
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2016

Design and Analysis of an Asynchronous Microcontroller Design and Analysis of an Asynchronous Microcontroller

Michael Hinds
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Citation Citation
Hinds, M. (2016). Design and Analysis of an Asynchronous Microcontroller. Graduate Theses and
Dissertations Retrieved from https://scholarworks.uark.edu/etd/1664

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F1664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/1664?utm_source=scholarworks.uark.edu%2Fetd%2F1664&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Design and Analysis of An Asynchronous Microcontroller

A dissertation submitted in partial fulfillment

 of the requirements for the degree of

 Doctor of Philosophy in Computer Engineering

by

Michael Hinds

University of Arkansas

Bachelor of Science in Computer Engineering, 2009

University of Arkansas

Bachelor of Science in Physics, 2009

August 2016

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Dr. Jia Di

Dissertation Director

Dr. James P. Parkerson

Committee Member

Dr. Dale Thompson

Committee Member

Dr. Jingxian Wu

Committee Member

ABSTRACT

This dissertation presents the design of the most complex MTNCL circuit to date. A fully

functional MTNCL MSP430 microcontroller is designed and benchmarked against an open

source synchronous MSP430. The designs are compared in terms of area, active energy, and

leakage energy. Techniques to reduce MTNCL pipeline activity and improve MTNCL register

file area and power consumption are introduced. The results show the MTNCL design to have

superior leakage power characteristics. The area and active energy comparisons highlight the

need for better MTNCL logic synthesis techniques.

©2016 by Michael Hinds

All Rights Reserved

ACKNOWLEDGEMENTS

 Special thanks to my wife April for her encouragement and eye for detail. Thanks to my

advisor Dr. Jia Di for always being available and encouraging and for setting an example of a

great work ethic. Thanks to my classmates for great discussions and all their work to tapeout my

designs.

TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 Objective .. 1

1.2 Design Challenges ... 1

1.3 Organization ... 3

2 BACKGROUND ... 3

2.1 Asynchronous Logic ... 3

2.2 NULL Convention Logic ... 5

2.3 MTCMOS Power-Gating.. 10

2.4 Multi-Threshold NULL Convention Logic .. 11

2.4.1 Overview ... 11

2.4.2 Previous Work .. 13

2.5 MSP430.. 15

3 DESIGN FLOW ..16

3.1 Logic Design ... 16

3.2 Buffering ... 18

4 ARCHITECTURE ...19

4.1 Datapath ... 20

4.2 Selective Sleeping .. 22

4.3 ALU .. 24

4.4 Register File ... 26

4.5 Memory Interface and Interrupts .. 32

4.6 Timer.. 33

4.7 Control Unit ... 35

5 TESTING ..36

5.1 Benchmark ... 37

5.2 Simulation & Results .. 38

5.2.1 Active Energy .. 39

5.2.2 Area and Leakage Power .. 41

5.3 Analysis ... 47

6 CONCLUSION ...52

7 REFERENCES ...53

LIST OF FIGURES

Figure 1: NCL Gate Structure ... 6

Figure 2: NCL Datapath.. 9

Figure 3: MTCMOS Power Gating... 11

Figure 4: MTNCL Gate Structure ... 12

Figure 5: MTNCL Datapath.. 13

Figure 6: MTNCL Design Flow ... 17

Figure 7: openMSP430 Functional Block Diagram.. 20

Figure 8: MTNCL MSP430 Functional Block Diagram .. 21

Figure 9: SS Structure ... 23

Figure 10: ALU Datapath ... 26

Figure 11: Traditional 3-Ring Register ... 28

Figure 12: Modified MTNCL Register File Bit Cell .. 29

Figure 13: MTNCL MSP430 Register File .. 31

Figure 14: MTNCL MSP430 Memory Interface .. 32

Figure 15: MTNCL MSP430 Timer Configuration Register ... 35

Figure 16: MTNCL MSP430 Top-Level Pipeline .. 36

Figure 17: Transistor Size Comparison between MTNCL MSP430 and openMSP430 (units in

meters)... 46

Figure 18: Energy per Operation across MSP430 Functional Blocks .. 48

Figure 19: Energy Consumption of MTNCL MSP430 Handshaking, Sleep Propagation, and

Combinational Logic Circuitry ... 49

Figure 20: Scaled Comparison of Transistor Area between MTNCL MSP430 ALU and Core

Compared to openMSP430 ALU and Core .. 51

LIST OF TABLES

Table 1: NCL Dual-Rail Encoding ... 5

Table 2: 27 Fundamental Threshold Gates ... 7

Table 3: ALU Functionality .. 25

Table 4: Transistor Count Comparison between Modified and 3-Ring Register Files................. 30

Table 5: Timer Constraint and Gate Count Comparison .. 37

Table 6: MTNCL MSP430 Energy Consumption .. 40

Table 7: Average Energy Consumption Across Random Operands ... 41

Table 8: Average Energy Consumption across Random Operands for Indexed Addressing Mode

Instructions .. 42

Table 9: openMSP430 Average Energy Consumption across Random Operands 43

Table 10: openMSP430 Average Energy Consumption across Random Operands for Indexed

Addressing Mode Instructions .. 44

Table 11: Area and Leakage Power Comparison ... 45

Table 12: Transistor Width Comparison between Synchronous and MTNCL MSP430

Microcontrollers and AES Encryption/Decryption Cores .. 52

1

1 INTRODUCTION

1.1 Objective

The objective of this Ph.D. dissertation is to develop an asynchronous microcontroller

using Multi-Threshold NULL Convention Logic (MTCNL) that is instruction-for-instruction

compatible with TI’s MSP430 microcontroller, and to give an accurate comparison with a

synchronous microcontroller with the same instruction set. Key metrics for comparison are speed,

energy consumption, and area.

1.2 Design Challenges

In the era of mobile and ubiquitous computing power is a key design constraint.

Techniques to reduce energy consumption while meeting area and performance requirements are

sought at all levels of the design cycle from architecture to processing. These can be quite

challenging given the complexity of modern IC designs. As processes shrink and the number of

transistors grows, the variation across a design increases. This means that designers must build

with ever-greater margins to ensure that their chips meet timing across PVT corners. The

performance and power benefits of process scaling are reduced due to the overdesign required in

margining.

Another trend with process scaling is that the ratio of leakage to dynamic power

consumption is increasing exponentially. In the past, static power consumption could be ignored

as it was overshadowed by dynamic power, but as supply and threshold voltages scale down

along with transistor lengths static power can exceed 50% of the total power budget [1]. Clearly,

standby current can no longer be ignored, and special techniques such as multi-threshold CMOS

(MTCMOS) power gating are required to keep leakage power under control.

2

Traditional synchronous ICs require large, variation-intolerant, and power-hungry clock

distribution networks to carry the clock signal across the design. Designers dedicate large

amounts of time and circuit resources to distributing a proper clock signal. In order to decrease

power consumption new design methods should be explored.

Synchronous design methodologies continue to dominate the VLSI industry, but

asynchronous design is gaining traction due to the aforementioned drawbacks of clock

distribution and margining. Currently, there is a lack of commercial CAD tool support for

asynchronous design flows. However, there have been several academic projects to develop an

RTL-to-GDS flow for asynchronous design [2] [3]. Industry still sees the initial cost of

development too high compared to the advantages of asynchronous methodologies. Given the

trends above, the advantages of asynchronous are beginning to outweigh the initial overhead of

developing a commercial asynchronous flow. More companies will adopt asynchronous designs

into their ICs according to the International Technology Roadmap for Semiconductors (ITRS).

In order to encourage industry adoption of asynchronous methodologies it must be proven

that asynchronous circuits show an advantage compared to their synchronous counterparts. The

power, area, scalability, and design effort of asynchronous circuits should be more favorable

compared to synchronous if industry is going to move toward asynchronous design. MTNCL is a

relatively new style of clockless asynchronous design that has shown power reduction potential

in small designs when compared to synchronous benchmarks. Most of the current MTNCL

designs are small compared to real-world ICs. Larger and more complex standalone MTNCL

designs are needed in order to prove or disprove this particular asynchronous architecture’s

advantages over the synchronous design methodology. This dissertation presents a full MTNCL

MSP430 microcontroller for comparison with a synchronous MSP430 microcontroller.

3

1.3 Organization

This dissertation is organized into 6 chapters. Chapter 2 gives background on the

development of MTNCL technology and frames it in relation to other asynchronous techniques.

It also includes an introduction to the MSP430 microcontroller and details on why it was selected

as the design target. Chapter 3 details the design flow and tools used. Chapter 4 describes the

MTNCL microcontroller’s structure and design. The synchronous benchmark circuit, testing

methodology, and results are discussed in chapter 5. Finally, chapter 6 concludes the dissertation.

2 BACKGROUND

2.1 Asynchronous Logic

In synchronous logic a clock signal is used to synchronize data flow through a pipeline.

Pipeline stage boundaries are typically constructed using level-sensitive latches or edge-triggered

flip-flops known as sequential circuit elements. Designers must ensure that the period – rising

(falling) edge to rising (falling) edge – of the clock signal is sufficiently long to account for the

propagation of data through the longest path delay any pipeline stage. Additionally, sequential

elements require extra margin for data setup and hold to ensure that no metastability problems

occur.

In contrast, asynchronous logic uses handshaking to control the flow of data through a

pipeline. By eliminating the clock tree, energy savings are possible if the handshaking overhead

is not too high. There are two main types of asynchronous logic: Delay-Insensitive (DI) and

Bounded-Delay (BD).

4

BD, like synchronous logic, assumes that the delay through a stage can be accurately

determined during the design phase. This is usually done through static timing analysis (STA).

BD architecture uses a single-rail encoding scheme and adds two control wires for handshaking

between stages. The delay of the datapath must be matched in the control path, and delay

elements are used to ensure this. Substantial timing analysis is required, and the maximum

performance of the pipeline is a function of the worst-case stage delay. The BD designer must

take care to prevent glitches and glitch power consumption in the design. Micropipelines are the

most common example of BD logic [4].

DI circuits avoid many of the problems associated with BD. They are correct-by-

construction, requiring little or no timing analysis. They operate using a handshaking protocol to

control the flow of data, and can therefore achieve average case performance. Additionally, DI

architectures often use multi-rail encoding, adding additional states to the data for completion

detection. It should be noted that the most useful DI architectures are actually Quasi Delay-

Insensitive (QDI). They make the timing assumption that when a wire splits both of its endpoints

receive the data signal within negligible delay of each other, where negligible generally means

less than a gate delay. This assumption is known as the isochronic forks assumption and is

applied within basic components such as a full adder. The isochronic forks assumption is

necessary to make the DI architecture Turing complete.

There are several types of QDI architectures. Pre-Charge Half Buffer (PCHB), probably

the most well-known, uses dynamic logic, and is synthesized at the transistor level [5]. In PCHB

registration and logic are integrated into each gate. Phased-Logic is an automated method to

transform a synchronous design to asynchronous; however, it cannot match the performance or

power dissipation of a customized asynchronous design [6]. Other DI architectures include

5

Seitz’s Method, Anantharaman’s Approach, DIMS, Singh’s Method, and David’s Method. All of

these combine Muller C-Elements with Boolean gates to achieve DI [7] [8] [9] [10].

2.2 NULL Convention Logic

NULL Convention Logic (NCL), a QDI asynchronous architecture, is designed at the

gate level; however, it requires a custom gate library [11]. Standard EDA flows can be modified

to work with NCL designs. NCL logic values include three states: DATA1, DATA0, and NULL.

To represent three logic values NCL uses dual-rail encoding where each bit requires two wires.

The two DATA states are analogous to Boolean logic values of 0 and 1. The third state, NULL,

is used for completion detection and acts as a boundary between wavefronts of data. In this way

NCL includes values for data processing and data validation. It is said to be symbolically

complete.

Table 1: NCL Dual-Rail Encoding

 NULL DATA 0 DATA 1 INVALID

Wire 0 0 1 0 1

Wire 1 0 0 1 1

6

Reset

Set

Hold0

Hold1

Gnd

Vdd

Z

Figure 1: NCL Gate Structure

NCL logic is built from 27 fundamental gates. Each gate is broken into four functional

blocks: Reset, Hold0, Set, and Hold1. Hysteresis is included in every NCL gate. The Reset block

is responsible for detecting the NULL wavefront – all inputs deasserted – and then deasserting

the gate’s output. The Hold1 block is the logical complement of Reset and keeps the output

asserted until the NULL wavefront is incident on all inputs. Set and Hold0 are also complements

of each other. They ensure that the assertion of the output only happens once the gate’s logical

function is satisfied. Figure 1 shows the structure of the typical NCL gate. It should be noted that

for some gate functions transistors are shared between blocks in order to reduce area.

NCL gates are asserted when their threshold number of inputs are asserted, and

deasserted when all their inputs are deasserted. They are known as threshold gates and the gate

names contain the “TH” prefix. There are weighted and unweighted varieties of gates.

7

Unweighted gates follow the naming convention THmn such that 1 < m < n, where n is the

number of inputs to the gate and m is the threshold number of asserted inputs required to assert

the gate’s output. For example, a TH34 gate will be asserted when at least 3 of its 4 inputs are

asserted. Weighted gates are those where a certain input can carry greater weight in asserting the

output. The naming convention is THmnWx1x2…xL where xL determines the weight of the Lth

input. For example, a TH34w22 applies a weight of 2 to the first and second inputs. In addition

to the weighted and unweighted threshold gates there are a few other gates required for

completion detection, control flow, and data storage. The complete list of NCL gates along with

their functions is given in Table 2.

Table 2: 27 Fundamental Threshold Gates

Threshold Gate Boolean Function

TH12 A + B

TH22 AB

TH13 A + B + C

TH23 AB + AC + BC

TH33 ABC

TH23w2 A + BC

TH33w2 AB + AC

TH14 A + B + C + D

TH24 AB + AC + AD + BC + BD + CD

TH34 ABC + ABD + ACD + BCD

TH44 ABCD

8

Table 2: 27 Fundamental Threshold Gates (continued)

Threshold Gate Boolean Function

TH24w2 A + BC + BD + CD

TH34w2 AB + AC + AD + BCD

TH44w2 ABC + ABD + ACD

TH34w3 A + BCD

TH44w3 AB + AC + AD

TH24w22 A + B + CD

TH34w22 AB + AC + AD + BC + BD

TH44w22 AB + ACD + BCD

TH54w22 ABC + ABD

TH34w32 A + BC + BD

TH54w32 AB + ACD

TH44w322 AB + AC + AD + BC

TH54w322 AB + AC + BCD

THxor0 AB + CD

THand0 AB + BC + AD

TH24comp AC + BC + AD + BD

9

NCL

Register

Ko Ki

NCL Combinational

Logic

Completion

Detection

NCL

Register

Ko Ki

NCL Combinational

Logic

Completion

Detection

NCL

Register

Ko Ki

Stage NStage N-1Stage N-2Stage N-3

Figure 2: NCL Datapath

NCL’s delay insensitivity springs from its handshaking protocol. The datapath of an NCL

circuit is inherently pipelined. At the boundary of each pipeline stage is a register and a

completion detection circuit that determines when DATA or NULL should be allowed through to

the next stage. NCL circuits process data in waves, known as DATA wavefronts, where two

adjacent DATA wavefronts are separated by a NULL wavefront. The NULL wavefront acts as a

boundary to prevent DATA wavefronts from colliding and overwriting each other. An NCL

register stores the previous wavefront until another complete wavefront arrives and is detected

by the completion detection circuitry. The completion detection circuitry is also responsible for

handshaking with the neighboring stages. For example, once the completion detection circuit

determines that 1) the complete DATA wavefront has reached the register and 2) that the next

stage is requesting DATA (RFD), it will signal the register to allow the DATA wavefront to pass

through the register. The register latches the DATA value so that the next stage’s combinational

logic can process it. Once the aforementioned conditions are satisfied, the completion detection

circuit issues a request for NULL (RFN) for its stage.

10

2.3 MTCMOS Power-Gating

In order to reduce the leakage power consumed in a CMOS circuit, transistors with

various threshold voltages (Vt) can be incorporated to maintain performance while reducing

leakage power consumption. High-Vt transistors, those that are less leaky but slower, are used to

gate current to inactive portions of the circuit as shown in Figure 3. When the circuit is active,

these transistors are enabled; but when the circuit becomes inactive as determined by sleep

control logic, the transistors are disabled. The high-Vt transistors cut off the leakage path from

power to ground. Low-Vt transistors are fast but leaky. They are used along the critical path due

to their superior switching speed. Incorporating transistors with multiple Vt’s into a circuit in this

manner is known as Multi-Threshold CMOS (MTCMOS) power gating.

MTCMOS power gating, while having the ability to significantly reduce leakage, suffers

from three major drawbacks [12]:

1. Sizing the power-gating transistors is a difficult tradeoff. If the transistors are too

small, then the circuit’s performance will be reduced due to a lack of current flow

to the active logic. If the transistors are too large, then valuable area is wasted.

2. Data stored in flip-flops is lost when the circuit is gated. Special memory cells are

required to retain data during sleep mode.

3. Generating sleep control signals requires extra logic, which adds area and power

overhead. In addition, careful timing analysis must be performed to ensure the

MTCMOS circuit blocks are slept/woken at the correct times.

11

sleep

Low-Vt Logic

High-Vt Ground

Gate

Virtual Vdd

Virtual Ground

Vdd

Gnd

High-Vt Power

Gate

sleep

Figure 3: MTCMOS Power Gating

2.4 Multi-Threshold NULL Convention Logic (MTNCL)

2.4.1 Overview

One of the most promising low power QDI architectures, MTNCL, features a

combination of NCL and MTCMOS power gating [13]. Like NCL it is dual-rail, asynchronous,

QDI, and operates using threshold gates. MTNCL incorporates MTCMOS power gating into

each of the threshold gates. By doing so, it is actually able to shrink the size of the gates. Only

two transistors connected to sleep are needed to replace the Reset and Hold1 blocks of the NCL

gate. Moreover, hysteresis is only required in a small subset of MTNCL logic gates, thereby

reducing area and simplifying gate design compared to NCL. Figure 4 gives a diagram of the

MTNCL threshold gate structure with high-Vt transistors circled.

12

Hold0

(High-Vt)

Set

(Mixed- Vt)

Gnd

Vdd

Z

Sleep

Figure 4: MTNCL Gate Structure

The MTNCL operating protocol is similar to NCL, but with a few modifications. The

sleep signal connects to each MTNCL gate, and when asserted causes the output to fall to 0,

while High-Vt transistors cut off the leakage path to ground. This is used to facilitate

DATA/NULL wavefronts. When a NULL wavefront is needed from a stage, the sleep signal can

be asserted thereby driving all the gates to 0 and presenting a valid NULL pattern to the register.

This sleep-to-NULL behavior compromises the QDI of the architecture. A partial NULL

waveform can be passed between stages, such that when the next DATA pattern arrives it gets

mixed with DATA bits left over from the previous stage thereby causing invalid DATA to

propagate through the circuit [14]. Fortunately, a technique called Fixed Early Completion Input

Incomplete (FECII) can be used to ensure that all bits at the stage output are NULL before the

next DATA wave is allowed to pass. FECII eliminates the possibility of passing a partial NULL

and ensures QDI for MTNCL.

13

The MTNCL pipeline is shown in Figure 5. In addition to the combinational logic, both

the registers and completion components can be slept when not in use [15]. This leaves very few

non-power-gated components, and therefore has low leakage power.

Figure 5: MTNCL Datapath

2.4.2 Previous Work

Although MTNCL is a recent invention, there have been a handful of circuits

implemented using the technology. In [16] the MTNCL architecture is enhanced through several

variations on the gate design, sleeping, and completion detection. A 4×4 array multiplier is

implemented in several MTNCL incarnations. The various multipliers are compared amongst

themselves and with an NCL implementation of the multiplier.

[15], an expansion of the work in [16], develops several enhancements to the MTNCL

architecture. They implement a floating-point coprocessor in NCL, MTNCL, and synchronous

MTCMOS architectures. Several variations of the MTNCL coprocessor implementation are

tested. The FECII MTNCL architecture with completion and registration slept, called

“SMTNCLwith SECRII w/o nsleep” in the paper, was found to be superior. It was compared to

NCL, other MTNCL variations, and a synchronous implementation in terms of area, active

MTNCL

Register

MTNCL

Combinational Logic

Slept Early

Completion

MTNCL

Register

MTNCL

Combinational Logic

Slept Early

Completion

MTNCL

Register

Stage NStage N-1Stage N-2Stage N-3

Slept Early

Completion

SleepN-1
SleepN-2 SleepN

KiN-3 KiN-2 KiN-1

14

energy, and leakage power. In subsequent work, this MTNCL variation is simply referred to as

MTNCL since it is the most efficient variation.

In [17], a 128-bit Advanced Encryption Standard (AES) core is developed using the

MTNCL style developed in [15]. The AES design is also implemented using a synchronous

methodology and compared to the MTNCL AES in terms of area, speed, robustness, and energy

efficiency. The MTNCL design is 60% more energy efficient during operation and uses 6× less

leakage current compared to the synchronous AES. Furthermore, the MTNCL AES is able to run

encryption from a nominal supply of 1.2V down to 0.3V, while the synchronous AES can only

operate down to 0.5V. The MTNCL design’s throughput scales naturally as supply voltage

decreases, but the synchronous AES requires the clock frequency to be tuned for each supply

voltage operating point. In terms of area, the MTNCL AES has smaller total transistor width than

the synchronous MTNCL.

In [18] MTNCL’s resilience to changes in supply voltage is exploited to implement a

Dynamic Voltage Scaling (DVS) system. The system uses multiple MTNCL array multiplier

cores coupled with parallelism components and a voltage regulator. It is able to dynamically

scale supply voltage of parallel cores based on the input data rate. Since MTNCL is

asynchronous it runs at its natural frequency given the supply voltage. Thus, the timing analysis

of such a system is substantially simplified compared to a synchronous design.

[19] presents an MTNCL Finite Impulse Response (FIR) Filter. The relationship between

pipeline granularity, latency, and power is examined across four different pipeline granularities.

While the work above implies MTNCL has potential across a wide variety of applications,

it must be demonstrated that MTNCL can offer benefits over state-of-the-art synchronous

15

designs in order for it to be widely adopted in industry. Only two of the above designs, the AES

Core and Floating Point Coprocessor, are compared to a synchronous implementation. Both of

these are useful components, but neither represents a standalone design. Also, they are both

datapath-dominated with small amounts of control logic. Larger more complicated systems need

to be designed in order to prove MTNCL as a viable alternative to synchronous methodologies. It

needs to be demonstrated that MTNCL can be beneficial in a larger design with less datapath and

more control logic focus.

2.5 MSP430

The MSP430 is a RISC microcontroller developed by Texas Instruments in the 1990’s. It

has gone through several iterations and established itself as a leading microcontroller for power

constrained embedded designs. It comes in several varieties with different peripherals and

amounts of RAM. At its core is a RISC pipeline with 27 instructions and 24 emulated

instructions. It incorporates multiple clocks in order to facilitate various low-power modes.

Additionally, it has an extensive vectored interrupt capability and supports up to 14 peripherals.

In the Internet-of-Things era, the MSP430 is a very important design. It is well suited for low-

power data processing and decision-making tasks ubiquitous across connected devices.

An open source version of the MSP430 (openMSP430) was developed in [20]. It

implements the entire MSP430 instruction set and is instruction for instruction compatible with

TI’s microcontroller. In [3] the results from an asynchronous implementation of the MSP430

using the balsa asynchronous design environment are presented. They explore three different

implementations of the MSP430: bundled data, dual-rail, and 1-of-4 encoding. However, their

design stops at the gate level, and no physical design is explored. The design uses Boolean gates,

which add a large power and area overhead to QDI designs.

16

The MSP430 is ideal for implementation in MTNCL. With its goal of being a low-power,

low-cost microcontroller the MSP430 gives the opportunity to demonstrate MTNCL’s energy-

efficiency against an industry standard for low-power computing. The MSP430 is more complex

than any MTNCL design to date, and encompasses a complete system capable of functioning as

a standalone chip. The MSP430, being a microcontroller, is a control-dominated rather than

datapath-dominated architecture; therefore, it is a good test of MTNCL’s merits for other

control-dominated designs. Additionally, the synchronous openMSP430 can be implemented in

the same technology and serve as a benchmark for comparing the MTNCL microcontroller to a

well-proven synchronous design.

3 DESIGN FLOW

The MTNCL design flow is immature compared to synchronous methods used in

industry. Logic design and buffering are particularly challenging, as no standardized methods

exist for the MTNCL design. For each new technology MTNCL standard cell libraries must be

gates as standard cells designed and characterized since standard Process Design Kits (PDK) do

not include MTNCL.

3.1 Logic Design

17

.vhd

.vhd

HDL Design

Start

Behavioral

Gate Models

HDL

Testbench

HDL

Simulation

Pass

Structural

HDL

Transistor-

Level

Schematics

Liberty NCX
RTL

Compiler

Constraints

Buffering &

Gate

Replacement

Script Virtuoso

Memory

Model
UltrasimStimulus

Transistor

Spice

Models

Pass Data Analysis
YesNo

Yes

No

.tcl

.scs

.lib

.v

.scs

.vec

.sp

.va

Figure 6: MTNCL Design Flow

At the time of this design, synthesis tools for MTNCL are immature. They accept

synchronous RTL HDL as input, perform synthesis to generate a single-rail synchronous netlist,

18

then convert the netlist to dual-rail, map the combinational logic to MTNCL gates, and add

MTNCL registration and completion components [2]. This produces an unoptimized MTNCL

design. Since the starting point is a synchronous design, the high-level blocks are designed with

synchronous instead of MTNCL architecture in mind. To build an optimized MTNCL design, the

high-level architecture must be built with MTNCL methodology in mind. In the case of the

MTNCL MSP430, the automated synthesis technique is suboptimal in the high-level control,

Register File, and Timer.

This MTNCL MSP430 is designed at the structural level using VHDL. Behavioral

models for the MTNCL gates act as primitives and are used to construct larger blocks.

Additionally, several synchronous logic gates are included in the library. These are used in the

Register File and various control components. Mentor Modelsim is used for functional

simulation.

3.2 Buffering

Although MTNCL requires minimal timing analysis, it is beneficial to set a max

transition or max capacitance for each gate. This avoids long delays due to wire or fanout that

can violate the relative timing assumptions of MTNCL [2]. It also helps to reduce short circuit

power consumption and pipeline bottlenecks. The max capacitance/transition is determined when

the MTNCL threshold gate library is characterized. It is based on the transistor size and drive

strength of the gate. Commercial buffering tools query the Liberty timing file for the max

capacitance/transition values. Then, they size, clone, and insert buffers such that all gates meet

their capacitance and transition requirements in the Liberty file. The max capacitance/transition

rules along with max fanout fall under the category of design rules (DRV). DRVs are checked in

synchronous designs both during synthesis and physical implementation, and this flow is easily

19

adapted to MTNCL designs once the threshold gates have been characterized. In synchronous

designs the buffering tool must ensure that various constraints on path delays are met. For

example, the longest path delay through a stage must be less than the clock period minus the

setup time of the capture flop. These timing constraints are critical to the synchronous circuit’s

operation and, therefore, supersede DRV requirements. However, MTNCL, being QDI, has no

such timing requirement, and the cost function of the buffering tool is changed to only respect

DRVs.

Cadence RTL Compiler (RC) is used for buffering the MTNCL MSP430. RC is given the

structural VHDL netlist along with Liberty files for each standard cell. Then, RC’s cost function

is changed to only respect DRVs. The input driving cells and output load cells are defined using

SDC constraints. RC produces a buffered and sized netlist that is appropriate for schematic

capture and transistor-level simulation. The same buffering and sizing flow can be used in

Cadence Encounter during physical implementation where real wireloads are taken into account.

4 ARCHITECTURE

Like the openMSP430, the MTNCL MSP430 is instruction-for-instruction compatible

with TI’s MSP430 microcontroller. The functional division of the MTNCL MSP430 is similar to

the openMSP430 as shown in Figure 7 and Figure 8. The following chapter details the design

and design considerations of the MTNCL MSP430 architecture, while contrasting it with that of

the openMSP430.

20

Frontend

Instruction Fetch

State Machine

Execution Unit

Register File

ALU

Data Memory

(128B RAM)

Program

Memory (1KB

RAM)

TimerA

Reset

Clock

Instruction Decode

Peripheral Bus

Cpu_en

Clock

Module

Figure 7: openMSP430 Functional Block Diagram

4.1 Datapath

Determining the number of pipeline stages in a synchronous design is a balance between

energy efficiency, throughput, and data dependencies. The data dependencies are determined by

the instruction set of the processor, which in this case is fixed for both synchronous and MTNCL

designs. The MSP430 with its goal of being a low-power and low cost microcontroller uses a

RISC instruction set with simple functional blocks. Similar to a basic MIPS architecture, it does

not use high-speed, high-area overhead techniques such as out-of-order execution, hierarchical

caching, or multiple execution units. In fact, the openMSP430 consists of only a single pipeline

stage. This makes the microcontroller extremely compact and energy efficient at the expense of

the throughput benefits of extra pipeline stages.

21

Frontend

Instruction Fetch

State Machine

Execution Unit

Register File

ALU

Data Memory

(128B RAM)

Program

Memory (1KB

RAM)

TimerA

Synchronous

Reset

Clock

Instruction Decode

Peripheral Bus

Cpu_en

Figure 8: MTNCL MSP430 Functional Block Diagram

Pipelining the MTNCL MSP430 datapath requires additional considerations compared to

the openMSP430. The lower bound of the number of pipeline stages is defined by the

requirements of the dual-rail DATA/NULL protocol. In order for proper feedback of

DATA/NULL wavefronts, a dual-rail encoded design must have at least three pipeline stages

[21]. The upper bound of the number of pipeline stages is a similar tradeoff as that of

synchronous circuit design: throughput vs. area and energy. Since a primary constraint of the

MSP430 is energy, the lower bound of three pipeline stages is used.

After determining the number of stages in the pipeline, the design is partitioned into

stages. This is a key step to guaranteeing design efficiency. In order to maximize throughput in

the MTNCL MSP430, combinational logic is divided among the three pipeline stages as evenly

as possible given the data dependencies in the datapath. Unlike the regular structure of an array

multiplier, AES, or other regular circuits, the datapath of the MSP430 microcontroller has a large

22

variance in the number of gates along each feedback loop. Some paths have a large amount

combinational logic such as the paths through the ALU. Others have very little such as the

register file or operand registers. While some paths, such as instruction decode and control, are

limited by data dependencies in the datapath. Their outputs are required at the first register stage.

4.2 Selective Sleeping

A technique that can increase flexibility in register location, while at the same time

reducing active energy consumption is Selective Sleeping (SS). Using SS a designer divides the

combinational logic into smaller functional blocks where each block can operate independently

of the others. The registers at the output of these functional blocks are split such that each

function becomes a smaller pipeline. Each individual pipeline can be slept separately from others.

Therefore, when the circuit is in operation, the pipelines not needed for the current operation can

remain slept. The structure of SS is shown in Figure 9.

Once the pipeline has been split, the handshaking signals must be combined such that the

unused blocks remain slept. The sleep signals for the functional blocks and the input completion

components can be determined using combinational logic in the first stage of the pipeline. This

logic, however, must always be activated when using any of the functional blocks. The sleep

generation block reads the input DATA wavefront, and generates the SEL vector to select the

block or blocks to be activated for the next cycle. Then, SEL is inverted and OR’d with the

incoming sleep signal to produce the sleep signal for the given functional block.

 slp(i) = SEL(i)+ slp _ in (1)

23

Sleep Generation

F1

F2

KiKo

DoutDin

KiKo

DoutDin

KiKo

DoutDin

Ko Combination

F3

Ki

slp

slp

slp

Ko_Comb

Data_in

slp

slp

slp

slpSlp_in

Figure 9: SS Structure

In addition to the sleep signal generation, SS implements special logic for handling the

Ko’s from the individual pipelines. The Ko signals from each pipeline are combined in the Ko

Combination block to produce a global Ko representing all the pipelines. This combinational

process can be broken down into two pieces. The first piece generates the RFN signal when the

selected pipelines are all RFN. The second piece generates the RFD signal when all pipelines are

RFD. (2) is the equation for generating the combined Ko signal.

 Ko_Comb = Ko(i)∏ + TH 22(SEL(i), Ko(i)∑) (2)

The overhead associated with SS is quite small, and a proper implementation can

decrease the energy lost to sleep net switching and wavefront propagation in much the same way

that clock gating can decrease the switching energy of the clock net in a synchronous design. Ko

combination and sleep generation lie along the handshaking signal path, and thus add delay to

the pipeline stage. In most designs the function selection logic to generate SEL is already present.

24

This limits the delay overhead of the sleep generation block to only a single TH12 gate.

Furthermore, the Ko product terms in the first part of (2) would be required in a normal MTNCL

pipeline. Therefore, the overhead associated with the Ko Combination block is an OR-tree for the

summation term and a TH22 gate for each functional block. The Ko Combination block adds

only a TH22 delay and a TH12 delay to the handshaking signal path. Thus, the total delay

overhead for the stage from SS is (3) and the area overhead for a stage split into N functions is

(4).

 delay(TH 22)+ 2 ⋅ delay(TH12) (3)

 N ⋅ area(TH 22)+ area(OR _Tree_ width _ N)+ (N +1) ⋅ area(TH12) (4)

With a low area and delay overhead, SS can be used to reduce power consumption in a

wide variety of MTNCL circuits. It eliminates the switching power due to the sleep signal

transition as well the power due to the propagation of the DATA/NULL wavefronts for the

unused function blocks. Thus, the power savings will be circuit specific and based on the activity

factor of the function blocks. In the case of the MTNCL MSP430 design SS was used to reduce

power consumption of the Control, ALU, and Register File.

4.3 ALU

The MSP430 ALU is simple in structure with the two main blocks being an adder and a

logical operations block. The ALU supports four single operand operations and eight double

operand operations shown in Table 3. A modified version of SS is used in the ALU with the

functional division between the logical operations block and the adder block. The functional

division is shown in Table 3. (L) indicates the function is contained in the logical operations

25

block, while (A) indicates the function is contained in the adder block. Additionally, there is an

always-active logic block to multiplex the ALU outputs and handle the single operand functions.

Table 3: ALU Functionality

Single Operand Double Operand

Rotate Right Addition with/without Carry In (A)

Rotate Right Arithmetically Two’s complement Subtraction with/without Carry In (A)

Swap Bytes Bit Vector Comparison (L)

Sign Extension Decimal Addition (A)

 Bit Testing (L)

 Bit Clearing (L)

 Bitwise XOR (L)

 Bitwise AND (L)

The modified SS operates only on the combinational blocks of the ALU. It does not

select registers. Therefore, the ALU must handle NULL outputs from the unselected functional

block during DATA propagation. The key is to observe that the functional block outputs are

mutually exclusive so that only the selected output is DATA. For example, when the adder is

selected, the DATA wavefront will pass through the adder block to the Output MUX, while the

logical operations outputs remain NULL. The only signals that are asserted will be from the

selected components, the correct outputs. Thus, the Output MUX can be simplified to a simple

OR tree for both RAIL1 and RAIL0 signals. This further reduces the area and power

consumption of the ALU logic.

26

The ALU has a depth of three pipeline stages as shown in Figure 10. A previous version

of the ALU placed the second register stage between the function blocks and the Output MUX;

however, testing revealed this implementation to be faster but less energy efficient than the

current pipeline. When the second register is placed before the Output MUX, it must receive the

outputs from each function, increasing the width by approximately four times compared to the

placement shown in Figure 10. Since energy is the primary constraint for the MSP430, a

partitioning scheme was selected to minimize the area overhead and energy consumption of each

register by keeping the registers as small as possible.

Sleep Generation

Adder

Logic Ops
KiKo

DoutDin

slp

slp

slp
slp

Output Mux

slp

KiKo

DoutDin

slp

ALU_in

Slp_in

Ko KiKo

DoutDin

Ki

slp

ALU_out

Figure 10: ALU Datapath

4.4 Register File

The MSP430 Register File should be distinguished from MTNCL registration. The

Register File is a collection of memory elements that retain their values during DATA/NULL

cycles. MTNCL registers, on the other hand, act as separators between stages in the MTNCL

pipeline. They do not store information between DATA/NULL cycles, but are refreshed each

DATA/NULL cycle.

27

The Register File is a key component of a microcontroller. It is accessed at least once,

usually more, for every instruction the microcontroller executes. Optimization of this component

in the MTNCL MSP430 is an important part of reaching the overall goal of low power.

In traditional MTNCL and NCL designs, data storage between cycles requires a large

area and power overhead. A three-ring register structure with a load/store multiplexer is used to

store a data pattern between datapath cycles. The area for this component is given by (8), where

R is the registration area, C is the completion component area, and M is the multiplexer area.

 R = 2 ⋅ N ⋅ area(TH12(dn)m) (5)

 M = N ⋅ area(THAND0m) (6)

 C = [area(TH 22n)+ 2 ⋅ area(INV)+ N / 2 ⋅ area(TH 24COMPh1m)+ ((N −1) / 3) ⋅ area(TH 44h1m)] (7)

 Traditional _ Re gister _ File_ Area = 3⋅ R + M + 3⋅C (8)

When compared to a synchronous register consisting of a multiplexor and D-flip flops,

the MTNCL memory element is quite large. It is also particularly power hungry since the data

pattern must continuously loop through the registers every cycle of the main pipeline. To further

add to the power burden, the structure cannot be used with SS since a slept pipeline will go to

NULL and lose the stored data pattern.

28

KiKo

DoutDin

KiKo

DoutDinLoad/Store

KiKo

DoutDin

Comp

Din

Dout

Ki

Figure 11: Traditional 3-Ring Register

Optimization of the Register File can be accomplished by incorporating D-flip flops,

which are not typically used in asynchronous design due to their setup and hold time

requirements. Special logic is required to ensure that the setup and hold times for the D-flip flops

are always met despite the asynchronous behavior of the circuit. This is accomplished by making

a slight modification to the D-flip flop structure and incorporating completion detection on the

inputs and outputs.

The bit cell structure to guarantee setup time is shown Figure 12. A third output is added

to the D-flip flop, which connects to the internal node between the two latches. D-flip flops are

commonly constructed of two cascaded latches triggered on opposite clock edges. The output of

the first latch connects to the input of the second latch. The Q_int signal is the output of the first

D-flip flop. Since the setup time is defined as the time it takes for the internal node, Q_int, to

charge/discharge, the clock edge can be safely triggered on the transition of Q_int.

The Register File only needs to latch data when the incoming data is different than the

data being stored. Thus, the clock is triggered when Q and Q_int are different, meaning that the

incoming data pattern has charged the internal node, Q_int, to a value different than the stored

value, Q. The sleepable XOR gate with input Q and Q_int triggers the clock edge to occur when

29

the two signals are different. Then, if load is asserted, the D-flip flop receives a rising clock edge

causing the value on Q_int to be latched.

Hold time is guaranteed by the XNOR gate and MTNCL completion. The XNOR gate

generates a Ko signal for each bit when the output, Q, and input, D, match. This indicates that the

proper value has been latched for the given bit. The XNOR gates replace the TH24comp gates in

a standard MTNCL completion component, and ANDing the individual Ko’s together gives a

completion signal for the entire pipeline stage. Following the MTNCL handshaking protocol the

pipeline stage’s completion is an input to the previous stage, which causes the previous stage to

hold its DATA pattern until all the bit cells of the register have properly stored the DATA

pattern.

Rst

QB

QD

Q_int
Load

Data

Rst

Sleep
Ko

Figure 12: Modified MTNCL Register File Bit Cell

It is important to note that the XOR gate controlling the clock is sensitive to glitches on

the Q_int signal. If Q_int has a glitch and Load is asserted, an incorrect value could be latched

into the bit cell. To prevent this, the XOR gate has a sleep input controlled by a completion

component attached to the inputs of the Register File pipeline stage. The input completion

30

component detects when the DATA pattern arrives and only allows the XOR gate to transition

switch once the all the inputs have settled.

The bit cell structure is very efficient in terms of power and area. Switching in the

modified bit cell only occurs when a change in the stored value is requested. On the other hand,

the traditional MTNCL three-ring register transitions between DATA and NULL continuously as

the microcontroller’s pipeline cycles. Furthermore, the total area for the modified MTNCL

Register File structure is less than the traditional three-ring register structure. Table 4Table 1

gives an area comparison in terms of transistor counts. The modified Register File achieves a 15-

17% area savings depending on the number of bits being stored.

Table 4: Transistor Count Comparison between Modified and 3-Ring Register Files

Width (bits) Traditional Modified Area Savings

4 539 446 17%

8 1033 864 16%

16 2021 1700 16%

32 3997 3372 16%

64 7949 6716 16%

128 15853 13404 15%

256 31661 26780 15%

512 63277 53532 15%

1024 126509 107036 15%

31

 By combining the modified MTNCL bit cells into the MTNCL MSP430 Register File, a

new opportunity for power savings appears. Sleeping the three-ring bit cell causes it to lose all

stored data; however, the modified bit cell retains its data while slept. This allows SS to be used

in the MSP430 Register File, drastically reducing its power consumption. The structure of the

Register File is shown in Figure 13.

Ko CombinationKo

Data_in

Slp_in

ModReg0

Din

Ko Slpi Ki

Dout

.

.

.

KiKo

DoutDin

slp

ModReg15

Din

Ko Slpi Ki

Dout

C/L

slp

Sleep Generation

slp

C/L

slp

KiKo

DoutDin

slp

KiKo

DoutDin

slp

Data_out

Ki

Figure 13: MTNCL MSP430 Register File

 The MSP430 Register File consists of sixteen 16-bit registers, an adder, a constant

generator, and an output multiplexer. It also contains the SS components shown in the diagram.

Each 16-bit register is separately sleepable. In normal operation the Register File will only

activate one or two 16-bit registers allowing the majority of the registers to remain slept

conserving power. Like the ALU, the design requires an always-active path so that the

appropriate select signal can be sent to the output multiplexer.

32

4.5 Memory Interface and Interrupts

The MSP430 includes both Program and Data Memory, as well as address space

dedicated to peripherals and interrupt vectors. The Memory Interface handles the connection to

all of these. It selects the appropriate component based on the address it receives from the

microcontroller. The Memory Interface handles connections to both synchronous and

asynchronous peripherals.

Selection Logic

KiKo

DoutDin

slp
slp

Output Mux

slp

KiKo

DoutDin

slp

Din

Slp_in

Ko KiKo

DoutDin

Ki

slp

Mem_out

Data

Memory

(128B)

Program

Memory

(1KB)

Peripherals

CLK

Figure 14: MTNCL MSP430 Memory Interface

Asynchronous peripherals are written and read using MTNCL handshaking. However, for

synchronous connections like the memories and the synchronous peripherals, a clock is required

to determine when the input data should be latched. The clock can be generated by the Ko signal

from the completion component on the input to the memory interface. The completion

component on the input register detects when the data has arrived by monitoring the dual-rail

signals, Din. Once it detects the DATA wavefront has arrived and its Ki is logic one, it will

transition to RFN, logic zero, creating a clock edge. Like all synchronous designs, the timing

33

must be analyzed to ensure that the clock rate of the Ko signal is not too fast for the memory or

peripheral latches.

 delay(CC) ≥ Tsetup + delay(wire) (9)

In most cases, the propagation delay of the completion component is much longer than

the setup time of the input latches, and the relative delay of the completion component

guarantees the timing will be met. However, this assumes that there is no single rail logic

between Din and the latch in the synchronous component. The delay from the single rail logic

could easily be longer than the completion component delay. This case will be discussed along

with the Timer in the next section.

 For a write operation there is no output from the peripherals or memories. The output

combinational logic detects if a write has been performed, and generates a DATA wavefront to

trigger the output completion component. In the case of a read, the memory or peripheral

generates a DATA/NULL pattern on its outputs to signal the output completion component. The

output completion component ensures that the microcontroller pipeline will wait until the correct

data has arrived from the peripheral or memory before continuing operation. Peripherals have an

additional trigger for communication with the microcontroller. Each peripheral is assigned an

interrupt line and an interrupt vector. When a peripheral’s interrupt line is asserted, the

microcontroller will jump to the instruction located at the interrupt vector.

4.6 Timer

The TimerA peripheral of the openMSP430 is included in the MTNCL MSP430. Despite

a few modifications to ensure delay requirements are met, it remains a synchronous component

and has the same functionality as in the openMSP430. Since the MTNCL MSP430 is

34

asynchronous, TimerA requires an external clock to keep accurate time. The timer’s accumulator

register is clocked by the external clock. Additionally, the timer has another clock domain for its

configuration registers. The Ko from the Memory Interface controls the clocking of the

configuration registers.

Some of TimerA’s configuration registers have single rail logic at their inputs as shown

in Figure 15. The delay from the single rail logic causes a setup time violation for the clock edge

generated by the Ko. As warned in the previous section, the delay from the single rail logic is

greater than the delay from the completion component causing a timing violation. The edge

generated by Memory Interface Ko comes too late for the configuration registers to latch the

correct data.

To meet the setup time, latches are added to the inputs of TimerA, and the Ko clock is

inverted. The latches hold DATA at TimerA’s inputs through the NULL cycle of the Memory

Interface. The inversion of the Ko clock then causes the configuration registers to be clocked at

the end of the Memory Interface’s NULL cycle. The setup time equation becomes:

 2 ⋅ delay(CC)+ delay(NULL) ≥ Tsetup + delay(wire)+ delay(SR _ log ic) (10)

Reading TimerA’s register values can be accomplished through the Memory Interface.

The microcontroller sends a read request to an address in the timer’s memory space, and the

Memory Interface will enable the timer and read the appropriate output data. The output

multiplexer for the timer’s outputs is required to be dual-rail, in order to ensure the proper data

pattern has propagated to the output. Additionally, the timer contains the ability to interrupt the

MTNCL MSP430 once the accumulator reaches a certain value.

35

QB

QD

QB

QDC/L

Comp

Din

Ko

Figure 15: MTNCL MSP430 Timer Configuration Register

4.7 Control Unit

At the heart of the microcontroller is the state machine of the Control Unit. The state

machine coordinates data flow between all of the microcontrollers components. The Control Unit

incorporates SS. In each cycle of the pipeline, the Control Unit selects which components are

needed. Those that are not required remain slept.

The top-level pipeline of the MTNCL MSP430 is shown in Figure 16. It consists of

several parallel pipelines using the SS technique to keep the unused paths slept. The Control Unit

has its own pipeline, which is always active since it must retain the state of the microcontroller.

36

Ko CombinationKo

ALU

Din

Ko Slpi Ki

Dout

Control Logic

slp

Sleep Generation

slp

Register File

Din

Ko Slpi Ki

Dout

Memory Interface

Din

Ko Slpi Ki

Dout

Destination Operand

Din

Ko Slpi Ki

Dout

Source Operand

Din

Ko Slpi Ki

Dout

State Register

Din

Ko Slpi Ki

Dout

Datapath

Slpo

En

Figure 16: MTNCL MSP430 Top-Level Pipeline

5 TESTING

Designing fair comparison data between asynchronous and synchronous microcontrollers

is a non-trivial task. Several factors must be taken into account: architecture of the benchmark

circuit, test vectors, and the energy measurement time window. If care is not taken, any of these

factors has the potential to skew the energy comparison.

37

5.1 Benchmark

The synchronous benchmark circuit is synthesized from the openMSP430 RTL source

code [20]. This design is instruction-for-instruction compatible with TI’s production MSP430,

but allows for customization of included peripherals, operating speed, and process technology.

Without these customizations a fair comparison with the MTNCL MSP430 is infeasible.

However, by customizing the parameters to match those of the MTNCL MSP430, a fair

comparison can be designed.

Table 5: Timer Constraint and Gate Count Comparison

 MTNCL MSP430 Timer openMSP430 Timer

Clock Constraint 154 MHz 154 MHz

Gate Count 1077 gates 906 gates

A peripheral timer is included in the synchronous benchmark to match the timer in the

MTNCL MSP430. The timer in the openMSP430 RTL source code is used in the synchronous

benchmark, and the same timer design is also used in the MTNCL MSP430 with only minor

modifications to handle the asynchronous peripheral interface. The constraints and gate counts

between the two timers are given in Table 5. In general, a peripheral connected to the MTNCL

MSP430 requires minimal modification compared to peripherals in the openMSP430. Thus, the

focus of the comparison is on the core. The timer is added as a demonstration of functionality in

the MTNCL MSP430, and as a benchmark for comparison in the synchronous openMSP430.

In addition to the synthesis constraints of the timer, the constraints of the openMSP430

core are based on the nominal operating speed of the MTNCL MSP430. The MTNCL MSP430

38

is simulated at a nominal temperature of 27°C and Vdd of 1.2V. An average frequency of the

pipeline is taken over a wide range of instructions. Then, the openMSP430 clock is constrained

to the average frequency of the MTNCL MSP430 pipeline. This gives the benchmark design a

similar throughput to the MTNCL MSP430. A fair comparison can be made since the cores are

capable of executing instructions in a similar amount of time. This technique for constraining the

synchronous benchmark circuit according the average throughput of the asynchronous pipeline

was developed in [17].

5.2 Simulation & Results

Energy measurement is performed using the UltraSim circuit simulator inside Cadence

Analog Design Environment. UltraSim is a versatile simulation environment and has

accuracy/speed settings from fast digital simulation down to SPICE circuit solver. The coarse-

grained simulation settings listed in the order of least to most accurate are: Digital Extended,

Digital Fast, Digital Accurate, Mixed Signal, Memory, Analog, and SPICE. As the accuracy

increases so does the run time. Fine-grained accuracy settings can be made by adjusting the

speed option to control the relative tolerance for voltage and current calculations or by using

mixing accuracy modes across instances of the circuit. For timing and energy measurements of

the MTNCL MSP430 and synchronous benchmark, Digital Accurate mode with a speed setting

of 5 was selected. This mode employs a nonlinear current and charge model for MOSFETs and

their diffusion junctions. With these settings the simulation is bounded to within 5% of SPICE

accuracy, while yielding reasonable runtimes for the long simulations required to execute a

sufficient amount of instructions on the MSP430.

39

5.2.1 Active Energy

The energy consumption of a circuit is largely dependent on how it is used. The

application determines which instructions are executed, and the instructions executed determine

which blocks of the circuit are activated. For those blocks that get activated, their frequency of

activation, and the data patterns they process are the key factors in determining the total energy

consumption. When performing a comparison between asynchronous and synchronous circuits, it

is important to average the results across blocks and various input patterns so that an advantage

of one circuit for a particular pattern on a particular block does not weigh too heavily in the

overall energy results. Without a targeted application, the best method of comparison is an

average across all possible patterns. However, that is not feasible for circuits with many inputs

and a random subset of input patterns should be used.

In the case of the MSP430 microcontroller, the blocks that get activated in a given cycle

and the energy consumption are correlated to the type of instruction being executed. The

instruction operand values play a smaller role in the energy consumption of the circuit. The

MTNCL MSP430 is simulated with multiple input patterns across several instructions and

different addressing modes. The energy results are tabulated in Table 6.

The energy data in Table 6 are based on a variety of register-to-register instructions, but

using only a single set of operands for each instruction. Varying the operands can change which

gates get activated, and in turn the energy consumption. Table 7 shows the energy consumption

averaged across six different random operand combinations. There is a 3% difference in the

average energy consumption from the baseline operands.

40

Table 6: MTNCL MSP430 Energy Consumption

Instruction Format Cycles Total Time Avg Power ETop(J)

Add R5, R6 Double 4 2.93E-08 4.48E-03 1.32E-10

AddC R5,R6 Double 4 2.92E-08 4.28E-03 1.26E-10

AND R5, R6 Double 4 2.93E-08 4.28E-03 1.26E-10

BIC R5, R6 Double 4 2.89E-08 4.25E-03 1.23E-10

BIS R5,R6 Double 4 2.89E-08 4.64E-03 1.35E-10

BIT R5,R6 Double 4 2.81E-08 4.36E-03 1.23E-10

CMP R5,R6 Double 4 2.82E-08 4.07E-03 1.15E-10

DADD R5, R6 Double 4 2.89E-08 4.26E-03 1.24E-10

MOV R5,R6 Double 3 2.22E-08 3.65E-03 8.13E-11

SUB R5, R6 Double 4 2.89E-08 4.17E-03 1.20E-10

SUBC R5, R6 Double 4 2.89E-08 4.56E-03 1.32E-10

XOR R5, R6 Double 4 2.93E-08 4.30E-03 1.26E-10

PUSH R5 Single 3 2.51E-08 4.90E-03 1.23E-10

Average 2.83E-08 3.34E-03 9.42E-11

Additionally, the addressing mode of the instruction can have an impact on the energy

consumption of a given operation. Table 8 gives the average energy consumption across random

operands when the addressing mode is set to indexed. There is a 41% increase in average energy

per operation when using indexed mode instructions. This is due to the extra cycle(s) required to

fetch operands from memory.

41

Table 7: Average Energy Consumption Across Random Operands

Instruction Energy

ADD 1.01E-10

ADDC 1.01E-10

AND 9.92E-11

BIC 9.79E-11

BIS 9.89E-11

BIT 9.46E-11

CMP 9.54E-11

DADD 9.98E-11

MOV 7.88E-11

SUB 9.86E-11

SUBC 9.93E-11

Average 9.67E-11

As a reference point the openMSP430 is simulated across the same instruction and input

pattern combinations. From Table 9 and Table 10 it is clear that the openMSP430 uses

significantly less energy per operation than the MTNCL MSP430. To understand why, a deeper

investigation is conducted in the Analysis section of this chapter.

5.2.2 Area and Leakage Power

Both the openMSP430 and MTNCL MSP430 are implemented using IBM 8RF 130nm

process. The instance count, area, and leakage for both designs are given in Table 11. The

42

MTNCL MSP430 contains more instances and has a larger area yet its leakage is more than 2×

less.

Table 8: Average Energy Consumption across Random Operands for Indexed Addressing Mode

Instructions

Instruction Energy

ADD 1.32E-10

ADDC 1.32E-10

AND 1.31E-10

BIC 1.31E-10

BIS 1.31E-10

BIT 1.23E-10

CMP 1.22E-10

DADD 1.30E-10

MOV 7.48E-11

SUB 1.31E-10

SUBC 3.36E-10

Average 1.43E-10

Area and leakage power are important metrics when evaluating the quality of a circuit

design. Typically, they are correlated. As area increases so does leakage power; however, there

are factors that can lead to an increase in area without affecting leakage. These factors include

wiring congestion, layout efficiency, and transistor type. Wiring congestion can cause extra

43

space to be added between standard cells thereby increasing the overall area, but not the

transistor width.

Table 9: openMSP430 Average Energy Consumption across Random Operands

Instruction Energy

ADD 1.76E-11

ADDC 1.60E-11

AND 1.79E-11

BIC 1.78E-11

BIS 1.92E-11

BIT 1.74E-11

CMP 1.80E-11

DADD 1.92E-11

MOV 1.99E-11

SUB 1.71E-11

SUBC 1.78E-11

Average 1.80E-11

Congestion is a function of gate fanout as determined by the design’s logic synthesis.

Layout efficiency is a measure of the density of each standard cell. It quantifies how much of the

cell area is used for wiring and how much is used for transistors. A lower efficiency means less

leakage per unit area in the standard cell. Layout efficiency is determined by the logic function

of the cell, process DRC rules, standard row height, and the layout engineer. Typically, MTNCL

gate libraries have lower layout efficiency compared to synchronous standard cells due to more

44

wiring and smaller transistors. MTNCL logic gate layouts have a PMOS to NMOS area ratio of

approximately 2-to-1 leaving a large unused area on the NMOS side of the gate. The threshold

voltage and carrier type of the transistors can also have a large affect on leakage power without

changing the area. Low-Vt transistors have higher leakage current than High-Vt transistors, and

NMOS transistors leak 3-10× as much as PMOS.

Table 10: openMSP430 Average Energy Consumption across Random Operands for Indexed

Addressing Mode Instructions

Instruction Energy

ADD 1.76E-11

ADDC 1.60E-11

AND 1.79E-11

BIC 1.77E-11

BIS 1.94E-11

BIT 1.76E-11

CMP 1.84E-11

DADD 1.91E-11

MOV 2.03E-11

SUB 1.74E-11

SUBC 1.79E-11

Average 1.81E-11

45

When analyzing a circuit prior to place and route, an interesting metric to consider is the

sum of the width and length of each transistor. For each transistor in the design the width and

length of the poly over active is summed.

 ������ = ∑	
��ℎ(��) , ������� = ∑ �����ℎ(��) (11)

In the case of the MTNCL MSP430 there are four types of transistors to consider: Low-

Vt and Standard-Vt variations of PFET and NFET. The openMSP430 uses only Standard-Vt

transistors and thus has just two transistor types in the design. The width and length for each type

of transistor are given in Figure 17. While the MTNCL MSP430 uses Low-Vt transistors, they

make up a small proportion of the overall design and don’t have a large effect on overall leakage.

Table 11: Area and Leakage Power Comparison

 MTNCL MSP430 openMSP430

Standard Cell Instances 11797 Gates 9546 NAND2 Equivalents

P&R Area 0.7mm2 0.2mm2

Leakage Power 1.06E-05W 2.18E-05W

46

Figure 17: Transistor Size Comparison between MTNCL MSP430 and openMSP430 (units in

meters)

The leakage of a transistor is proportional to W/L as shown in Equation X. From Figure

17 it is clear that the total width of the transistors in the MTNCL MSP430 is smaller than the

total width of the transistors in the openMSP430, while the total length of the MTNCL MSP430

is larger than that of the openMSP430. The MTNCL MSP430 has an average W/L ratio of 3.66

and the openMSP430 has an average W/L ratio of 8.59. Therefore, despite having a larger area

and more standard cell instances, the leakage power of the MTNCL MSP430 is lower than that

of the openMSP430.

 I��� = 100 ∙
�

∙ e"#$% &'(⁄ (12)

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

Transistor Sizes

MTNCL MSP430 openMSP430

47

5.3 Analysis

Given that previous MTNCL designs in [15] and [17] showed a reduction in dynamic

power over synchronous comparison circuits, it is unexpected for the dynamic power

consumption of the MTNCL MSP430 to be higher than the openMSP430. A more detailed

analysis of the MTNCL power consumption is required. The following section examines the

MTNCL MSP430 power by functional block to determine the cause for the high dynamic power

consumption.

Figure 18 lists the average energy per operation of different functional blocks across the

two cores. Since the MTNCL MSP430 and openMSP430 have different partitioning schemes, a

finer-grained breakdown of the Control, Execution Unit, and Instruction Decoder is not possible.

The “Core” block contains all other blocks except the Register File.

The functional block breakdown shows only two functional blocks where MTNCL

MSP430 has lower energy per operation than the openMSP430. These are the ALU and the

Timer. The energy per operation improvement in the Timer is not very interesting since it is a

clone of the openMSP430’s timer with just a handful of extra gates. The reason it has lower

energy consumption is due to shorter runtime and less toggling on the clock signal on its input.

Thus, the ALU is chosen for further analysis and is compared to the MTNCL MSP430 Core to

determine which characteristics lead to lower energy consumption compared to synchronous

blocks with the same function.

48

Figure 18: Energy per Operation across MSP430 Functional Blocks

MTNCL has the advantage of not requiring a clock tree to synchronize various logic

blocks. It does, however, require sleep signal propagation and handshaking circuitry. These can

be grouped into three categories: sleep propagation, completion detection, and registration.

Measuring the energy consumed by this overhead circuitry as a percentage of total circuit energy

can reveal inefficiencies in MTNCL designs. Figure 19 gives a comparison of the percentage of

energy devoted to completion, registration, and sleep propagation for the Core and ALU. Clearly,

the ALU’s energy advantage over synchronous is not due to a smaller overhead as the Core

devotes a larger percentage of energy to combinational logic and less to MTNCL overhead than

the ALU. Additionally, the MTNCL MSP430 ALU shows an energy improvement over the

synchronous openMSP430 ALU while the MTNCL Core does not.

0 2E-11 4E-11 6E-11 8E-11 1E-10 1.2E-10

CORE

TIMER

Control + Execution Unit + ID

CLOCK Module

MEMORY

ALU

Register File

Average Energy/Operation

MTNCL MSP430 openMSP430

49

Figure 19: Energy Consumption of MTNCL MSP430 Handshaking, Sleep Propagation, and

Combinational Logic Circuitry

Aside from MTNCL overhead, another potential cause of the MTNCL MSP430 Core’s

extra energy consumption is its SS logic. SS has not been used in MTNCL up to this point and

should be ruled out as a potential reason for the increase in energy per operation compared to the

synchronous reference. SS is facilitated by always-on gates which control the sleeping of the

individual pipelines. The overhead of these always-on gates is measured in the core and found to

make up only 16% of the total energy. Since the extra power consumption of the core is several

times larger compared to the openMSP430, the extra 16% of SS can be ruled out as the cause of

the MTNCL MSP430 energy inefficiency.

28%

10%

15%

47%

Core

Sleep Propagation Energy

Completion Component

Energy

Register Energy

Combinational Logic

22%

10%

26%

42%

ALU

Sleep Propagation Energy

Completion Component

Energy

Register Energy

Combinational Logic

50

Finally, analyzing the MTNCL Core and ALU in terms of energy density and total

transistor area reveals the cause of the high energy consumption of the MTNCL MSP430 Core to

be inefficient logic synthesis. This is revealed by comparing the area of the ALUs and Cores.

The MTNCL MSP430 Core is 54% larger than the openMSP430 Core, while the MTNCL

MSP430 ALU is 32% smaller than the openMSP430 ALU. In general, comparing MTNCL and

synchronous blocks that perform the same function, it is expected that the transistor area ratio

would be similar. Under that expectation the MTNCL MSP430 Core should be approximately

30% smaller than the openMSP430 Core. This can be seen in [17] where a MTNCL AES core is

compared to a synchronous AES core. Both designs perform the same function, and the transistor

area of the MTNCL AES is 24% smaller than the transistor area of the synchronous AES.

Since the MTNCL completion, registration, and sleep propagation logic is not the cause

of the Core’s extra energy consumption, it must be that the additional overhead is spread out

across the whole design. The best explanation for this is an inefficient RTL-to-gate logic

synthesis, which is due to manual design of the control logic for the MTNCL MSP430 Core. The

openMSP430 synthesis on the other hand is automated. The control logic includes many

variables and logic minimization with more than four variables is impractical to do by hand.

Thus, control logic in the MTNCL MSP430 is added incrementally rather than optimized as one

large piece. This results in redundant gates that could be optimized out with a higher-level

automated approach.

51

Figure 20: Scaled Comparison of Transistor Area between MTNCL MSP430 ALU and Core

Compared to openMSP430 ALU and Core

This theory explains how a simpler block like the MTNCL ALU which contains minimal

control logic can be lower power than the synchronous ALU while the more complex blocks like

the MTNCL Control and Core are much higher power. The MTNCL logic synthesis for the ALU

is more easily optimized by hand since it is made up of mostly well-known arithmetic blocks. As

blocks include more complex control circuitry the number of redundant gates from inefficient

synthesis increase yielding worse energy per operation.

A comparison with the work in [17] confirms this. The transistor width of the MTNCL

AES core is 24% smaller than the synchronous AES benchmark. It should also be noted that the

power consumption follows the total transistor width. The MTNCL AES is lower power than the

synchronous AES. The AES core is largely arithmetic logic and has much less control logic than

the MTNCL MSP430. Thus, there is not as much opportunity for an inefficient manual synthesis

to reduce the energy efficiency of the AES.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Core ALU

Transistor Area

MTNCL MSP430 openMSP430

52

Table 12: Transistor Width Comparison between Synchronous and MTNCL MSP430

Microcontrollers and AES Encryption/Decryption Cores

 Synchronous Asynchronous

MSP430 2.6E-02m 3.22E-02m

AES 4.14E-02m 3.33E-02m

Another example to confirm the theory is in the comparison of a MTNCL floating point

coprocessor [15] with a synchronous benchmark. The MTNCL design has 16% fewer transistors

and consumes significantly less energy per operation. Again, the design is mainly arithmetic

logic with minimal control circuitry.

6 CONCLUSION

This dissertation expands on previous work in asynchronous logic circuit design. It

focuses on the promising MTNCL asynchronous architecture and develops the most complex

MTNCL design to date. The MTNCL MSP430 is a fully functioning low-power microcontroller

based on the industry standard design from TI. The MTNCL MSP430 incorporates novel

techniques to reduce power consumption such as Selective Sleeping and a low-area and low-

power MTNCL delay insensitive register file.

The MTNCL MSP430 is benchmarked against an open source version of the MSP430

called openMSP430. Both designs are simulated to measure energy consumption. The MTNCL

MSP430, while incorporating low-Vt transistors and having larger area, still manages lower

leakage power than the openMSP430 due to a better W/L ratio.

53

Dynamic power is measured across a variety of operations. While the MTNCL MSP430

has some functional blocks that consume less energy than those of the openMSP430, overall the

MTNCL MSP430 has a higher energy per operation. A breakdown of the energy data reveals the

cause to be an inefficient synthesis of the control logic. This result is confirmed by comparing

across other MTNCL designs, which up to this point are arithmetic based datapaths. This

important finding highlights the need for better automated MTNCL synthesis techniques. For

MTNCL to compete with synchronous architectures in larger designs such as a full

microcontroller, an improved automated design flow including better synthesis techniques is

required.

7 REFERENCES

[1] K. Yeo and K. Roy, Low-Power VLSI Subsystems, McGraw-Hill

Professional, 2004.

[2] P. Palangpour, "CAD Tools for Synthesis of Sleep Convention Logic,"

University of Arkansas, Fayetteville, 2013.

[3] S. Kwak, H.-W. Lee, Y. Zafar, M.-H. Oh and D. Har, "Design of

Asynchronous MSP430 Microprocessor Using BALSA Back-End

Retargeting," in Programmable Logic, Sao Carlos, 2009.

[4] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32, no.

6, pp. 720-738, June 1989.

[5] A. J. Martin and M. Nystrom, "Asynchronous Techniques for System-on-

Chip Design," Proceedings of the IEEE, vol. 94, no. 6, pp. 1089-1120, 2006.

[6] D. H. Linder, "Phased Logic: A Design Methodology for Delay-Insensitive,

Synchronous Circuitry," Mississippi State University, Starkville, 1995.

54

[7] C. L. Seitz, "System Timing," in Introduction to VLSI Systems, Addison-

Wesley, 1980, pp. 218-262.

[8] T. S. Anantharaman, A Delay Insensitive Regular Expression Recognizer,

1986.

[9] N. P. Singh, "A Design Methodology for Self-Timed Systems," MIT, 1981.

[10] I. David, R. Ginosar and M. Yoeli, "An Efficient Implementation of Boolean

Functions as Self-Timed Circuits," IEEE Transactions on Computers, vol.

41, no. 1, pp. 2-10, 1992.

[11] K. M. Fant and S. A. Brandt, "Null Convention Logic: A Complete and

Consisten Logic for Asynchronous Digital Circuit Synthesis," International

Conference on Application Specific Systems, Architectures, and Processors,

pp. 261-273, 1996.

[12] J. Kao and A. Chandrakasan, "Dual-Threshold Voltage Techniques for Low-

Power Digital Circuits," IEEE Journal of Solid-State Circuits, vol. 35, no. 7,

pp. 1009-1018, 2000.

[13] J. Di and S. C. Smith, "Ultra-Low Power Multi-Threshold Asynchronous

Circuit Design". United States Patent 7,977,972 B2, July 2011.

[14] L. Zhou, "Ultra-Low Power and Radiation Hardened Asynchronous Circuit

Design," University of Arkansas, Fayetteville, 2012.

[15] L. Zhou, R. Parameswaran, F. Parsan, S. C. Smitch and J. Di, "Multi-

Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power

Asynchronous Circuit Design Methodology," Journal of Low Power

Electronics, pp. 81-100, 2015.

[16] L. Zhou, S. C. Smith and J. Di, "Bit-Wise MTNCL: An Ultra-Low Power

Bit-Wise Pipelined Asynchronous Circuit Design Methodology," IEEE

Midwest Symposium on Circuits and Systems, pp. 217-220, 2010.

[17] M. Hinds, B. Sparkman, J. Di and S. C. Smith, "An Asynchronous Advanced

Encryption Standard Core Design for Energy Efficiency," Journal of Low

Power Electronics, vol. 9, no. 2, pp. 175-188, 2013.

[18] B. Hollosi, "Design and Analysis of an Adaptive Asynchronous System

Architecture for Energy Efficiency," University of Arkansas, Fayetteville,

2012.

55

[19] L. Men and J. Di, "An Asynchronous Finite Impulse Response Filter Design

for Digital Signal Processing Circuit," International Midwest Symposium on

Circuits and Systems, pp. 25-28, 2014.

[20] O. Girard, "openMSP430 Documentation," 2012. [Online].

[21] Designing Asynchronous Circuits using NULL Convention Logic (NCL),

Morgan & Claypool Publishers, 2009.

[22] L. Zhou, R. Parameswaran, R. Thian, S. C. Smith and J. Di, "MTNCL: An

Ultra-Low Power Asynchronous Circuit Design Methodology," 2010.

	Design and Analysis of an Asynchronous Microcontroller
	Citation

	Microsoft Word - 447531_pdfconv_478937_FAA0BC44-45EF-11E6-80C3-DC7159571AF4.docx

