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ABSTRACT  

This dissertation presents the design of the most complex MTNCL circuit to date. A fully 

functional MTNCL MSP430 microcontroller is designed and benchmarked against an open 

source synchronous MSP430. The designs are compared in terms of area, active energy, and 

leakage energy. Techniques to reduce MTNCL pipeline activity and improve MTNCL register 

file area and power consumption are introduced. The results show the MTNCL design to have 

superior leakage power characteristics. The area and active energy comparisons highlight the 

need for better MTNCL logic synthesis techniques. 
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1 INTRODUCTION 

1.1 Objective 

The objective of this Ph.D. dissertation is to develop an asynchronous microcontroller 

using Multi-Threshold NULL Convention Logic (MTCNL) that is instruction-for-instruction 

compatible with TI’s MSP430 microcontroller, and to give an accurate comparison with a 

synchronous microcontroller with the same instruction set. Key metrics for comparison are speed, 

energy consumption, and area. 

1.2 Design Challenges 

In the era of mobile and ubiquitous computing power is a key design constraint. 

Techniques to reduce energy consumption while meeting area and performance requirements are 

sought at all levels of the design cycle from architecture to processing. These can be quite 

challenging given the complexity of modern IC designs. As processes shrink and the number of 

transistors grows, the variation across a design increases. This means that designers must build 

with ever-greater margins to ensure that their chips meet timing across PVT corners. The 

performance and power benefits of process scaling are reduced due to the overdesign required in 

margining.  

Another trend with process scaling is that the ratio of leakage to dynamic power 

consumption is increasing exponentially. In the past, static power consumption could be ignored 

as it was overshadowed by dynamic power, but as supply and threshold voltages scale down 

along with transistor lengths static power can exceed 50% of the total power budget [1]. Clearly, 

standby current can no longer be ignored, and special techniques such as multi-threshold CMOS 

(MTCMOS) power gating are required to keep leakage power under control.  
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Traditional synchronous ICs require large, variation-intolerant, and power-hungry clock 

distribution networks to carry the clock signal across the design. Designers dedicate large 

amounts of time and circuit resources to distributing a proper clock signal. In order to decrease 

power consumption new design methods should be explored. 

Synchronous design methodologies continue to dominate the VLSI industry, but 

asynchronous design is gaining traction due to the aforementioned drawbacks of clock 

distribution and margining. Currently, there is a lack of commercial CAD tool support for 

asynchronous design flows. However, there have been several academic projects to develop an 

RTL-to-GDS flow for asynchronous design [2] [3]. Industry still sees the initial cost of 

development too high compared to the advantages of asynchronous methodologies. Given the 

trends above, the advantages of asynchronous are beginning to outweigh the initial overhead of 

developing a commercial asynchronous flow. More companies will adopt asynchronous designs 

into their ICs according to the International Technology Roadmap for Semiconductors (ITRS). 

In order to encourage industry adoption of asynchronous methodologies it must be proven 

that asynchronous circuits show an advantage compared to their synchronous counterparts. The 

power, area, scalability, and design effort of asynchronous circuits should be more favorable 

compared to synchronous if industry is going to move toward asynchronous design. MTNCL is a 

relatively new style of clockless asynchronous design that has shown power reduction potential 

in small designs when compared to synchronous benchmarks. Most of the current MTNCL 

designs are small compared to real-world ICs. Larger and more complex standalone MTNCL 

designs are needed in order to prove or disprove this particular asynchronous architecture’s 

advantages over the synchronous design methodology. This dissertation presents a full MTNCL 

MSP430 microcontroller for comparison with a synchronous MSP430 microcontroller.  
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1.3 Organization 

This dissertation is organized into 6 chapters. Chapter 2 gives background on the 

development of MTNCL technology and frames it in relation to other asynchronous techniques. 

It also includes an introduction to the MSP430 microcontroller and details on why it was selected 

as the design target. Chapter 3 details the design flow and tools used. Chapter 4 describes the 

MTNCL microcontroller’s structure and design. The synchronous benchmark circuit, testing 

methodology, and results are discussed in chapter 5. Finally, chapter 6 concludes the dissertation.  

2 BACKGROUND 

2.1 Asynchronous Logic 

In synchronous logic a clock signal is used to synchronize data flow through a pipeline. 

Pipeline stage boundaries are typically constructed using level-sensitive latches or edge-triggered 

flip-flops known as sequential circuit elements. Designers must ensure that the period – rising 

(falling) edge to rising (falling) edge – of the clock signal is sufficiently long to account for the 

propagation of data through the longest path delay any pipeline stage. Additionally, sequential 

elements require extra margin for data setup and hold to ensure that no metastability problems 

occur. 

In contrast, asynchronous logic uses handshaking to control the flow of data through a 

pipeline. By eliminating the clock tree, energy savings are possible if the handshaking overhead 

is not too high. There are two main types of asynchronous logic: Delay-Insensitive (DI) and 

Bounded-Delay (BD).  
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BD, like synchronous logic, assumes that the delay through a stage can be accurately 

determined during the design phase. This is usually done through static timing analysis (STA). 

BD architecture uses a single-rail encoding scheme and adds two control wires for handshaking 

between stages. The delay of the datapath must be matched in the control path, and delay 

elements are used to ensure this. Substantial timing analysis is required, and the maximum 

performance of the pipeline is a function of the worst-case stage delay. The BD designer must 

take care to prevent glitches and glitch power consumption in the design. Micropipelines are the 

most common example of BD logic [4].  

DI circuits avoid many of the problems associated with BD. They are correct-by-

construction, requiring little or no timing analysis. They operate using a handshaking protocol to 

control the flow of data, and can therefore achieve average case performance. Additionally, DI 

architectures often use multi-rail encoding, adding additional states to the data for completion 

detection. It should be noted that the most useful DI architectures are actually Quasi Delay-

Insensitive (QDI). They make the timing assumption that when a wire splits both of its endpoints 

receive the data signal within negligible delay of each other, where negligible generally means 

less than a gate delay. This assumption is known as the isochronic forks assumption and is 

applied within basic components such as a full adder. The isochronic forks assumption is 

necessary to make the DI architecture Turing complete.  

There are several types of QDI architectures. Pre-Charge Half Buffer (PCHB), probably 

the most well-known, uses dynamic logic, and is synthesized at the transistor level [5]. In PCHB 

registration and logic are integrated into each gate. Phased-Logic is an automated method to 

transform a synchronous design to asynchronous; however, it cannot match the performance or 

power dissipation of a customized asynchronous design [6]. Other DI architectures include 
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Seitz’s Method, Anantharaman’s Approach, DIMS, Singh’s Method, and David’s Method. All of 

these combine Muller C-Elements with Boolean gates to achieve DI [7] [8] [9] [10]. 

2.2 NULL Convention Logic 

NULL Convention Logic (NCL), a QDI asynchronous architecture, is designed at the 

gate level; however, it requires a custom gate library [11]. Standard EDA flows can be modified 

to work with NCL designs. NCL logic values include three states: DATA1, DATA0, and NULL. 

To represent three logic values NCL uses dual-rail encoding where each bit requires two wires. 

The two DATA states are analogous to Boolean logic values of 0 and 1. The third state, NULL, 

is used for completion detection and acts as a boundary between wavefronts of data. In this way 

NCL includes values for data processing and data validation. It is said to be symbolically 

complete.  

Table 1: NCL Dual-Rail Encoding 

 NULL DATA 0 DATA 1 INVALID 

Wire 0 0 1 0 1 

Wire 1 0 0 1 1 
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Figure 1: NCL Gate Structure 

NCL logic is built from 27 fundamental gates. Each gate is broken into four functional 

blocks: Reset, Hold0, Set, and Hold1. Hysteresis is included in every NCL gate. The Reset block 

is responsible for detecting the NULL wavefront – all inputs deasserted – and then deasserting 

the gate’s output. The Hold1 block is the logical complement of Reset and keeps the output 

asserted until the NULL wavefront is incident on all inputs. Set and Hold0 are also complements 

of each other. They ensure that the assertion of the output only happens once the gate’s logical 

function is satisfied. Figure 1 shows the structure of the typical NCL gate. It should be noted that 

for some gate functions transistors are shared between blocks in order to reduce area.  

NCL gates are asserted when their threshold number of inputs are asserted, and 

deasserted when all their inputs are deasserted. They are known as threshold gates and the gate 

names contain the “TH” prefix. There are weighted and unweighted varieties of gates. 
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Unweighted gates follow the naming convention THmn such that 1 < m < n, where n is the 

number of inputs to the gate and m is the threshold number of asserted inputs required to assert 

the gate’s output. For example, a TH34 gate will be asserted when at least 3 of its 4 inputs are 

asserted. Weighted gates are those where a certain input can carry greater weight in asserting the 

output. The naming convention is THmnWx1x2…xL where xL determines the weight of the Lth 

input. For example, a TH34w22 applies a weight of 2 to the first and second inputs. In addition 

to the weighted and unweighted threshold gates there are a few other gates required for 

completion detection, control flow, and data storage. The complete list of NCL gates along with 

their functions is given in Table 2.  

Table 2: 27 Fundamental Threshold Gates 

Threshold Gate Boolean Function 

TH12 A + B 

TH22 AB 

TH13 A + B + C 

TH23 AB + AC + BC 

TH33 ABC 

TH23w2 A + BC 

TH33w2 AB + AC 

TH14 A + B + C + D 

TH24 AB + AC + AD + BC + BD + CD 

TH34 ABC + ABD + ACD + BCD 

TH44 ABCD 
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Table 2: 27 Fundamental Threshold Gates (continued) 

Threshold Gate Boolean Function 

TH24w2 A + BC + BD + CD 

TH34w2 AB + AC + AD + BCD 

TH44w2 ABC + ABD + ACD 

TH34w3 A + BCD 

TH44w3 AB + AC + AD 

TH24w22 A + B + CD 

TH34w22 AB + AC + AD + BC + BD 

TH44w22 AB + ACD + BCD 

TH54w22 ABC + ABD 

TH34w32 A + BC + BD 

TH54w32 AB + ACD 

TH44w322 AB + AC + AD + BC 

TH54w322 AB + AC + BCD 

THxor0 AB + CD 

THand0 AB + BC + AD 

TH24comp AC + BC + AD + BD 
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Figure 2: NCL Datapath 

NCL’s delay insensitivity springs from its handshaking protocol. The datapath of an NCL 

circuit is inherently pipelined. At the boundary of each pipeline stage is a register and a 

completion detection circuit that determines when DATA or NULL should be allowed through to 

the next stage. NCL circuits process data in waves, known as DATA wavefronts, where two 

adjacent DATA wavefronts are separated by a NULL wavefront. The NULL wavefront acts as a 

boundary to prevent DATA wavefronts from colliding and overwriting each other. An NCL 

register stores the previous wavefront until another complete wavefront arrives and is detected 

by the completion detection circuitry. The completion detection circuitry is also responsible for 

handshaking with the neighboring stages. For example, once the completion detection circuit 

determines that 1) the complete DATA wavefront has reached the register and 2) that the next 

stage is requesting DATA (RFD), it will signal the register to allow the DATA wavefront to pass 

through the register. The register latches the DATA value so that the next stage’s combinational 

logic can process it. Once the aforementioned conditions are satisfied, the completion detection 

circuit issues a request for NULL (RFN) for its stage. 
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2.3 MTCMOS Power-Gating 

In order to reduce the leakage power consumed in a CMOS circuit, transistors with 

various threshold voltages (Vt) can be incorporated to maintain performance while reducing 

leakage power consumption. High-Vt transistors, those that are less leaky but slower, are used to 

gate current to inactive portions of the circuit as shown in Figure 3. When the circuit is active, 

these transistors are enabled; but when the circuit becomes inactive as determined by sleep 

control logic, the transistors are disabled. The high-Vt transistors cut off the leakage path from 

power to ground. Low-Vt transistors are fast but leaky. They are used along the critical path due 

to their superior switching speed. Incorporating transistors with multiple Vt’s into a circuit in this 

manner is known as Multi-Threshold CMOS (MTCMOS) power gating.  

MTCMOS power gating, while having the ability to significantly reduce leakage, suffers 

from three major drawbacks [12]: 

1. Sizing the power-gating transistors is a difficult tradeoff. If the transistors are too 

small, then the circuit’s performance will be reduced due to a lack of current flow 

to the active logic. If the transistors are too large, then valuable area is wasted.  

2. Data stored in flip-flops is lost when the circuit is gated. Special memory cells are 

required to retain data during sleep mode.  

3. Generating sleep control signals requires extra logic, which adds area and power 

overhead. In addition, careful timing analysis must be performed to ensure the 

MTCMOS circuit blocks are slept/woken at the correct times. 
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Figure 3: MTCMOS Power Gating 

2.4 Multi-Threshold NULL Convention Logic (MTNCL) 

2.4.1 Overview 

One of the most promising low power QDI architectures, MTNCL, features a 

combination of NCL and MTCMOS power gating [13]. Like NCL it is dual-rail, asynchronous, 

QDI, and operates using threshold gates. MTNCL incorporates MTCMOS power gating into 

each of the threshold gates. By doing so, it is actually able to shrink the size of the gates. Only 

two transistors connected to sleep are needed to replace the Reset and Hold1 blocks of the NCL 

gate. Moreover, hysteresis is only required in a small subset of MTNCL logic gates, thereby 

reducing area and simplifying gate design compared to NCL. Figure 4 gives a diagram of the 

MTNCL threshold gate structure with high-Vt transistors circled.  
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Figure 4: MTNCL Gate Structure 

The MTNCL operating protocol is similar to NCL, but with a few modifications. The 

sleep signal connects to each MTNCL gate, and when asserted causes the output to fall to 0, 

while High-Vt transistors cut off the leakage path to ground. This is used to facilitate 

DATA/NULL wavefronts. When a NULL wavefront is needed from a stage, the sleep signal can 

be asserted thereby driving all the gates to 0 and presenting a valid NULL pattern to the register. 

This sleep-to-NULL behavior compromises the QDI of the architecture. A partial NULL 

waveform can be passed between stages, such that when the next DATA pattern arrives it gets 

mixed with DATA bits left over from the previous stage thereby causing invalid DATA to 

propagate through the circuit [14]. Fortunately, a technique called Fixed Early Completion Input 

Incomplete (FECII) can be used to ensure that all bits at the stage output are NULL before the 

next DATA wave is allowed to pass. FECII eliminates the possibility of passing a partial NULL 

and ensures QDI for MTNCL.  
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The MTNCL pipeline is shown in Figure 5. In addition to the combinational logic, both 

the registers and completion components can be slept when not in use [15]. This leaves very few 

non-power-gated components, and therefore has low leakage power. 

 

Figure 5: MTNCL Datapath 

2.4.2 Previous Work 

Although MTNCL is a recent invention, there have been a handful of circuits 

implemented using the technology. In [16] the MTNCL architecture is enhanced through several 

variations on the gate design, sleeping, and completion detection. A 4×4 array multiplier is 

implemented in several MTNCL incarnations. The various multipliers are compared amongst 

themselves and with an NCL implementation of the multiplier.  

[15], an expansion of the work in [16], develops several enhancements to the MTNCL 

architecture. They implement a floating-point coprocessor in NCL, MTNCL, and synchronous 

MTCMOS architectures. Several variations of the MTNCL coprocessor implementation are 

tested. The FECII MTNCL architecture with completion and registration slept, called 

“SMTNCLwith SECRII w/o nsleep” in the paper, was found to be superior. It was compared to 

NCL, other MTNCL variations, and a synchronous implementation in terms of area, active 
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energy, and leakage power. In subsequent work, this MTNCL variation is simply referred to as 

MTNCL since it is the most efficient variation.  

In [17], a 128-bit Advanced Encryption Standard (AES) core is developed using the 

MTNCL style developed in [15]. The AES design is also implemented using a synchronous 

methodology and compared to the MTNCL AES in terms of area, speed, robustness, and energy 

efficiency. The MTNCL design is 60% more energy efficient during operation and uses 6× less 

leakage current compared to the synchronous AES. Furthermore, the MTNCL AES is able to run 

encryption from a nominal supply of 1.2V down to 0.3V, while the synchronous AES can only 

operate down to 0.5V. The MTNCL design’s throughput scales naturally as supply voltage 

decreases, but the synchronous AES requires the clock frequency to be tuned for each supply 

voltage operating point. In terms of area, the MTNCL AES has smaller total transistor width than 

the synchronous MTNCL.  

In [18] MTNCL’s resilience to changes in supply voltage is exploited to implement a 

Dynamic Voltage Scaling (DVS) system. The system uses multiple MTNCL array multiplier 

cores coupled with parallelism components and a voltage regulator. It is able to dynamically 

scale supply voltage of parallel cores based on the input data rate. Since MTNCL is 

asynchronous it runs at its natural frequency given the supply voltage. Thus, the timing analysis 

of such a system is substantially simplified compared to a synchronous design.  

[19] presents an MTNCL Finite Impulse Response (FIR) Filter. The relationship between 

pipeline granularity, latency, and power is examined across four different pipeline granularities.  

While the work above implies MTNCL has potential across a wide variety of applications, 

it must be demonstrated that MTNCL can offer benefits over state-of-the-art synchronous 



15 

designs in order for it to be widely adopted in industry. Only two of the above designs, the AES 

Core and Floating Point Coprocessor, are compared to a synchronous implementation. Both of 

these are useful components, but neither represents a standalone design. Also, they are both 

datapath-dominated with small amounts of control logic. Larger more complicated systems need 

to be designed in order to prove MTNCL as a viable alternative to synchronous methodologies. It 

needs to be demonstrated that MTNCL can be beneficial in a larger design with less datapath and 

more control logic focus.  

2.5 MSP430 

The MSP430 is a RISC microcontroller developed by Texas Instruments in the 1990’s. It 

has gone through several iterations and established itself as a leading microcontroller for power 

constrained embedded designs. It comes in several varieties with different peripherals and 

amounts of RAM. At its core is a RISC pipeline with 27 instructions and 24 emulated 

instructions. It incorporates multiple clocks in order to facilitate various low-power modes. 

Additionally, it has an extensive vectored interrupt capability and supports up to 14 peripherals. 

In the Internet-of-Things era, the MSP430 is a very important design. It is well suited for low-

power data processing and decision-making tasks ubiquitous across connected devices. 

An open source version of the MSP430 (openMSP430) was developed in [20]. It 

implements the entire MSP430 instruction set and is instruction for instruction compatible with 

TI’s microcontroller. In [3] the results from an asynchronous implementation of the MSP430 

using the balsa asynchronous design environment are presented. They explore three different 

implementations of the MSP430: bundled data, dual-rail, and 1-of-4 encoding. However, their 

design stops at the gate level, and no physical design is explored. The design uses Boolean gates, 

which add a large power and area overhead to QDI designs.  
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The MSP430 is ideal for implementation in MTNCL. With its goal of being a low-power, 

low-cost microcontroller the MSP430 gives the opportunity to demonstrate MTNCL’s energy-

efficiency against an industry standard for low-power computing. The MSP430 is more complex 

than any MTNCL design to date, and encompasses a complete system capable of functioning as 

a standalone chip. The MSP430, being a microcontroller, is a control-dominated rather than 

datapath-dominated architecture; therefore, it is a good test of MTNCL’s merits for other 

control-dominated designs. Additionally, the synchronous openMSP430 can be implemented in 

the same technology and serve as a benchmark for comparing the MTNCL microcontroller to a 

well-proven synchronous design. 

3 DESIGN FLOW 

The MTNCL design flow is immature compared to synchronous methods used in 

industry. Logic design and buffering are particularly challenging, as no standardized methods 

exist for the MTNCL design. For each new technology MTNCL standard cell libraries must be 

gates as standard cells designed and characterized since standard Process Design Kits (PDK) do 

not include MTNCL. 

3.1 Logic Design 
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Figure 6: MTNCL Design Flow 

At the time of this design, synthesis tools for MTNCL are immature. They accept 

synchronous RTL HDL as input, perform synthesis to generate a single-rail synchronous netlist, 
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then convert the netlist to dual-rail, map the combinational logic to MTNCL gates, and add 

MTNCL registration and completion components [2]. This produces an unoptimized MTNCL 

design. Since the starting point is a synchronous design, the high-level blocks are designed with 

synchronous instead of MTNCL architecture in mind. To build an optimized MTNCL design, the 

high-level architecture must be built with MTNCL methodology in mind. In the case of the 

MTNCL MSP430, the automated synthesis technique is suboptimal in the high-level control, 

Register File, and Timer. 

This MTNCL MSP430 is designed at the structural level using VHDL. Behavioral 

models for the MTNCL gates act as primitives and are used to construct larger blocks. 

Additionally, several synchronous logic gates are included in the library. These are used in the 

Register File and various control components. Mentor Modelsim is used for functional 

simulation. 

3.2 Buffering 

Although MTNCL requires minimal timing analysis, it is beneficial to set a max 

transition or max capacitance for each gate. This avoids long delays due to wire or fanout that 

can violate the relative timing assumptions of MTNCL [2]. It also helps to reduce short circuit 

power consumption and pipeline bottlenecks. The max capacitance/transition is determined when 

the MTNCL threshold gate library is characterized. It is based on the transistor size and drive 

strength of the gate. Commercial buffering tools query the Liberty timing file for the max 

capacitance/transition values. Then, they size, clone, and insert buffers such that all gates meet 

their capacitance and transition requirements in the Liberty file. The max capacitance/transition 

rules along with max fanout fall under the category of design rules (DRV). DRVs are checked in 

synchronous designs both during synthesis and physical implementation, and this flow is easily 
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adapted to MTNCL designs once the threshold gates have been characterized. In synchronous 

designs the buffering tool must ensure that various constraints on path delays are met. For 

example, the longest path delay through a stage must be less than the clock period minus the 

setup time of the capture flop. These timing constraints are critical to the synchronous circuit’s 

operation and, therefore, supersede DRV requirements. However, MTNCL, being QDI, has no 

such timing requirement, and the cost function of the buffering tool is changed to only respect 

DRVs.  

Cadence RTL Compiler (RC) is used for buffering the MTNCL MSP430. RC is given the 

structural VHDL netlist along with Liberty files for each standard cell. Then, RC’s cost function 

is changed to only respect DRVs. The input driving cells and output load cells are defined using 

SDC constraints. RC produces a buffered and sized netlist that is appropriate for schematic 

capture and transistor-level simulation. The same buffering and sizing flow can be used in 

Cadence Encounter during physical implementation where real wireloads are taken into account. 

4 ARCHITECTURE 

Like the openMSP430, the MTNCL MSP430 is instruction-for-instruction compatible 

with TI’s MSP430 microcontroller. The functional division of the MTNCL MSP430 is similar to 

the openMSP430 as shown in Figure 7 and Figure 8. The following chapter details the design 

and design considerations of the MTNCL MSP430 architecture, while contrasting it with that of 

the openMSP430.  
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Figure 7: openMSP430 Functional Block Diagram 

4.1 Datapath 

Determining the number of pipeline stages in a synchronous design is a balance between 

energy efficiency, throughput, and data dependencies. The data dependencies are determined by 

the instruction set of the processor, which in this case is fixed for both synchronous and MTNCL 

designs. The MSP430 with its goal of being a low-power and low cost microcontroller uses a 

RISC instruction set with simple functional blocks. Similar to a basic MIPS architecture, it does 

not use high-speed, high-area overhead techniques such as out-of-order execution, hierarchical 

caching, or multiple execution units. In fact, the openMSP430 consists of only a single pipeline 

stage. This makes the microcontroller extremely compact and energy efficient at the expense of 

the throughput benefits of extra pipeline stages. 
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Figure 8: MTNCL MSP430 Functional Block Diagram 

Pipelining the MTNCL MSP430 datapath requires additional considerations compared to 

the openMSP430. The lower bound of the number of pipeline stages is defined by the 

requirements of the dual-rail DATA/NULL protocol. In order for proper feedback of 

DATA/NULL wavefronts, a dual-rail encoded design must have at least three pipeline stages 

[21]. The upper bound of the number of pipeline stages is a similar tradeoff as that of 

synchronous circuit design: throughput vs. area and energy. Since a primary constraint of the 

MSP430 is energy, the lower bound of three pipeline stages is used.  

After determining the number of stages in the pipeline, the design is partitioned into 

stages. This is a key step to guaranteeing design efficiency. In order to maximize throughput in 

the MTNCL MSP430, combinational logic is divided among the three pipeline stages as evenly 

as possible given the data dependencies in the datapath. Unlike the regular structure of an array 

multiplier, AES, or other regular circuits, the datapath of the MSP430 microcontroller has a large 



22 

variance in the number of gates along each feedback loop. Some paths have a large amount 

combinational logic such as the paths through the ALU. Others have very little such as the 

register file or operand registers. While some paths, such as instruction decode and control, are 

limited by data dependencies in the datapath. Their outputs are required at the first register stage.  

4.2 Selective Sleeping  

A technique that can increase flexibility in register location, while at the same time 

reducing active energy consumption is Selective Sleeping (SS). Using SS a designer divides the 

combinational logic into smaller functional blocks where each block can operate independently 

of the others. The registers at the output of these functional blocks are split such that each 

function becomes a smaller pipeline. Each individual pipeline can be slept separately from others. 

Therefore, when the circuit is in operation, the pipelines not needed for the current operation can 

remain slept. The structure of SS is shown in Figure 9. 

Once the pipeline has been split, the handshaking signals must be combined such that the 

unused blocks remain slept. The sleep signals for the functional blocks and the input completion 

components can be determined using combinational logic in the first stage of the pipeline. This 

logic, however, must always be activated when using any of the functional blocks. The sleep 

generation block reads the input DATA wavefront, and generates the SEL vector to select the 

block or blocks to be activated for the next cycle. Then, SEL is inverted and OR’d with the 

incoming sleep signal to produce the sleep signal for the given functional block.  

 slp(i) = SEL(i)+ slp _ in  (1) 
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Figure 9: SS Structure 

In addition to the sleep signal generation, SS implements special logic for handling the 

Ko’s from the individual pipelines. The Ko signals from each pipeline are combined in the Ko 

Combination block to produce a global Ko representing all the pipelines. This combinational 

process can be broken down into two pieces. The first piece generates the RFN signal when the 

selected pipelines are all RFN. The second piece generates the RFD signal when all pipelines are 

RFD. (2) is the equation for generating the combined Ko signal. 

 Ko_Comb = Ko(i)∏ + TH 22(SEL(i), Ko(i)∑ ) (2) 

The overhead associated with SS is quite small, and a proper implementation can 

decrease the energy lost to sleep net switching and wavefront propagation in much the same way 

that clock gating can decrease the switching energy of the clock net in a synchronous design. Ko 

combination and sleep generation lie along the handshaking signal path, and thus add delay to 

the pipeline stage. In most designs the function selection logic to generate SEL is already present. 
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This limits the delay overhead of the sleep generation block to only a single TH12 gate. 

Furthermore, the Ko product terms in the first part of (2) would be required in a normal MTNCL 

pipeline. Therefore, the overhead associated with the Ko Combination block is an OR-tree for the 

summation term and a TH22 gate for each functional block. The Ko Combination block adds 

only a TH22 delay and a TH12 delay to the handshaking signal path. Thus, the total delay 

overhead for the stage from SS is (3) and the area overhead for a stage split into N functions is 

(4). 

 delay(TH 22)+ 2 ⋅ delay(TH12) (3) 

 N ⋅ area(TH 22)+ area(OR _Tree_ width _ N )+ (N +1) ⋅ area(TH12)  (4) 

With a low area and delay overhead, SS can be used to reduce power consumption in a 

wide variety of MTNCL circuits. It eliminates the switching power due to the sleep signal 

transition as well the power due to the propagation of the DATA/NULL wavefronts for the 

unused function blocks. Thus, the power savings will be circuit specific and based on the activity 

factor of the function blocks. In the case of the MTNCL MSP430 design SS was used to reduce 

power consumption of the Control, ALU, and Register File. 

4.3 ALU 

The MSP430 ALU is simple in structure with the two main blocks being an adder and a 

logical operations block. The ALU supports four single operand operations and eight double 

operand operations shown in Table 3. A modified version of SS is used in the ALU with the 

functional division between the logical operations block and the adder block. The functional 

division is shown in Table 3. (L) indicates the function is contained in the logical operations 
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block, while (A) indicates the function is contained in the adder block. Additionally, there is an 

always-active logic block to multiplex the ALU outputs and handle the single operand functions. 

Table 3: ALU Functionality 

Single Operand Double Operand 

Rotate Right Addition with/without Carry In (A) 

Rotate Right Arithmetically Two’s complement Subtraction with/without Carry In (A) 

Swap Bytes Bit Vector Comparison (L) 

Sign Extension Decimal Addition (A) 

 Bit Testing (L) 

 Bit Clearing (L) 

 Bitwise XOR (L) 

 Bitwise AND (L) 

 

The modified SS operates only on the combinational blocks of the ALU. It does not 

select registers. Therefore, the ALU must handle NULL outputs from the unselected functional 

block during DATA propagation. The key is to observe that the functional block outputs are 

mutually exclusive so that only the selected output is DATA. For example, when the adder is 

selected, the DATA wavefront will pass through the adder block to the Output MUX, while the 

logical operations outputs remain NULL. The only signals that are asserted will be from the 

selected components, the correct outputs. Thus, the Output MUX can be simplified to a simple 

OR tree for both RAIL1 and RAIL0 signals. This further reduces the area and power 

consumption of the ALU logic. 
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The ALU has a depth of three pipeline stages as shown in Figure 10. A previous version 

of the ALU placed the second register stage between the function blocks and the Output MUX; 

however, testing revealed this implementation to be faster but less energy efficient than the 

current pipeline. When the second register is placed before the Output MUX, it must receive the 

outputs from each function, increasing the width by approximately four times compared to the 

placement shown in Figure 10. Since energy is the primary constraint for the MSP430, a 

partitioning scheme was selected to minimize the area overhead and energy consumption of each 

register by keeping the registers as small as possible. 
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Figure 10: ALU Datapath 

4.4 Register File 

The MSP430 Register File should be distinguished from MTNCL registration. The 

Register File is a collection of memory elements that retain their values during DATA/NULL 

cycles. MTNCL registers, on the other hand, act as separators between stages in the MTNCL 

pipeline. They do not store information between DATA/NULL cycles, but are refreshed each 

DATA/NULL cycle.  
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The Register File is a key component of a microcontroller. It is accessed at least once, 

usually more, for every instruction the microcontroller executes. Optimization of this component 

in the MTNCL MSP430 is an important part of reaching the overall goal of low power.  

In traditional MTNCL and NCL designs, data storage between cycles requires a large 

area and power overhead. A three-ring register structure with a load/store multiplexer is used to 

store a data pattern between datapath cycles. The area for this component is given by (8), where 

R is the registration area, C is the completion component area, and M is the multiplexer area. 

 R = 2 ⋅ N ⋅ area(TH12(dn)m) (5) 

 M = N ⋅ area(THAND0m) (6) 

 C = [area(TH 22n)+ 2 ⋅ area(INV )+ N / 2 ⋅ area(TH 24COMPh1m)+ ((N −1) / 3) ⋅ area(TH 44h1m)] (7) 

 Traditional _ Re gister _ File_ Area = 3⋅ R + M + 3⋅C  (8) 

When compared to a synchronous register consisting of a multiplexor and D-flip flops, 

the MTNCL memory element is quite large. It is also particularly power hungry since the data 

pattern must continuously loop through the registers every cycle of the main pipeline. To further 

add to the power burden, the structure cannot be used with SS since a slept pipeline will go to 

NULL and lose the stored data pattern.  
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Figure 11: Traditional 3-Ring Register 

Optimization of the Register File can be accomplished by incorporating D-flip flops, 

which are not typically used in asynchronous design due to their setup and hold time 

requirements. Special logic is required to ensure that the setup and hold times for the D-flip flops 

are always met despite the asynchronous behavior of the circuit. This is accomplished by making 

a slight modification to the D-flip flop structure and incorporating completion detection on the 

inputs and outputs. 

The bit cell structure to guarantee setup time is shown Figure 12. A third output is added 

to the D-flip flop, which connects to the internal node between the two latches. D-flip flops are 

commonly constructed of two cascaded latches triggered on opposite clock edges. The output of 

the first latch connects to the input of the second latch. The Q_int signal is the output of the first 

D-flip flop. Since the setup time is defined as the time it takes for the internal node, Q_int, to 

charge/discharge, the clock edge can be safely triggered on the transition of Q_int.  

The Register File only needs to latch data when the incoming data is different than the 

data being stored. Thus, the clock is triggered when Q and Q_int are different, meaning that the 

incoming data pattern has charged the internal node, Q_int, to a value different than the stored 

value, Q. The sleepable XOR gate with input Q and Q_int triggers the clock edge to occur when 
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the two signals are different. Then, if load is asserted, the D-flip flop receives a rising clock edge 

causing the value on Q_int to be latched.  

Hold time is guaranteed by the XNOR gate and MTNCL completion. The XNOR gate 

generates a Ko signal for each bit when the output, Q, and input, D, match. This indicates that the 

proper value has been latched for the given bit. The XNOR gates replace the TH24comp gates in 

a standard MTNCL completion component, and ANDing the individual Ko’s together gives a 

completion signal for the entire pipeline stage. Following the MTNCL handshaking protocol the 

pipeline stage’s completion is an input to the previous stage, which causes the previous stage to 

hold its DATA pattern until all the bit cells of the register have properly stored the DATA 

pattern. 
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Q_int
Load
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Rst
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Ko

 

Figure 12: Modified MTNCL Register File Bit Cell 

It is important to note that the XOR gate controlling the clock is sensitive to glitches on 

the Q_int signal. If Q_int has a glitch and Load is asserted, an incorrect value could be latched 

into the bit cell. To prevent this, the XOR gate has a sleep input controlled by a completion 

component attached to the inputs of the Register File pipeline stage. The input completion 
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component detects when the DATA pattern arrives and only allows the XOR gate to transition 

switch once the all the inputs have settled. 

The bit cell structure is very efficient in terms of power and area. Switching in the 

modified bit cell only occurs when a change in the stored value is requested. On the other hand, 

the traditional MTNCL three-ring register transitions between DATA and NULL continuously as 

the microcontroller’s pipeline cycles. Furthermore, the total area for the modified MTNCL 

Register File structure is less than the traditional three-ring register structure. Table 4Table 1 

gives an area comparison in terms of transistor counts. The modified Register File achieves a 15-

17% area savings depending on the number of bits being stored.  

Table 4: Transistor Count Comparison between Modified and 3-Ring Register Files 

Width (bits) Traditional Modified Area Savings 

4 539 446 17% 

8 1033 864 16% 

16 2021 1700 16% 

32 3997 3372 16% 

64 7949 6716 16% 

128 15853 13404 15% 

256 31661 26780 15% 

512 63277 53532 15% 

1024 126509 107036 15% 
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 By combining the modified MTNCL bit cells into the MTNCL MSP430 Register File, a 

new opportunity for power savings appears. Sleeping the three-ring bit cell causes it to lose all 

stored data; however, the modified bit cell retains its data while slept. This allows SS to be used 

in the MSP430 Register File, drastically reducing its power consumption. The structure of the 

Register File is shown in Figure 13. 
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Figure 13: MTNCL MSP430 Register File 

 The MSP430 Register File consists of sixteen 16-bit registers, an adder, a constant 

generator, and an output multiplexer. It also contains the SS components shown in the diagram. 

Each 16-bit register is separately sleepable. In normal operation the Register File will only 

activate one or two 16-bit registers allowing the majority of the registers to remain slept 

conserving power. Like the ALU, the design requires an always-active path so that the 

appropriate select signal can be sent to the output multiplexer.  
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4.5 Memory Interface and Interrupts 

The MSP430 includes both Program and Data Memory, as well as address space 

dedicated to peripherals and interrupt vectors. The Memory Interface handles the connection to 

all of these. It selects the appropriate component based on the address it receives from the 

microcontroller. The Memory Interface handles connections to both synchronous and 

asynchronous peripherals.  
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Figure 14: MTNCL MSP430 Memory Interface 

Asynchronous peripherals are written and read using MTNCL handshaking. However, for 

synchronous connections like the memories and the synchronous peripherals, a clock is required 

to determine when the input data should be latched. The clock can be generated by the Ko signal 

from the completion component on the input to the memory interface. The completion 

component on the input register detects when the data has arrived by monitoring the dual-rail 

signals, Din. Once it detects the DATA wavefront has arrived and its Ki is logic one, it will 

transition to RFN, logic zero, creating a clock edge. Like all synchronous designs, the timing 
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must be analyzed to ensure that the clock rate of the Ko signal is not too fast for the memory or 

peripheral latches.  

  delay(CC) ≥ Tsetup + delay(wire)  (9) 

In most cases, the propagation delay of the completion component is much longer than 

the setup time of the input latches, and the relative delay of the completion component 

guarantees the timing will be met. However, this assumes that there is no single rail logic 

between Din and the latch in the synchronous component. The delay from the single rail logic 

could easily be longer than the completion component delay. This case will be discussed along 

with the Timer in the next section. 

 For a write operation there is no output from the peripherals or memories. The output 

combinational logic detects if a write has been performed, and generates a DATA wavefront to 

trigger the output completion component. In the case of a read, the memory or peripheral 

generates a DATA/NULL pattern on its outputs to signal the output completion component. The 

output completion component ensures that the microcontroller pipeline will wait until the correct 

data has arrived from the peripheral or memory before continuing operation. Peripherals have an 

additional trigger for communication with the microcontroller. Each peripheral is assigned an 

interrupt line and an interrupt vector. When a peripheral’s interrupt line is asserted, the 

microcontroller will jump to the instruction located at the interrupt vector.  

4.6 Timer 

The TimerA peripheral of the openMSP430 is included in the MTNCL MSP430. Despite 

a few modifications to ensure delay requirements are met, it remains a synchronous component 

and has the same functionality as in the openMSP430. Since the MTNCL MSP430 is 
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asynchronous, TimerA requires an external clock to keep accurate time. The timer’s accumulator 

register is clocked by the external clock. Additionally, the timer has another clock domain for its 

configuration registers. The Ko from the Memory Interface controls the clocking of the 

configuration registers.  

Some of TimerA’s configuration registers have single rail logic at their inputs as shown 

in Figure 15. The delay from the single rail logic causes a setup time violation for the clock edge 

generated by the Ko. As warned in the previous section, the delay from the single rail logic is 

greater than the delay from the completion component causing a timing violation. The edge 

generated by Memory Interface Ko comes too late for the configuration registers to latch the 

correct data.  

To meet the setup time, latches are added to the inputs of TimerA, and the Ko clock is 

inverted. The latches hold DATA at TimerA’s inputs through the NULL cycle of the Memory 

Interface. The inversion of the Ko clock then causes the configuration registers to be clocked at 

the end of the Memory Interface’s NULL cycle. The setup time equation becomes:  

 2 ⋅ delay(CC)+ delay(NULL) ≥ Tsetup + delay(wire)+ delay(SR _ log ic) (10)  

Reading TimerA’s register values can be accomplished through the Memory Interface. 

The microcontroller sends a read request to an address in the timer’s memory space, and the 

Memory Interface will enable the timer and read the appropriate output data. The output 

multiplexer for the timer’s outputs is required to be dual-rail, in order to ensure the proper data 

pattern has propagated to the output. Additionally, the timer contains the ability to interrupt the 

MTNCL MSP430 once the accumulator reaches a certain value. 
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Figure 15: MTNCL MSP430 Timer Configuration Register 

4.7 Control Unit 

At the heart of the microcontroller is the state machine of the Control Unit. The state 

machine coordinates data flow between all of the microcontrollers components. The Control Unit 

incorporates SS. In each cycle of the pipeline, the Control Unit selects which components are 

needed. Those that are not required remain slept. 

The top-level pipeline of the MTNCL MSP430 is shown in Figure 16. It consists of 

several parallel pipelines using the SS technique to keep the unused paths slept. The Control Unit 

has its own pipeline, which is always active since it must retain the state of the microcontroller. 
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Figure 16: MTNCL MSP430 Top-Level Pipeline 

5 TESTING 

Designing fair comparison data between asynchronous and synchronous microcontrollers 

is a non-trivial task. Several factors must be taken into account: architecture of the benchmark 

circuit, test vectors, and the energy measurement time window. If care is not taken, any of these 

factors has the potential to skew the energy comparison.  
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5.1 Benchmark 

The synchronous benchmark circuit is synthesized from the openMSP430 RTL source 

code [20]. This design is instruction-for-instruction compatible with TI’s production MSP430, 

but allows for customization of included peripherals, operating speed, and process technology. 

Without these customizations a fair comparison with the MTNCL MSP430 is infeasible. 

However, by customizing the parameters to match those of the MTNCL MSP430, a fair 

comparison can be designed.  

Table 5: Timer Constraint and Gate Count Comparison 

 MTNCL MSP430 Timer openMSP430 Timer 

Clock Constraint 154 MHz 154 MHz 

Gate Count 1077 gates 906 gates 

 

A peripheral timer is included in the synchronous benchmark to match the timer in the 

MTNCL MSP430. The timer in the openMSP430 RTL source code is used in the synchronous 

benchmark, and the same timer design is also used in the MTNCL MSP430 with only minor 

modifications to handle the asynchronous peripheral interface. The constraints and gate counts 

between the two timers are given in Table 5. In general, a peripheral connected to the MTNCL 

MSP430 requires minimal modification compared to peripherals in the openMSP430. Thus, the 

focus of the comparison is on the core. The timer is added as a demonstration of functionality in 

the MTNCL MSP430, and as a benchmark for comparison in the synchronous openMSP430.  

In addition to the synthesis constraints of the timer, the constraints of the openMSP430 

core are based on the nominal operating speed of the MTNCL MSP430. The MTNCL MSP430 
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is simulated at a nominal temperature of 27°C and Vdd of 1.2V. An average frequency of the 

pipeline is taken over a wide range of instructions. Then, the openMSP430 clock is constrained 

to the average frequency of the MTNCL MSP430 pipeline. This gives the benchmark design a 

similar throughput to the MTNCL MSP430. A fair comparison can be made since the cores are 

capable of executing instructions in a similar amount of time. This technique for constraining the 

synchronous benchmark circuit according the average throughput of the asynchronous pipeline 

was developed in [17]. 

5.2 Simulation & Results 

Energy measurement is performed using the UltraSim circuit simulator inside Cadence 

Analog Design Environment. UltraSim is a versatile simulation environment and has 

accuracy/speed settings from fast digital simulation down to SPICE circuit solver. The coarse-

grained simulation settings listed in the order of least to most accurate are: Digital Extended, 

Digital Fast, Digital Accurate, Mixed Signal, Memory, Analog, and SPICE. As the accuracy 

increases so does the run time. Fine-grained accuracy settings can be made by adjusting the 

speed option to control the relative tolerance for voltage and current calculations or by using 

mixing accuracy modes across instances of the circuit. For timing and energy measurements of 

the MTNCL MSP430 and synchronous benchmark, Digital Accurate mode with a speed setting 

of 5 was selected. This mode employs a nonlinear current and charge model for MOSFETs and 

their diffusion junctions. With these settings the simulation is bounded to within 5% of SPICE 

accuracy, while yielding reasonable runtimes for the long simulations required to execute a 

sufficient amount of instructions on the MSP430.  
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5.2.1 Active Energy 

The energy consumption of a circuit is largely dependent on how it is used. The 

application determines which instructions are executed, and the instructions executed determine 

which blocks of the circuit are activated. For those blocks that get activated, their frequency of 

activation, and the data patterns they process are the key factors in determining the total energy 

consumption. When performing a comparison between asynchronous and synchronous circuits, it 

is important to average the results across blocks and various input patterns so that an advantage 

of one circuit for a particular pattern on a particular block does not weigh too heavily in the 

overall energy results. Without a targeted application, the best method of comparison is an 

average across all possible patterns. However, that is not feasible for circuits with many inputs 

and a random subset of input patterns should be used.  

In the case of the MSP430 microcontroller, the blocks that get activated in a given cycle 

and the energy consumption are correlated to the type of instruction being executed. The 

instruction operand values play a smaller role in the energy consumption of the circuit. The 

MTNCL MSP430 is simulated with multiple input patterns across several instructions and 

different addressing modes. The energy results are tabulated in Table 6. 

The energy data in Table 6 are based on a variety of register-to-register instructions, but 

using only a single set of operands for each instruction. Varying the operands can change which 

gates get activated, and in turn the energy consumption. Table 7 shows the energy consumption 

averaged across six different random operand combinations. There is a 3% difference in the 

average energy consumption from the baseline operands. 
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Table 6: MTNCL MSP430 Energy Consumption 

Instruction Format Cycles Total Time Avg Power ETop(J) 

Add R5, R6 Double 4 2.93E-08 4.48E-03 1.32E-10 

AddC R5,R6 Double 4 2.92E-08 4.28E-03 1.26E-10 

AND R5, R6 Double 4 2.93E-08 4.28E-03 1.26E-10 

BIC R5, R6 Double 4 2.89E-08 4.25E-03 1.23E-10 

BIS R5,R6 Double 4 2.89E-08 4.64E-03 1.35E-10 

BIT R5,R6 Double 4 2.81E-08 4.36E-03 1.23E-10 

CMP R5,R6 Double 4 2.82E-08 4.07E-03 1.15E-10 

DADD R5, R6 Double 4 2.89E-08 4.26E-03 1.24E-10 

MOV R5,R6 Double 3 2.22E-08 3.65E-03 8.13E-11 

SUB R5, R6 Double 4 2.89E-08 4.17E-03 1.20E-10 

SUBC R5, R6 Double 4 2.89E-08 4.56E-03 1.32E-10 

XOR R5, R6 Double 4 2.93E-08 4.30E-03 1.26E-10 

PUSH R5 Single 3 2.51E-08 4.90E-03 1.23E-10 

Average 2.83E-08 3.34E-03 9.42E-11 

 

Additionally, the addressing mode of the instruction can have an impact on the energy 

consumption of a given operation. Table 8 gives the average energy consumption across random 

operands when the addressing mode is set to indexed. There is a 41% increase in average energy 

per operation when using indexed mode instructions. This is due to the extra cycle(s) required to 

fetch operands from memory.  
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Table 7: Average Energy Consumption Across Random Operands 

Instruction Energy 

ADD 1.01E-10 

ADDC 1.01E-10 

AND  9.92E-11 

BIC  9.79E-11 

BIS  9.89E-11 

BIT  9.46E-11 

CMP  9.54E-11 

DADD 9.98E-11 

MOV  7.88E-11 

SUB  9.86E-11 

SUBC 9.93E-11 

Average  9.67E-11 

 

As a reference point the openMSP430 is simulated across the same instruction and input 

pattern combinations. From Table 9 and Table 10 it is clear that the openMSP430 uses 

significantly less energy per operation than the MTNCL MSP430. To understand why, a deeper 

investigation is conducted in the Analysis section of this chapter.  

5.2.2 Area and Leakage Power 

Both the openMSP430 and MTNCL MSP430 are implemented using IBM 8RF 130nm 

process. The instance count, area, and leakage for both designs are given in Table 11. The 
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MTNCL MSP430 contains more instances and has a larger area yet its leakage is more than 2× 

less.  

Table 8: Average Energy Consumption across Random Operands for Indexed Addressing Mode 

Instructions 

Instruction Energy 

ADD  1.32E-10 

ADDC 1.32E-10 

AND  1.31E-10 

BIC  1.31E-10 

BIS  1.31E-10 

BIT  1.23E-10 

CMP  1.22E-10 

DADD 1.30E-10 

MOV  7.48E-11 

SUB  1.31E-10 

SUBC 3.36E-10 

Average  1.43E-10 

  

Area and leakage power are important metrics when evaluating the quality of a circuit 

design. Typically, they are correlated. As area increases so does leakage power; however, there 

are factors that can lead to an increase in area without affecting leakage. These factors include 

wiring congestion, layout efficiency, and transistor type. Wiring congestion can cause extra 
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space to be added between standard cells thereby increasing the overall area, but not the 

transistor width. 

Table 9: openMSP430 Average Energy Consumption across Random Operands 

Instruction Energy 

ADD  1.76E-11 

ADDC 1.60E-11 

AND  1.79E-11 

BIC  1.78E-11 

BIS  1.92E-11 

BIT  1.74E-11 

CMP  1.80E-11 

DADD 1.92E-11 

MOV  1.99E-11 

SUB  1.71E-11 

SUBC 1.78E-11 

Average  1.80E-11 

 

Congestion is a function of gate fanout as determined by the design’s logic synthesis. 

Layout efficiency is a measure of the density of each standard cell. It quantifies how much of the 

cell area is used for wiring and how much is used for transistors. A lower efficiency means less 

leakage per unit area in the standard cell. Layout efficiency is determined by the logic function 

of the cell, process DRC rules, standard row height, and the layout engineer. Typically, MTNCL 

gate libraries have lower layout efficiency compared to synchronous standard cells due to more 
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wiring and smaller transistors. MTNCL logic gate layouts have a PMOS to NMOS area ratio of 

approximately 2-to-1 leaving a large unused area on the NMOS side of the gate. The threshold 

voltage and carrier type of the transistors can also have a large affect on leakage power without 

changing the area. Low-Vt transistors have higher leakage current than High-Vt transistors, and 

NMOS transistors leak 3-10× as much as PMOS. 

Table 10: openMSP430 Average Energy Consumption across Random Operands for Indexed 

Addressing Mode Instructions 

Instruction Energy 

ADD  1.76E-11 

ADDC 1.60E-11 

AND  1.79E-11 

BIC  1.77E-11 

BIS  1.94E-11 

BIT  1.76E-11 

CMP  1.84E-11 

DADD 1.91E-11 

MOV  2.03E-11 

SUB  1.74E-11 

SUBC 1.79E-11 

Average  1.81E-11 
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When analyzing a circuit prior to place and route, an interesting metric to consider is the 

sum of the width and length of each transistor. For each transistor in the design the width and 

length of the poly over active is summed. 

 ������ = ∑	
��ℎ(��) , ������� = ∑ �����ℎ(��) (11)  

In the case of the MTNCL MSP430 there are four types of transistors to consider: Low-

Vt and Standard-Vt variations of PFET and NFET. The openMSP430 uses only Standard-Vt 

transistors and thus has just two transistor types in the design. The width and length for each type 

of transistor are given in Figure 17. While the MTNCL MSP430 uses Low-Vt transistors, they 

make up a small proportion of the overall design and don’t have a large effect on overall leakage.  

 

Table 11: Area and Leakage Power Comparison 

 MTNCL MSP430 openMSP430 

Standard Cell Instances 11797 Gates 9546 NAND2 Equivalents 

P&R Area 0.7mm2 0.2mm2 

Leakage Power 1.06E-05W 2.18E-05W 
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Figure 17: Transistor Size Comparison between MTNCL MSP430 and openMSP430 (units in 

meters) 

The leakage of a transistor is proportional to W/L as shown in Equation X. From Figure 

17 it is clear that the total width of the transistors in the MTNCL MSP430 is smaller than the 

total width of the transistors in the openMSP430, while the total length of the MTNCL MSP430 

is larger than that of the openMSP430. The MTNCL MSP430 has an average W/L ratio of 3.66 

and the openMSP430 has an average W/L ratio of 8.59. Therefore, despite having a larger area 

and more standard cell instances, the leakage power of the MTNCL MSP430 is lower than that 

of the openMSP430.  

 I��� = 100 ∙
�

 
∙ e"#$% &'(⁄  (12) 
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5.3 Analysis 

Given that previous MTNCL designs in [15] and [17] showed a reduction in dynamic 

power over synchronous comparison circuits, it is unexpected for the dynamic power 

consumption of the MTNCL MSP430 to be higher than the openMSP430. A more detailed 

analysis of the MTNCL power consumption is required. The following section examines the 

MTNCL MSP430 power by functional block to determine the cause for the high dynamic power 

consumption.  

Figure 18 lists the average energy per operation of different functional blocks across the 

two cores. Since the MTNCL MSP430 and openMSP430 have different partitioning schemes, a 

finer-grained breakdown of the Control, Execution Unit, and Instruction Decoder is not possible. 

The “Core” block contains all other blocks except the Register File.  

The functional block breakdown shows only two functional blocks where MTNCL 

MSP430 has lower energy per operation than the openMSP430. These are the ALU and the 

Timer. The energy per operation improvement in the Timer is not very interesting since it is a 

clone of the openMSP430’s timer with just a handful of extra gates. The reason it has lower 

energy consumption is due to shorter runtime and less toggling on the clock signal on its input. 

Thus, the ALU is chosen for further analysis and is compared to the MTNCL MSP430 Core to 

determine which characteristics lead to lower energy consumption compared to synchronous 

blocks with the same function. 
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Figure 18: Energy per Operation across MSP430 Functional Blocks 

MTNCL has the advantage of not requiring a clock tree to synchronize various logic 

blocks. It does, however, require sleep signal propagation and handshaking circuitry. These can 

be grouped into three categories: sleep propagation, completion detection, and registration. 

Measuring the energy consumed by this overhead circuitry as a percentage of total circuit energy 

can reveal inefficiencies in MTNCL designs. Figure 19 gives a comparison of the percentage of 

energy devoted to completion, registration, and sleep propagation for the Core and ALU. Clearly, 

the ALU’s energy advantage over synchronous is not due to a smaller overhead as the Core 

devotes a larger percentage of energy to combinational logic and less to MTNCL overhead than 

the ALU. Additionally, the MTNCL MSP430 ALU shows an energy improvement over the 

synchronous openMSP430 ALU while the MTNCL Core does not.  
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Figure 19: Energy Consumption of MTNCL MSP430 Handshaking, Sleep Propagation, and 

Combinational Logic Circuitry 

Aside from MTNCL overhead, another potential cause of the MTNCL MSP430 Core’s 

extra energy consumption is its SS logic. SS has not been used in MTNCL up to this point and 

should be ruled out as a potential reason for the increase in energy per operation compared to the 

synchronous reference. SS is facilitated by always-on gates which control the sleeping of the 

individual pipelines. The overhead of these always-on gates is measured in the core and found to 

make up only 16% of the total energy. Since the extra power consumption of the core is several 

times larger compared to the openMSP430, the extra 16% of SS can be ruled out as the cause of 

the MTNCL MSP430 energy inefficiency. 
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Finally, analyzing the MTNCL Core and ALU in terms of energy density and total 

transistor area reveals the cause of the high energy consumption of the MTNCL MSP430 Core to 

be inefficient logic synthesis. This is revealed by comparing the area of the ALUs and Cores. 

The MTNCL MSP430 Core is 54% larger than the openMSP430 Core, while the MTNCL 

MSP430 ALU is 32% smaller than the openMSP430 ALU. In general, comparing MTNCL and 

synchronous blocks that perform the same function, it is expected that the transistor area ratio 

would be similar. Under that expectation the MTNCL MSP430 Core should be approximately 

30% smaller than the openMSP430 Core. This can be seen in [17] where a MTNCL AES core is 

compared to a synchronous AES core. Both designs perform the same function, and the transistor 

area of the MTNCL AES is 24% smaller than the transistor area of the synchronous AES. 

Since the MTNCL completion, registration, and sleep propagation logic is not the cause 

of the Core’s extra energy consumption, it must be that the additional overhead is spread out 

across the whole design. The best explanation for this is an inefficient RTL-to-gate logic 

synthesis, which is due to manual design of the control logic for the MTNCL MSP430 Core. The 

openMSP430 synthesis on the other hand is automated. The control logic includes many 

variables and logic minimization with more than four variables is impractical to do by hand. 

Thus, control logic in the MTNCL MSP430 is added incrementally rather than optimized as one 

large piece. This results in redundant gates that could be optimized out with a higher-level 

automated approach. 
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Figure 20: Scaled Comparison of Transistor Area between MTNCL MSP430 ALU and Core 

Compared to openMSP430 ALU and Core 

This theory explains how a simpler block like the MTNCL ALU which contains minimal 

control logic can be lower power than the synchronous ALU while the more complex blocks like 

the MTNCL Control and Core are much higher power. The MTNCL logic synthesis for the ALU 

is more easily optimized by hand since it is made up of mostly well-known arithmetic blocks. As 

blocks include more complex control circuitry the number of redundant gates from inefficient 

synthesis increase yielding worse energy per operation.  

A comparison with the work in [17] confirms this. The transistor width of the MTNCL 

AES core is 24% smaller than the synchronous AES benchmark. It should also be noted that the 

power consumption follows the total transistor width. The MTNCL AES is lower power than the 

synchronous AES. The AES core is largely arithmetic logic and has much less control logic than 

the MTNCL MSP430. Thus, there is not as much opportunity for an inefficient manual synthesis 

to reduce the energy efficiency of the AES.  
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Table 12: Transistor Width Comparison between Synchronous and MTNCL MSP430 

Microcontrollers and AES Encryption/Decryption Cores 

 Synchronous Asynchronous 

MSP430 2.6E-02m 3.22E-02m 

AES 4.14E-02m 3.33E-02m 

 

Another example to confirm the theory is in the comparison of a MTNCL floating point 

coprocessor [15] with a synchronous benchmark. The MTNCL design has 16% fewer transistors 

and consumes significantly less energy per operation. Again, the design is mainly arithmetic 

logic with minimal control circuitry.  

6 CONCLUSION 

This dissertation expands on previous work in asynchronous logic circuit design. It 

focuses on the promising MTNCL asynchronous architecture and develops the most complex 

MTNCL design to date. The MTNCL MSP430 is a fully functioning low-power microcontroller 

based on the industry standard design from TI. The MTNCL MSP430 incorporates novel 

techniques to reduce power consumption such as Selective Sleeping and a low-area and low-

power MTNCL delay insensitive register file.  

The MTNCL MSP430 is benchmarked against an open source version of the MSP430 

called openMSP430. Both designs are simulated to measure energy consumption. The MTNCL 

MSP430, while incorporating low-Vt transistors and having larger area, still manages lower 

leakage power than the openMSP430 due to a better W/L ratio.  
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Dynamic power is measured across a variety of operations. While the MTNCL MSP430 

has some functional blocks that consume less energy than those of the openMSP430, overall the 

MTNCL MSP430 has a higher energy per operation. A breakdown of the energy data reveals the 

cause to be an inefficient synthesis of the control logic. This result is confirmed by comparing 

across other MTNCL designs, which up to this point are arithmetic based datapaths. This 

important finding highlights the need for better automated MTNCL synthesis techniques. For 

MTNCL to compete with synchronous architectures in larger designs such as a full 

microcontroller, an improved automated design flow including better synthesis techniques is 

required.  
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