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ABSTRACT 

The global technology revolution is changing the integrated circuit industry from the one 

driven by performance to the one driven by energy, scalability and more-balanced design goals. 

Without clock-related issues, asynchronous circuits enable further design tradeoffs and in-

operation adaptive adjustments for energy efficiency. This dissertation work presents the design 

methodology of the asynchronous circuit using NULL Convention Logic (NCL) and multi-

threshold CMOS techniques for energy efficiency and throughput optimization in digital signal 

processing circuits. Parallel homogeneous and heterogeneous platforms implementing adaptive 

dynamic voltage scaling (DVS) based on the observation of system fullness and workload 

prediction are developed for balanced control of the performance and energy efficiency. Datapath 

control logic with NULL Cycle Reduction (NCR) and arbitration network are incorporated in the 

heterogeneous platform for large scale cascading. The platforms have been integrated with the data 

processing units using the IBM 130 nm 8RF process and fabricated using the MITLL 90 nm 

FDSOI process. Simulation and physical testing results show the energy efficiency advantage of 

asynchronous designs and the effective of the adaptive DVS mechanism in balancing the energy 

and performance in both platforms.  
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1 Introduction 

As the transistor size is pushing up against physics limits in the late-Moore era, energy is 

replacing performance as the top priority in circuit design considerations. The design landscape 

for digital integrated circuit (IC) has changed from the one driven by performance to one driven 

by energy or more-balanced goals. This shift requires next-generation circuits to be flexible and 

adaptive to ever-widening application requirements. Asynchronous circuits, without global clock 

as its synchronous counterpart, demonstrate distinctive resilience for the tradeoffs between energy 

and performance. As highlighted in the International Technology Roadmap for Semiconductors 

(ITRS), the advantages of asynchronous design include dealing with the power and thermal 

bottlenecks, less electromagnetic interface (EMI), and tolerating process variations and external 

voltage fluctuations in a wider region, as multibillion-transistor chips and multi-core architectures 

are targeted [1]. This dissertation work is to develop and explore adaptive system architecture of 

the asynchronous circuits with the following features:  

1)  Performance – In synchronous circuits, a fixed clock period is chosen based on the worst-case 

timing between the pipeline stages. However, in asynchronous pipeline, subsystems are only 

synchronized locally by the handshaking protocols between them, which are referred to as self-

timed systems [2]. The subsystem consumes the output produced by the previous subsystem 

as soon as they are generated, without waiting for the global clock toggling. Therefore, 

asynchronous circuits are widely accepted for the average-case performance rather than the 

worst-case as in synchronous ones [3]; 

2) Energy efficiency – CMOS circuits have the active and static energy consumption when 
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processing data and static power consumption when they are idle. A periodic clock will force 

the circuit to be active even though there is no new data for processing. Clock gating is a 

common method for migrating the energy overhead caused by undesired clock toggling in the 

idle mode. However, external control and observation blocks are required to manipulate the 

clock, which will deteriorate the energy efficiency and performance [4]. Without the global 

clock, only the subsystems that are active will dissipate power in asynchronous circuits. For 

the leakage reduction, power-gating mechanism can also be implemented in asynchronous 

circuits using the handshaking signals without extra control blocks as in synchronous ones;  

3) Scalability. The self-timed nature of asynchronous circuit avoids the clocked related issues in 

the synchronous counterpart. Each asynchronous subsystem is functional module containing 

both timing and data information explicitly in the interfaces. Without global timing analysis 

and clock-based sequencing [5], it is easy to compose asynchronous blocks into large systems.  

1.1 Techniques for Throughput Improvement and Power Reduction 

Besides the intrinsic characteristics of the asynchronous logic, advanced techniques, e.g., 

parallelism, dynamic voltage scaling (DVS), and sub-threshold operations, show more promising 

results when applied to asynchronous circuits for ultra-low power applications.  

1.1.1 Dynamic Voltage Scaling 

DVS is the key for real-time energy optimization in adaptive systems. The active power 

dissipated by a chip using static CMOS gates can be expressed as ௗܲ௬௡ ൌ ௅ܥ ஽ܸ஽
ଶ ݂ , where C is the 

capacitance being switched per operation; V is the supply voltage and f is the switching frequency. 

The active power consumption of the circuit can decrease quadratically as supply voltage scales 
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down. This technique was first introduced for low-power operation using self-timed circuits in [6], 

with FIFO buffers inserted for state detecting and dynamic voltage scaling. An Asynchronous 

Array of Simple Processors (AsAP) chip [7], designed and fabricated by the VLSI Computation 

Laboratory at the University of California, Davis, is implementing a similar technology for power 

reduction. In the synchronous systems, the voltage scaling range is limited to guarantee the circuit 

working properly under the related timing issues. A research conducted by [8] indicates that an 

18×18 multiplier at 90 MHz has an error rate of 1.3% with the energy saving of 35% when scaling 

down the voltage from 1.8V to 1.38V. Adaptive Voltage Scaling (AVS) is used to control the 

supply voltage for the actual requirements – when the voltage scales down, the frequency decreases 

for timing closure. For chip multiprocessors (CMPs), a variation-aware technique is introduced in 

[9] and several multi-core voltage-frequency island (VFI) strategies are evaluated in [10]. Panoptic 

Dynamic Voltage Scaling (PDVS), a fine-gained DVS framework, is presented in [11] to use of 

Local Voltage Dithering (LVD) into sub-threshold mode for additional energy savings [12]. 

Learning based DVS, employing a machine learning approach for temperature, performance and 

energy management, is proposed in [13]. Due to the additional hardware cost and associated 

control to minimize energy, synchronous systems employing DVS typically have a small set of 

voltage-frequency pairs and have to mitigate the effects of process variation, thermal variation and 

timing fluctuations caused by DVS itself. In [14], asynchronous data path across voltage domains 

is developed for multi-rate signal processing applications. Activity detection [15] is applied to 

asynchronous network-on-chip (ANOC) nodes for voltage scaling and static power reduction. 

1.1.2 Throughput Improvement 

Throughput refers to the rate at which new data can be input to the system, and similarly, 

the rate at which new outputs appear from the system. Pipelining is commonly used in synchronous 



	

4 
	

circuits to improve the system throughput, with the drawback of increasing latency. In synchronous 

pipelined circuits, the clock rate depends on the worst-case timing between the pipeline stages; 

while in asynchronous circuits, the throughput and latency depend on the actual computing time 

of each pipeline stage, which are data dependent and lead to the average case performance. 

However, asynchronous pipelines usually have additional components for handshaking generation 

or spacer insertion between data, which degrade the pipeline performance. Parallelism is the most 

commonly used computing architecture for throughput improvements. The original concept of 

parallelism is to use more than one hardware copies with lower throughput instead of a single one 

with higher throughput. By dispatching the input data to the copies and merging at the output, 

parallel architecture can achieve a maximum speed up limited by the Amdahl’s law. The advanced 

scheme of parallel computing is the heterogeneous architecture with multiple functionalities. Each 

of the computing unit can maintain independency and best-case performance. With asynchronous 

circuit design methodology, preliminary research [16] indicated that parallelism can apply to 

NULL Convention Logic (NCL) [17] systems for improved performance and energy consumption. 

1.1.3 Sub-threshold Operation 

Transistors in digital circuits normally operate in strong inversion where drift current is 

dominant. For transistor operating in the sub-threshold regime, the gate voltage is lower than the 

threshold voltage. As a result, the surface potential is controlled by the depletion region which is 

nearly constant from the source to the drain leading to close to zero drift current. Therefore, the 

transistor’s on-state current is dictated by the diffusion of minority carriers instead of drift current 

[18]. Sub-threshold regime is also called weak inversion, which is more power efficient than 

operating in strong inversion for the drift current being eliminated.   
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Lowering down the supply voltage seems to be a straightforward way to take advantage of 

the power efficiency of sub-threshold transistors. However, with the supply voltage scaling down, 

the sub-threshold leakage current will increase significantly [19]. Compared to bulk silicon, 

FDSOI (Fully Depleted Silicon-On-Insulator) provides up to 90% [20] lower junction leakage and 

full dielectric isolation of the transistor, making it suitable for low power CMOS applications. 

Combining the advantages of FDSOI with transistors optimized for sub-threshold operation, the 

dynamic power and leakage power are reduced while maintaining the performance of digital 

systems. 

1.2 Proposed Research and Approach 

The proposed research is to develop a design methodology and platform utilizing 

asynchronous logic for designing digital signal processing unit capable of achieving the optimal 

energy-performance tradeoff in dynamic operations across a wide range of applications. Parallel 

architecture, dynamic voltage scaling, and sub-threshold operateability, are incorporated. The 

major features of the digital processors designed using the proposed methodology include: 

1) Adaptive – the designed asynchronous systems are capable of adjusting the supply voltage 

based on real-time workload. When input data rate is fast, the supply voltage to the core is 

raised to boost performance; when input data rate is slow, the cores enter sleep mode and the 

supply voltage is lowered to reduce power consumption, which could become even lower with 

sub-threshold operation. While input data rate detection is not a trivial task for synchronous 

systems and often requires complicated logic, it is inherent for the proposed asynchronous 

systems since the handshaking signals naturally serve for this purpose; 

2) Optimal energy consumption – The proposed methodology is capable of achieving optimal 
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energy consumption in the designed processors while operating in active and idle modes. The 

throughput-based system status detection and workload prediction algorithm guarantee 

optimal operations of the cores integrated on the platform. The dynamically adaptive scaling 

based on real-time workload and system status ensures the system only consumes the amount 

of active energy needed to maintain the required performance. Power gating mechanism is 

incorporated in the circuit paradigm for leakage reduction in idle or near-idle mode operation. 

3) Highly reliable – the proposed asynchronous system is correct-by-construction, where the 

system’s outputs are always correct as long as the transistors can switch properly. Timing 

variances induced by process variation, temperature change, or voltage fluctuation, which 

require sophisticated timing analysis and large timing margins in synchronous systems, have 

little or no impact to the functionalities of the asynchronous systems. It is especially important 

for DVS to ensure no data is lost during the adjustment of system performance.  

4) Large-scale heterogeneous integration – the proposed methodology can be adopted to design 

asynchronous processors suitable for a large variety of applications. The number of internal 

nodes can also be increased or decreased to accommodate load variation and number of inputs. 

Heterogeneous scalability is enabled to use components with different functionality. Due to 

the local handshaking feature of the asynchronous circuit, two data routing protocols are 

developed to scale vertically or horizontally.  

The design methodology is developed and utilized during the completion of the grant from 

the National Science Foundation (NSF). MIT Lincoln Laboratory (MITLL) sponsored the 90nm 

FDSOI tapeout for the design. The tapeout was focused on creating the components for the 

homogenous platform and its adaptive control blocks.  
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1.3 Dissertation Organization 

Chapter 2 provides the background information introducing the asynchronous paradigm 

adapted by this work. Chapter 3 contains the design and throughput optimization approach of the 

computing units in the asynchronous circuitry. Chapter 4 presents the architecture of the adaptive 

homogeneous platform with Dynamic Voltage Control and load prediction algorithm. Chapter 5 

presents the architecture of the heterogeneous platform that can be scaled horizontally and 

vertically. Chapter 6 contains the simulation results for both the homogeneous and heterogeneous 

architectures as well as the physical testing of the asynchronous circuits and the homogeneous 

platform. Chapter 7 summarizes the findings and concepts discussed in this dissertation, and 

examines future possibilities of this work.  
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2 Background 

2.1 Asynchronous Circuits 

Asynchronous circuits, or self-timed circuits, are sequential digital logic circuits without a 

global clock signal. The design styles of asynchronous circuits vary from the bounded-delay model 

to the delay-insensitive model. In the bounded-delay model, it assumes that given enough time, a 

sub-circuit will have settled in response to an input and a new input can procedure safely [21]. 

Different from the bounded-delay asynchronous model, delay-insensitive circuits are correct by 

construction, assuming unbounded delays in both elements and wires. However, arbitrary gate and 

wire delay can exist in the circuit, which makes the timing model too restrictive to design practical 

circuits [22]. Quasi-Delay-Insensitive (QDI) logic emerged in the middle of 1980s with an 

assumption that the wire delays are negligible compared to gate delays. It partitions wires into 

critical and non-critical paths [23, 24]. For the non-critical path, there is no timing assumption, 

while in the critical wires the skew between different branches is assumed to be smaller than the 

minimum gate delay. With those assumptions, QDI methodology is widely adopted by the 

asynchronous community for circuit design.  

2.2 NULL Convention Logic (NCL) 

NULL Conventional Logic (NCL) is one of the QDI asynchronous paradigms. To achieve 

delay-insensitivity, NCL circuits utilize multi-rail encoding; and the most prevalent multi-rail 

scheme is dual-rail [25]. In dual-rail encoding, the two data transition wires encoded in such a way 

that one more value ‘no data’ called NULL state can be transmitted in addition to the actual data 

values. As shown in Table 1, the encoding is one-hot: dual-rail encoding with ‘00’ being the NULL 

and ‘10’, ‘01’ corresponding to TRUE and FALSE, respectively. The other combination ‘11’ is 
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invalid in dual-rail encoding. 

Table 1 Dual-Rail Encoding in NCL 

 DATA0 DATA1 NULL INVALID

Rail0 1 0 0 1 

Rail1 0 1 0 1 

NCL circuits are composed of 27 fundamental logic gates, which are named as threshold 

gates. The idea of NCL threshold gates was proposed by Theseus Logic, Inc. [26]. By using 

arbitrary m-of-n threshold gates with hysteresis, it reduces the implementation complexity with 

QDI logic. Each gate transitions from logic0 to logic1 only when a certain threshold of asserted 

inputs is achieved. The generic threshold gate is named as THmn, with m as the threshold and n 

as the inputs. The output will be set high when any m inputs have gone high and be set low when 

all inputs are low. So the C-element and Boolean OR gates can be seen as n-of-n and 1-of-n 

threshold gates with hysteresis. For example, a TH24 is a four-input gate that requires two or more 

to be asserted before the output is asserted. The symbol for the TH24 is shown below in Figure 

1(left). As a variation of the basic threshold gates, weighted threshold gates are used to indicate 

special functionality, donated as THmnWw1w2…wR, where 1 < wR ≤ m. The values of w1,w2,…wR 

indicate the weights of the inputs in order, i.e., w1 is the weight of the first input A, w2 is the weight 

of the second input B, etc. For example, a TH34w2 is a gate with four inputs that asserts its output 

when a threshold of three is achieved; due to the weighted inputs on this gate, the A input has a 

weight of two, thereby only requiring one other input asserted to assert the output. The B, C and 

D inputs have a weight of one, and therefore are not indicated in the list of weights. This concept 

is greatly simplified by studying the symbol assigned to weighted threshold gates, as shown in 

Figure 1(right). 
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Th24

A

B
Z

D

C
Th34w2

A

B
Z

D

C

 

Figure 1 Symbol of the Threshold Gates in NCL: Th24(left) and Th34W2(right) 

NCL threshold gates may also include a reset input to initialize the output, which are 

referred as the resettable gates. Resettable gates are used to design the shift registers in the NCL 

circuit. An N or D is added to the gate notation, along with the gate’s threshold, referring to the 

gate being reset to logic 0 or logic 1, respectively [27]. 

reset hold0

set hold1

VDD

Z

 

Figure 2 NCL Threshold Gates Implementation with CMOS Technology 

As shown in Figure 2, an NCL threshold gate can be implemented using CMOS technology 

with 5 blocks: set, reset, hold0, hold1 and the output inverter [28]. The set equation indicates how 

the gate will be asserted, with hold1 as its complement. The Reset equation indicates how the gate 

will be de-asserted, with hold0 as its complement. For the commonly used 27 gates shown in Table 

2, all the set equations are listed. The reset equation for the threshold gates is the AND function 

of each input’s inversion; for all the inputs needs to be de-asserted before the output node switches 
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from logic ‘1’ to ‘0’. 

Table 2 Set Function of 27 Fundamental NCL Threshold Gates 

NCL Gate Set Function 
TH12 A+B 
TH22 AB 
TH13 A+B+C 
TH23 AB + AC + BC 
TH33 ABC 

TH23w2 A + BC 
TH33w2 AB + AC 

TH14 A+B+C+D 
TH24 AB + AC + AD + BC + BD + CD
TH34 ABC + ABD + ACD + BCD 
TH44 ABCD 

TH24w2 A + BC + BD + CD 
TH34w2 AB + AC + AD + BCD 
TH44w2 ABC + ABD + ACD 
TH34w3 A + BCD 
TH44w3 AB + AC + AD 
TH24w22 A + B + CD 
TH34w22 AB + AC + AD + BC + BD 
TH44w22 AB + ACD + BCD 
TH54w22 ABC + ABD 
TH34w32 A + BC + BD 
TH54w32 AB + ACD 
TH44w322 AB + AC + AD + BC 
TH54w322 AB + AC + BCD 

THxor0 AB + CD 
THand0 AB + BC + AD 

TH24comp AC + BC + AD + BD 
 

2.3 NCL Pipeline 

NCL pipeline is a derivation of the micro-pipeline framework in [29].  In the pipelined 

circuit using dual-rail encoding, it is assumed that every two consecutive data cycles are always 
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separated by a spacer. The data validity is determined by examining the data wires using NOR 

gates and C-elements, which referred as completion detection. To maintain delay-insensitivity, 

NCL uses a special register, denoted as delay insensitive (DI) register to perform the necessary 

handshaking in the asynchronous sequential operation. As shown in Figure 3, similar to the 

Boolean pipeline, the registers are put at the input and output of the combination logic to form one 

pipeline stage. Two adjacent register stages interact through their request and acknowledge signals, 

Ki and Ko, to ensure the two DATA cycles are always separated by a spacer.  

DI Register

KiKo

NCL 
Combinational 

Logic

DI Register

KiKo

Completion 
Detection

NCL 
Combinational 

Logic

DI Register

KiKo

Completion 
Detection

Completion 
Detection

DATAIN DATAOUT

Ko

Ki

Figure 3 NCL Pipeline Architecture 

Ki acts as the request signal indicating weather DATA or NULL should be passed through 

the register in the next stage. For example, if the register accepts Ki being ‘1’ as the input, only 

DATA is allowed to pass. Conversely, the circuit must pass a NULL when Ki is ‘0’. Ko acts as the 

acknowledge signal and indicates which wavefront the register requires next.  When Ko is ‘0’, 

which is Request for NULL (rfn), indicating a DATA has been received. On the other side, Ko is 

‘1’, which is Request for DATA (rfd), after a complete NULL cycle has been received.  The time 

it takes the circuit to finish one cycle of operation is called the DATA-to-DATA cycle time, which 

is denoted as Tdd. Since the asynchronous circuit has an average-case performance, the Tdd is a 

dynamic time and can variant from cycle to cycle [30]. The average value of Tdd in the testbench 

is used to compare with the synchronous clock through this dissertation research.  
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Two special requirements in the NCL circuit, Input-Completeness [31] and Observability 

[32], prevent the NCL circuit can be easily adopted by commercial CAD tools.  Input-

Completeness requires that all outputs of a combinational circuit may not transition from NULL 

to DATA or NULL to DATA before a complete input set arrives. Observability requires only the 

transitions that are used to determine the output exist in the current DATA cycle. Otherwise, an 

orphan [31] may propagate through a gate and cause unpredictability.  

2.4 NCL with Multi-threshold CMOS Technology 

Multi-threshold technology is commonly used as power-gating mechanism in the 

synchronous design by utilizing transistors with different threshold voltages (Vt). Low-Vt 

transistors are faster but have high leakage, whereas high-Vt transistors are slower but have far 

less leakage current. In an MTCMOS circuit, the high-Vt transistors are used in the power path to 

shut down the leakage when the circuit is idle; and the low-Vt transistors are used in the data path 

to maintain the speed when the circuit is processing data [33]. The high-Vt transistors are 

controlled by a sleep signal. As shown in Figure 4, the sleep signal is de-asserted during active 

mode; the low-Vt logic will be able to process data with power and ground connected. When the 

circuit is idle, the sleep signal is asserted, disconnecting power from the data processing circuit 

with low-Vt transistors. However, when the data processing circuit is large, it is difficult to size 

the sleep transistors for large power supply. A fine-grained architecture is developed by utilizing 

NCL in conjunction with the MTCMOS technique in [34]. 
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Figure 4 MTCMOS Power Gating 
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Figure 5 MTNCL Gates Structure with 
Power Gating

In the Multi-Threshold NCL (MTNCL) family, all threshold gates in NCL are incorporated 

with the MTCMOS structure. The sleep mode in MTNCL circuit is redefined as pulling the output 

node to ground, rather than letting the output float. The observation is based on that in the NULL 

state of the NCL with all the output nodes grounded. So the sleep mode of MTNCL circuits is 

equivalent to the NULL cycle, which can significantly simplify the threshold gate design. As 

shown in Figure 5, the reset block in the NCL threshold gates is no longer needed, since the gate 

output will be forced to NULL in the sleep mode. Hold1 block, which is the complement of the 

reset block and guarantees input-completeness with respect to the NULL wavefront, is no longer 

required either. With the improved methods, all threshold gates in NCL can be implemented with 

fewer transistors and the Input-Completeness and Observability requirements in NCL circuit 

design can be eliminated.  
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2.5 MTNCL Pipeline 
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Figure 6 MTNCL Pipeline Architecture 

The framework for the MTNCL pipeline architecture is shown in Figure 6. When all 

MTNCL gates in a pipeline stage are in sleep mode, all gate outputs are forced to ground. It is 

equivalent to the pipeline being in the NULL state. Early Completion Detection [35] is used to 

further improve the throughput as well as maintain delay insensitivity in the pipeline architecture.  

The handshaking signals Ko and Ki in the NCL pipeline can naturally serves as the sleep control 

signal in the MTNCL pipeline. As shown in Figure 7, the output of the completion logic, Ko, is 

used to sleep the combinational MTNCL logic for the subsequent stages as well as the DI register 

and completion logic. Initially, the circuit elements in the MTNCL pipeline are in NULL state 

with all the Kos in rfd. After the first DATA wavefront presents on the input ports, the completion 

circuit will deassert Ko to rfn, which wakes up the subsequent register and combinational logic to 

propagate the input DATA. The deasserted Ko will hold its value until following NULL wavefront 

presents on the input ports and the completion logic is forced to sleep by the sleeping signal. When 

Ko is asserted to rfd, the subsequent register and combinational logic will be forced to sleep, thus 

generating a NULL wavefront. The DATA/NULL cycle continues repeatedly to fill all the pipeline 

stages before the first valid data presents on the output ports.  
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Figure 7 Early Completion Detection Block in MTNCL Pipeline 
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3 Digital Signal Processing Circuits Design in MTNCL 

3.1 Design of the Finite Impulse Response (FIR) Filter 

In digital signal processing (DSP), an FIR filter is the convolution of the input sequence 

and a time-reversed copy of a known pulse-shape, which is defined as the coefficients. For a causal 

discrete-time FIR filter with N taps, each value in the output sequence is the sum of the most recent 

input values multiplied by the coefficients, as shown in equation (1):  

ሺ݊ሻݕ ൌ ሾ݊ሿݔ଴ܥ ൅ ሾ݊ݔଵܥ െ 1ሿ ൅	൉൉൉ 	൅ܥேݔሾ݊ െ ܰሿ ൌ ∑ ௜ܥ
ே
௜ୀ଴ ൉ ሾ݊ݔ െ ݅ሿ  (1) 

where: 

 ;ሾ݊ሿis the input signalݔ

 ;ሺ݊ሻis the output signalݕ

ܰ is the filter order; a Nth-order filter has (N+1) terms on the right-hand side; 

  .is the coefficient of the impulse response at the ith instant of a Nth-order FIR filter	௜ܥ

For the hardware implementation, an FIR filter can be built with three digital elements, i.e., a 

unit delay component, a multiplier, and an adder. The unit delay updates its output once per sample 

period, using the value of the input as its new output value. By cascading a set of delay units to 

form a delay chain, the input sequence ݔሾ݊ሿ, ሾ݊ݔ െ 1ሿ, … ሾ1ሿݔ  can be accessed. The output 

sequence on the delay line is scaled by the coefficients, which are constants in most DSP 

applications for the multiply operation. Figure 8 shows a conventional tapped delay line realization 

of an FIR filter in synchronous logic. 
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Figure 8 Conventional FIR Filter with Tapped Delay Line 

3.1.1 Generic Ripple Carry Adder Design in MTNCL 

The combinational logic of the ripple carry adder is a serial connection of the full adders. 

The MTNCL registers are inserted at the input and output ports of the combinational logic to form 

the generic design. The Sum of Product (SOP) of the full adder in NCL can be presented by the 

equation shown in equation (2), with X and Y as the single bit input and the CIN as the carry in bit. 

The sum S and carry out COUT are mapped to the output of TH23 and TH34w2 gates in MTNCL. 

To separate form the NCL gates, suffix ‘m’ is used in the MTNCL gates, as shown in Figure 9. 

଴ܷܱܶܥ	 ൌ 	ܺ଴ܻ଴	 ൅	ܰܫܥ଴ܺ଴	 ൅	ܰܫܥ଴ܻ଴			 

ଵܷܱܶܥ ൌ 	ܺଵܻଵ	 ൅	ܰܫܥଵܺଵ ൅	ܰܫܥଵܻଵ		 

ܵ଴ ൌ 	ܺ଴ܻ଴ܰܫܥ଴ ൅	ܺ଴ܻଵܰܫܥଵ ൅	ܺଵܻ଴ܰܫܥଵ ൅	ܺଵܻଵܰܫܥ଴		 

ܵଵ ൌ 	ܺ଴ܻ଴ܰܫܥଵ ൅	ܺ଴ܻଵܰܫܥ଴ ൅	ܺଵܻ଴ܰܫܥ଴ ൅	ܺଵܻଵܰܫܥଵ		  (2) 
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Figure 9  Full Adder Implementation with MTNCL Gates 
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Figure 10 Ripple Carry Adder in MTNCL 

Figure 10 shows the ripple carry adder with single pipeline stage. The register (regm) and 

completion detection block (comp) are placed at the input and output of the combination logic 

(comb). Initially, all the handshaking signals are ‘1’ and the internal data path are in NULL state. 

Since Ko is ‘1’ and is requesting for data (rfd), a DATA cycle appears on the input path and the 
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sleepin is changed to ‘0’. Then the DATA will be evaluated by the comp1 and the Ko will toggle 

to ‘0’ after the evaluation time, which can be defined as  ௖ܶ௢௠௣_ௗ௔௧௔௜௡. Ko also severs as the sleep 

signal of regm and comp, which may have large input capacitance. In that case, buffers are 

necessary to drive the sleep pins in comb and regm, as shown in Figure 10.  Even a buffer chain 

can be designed by analyzing the logic effort of the sleep path in the MTNCL gates; the buffer 

delay ( ௦ܶ௟௘௘௣_௕௨௙) dominates the latency of the pipeline when the combinational logic is huge. 

After the buffer delay, regm and comb ‘wake up’ after sleep is ‘0’ and DATA can propagate 

through the register and be evaluated by the ripple carry adder. The evaluation time can be defined 

as ௖ܶ௢௠௕. During the evaluation phase, the NULL cycle has already arrived at the input port X and 

Y and sleepin is switched to be ‘1’. However, the null cycle cannot be propagated until the output 

data from the comb got evaluated by the comp2 in Figure 10 and Ko is changed to ‘0’. So during 

the NULL cycle, the data evaluation time of comp2, which is defined as  ௖ܶ௢௠௣_ௗ௔௧௔௢௨௧, need to 

be considered. Then the Ko can change to ‘1’ and put the regm and comb to ‘sleep’, after the delay 

of ௦ܶ௟௘௘௣_௕௨௙. Once the sleep signal is ‘1’, all the MTNCL gates in the circuit are grounded to 

generate the NULL wave. The delay of the NULL wave generation is small and ignored in the 

throughput estimation.  The DATA to DATA cycle of the ripple carry adder with single pipeline 

stage is presented in equation (3). 

ௗܶௗ ൌ 	 ௖ܶ௢௠௣_ௗ௔௧௔௜௡ ൅ 2 ൈ ௦ܶ௟௘௘௣_௕௨௙ ൅ ௖ܶ௢௠௕ ൅	 ௖ܶ௢௠௣_ௗ௔௧௔௢௨௧  (3) 

And the estimated pipeline throughput is shown in equation (4). 

ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ 	 ଵ

்೏೏
      (4) 
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3.1.2 Generic Carry-Save Multiplier in MTNCL 

A 4×4 bits multiplier with Carry Save Adders (CSA) is the typical design from [36, 37]. The 

propagation delay for this multiplier is 8 ×	 ிܶ஺+	 ஺ܶே஽, where ிܶ஺ is the propagation delay of the 

full adder and 	 ஺ܶே஽ is the delay of the 2 input AND gate. The CSA is combination of the Full 

Adder and an AND gate, but the AND gates are not on the critical path except the first CSA. For 

the throughput estimation, the delay of this circuit is considered as 8 ×	 ிܶ஺. 

Using the same architecture of the single pipelined ripple carry adder, the implementation of 

the generic multiplier in MTNCL is straightforward. As shown in Figure 11, even the delay of the 

combination logic is multiple full adder delays in this architecture. The throughput of the design 

is very low for a long buffer chain is needed to drive the huge combination logic. For the 8×8 bits 

implementation, the Tdd is almost doubled comparing to the 16×16 bits ripple carry adders with 

the same architecture.  
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Figure 11 Non-pipelined Carry Save Multiplier in MTNCL 

The throughput of the generic multiplier can be improved by adopting more pipeline stages. 

For the Boolean design, inserting registers in the critical path to divide the propagation delay 

evenly will double the throughput. The same strategy is applied to the MTNCL architecture as 
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shown in Figure 12. From equation (3), the Tdd of the MTNCL pipeline is not only determined by 

the delay of the combination logic. For the two pipeline stages in Figure 12, ௖ܶ௢௠௣_ௗ௔௧௔௜௡ , 

௖ܶ௢௠௣_ௗ௔௧௔௢௨௧ and  ௖ܶ௢௠௕ are the same. But the combination logic in stage 1 is much larger than 

the combination logic in stage 2. After buffering the sleep signal, ௦ܶ௟௘௘௣_௕௨௙ଵ	 will be larger than 

௦ܶ௟௘௘௣_௕௨௙ଶ. Since the circuit throughput is constrained by the maximum Tdd in the pipeline stages; 

the throughput of the two pipelined architecture will be deteriorated as the number of input bits 

scale up. However, when the number of input bits is fixed as 8, the combination logic in the two 

pipeline stages can be driven by the same buffer. With the balanced Tdd in the two pipeline stages, 

the throughput is improved by partitioning the combination logic.  
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Figure 12 Pipelined Carry Save Multiplier in MTNCL 

3.1.3 Delay Units in MTNCL 

The Delay Units in the synchronous circuit are shift registers, which are a serial of D Flip-

Flops with previous output connected to the next input. When the clock rises, the data will go 

through the data path. However, the asynchronous pipeline is incapable of building the shift 

register as in the synchronous one. The initial states for the registers are logic 0 with reset and 

logic 1 with set in the synchronous circuit, while the registers in MTNCL all go to NULL and Ko 

goes to rfd after reset. To maintain the DATA/NULL pattern in the delay chain, a new type of 
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MTNCL register is built in with the resettable TH12m gates. As shown in Figure 13, the left 

register, Regdm, is initialized with DATA0 after reset, which could also be designed to reset with 

DATA1 by reversing the dual rails. The right register, Regnm, is initialized to NULL state after 

reset. Besides the registers, the completion logic is redesigned by replacing the last component 

TH22 in Figure 7 with TH22d and TH22n to form the Compn and Compd components in the 

pattern delay shift registers shown in Figure 14. In the pipelined architecture, the Compd 

component will be reset to rfd and the Compn component will be reset to rfn initially to maintain 

the proper data flow in the shift register. 

 

Figure 13  Single-signal Registers with Reset to DATA (left) and Reset to NULL (right) 
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Figure 14 Pattern Delay Shift Register in MTNCL 
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3.1.4 FIR Circuit Design and Throughput Optimization 

The individual components, including the shifter register, the adders and the multipliers, 

compose a tap-generic FIR filter with fixed 8-bit input. The structure is shown in Figure 15. There 

are two pipeline stages in this architecture as marked in Figure 16, the bottom one convolutes the 

input data and the top one shifts the input data. This circuit works and produces correct result. But 

the throughput is not optimized. 

Z‐1 Z‐1 Z‐1 Z‐1
Xin

Yout

 

Figure 15  Architecture of the FIR Filter 

For the two pipelines architecture, after reset, the data path in the bottom one are all in ‘NULL’ 

cycle. While the data path in the top pipeline is reset to ‘DATA’ and ‘NULL’ patterns for it was 

designed as the pattern delay shift register. The bottom pipeline is considered as ‘empty’ and the 

top pipeline as already ‘full’ after reset. The DATA can propagate through an ‘empty’ pipeline but 

need to extrude a DATA to enter a ‘full’ pipeline, as shown in Figure 17. When the first external 

data comes into the pipelines, it propagates through the bottom pipeline but blocks at the first 

register in the top pipeline. After propagation delay of the bottom pipeline, which is the latency in 

a pipeline circuit, the top pipeline can move forward and those two pipelines will be able to take 

in next data. So the throughput of this architecture is the reciprocal of the latency, rather than the 
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maximum Tdd in the pipeline stages. 
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Figure 16 Two Pipelines in the MTNCL FIR Filter 
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Figure 17 Initial States of the MTNCL FIR Filter 
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Figure 18 Throughput Optimization of the MTNCL FIR Filter 

To improve the throughput caused by the latency of the circuit, multiple pipelined stages with 
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NULL cycle initialization are implemented in the top pipeline, as shown in Figure 18. After reset, 

the top pipeline has the same number of ‘NULL’ cycles as the bottom one, then the DATA in the 

top pipeline can move forward after internal data comes in. 

3.2 Design of the Infinite Impulse Response (IIR) Filter 

Different with the feeding forward structure in the FIR filter, the IIR filter has a recursive 

structure. The feedback from the output is used in the next convolution stage, which may lead to 

unstable output.  The recursive part of the IIR filter is implemented in the MTNCL circuit.  To 

prevent the output going to infinite, the digitals in the data flow are encoded in a fixed point number 

with fractional bits, which is called Q format in the arithmetic requiring constant resolution.  In 

the IIR circuit, the input and output bits are all constrained to 16. The data format is Q1.15 with a 

range of [-1, 1) with a resolution of	2ିଵହ. 

The IIR architecture also requires multipliers, adders and the delay chain. Since the data format 

in IIR circuit is signed, the generic multiplier and adder used in the FIR circuit are changed to 

adopt the signed value operation. The multiplier is changed to Baugh-Wooley architecture [38] 

with the 2 pipeline stages. An overflow detection bit is added to the generic adder to indicate when 

there is an overflow in the addition. The delay chain is kept exactly the same as the FIR design for 

throughput optimization. Since the data width is 16 bits in the IIR, the maximum delay in the 

circuit is the 2-stage multiplier. The architecture of the IIR filter is shown in Figure 19.  
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Figure 19 Architecture of the MTNCL IIR Filter 
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4 The Homogeneous Platform and Dynamic Voltage Scaling 

4.1 Architecture of the Homogeneous Platform 

To further improve the throughput of the asynchronous circuit, a homogeneous platform is 

designed for data processing. The platform can incorporate multiple cores with the same 

functionality.  As an example, with 4 FIR cores incorporated, the first data will be processed by the 

first core, the second data will go to the second core, and the third and fourth data will be assigned 

to the third and fourth core for processing, respectively. When the fifth data comes, it will wait until 

the first core is ready. So the throughput of the platform could be 4 times better than the single core. 

It is a tradeoff between area and performance. The homogeneous platform architecture is shown in 

Figure 20 with top-level components. Besides the computing cores, demultiplexer and input 

sequence generator are designed to dispatch input data while the multiplexer and output sequence 

generator guarantee the proper data exit the platform. For the physical implementation in this 

tapeout, four 8-tap asynchronous FIR filters are incorporated as the processing units.  
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Figure 20 Architecture of the Homogeneous Platform 



	

	 29

Ko

Input

DEMUX MUX

 Input Sequence 
Generator

Output Sequence 
Generator Ki

I

Ko

C

D

S1 S2

S1 S2 S1S2

Ko

Ko

Ki

Ki

Ki

C

D

Z Output

KiS3 S4

S3 S4

A

B

A

B

S3S4

Ki

Voltage Control 
Unit

Cores’ VDD

Ko Ki

Core1
(Pipes = p)

Ko Ki

Core2
(Pipes = p)

Ko Ki

Core3
(Pipes = p)

Ko Ki

Core4
(Pipes = p)

Ko Ki

VDD

VDD

VDD

VDD

Input

 

Figure 21 Instantiation of the Homogeneous Platform with 4 Cores and Voltage Control Unit 

Although the throughput of the MTNCL circuit could be significantly improved with the 

homogeneous platform, there are two constraints in the architecture that might degrade the benefits. 

The first constraint is that when the cores with different throughputs are incorporated, the fast core 

has to wait until the slow core finishes computation for the fixed input/output sequence. So the 

performance of the platform is dominated by the slowest core, especially when the data input rate 

is high. A heterogeneous platform that can maintain the throughput of each individual core is 

introduced in the next chapter for the average case performance. Another constraint with the 

homogeneous platform is that when the data input rate is low, the internal cores will spend most 



	

	 30

of the time in idle state waiting for the data coming in. In that case the energy efficiency of the 

platform could be worse than a single core because of the high leakage from the area overhead. In 

this chapter, a Dynamic Voltage Scaling (DVS) method is applied to the asynchronous 

homogeneous platform for energy efficiency.  

4.2 DVS for the Homogeneous Platform 

The self-timed circuit can tolerate a large supply voltage range because the delay caused 

by voltage drop will not affect its functionality. The minimum supply voltage to the MTNCL 

circuit is the Voltage that can sustain the properly operation of the transistors. Dynamic voltage 

scaling has great potential to improve the energy efficiency of the multi-core asynchronous 

platform when the data input rate is low. The architecture for the homogenous platform with DVS 

controller is shown in Figure 21. In this architecture, the platform is divided into two voltage 

domains. The demultiplexer, the multiplexer and input/output sequence generators are working 

with maximum voltage supply; so the input data can be dispatched to the internal cores at the 

maximum speed. Another domain is the supply voltage to the internal cores, which can be adjusted 

dynamically according to the data input rate. When the data input rate is high, the cores work at 

the maximum voltage supply for best performance. On the other hand, the supply voltage drops 

and the speed of the core is traded off for energy efficiency.  

The Voltage Control Unit (VCU) as shown in Figure 22 is the component that implements 

dynamic voltage scaling on the platform. The basic function of the VCU is detecting the input data 

rate variation and quantizing the variation into reference in a range of minimize and maximum 

supply voltage. The latency of the MTNCL pipeline is used to design detection circuit. With 

various scenarios of input data variation, the prediction circuit is designed to make the VCU 
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efficient in more complex situation. And the reference voltage is used by a 2-stage current sensor 

based voltage regulator for supply voltage adjustment. 
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Figure 22 Internal Structure of the Voltage Control Unit 

4.2.1 Latency of the MTNCL Pipeline 

The latency in a pipelined circuit is the delay between the first input data and the first output 

data. Inside the voltage controller, the latency of the MTNCL pipeline serves as a timing period to 

quantize the input data rate. In a Boolean pipelined architecture, the latency of the circuit depends 

on the clock period and number of pipeline stage. And the clock period is dominated by the set up 

and hold times of the register, the maximum combination delay between the pipeline stages and 

the clock skew. So the Boolean circuit usually has the worst case performance in terms of latency. 

The latency in the Boolean pipeline cannot be used to for data input quantization because they are 

both related to clock frequency. However, the MTNCL circuit has the average case performance 

feature. As each DATA cycle will propagate through the register, the combination block and the 

completion detection block in the initialized NULL stages. So the latency of the MTNCL pipeline 

is the propagation delay from the input port to the output port, which is independent of the input 

data rate.  
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4.2.2 Detection of the Input Data Rate 

In the latency of the MTNCL pipeline, if the data input rate is high, the DATA/NULL 

patterns could fill the whole pipeline as shown in the top pipeline of Figure 17. If the input data 

rate is low, each data could propagate through all the NULL cycles to arrive the output port, as 

shown in the bottom pipeline of Figure 17.  The Ko signal at the input side indicates the data 

entering the pipeline; and the Ki signal at the output side indicates the data exiting the pipeline. A 

simple counter, as shown in the detection block of Figure 22, could be used to accumulate the Ko’s 

rising edge and subtract the Ki’s rising edge. The value of the counter, which is also considered as 

the ‘pipeline fullness’, indicates the number of data inside the pipeline during the latency time of 

the circuit. With an assumption that there is no delay between the Ki signal toggling and the DATA 

or NULL transition at the output port, the pipeline fullness could be used as the quantization the 

input data rate.  
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Figure 23  FIFO Implementation in MTNCL Pipeline 

4.2.3 Pipeline Fullness and Voltage Mapping 

The pipeline fullness and voltage mapping is design-specific. For a design with large 

latency and fine pipelined stages, the maximum value of pipeline fullness is larger than a design 

with shorter latency or less pipelines stages. As a simplified case shown in Figure 23 and Figure 
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24 (a), in a FIFO buffer without any combination logic between the registers, the maximum 

fullness value is evaluated by equation (1).  

ݏݏ݈݈݁݊ݑ݂_ܺܣܯ ൌ 	 ௅௔௧௘௡௖௬

ೝ்೐೒	ା	ଶൈ ೎்೚೘೛
    (1) 

௥ܶ௘௚ and 	 ௖ܶ௢௠௣ are the propagation delay of the register and completion detection block in the 

MTNCL pipeline. 

 If combination logic is put at the first pipeline stage of the MTNCL circuit as shown in 

Figure 24 (b), the maximum fullness value will be significantly reduced because the delay of the 

combination block will be applied to each the DATA/NULL cycle in the latency time. The 

equation (1) used for maximum fullness detection will be changed to equation (2).  

ݏݏ݈݈݁݊ݑ݂_ܺܣܯ ൌ 	 ௅௔௧௘௡௖௬

ೝ்೐೒	ା	ଶൈ ೎்೚೘೛ା	்೎೚೘್
     (2) 

The third structure is putting the FIFO buffer before the pipeline stages with combination 

logic, as shown in Figure 24 (c). In that case, the latency can be divided into two parts, the latency 

of the FIFO and the latency of the logic. The maximum fullness value can be evaluated by equation 

(3). 

ݏݏ݈݈݁݊ݑ݂_ܺܣܯ ൌ 	 ிூிை_௅௔௧௘௡௖௬
ೝ்೐೒	ା	ଶൈ ೎்೚೘೛

൅	 ௅௢௚௜௖_௅௔௧௘௡௖௬

ೝ்೐೒	ା	ଶൈ ೎்೚೘೛	ା	்೎೚೘್
    (3) 

Equation (3) shows that in a pipelined circuit that with combination logic, the maximum 

fullness detected by counting the handshaking signals can be increased by buffering the input data. 

Since the pipeline fullness is used for dynamic voltage scaling, increasing the maximum detectable 

fullness value can improve the resolution of voltage control.  
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(b) Combination Logic at the Head of the Pipeline 
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(c) Combination Logic in the Middle of the Pipeline 

Figure 24  Latency Estimation of Three Different MTNCL Pipelines 

4.2.4 Pipeline Fullness Observation 

The test vehicle for the homogenous platform is instantiated with 4 FIR cores; each with 8 

taps as the computing units in the platform. As discussed in the previous section, buffers with 4 

pipeline stages are inserted into the platform to improve the voltage scaling resolution. The fullness 

of the platform is observed with the core’s VDD fixed to various voltage supplies and maximum 

workload. When the supply voltage is high, the processing core works fast and pipeline fullness 

stays low. With maximum workload for the observation, the pipeline accumulates maximum 

number of data at the minimum operating voltage. Table 3 shows the pipeline fullness variation 

with the supply voltage in an adjustable range. A linear characteristic is used to construct a voltage 
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divider network, with maximum fullness in the platform pipeline converted to 1.2 V and minimum 

fullness mapping to 0.6 V. 

Table 3 Pipeline Fullness Observation 

Core’s VDD 0.6V 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 

Fullness 12 10 9 8 7 6 5 

 

4.2.5 Workload Prediction Circuit 

The prediction algorithm is used to make more effectively control of the dynamic voltage 

scaling across various input scenarios. As a counter is designed to accumulate the Ko’s rising edge 

and subtract the Ki’s rising edge, the value of which indicates the number of DATA inside the 

pipeline during the latency time. As the decision-making unit for generating the voltage control 

signals, the pipeline fullness detection circuit is the key component in DVS for real-time energy 

optimization. Comparing the detected fullness with the pre-configured value, the control algorithm 

could simply raise or lower down the voltage. Due to the delay insensitivity of MTNCL, the 

platform is able to tolerate the delay overhead caused by adjusting VDD, without losing data or 

malfunctioning. However, for certain applications where input data bursts are common, the 

throughput adjusting may lag behind the input variations and degrade the overall performance. 

Even though a long data buffer could be applied to register all input data, the overhead will be 

worse in terms of energy consumption. Therefore, a workload predictor is developed to enhance 

the DVS control mechanism. 

As an example in the homogenous platform implemented with four FIR coes, the pipeline 

fullness detector has a 4-bit binary output, with an entire state space comprising 16-fold history. 
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However, implementing 16 states in hardware will cause high overhead. As the pipeline fullness 

in the platform is always continuously changing with the handshaking signals, the simplified 

algorithm could be predicting the acceleration of the pipeline fullness, as well as tracing the 

previous history.  

In the prediction circuit, the output of pipeline fullness detector, Q, is latched by the 

external input signal sleepin. The fullness acceleration is reduced to 3 states, which are Riseup, 

DonotChange, and Lowdown, in one-hot encoding. The acceleration state is predicted in a finite 

state machine (FSM) and applies to the registered Q for generating the predicted fullness, PreQ. 

In the following DATA cycle, PreQ will be evaluated to produce a miss or hit signal, depending 

on weather PreQ and Q is equal or not. The miss or hit signal will update the FSM and predict the 

subsequent fullness acceleration. 

SR[10] WR[10] DC[00] SL[01]WL[01]

hit

hit

hit

hit

hitmiss
miss

[01]miss

[10]miss

 

Figure 25 State Machine for Work Load Prediction. SR and SL states are for Riseup[10] 
prediction; WR and WL states are for Lowdown[01]; DC state produces DonotChange[00] 
prediction. The hit signal means the current state has made a right prediction of fullness 
acceleration.  The miss signal for WR, DC and WL states is combined with flag of real production, 
e.g., [01]miss indicates the predictor was off target with the actual acceleration, which is 
Lowdown[01]. 

The state switch mechanism imitates the 2-way branch predictor [39] utilized to improve 

the flow in the instruction pipeline. Five states, SR (strongly rise-up), WR (weakly rise-up), SL 
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(strongly low-down), WL (weakly low-down) and DC (don’t care) are encoded in the FSM. In the 

states of SR [strongly Riseup] and WR [weakly Riseup], the prediction result of q' is Riseup. In the 

states of SL [strongly Lowdown] and WL [weakly Lowdown], the prediction result of q' is 

Lowdown. In the state of DC, the prediction result of q' is DonotChange. The transition of the 

states is based on the prediction result is ‘miss’ or ‘hit’. Between WR, DC and WL, the states 

transition also depends on the value of q besides ‘miss’ and ‘hit’, while in other states, previous 

acceleration is employed besides this signal, as illustrated in Figure 25. 

4.2.6 Voltage Regulator 

The parallel cores of the platform are driven by a VDD supplied from the voltage regulator. 

It dynamically adjusts the output voltage according to the reference value from the Vref generator. 

As shown in Figure 26, the voltage regulator has a simple circuit structure to achieve fast output 

voltage scaling speed for real-time adaptability. Transistors P2, P3, P4, N1 and N2 form an 

operational amplifier. Combined with the pass device formed by P5 and R2, the negative feedback 

loop keeps the output Vout following Vref’s adjustment with a large drive capability. P1 and P2 form 

a current mirror to provide the operation current for the operational amplifier. N3 works as a bypass 

capacitor to improve the stability of the negative loop. The supply voltage for the regulator is fixed 

to 1.5 V for a maximum output of 1.2 V. 
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Figure 26 Circuit of the Voltage Regulator 

4.3 Homogeneous Platform for Synchronous Circuit 

To evaluate the efficiency of the DVS mechanism of the homogeneous platform, a 

synchronous counterpart is designed with the same functionality. As shown in Figure 27, the 

synchronous platform is built with de-multiplexer, multiplexer, internal cores and a clock divider. 

The supply voltage to the cores is adjustable; and a voltage control unit is implemented for dynamic 

voltage scaling. Different from the asynchronous platform, where the pipeline structure can be 

viewed as an FIFO for data input rate evaluation, all the internal status of the synchronous platform 

change with the global clock. The variation of the input data rate cannot be reflected by the 

synchronous pipeline. An external asynchronous FIFO is used to detect the variation of the input 

data rate variation, with a depth of 16 to match the pipeline status of the asynchronous platform. 

The ‘status’ output of the FIFO indicates the number of data possessed. The DVS component could 

be a similar design as the asynchronous one, predicting the input data rate by the variation of the 

FIFO status. For the DVS control, the supply voltage of the computing cores could be adjusted 
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dynamically and the voltage for the other components, including the MUX, DEMUX, the clock 

divider, the asynchronous FIFO and the DVS components, is fixed to the maximum supply.  
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Figure 27 Synchronous Count Part of the Homogeneous Platform 
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Figure 28 Demultiplexer in the Synchronous Homogeneous Platform 
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In the diagram with 4 computing cores, the de-multiplexer is built with a 2-bit counter, a 

2-4 decoder and registers, as shown in Figure 28. The input data can be dispatched to the internal 

cores sequentially following the input clock.  The multiplexer is built with a 2-bit counter and 4-

input multiplexers, as shown in Figure 29.  The outputs of the cores are merged into the output of 

the platform following the input clock. Inside the platform, the computing cores can operate at the 

speed of one-quarter of the clock frequency, while the output of the platform is synchronized with 

the clock.  

AND

2‐bit 
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2 to 4 
Decoder
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AND

AND

DFFs

DFFs

DFFs

DFFs

DATAIN

clk  

Figure 29 Multiplexer in the Synchronous Homogeneous Platform 

For the dynamic voltage scaling, the asynchronous platform with micro-pipeline can be 

viewed as an FIFO with internal logic.  The platform itself can detect the input data rate variation. 

In the synchronous platform, all the internal status changes with the external clock, which cannot 

reflect the variation of the input data.  An asynchronous FIFO is used to buffer the input data and 

detect the variation of the input data rate, with a depth of 16 to match the pipeline status of the 

asynchronous platform. The ‘status’ output of the FIFO indicates the number of data possessed. 

The DVS component could be a similar design as the asynchronous one, predicting the input data 
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rate by the variation of the FIFO status. For the DVS control, the supply voltage of the computing 

cores could be adjusted dynamically and the voltage for the other components, including the MUX, 

DEMUX, the clock divider, the asynchronous FIFO and the DVS components, is fixed to the 

maximum supply.  
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Figure 30 Architecture of the FIFO in the Synchronous Homogeneous Platform 

The diagram of the asynchronous FIFO is shown in Figure 30. Four components, the FIFO 

memory, the read/write pointer generator, and the synchronizer, are inside the FIFO. The FIFO 

memory is a dual port RAM, with a depth of 16 and input/output of 8 bits. The write operation to 

the memory is controlled by the write clock (Wr_clk) and the write enable (wclken) signal. The 

read operation of the memory depends on the changes of the read address. The control components 

for the memory are the read and writer pointer generators. The read/write pointer generator 

increments the pointer value in gray code following the read/write clock. The pointer values are 

converted to binary as the address for the FIFO memory. To detect if the memory is full or empty, 
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the read/write pointer needs to be synchronized to the write/read domain through the write/read 

clock. After the synchronization, the read pointer and writer pointer are compared in gray code to 

decide if the read pointer is catching up the writer pointer, which is an empty signal, or the write 

point is catching up the read pointer, which is a full signal.  
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5 The Heterogeneous Platform and Scalability 

5.1 Heterogeneous Platform Design Overview 

As presented the Chapter 4, the platform architecture has a tradeoff between area and 

performance. The homogeneous platform with DVS addresses the issue that when the data input 

rate is low, the energy and performance are balanced by dynamically adjusting the supply voltage 

to the processors. However, when the data input rate is high and cores with different capabilities 

are incorporated, the performance of the platform will be degraded by the slowest core such that 

all faster cores need to wait for the slowest core to finish before requesting the next batch of data, 

which is similar to an unbalanced pipeline. In this chapter, a heterogeneous platform architecture 

is designed to improve the performance under such conditions. 

When the input and output data sequences are fixed as in the homogeneous architecture, 

the platform will have the worst-case performance when the cores with different throughput are 

incorporated. To avoid that scenario, the platform needs to be able to dispatch data to a core as 

soon as it requests for data. However, there could be collisions if more than one autonomous 

operating core is requesting for data within a short period of time. To prevent collision, an 

arbitration mechanism is necessary to grant mutually exclusive access to the common data bus of 

the platform. The worst case of the system throughput could be avoided by assigning the highest 

priority to the slowest core in the platform when collision happens.  

5.2 Architecture of Heterogeneous Platform 

A generic heterogeneous platform incorporating n cores is designed as shown in Figure 31. 

The handshaking signals of each core are reserved and separated from the common data bus. To 
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make the rfd of each core mutually exclusive, a generic asynchronous arbiter is designed. After 

reset, all the internal cores are requesting for DATA and the Ko goes to rfd, while only one core 

will be granted by the arbiter to access the external data bus and others will hold their states. From 

the view of the platform, only the granted core is requesting for DATA and the others are idle. The 

Ko signal of the granted core will be de-asserted to rfn after the demultiplexer successfully 

dispatches data to it. After this initial round, the arbitration network will grant another core’s 

request for DATA through the common input data bus. The average waiting time of the cores is 

minimized by assigning the slowest core to top priority if two or more rfds arrive simultaneously. 

In other cases, the arbitration network serves in a first-arrive first-grant mode. So the handshaking 

signals are guaranteed to be mutually exclusive in rfd state. 

core 1
(pipes = p)

Ko

D
E
M
U
X

Arbiter

core n
(pipes = q)

Ko sleepout

sleepout

Arbiter

M
U
X

sleepin

sleepin Ki

Common Input

 Data Bus

Common Output

Ki

Ki[1]

sleepout[1]

Ki[n]

sleepout[n]

sleepin[1]
Ko[1]

sleepin[n]

Ko[n]

Th22

Th22

Th22

Th22

Data Bus

S1 Sn S1 Sn

 

Figure 31 Architecture of the Heterogeneous Platform 
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5.3 Multiplexer and Demultiplexer Design with NULL Cycle Reduction 

NULL Cycle Reduction (NCR) [40] is used to increase the throughput of NCL systems by 

reducing the NULL cycle on the I/O port in the multi-core architectures. In the heterogeneous 

platform, the external ports for all the handshaking signals of the internal cores facilitate the 

implementation of the NCR technique in the demultiplexer and multiplexer.  
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Figure 32 Demultiplexer in the Heterogeneous Platform 

The demultiplexer partitions the common input data bus to n output data paths connecting 

to the internal cores. The data dispatching operation is controlled by the exclusive sleepin signals. 

Figure 32 shows the structure design of the demultiplexer. The bufm is a basic MTNCL buffer. 

When the sleep signal is active, the output is forced to be ‘0’; otherwise it follows its input.  By 

inserting the bufm gate into all the rails of the input data path, the demultiplexer outputs a NULL 

wave after reset, when all the sleepin signals are active. In the heterogeneous platform, the rfd 

states of the cores are mutually exclusive, which means no more than one sleepin signals can be 

deactivated per arbitration; so only the rfd granted core’s datapath will connect to the common 
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input data bus during the DATA wave. The demultiplexer will automatically generate a NULL 

wave onto the datapath of the asynchronous core if its rfd is not granted. This simplifies the 

common input data bus interface, for it does not need to incorporate a NULL spacer when 

switching among different input data.  
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Figure 33 NCR Multiplexer in the Heterogeneous Platform 

The multiplexer is designed in a similar fashion. It multiplexes all the outputs of the internal 

cores onto one single output data bus for the platform. Again, MTNCL buffer gates – this time 

with exclusive sleepout signals per core – are employed on all the rails of the core’s output 

datapaths to ensure only one core produces DATA states. To eliminate the NULL spacer on the 

common output bus, the DATA state of the core with output data bus access is held by the OR tree 
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and the C-element gate (TH22) until the next core’s data output request is granted. Figure 33 shows 

the structure of the NCR multiplexer with one bit output form multiple cores. The output from the 

multiplexer switches between the DATA states of the internal cores following a pattern similar to 

that of the common input data bus. The output order may be different with the input order. This 

configuration produces a scalable heterogeneous platform. 

5.4 Asynchronous Arbiter Design 

The handshaking components require that the communication along several input channels 

is mutually exclusive. The basic circuit needed to deal with such situations is a mutual exclusion 

element (MUTEX) [41], shown in Figure 34. The circuit contains a latch with NAND gates and a 

metastable filter. The input signals R1 and R2 are two requests that originate from two independent 

sources, and the task of the MUTEX is to pass these inputs to the corresponding outputs G1 and 

G2 in such a way that at most one output is active at any given time. If only one input request 

arrives, the operation is trivial. If one input request arrives well before the other, the latter request 

is blocked until the first request is de-asserted. When both inputs are asserted at the same time, the 

MUTEX is required to make an arbitrary decision, and this is where metastability enters the 

picture.  

GND

Latch Filter

R1

R2

G1

G2  

Figure 34  Mutual Exclusion Element (MUTEX) in Transistor-Level Implementation 



	

	 48

The MUTEX circuit is used to construct the generic arbiter network with N-way inputs. 

Several architectures, such as mesh, tree and token ring arbiters, are studied in [42], with the 

conclusion that the first-arrive first-grant feature is not guaranteed. Without first-arrive first-grant 

arbitration in the heterogeneous platform, the rfd competition between two cores could put the 

third core into starvation even though its rfd has activated. A new architecture is also developed in 

[42], which needs 	ܥ	௡ଶ  MUTEXes to prevent the starvation of the N-way requests. Figure 35 shows 

an example of the generic design with 4-way inputs.  
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Figure 35 Generic Architecture of N-way MUTEX – A 4-Way Example 

5.5 Platform Cascading 

Connecting the common data bus of the multiplexers and demultiplexers and the 

handshaking signals will cascade the platform. As shown in Figure 36, two generic platforms are 

scaled horizontally with the same internal cores. In the first platform, two arbiters are implemented 

to make the Ko and sleepout signals from different cores exclusive; while the subsequent platforms 
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just need one arbiter for the sleepout signals since the rfds have already become exclusive in the 

previous platform. The inputs to the first platform are from the common input data bus, and the 

output data of the first platform is the input data of the subsequent platforms. Cores in the platforms 

arbitrate for input and output, but compute in parallel. The self-timed nature of delay-insensitive 

circuit avoids any timing issues between the platform modules. With the highly-modular interface, 

it is easy to compose the platform with the desired scalability for larger systems. 
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6 Circuit Fabrication and Results Analysis 

6.1 Simulation of FIR Designs 

The Boolean and MTNCL FIR filters are designed in the same architecture as shown in 

Figure 15. For throughput improvement, the MTNCL FIR filters are optimized with the technique 

discussed in section 3.1.4. The Boolean designs are synthesized with Synopsys Design Compiler 

based on the throughput of the MTNCL one. Both FIR designs are coded in a generic manner. The 

4-tap and 8-tap structures are instantiated with the same fixed coefficients. Buffers are inserted 

into the MTNCL design based on the drive strength and fan out of each MTNCL gate before the 

circuits are implemented at the transistor-level with the 130nm IBM 8RF-DM process. For all the 

MTNTCL designs, the number of buffers is around 2.6% of the total gate count. A VerilogA 

stimulus module is developed to provide input data to the FIR filters according to the handshaking 

signals. Based on the preliminary simulation, the MTNCL design has an average Tdd of 3.02 ns; 

so the Boolean one is synthesized with the clock period of 3 ns. Then 256 input data are simulated 

in Cadence Virtuoso UltraSim simulator and the integration of the current with the simulation time 

is calculated, which is the period from reset deactive to the last data appears at the output. The 

energy value is the current integration data multiplied by the supply voltage (1.2V in this case). 

The area estimation is based on the gate layout in the libraries, and the unit cell area is set to 0.4µm 

by 4.8 µm. For the Boolean gates, the layouts are from the IBM standard library, which is highly 

optimized and has various driving strengths. On the other hand, the MTNCL library is design and 

developed by the Trulogic Laboratory; most of the gates have the minimum drive strength. For the 

leakage power measurement, the reset is kept deactive and all the inputs are forced to be '0'. Then 

the supply current is integrated for 100 ns to get the energy. The leakage power is the energy value 

divided by 100ns.  
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The simulation results and area comparisons are shown in Table 4. In both structures, the 

clock period in the Boolean testbench is 3 ns, as the design is synthesized as the same throughput 

of the MTNCL one. For the 4-tap structure, the MTNCL design saves 29.6% on active energy per 

data and 64.6% on leakage power. For the 8-tap structure, the MTNCL design saves 28.7% on 

active energy and 69.1% on leakage power. The drawback of the MTNCL design is the area 

overhead, which is 1.24 and 1.49 times larger than the synchronous counterpart. Considering the 

gate library used in the MTNCL design in not fully optimized in terms of area and most of the 

gates with the minimum drive strength, the area of the MTNCL design has potential to be improved. 

Table 4 Performance and Area Comparison of the Boolean and MTNCL FIR Filters 

FIR Designs 
Average Tdd /T 

(ns) 
Energy Per Data 

(pJ) 

Area 

(Unit Cells) 

Leakage Power 
(µW) 

4 Taps 
MTNCL 3.02 23.82 36717 3.62 

Boolean 3 33.85 16370 10.22 

8 Taps 
MTNCL 3.07 52.46 78837 9.38 

Boolean 3 73.59 31557 30.34 

 

6.2 Simulation of the Homogeneous Platform 

The homogeneous platform introduced in section 4.2, including the multiplexers, sequence 

generators, processing cores in the parallel architecture, the fullness detector, fullness predictor, 

Vref generator and voltage regulator in the VCU, is implemented at the transistor-level with the 

130nm IBM 8RF-DM process. All simulations are performed in Cadence UltraSim simulator. To 

make system throughput vary in a wide range, Input Pause Time (IPT) is defined in the stimulus 

module as time delay, which is an interval between DATA/NULL patterns appearing on the input 

rails and Ko is asserted/deasserted. Four input scenarios, as shown in Fig. 8, based on the variations 
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of IPT are simulated for 40 patterns with DVS, and a range of fixed voltage supply between 0.6V 

and 1.2V to the processing cores in the platform. The average Tdd, energy consumption per data, 

and the product of the delay and energy, are demonstrated as histograms from left to right in Figure 

37 (a) to (d). As the supply voltage changing from the maximum 1.2V to a minimum 0.6V, the 

average Tdd increased by 71.5% in the down ramp scenario, 59.2% in the up ramp scenario, 184.3% 

in the interval and 260.7% in the random scenario; while the average energy consumption per data 

decreased by 77.1%, 74.7%, 67.9%, and 63.6%, respectively. When the DVS mechanism is 

applied to the platform, the product of energy and delay is minimized among the voltage range, 

with a decrease of 3.9%, 3.1%, 2.6%, and 1.6% smaller than the minimum value with fixed voltage 

supply across the four scenarios. The advantage of DVS indicates a better tradeoff between 

performance and energy consumption in the platform. 

Besides the energy for the parallel cores in the platform, the VCU energy and the platform 

energy are considered when DVS is applied. The VCU energy refers to the energy consumption 

for the circuits deploying DVS, including the fullness detector, fullness predictor and the Vref 

generator. The platform energy includes the peripheral components in the platform receiving a 

fixed 1.2V supply. Figure 38 (a) to (d) illustrate the energy of VCU and platform comparing to the 

energy consumption of the internal FIR cores. The processors in the platform take 90% to 92% of 

the total energy across the four scenarios, which indicates the parallel architecture with enhanced 

DVS mechanism has great potential on energy saving and performance improvement. 
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a) Down Ramp Scenario with IPT Changing from 0.5ns to 15ns 

b) Up Ramp Scenario with IPT Changing from 15ns to 0.5ns 

 
c) Interval Scenario with IPT Changing Between 0.5ns and 5ns 

d) Random Scenario with IPT Changing Between 0.5ns and 5 ns 

Figure 37 Performance and Energy Analysis in Homogeneous Platform 
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Figure 38 Distributed Charts of Homogeneous Platform Energy Consumption with DVS 

6.3 Comparison of the Synchronous and Asynchronous Platforms 

The synchronous platform designed in section 4.3 is instantiated with 8-tap FIR filters and 

synthesized in Design Compiler using 130nm IBM 8RF-DM library to match the throughput of 

the asynchronous platform with 1.2V supply voltage. In the simulations, the platform structures 

(including the demultiplexer and multiplexer) and the FIFO are fixed with maximum voltage 

supply of 1.2V. Level shifters are inserted between the interface of the platform structure and the 

internal cores. By applying different supply voltage to the cores, the clock cycle of the synchronous 

platform is tuned to match the Tdd of the asynchronous one. The energy comparison of the 

platforms is based on the same throughput under different supply voltages to the computing cores. 

As shown in Figure 39, when the supply voltage is between 0.6V and 0.8V, the synchronous 

platform does not have the stable functionality with 100 data simulation. When the supply voltage 

is above 0.8V, the synchronous cores consume 48.3% to 50.5% more active energy than the 

asynchronous cores per data. In Figure 40, the energy consumption of the synchronous platform 

structure is close to the asynchronous one when the cores’ supply voltage is larger than 0.8V. The 

FIFO with a depth of 16 data consumes 3.5 energy than the demultiplexer and multiplexer. If it 

is used as the component for DVS control, the synchronous platform will have large overhead than 

the asynchronous one,  
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Figure 39 Energy Comparison of the Internal Cores in the Homogeneous Architectures 

 

Figure 40 Energy Comparison of the Platform in the Homogeneous Architectures 

6.4 Simulation of the Heterogeneous Platform 

Heterogeneous cores are instantiated in the platform for evaluation. The 4 processing cores 

incorporated into the platform are a pipelined FIR filter, an IIR filter, a multiplier, and an adder. 
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The FIR filter is an 8-tap structure with 8-bit unsigned input. The IIR filter has 3 taps and the data 

format is Q15 with an extra pin for overflow detection. The multiplier is in 8-bit carry save 

structure and fully pipelined. The adder is ripple carry adder with 16 bits unsigned input. The 

selected cores have various computing capabilities and input widths, which ensure different delay 

paths in the platform. The pipeline detector, voltage regular, and enhanced DVS mechanism 

introduced in Chapter 4 are implemented into the heterogeneous platform to adjust the supply 

voltage of each core. The design is flattened at the transistor-level and instantiated with the 130nm 

IBM 8RF-DM process. Intensive simulations are conducted to evaluate the effectiveness of DVS 

in terms of balancing the performance and energy of various cores with random data input rates. 

When DVS is performed on one core, the other cores and platform are processing with the 

maximum voltage supply. Figure 41 (a) shows the evaluation of 40 input data to the fully pipelined 

FIR filter with various supply voltages and the DVS mechanism. The charts from left to right 

represent the average Tdd, the energy consumption per data, and the product of average delay and 

energy. Figure 41 (b) to (d) show the simulation results of 40 random data for the non-pipelined 

FIR filter, the pipelined multiplier and adder. As the supply voltage changing from the maximum 

1.2V to a minimum 0.6V, the average Tdd increased by 221.7% for the FIR filter, 389.4% for the 

IIR filter, 120.3% for the multiplier and 117.3% for the adder; while the average energy 

consumption per data decreased by 75.4%, 75.3%, 75.8%, and 76%, respectively. When the DVS 

mechanism is applied to the cores separately, the product of energy and delay is minimized among 

the voltage range, indicating an optimized balance between system throughput and energy 

consumption. For the FIR filter, the pipelined multiplier and the adder, the energy-delay product 

of DVS is 8.4%, 2.6%, and 3.9% better than the product of 0.8V voltage supply, which is the best 

among the fixed voltage supply range. For the IIR filter, which has a lower throughput than the 
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other cores, the DVS is 4.9% better than the minimum product value of fixed voltage supply at 

1.0V.  

The pie charts in Figure 42 (a) to (d) demonstrate the energy distribution among the 

components in the heterogeneous platform when DVS is applied to the internal cores. In the four 

scenarios, the energy of the Voltage Control Unit (VCU) is fairly small, taking a maximum 2% of 

the total energy. The energy consumption for the peripheral components in the platform, including 

the multiplexer, the demultiplexer, the arbitration network, and the level shifters, varies from 2% 

to 6% of the total energy. Most of the energy is consumed by the computing units in the platform; 

the FIR filter and IIR filter occupy a high quota for their comparably larger size. The results 

indicate that the heterogeneous platform with DVS is effective in improving system performance 

with little overhead on the energy consumption.  
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a) Pipelined FIR Filter 

b) Pipelined IIR Filter 

c) 8  8 Bits Pipelined Multiplier 

 

d) 16  16 Bits Pipelined Adder 

Figure 41 Performance and Energy Analysis of the Internal Cores in Heterogeneous 
Platform 
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Figure 42 Distributed Charts of Heterogeneous Platform Energy Consumption with DVS 

6.5 Circuit Fabrication and Measurement 

The 8-tap Boolean and MTNCL FIR filters and the homogeneous platform are taped out 

in the MITLL 90nm CMOS FDSOI process run. All the circuit designs are optimized for sub-

threshold operation and energy efficiency. The optimization strategies include the internal node 

balancing of the MTNCL and NCL threshold gates, the circuit synthesis based on the driving 

strength of the gates, and gate break down for sub-threshold operation. For the physical 

implementation of the Boolean and MTNCL FIRs, a simple I/O logic is used to reduce the number 

of input/output pads. The input logic is a shift register with 8 D-Flip-flops. Only one input pad is 

used to shift the data in serially, and then the data is loaded to the input ports of the FIR in every 

8 input clock cycles. The output logic is the reverse of the input logic, with the function of parallel 

in and serial out as shown in Figure 43. It has 22 shift registers, and the input of each register is 

connected to the output of a 2-to-1 MUX. The MUX is controlled by an external signal called 

‘load_shift(L/S)’ to decide if it is going to load the output of the FIR circuit to the output logic or 

shift the loaded data out of the chip.  
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Figure 43 Output Logic in the Synchronous FIR Chip 

The physical layout of the Boolean FIR design, the MTNCL FIR design and the homogenous 

platform are shown in Figure 44 to Figure 46.  

 

Figure 44 The Physical Layout of the FIR Boolean Design in MITLL 90nm Process 

 

Figure 45 The Physical Layout of the FIR MTNCL Design in MITLL 90nm Process 
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Figure 46 The Physical Layout of Homogeneous Platform in MITLL 90nm Process 

A Xilinx Virtex-7 FPGA is utilized to provide and read back signals simultaneously from 

the testing chips. Since the FPGA output voltage level is higher than the required 300 mV supply 

voltage, a level shifter board is used to convert the FPGA output voltage from 1.8 V to 300 mV. 

The 300 mV output voltage of the testing chip is converted back to 1.8 V to be properly recognized 

by the FPGA. Figure 47 shows the complete testing setup with the FPGA connected to the level 

converter PCB and the testing PCB. For throughout testing, VDD is fixed at 300 mV and a body-
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biasing voltage ranging from -1V to -2V is applied. The temperature of the test environment is 

maintained at 25℃.  

 

Figure 47 Hardware Testing Setup with FPGA, Level Shifter and Testing PCB 

 

Figure 48 Performance and Energy Consumption of the Boolean FIR in MITLL 
Tapeout 
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The testing result of the Boolean FIR filter is shown in Figure 48 regarding the energy per 

data and the performance. The power and energy measurement is taken over a range of operating 

speed. The results indicate that the Boolean FIR filter operates at a range of speed from 260.5 Hz 

to 1.303 Hz and the energy per data is from 10.37 nJ to 2640.8 nJ, at 300 mV VDD and -1.7 V body-

biasing voltage. The notably slower speed of the FIR filter is because the I/O logic is implemented 

owing to the limited number of pads. 

 

Figure 49 Performance and Energy Consumption of the MTNCL FIR in MITLL Tapeout 

The MTNCL FIR filter is designed in conjunction with its Boolean counterpart. The 

measured total power, energy per data, and performance results are shown in Figure 49. Dependent 

on the performance results, the Tdd of the asynchronous FIR filter is ranged from 366.7Hz to 

1.83Hz with energy per data from 6.3 nJ to 1352.34 nJ, at 300 mV VDD and -1.55 V body-biasing 

voltage. Same as the Boolean FIR filter, the operating speed of the MTNCL FIR filter is bounded 

by the I/O logic implemented due to the limited number of pads, hence the considerably higher 
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Tdd. Comparing to the results of the Boolean FIR, the MTNCL design has 1.4× higher operating 

speed and 1.5× lower energy per data on average. 

A more complex design based on the homogeneous platform, which consists of 4 FIR 

filters processing data in parallel, is tested as fully functional with 0.3V power supply and -1.9V 

body-biasing voltage. The energy and performance data is shown in Figure 50. Since I/O logic is 

eliminated from the design, the result is close to the maximum throughput when the IPT is reduced. 

The best result with the FPGA testbench is 49.364 pJ per data with the Tdd at 6.02 µs. As the IPT 

increases, the energy consumption of the platform rises 2784.9 pJ per data when the Tdd is 320.1 

µs. 

 

Figure 50 Performance and Energy Consumption of the Homogeneous Platform in MITLL 
Tapeout 
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7 Conclusion 

This dissertation work focus on the asynchronous circuit and computing architecture design 

based on the delay-insensitive NULL Conventional Logic (NCL) and the multi-threshold CMOS 

techniques. The throughput and latency of the NCL micropipeline are derived for the digital signal 

processing circuit optimization. Generic Finite Impulse Response (FIR) design shows the 

asynchronous design saves at least 28.7% on active energy per data and 64.6% on leakage power 

comparing to its synchronous countpart with the same performance.  

Scalable parallel computing architectures that can incorporate homogeneous and 

heterogeneous units are designed with Dynamic Voltage Scaling (DVS) for balanced control of 

performance and energy efficiency. The pipeline fullness of the circuit is observed and used to 

predict future workloads and modulate the processing cores’ power supply using a voltage 

generating network and a voltage regulator. An effective fullness variance predicting algorithm is 

implemented to employ the DVS more aggressively in a wider range of system workloads. 

Common data I/O ports with NULL Cycle Reduction and asynchronous arbitration network are 

incorporated in the heterogeneous platform to make a highly-modular interface for both horizontal 

and vertical scaling. Both platforms are integrated with data processing units using the IBM 130nm 

8RF process. Transistor-level simulation results show that both platforms can automatically 

achieve an optimized tradeoff between energy and performance with the enhanced DVS 

mechanism.  

The 8-tap asynchronous and synchronous FIR circuit and the homogeneous platform are 

fabricated using the MITLL 90nm FDSOI process. The asynchronous chips are tested for 

functionality, performance and power consumption. With 0.3V voltage supply, the asynchronous 

FIR chip has 1.4× higher operating speed and 1.5× lower energy per data on average. The 
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homogeneous platform consumes 49.364 pJ per data with the best performance when the DATA 

to DATA cycle time is 6.02 µs.  

This research demonstrates the advantage of the asynchronous circuit in the large scale, multi-

threads and scalable computing architectures. For future work, power gating can be implemented 

in the platforms for energy efficiency improvement under the light load circumstances. A 

synchronous wrapper can also be considered for IP level integration and promotion.  
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