
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2016

Asynchronous Data Processing Platforms for Energy Efficiency, Asynchronous Data Processing Platforms for Energy Efficiency,

Performance, and Scalability Performance, and Scalability

Liang Men
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Digital Circuits Commons, and the VLSI and Circuits, Embedded and Hardware Systems

Commons

Citation Citation
Men, L. (2016). Asynchronous Data Processing Platforms for Energy Efficiency, Performance, and
Scalability. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1666

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uark.edu%2Fetd%2F1666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F1666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F1666&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/1666?utm_source=scholarworks.uark.edu%2Fetd%2F1666&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

	

	

Asynchronous Data Processing Platforms for Energy Efficiency, Performance, and Scalability

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

by

Liang Men
Harbin Institute of Technology

Bachelor of Science in Electrical Engineering, 2006
Harbin Institute of Technology

Master of Science in Electrical Engineering, 2008

August 2016
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Dr. Jia Di
Dissertation Director

Dr. Dale Thompson
Committee Member

Dr. J. Patrick Parkerson
Committee Member

Dr. Jingxian Wu
Committee Member

	

	

ABSTRACT

The global technology revolution is changing the integrated circuit industry from the one

driven by performance to the one driven by energy, scalability and more-balanced design goals.

Without clock-related issues, asynchronous circuits enable further design tradeoffs and in-

operation adaptive adjustments for energy efficiency. This dissertation work presents the design

methodology of the asynchronous circuit using NULL Convention Logic (NCL) and multi-

threshold CMOS techniques for energy efficiency and throughput optimization in digital signal

processing circuits. Parallel homogeneous and heterogeneous platforms implementing adaptive

dynamic voltage scaling (DVS) based on the observation of system fullness and workload

prediction are developed for balanced control of the performance and energy efficiency. Datapath

control logic with NULL Cycle Reduction (NCR) and arbitration network are incorporated in the

heterogeneous platform for large scale cascading. The platforms have been integrated with the data

processing units using the IBM 130 nm 8RF process and fabricated using the MITLL 90 nm

FDSOI process. Simulation and physical testing results show the energy efficiency advantage of

asynchronous designs and the effective of the adaptive DVS mechanism in balancing the energy

and performance in both platforms.

	

	

ACKNOWLEDGEMENTS

	 I would like to express my deep gratitude to my advisor, Dr. Jia Di, for his guidance,

encouragement, and support throughout my Ph.D. studies. His profound knowledge and rigorous

attitude toward research have been inspiring me throughout my four years of research at the

University of Arkansas and will benefit my professional career as well.

 I am grateful to my committee members: Dr. Dale Thomas, Dr. J. Patrick Parkerson, and

Dr. Jingxian Wu for their suggestions and kind supports for my research work.

 It has been a great pleasure to work with my colleagues at the Cato Springs Research Center

(CSRC), not only because of the talent but also the friendship. I cherish the wonderful time that

we worked together. I would like to thank Dr. Brent Hollosi, Mr. Justin Roark, Dr. Landon Caley,

Mr. Michael Hinds, Mr. Nathan Kuhns, Mr. Chien-Wei Lo, Mr. Francis Sabado, Ms. Thao Le, Mr.

Jean Habimana, Mr. Andrew Suchanek, Mr. Brett Sparkman, Mr. John Brady, Mr. Brent Bell, Mr.

William Bouillon, Mr. Lucas Weaver, Dr. Fahard Parsan, Dr. Ashfaqur Rahman, Dr. Matt Barlow,

Mr. Guangyuan Cai, for their helpful discussion, great support and precious friendship. My

gratitude also goes out to Dr. Chuanzhao Yu, for his tremendous help with the analog circuitry

design.

 The love and support of a family is irreplaceable in both life and education. I offer my

deepest gratitude to my wife, Jing Li, my son, Andrew Z. Men, my father, Huijun Men, my mother,

Zhiqin Zhang, my sister, Liangkun Men, and my nephew Yunyi Cao, for their everlasting love,

support and encouragement for all my endeavors.

	

	

DEDICATION

In memory of my grandma, Shenggu Zhang (1935-2015), whose courage and diligence

continue to inspire.

	

	

TABLE OF CONTENTS

1 Introduction ... 1

1.1 Techniques for Throughput Improvement and Power Reduction 2

1.1.1 Dynamic Voltage Scaling ... 2

1.1.2 Throughput Improvement ... 3

1.1.3 Sub-threshold Operation ... 4

1.2 Proposed Research and Approach .. 5

1.3 Dissertation Organization .. 7

2 Background ... 8

2.1 Asynchronous Circuits ... 8

2.2 NULL Convention Logic (NCL) .. 8

2.3 NCL Pipeline ... 11

2.4 NCL with Multi-threshold CMOS Technology .. 13

2.5 MTNCL Pipeline ... 15

3 Digital Signal Processing Circuits Design in MTNCL... 17

3.1 Design of the Finite Impulse Response (FIR) Filter .. 17

3.1.1 Generic Ripple Carry Adder Design in MTNCL .. 18

3.1.2 Generic Carry-Save Multiplier in MTNCL .. 21

3.1.3 Delay Units in MTNCL .. 22

3.1.4 FIR Circuit Design and Throughput Optimization ... 24

3.2 Design of the Infinite Impulse Response (IIR) Filter ... 26

	

	

4 The Homogeneous Platform and Dynamic Voltage Scaling ... 28

4.1 Architecture of the Homogeneous Platform ... 28

4.2 DVS for the Homogeneous Platform ... 30

4.2.1 Latency of the MTNCL Pipeline .. 31

4.2.2 Detection of the Input Data Rate .. 32

4.2.3 Pipeline Fullness and Voltage Mapping ... 32

4.2.4 Pipeline Fullness Observation... 34

4.2.5 Workload Prediction Circuit ... 35

4.2.6 Voltage Regulator ... 37

4.3 Homogeneous Platform for Synchronous Circuit .. 38

5 The Heterogeneous Platform and Scalability ... 43

5.1 Heterogeneous Platform Design Overview ... 43

5.2 Architecture of Heterogeneous Platform .. 43

5.3 Multiplexer and Demultiplexer Design with NULL Cycle Reduction 45

5.4 Asynchronous Arbiter Design .. 47

5.5 Platform Cascading .. 48

6 Circuit Fabrication and Results Analysis ... 51

6.1 Simulation of FIR Designs ... 51

6.2 Simulation of the Homogeneous Platform .. 52

6.3 Comparison of the Synchronous and Asynchronous Platforms 55

6.4 Simulation of the Heterogeneous Platform .. 56

6.5 Circuit Fabrication and Measurement ... 60

7 Conclusion ... 66

	

	

8 Reference ... 68

	

	

	

LIST OF TABLES

Table 1 Dual-Rail Encoding in NCL	...	9	

Table 2 Set Function of 27 Fundamental NCL Threshold Gates	...	11	

Table 3 Pipeline Fullness Observation	..	35	

Table 4 Performance and Area Comparison of the Boolean and MTNCL FIR Filters	52	

	

	

LIST OF FIGURES

Figure 1 Symbol of the Threshold Gates in NCL: Th24(left) and Th34W2(right) 10

Figure 2 NCL Threshold Gates Implementation with CMOS Technology 10

Figure 3 NCL Pipeline Architecture ... 12

Figure 4 MTCMOS Power Gating Structure .. 14

Figure 5 MTNCL Gates Structure with Power Gating ... 14

Figure 6 MTNCL Pipeline Architecture ... 15

Figure 7 Early Completion Detection Block in MTNCL Pipeline ... 16

Figure 8 Conventional FIR Filter with Tapped Delay Line .. 18

Figure 9 Full Adder Implementation with MTNCL Gates .. 19

Figure 10 Ripple Carry Adder in MTNCL ... 19

Figure 11 Non-pipelined Carry Save Multiplier in MTNCL .. 21

Figure 12 Pipelined Carry Save Multiplier in MTNCL .. 22

Figure 13 Single-signal Registers with Reset to DATA (left) and Reset to NULL (right) 23

Figure 14 Pattern Delay Shift Register in MTNCL .. 23

Figure 15 Architecture of the FIR Filter .. 24

Figure 16 Two Pipelines in the MTNCL FIR Filter ... 25

Figure 17 Initial States of the MTNCL FIR Filter .. 25

Figure 18 Throughput Optimization of the MTNCL FIR Filter ... 25

Figure 19 Architecture of the MTNCL IIR Filter ... 27

Figure 20 Architecture of the Homogeneous Platform ... 28

Figure 21 Instantiation of the Homogeneous Platform with 4 Cores and Voltage Control Unit . 29

Figure 22 Internal Structure of the Voltage Control Unit .. 31

	

	

Figure 23 FIFO Implementation in MTNCL Pipeline ... 32

Figure 24 Latency Estimation of Three Different MTNCL Pipelines ... 34

Figure 25 State Machine for Work Load Prediction ... 36

Figure 26 Circuit of the Voltage Regulator .. 38

Figure 27 Synchronous Count Part of the Homogeneous Platform .. 39

Figure 28 Demultiplexer in the Synchronous Homogeneous Platform .. 39

Figure 29 Multiplexer in the Synchronous Homogeneous Platform .. 40

Figure 30 Architecture of the FIFO in the Synchronous Homogeneous Platform 41

Figure 31 Architecture of the Heterogeneous Platform .. 44

Figure 32 Demultiplexer in the Heterogeneous Platform ... 45

Figure 33 NCR Multiplexer in the Heterogeneous Platform .. 46

Figure 34 Mutual Exclusion Element (MUTEX) in Transistor-Level Implementation 47

Figure 35 Generic Architecture of N-way MUTEX – A 4-Way Example 48

Figure 36 Cascading of the Heterogeneous Platform ... 50

Figure 37 Performance and Energy Analysis in Homogeneous Platform 54

Figure 38 Distributed Charts of Homogeneous Platform Energy Consumption with DVS 55

Figure 39 Energy Comparison of the Internal Cores in the Homogeneous Architectures 56

Figure 40 Energy Comparison of the Platform in the Homogeneous Architectures 56

Figure 41 Performance and Energy Analysis of the Internal Cores in Heterogeneous Platform . 59

Figure 42 Distributed Charts of Heterogeneous Platform Energy Consumption with DVS 60

Figure 43 Output Logic in the Synchronous FIR Chip ... 61

Figure 44 The Physical Layout of the FIR Boolean Design in MITLL 90nm Process 61

Figure 45 The Physical Layout of the FIR MTNCL Design in MITLL 90nm Process 61

	

	

Figure 46 The Physical Layout of Homogeneous Platform in MITLL 90nm Process 62

Figure 47 Hardware Testing Setup with FPGA, Level Shifter and Testing PCB......................... 63

Figure 48 Performance and Energy Consumption of the Boolean FIR in MITLL Tapeout 63

Figure 49 Performance and Energy Consumption of the MTNCL FIR in MITLL Tapeout 64

Figure 50 Performance and Energy Consumption of the Homogeneous Platform in MITLL

Tapeout ... 65

	

	

	

	

1
	

1 Introduction

As the transistor size is pushing up against physics limits in the late-Moore era, energy is

replacing performance as the top priority in circuit design considerations. The design landscape

for digital integrated circuit (IC) has changed from the one driven by performance to one driven

by energy or more-balanced goals. This shift requires next-generation circuits to be flexible and

adaptive to ever-widening application requirements. Asynchronous circuits, without global clock

as its synchronous counterpart, demonstrate distinctive resilience for the tradeoffs between energy

and performance. As highlighted in the International Technology Roadmap for Semiconductors

(ITRS), the advantages of asynchronous design include dealing with the power and thermal

bottlenecks, less electromagnetic interface (EMI), and tolerating process variations and external

voltage fluctuations in a wider region, as multibillion-transistor chips and multi-core architectures

are targeted [1]. This dissertation work is to develop and explore adaptive system architecture of

the asynchronous circuits with the following features:

1) Performance – In synchronous circuits, a fixed clock period is chosen based on the worst-case

timing between the pipeline stages. However, in asynchronous pipeline, subsystems are only

synchronized locally by the handshaking protocols between them, which are referred to as self-

timed systems [2]. The subsystem consumes the output produced by the previous subsystem

as soon as they are generated, without waiting for the global clock toggling. Therefore,

asynchronous circuits are widely accepted for the average-case performance rather than the

worst-case as in synchronous ones [3];

2) Energy efficiency – CMOS circuits have the active and static energy consumption when

	

2
	

processing data and static power consumption when they are idle. A periodic clock will force

the circuit to be active even though there is no new data for processing. Clock gating is a

common method for migrating the energy overhead caused by undesired clock toggling in the

idle mode. However, external control and observation blocks are required to manipulate the

clock, which will deteriorate the energy efficiency and performance [4]. Without the global

clock, only the subsystems that are active will dissipate power in asynchronous circuits. For

the leakage reduction, power-gating mechanism can also be implemented in asynchronous

circuits using the handshaking signals without extra control blocks as in synchronous ones;

3) Scalability. The self-timed nature of asynchronous circuit avoids the clocked related issues in

the synchronous counterpart. Each asynchronous subsystem is functional module containing

both timing and data information explicitly in the interfaces. Without global timing analysis

and clock-based sequencing [5], it is easy to compose asynchronous blocks into large systems.

1.1 Techniques for Throughput Improvement and Power Reduction

Besides the intrinsic characteristics of the asynchronous logic, advanced techniques, e.g.,

parallelism, dynamic voltage scaling (DVS), and sub-threshold operations, show more promising

results when applied to asynchronous circuits for ultra-low power applications.

1.1.1 Dynamic Voltage Scaling

DVS is the key for real-time energy optimization in adaptive systems. The active power

dissipated by a chip using static CMOS gates can be expressed as ௗܲ௬௡ ൌ ௅ܥ ஽ܸ஽
ଶ ݂ , where C is the

capacitance being switched per operation; V is the supply voltage and f is the switching frequency.

The active power consumption of the circuit can decrease quadratically as supply voltage scales

	

3
	

down. This technique was first introduced for low-power operation using self-timed circuits in [6],

with FIFO buffers inserted for state detecting and dynamic voltage scaling. An Asynchronous

Array of Simple Processors (AsAP) chip [7], designed and fabricated by the VLSI Computation

Laboratory at the University of California, Davis, is implementing a similar technology for power

reduction. In the synchronous systems, the voltage scaling range is limited to guarantee the circuit

working properly under the related timing issues. A research conducted by [8] indicates that an

18×18 multiplier at 90 MHz has an error rate of 1.3% with the energy saving of 35% when scaling

down the voltage from 1.8V to 1.38V. Adaptive Voltage Scaling (AVS) is used to control the

supply voltage for the actual requirements – when the voltage scales down, the frequency decreases

for timing closure. For chip multiprocessors (CMPs), a variation-aware technique is introduced in

[9] and several multi-core voltage-frequency island (VFI) strategies are evaluated in [10]. Panoptic

Dynamic Voltage Scaling (PDVS), a fine-gained DVS framework, is presented in [11] to use of

Local Voltage Dithering (LVD) into sub-threshold mode for additional energy savings [12].

Learning based DVS, employing a machine learning approach for temperature, performance and

energy management, is proposed in [13]. Due to the additional hardware cost and associated

control to minimize energy, synchronous systems employing DVS typically have a small set of

voltage-frequency pairs and have to mitigate the effects of process variation, thermal variation and

timing fluctuations caused by DVS itself. In [14], asynchronous data path across voltage domains

is developed for multi-rate signal processing applications. Activity detection [15] is applied to

asynchronous network-on-chip (ANOC) nodes for voltage scaling and static power reduction.

1.1.2 Throughput Improvement

Throughput refers to the rate at which new data can be input to the system, and similarly,

the rate at which new outputs appear from the system. Pipelining is commonly used in synchronous

	

4
	

circuits to improve the system throughput, with the drawback of increasing latency. In synchronous

pipelined circuits, the clock rate depends on the worst-case timing between the pipeline stages;

while in asynchronous circuits, the throughput and latency depend on the actual computing time

of each pipeline stage, which are data dependent and lead to the average case performance.

However, asynchronous pipelines usually have additional components for handshaking generation

or spacer insertion between data, which degrade the pipeline performance. Parallelism is the most

commonly used computing architecture for throughput improvements. The original concept of

parallelism is to use more than one hardware copies with lower throughput instead of a single one

with higher throughput. By dispatching the input data to the copies and merging at the output,

parallel architecture can achieve a maximum speed up limited by the Amdahl’s law. The advanced

scheme of parallel computing is the heterogeneous architecture with multiple functionalities. Each

of the computing unit can maintain independency and best-case performance. With asynchronous

circuit design methodology, preliminary research [16] indicated that parallelism can apply to

NULL Convention Logic (NCL) [17] systems for improved performance and energy consumption.

1.1.3 Sub-threshold Operation

Transistors in digital circuits normally operate in strong inversion where drift current is

dominant. For transistor operating in the sub-threshold regime, the gate voltage is lower than the

threshold voltage. As a result, the surface potential is controlled by the depletion region which is

nearly constant from the source to the drain leading to close to zero drift current. Therefore, the

transistor’s on-state current is dictated by the diffusion of minority carriers instead of drift current

[18]. Sub-threshold regime is also called weak inversion, which is more power efficient than

operating in strong inversion for the drift current being eliminated.

	

5
	

Lowering down the supply voltage seems to be a straightforward way to take advantage of

the power efficiency of sub-threshold transistors. However, with the supply voltage scaling down,

the sub-threshold leakage current will increase significantly [19]. Compared to bulk silicon,

FDSOI (Fully Depleted Silicon-On-Insulator) provides up to 90% [20] lower junction leakage and

full dielectric isolation of the transistor, making it suitable for low power CMOS applications.

Combining the advantages of FDSOI with transistors optimized for sub-threshold operation, the

dynamic power and leakage power are reduced while maintaining the performance of digital

systems.

1.2 Proposed Research and Approach

The proposed research is to develop a design methodology and platform utilizing

asynchronous logic for designing digital signal processing unit capable of achieving the optimal

energy-performance tradeoff in dynamic operations across a wide range of applications. Parallel

architecture, dynamic voltage scaling, and sub-threshold operateability, are incorporated. The

major features of the digital processors designed using the proposed methodology include:

1) Adaptive – the designed asynchronous systems are capable of adjusting the supply voltage

based on real-time workload. When input data rate is fast, the supply voltage to the core is

raised to boost performance; when input data rate is slow, the cores enter sleep mode and the

supply voltage is lowered to reduce power consumption, which could become even lower with

sub-threshold operation. While input data rate detection is not a trivial task for synchronous

systems and often requires complicated logic, it is inherent for the proposed asynchronous

systems since the handshaking signals naturally serve for this purpose;

2) Optimal energy consumption – The proposed methodology is capable of achieving optimal

	

6
	

energy consumption in the designed processors while operating in active and idle modes. The

throughput-based system status detection and workload prediction algorithm guarantee

optimal operations of the cores integrated on the platform. The dynamically adaptive scaling

based on real-time workload and system status ensures the system only consumes the amount

of active energy needed to maintain the required performance. Power gating mechanism is

incorporated in the circuit paradigm for leakage reduction in idle or near-idle mode operation.

3) Highly reliable – the proposed asynchronous system is correct-by-construction, where the

system’s outputs are always correct as long as the transistors can switch properly. Timing

variances induced by process variation, temperature change, or voltage fluctuation, which

require sophisticated timing analysis and large timing margins in synchronous systems, have

little or no impact to the functionalities of the asynchronous systems. It is especially important

for DVS to ensure no data is lost during the adjustment of system performance.

4) Large-scale heterogeneous integration – the proposed methodology can be adopted to design

asynchronous processors suitable for a large variety of applications. The number of internal

nodes can also be increased or decreased to accommodate load variation and number of inputs.

Heterogeneous scalability is enabled to use components with different functionality. Due to

the local handshaking feature of the asynchronous circuit, two data routing protocols are

developed to scale vertically or horizontally.

The design methodology is developed and utilized during the completion of the grant from

the National Science Foundation (NSF). MIT Lincoln Laboratory (MITLL) sponsored the 90nm

FDSOI tapeout for the design. The tapeout was focused on creating the components for the

homogenous platform and its adaptive control blocks.

	

7
	

1.3 Dissertation Organization

Chapter 2 provides the background information introducing the asynchronous paradigm

adapted by this work. Chapter 3 contains the design and throughput optimization approach of the

computing units in the asynchronous circuitry. Chapter 4 presents the architecture of the adaptive

homogeneous platform with Dynamic Voltage Control and load prediction algorithm. Chapter 5

presents the architecture of the heterogeneous platform that can be scaled horizontally and

vertically. Chapter 6 contains the simulation results for both the homogeneous and heterogeneous

architectures as well as the physical testing of the asynchronous circuits and the homogeneous

platform. Chapter 7 summarizes the findings and concepts discussed in this dissertation, and

examines future possibilities of this work.

	

8
	

2 Background

2.1 Asynchronous Circuits

Asynchronous circuits, or self-timed circuits, are sequential digital logic circuits without a

global clock signal. The design styles of asynchronous circuits vary from the bounded-delay model

to the delay-insensitive model. In the bounded-delay model, it assumes that given enough time, a

sub-circuit will have settled in response to an input and a new input can procedure safely [21].

Different from the bounded-delay asynchronous model, delay-insensitive circuits are correct by

construction, assuming unbounded delays in both elements and wires. However, arbitrary gate and

wire delay can exist in the circuit, which makes the timing model too restrictive to design practical

circuits [22]. Quasi-Delay-Insensitive (QDI) logic emerged in the middle of 1980s with an

assumption that the wire delays are negligible compared to gate delays. It partitions wires into

critical and non-critical paths [23, 24]. For the non-critical path, there is no timing assumption,

while in the critical wires the skew between different branches is assumed to be smaller than the

minimum gate delay. With those assumptions, QDI methodology is widely adopted by the

asynchronous community for circuit design.

2.2 NULL Convention Logic (NCL)

NULL Conventional Logic (NCL) is one of the QDI asynchronous paradigms. To achieve

delay-insensitivity, NCL circuits utilize multi-rail encoding; and the most prevalent multi-rail

scheme is dual-rail [25]. In dual-rail encoding, the two data transition wires encoded in such a way

that one more value ‘no data’ called NULL state can be transmitted in addition to the actual data

values. As shown in Table 1, the encoding is one-hot: dual-rail encoding with ‘00’ being the NULL

and ‘10’, ‘01’ corresponding to TRUE and FALSE, respectively. The other combination ‘11’ is

	

9
	

invalid in dual-rail encoding.

Table 1 Dual-Rail Encoding in NCL

 DATA0 DATA1 NULL INVALID

Rail0 1 0 0 1

Rail1 0 1 0 1

NCL circuits are composed of 27 fundamental logic gates, which are named as threshold

gates. The idea of NCL threshold gates was proposed by Theseus Logic, Inc. [26]. By using

arbitrary m-of-n threshold gates with hysteresis, it reduces the implementation complexity with

QDI logic. Each gate transitions from logic0 to logic1 only when a certain threshold of asserted

inputs is achieved. The generic threshold gate is named as THmn, with m as the threshold and n

as the inputs. The output will be set high when any m inputs have gone high and be set low when

all inputs are low. So the C-element and Boolean OR gates can be seen as n-of-n and 1-of-n

threshold gates with hysteresis. For example, a TH24 is a four-input gate that requires two or more

to be asserted before the output is asserted. The symbol for the TH24 is shown below in Figure

1(left). As a variation of the basic threshold gates, weighted threshold gates are used to indicate

special functionality, donated as THmnWw1w2…wR, where 1 < wR ≤ m. The values of w1,w2,…wR

indicate the weights of the inputs in order, i.e., w1 is the weight of the first input A, w2 is the weight

of the second input B, etc. For example, a TH34w2 is a gate with four inputs that asserts its output

when a threshold of three is achieved; due to the weighted inputs on this gate, the A input has a

weight of two, thereby only requiring one other input asserted to assert the output. The B, C and

D inputs have a weight of one, and therefore are not indicated in the list of weights. This concept

is greatly simplified by studying the symbol assigned to weighted threshold gates, as shown in

Figure 1(right).

	

10
	

Th24

A

B
Z

D

C
Th34w2

A

B
Z

D

C

Figure 1 Symbol of the Threshold Gates in NCL: Th24(left) and Th34W2(right)

NCL threshold gates may also include a reset input to initialize the output, which are

referred as the resettable gates. Resettable gates are used to design the shift registers in the NCL

circuit. An N or D is added to the gate notation, along with the gate’s threshold, referring to the

gate being reset to logic 0 or logic 1, respectively [27].

reset hold0

set hold1

VDD

Z

Figure 2 NCL Threshold Gates Implementation with CMOS Technology

As shown in Figure 2, an NCL threshold gate can be implemented using CMOS technology

with 5 blocks: set, reset, hold0, hold1 and the output inverter [28]. The set equation indicates how

the gate will be asserted, with hold1 as its complement. The Reset equation indicates how the gate

will be de-asserted, with hold0 as its complement. For the commonly used 27 gates shown in Table

2, all the set equations are listed. The reset equation for the threshold gates is the AND function

of each input’s inversion; for all the inputs needs to be de-asserted before the output node switches

	

11
	

from logic ‘1’ to ‘0’.

Table 2 Set Function of 27 Fundamental NCL Threshold Gates

NCL Gate Set Function
TH12 A+B
TH22 AB
TH13 A+B+C
TH23 AB + AC + BC
TH33 ABC

TH23w2 A + BC
TH33w2 AB + AC

TH14 A+B+C+D
TH24 AB + AC + AD + BC + BD + CD
TH34 ABC + ABD + ACD + BCD
TH44 ABCD

TH24w2 A + BC + BD + CD
TH34w2 AB + AC + AD + BCD
TH44w2 ABC + ABD + ACD
TH34w3 A + BCD
TH44w3 AB + AC + AD
TH24w22 A + B + CD
TH34w22 AB + AC + AD + BC + BD
TH44w22 AB + ACD + BCD
TH54w22 ABC + ABD
TH34w32 A + BC + BD
TH54w32 AB + ACD
TH44w322 AB + AC + AD + BC
TH54w322 AB + AC + BCD

THxor0 AB + CD
THand0 AB + BC + AD

TH24comp AC + BC + AD + BD

2.3 NCL Pipeline

NCL pipeline is a derivation of the micro-pipeline framework in [29]. In the pipelined

circuit using dual-rail encoding, it is assumed that every two consecutive data cycles are always

	

12
	

separated by a spacer. The data validity is determined by examining the data wires using NOR

gates and C-elements, which referred as completion detection. To maintain delay-insensitivity,

NCL uses a special register, denoted as delay insensitive (DI) register to perform the necessary

handshaking in the asynchronous sequential operation. As shown in Figure 3, similar to the

Boolean pipeline, the registers are put at the input and output of the combination logic to form one

pipeline stage. Two adjacent register stages interact through their request and acknowledge signals,

Ki and Ko, to ensure the two DATA cycles are always separated by a spacer.

DI Register

KiKo

NCL
Combinational

Logic

DI Register

KiKo

Completion
Detection

NCL
Combinational

Logic

DI Register

KiKo

Completion
Detection

Completion
Detection

DATAIN DATAOUT

Ko

Ki

Figure 3 NCL Pipeline Architecture

Ki acts as the request signal indicating weather DATA or NULL should be passed through

the register in the next stage. For example, if the register accepts Ki being ‘1’ as the input, only

DATA is allowed to pass. Conversely, the circuit must pass a NULL when Ki is ‘0’. Ko acts as the

acknowledge signal and indicates which wavefront the register requires next. When Ko is ‘0’,

which is Request for NULL (rfn), indicating a DATA has been received. On the other side, Ko is

‘1’, which is Request for DATA (rfd), after a complete NULL cycle has been received. The time

it takes the circuit to finish one cycle of operation is called the DATA-to-DATA cycle time, which

is denoted as Tdd. Since the asynchronous circuit has an average-case performance, the Tdd is a

dynamic time and can variant from cycle to cycle [30]. The average value of Tdd in the testbench

is used to compare with the synchronous clock through this dissertation research.

	

13
	

Two special requirements in the NCL circuit, Input-Completeness [31] and Observability

[32], prevent the NCL circuit can be easily adopted by commercial CAD tools. Input-

Completeness requires that all outputs of a combinational circuit may not transition from NULL

to DATA or NULL to DATA before a complete input set arrives. Observability requires only the

transitions that are used to determine the output exist in the current DATA cycle. Otherwise, an

orphan [31] may propagate through a gate and cause unpredictability.

2.4 NCL with Multi-threshold CMOS Technology

Multi-threshold technology is commonly used as power-gating mechanism in the

synchronous design by utilizing transistors with different threshold voltages (Vt). Low-Vt

transistors are faster but have high leakage, whereas high-Vt transistors are slower but have far

less leakage current. In an MTCMOS circuit, the high-Vt transistors are used in the power path to

shut down the leakage when the circuit is idle; and the low-Vt transistors are used in the data path

to maintain the speed when the circuit is processing data [33]. The high-Vt transistors are

controlled by a sleep signal. As shown in Figure 4, the sleep signal is de-asserted during active

mode; the low-Vt logic will be able to process data with power and ground connected. When the

circuit is idle, the sleep signal is asserted, disconnecting power from the data processing circuit

with low-Vt transistors. However, when the data processing circuit is large, it is difficult to size

the sleep transistors for large power supply. A fine-grained architecture is developed by utilizing

NCL in conjunction with the MTCMOS technique in [34].

	

14
	

sleep

Low‐Vt Logic

High‐Vt

N‐MOS

VDD

sleep

High‐Vt

P‐MOS

Figure 4 MTCMOS Power Gating
Structure

Hold0
(High‐Vt)

Set
(Mixed‐Vt)

VDD

Z

Sleep

Figure 5 MTNCL Gates Structure with
Power Gating

In the Multi-Threshold NCL (MTNCL) family, all threshold gates in NCL are incorporated

with the MTCMOS structure. The sleep mode in MTNCL circuit is redefined as pulling the output

node to ground, rather than letting the output float. The observation is based on that in the NULL

state of the NCL with all the output nodes grounded. So the sleep mode of MTNCL circuits is

equivalent to the NULL cycle, which can significantly simplify the threshold gate design. As

shown in Figure 5, the reset block in the NCL threshold gates is no longer needed, since the gate

output will be forced to NULL in the sleep mode. Hold1 block, which is the complement of the

reset block and guarantees input-completeness with respect to the NULL wavefront, is no longer

required either. With the improved methods, all threshold gates in NCL can be implemented with

fewer transistors and the Input-Completeness and Observability requirements in NCL circuit

design can be eliminated.

	

	 15

2.5 MTNCL Pipeline

sleep

 Comp
Ko Ki

sleep

Regm

sleep

 Comp
Ko Ki

sleep

Regm

sleep

Ko

Sleepin

MTNCL
 Combinational Logic

sleep

 Comp
Ko Ki

sleep

Regm

sleep

Sleepout

Ki

MTNCL
Combinational Logic

DATAOUTDATAIN

Figure 6 MTNCL Pipeline Architecture

The framework for the MTNCL pipeline architecture is shown in Figure 6. When all

MTNCL gates in a pipeline stage are in sleep mode, all gate outputs are forced to ground. It is

equivalent to the pipeline being in the NULL state. Early Completion Detection [35] is used to

further improve the throughput as well as maintain delay insensitivity in the pipeline architecture.

The handshaking signals Ko and Ki in the NCL pipeline can naturally serves as the sleep control

signal in the MTNCL pipeline. As shown in Figure 7, the output of the completion logic, Ko, is

used to sleep the combinational MTNCL logic for the subsequent stages as well as the DI register

and completion logic. Initially, the circuit elements in the MTNCL pipeline are in NULL state

with all the Kos in rfd. After the first DATA wavefront presents on the input ports, the completion

circuit will deassert Ko to rfn, which wakes up the subsequent register and combinational logic to

propagate the input DATA. The deasserted Ko will hold its value until following NULL wavefront

presents on the input ports and the completion logic is forced to sleep by the sleeping signal. When

Ko is asserted to rfd, the subsequent register and combinational logic will be forced to sleep, thus

generating a NULL wavefront. The DATA/NULL cycle continues repeatedly to fill all the pipeline

stages before the first valid data presents on the output ports.

	

	 16

th12m

D[0].rail0

D[0].rail1

th12m

D[1].rail0

D[1].rail1

th12m

D[n].rail0

D[n].rail1

Andtree
(th44m)

th22

sleep

Ki

Ko

Figure 7 Early Completion Detection Block in MTNCL Pipeline

	

	 17

3 Digital Signal Processing Circuits Design in MTNCL

3.1 Design of the Finite Impulse Response (FIR) Filter

In digital signal processing (DSP), an FIR filter is the convolution of the input sequence

and a time-reversed copy of a known pulse-shape, which is defined as the coefficients. For a causal

discrete-time FIR filter with N taps, each value in the output sequence is the sum of the most recent

input values multiplied by the coefficients, as shown in equation (1):

ሺ݊ሻݕ ൌ ሾ݊ሿݔ଴ܥ ൅ ሾ݊ݔଵܥ െ 1ሿ ൅	൉൉൉ 	൅ܥேݔሾ݊ െ ܰሿ ൌ ∑ ௜ܥ
ே
௜ୀ଴ ൉ ሾ݊ݔ െ ݅ሿ (1)

where:

 ;ሾ݊ሿis the input signalݔ

 ;ሺ݊ሻis the output signalݕ

ܰ is the filter order; a Nth-order filter has (N+1) terms on the right-hand side;

 .is the coefficient of the impulse response at the ith instant of a Nth-order FIR filter	௜ܥ

For the hardware implementation, an FIR filter can be built with three digital elements, i.e., a

unit delay component, a multiplier, and an adder. The unit delay updates its output once per sample

period, using the value of the input as its new output value. By cascading a set of delay units to

form a delay chain, the input sequence ݔሾ݊ሿ, ሾ݊ݔ െ 1ሿ, … ሾ1ሿݔ can be accessed. The output

sequence on the delay line is scaled by the coefficients, which are constants in most DSP

applications for the multiply operation. Figure 8 shows a conventional tapped delay line realization

of an FIR filter in synchronous logic.

	

	 18

DFF
X(n)

× × ×

+ +

×

+
Y(n)

DFF DFF

C0 C1 C2 Cn

Figure 8 Conventional FIR Filter with Tapped Delay Line

3.1.1 Generic Ripple Carry Adder Design in MTNCL

The combinational logic of the ripple carry adder is a serial connection of the full adders.

The MTNCL registers are inserted at the input and output ports of the combinational logic to form

the generic design. The Sum of Product (SOP) of the full adder in NCL can be presented by the

equation shown in equation (2), with X and Y as the single bit input and the CIN as the carry in bit.

The sum S and carry out COUT are mapped to the output of TH23 and TH34w2 gates in MTNCL.

To separate form the NCL gates, suffix ‘m’ is used in the MTNCL gates, as shown in Figure 9.

଴ܷܱܶܥ	 ൌ 	ܺ଴ܻ଴	 ൅	ܰܫܥ଴ܺ଴	 ൅	ܰܫܥ଴ܻ଴			

ଵܷܱܶܥ ൌ 	ܺଵܻଵ	 ൅	ܰܫܥଵܺଵ ൅	ܰܫܥଵܻଵ		

ܵ଴ ൌ 	ܺ଴ܻ଴ܰܫܥ଴ ൅	ܺ଴ܻଵܰܫܥଵ ൅	ܺଵܻ଴ܰܫܥଵ ൅	ܺଵܻଵܰܫܥ଴		

ܵଵ ൌ 	ܺ଴ܻ଴ܰܫܥଵ ൅	ܺ଴ܻଵܰܫܥ଴ ൅	ܺଵܻ଴ܰܫܥ଴ ൅	ܺଵܻଵܰܫܥଵ		 (2)

	

	 19

th23m

X.rail0

th34w2m

Y.rail0

CIN.rail0

X.rail1
Y.rail1
CIN.rail1

COUT.rail0

S.rail1

th23m

X.rail1

th34w2m

Y.rail1

CIN.rail1

X.rail0

Y.rail0
CIN.rail0

COUT.rail1

S.rail0

sleep

sleep

Figure 9 Full Adder Implementation with MTNCL Gates

sleep

 Comp1

sleep

Regm1

sleep

 Comp2

sleep

Regm2

sleep

Ko

Sleepin

Ripple Carry Adder
(comb)

Sleepout

Ki

PX&Y

Kor1

Buffer for the sleep signal

Figure 10 Ripple Carry Adder in MTNCL

Figure 10 shows the ripple carry adder with single pipeline stage. The register (regm) and

completion detection block (comp) are placed at the input and output of the combination logic

(comb). Initially, all the handshaking signals are ‘1’ and the internal data path are in NULL state.

Since Ko is ‘1’ and is requesting for data (rfd), a DATA cycle appears on the input path and the

	

	 20

sleepin is changed to ‘0’. Then the DATA will be evaluated by the comp1 and the Ko will toggle

to ‘0’ after the evaluation time, which can be defined as ௖ܶ௢௠௣_ௗ௔௧௔௜௡. Ko also severs as the sleep

signal of regm and comp, which may have large input capacitance. In that case, buffers are

necessary to drive the sleep pins in comb and regm, as shown in Figure 10. Even a buffer chain

can be designed by analyzing the logic effort of the sleep path in the MTNCL gates; the buffer

delay (௦ܶ௟௘௘௣_௕௨௙) dominates the latency of the pipeline when the combinational logic is huge.

After the buffer delay, regm and comb ‘wake up’ after sleep is ‘0’ and DATA can propagate

through the register and be evaluated by the ripple carry adder. The evaluation time can be defined

as ௖ܶ௢௠௕. During the evaluation phase, the NULL cycle has already arrived at the input port X and

Y and sleepin is switched to be ‘1’. However, the null cycle cannot be propagated until the output

data from the comb got evaluated by the comp2 in Figure 10 and Ko is changed to ‘0’. So during

the NULL cycle, the data evaluation time of comp2, which is defined as ௖ܶ௢௠௣_ௗ௔௧௔௢௨௧, need to

be considered. Then the Ko can change to ‘1’ and put the regm and comb to ‘sleep’, after the delay

of ௦ܶ௟௘௘௣_௕௨௙. Once the sleep signal is ‘1’, all the MTNCL gates in the circuit are grounded to

generate the NULL wave. The delay of the NULL wave generation is small and ignored in the

throughput estimation. The DATA to DATA cycle of the ripple carry adder with single pipeline

stage is presented in equation (3).

ௗܶௗ ൌ 	 ௖ܶ௢௠௣_ௗ௔௧௔௜௡ ൅ 2 ൈ ௦ܶ௟௘௘௣_௕௨௙ ൅ ௖ܶ௢௠௕ ൅	 ௖ܶ௢௠௣_ௗ௔௧௔௢௨௧ (3)

And the estimated pipeline throughput is shown in equation (4).

ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ 	 ଵ

்೏೏
 (4)

	

	 21

3.1.2 Generic Carry-Save Multiplier in MTNCL

A 4×4 bits multiplier with Carry Save Adders (CSA) is the typical design from [36, 37]. The

propagation delay for this multiplier is 8 ×	 ிܶ஺+	 ஺ܶே஽, where ிܶ஺ is the propagation delay of the

full adder and 	 ஺ܶே஽ is the delay of the 2 input AND gate. The CSA is combination of the Full

Adder and an AND gate, but the AND gates are not on the critical path except the first CSA. For

the throughput estimation, the delay of this circuit is considered as 8 ×	 ிܶ஺.

Using the same architecture of the single pipelined ripple carry adder, the implementation of

the generic multiplier in MTNCL is straightforward. As shown in Figure 11, even the delay of the

combination logic is multiple full adder delays in this architecture. The throughput of the design

is very low for a long buffer chain is needed to drive the huge combination logic. For the 8×8 bits

implementation, the Tdd is almost doubled comparing to the 16×16 bits ripple carry adders with

the same architecture.

sleep

 Comp1

sleep

Regm1

sleep

 Comp2

sleep

Regm2

sleep

Ko

Sleepin Sleepout

Ki

PX&Y

Buffer for the sleep signal

Carry Save Adders + Full Adders
 (comb)

Figure 11 Non-pipelined Carry Save Multiplier in MTNCL

The throughput of the generic multiplier can be improved by adopting more pipeline stages.

For the Boolean design, inserting registers in the critical path to divide the propagation delay

evenly will double the throughput. The same strategy is applied to the MTNCL architecture as

	

	 22

shown in Figure 12. From equation (3), the Tdd of the MTNCL pipeline is not only determined by

the delay of the combination logic. For the two pipeline stages in Figure 12, ௖ܶ௢௠௣_ௗ௔௧௔௜௡ ,

௖ܶ௢௠௣_ௗ௔௧௔௢௨௧ and ௖ܶ௢௠௕ are the same. But the combination logic in stage 1 is much larger than

the combination logic in stage 2. After buffering the sleep signal, ௦ܶ௟௘௘௣_௕௨௙ଵ	 will be larger than

௦ܶ௟௘௘௣_௕௨௙ଶ. Since the circuit throughput is constrained by the maximum Tdd in the pipeline stages;

the throughput of the two pipelined architecture will be deteriorated as the number of input bits

scale up. However, when the number of input bits is fixed as 8, the combination logic in the two

pipeline stages can be driven by the same buffer. With the balanced Tdd in the two pipeline stages,

the throughput is improved by partitioning the combination logic.

sleep

 Comp1

sleep

Regm1

sleep

 Comp

sleep

Regm

sleep

Ko

Sleepin

Carry Save Adders
(comb1)

sleep

 Comp2

sleep

Regm2

sleep

Sleepout

Ki

Full Adders
(comb2) PX&Y

Pipeline stage 1 Pipeline stage 2

Figure 12 Pipelined Carry Save Multiplier in MTNCL

3.1.3 Delay Units in MTNCL

The Delay Units in the synchronous circuit are shift registers, which are a serial of D Flip-

Flops with previous output connected to the next input. When the clock rises, the data will go

through the data path. However, the asynchronous pipeline is incapable of building the shift

register as in the synchronous one. The initial states for the registers are logic 0 with reset and

logic 1 with set in the synchronous circuit, while the registers in MTNCL all go to NULL and Ko

goes to rfd after reset. To maintain the DATA/NULL pattern in the delay chain, a new type of

	

	 23

MTNCL register is built in with the resettable TH12m gates. As shown in Figure 13, the left

register, Regdm, is initialized with DATA0 after reset, which could also be designed to reset with

DATA1 by reversing the dual rails. The right register, Regnm, is initialized to NULL state after

reset. Besides the registers, the completion logic is redesigned by replacing the last component

TH22 in Figure 7 with TH22d and TH22n to form the Compn and Compd components in the

pattern delay shift registers shown in Figure 14. In the pipelined architecture, the Compd

component will be reset to rfd and the Compn component will be reset to rfn initially to maintain

the proper data flow in the shift register.

Figure 13 Single-signal Registers with Reset to DATA (left) and Reset to NULL (right)

 Compd
Ko Ki

sleep

Regnm

sleep

 Compn
Ko Ki

sleep

Regdm

sleep

rfd

 Compd
Ko Ki

sleep

Regnm

sleep

NULL DATA

rfn rfd rfn

Figure 14 Pattern Delay Shift Register in MTNCL

	

	 24

3.1.4 FIR Circuit Design and Throughput Optimization

The individual components, including the shifter register, the adders and the multipliers,

compose a tap-generic FIR filter with fixed 8-bit input. The structure is shown in Figure 15. There

are two pipeline stages in this architecture as marked in Figure 16, the bottom one convolutes the

input data and the top one shifts the input data. This circuit works and produces correct result. But

the throughput is not optimized.

Z‐1 Z‐1 Z‐1 Z‐1
Xin

Yout

Figure 15 Architecture of the FIR Filter

For the two pipelines architecture, after reset, the data path in the bottom one are all in ‘NULL’

cycle. While the data path in the top pipeline is reset to ‘DATA’ and ‘NULL’ patterns for it was

designed as the pattern delay shift register. The bottom pipeline is considered as ‘empty’ and the

top pipeline as already ‘full’ after reset. The DATA can propagate through an ‘empty’ pipeline but

need to extrude a DATA to enter a ‘full’ pipeline, as shown in Figure 17. When the first external

data comes into the pipelines, it propagates through the bottom pipeline but blocks at the first

register in the top pipeline. After propagation delay of the bottom pipeline, which is the latency in

a pipeline circuit, the top pipeline can move forward and those two pipelines will be able to take

in next data. So the throughput of this architecture is the reciprocal of the latency, rather than the

	

	 25

maximum Tdd in the pipeline stages.

Xin

Yout

R S R S R S

Top Pipeline

Bottom Pipeline

Figure 16 Two Pipelines in the MTNCL FIR Filter

Xin

Yout

R S R S R S
NULL DATA NULL DATA NULL DATA

NULL NULL NULL

Figure 17 Initial States of the MTNCL FIR Filter

Xin

YoutNULL NULL NULL NULL

R S R R R S R R R S R R

N D N N N D N N N D N N

Figure 18 Throughput Optimization of the MTNCL FIR Filter

To improve the throughput caused by the latency of the circuit, multiple pipelined stages with

	

	 26

NULL cycle initialization are implemented in the top pipeline, as shown in Figure 18. After reset,

the top pipeline has the same number of ‘NULL’ cycles as the bottom one, then the DATA in the

top pipeline can move forward after internal data comes in.

3.2 Design of the Infinite Impulse Response (IIR) Filter

Different with the feeding forward structure in the FIR filter, the IIR filter has a recursive

structure. The feedback from the output is used in the next convolution stage, which may lead to

unstable output. The recursive part of the IIR filter is implemented in the MTNCL circuit. To

prevent the output going to infinite, the digitals in the data flow are encoded in a fixed point number

with fractional bits, which is called Q format in the arithmetic requiring constant resolution. In

the IIR circuit, the input and output bits are all constrained to 16. The data format is Q1.15 with a

range of [-1, 1) with a resolution of	2ିଵହ.

The IIR architecture also requires multipliers, adders and the delay chain. Since the data format

in IIR circuit is signed, the generic multiplier and adder used in the FIR circuit are changed to

adopt the signed value operation. The multiplier is changed to Baugh-Wooley architecture [38]

with the 2 pipeline stages. An overflow detection bit is added to the generic adder to indicate when

there is an overflow in the addition. The delay chain is kept exactly the same as the FIR design for

throughput optimization. Since the data width is 16 bits in the IIR, the maximum delay in the

circuit is the 2-stage multiplier. The architecture of the IIR filter is shown in Figure 19.

	

	 27

DATAIN Adder

Coefficient[0]

Mult

Mult

Regm

Regm RegmMult

Adder

Adder

Adder

Coefficient[1]

Coefficient[3]

DATAOUT

Regm RegmMult
Coefficient[n]

Figure 19 Architecture of the MTNCL IIR Filter

	

	 28

4 The Homogeneous Platform and Dynamic Voltage Scaling

4.1 Architecture of the Homogeneous Platform

To further improve the throughput of the asynchronous circuit, a homogeneous platform is

designed for data processing. The platform can incorporate multiple cores with the same

functionality. As an example, with 4 FIR cores incorporated, the first data will be processed by the

first core, the second data will go to the second core, and the third and fourth data will be assigned

to the third and fourth core for processing, respectively. When the fifth data comes, it will wait until

the first core is ready. So the throughput of the platform could be 4 times better than the single core.

It is a tradeoff between area and performance. The homogeneous platform architecture is shown in

Figure 20 with top-level components. Besides the computing cores, demultiplexer and input

sequence generator are designed to dispatch input data while the multiplexer and output sequence

generator guarantee the proper data exit the platform. For the physical implementation in this

tapeout, four 8-tap asynchronous FIR filters are incorporated as the processing units.

core 1
(pipes = p)

Ko

D
E
M
U
X

core n
(pipes = p)

Ko

M
U
X

Ki

Input Output

Ki

Ki

 Input Sequence
Generator

S1 Sn

S1 Sn

Ko

 Output Sequence
Generator

Sn S1

Ko

Ki Ki
Ki

Figure 20 Architecture of the Homogeneous Platform

	

	 29

Ko

Input

DEMUX MUX

 Input Sequence
Generator

Output Sequence
Generator Ki

I

Ko

C

D

S1 S2

S1 S2 S1S2

Ko

Ko

Ki

Ki

Ki

C

D

Z Output

KiS3 S4

S3 S4

A

B

A

B

S3S4

Ki

Voltage Control
Unit

Cores’ VDD

Ko Ki

Core1
(Pipes = p)

Ko Ki

Core2
(Pipes = p)

Ko Ki

Core3
(Pipes = p)

Ko Ki

Core4
(Pipes = p)

Ko Ki

VDD

VDD

VDD

VDD

Input

Figure 21 Instantiation of the Homogeneous Platform with 4 Cores and Voltage Control Unit

Although the throughput of the MTNCL circuit could be significantly improved with the

homogeneous platform, there are two constraints in the architecture that might degrade the benefits.

The first constraint is that when the cores with different throughputs are incorporated, the fast core

has to wait until the slow core finishes computation for the fixed input/output sequence. So the

performance of the platform is dominated by the slowest core, especially when the data input rate

is high. A heterogeneous platform that can maintain the throughput of each individual core is

introduced in the next chapter for the average case performance. Another constraint with the

homogeneous platform is that when the data input rate is low, the internal cores will spend most

	

	 30

of the time in idle state waiting for the data coming in. In that case the energy efficiency of the

platform could be worse than a single core because of the high leakage from the area overhead. In

this chapter, a Dynamic Voltage Scaling (DVS) method is applied to the asynchronous

homogeneous platform for energy efficiency.

4.2 DVS for the Homogeneous Platform

The self-timed circuit can tolerate a large supply voltage range because the delay caused

by voltage drop will not affect its functionality. The minimum supply voltage to the MTNCL

circuit is the Voltage that can sustain the properly operation of the transistors. Dynamic voltage

scaling has great potential to improve the energy efficiency of the multi-core asynchronous

platform when the data input rate is low. The architecture for the homogenous platform with DVS

controller is shown in Figure 21. In this architecture, the platform is divided into two voltage

domains. The demultiplexer, the multiplexer and input/output sequence generators are working

with maximum voltage supply; so the input data can be dispatched to the internal cores at the

maximum speed. Another domain is the supply voltage to the internal cores, which can be adjusted

dynamically according to the data input rate. When the data input rate is high, the cores work at

the maximum voltage supply for best performance. On the other hand, the supply voltage drops

and the speed of the core is traded off for energy efficiency.

The Voltage Control Unit (VCU) as shown in Figure 22 is the component that implements

dynamic voltage scaling on the platform. The basic function of the VCU is detecting the input data

rate variation and quantizing the variation into reference in a range of minimize and maximum

supply voltage. The latency of the MTNCL pipeline is used to design detection circuit. With

various scenarios of input data variation, the prediction circuit is designed to make the VCU

	

	 31

efficient in more complex situation. And the reference voltage is used by a 2-stage current sensor

based voltage regulator for supply voltage adjustment.

Pipeline Fullness Detector

Ki
Counter

Ko
Counter

Subtrac-
ter

Fullness
Predictor

Vref
Generator

Voltage
Regulator

Cores’VDD

Ko

Ki

Voltage Control Unit

Figure 22 Internal Structure of the Voltage Control Unit

4.2.1 Latency of the MTNCL Pipeline

The latency in a pipelined circuit is the delay between the first input data and the first output

data. Inside the voltage controller, the latency of the MTNCL pipeline serves as a timing period to

quantize the input data rate. In a Boolean pipelined architecture, the latency of the circuit depends

on the clock period and number of pipeline stage. And the clock period is dominated by the set up

and hold times of the register, the maximum combination delay between the pipeline stages and

the clock skew. So the Boolean circuit usually has the worst case performance in terms of latency.

The latency in the Boolean pipeline cannot be used to for data input quantization because they are

both related to clock frequency. However, the MTNCL circuit has the average case performance

feature. As each DATA cycle will propagate through the register, the combination block and the

completion detection block in the initialized NULL stages. So the latency of the MTNCL pipeline

is the propagation delay from the input port to the output port, which is independent of the input

data rate.

	

	 32

4.2.2 Detection of the Input Data Rate

In the latency of the MTNCL pipeline, if the data input rate is high, the DATA/NULL

patterns could fill the whole pipeline as shown in the top pipeline of Figure 17. If the input data

rate is low, each data could propagate through all the NULL cycles to arrive the output port, as

shown in the bottom pipeline of Figure 17. The Ko signal at the input side indicates the data

entering the pipeline; and the Ki signal at the output side indicates the data exiting the pipeline. A

simple counter, as shown in the detection block of Figure 22, could be used to accumulate the Ko’s

rising edge and subtract the Ki’s rising edge. The value of the counter, which is also considered as

the ‘pipeline fullness’, indicates the number of data inside the pipeline during the latency time of

the circuit. With an assumption that there is no delay between the Ki signal toggling and the DATA

or NULL transition at the output port, the pipeline fullness could be used as the quantization the

input data rate.

 Comp
Ko Ki

sleep

Regm

sleep

 Comp
Ko Ki

sleep

Regm

sleep

 Comp
Ko Ki

sleep

Regm

sleep

Ko

 Comp
Ko Ki

sleep

Regm

sleep

Ki

DATAIN DATAOUT

Figure 23 FIFO Implementation in MTNCL Pipeline

4.2.3 Pipeline Fullness and Voltage Mapping

The pipeline fullness and voltage mapping is design-specific. For a design with large

latency and fine pipelined stages, the maximum value of pipeline fullness is larger than a design

with shorter latency or less pipelines stages. As a simplified case shown in Figure 23 and Figure

	

	 33

24 (a), in a FIFO buffer without any combination logic between the registers, the maximum

fullness value is evaluated by equation (1).

ݏݏ݈݈݁݊ݑ݂_ܺܣܯ ൌ 	 ௅௔௧௘௡௖௬

ೝ்೐೒	ା	ଶൈ ೎்೚೘೛
 (1)

௥ܶ௘௚ and 	 ௖ܶ௢௠௣ are the propagation delay of the register and completion detection block in the

MTNCL pipeline.

 If combination logic is put at the first pipeline stage of the MTNCL circuit as shown in

Figure 24 (b), the maximum fullness value will be significantly reduced because the delay of the

combination block will be applied to each the DATA/NULL cycle in the latency time. The

equation (1) used for maximum fullness detection will be changed to equation (2).

ݏݏ݈݈݁݊ݑ݂_ܺܣܯ ൌ 	 ௅௔௧௘௡௖௬

ೝ்೐೒	ା	ଶൈ ೎்೚೘೛ା	்೎೚೘್
 (2)

The third structure is putting the FIFO buffer before the pipeline stages with combination

logic, as shown in Figure 24 (c). In that case, the latency can be divided into two parts, the latency

of the FIFO and the latency of the logic. The maximum fullness value can be evaluated by equation

(3).

ݏݏ݈݈݁݊ݑ݂_ܺܣܯ ൌ 	 ிூிை_௅௔௧௘௡௖௬
ೝ்೐೒	ା	ଶൈ ೎்೚೘೛

൅	 ௅௢௚௜௖_௅௔௧௘௡௖௬

ೝ்೐೒	ା	ଶൈ ೎்೚೘೛	ା	்೎೚೘್
 (3)

Equation (3) shows that in a pipelined circuit that with combination logic, the maximum

fullness detected by counting the handshaking signals can be increased by buffering the input data.

Since the pipeline fullness is used for dynamic voltage scaling, increasing the maximum detectable

fullness value can improve the resolution of voltage control.

	

	 34

R R R R R R

(a) Pipeline without Combination Logic

R C R R R R R R R

(b) Combination Logic at the Head of the Pipeline

R R C R R RR R R

(c) Combination Logic in the Middle of the Pipeline

Figure 24 Latency Estimation of Three Different MTNCL Pipelines

4.2.4 Pipeline Fullness Observation

The test vehicle for the homogenous platform is instantiated with 4 FIR cores; each with 8

taps as the computing units in the platform. As discussed in the previous section, buffers with 4

pipeline stages are inserted into the platform to improve the voltage scaling resolution. The fullness

of the platform is observed with the core’s VDD fixed to various voltage supplies and maximum

workload. When the supply voltage is high, the processing core works fast and pipeline fullness

stays low. With maximum workload for the observation, the pipeline accumulates maximum

number of data at the minimum operating voltage. Table 3 shows the pipeline fullness variation

with the supply voltage in an adjustable range. A linear characteristic is used to construct a voltage

	

	 35

divider network, with maximum fullness in the platform pipeline converted to 1.2 V and minimum

fullness mapping to 0.6 V.

Table 3 Pipeline Fullness Observation

Core’s VDD 0.6V 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V

Fullness 12 10 9 8 7 6 5

4.2.5 Workload Prediction Circuit

The prediction algorithm is used to make more effectively control of the dynamic voltage

scaling across various input scenarios. As a counter is designed to accumulate the Ko’s rising edge

and subtract the Ki’s rising edge, the value of which indicates the number of DATA inside the

pipeline during the latency time. As the decision-making unit for generating the voltage control

signals, the pipeline fullness detection circuit is the key component in DVS for real-time energy

optimization. Comparing the detected fullness with the pre-configured value, the control algorithm

could simply raise or lower down the voltage. Due to the delay insensitivity of MTNCL, the

platform is able to tolerate the delay overhead caused by adjusting VDD, without losing data or

malfunctioning. However, for certain applications where input data bursts are common, the

throughput adjusting may lag behind the input variations and degrade the overall performance.

Even though a long data buffer could be applied to register all input data, the overhead will be

worse in terms of energy consumption. Therefore, a workload predictor is developed to enhance

the DVS control mechanism.

As an example in the homogenous platform implemented with four FIR coes, the pipeline

fullness detector has a 4-bit binary output, with an entire state space comprising 16-fold history.

	

	 36

However, implementing 16 states in hardware will cause high overhead. As the pipeline fullness

in the platform is always continuously changing with the handshaking signals, the simplified

algorithm could be predicting the acceleration of the pipeline fullness, as well as tracing the

previous history.

In the prediction circuit, the output of pipeline fullness detector, Q, is latched by the

external input signal sleepin. The fullness acceleration is reduced to 3 states, which are Riseup,

DonotChange, and Lowdown, in one-hot encoding. The acceleration state is predicted in a finite

state machine (FSM) and applies to the registered Q for generating the predicted fullness, PreQ.

In the following DATA cycle, PreQ will be evaluated to produce a miss or hit signal, depending

on weather PreQ and Q is equal or not. The miss or hit signal will update the FSM and predict the

subsequent fullness acceleration.

SR[10] WR[10] DC[00] SL[01]WL[01]

hit

hit

hit

hit

hitmiss
miss

[01]miss

[10]miss

Figure 25 State Machine for Work Load Prediction. SR and SL states are for Riseup[10]
prediction; WR and WL states are for Lowdown[01]; DC state produces DonotChange[00]
prediction. The hit signal means the current state has made a right prediction of fullness
acceleration. The miss signal for WR, DC and WL states is combined with flag of real production,
e.g., [01]miss indicates the predictor was off target with the actual acceleration, which is
Lowdown[01].

The state switch mechanism imitates the 2-way branch predictor [39] utilized to improve

the flow in the instruction pipeline. Five states, SR (strongly rise-up), WR (weakly rise-up), SL

	

	 37

(strongly low-down), WL (weakly low-down) and DC (don’t care) are encoded in the FSM. In the

states of SR [strongly Riseup] and WR [weakly Riseup], the prediction result of q' is Riseup. In the

states of SL [strongly Lowdown] and WL [weakly Lowdown], the prediction result of q' is

Lowdown. In the state of DC, the prediction result of q' is DonotChange. The transition of the

states is based on the prediction result is ‘miss’ or ‘hit’. Between WR, DC and WL, the states

transition also depends on the value of q besides ‘miss’ and ‘hit’, while in other states, previous

acceleration is employed besides this signal, as illustrated in Figure 25.

4.2.6 Voltage Regulator

The parallel cores of the platform are driven by a VDD supplied from the voltage regulator.

It dynamically adjusts the output voltage according to the reference value from the Vref generator.

As shown in Figure 26, the voltage regulator has a simple circuit structure to achieve fast output

voltage scaling speed for real-time adaptability. Transistors P2, P3, P4, N1 and N2 form an

operational amplifier. Combined with the pass device formed by P5 and R2, the negative feedback

loop keeps the output Vout following Vref’s adjustment with a large drive capability. P1 and P2 form

a current mirror to provide the operation current for the operational amplifier. N3 works as a bypass

capacitor to improve the stability of the negative loop. The supply voltage for the regulator is fixed

to 1.5 V for a maximum output of 1.2 V.

	

	 38

Vref Vout
R1

R2

N3
N2N1

P4P3

P2P1 P5

Vdd

GND

Figure 26 Circuit of the Voltage Regulator

4.3 Homogeneous Platform for Synchronous Circuit

To evaluate the efficiency of the DVS mechanism of the homogeneous platform, a

synchronous counterpart is designed with the same functionality. As shown in Figure 27, the

synchronous platform is built with de-multiplexer, multiplexer, internal cores and a clock divider.

The supply voltage to the cores is adjustable; and a voltage control unit is implemented for dynamic

voltage scaling. Different from the asynchronous platform, where the pipeline structure can be

viewed as an FIFO for data input rate evaluation, all the internal status of the synchronous platform

change with the global clock. The variation of the input data rate cannot be reflected by the

synchronous pipeline. An external asynchronous FIFO is used to detect the variation of the input

data rate variation, with a depth of 16 to match the pipeline status of the asynchronous platform.

The ‘status’ output of the FIFO indicates the number of data possessed. The DVS component could

be a similar design as the asynchronous one, predicting the input data rate by the variation of the

FIFO status. For the DVS control, the supply voltage of the computing cores could be adjusted

	

	 39

dynamically and the voltage for the other components, including the MUX, DEMUX, the clock

divider, the asynchronous FIFO and the DVS components, is fixed to the maximum supply.

clk

DEMUX

Core3

Core 4

MUX

Clock
Divider

I C

D

C

D

Z Output

Core1

Core2

A

B

A

B

clk

Voltage Control
Unit

Cores’ VDD

clk

clk

clk clk

Asynchronous
FIFO

Input

st
at
u
s

Clock

Wr_clk Rd_clk

em
p
ty

Fu
ll

Figure 27 Synchronous Count Part of the Homogeneous Platform

2‐bit
Counter

4‐input
MUX

S0 S1

4‐input
MUX

S0 S1

4‐input
MUX

S0 S1

Core0_D0

Core1_D0

Core2_D0

Core3_D0

Core0_D1

Core1_D1

Core2_D1

Core3_D1

Core0_D22

Core1_D22

Core2_D22

Core3_D22

Dataout0 Dataout1 Dataout22

Clock

Figure 28 Demultiplexer in the Synchronous Homogeneous Platform

	

	 40

In the diagram with 4 computing cores, the de-multiplexer is built with a 2-bit counter, a

2-4 decoder and registers, as shown in Figure 28. The input data can be dispatched to the internal

cores sequentially following the input clock. The multiplexer is built with a 2-bit counter and 4-

input multiplexers, as shown in Figure 29. The outputs of the cores are merged into the output of

the platform following the input clock. Inside the platform, the computing cores can operate at the

speed of one-quarter of the clock frequency, while the output of the platform is synchronized with

the clock.

AND

2‐bit
Counter

2 to 4
Decoder

AND

AND

AND

DFFs

DFFs

DFFs

DFFs

DATAIN

clk

Figure 29 Multiplexer in the Synchronous Homogeneous Platform

For the dynamic voltage scaling, the asynchronous platform with micro-pipeline can be

viewed as an FIFO with internal logic. The platform itself can detect the input data rate variation.

In the synchronous platform, all the internal status changes with the external clock, which cannot

reflect the variation of the input data. An asynchronous FIFO is used to buffer the input data and

detect the variation of the input data rate, with a depth of 16 to match the pipeline status of the

asynchronous platform. The ‘status’ output of the FIFO indicates the number of data possessed.

The DVS component could be a similar design as the asynchronous one, predicting the input data

	

	 41

rate by the variation of the FIFO status. For the DVS control, the supply voltage of the computing

cores could be adjusted dynamically and the voltage for the other components, including the MUX,

DEMUX, the clock divider, the asynchronous FIFO and the DVS components, is fixed to the

maximum supply.

Write
Address

Read
Address

FIFO Memory

DATAIN DATAIN DATAOUT

FIFO Wptr
Generation

waddr

wptr

Synchr
onizer

Synchr
onizer

FIFO Rptr
Generation

raddr

rptr

Status

S_wptrS_rptr

wfull rempty

wclken

rstrst

Wr_clk

reset

Rd_clk

empty
Full

Figure 30 Architecture of the FIFO in the Synchronous Homogeneous Platform

The diagram of the asynchronous FIFO is shown in Figure 30. Four components, the FIFO

memory, the read/write pointer generator, and the synchronizer, are inside the FIFO. The FIFO

memory is a dual port RAM, with a depth of 16 and input/output of 8 bits. The write operation to

the memory is controlled by the write clock (Wr_clk) and the write enable (wclken) signal. The

read operation of the memory depends on the changes of the read address. The control components

for the memory are the read and writer pointer generators. The read/write pointer generator

increments the pointer value in gray code following the read/write clock. The pointer values are

converted to binary as the address for the FIFO memory. To detect if the memory is full or empty,

	

	 42

the read/write pointer needs to be synchronized to the write/read domain through the write/read

clock. After the synchronization, the read pointer and writer pointer are compared in gray code to

decide if the read pointer is catching up the writer pointer, which is an empty signal, or the write

point is catching up the read pointer, which is a full signal.

	

	 43

5 The Heterogeneous Platform and Scalability

5.1 Heterogeneous Platform Design Overview

As presented the Chapter 4, the platform architecture has a tradeoff between area and

performance. The homogeneous platform with DVS addresses the issue that when the data input

rate is low, the energy and performance are balanced by dynamically adjusting the supply voltage

to the processors. However, when the data input rate is high and cores with different capabilities

are incorporated, the performance of the platform will be degraded by the slowest core such that

all faster cores need to wait for the slowest core to finish before requesting the next batch of data,

which is similar to an unbalanced pipeline. In this chapter, a heterogeneous platform architecture

is designed to improve the performance under such conditions.

When the input and output data sequences are fixed as in the homogeneous architecture,

the platform will have the worst-case performance when the cores with different throughput are

incorporated. To avoid that scenario, the platform needs to be able to dispatch data to a core as

soon as it requests for data. However, there could be collisions if more than one autonomous

operating core is requesting for data within a short period of time. To prevent collision, an

arbitration mechanism is necessary to grant mutually exclusive access to the common data bus of

the platform. The worst case of the system throughput could be avoided by assigning the highest

priority to the slowest core in the platform when collision happens.

5.2 Architecture of Heterogeneous Platform

A generic heterogeneous platform incorporating n cores is designed as shown in Figure 31.

The handshaking signals of each core are reserved and separated from the common data bus. To

	

	 44

make the rfd of each core mutually exclusive, a generic asynchronous arbiter is designed. After

reset, all the internal cores are requesting for DATA and the Ko goes to rfd, while only one core

will be granted by the arbiter to access the external data bus and others will hold their states. From

the view of the platform, only the granted core is requesting for DATA and the others are idle. The

Ko signal of the granted core will be de-asserted to rfn after the demultiplexer successfully

dispatches data to it. After this initial round, the arbitration network will grant another core’s

request for DATA through the common input data bus. The average waiting time of the cores is

minimized by assigning the slowest core to top priority if two or more rfds arrive simultaneously.

In other cases, the arbitration network serves in a first-arrive first-grant mode. So the handshaking

signals are guaranteed to be mutually exclusive in rfd state.

core 1
(pipes = p)

Ko

D
E
M
U
X

Arbiter

core n
(pipes = q)

Ko sleepout

sleepout

Arbiter

M
U
X

sleepin

sleepin Ki

Common Input

 Data Bus

Common Output

Ki

Ki[1]

sleepout[1]

Ki[n]

sleepout[n]

sleepin[1]
Ko[1]

sleepin[n]

Ko[n]

Th22

Th22

Th22

Th22

Data Bus

S1 Sn S1 Sn

Figure 31 Architecture of the Heterogeneous Platform

	

	 45

5.3 Multiplexer and Demultiplexer Design with NULL Cycle Reduction

NULL Cycle Reduction (NCR) [40] is used to increase the throughput of NCL systems by

reducing the NULL cycle on the I/O port in the multi-core architectures. In the heterogeneous

platform, the external ports for all the handshaking signals of the internal cores facilitate the

implementation of the NCR technique in the demultiplexer and multiplexer.

DEMUX_datain

core[0]_sleepin

bufm

bufm

bufm

core[1]_sleepin

core[n]_sleepin

core 0
datain

core 1
datain

core n
datain

Figure 32 Demultiplexer in the Heterogeneous Platform

The demultiplexer partitions the common input data bus to n output data paths connecting

to the internal cores. The data dispatching operation is controlled by the exclusive sleepin signals.

Figure 32 shows the structure design of the demultiplexer. The bufm is a basic MTNCL buffer.

When the sleep signal is active, the output is forced to be ‘0’; otherwise it follows its input. By

inserting the bufm gate into all the rails of the input data path, the demultiplexer outputs a NULL

wave after reset, when all the sleepin signals are active. In the heterogeneous platform, the rfd

states of the cores are mutually exclusive, which means no more than one sleepin signals can be

deactivated per arbitration; so only the rfd granted core’s datapath will connect to the common

	

	 46

input data bus during the DATA wave. The demultiplexer will automatically generate a NULL

wave onto the datapath of the asynchronous core if its rfd is not granted. This simplifies the

common input data bus interface, for it does not need to incorporate a NULL spacer when

switching among different input data.

dataout.rail1

bufm

bufm

Core[0].rail0

Core[0].rail1

Core[0]_sleepout

bufm

bufm

Core[1].rail0

Core[1].rail1

Core[1]_sleepout

bufm

bufm

Core[n].rail0

Core[n].rail1

Core[n]_sleepout

ORtree

ORtree

Th22

Th22
dataout.rail0

Figure 33 NCR Multiplexer in the Heterogeneous Platform

The multiplexer is designed in a similar fashion. It multiplexes all the outputs of the internal

cores onto one single output data bus for the platform. Again, MTNCL buffer gates – this time

with exclusive sleepout signals per core – are employed on all the rails of the core’s output

datapaths to ensure only one core produces DATA states. To eliminate the NULL spacer on the

common output bus, the DATA state of the core with output data bus access is held by the OR tree

	

	 47

and the C-element gate (TH22) until the next core’s data output request is granted. Figure 33 shows

the structure of the NCR multiplexer with one bit output form multiple cores. The output from the

multiplexer switches between the DATA states of the internal cores following a pattern similar to

that of the common input data bus. The output order may be different with the input order. This

configuration produces a scalable heterogeneous platform.

5.4 Asynchronous Arbiter Design

The handshaking components require that the communication along several input channels

is mutually exclusive. The basic circuit needed to deal with such situations is a mutual exclusion

element (MUTEX) [41], shown in Figure 34. The circuit contains a latch with NAND gates and a

metastable filter. The input signals R1 and R2 are two requests that originate from two independent

sources, and the task of the MUTEX is to pass these inputs to the corresponding outputs G1 and

G2 in such a way that at most one output is active at any given time. If only one input request

arrives, the operation is trivial. If one input request arrives well before the other, the latter request

is blocked until the first request is de-asserted. When both inputs are asserted at the same time, the

MUTEX is required to make an arbitrary decision, and this is where metastability enters the

picture.

GND

Latch Filter

R1

R2

G1

G2

Figure 34 Mutual Exclusion Element (MUTEX) in Transistor-Level Implementation

	

	 48

The MUTEX circuit is used to construct the generic arbiter network with N-way inputs.

Several architectures, such as mesh, tree and token ring arbiters, are studied in [42], with the

conclusion that the first-arrive first-grant feature is not guaranteed. Without first-arrive first-grant

arbitration in the heterogeneous platform, the rfd competition between two cores could put the

third core into starvation even though its rfd has activated. A new architecture is also developed in

[42], which needs 	ܥ	௡ଶ MUTEXes to prevent the starvation of the N-way requests. Figure 35 shows

an example of the generic design with 4-way inputs.

MUTEX
R1

R2

G1a

G2a

MUTEX
R1

R3

G1b

G3a

MUTEX
R1

R4

G1c

G4a

MUTEX
R2

R3

G2b

G3b

MUTEX
R2

R4

G2c

G4b

MUTEX
R3

R4

G3c

G4c

G1a
G1b

G1c

G1
AND

G2
AND

G3a
G3b

G3c

G3
AND

G4a
G4b

G4c

G4
AND

G2a
G2b

G2c

Figure 35 Generic Architecture of N-way MUTEX – A 4-Way Example

5.5 Platform Cascading

Connecting the common data bus of the multiplexers and demultiplexers and the

handshaking signals will cascade the platform. As shown in Figure 36, two generic platforms are

scaled horizontally with the same internal cores. In the first platform, two arbiters are implemented

to make the Ko and sleepout signals from different cores exclusive; while the subsequent platforms

	

	 49

just need one arbiter for the sleepout signals since the rfds have already become exclusive in the

previous platform. The inputs to the first platform are from the common input data bus, and the

output data of the first platform is the input data of the subsequent platforms. Cores in the platforms

arbitrate for input and output, but compute in parallel. The self-timed nature of delay-insensitive

circuit avoids any timing issues between the platform modules. With the highly-modular interface,

it is easy to compose the platform with the desired scalability for larger systems.

		

50

F
igu

re 36 C
ascad

in
g of th

e H
eterogen

eou
s P

latform

co
re
 1

(p
ip
es = p

)

K
o

DEMUX

A
rb
iter

co
re
 n

(p
ip
es = q

)

K
o

sleep
o
u
t

sleep
o
u
t

A
rb
iter

MUX

sleep
in

sleep
in

K
i

C
o
m
m
on

 In
p
u
t

 D
ata B

u
s

K
i

sleep
in
[1
]

K
o[1

]

sleep
in
[n
]

K
o[n

]

Th
22

Th
22

Th
22

Th
22

S
1

Sn
S
1

Sn

co
re
 1

(p
ip
es = p

)

K
o

co
re
 n

(p
ip
es = q

)

K
o

sleep
o
u
t

sleep
o
u
t

A
rb
iter

MUX

sleep
in

sleep
in

K
i

C
o
m
m
on

 O
u
tp
u
t

K
i

sleep
o
u
t[1

]

K
i[n
]

sleep
o
u
t[n

]

Th
22

Th
22

D
ata B

u
s

S
1

S
1

Sn

K
i[1]

DEMUX

Sn

	

	 51

6 Circuit Fabrication and Results Analysis

6.1 Simulation of FIR Designs

The Boolean and MTNCL FIR filters are designed in the same architecture as shown in

Figure 15. For throughput improvement, the MTNCL FIR filters are optimized with the technique

discussed in section 3.1.4. The Boolean designs are synthesized with Synopsys Design Compiler

based on the throughput of the MTNCL one. Both FIR designs are coded in a generic manner. The

4-tap and 8-tap structures are instantiated with the same fixed coefficients. Buffers are inserted

into the MTNCL design based on the drive strength and fan out of each MTNCL gate before the

circuits are implemented at the transistor-level with the 130nm IBM 8RF-DM process. For all the

MTNTCL designs, the number of buffers is around 2.6% of the total gate count. A VerilogA

stimulus module is developed to provide input data to the FIR filters according to the handshaking

signals. Based on the preliminary simulation, the MTNCL design has an average Tdd of 3.02 ns;

so the Boolean one is synthesized with the clock period of 3 ns. Then 256 input data are simulated

in Cadence Virtuoso UltraSim simulator and the integration of the current with the simulation time

is calculated, which is the period from reset deactive to the last data appears at the output. The

energy value is the current integration data multiplied by the supply voltage (1.2V in this case).

The area estimation is based on the gate layout in the libraries, and the unit cell area is set to 0.4µm

by 4.8 µm. For the Boolean gates, the layouts are from the IBM standard library, which is highly

optimized and has various driving strengths. On the other hand, the MTNCL library is design and

developed by the Trulogic Laboratory; most of the gates have the minimum drive strength. For the

leakage power measurement, the reset is kept deactive and all the inputs are forced to be '0'. Then

the supply current is integrated for 100 ns to get the energy. The leakage power is the energy value

divided by 100ns.

	

	 52

The simulation results and area comparisons are shown in Table 4. In both structures, the

clock period in the Boolean testbench is 3 ns, as the design is synthesized as the same throughput

of the MTNCL one. For the 4-tap structure, the MTNCL design saves 29.6% on active energy per

data and 64.6% on leakage power. For the 8-tap structure, the MTNCL design saves 28.7% on

active energy and 69.1% on leakage power. The drawback of the MTNCL design is the area

overhead, which is 1.24 and 1.49 times larger than the synchronous counterpart. Considering the

gate library used in the MTNCL design in not fully optimized in terms of area and most of the

gates with the minimum drive strength, the area of the MTNCL design has potential to be improved.

Table 4 Performance and Area Comparison of the Boolean and MTNCL FIR Filters

FIR Designs
Average Tdd /T

(ns)
Energy Per Data

(pJ)

Area

(Unit Cells)

Leakage Power
(µW)

4 Taps
MTNCL 3.02 23.82 36717 3.62

Boolean 3 33.85 16370 10.22

8 Taps
MTNCL 3.07 52.46 78837 9.38

Boolean 3 73.59 31557 30.34

6.2 Simulation of the Homogeneous Platform

The homogeneous platform introduced in section 4.2, including the multiplexers, sequence

generators, processing cores in the parallel architecture, the fullness detector, fullness predictor,

Vref generator and voltage regulator in the VCU, is implemented at the transistor-level with the

130nm IBM 8RF-DM process. All simulations are performed in Cadence UltraSim simulator. To

make system throughput vary in a wide range, Input Pause Time (IPT) is defined in the stimulus

module as time delay, which is an interval between DATA/NULL patterns appearing on the input

rails and Ko is asserted/deasserted. Four input scenarios, as shown in Fig. 8, based on the variations

	

	 53

of IPT are simulated for 40 patterns with DVS, and a range of fixed voltage supply between 0.6V

and 1.2V to the processing cores in the platform. The average Tdd, energy consumption per data,

and the product of the delay and energy, are demonstrated as histograms from left to right in Figure

37 (a) to (d). As the supply voltage changing from the maximum 1.2V to a minimum 0.6V, the

average Tdd increased by 71.5% in the down ramp scenario, 59.2% in the up ramp scenario, 184.3%

in the interval and 260.7% in the random scenario; while the average energy consumption per data

decreased by 77.1%, 74.7%, 67.9%, and 63.6%, respectively. When the DVS mechanism is

applied to the platform, the product of energy and delay is minimized among the voltage range,

with a decrease of 3.9%, 3.1%, 2.6%, and 1.6% smaller than the minimum value with fixed voltage

supply across the four scenarios. The advantage of DVS indicates a better tradeoff between

performance and energy consumption in the platform.

Besides the energy for the parallel cores in the platform, the VCU energy and the platform

energy are considered when DVS is applied. The VCU energy refers to the energy consumption

for the circuits deploying DVS, including the fullness detector, fullness predictor and the Vref

generator. The platform energy includes the peripheral components in the platform receiving a

fixed 1.2V supply. Figure 38 (a) to (d) illustrate the energy of VCU and platform comparing to the

energy consumption of the internal FIR cores. The processors in the platform take 90% to 92% of

the total energy across the four scenarios, which indicates the parallel architecture with enhanced

DVS mechanism has great potential on energy saving and performance improvement.

	

	 54

a) Down Ramp Scenario with IPT Changing from 0.5ns to 15ns

b) Up Ramp Scenario with IPT Changing from 15ns to 0.5ns

c) Interval Scenario with IPT Changing Between 0.5ns and 5ns

d) Random Scenario with IPT Changing Between 0.5ns and 5 ns

Figure 37 Performance and Energy Analysis in Homogeneous Platform

	

	 55

Figure 38 Distributed Charts of Homogeneous Platform Energy Consumption with DVS

6.3 Comparison of the Synchronous and Asynchronous Platforms

The synchronous platform designed in section 4.3 is instantiated with 8-tap FIR filters and

synthesized in Design Compiler using 130nm IBM 8RF-DM library to match the throughput of

the asynchronous platform with 1.2V supply voltage. In the simulations, the platform structures

(including the demultiplexer and multiplexer) and the FIFO are fixed with maximum voltage

supply of 1.2V. Level shifters are inserted between the interface of the platform structure and the

internal cores. By applying different supply voltage to the cores, the clock cycle of the synchronous

platform is tuned to match the Tdd of the asynchronous one. The energy comparison of the

platforms is based on the same throughput under different supply voltages to the computing cores.

As shown in Figure 39, when the supply voltage is between 0.6V and 0.8V, the synchronous

platform does not have the stable functionality with 100 data simulation. When the supply voltage

is above 0.8V, the synchronous cores consume 48.3% to 50.5% more active energy than the

asynchronous cores per data. In Figure 40, the energy consumption of the synchronous platform

structure is close to the asynchronous one when the cores’ supply voltage is larger than 0.8V. The

FIFO with a depth of 16 data consumes 3.5 energy than the demultiplexer and multiplexer. If it

is used as the component for DVS control, the synchronous platform will have large overhead than

the asynchronous one,

	

	 56

Figure 39 Energy Comparison of the Internal Cores in the Homogeneous Architectures

Figure 40 Energy Comparison of the Platform in the Homogeneous Architectures

6.4 Simulation of the Heterogeneous Platform

Heterogeneous cores are instantiated in the platform for evaluation. The 4 processing cores

incorporated into the platform are a pipelined FIR filter, an IIR filter, a multiplier, and an adder.

	

	 57

The FIR filter is an 8-tap structure with 8-bit unsigned input. The IIR filter has 3 taps and the data

format is Q15 with an extra pin for overflow detection. The multiplier is in 8-bit carry save

structure and fully pipelined. The adder is ripple carry adder with 16 bits unsigned input. The

selected cores have various computing capabilities and input widths, which ensure different delay

paths in the platform. The pipeline detector, voltage regular, and enhanced DVS mechanism

introduced in Chapter 4 are implemented into the heterogeneous platform to adjust the supply

voltage of each core. The design is flattened at the transistor-level and instantiated with the 130nm

IBM 8RF-DM process. Intensive simulations are conducted to evaluate the effectiveness of DVS

in terms of balancing the performance and energy of various cores with random data input rates.

When DVS is performed on one core, the other cores and platform are processing with the

maximum voltage supply. Figure 41 (a) shows the evaluation of 40 input data to the fully pipelined

FIR filter with various supply voltages and the DVS mechanism. The charts from left to right

represent the average Tdd, the energy consumption per data, and the product of average delay and

energy. Figure 41 (b) to (d) show the simulation results of 40 random data for the non-pipelined

FIR filter, the pipelined multiplier and adder. As the supply voltage changing from the maximum

1.2V to a minimum 0.6V, the average Tdd increased by 221.7% for the FIR filter, 389.4% for the

IIR filter, 120.3% for the multiplier and 117.3% for the adder; while the average energy

consumption per data decreased by 75.4%, 75.3%, 75.8%, and 76%, respectively. When the DVS

mechanism is applied to the cores separately, the product of energy and delay is minimized among

the voltage range, indicating an optimized balance between system throughput and energy

consumption. For the FIR filter, the pipelined multiplier and the adder, the energy-delay product

of DVS is 8.4%, 2.6%, and 3.9% better than the product of 0.8V voltage supply, which is the best

among the fixed voltage supply range. For the IIR filter, which has a lower throughput than the

	

	 58

other cores, the DVS is 4.9% better than the minimum product value of fixed voltage supply at

1.0V.

The pie charts in Figure 42 (a) to (d) demonstrate the energy distribution among the

components in the heterogeneous platform when DVS is applied to the internal cores. In the four

scenarios, the energy of the Voltage Control Unit (VCU) is fairly small, taking a maximum 2% of

the total energy. The energy consumption for the peripheral components in the platform, including

the multiplexer, the demultiplexer, the arbitration network, and the level shifters, varies from 2%

to 6% of the total energy. Most of the energy is consumed by the computing units in the platform;

the FIR filter and IIR filter occupy a high quota for their comparably larger size. The results

indicate that the heterogeneous platform with DVS is effective in improving system performance

with little overhead on the energy consumption.

	

	 59

a) Pipelined FIR Filter

b) Pipelined IIR Filter

c) 8  8 Bits Pipelined Multiplier

d) 16  16 Bits Pipelined Adder

Figure 41 Performance and Energy Analysis of the Internal Cores in Heterogeneous
Platform

	

	 60

Figure 42 Distributed Charts of Heterogeneous Platform Energy Consumption with DVS

6.5 Circuit Fabrication and Measurement

The 8-tap Boolean and MTNCL FIR filters and the homogeneous platform are taped out

in the MITLL 90nm CMOS FDSOI process run. All the circuit designs are optimized for sub-

threshold operation and energy efficiency. The optimization strategies include the internal node

balancing of the MTNCL and NCL threshold gates, the circuit synthesis based on the driving

strength of the gates, and gate break down for sub-threshold operation. For the physical

implementation of the Boolean and MTNCL FIRs, a simple I/O logic is used to reduce the number

of input/output pads. The input logic is a shift register with 8 D-Flip-flops. Only one input pad is

used to shift the data in serially, and then the data is loaded to the input ports of the FIR in every

8 input clock cycles. The output logic is the reverse of the input logic, with the function of parallel

in and serial out as shown in Figure 43. It has 22 shift registers, and the input of each register is

connected to the output of a 2-to-1 MUX. The MUX is controlled by an external signal called

‘load_shift(L/S)’ to decide if it is going to load the output of the FIR circuit to the output logic or

shift the loaded data out of the chip.

	

	 61

D
Q

D1

D2

CLK

D
Q

D1

D2

CLK

D Q

D1

D2

CLK

FIR_DOUT[0] FIR_DOUT[1] FIR_DOUT[2]

Clock

L/S

Figure 43 Output Logic in the Synchronous FIR Chip

The physical layout of the Boolean FIR design, the MTNCL FIR design and the homogenous

platform are shown in Figure 44 to Figure 46.

Figure 44 The Physical Layout of the FIR Boolean Design in MITLL 90nm Process

Figure 45 The Physical Layout of the FIR MTNCL Design in MITLL 90nm Process

	

	 62

Figure 46 The Physical Layout of Homogeneous Platform in MITLL 90nm Process

A Xilinx Virtex-7 FPGA is utilized to provide and read back signals simultaneously from

the testing chips. Since the FPGA output voltage level is higher than the required 300 mV supply

voltage, a level shifter board is used to convert the FPGA output voltage from 1.8 V to 300 mV.

The 300 mV output voltage of the testing chip is converted back to 1.8 V to be properly recognized

by the FPGA. Figure 47 shows the complete testing setup with the FPGA connected to the level

converter PCB and the testing PCB. For throughout testing, VDD is fixed at 300 mV and a body-

	

	 63

biasing voltage ranging from -1V to -2V is applied. The temperature of the test environment is

maintained at 25℃.

Figure 47 Hardware Testing Setup with FPGA, Level Shifter and Testing PCB

Figure 48 Performance and Energy Consumption of the Boolean FIR in MITLL
Tapeout

	

	 64

The testing result of the Boolean FIR filter is shown in Figure 48 regarding the energy per

data and the performance. The power and energy measurement is taken over a range of operating

speed. The results indicate that the Boolean FIR filter operates at a range of speed from 260.5 Hz

to 1.303 Hz and the energy per data is from 10.37 nJ to 2640.8 nJ, at 300 mV VDD and -1.7 V body-

biasing voltage. The notably slower speed of the FIR filter is because the I/O logic is implemented

owing to the limited number of pads.

Figure 49 Performance and Energy Consumption of the MTNCL FIR in MITLL Tapeout

The MTNCL FIR filter is designed in conjunction with its Boolean counterpart. The

measured total power, energy per data, and performance results are shown in Figure 49. Dependent

on the performance results, the Tdd of the asynchronous FIR filter is ranged from 366.7Hz to

1.83Hz with energy per data from 6.3 nJ to 1352.34 nJ, at 300 mV VDD and -1.55 V body-biasing

voltage. Same as the Boolean FIR filter, the operating speed of the MTNCL FIR filter is bounded

by the I/O logic implemented due to the limited number of pads, hence the considerably higher

	

	 65

Tdd. Comparing to the results of the Boolean FIR, the MTNCL design has 1.4× higher operating

speed and 1.5× lower energy per data on average.

A more complex design based on the homogeneous platform, which consists of 4 FIR

filters processing data in parallel, is tested as fully functional with 0.3V power supply and -1.9V

body-biasing voltage. The energy and performance data is shown in Figure 50. Since I/O logic is

eliminated from the design, the result is close to the maximum throughput when the IPT is reduced.

The best result with the FPGA testbench is 49.364 pJ per data with the Tdd at 6.02 µs. As the IPT

increases, the energy consumption of the platform rises 2784.9 pJ per data when the Tdd is 320.1

µs.

Figure 50 Performance and Energy Consumption of the Homogeneous Platform in MITLL
Tapeout

	

	 66

7 Conclusion

This dissertation work focus on the asynchronous circuit and computing architecture design

based on the delay-insensitive NULL Conventional Logic (NCL) and the multi-threshold CMOS

techniques. The throughput and latency of the NCL micropipeline are derived for the digital signal

processing circuit optimization. Generic Finite Impulse Response (FIR) design shows the

asynchronous design saves at least 28.7% on active energy per data and 64.6% on leakage power

comparing to its synchronous countpart with the same performance.

Scalable parallel computing architectures that can incorporate homogeneous and

heterogeneous units are designed with Dynamic Voltage Scaling (DVS) for balanced control of

performance and energy efficiency. The pipeline fullness of the circuit is observed and used to

predict future workloads and modulate the processing cores’ power supply using a voltage

generating network and a voltage regulator. An effective fullness variance predicting algorithm is

implemented to employ the DVS more aggressively in a wider range of system workloads.

Common data I/O ports with NULL Cycle Reduction and asynchronous arbitration network are

incorporated in the heterogeneous platform to make a highly-modular interface for both horizontal

and vertical scaling. Both platforms are integrated with data processing units using the IBM 130nm

8RF process. Transistor-level simulation results show that both platforms can automatically

achieve an optimized tradeoff between energy and performance with the enhanced DVS

mechanism.

The 8-tap asynchronous and synchronous FIR circuit and the homogeneous platform are

fabricated using the MITLL 90nm FDSOI process. The asynchronous chips are tested for

functionality, performance and power consumption. With 0.3V voltage supply, the asynchronous

FIR chip has 1.4× higher operating speed and 1.5× lower energy per data on average. The

	

	 67

homogeneous platform consumes 49.364 pJ per data with the best performance when the DATA

to DATA cycle time is 6.02 µs.

This research demonstrates the advantage of the asynchronous circuit in the large scale, multi-

threads and scalable computing architectures. For future work, power gating can be implemented

in the platforms for energy efficiency improvement under the light load circumstances. A

synchronous wrapper can also be considered for IP level integration and promotion.

	 	

	

	 68

8 Reference

[1] Nowick, Steven M., and Montek Singh, “Asynchronous Design – Part 1: Overview and Recent
Advances”, IEEE Design and Test of Computers, special issue on asynchronous design, (May/June
2015).

[2] Seitz, Charles L. "System timing." Introduction to VLSI systems, C. A. Mead and L. A. Conway,
Eds. Addison-Wesley, (1980): 218-262.

[3] Greenstreet, Mark R., and Brian De Alwis. "How to achieve worst-case performance [self-
timed circuit design]." In Asynchronus Circuits and Systems, 2001. ASYNC 2001. Seventh
International Symposium on, pp. 206-216. IEEE, 2001.

[4] Parhi, Keshab K. “VLSI digital signal processing systems: design and implementation.” John
Wiley & Sons, 2007.

[5] Krstić, Miloš, Eckhard Grass, Frank K. Gürkaynak, and Pascal Vivet. "Globally asynchronous,
locally synchronous circuits: Overview and outlook." IEEE Design & Test of Computers 5 (2007):
430-441.

[6] Nielsen, Lars S., Cees Niessen, Jens Sparso, and Kees Van Berkel. "Low-power operation
using self-timed circuits and adaptive scaling of the supply voltage." Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on2, no. 4 (1994): 391-397.

[7] Yu, Zhiyi, Michael J. Meeuwsen, RyanW Apperson, Omar Sattari, Michael Lai, JeremyW
Webb, Eric W. Work, Dean Truong, Tinoosh Mohsenin, and Bevan M. Baas. "AsAP: An
asynchronous array of simple processors." Solid-State Circuits, IEEE Journal of 43, no. 3 (2008):
695-705.

[8] Ernst, Dan, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad
Ziesler et al. "Razor: A low-power pipeline based on circuit-level timing speculation."
In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on, pp. 7-18. IEEE, 2003.

[9] Sebastian Herbert, and Diana Marculescu. "Variation-aware dynamic voltage/frequency
scaling." In High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, (2009), pp. 301-312.

[10] Sebastian Herbert, and Diana Marculescu. "Analysis of dynamic voltage/frequency scaling in
chip-multiprocessors." In Low Power Electronics and Design (ISLPED), 2007 ACM/IEEE
International Symposium on, (2007), pp. 38-43.

[11] Mateja Putic, Liang Di, Benton H. Calhoun, and John Lach. "Panoptic DVS: A fine-grained
dynamic voltage scaling framework for energy scalable CMOS design." In Computer Design, 2009.
ICCD 2009. IEEE International Conference on, (2009), pp. 491-497.

[12] Benton H. Calhoun, and Anantha P. Chandrakasan. "Ultra-dynamic voltage scaling (UDVS)
using sub-threshold operation and local voltage dithering." Solid-State Circuits, IEEE Journal of
41, no. 1 (2006): 238-245.

	

	 69

[13] Hao Shen, Jun Lu, and Qinru Qiu. "Learning based DVFS for simultaneous temperature,
performance and energy management." In Quality Electronic Design (ISQED), 2012 13th
International Symposium on, (2012), pp. 747-754.

[14] Li, Yee William, George Patounakis, Anup Jose, Kenneth L. Shepard, and Steven M. Nowick.
"Asynchronous datapath with software-controlled on-chip adaptive voltage scaling for multirate
signal processing applications." In Asynchronous Circuits and Systems, 2003. Proceedings. Ninth
International Symposium on, pp. 216-225. IEEE, 2003.

[15] Thonnart, Yvain, Edith Beigné, Alexandre Valentian, and Pascal Vivet. "Power reduction of
asynchronous logic circuits using activity detection." Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on 17, no. 7 (2009): 893-906.

[16] Philip, Anish. “Investigation of energy and performance of delay insensitive asynchronous
circuits with concurrency.” Master Dissertation, University of Arkansas, 2010.

[17] Fant, Karl M., and Scott Brandt. "NULL Convention LogicTM: a complete and consistent logic
for asynchronous digital circuit synthesis." Application Specific Systems, Architectures and
Processors, 1996. ASAP 96. Proceedings of International Conference on. IEEE, 1996.

[18] Arora, Narain D. “MOSFET models for VLSI circuit simulation: theory and practice.”
Springer Science & Business Media, 2012.

[19] Yeo, Kiat-Seng, and Kaushik Roy. “Low voltage, low power VLSI subsystems.” McGraw-
Hill, Inc., 2004.

[20] Vitale, Steven, Peter W. Wyatt, Nisha Checka, Jakub Kedzierski, and Craig L. Keast. "FDSOI
process technology for subthreshold-operation ultralow power electronics." Proceedings of the
IEEE 98, no. 2 (2010): 333-342.

[21] Sparsø, Jens. "Asynchronous circuit design--a tutorial." (2006).

[22] Martin, Alain J. “The limitations to delay-insensitivity in asynchronous circuits.” Springer
New York, 1990.

[23] Nowick, Steven M., and Charles W. O'Donnell. "On the existence of hazard-free multi-level
logic." In Asynchronous Circuits and Systems, 2003. Proceedings. Ninth International Symposium
on, pp. 109-120. IEEE, 2003.

[24] Martin, Alain J. "25 Years Ago: The First Asynchronous Microprocessor." (2014).

[25] Smith, Scott C., and Jia Di. "Designing asynchronous circuits using NULL convention logic
(NCL)." Synthesis Lectures on Digital Circuits and Systems 4, no. 1 (2009): 1-96.

[26] Ligthart, Michiel, Karl Fant, Ross Smith, Alexander Taubin, and Alex Kondratyev.
"Asynchronous design using commercial HDL synthesis tools." In Advanced Research in
Asynchronous Circuits and Systems, 2000.(ASYNC 2000) Proceedings. Sixth International
Symposium on, pp. 114-125. IEEE, 2000.

	

	 70

[27] B.Sparkman and S.C.Smith, “Reducing Energy Usage of NULL Convention Logic Circuits
using NULL Cycle Reduction Combined with Supply Voltage Scaling”, International Conference
on Computer Design, pp.3-8, July 2012

[28] Parsan, Farhad, and Scott C. Smith. "CMOS implementation of static threshold gates with
hysteresis: A new approach." In VLSI and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th
International Conference on, pp. 41-45. IEEE, 2012.

[29] Sutherland, Ivan E. "Micropipelines." Communications of the ACM 32, no. 6 (1989): 720-738.

[30] Smith, Scott Christopher. "Gate and throughput optimizations for null convention self-timed
digital circuits." Ph.D Dissertation, University of Central Florida Orlando, Florida, 2001.

[31] Smith, Scott C. "Completion-Completeness for NULL Convention Digital Circuits Utilizing
the Bit-Wise Completion Strategy." In VLSI, pp. 143-149. 2003.

[32] Bandapati, Satish K., and Scott C. Smith. "Design and characterization of NULL convention
arithmetic logic units." Microelectronic engineering 84, no. 2 (2007): 280-287.

[33] Zhou, Liang, Scott C. Smith, and Jia Di. "Bit-Wise MTNCL: An ultra-low power bit-wise
pipelined asynchronous circuit design methodology." In Circuits and Systems (MWSCAS), 2010
53rd IEEE International Midwest Symposium on, pp. 217-220. IEEE, 2010.

[34] Zhou, Liang, Ravi Parameswaran, Ross Thian, Scott C. Smith, and Jia Di. “MTNCL: An
ultra-low power asynchronous circuit design methodology.” Technical Report, 2010.

[35] P. Palangpour and S. C. Smith, "Sleep Convention Logic Using Partially Slept Function
Blocks," IEEE International Midwest Symposium on Circuits and Systems, pp. 17-20, August 2013.

[36] Weste E. Neil, David M. Harris. CMOS VLSI Design: A Circuits and Systems Perspective,
4/E. Pearson Education India, 2006.

[37] Multipliers & Pipelining, http://web.mit.edu/6.111/www/f2008/handouts/L09.pdf

[38] Charles R. Baugh and Bruce. A. Wooley, “A Two’s Complement Parallel Array
Multiplication Algorithm,” IEEE Transactions on Computers, vol. C-22, pp. 1045-1047, 1973.

[39] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction.” Proceedings of
the 24th Annual International Symposium on Microarchitecture, ACM (1991), pp. 51–61.

[40] Smith, S. C. "Speedup of NULL convention digital circuits using NULL cycle reduction."
Journal of Systems Architecture 52, no. 7 (2006): 411-422.

[41] Seitz, Charles L. "Ideas about arbiters." Lambda 1, no. 1 (1980): 10-14.

[42] Liu, Yu, Xuguang Guan, Yang Yang, and Yintang Yang. "An asynchronous low latency
ordered arbiter for network on chips." In Natural Computation (ICNC), 2010 Sixth International
Conference on, vol. 2, (2010), pp. 962-966.

	Asynchronous Data Processing Platforms for Energy Efficiency, Performance, and Scalability
	Citation

	Microsoft Word - DissertationSub

