 
 

1Percentage mortality due to ascites. 
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Figure 3-1.  Growth of male broilers measured over 42 days  SE.  Birds are displayed by their 

SNP genotype (A).  Additionally, heterozygote offspring (B) and homozygous T offspring (C) 

are shown with respect to their parent genotypic crosses. 
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Figure 3-2.  Growth of female broilers measured over 42 days  SE.  Birds are displayed by 

their SNP genotype (A).  Additionally, heterozygote offspring (B) and homozygous T offspring 

(C) are shown with respect to their parent genotypic crosses. 
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Figure 3-3.  Mortality due to ascites of a 1990s unselected REL line and data combined from 

two modern genetic lines when challenged in a high-altitude simulated environment 

(unpublished data). 

0%

10%

20%

30%

40%

50%

60%

1 6 11 16 21 26 31

Day

Cumulative Percent Mortality 

1990s REL Line

Modern Lines



 

88 

 

REFERENCES 

Acar, N., F. G. Sizemore, G. R. Leach, R. F. Wideman, R. L. Owen, and G. F. Barbato. 1995. 

Growth of broiler chickens in response to feed restriction regimens to reduce ascites. Poult. Sci. 

74:833-843.  

 

Altmuller, J., L. J. Palmer, G. Fischer, H. Scherb, and M. Wjst. 2001. Genomewide scans of 

complex human diseases: True linkage is hard to find. Am. J. Hum. Genet. 69:936-950.  

 

Anaka, M., A. Lynn, P. McGinn, and V. K. Lloyd. 2009. Genomic Imprinting in Drosophila has 

properties of both mammalian and insect imprinting. Dev. Genes Evol. 219:59-66.  

 

Bailes, S. M., J. J. Devers, J. D. Kirby, and D. D. Rhoads. 2007. An inexpensive, simple protocol 

for DNA isolation from blood for high-throughput genotyping by polymerase chain reaction or 

restriction endonuclease digestion. Poult. Sci. 86:102-106.  

 

Barlow, D. P., and M. S. Bartolomei. 2014. Genomic Imprinting in Mammals. Cold Spring Harb. 

Perspect. Biol. 6:20.  

 

Black, B. L., and E. N. Olson. 1998. Transcriptional control of muscle development by myocyte 

enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14:167-196. 

  

Collins, K. E., B. H. Kiepper, C. W. Ritz, B. L. McLendon, and J. L. Wilson. 2014. Growth, 

livability, feed consumption, and carcass composition of the Athens Canadian Random Bred 

1955 meat-type chicken versus the 2012 high-yielding Cobb 500 broiler. Poult. Sci. 93:2953-

2962.  

 

Dong, C. H., W. D. Li, F. Geller, L. Lei, D. Li, O. Y. Gorlova, J. Hebebrand, C. I. Amos, R. D. 

Nicholls, and R. A. Price. 2005. Possible genomic imprinting of three human obesity-related 

genetic loci. Am. J. Hum. Genet. 76:427-437.  

 

Fresard, L., M. Morisson, J.-M. Brun, A. Collin, B. Pain, F. Minvielle, and F. Pitel. 2013. 

Epigenetics and phenotypic variability: some interesting insights from birds. Genet. Sel. Evo. 45.  

 

Guo, J. Z., H. Jorjani, and O. Carlborg. 2012. A genome-wide association study using 

international breeding-evaluation data identifies major loci affecting production traits and stature 

in the Brown Swiss cattle breed. BMC Genetics 13.  

 

Hall, J. G. 1997. Genomic imprinting: Nature and clinical relevance. Annu. Rev. Med. 48:35-44.  

 

Hassanzadeh, M., M. H. B. Fard, J. Buyse, and E. Decuypere. 2003. Beneficial effects of 

alternative lighting schedules on the incidence of ascites and on metabolic parameters of broiler 

chickens. Acta Vet. Hung. 51:513-520.  

 



 

89 

 

Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability, and feed 

conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. 

Poult. Sci. 82:1500-1508.  

 

Ipek, A., and U. Sahan. 2006. Effects of cold stress on broiler performance and ascites 

susceptibility. Asian Australas. J. Ani. Sci. 19:734-738.  

 

Julian, R. J. 1998. Rapid growth problems: Ascites and skeletal deformities in broilers. Poult. 

Sci. 77:1773-1780.  

 

Julian, R. J. 2000. Physiological, management and environmental triggers of the ascites 

syndrome: a review. Avian Pathol. 29:519-527.  

 

Julian, R. J., and B. Wilson. 1992. Pen oxygen concentration and pulmonary hypertension-

induced right ventricular failure and ascites in meat-type chickens at low altitude. Avian Dis. 

36:733-735.  

 

Koski, L. B., E. Sasaki, R. D. Roberts, J. Gibson, and R. J. Etches. 2000. Monoalleleic 

transcription of the insulin-like growth factor-II gene (Igf2) in chick embryos. Mol. Reprod. 

Dev.56:345-352.  

 

Krishnamoorthy, S., C. D. Smith, A. A. Al-Rubaye, G. F. Erf, R. F. Wideman, N. B. Anthony, 

and D. D. Rhoads. 2014. A quantitative trait locus for ascites on chromosome 9 in broiler 

chicken lines. Poult. Sci. 93:307-317.  

 

Lin, Q., J. Schwarz, C. Bucana, and E. N. Olson. 1997. Control of mouse cardiac morphogenesis 

and myogenesis by transcription factor MEF2C. Science 276:1404-1407.  

 

Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, M. I. 

McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, J. H. Cho, A. E. Guttmacher, A. Kong, 

L. Kruglyak, E. Mardis, C. N. Rotimi, M. Slatkin, D. Valle, A. S. Whittemore, M. Boehnke, A. 

G. Clark, E. E. Eichler, G. Gibson, J. L. Haines, T. F. C. Mackay, S. A. McCarroll, and P. M. 

Visscher. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753.  

 

Moghadam, H. K., I. McMillan, J. R. Chambers, and R. J. Julian. 2001. Estimation of genetic 

parameters for ascites syndrome in broiler chickens. Poult. Sci. 80:844-848.  

 

Navarro, P., P. M. Visscher, D. Chatziplis, A. N. M. Koerhuis, and C. S. Haley. 2006. Genetic 

parameters for blood oxygen saturation, body weight and breast conformation in 4 meat-type 

chicken lines. Brit. Poult. Sci. 47:659-670.  

 

Nicholls, R. D. 2000. The impact of genomic imprinting for neurobehavioral and developmental 

disorders. J. Clin.Invest. 105:413-418.  

 

O'Doherty, A. M., D. E. MacHugh, C. Spillane, and D. A. Magee. 2015. Genomic imprinting 

effects on complex traits in domesticated animal species. Front. Genet. 6:156.  



 

90 

 

 

O'Neill, M. J., R. S. Ingram, P. B. Vrana, and S. M. Tilghman. 2000. Allelic expression of IGF2 

in marsupials and birds. Dev. Genes Evol. 210:18-20.  

 

Olkowski, A. A. 2007. Pathophysiology of heart failure in broiler chickens: Structural, 

biochemical, and molecular characteristics. Poult. Sci. 86:999-1005. 

 

Pakdel, A., J. A. M. Van Arendonk, A. L. J. Vereijken, and H. Bovenhuis. 2005. Genetic 

parameters of ascites-related traits in broilers: effect of cold and normal temperature conditions. 

Brit. Poult. Sci. 46:35-42.  

 

Pavlidis, H. O., J. M. Balog, L. K. Stamps, J. D. Hughes, W. E. Huff, and N. B. Anthony. 2007. 

Divergent selection for ascites incidence in chickens. Poult. Sci. 86:2517-2529.  

 

Rabie, T., R. Crooijmans, H. Bovenhuis, A. L. J. Vereijken, T. Veenendaal, J. J. van der Poel, J. 

A. M. Van Arendonk, A. Pakdel, and M. A. M. Groenen. 2005. Genetic mapping of quantitative 

trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome. An. 

Genet. 36:468-476.  

 

Reik, W., and J. Walter. 2001. Genomic imprinting: Parental influence on the genome. Nat. Rev. 

Genet. 2:21-32.  

 

Renfree, M. B., T. A. Hore, G. Shaw, J. A. M. Graves, and A. J. Pask. 2009. Evolution of 

Genomic Imprinting: Insights from Marsupials and Monotremes. Annu. Rev. Genomics Hum. 

Genet. 10:241-262.  

 

Reyer, H., R. Hawken, E. Murani, S. Ponsuksili, and K. Wimmers. 2015. The genetics of feed 

conversion efficiency traits in a commercial broiler line. Sci. Rep.5.  

 

Schmidt, C. J., M. E. Persia, E. Feierstein, B. Kingham, and W. W. Saylor. 2009. Comparison of 

a modern broiler line and a heritage line unselected since the 1950s. Poult. Sci. 88:2610-2619.  

 

Shi, S. R., Y. R. Shen, Z. H. Zhao, Z. C. Hou, Y. Yang, H. J. Zhou, J. M. Zou, and Y. M. Guo. 

2014. Integrative analysis of transcriptomic and metabolomic profiling of ascites syndrome in 

broiler chickens induced by low temperature. Mol. Biosyst. 10:2984-2993.  

 

Shlosberg, A., M. Bellaiche, G. Zeitlin, M. Yaacobi, and A. Cahaner. 1996. Hematocrit values 

and mortality from ascites in cold-stressed broilers from parents selected by hematocrit. Poult. 

Sci. 75:1-5.  

 

Tekeli, A. 2014. Effects of ascites (pulmonary hypertension syndrome) on blood gas, blood 

oximetry parameters and heart sections of broilers grown at high altitude. J. Anim. Plant. Sci. 

24:998-1002.  

 



 

91 

 

Thomsen, H., H. K. Lee, M. F. Rothschild, M. Malek, and J. C. M. Dekkers. 2004. 

Characterization of quantitative trait loci for growth and meat quality in a cross between 

commercial breeds of swine. J. Ani. Sci. 82:2213-2228.  

 

Vong, L., W. Z. Bi, K. E. O'Connor-Halligan, C. Y. Li, P. Cserjesi, and J. J. Schwarz. 2006. 

MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial 

precursors of the primary heart field. Dev. Dyn. 235:1809-1821.  

 

Wang, Z. P., H. Zhang, H. Yang, S. Z. Wang, E. G. Rong, W. Y. Pei, H. Li, and N. Wang. 2014. 

Genome-Wide Association Study for Wool Production Traits in a Chinese Merino Sheep 

Population. Plos One 9.  

 

Weinhold, B. 2006. Epigenetics - The science of change. Environ. Health Perspect. 114:A160-

A167.  

 

Wideman, R. F., and G. F. Erf. 2002. Intravenous micro-particle injection and pulmonary 

hypertension in broiler chickens: Cardio-pulmonary hemodynamic responses. Poult. Sci. 81:877-

886.  

 

Wideman, R. F., D. D. Rhoads, G. F. Erf, and N. B. Anthony. 2013. Pulmonary arterial 

hypertension (ascites syndrome) in broilers: A review. Poult. Sci. 92:64-83.  

 

Wolf, J. B., and M. J. Wade. 2009. What are maternal effects (and what are they not)? Philos. 

Trans. R. Soc. Long. B Biol. Sci. 364:1107-1115.  

 

Zhang, C. Y., Z. Q. Wang, H. Bruce, R. A. Kemp, P. Charagu, Y. Miar, T. Yang, and G. 

Plastow. 2015. Genome-wide association studies (GWAS) identify a QTL close to PRKAG3 

affecting meat pH and colour in crossbred commercial pigs. BMC Genet. 16. 

 

Zuidhof, M. J., B. L. Schneider, V. L. Carney, D. R. Korver, and F. E. Robinson. 2014. Growth, 

efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 93:2970-

2982.  



 

 92 

CHAPTER 4 

 

Predicting ascites incidence in simulated altitude-challenge using single nucleotide 

polymorphisms identified in multi-generational genome wide association studies 
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ABSTRACT 

Assessing pedigreed broiler lines for ascites resistance in an industry setting is time consuming 

and reduces genetic accuracy with the implementation of sibling selection. The purpose of this 

study is to evaluate the effectiveness of developing prediction models produced with SNPs with 

the goal of predicting ascites incidence. Ascites is the manifestation of a series of adverse 

changes in a broiler which results in losses estimated at $100 million/year in the U.S. A multi-

generational genome wide association study (GWAS) in an unselected REL-line maintained at 

the University of Arkansas since the 1990s identified chromosomal regions associated with 

ascites incidence in males when challenged at high altitude. From the identified regions of 

significance 8 SNPs were identified on chromosome 11, and 12 SNP were identified on 

chromosome Z. Ascites phenotype and genotype data were determined for 295 male and female 

individuals from lines originating with the REL line. Five regression modeling techniques were 

compared for their ascites predictive ability using a 70/30 validation. For both males and females 

the neural networking model was the best fit prediction model.  In males the training and 

validation data set R2 were 0.929 and 0.942, respectively.  Reduction of the model to the 13 most 

important SNPs resulted in an increase in the prediction accuracy and fit of the model to R2 

values of 0.999 and 0.998. In females the training and validation data set R2 were 0.944 and 

0928, respectively; although, reduction in the number of SNP inputs into the model decreased the 

overall model robustness.  These models indicate we have elucidated the genetic predictors to 

ascites outcome in male broilers from an elite line of the 1990s with a high level of accuracy. 

Keywords: broiler, ascites, QTL, neural network 
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INTRODUCTION 

Ascites, or pulmonary hypertension syndrome, is an accumulation of adverse 

physiological changes that occur in fast growing broilers (Julian and Wilson, 1992).  At the 

beginning of onset, oxygenation of the body is maintained through an elevation in the pulmonary 

arterial pressure, followed by an increase in right ventricle work load (Julian, et al. 1987; 

Wideman and French, 1999).  Eventually, this work load causes change in the right ventricle 

morphology that will result in hypertrophy and death. It is clear that in addition to environmental 

conditions, genetics plays a role in ascites incidence (Lubritz et al., 1995; Wideman and French, 

1999; Wideman and French, 2000; Anthony et al., 2001; de Greef et al., 2001; Deeb et al., 2002; 

Pakdel et al., 2005; Pavlidis et al., 2007).  Progress in selection for ascites resistance and 

susceptibility due to moderate to high heritabilities of ascites incidence and ascites-related traits 

like right ventricle-to-total ventricle ratio are reported in these studies. 

 Ascites incidence has been successfully reduced as a result of selection practices and 

through maintaining ideal flock management practices; however, it remains an economically 

important disease estimated to cause loss of $100 million annually (as reported in Tarrant et al., 

in review).  For this reason commercial genetic companies consistently rely on methods to 

induce ascites to evaluate disease incidence in genetic lines so ascites susceptible individuals can 

be identified and removed from the breeding population.   

Current methods for assessing ascites incidence in commercial lines includes assessing 

ascites development during chronic high altitude challenge in a hypobaric chamber (Pavlidis et 

al., 2007) and through acute challenged micro-particle injections (Wideman et al., 2002).  While 

chronic evaluations methods require the bird to be terminated after ascites susceptibility or 

resistance is appraised, acute evaluations consider ascites frequency at a single time point in the 



 

 95 

broiler’s growth.  To incorporate findings from chronic evaluations into broiler lines sibling 

selection is be used to integrate the genetics of ascites-resistant families into breeding schemes.  

Further, this method necessitates that birds are raised to several weeks of age, which is both 

costly and time consuming.   

The development of a successful prediction model that allows ascites susceptibility to be 

evaluated immediately post-hatch would provide a time- and cost-efficient solution useful 

throughout the broiler’s growth phase compared to current techniques being used to appraise 

ascites potential.  This method of ascites screening would also result in the smallest genetic 

impact to the selected line by eliminating the requirement of sacrificing the bird, and the 

requisite for implementing sibling selection demanded in chronic evaluations.  In this study, we 

consider several regression modeling types to estimate the outcome of ascites resistance and 

susceptibility in pedigreed broiler lines maintained since the 1990s.   

METHODS 

Bird Handling 

 The three hundred fourteen broilers used for this study were from two divergently 

selected ascites lines and an unselected control line, which all originate with an elite broiler line 

of the 1990s that is maintained at the University of Arkansas under IACUC Protocol 15040.  To 

determine ascites phenotype, broilers were challenged in a high – altitude environment during a 

six weeks trial simulating 2900 m above sea level.  Birds were raised with ad libitum feed in four 

batteries measuring 2.4 x 3.7 x 2.4 m.  Each battery contains 10 cages and is equipped with 

trough feeders and nipple waters.  Temperature, ventilation, altitude, and humidity were 

monitored and regulated throughout the duration of the trial.    
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Genome Data 

Chromosomal positions presented are relative to the November 2011 ICGSC Gallus-

gallus-4.0/galGal4 (GCA_000002315.2) assembly.  

DNA Isolation 

  A total of 297 male and female individuals were lanceted and 20 µl of blood was 

collected into 20 µl of citrate solution.  Samples were re-suspended in lysis buffer (1 M Tris-

HCl, pH 8.0, 5 M NaCl, 0.4 M disodium EDTA) in round bottomed centrifuge tubes.  A 10% 

solution of SDS was added and inverted, followed by addition of 20 mg/ml of proteinase K.  

Samples were stored in an orbital shaker at 37 °C overnight.  Sodium chloride (5M) was added 

and the samples were hand shaken until a foam appearance was observed, and spun at 5000 rpm 

for 15 minutes.  Supernatant was pipetted into 15 mL centrifuge tubes with 100% ethanol and 

inverted.  A hook made from melting the tip of a Pasteur pipette into a hook shape was used to 

collect the DNA, which was then rinsed  in 70% ethanol.  The ethanol was allowed to evaporate, 

and the DNA was transferred to a screw top tube containing 1 ml of TE pH 8.0.  Samples were 

placed in an orbital shaker overnight at 37 °C until the DNA dissolved. 

Genotyping 

 Twenty SNP were identified as regions of interest in ascites phenotype based on genome 

wide association studies previously conducted (Tarrant et al., in review; Table 4-1).  Twelve 

SNP reside in three regions on the Z chromosome, and the remaining eight are from a single 

region on chromosome 11.  Genotyping for SNPs were completed using KASP™ chemistry in 

16x well format.  The PCR conditions for all SNP were 94 °C for 15 minutes, 94 °C for 20 

seconds, 65 °C for 1 minute nine times (-0.8 °C per cycle), followed by up to 35 cycles of 94 °C 

for 20 seconds, 55 °C for 1 minute.   
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Statistical Analysis 

 All analyses were completed in the latest version of JMP® Pro (v. 12.1.0; SAS Institute 

Inc., 2015).  Models were created in order to predict the ascites outcome in the individuals 

sampled.  In order to determine the most effective prediction model, five models were initially 

created to evaluate three subsets of data: SNPs only on chromosome 11, SNPs only on 

chromosome Z, and a combination of all SNPs.  Sexes were evaluated independently of each 

other.  Models evaluated included a logistic regression, two gradient boosting tree methods, 

decision tree and boosted tree, and two black box models, bootstrap forest and neural network.  

To avoid overfitting of the data for each model, 70% of the birds were used for training the 

models, and the remaining 30% were used to validate the models.  Model outputs were then 

compared to determine the most robust and well-fitting model when considering chromosome 11 

SNPs, chromosome Z SNPs, and SNPs on both chromosomes independently.  Comparisons were 

made on evaluation of the R2, root mean square error (RMSE), mean absolute deviation (MAD), 

misclassification rate (MCR), and area under the curve (AUC) values.  A Chi-squared test was 

then performed on the AUC for each model to determine if the variation seen in the AUC values 

reported for each model was statistically different.  Additionally, the most impactful SNPs for 

each model were determined through the main effect value that describes the variance of each 

SNP in respect to the distribution of other SNPs.  

RESULTS AND CONCLUSIONS 

 Initial selection of SNPs in this study was based on regions that indicate association with 

ascites outcome phenotype through genome wide association studies conducted on REL line 

broilers (Tarrant et al., Chapter 2). Single nucleotide polymorphisms selected from chromosome 

11 lie in, and around, cadherin 13 (Cdh13; Table 4-1).  The Cdh13 gene encodes T-cadherin, 
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which acts as an adiponectin receptor (Hug et al., 2004).  Adiponectin is a blood circulating 

protein, whose levels are associated with atherosclerosis, insulin resistance, and cardiovascular 

disease (Hotta et al., 2000; Yamauchi et al., 2003; Hashimoto et al., 2006).  Three SNPs were 

selected from the 19 Mbp region on chromosome Z.  Within this region is the 5-

hydroxytryptamine (serotonin) receptor 1A (HTR1A) gene.  Mice with HTR1A receptor 

knockouts experience an increase in heart rate and a vulnerability to cardiac death (Carnevali et 

al., 2012).  The SNP identified around 60 Mbp on chromosome Z is in a region that appears to 

have several possible contributing factors to cardiac health in an individual.  The coding 

sequence of a member of the MADS-Box transcription factors, myocyte enhancer factor 2C 

(Mef2c), is located around 60.25 Mbp.  Mef2c is essential to the development of the right 

ventricle (Lin et al., 1997).  Further, varied expression in Mef2c results in attenuation of cardiac 

hypertrophy in mice (Pereira et al., 2009).  MicroRNA 9-2, located on chromosome Z at 60.29 

Mbp, has the capability of targeting the myocardin pathway (Wang et al., 2010).  Consequently, 

this pathway induces cardiac hyptertrophy in response to hypertrophic stress signals (Xing et al., 

2006).  Finally, SNPs chosen in the area of 80 Mbp on chromosome Z were selected in their 

relative location to lysyl oxidase (LOX).  The LOX gene contributes to the structuring of 

collagen and elastin extracellular matrices during development, for which, LOX abnormalities 

contribute to the deterioration of the cardiovascular development (Mäki et al., 2002). 

A model comparison was initially completed on five model types developed for each 

SNP input: chromosome 11 SNP, chromosome Z SNP, and SNP from both chromosomes.  Upon 

evaluating all SNP, Chr 11, and Chr Z input combinations, the neural networking model was 

identified as the most robust model for predicting ascites incidence in male individuals in each 

case (Table 4-2).  Within each input the largest R2 value, coupled with the lowest RMSE, was 
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associated with the neural networks.  Further, statistically significant variation between the 

modeling techniques were detected in the evaluation of AUC values.  The receiver operative 

characteristic (ROC) curve is used as an indicator for decision performance in neural networking 

models (Woods and Bowyer, 1997).  Specifically, the ROC curve can be used to judge the 

predictive ability of statistical methods by quantifying the area under the ROC curve, otherwise 

known as AUC (Hanley and McNeil, 1982).  In the male ALL SNP input, the neural networking 

AUC is significantly larger than all models, aside from the boosted tree model.  Ultimately, a 

largely superior R2 value dictate that the neural network is the best fitting prediction model.  A 

similar pattern is seen in the Chr 11 SNP inputs, with the neural networking model AUC 

remaining significantly larger than all other models, except the boosted tree.  The Chr Z AUC 

inputs show AUC values of the boosted tree, nominal logistic, and neural networking model to 

be statistically similar.  The MCR of the neural network indicates this model has a lower 

predictive error rate than other models using only chromosome Z SNPs as inputs.  The modeling 

statistics indicate that Chr Z SNP inputs are better ascites incidence predictors than Chr 11 

inputs; however, the neural networking model that incorporates SNPs from both chromosomes 

appears to be the best fitting model with a undoubtedly larger R2 value, and lower MCR. 

Descriptive statistics on female neural network prediction models show greater robustness 

compared to other modeling techniques as seen in male neural networking models for all SNP 

inputs (Table 4-3).  Additionally, the neural networking model created with SNPs from both 

chromosomes demonstrates a superior model when compared to neural networking models 

created with SNPs from single chromosomes.  Interestingly, Chr 11 inputs create a better 

prediction model than Chr Z inputs, contrary to the patter seen in male inputs.   
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Neural networks are a black box computational method modeled off of neurological 

connections present in the brain (Amari, 1990).  Neural networks act in a similar manner to use a 

series of weighted connections to connect the variables being input into the system to potential 

outcomes through connective nodes (Spining et al., 1994; Dayhoff and DeLeo, 2001).  The 

effectiveness of neural networks is attributed to the superior fit of the data in a non-linear fashion 

and the ability of the model to learn and adapt the internal workings of the system to a 

fluctuating environment (Basheer and Hajmeer, 2000). 

Because the neural network considers all variables when constructing a predictive model, 

an effort was made to reduce the number of SNPs used in the model, while attempting to 

maintain the level of predictability.  This process was completed by determining the main effect 

value attributed to each SNP, and removing the SNP contributing the least to the model.  In 

males, seven SNP from both chromosome 11 and Z were removed; however, in females, removal 

of the lowest contributing SNP decreased the model’s accuracy.  It was determined that the most 

robust model for females includes all 20 SNPs.  

A reduction in the number of SNPs used for male individuals, from 20 total to 13 total 

SNPs spanning both chromosomes, increased the training and validation R2 value from 0.929 and 

0.942 to 0.999 and 0.998 (Table 4-4).  Additionally, the neural network model that uses fewer 

SNPs as inputs has lower RSME, MAD, and MCR values.  It is therefore concluded that the 

robustness of the model increases when fewer SNP are used.  Additionally, due to the similarity 

seen in the training and validation R2 values for the model using the most informative SNPs, it 

was determined that this is a well fit model.  The 13 most informative SNPs used for the male 

neural networking model are denoted in Table 4-5, along with their respective total effect 

contributions to the model.  The initial neural network created included 20 SNP from four 



 

 101 

regions (one region on chromosome 11 and three regions on chromosome Z).  Interestingly, 

when the number of SNP inputs were reduced to create a more accurate predictive model, SNPs 

from each of the four regions remained.  Yet, the top four highest contributing SNPs reside on 

the Z chromosome: 19,850,532, 19,853,553, 60,189,777, and 80,805,286.  While all SNPs were 

originally selected for this study with the knowledge of their potential association with ascites 

incidence the high level of contribution, seen specifically in two SNPs from 19 Mbp, indicates 

the impact of the Z chromosome on male ascites incidence.   

Descriptive statistics for the training and validation data sets of the best fitting model for 

predicting female ascites phenotype, which includes all 20 SNPs evaluated for this study, is 

shown in Table 4-6.  While the statistics reported are inferior to that of the model developed for 

males, the training and validation R2 values of 0.944 and 0.928 still indicate a moderately high 

level in the goodness-of-fit for this model.  Because more SNPs were used to construct this 

model than that for males, the contribution of the total effect of individual SNPs is not as high as 

seen in males (Table 4-7).  Furthermore, the highest contributing SNPs are located on 

chromosome 11 (15,617,716 and 15,846,469), indicating that the influence of the Z chromosome 

on ascites incidence in males is not replicated in females.  This information demonstrates the 

conclusion that the genetic component behind ascites phenotype in male and female broilers is 

variable. 

When considering either i) SNPs located on chromosome 11, ii) SNPs located on 

chromosome Z, or iii) a combination of SNPs from both locations, the neural network model is 

the best-fit and most robust model for either sex.  After determining the effectiveness of the 

neural networking models when using SNPs from both chromosomes, an attempt was made to 

determine the fewest SNPs required to maintain the prediction ability of the models, which 
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increased the model robustness in males, but not in females.  This data indicates that the SNPs 

selected for this study were particularly important in ascites association in male broilers.  The 

accuracy for prediction of disease outcome for males was greater because initial SNP selection 

was completed by locating regions of significance in male broilers identified from two genome 

wide association studies completed on REL line individuals phenotyped for ascites outcome 

(Tarrant et al., in review).  Though not as predictive, the SNP inputs used in this study create an 

effective female prognostic model.  

In commercial flocks over the last two decades’ efforts have been placed in reducing 

ascites through genetic selection and through regulation of environmental conditions.  It is clear 

these methods have aided in the reduction of overall incidence, but using these tactics alone is 

not enough to eradicate the disease.  For this reason, it is important to determine methods that 

can bring selection practices even closer to eliminating ascites presence in modern broilers.  The 

use of SNP panels in predicting future ascites outcome will be useful in retaining genetic 

accuracy lost through sibling selection, thus, contributing to a decline in ascites frequency that is 

currently being experienced in the poultry industry. 
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Table 4-1. SNPs identified from chromosomes 11 and Z used to develop predictive models.  

 

Chr. Position 

Reference     

SNP 

Reference Allele/ 

Alternative Allele SNP Location 

11 15,398,867 rs14027234 A/G Intergenic Region 

11 15,481,212 rs14027310 A/G Cdh13 Intron 

11 15,501,981 rs312593326 A/G Cdh13 Intron 

11 15,617,716 rs14027422 T/C Cdh13 Intron 

11 15,677,381 rs14966647 A/G Cdh13 Intron 

11 15,810,516 rs14966714 T/C Cdh13 Intron 

11 15,810,521 rs14966715 G/A Cdh13 Intron 

11 15,846,469 rs14027623 C/T Intergenic Region 

Z 19,850,532 rs14753903 G/T Intergenic Region 

Z 19,853,553 rs16761496 T/G HTR1A Exon 

Z 19,855,351 rs316810252 G/C Intergenic Region 

Z 60,058,344 rs14748694 A/G Intergenic Region 

Z 60,076,934 rs14748688 C/T Intergenic Region 

Z 60,189,777 rs317821780 G/A Intergenic Region 

Z 60,287,175 rs14747886 A/G Intergenic Region 

Z 60,441,865 rs14690172 A/G Intergenic Region 

Z 61,301,140 rs14774275 A/C Intergenic Region 

Z 80,794,843 rs14684720 T/C Intergenic Region 

Z 80,805,286 rs735134779 A/G LOX Intron 

Z 80,838,161 rs15990713 T/C Intergenic Region 
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Table 4-2.  Comparisons between regression modeling techniques for male broilers.  Three sets 

of SNPs were used as inputs for models: SNPs from both chromosomes, SNPs from 

chromosome 11, and SNPs from chromosome Z. 

 

SNP Input Model R2 RMSE 1 MAD 2 MCR 3 AUC 4 

All SNP 

Boosted Tree 0.831 0.23 0.138 0.053 0.976ab 

Bootstrap Forest 0.569 0.349 0.323 0.093 0.954b 

Nominal Logistic 0.756 0.281 0.167 0.098 0.955c 

Neural Networking 0.940 0.136 0.049 0.016 0.993a 

Partition 0.656 0.325 0.214 0.139 0.916cd 

       

  R2 RMSE MAD MCR AUC 

Chr 11 

Boosted Tree 0.591 0.349 0.254 0.159 0.904ab 

Bootstrap Forest 0.475 0.384 0.354 0.185 0.906b 

Nominal Logistic 0.583 0.351 0.226 0.179 0.891bc 

Neural Networking 0.684 0.321 0.197 0.162 0.923a 

Partition 0.553 0.362 0.243 0.179 0.872c 

       

  R2 RMSE MAD MCR AUC 

Chr Z 

Boosted Tree 0.661 0.33 0.252 0.179 0.932a 

Bootstrap Forest 0.492 0.376 0.262 0.172 0.849b 

Nominal Logistic 0.697 0.326 0.213 0.157 0.923a 

Neural Networking 0.758 0.296 0.194 0.128 0.956a 

Partition 0.386 0.412 0.355 0.219 0.792b 

 
1 RMSE = root mean squared error, 2 MAD = mean absolute deviation; 3 MCR = 

misclassification rate; 4 AUC = area under the curve. *Means within the same column and with 

no common superscript differ significantly (P<0.05). 
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Table 4-3.  Comparisons between regression modeling techniques for female broilers.  Three 

sets of SNPs were used as inputs for models: SNPs from both chromosomes, SNPs from 

chromosome 11, and SNPs from chromosome Z. 

 

SNP Input Model R2 RMSE 1 MAD 2 MCR 3 AUC 4 

All SNP 

Boosted Tree 0.786 0.268 0.181 0.090 0.968b 

Bootstrap Forest 0.497 0.378 0.351 0.139 0.921cd 

Nominal Logistic 0.722 0.292 0.181 0.137 0.950bc 

Neural Networking 0.927 0.127 0.071 0.030 0.994a 

Partition 0.608 0.352 0.256 0.174 0.907d 

       

  R2 RMSE MAD MCR AUC 

Chr 11 

Boosted Tree 0.565 0.376 0.279 0.201 0.914b 

Bootstrap Forest 0.262 0.444 0.432 0.257 0.865c 

Nominal Logistic 0.563 0.377 0.279 0.210 0.912b 

Neural Networking 0.729 0.321 0.206 0.162 0.957a 

Partition 0.459 0.401 0.325 0.264 0.887c 

       

  R2 RMSE MAD MCR AUC 

Chr Z 

Boosted Tree 0.549 0.371 0.294 0.201 0.883b 

Bootstrap Forest 0.283 0.439 0.421 0.299 0.823cd 

Nominal Logistic 0.543 0.376 0.285 0.217 0.875bc 

Neural Networking 0.654 0.337 0.229 0.168 0.921a 

Partition 0.441 0.403 0.330 0.236 0.833d 

 
1 RMSE = root mean squared error, 2 MAD = mean absolute deviation; 3 MCR = 

misclassification rate; 4 AUC = area under the curve. *Means within the same column and with 

no common superscript differ significantly (P<0.05). 
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Table 4-4. Training and validation statistics on two neural networking models developed from 

SNPs on chromosomes 11 and Z in males.  The All SNPs model includes 8 SNP inputs on 

chromosome 11 and 12 SNP inputs on chromosome Z.  The 13 SNPs model displays descriptive 

statistics for a neural network completed using seven fewer SNPs to complete the analysis. 

 

 All SNPs 13 SNPs 

 Training Validation Training Validation 

R2 0.929 0.942 0.999 0.998 

RMSE 1 0.156 0.129 0.002 0.008 

MAD 2 0.071 0.068 <0.001 0.002 

MCR 3 0.022 0.000 0.000 0.000 

AUC 4 
0.992 0.997 1.000 1.000 

 

 
1 RMSE = root mean squared error, 2 MAD = mean absolute deviation; 3 MCR = 

misclassification rate; 4 AUC = area under the curve.  
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Table 4-5.  Contributions of individual SNPs to the neural network model developed to predict 

male ascites incidence using the fewest number of SNPs.  Contributions are evaluated by the 

calculated total effect value  standard error. 

 

Chromosome Position Total Effect 

11  15,398,867  0.020  0.001 

11  15,481,212  0.174  0.003 

11  15,501,981  0.106  0.002 

11  15,617,716  0.212  0.003 

11  15,846,469  0.069  0.002 

Z  19,850,532  0.457  0.005 

Z  19,853,553  0.493  0.005 

Z  19,855,351  0.041  0.001 

Z  60,058,344  0.146  0.003 

Z  60,189,777  0.235  0.004 

Z  61,301,140  0.076  0.002 

Z  80,794,843  0.054  0.002 

Z  80,805,286  0.239  0.004 
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Table 4-6. Training and validation statistics on a neural networking model developed from SNPs 

on chromosomes 11 and Z in female individuals. 

 All SNPs 

 Training Validation 

R2 0.944 0.928 

RMSE 1 0.158 0.177 

MAD 2 0.052 0.071 

MCR 3 0.043 0.073 

AUC 4 0.995 0.992 

 
1 RMSE = root mean squared error, 2 MAD = mean absolute deviation; 3 MCR = 

misclassification rate; 4 AUC = area under the curve.  
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Table 4-7. Contributions of individual SNPs to the neural network model developed to predict 

female ascites incidence using 20 SNPs.  Contributions are evaluated by the calculated total 

effect value  standard error. 

 

Chromosome Position Total Effect 

11  15,398,867  0.055  0.002 

11  15,481,212  0.046  0.001 

11  15,501,981  0.187  0.003 

11  15,617,716  0.381  0.005 

11  15,677,381  0.013  0.001 

11  15,810,516  0.045  0.002 

11  15,810,521  <0.001  <0.001 

11  15,846,469  0.249  0.004 

Z  19,850,532  0.192  0.003 

Z  19,853,553  0.144  0.003 

Z  19,855,351  0.009  0.001 

Z  60,058,344  0.021  0.001 

Z  60,076,934  0.050  0.002 

Z  60,189,777  0.032  0.001 

Z  60,287,175  0.022  0.001 

Z  60,441,865  0.044  0.001 

Z  61,301,140  0.121  0.002 

Z  80,794,843  0.020  0.001 

Z  80,805,286  0.020  0.001 

Z  80,838,161  0.015  0.001 
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CHAPTER 5 

Discussion
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The rise in chicken production has resulted from increased availability (Figure 4-1), 

improved pricing (Figure 2), and increasing health conscious behavior by consumers (Figure 4-

3), which has resulted in chicken per capita consumption surpassing that of its red meat 

counterparts.  Chicken meat is a healthier option to beef and pork.  Trans-fats that are found in 

red meat are not present in chicken (Farrell, 2010).  Additionally, poultry meat can also be used 

as a vector, termed enriched meat, to transport additional nutrients to the consumer like omega 

(n)-3 fatty acids and the antioxidant selenium whose absence can be fatal if left out of the diet 

(Yu et al., 2008).  Further, the choice of chicken over red meat consumption is linked to a 

decreased risk of colorectal cancer (English et al., 2004) and is associated with a reduced risk for 

age-related macular degeneration when chosen as a protein source over beef or pork (Chong et 

al. 2009).  The increasing importance of chicken products has led to intensive selection on traits 

relevant to the consumer market.  Specifically, emphasis on highly heritable growth performance 

traits, including both rapid gain in body weight and high feed efficiency, has led to a 

dramatically different broiler than the broiler being marketed in previous decades (Havenstein et 

al., 2003).  Jointly, selection for production traits has led to an increase in welfare related issues, 

like as lameness (Knowles et al., 2008), and pulmonary hypertension (Julian, 1998).  Further, 

management practices to optimize broiler performance, such as increased day length (Schwean-

Lardner et al., 2013) and ad libitum feeding schedules (Özkan et al., 2006) are further 

accentuating these issues.  A direct result for these selection practices include an increase in 

cardiovascular disease (Julian, 1993).  While management techniques can be used to manipulate 

ascites incidence genetic selection in broilers will be the answer to decreasing PHS incidence, 

and creating prevention parameters, in fast growing meat type chickens.  



 

 

 

115 

We began looking into the genetic causation of ascites incidence by evaluating a next 

generation sequencing technique: genome wide association studies.  The GWAS were conducted 

to evaluate chromosomal regions associated with the syndrome.  Identification of a region on 

chromosome 2 indicated an association with right ventricle to total ventricle ratio, which 

indicated an affiliation to heart hypertrophy detected in PHS susceptible individuals.  These 

findings were consistent with previous studies on the correlation between heart morphology on 

chromosome 2 in broilers (Rabie et al., 2005).  An additional region on chromosome Z 

consisting of three additional SNP indicated further association with heart morphology in ascites 

susceptible and resistant individuals.  Further investigation into a single SNP in the chromosome 

Z region indicated that the genotype of the parents to male broilers, but not female, from a 1990s 

line are associated with the male broiler’s ascites phenotype. Avian species do not operate under 

the same dosage effect that is seen in mammals.  In species with X and Y sex chromosomes gene 

dosage dictates that in many genes seen, for example, on the X chromosome are evaluated at the 

same expression levels in females as in males (Lin et al., 2007).  The absence of a dosage 

mechanism in organisms, like chickens, containing Z and W sex chromosomes, result in male 

bias for genes on the Z chromosome (Ellegren et al., 2007).  This explanation may be the 

reasoning behind regions of significance evaluated solely on male individuals.  Finally, it was 

shown that a collection of 20 SNPs located on two chromosomes were effective at predicting 

ascites incidence at a high level of accuracy using both traditional regression techniques, but to a 

greater degree, using a black box artificial neural networking model.  

 The findings from these studies represent further knowledge into the genetics behind 

ascites syndrome in rapidly-growing broilers.  The broiler production market is a global-reaching 

market with continually increasing demand.  The countries with the broiler production are 
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America, China, and Brazil, with America exporting 6.7 billion pounds, representing 

approximately 16.7% of the total production, in 2015 alone (FAO USDA).  These values are 

expected to increase as a result of world population growth, and novel integration of large 

poultry production schemes into developing countries.  As estimated in 2015 in the U.S. 0.05% 

of plant condemnations and carcass downgrading are contributed to ascites incidence (Cooper 

and Gustin, 2015, personal communication).  If this approximated rate was applied to the total 

broiler production in pounds recorded for 2015 almost 2 billion pounds produced would be 

afflicted.  Despite ascites continually decreasing in frequency, due to intensive selection and 

management practices, there remains the opportunity to retain millions of dollars of what is lost 

annually with the better understanding of ascites genetics, and application of this knowledge to 

large scale breeding schemes.   
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Figure 5-1.  Pounds per person of produced beef, pork, and chicken in the U.S.  Data available 

through USDA ERS.   
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Figure 5-2.  Price per pound of beef, pork, and chicken parts evaluated since 2000.  Data 

available through USDA ERS.   
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Figure 5-3. Consumer perception of healthfulness of beef versus chicken.  Values presented as 

percent of 3000 individuals surveyed from a balanced representation of U.S. population.  Data is 

as reported in Husted (2005).  
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