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Abstract 

Over the past decade, pharmaceutical industries have prioritized their focus on 

discovering new innovative drugs, yet the syntheses are often either inefficient or the approach 

of environmental sustainability presents a great deal of concern.  Moreover, the methodology 

developments for amine syntheses have continued to flourish due to their important role and 

wide use in pharmaceutics. Yet their syntheses often lack sustainability and efficiency.  Synthetic 

chemists have continued to explore potential innovative avenues for conducting chemical 

reactions more effectively and efficiently.  One of the most abundant, renewable natural 

resources is solar energy and to harvest, use, and store it directly is an ongoing development.  To 

reduce our dependency on fossil energy sources, methods of direct and proficient conversion of 

solar energy to chemical energy become critically important.  Recently, visible light photoredox 

catalysis has become a highly prominent tool in the development of many successful organic 

transformations.  This work describes an innovative approach of using visible light 

photocatalysis to develop efficient one-step syntheses for the construction of structurally diverse 

carbocycles substituted with amines from simple starting materials under mild conditions.   

Under photocatalysis, amines can function as both the sacrificial electron donor and 

substrate.  Incorporating the oxidation of the amine and a subsequent irreversible reaction will 

allow the amine to posses its dual roles.  To accomplish this, cyclopropylanilines were used and 

subjected to ring opening to form reactive β-carbon radical iminium ions via nitrogen radical 

cations upon oxidation of the cyclopropylanilines.  As a result, an intermolecular [3+2] 

annulation of cyclopropylanilines with alkynes was developed to afford highly useful synthetic 

intermediates and motifs such as fused indolines, which are found in various bio-active alkaloids 

and pharmaceuticals.  This method exhibited significant group tolerance particularly with 



heterocycles.  Moreover, the [3+2] annulation enabled rapid assembly of diverse cyclic allylic 

amine derivatives.    Expansion of the [3+2] annulation to include substituted cyclopropylanilines 

and other types of π-bonds, such as enynes and diynes to afford structurally diverse carbo- and 

heterocycles were studied.  Lastly, a protocol for an oxidative cleavage of N-aryl group was 

successfully accomplished upon screening various oxidants and installing various removable aryl 

or heteroaryl group.   
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Chapter 1.  Introduction: Photoredox Catalysis 

1.1.  Background/ Basic Concept of Photochemistry 

Photochemistry can be defined as the reactions of molecules induced by energy in the 

form of light.  Upon activation, the molecule attains an electronically excited state which causes 

the distribution of electrons to differ significantly from the electronic ground state.  Since a 

molecule’s chemical nature is determined by the state of its electrons, very different chemical 

and physical properties arise between the electronic excited and ground states leading to two 

different chemical species.  Organic reactions affected by light have been in pursuit since the 

early twentieth century.
1, 2

  One of the earliest pioneers, Giacomo Ciamician, began studying the 

behavior of organic compounds toward light more than 100 years ago.  The “founding father of 

photochemistry” envisioned the potential of utilizing solar energy as an alternative for chemical 

industry to one day replace high energy synthetic methods with clean photochemical reactions.  

In his lecture titled “The Photochemistry of the Future,” he strongly suggested natural sunlight to 

be superior to all known sources of energy and predicted solar home heating, photoelectric 

batteries, increased agricultural utilization of light, and industrial and synthetic applications of 

solar fuel.
2
  His ambitious idea of discovering new and more sustainable synthesis using sunlight 

has impacted the growth and development of successful chemical transformation in 

photochemistry.   

The earlier works of photochemistry primarily focused on direct excitation of molecules, 

by short wavelength (λ) ultraviolet irradiation (λ = 250-300 nm).  However, the short 

wavelength, blocked by the protected ozone layer, in solar irradiation inhibits the conversion of 

molecules.  The insufficient UV wavelengths of the solar spectrum prevent direct use of sunlight 

as the source of UV light, and alternative light source such as UV lamps are required.  These 



2 
 

lamps require intensive input of energy to generate high-energy UV radiation, leading to increase 

cost of light source and ecological footprint.  Moreover, specialized and expensive photoreactors 

are needed to transmit UV light.  Particularly in industry scales, the scale factor is solely 

dependent upon the size of the photoreactor and large UV photoreactors are costly.  

Alternatively, renewable and abundant, ambient sunlight as an ideal reagent would be beneficial 

due to its environmental friendly characteristics.  The majority of the solar spectrum is made up 

of visible light with its highest intensity found in the blue, green, and red region (λ = 400-650 

nm).  In principle, promoting visible light in photochemical reactions is fitting for the 

development of clean, cost-efficient synthetic methods for the chemical industry.  The 

photochemical transformations can be conducted in a facile manner, in addition to possessing 

high atom economy.  Nevertheless, synthetic methods directly engaged in the use of visible light 

(λ = 400-800 nm) are less developed.  Most organic compounds cannot absorb visible light 

efficiently.  To address this issue, the presence of visible light absorbing 

chromophores/photocatalysts is required.  These photocatalysts are employed to further enhance 

the photochemical reactivity upon undergoing electron or energy transfer pathway to 

photosensitize organic molecules.  Notably, inorganic and material chemists have investigated 

the redox properties of these photocatalysts for their applications in water splitting
3, 4

 and 

reduction of carbon dioxide to methane.
5
   

The most commonly used versatile visible light photocatalysts are transition metal 

polypyridyl complexes, particularly ruthenium Ru(II)
6-8

 and iridium Ir(III).
9, 10

  Ru(bpy)3
2+

, the 

most commonly used Ru(II) source, has been studied in many applications in both solar-energy 

conversion and complex synthesis due to its unique photophysical and chemical properties.
11-14

  

The metal polypyridyl complex (Ru(bpy)3
2+

) shows excellent chemical stability and tolerance for 
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high temperature conditions and strongly basic or acidic conditions.
15

  Its strong, broad 

absorption band at ~450 nm (visible range) corresponds to a metal-to-ligand charge transfer 

(MLCT) transition to produce a redox active photoexcited state.  This complex is known to 

exhibit high quantum efficiency in generating a relatively long-lived photoexcited state.  Much 

attention centers on the ability of the MLCT state to function as either an electron donor or an 

electron acceptor in intermolecular redox reactions involving quenchers.
11, 16

  These photoexcited 

states of both Ru(II) or Ir(III) polypyridyl complexes are capable of initiating outer-sphere one-

electron transfer processes with organic molecules, including amines.  Reactions based on this 

odd-electron or open-shell chemistry demonstrate potential for forming C-C bonds.  In principle, 

synthetic methods can be conducted more selectively using visible light due to its lower energy 

than UV.  Photoreactions utilize the natural resources of direct sunlight or inexpensive visible 

light sources such as compact fluorescent or LED lights.  The seminal works by MacMillan,
17, 18

 

Yoon,
19-21

 Stephenson,
22, 23

 and others
14, 24

 have shown great potential for the future of visible 

light photocatalysis in organic synthesis. 

1.2. Photophysical Properties of Photocatalyst 

 A desired photocatalyst requires the ability to absorb light and utilize the energy for 

chemical reactions, though remain unchanged from the reaction sequence.   The energy produced 

from the absorption must be sufficient to allow the substrate molecule to undergo the reaction.  

However, the reaction should induce no modifications to the photocatalyst as it recovers to its 

original state.  The photocatalyst, itself, should be stable in the absence of the substrate.  

Therefore, it is imperative that the photophysics of the photocatalyst without the substrate should 

be first addressed and discussed.  Both ruthenium- and iridium-based polypyridyl complexes 

undergo the similar discussed processes of generating the excited state photocatalyst.  The 
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photophysical process is popularly illustrated by the Jablonski diagram shown in Figure 1.1.
6
 

All photochemical reactions are initiated by the absorption of a photon to excite the 

ground state photocatalyst, PC 
1
A1, to any of the higher energy excited states *PC 

1
MLCTn.  The 

needed photon energy, hυ, must be large enough to give the excitation energy for the first excited 

state.  The excitation process may involve an allowed transition in which the electron being 

transferred does not undergo a spin flip when going from the lower energy to higher energy 

orbital.  This leads to an excited singlet state where the electron spins are opposite in two singly 

occupied orbitals.  Usually, the relaxation to the lowest spin-allowed excited state, *PC 
1
MLCT1, 

from the higher excited singlet states is quite fast.  Thus, the maximum energy available for the 

photochemical transformation is that of *PC 
1
MLCT1.  The reverse deexcitation pathway from 

singlet excited states to the ground states with electron spins paired in a single orbital is a spin 

allowed process, which is termed fluorescence (kf).   This spin-allowed light emission from an 

excited singlet state is short-lived.  Moreover, the *PC 
1
MLCT1 state undergoes rapid 

intersystem crossing (kisc), a transition of one electronic state to another one with a different spin 

Figure 1.1.  Jablonski diagram for photocatalyst. 

 

kf, kic, kisc, kp are the rate constants for fluorescence, internal 

conversion, intersystem crossing, and phosphorescence, 

respectively and λem is the maximum emission wavelength 

of the photocatalyst. 
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multiplicity.  Intersystem crossing to its triplet state is realized followed by internal conversion to 

provide a long-lived first triplet excited state, *PC 
3
MLCT1, where the electron spins are parallel 

in the two orbitals.  Consequently, the triplet excited state, *PC 
3
MLCT1, exhibits a sufficiently 

longer lifetime to undergo bimolecular quenching reactions via electron or energy transfer 

processes in competition with the minor deactivation pathways of fluorescence and internal 

conversion from *PC 
3
MLCT1.  Unimolecular deexcitation process of a triplet excited state can 

occur to provide a ground state with two electrons of opposite spins in the lower level orbital, 

which is considered a forbidden process due to the violation of the Pauli principle.  The long-

lived emission from the triplet state to the singlet ground state that is spin forbidden is termed 

phosphorescence (kp).   

The excited state species of the photoredox catalysts have been thoroughly examined 

with emphasis on their importance in triggering photochemical transformations that are of 

interest for preparative organic chemistry.
12

  Using Ru(bpz)3 as a representive Ru polypyridyl 

complex, initial absorption of visible light leads to efficient excitation to give the lowest singlet 

excited state, shown in Figure 1.2.  The generated singlet state (
1
MLCT1) undergoes intersystem 

crossing to yield the long-lived luminescent triplet excited state [Ru(bpz)3]
2+*

 (
3
MLCT1), which 

Figure 1.2. Photoredox manifold of Ru(bpz)3
2+

. 
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has a half-life time of 740 ns.
25

  This high energy species can react either as a single electron 

oxidant or reductant, depending on the presence of other chemical species.  Single electron 

reduction (reductive quenching) of [Ru(bpz)3]
2+*

 generates the strongly reducing species 

[Ru(bpz)3]
+
 (-0.80 V vs. SCE in CH3CN), whereas single-electron oxidation (oxidative 

quenching) produces the strongly oxidizing species [Ru(bpz)3]
3+

 (+1.86 V vs. SCE in CH3CN).  

The reduction potential measures the potential associated with the electrochemical half-reaction 

written in the direction from the oxidized to the reduced species.  For example, the half-reaction 

Li
+
 + e

-
  Li is described by the reduction potential Ered [Li

+
/Li] = -3.39 V vs. SCE).   

Both Ru(II) and Ir(III) polypyridyl complexes are the most commonly used photoredox 

catalysts largely due to their photochemical stability and tunable redox properties.
10, 26

  

Modifying both the ligands and metal centers enables the catalysts’ redox properties to be tuned 

for optimization of a desired reaction.  Generally, the MLCT transition state is viewed as the 

ground state oxidation of the metal center and the ground state reduction of the ligands, thus 

creating a charge separation that stores photoenergy.  Ligand modification can have effects on 

the ground state redox properties of catalyst.  Figure 1.3 illustrates the effects of ligand’s electron 

richness on the ruthenium center’s redox properties.   Electron rich ligands facilitate the metal-

centered oxidation and increase the difficulty of ligand-centered reduction.  For example, 

Ru(bpy)3 has a ground state oxidation of +1.29 V [Ru
3+

/Ru
2+

] and ground state reduction of 

-1.33 V [Ru
2+

/Ru
1+

].
27

  Addition of σ-donating methyl substituents to the bipyridine ligands, 

resulting in Ru(dmb)3,  shifts its reduction potentials to -1.45 V [Ru(dmb)3
2+

/ Ru(dmb)3
1+

] and 

+1.09 V [Ru(dmb)3
3+

/ Ru(dmb)3
2+

], respectively.
28

  The more negative reduction potential 

indicates that the chemical species is more easily oxidized, while allowing reduction to become 

more difficult, and therefore is a strong reducing species.  Conversely, electron poor ligands 
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facilitate the ligand-centered reduction and increase the difficulty of metal-centered oxidation.  

For instance, replacing 2,2’-bipyridine with stronger π-accepting ligand, 2,2’-bipyrazine, to form 

Ru(bpz)3 makes the reduction [Ru(bpz)3
2+

/ Ru(bpz)3
1+

 = -0.80 V] facile while increasing the 

difficulty of the oxidation [Ru(bpz)3
3+

/ Ru(bpz)3
2+

 = +1.86 V].
29

  Therefore, ligand substitution 

can alter the metal complexes’ redox potentials significantly.  A Ru(II) complex with a more 

difficult ligand-centered reduction results in a Ru(I) ground state as a strong reductant, while a 

more difficult metal centered oxidation results in a Ru(III) ground state as a strong oxidant.  

Moreover, electron rich ligands deliver a more strongly reducing complex, while electron poor 

ligands deliver a more strongly oxidizing complex. 

Ground state redox potentials are usually measured using cyclic voltammetry (CV), 

which cannot be accomplished for excited states.  Instead, the excited state redox potential of a 

catalyst is approximated using its ground state potentials and zero-zero excitation energy (E0,0).
30

  

Figure 1.3. Ligand effects on redox properties. 
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The energy difference between *PC 
3
MLCT1 and PC 

1
A1 is the E0,0, which is also the maximum 

emission of the catalyst (Figure 1.1).  Although other variables such as temperature, solvent, and 

concentration can affect the excited-state redox potential, the ability of the excited state to be a 

powerful oxidant and/or reductant is largely dependent on the ground state redox potentials and 

E0,0 (Eq. 1 & 2).   

Oxidative quenching:   Ered[PC
1+

/ *PC] = Ered[PC
1+

/PC] – E0,0                 (Eq. 1) 

Reductive quenching:  Ered[*PC/ PC
1-

] = Ered[PC/ PC
1-

] + E0,0                  (Eq. 2) 

E0,0 is also related to the size of the Stokes shift, which is the difference in wavelength between 

the absorption and emission spectra.   Large Stokes shift, commonly observed in ruthenium 

complexes, results in a lower E0,0 value which leads to the excited states being less potent 

oxidants and reductants than the ground state.  In contrast, iridium complexes often exhibit small 

Stokes shift.  When it comes to designing reactions, the excited state redox potential plays a 

significant role in determining its abililty to be oxidatively or reductively quenched in order to 

access the ground state.  For instance, Ru(bpy)2(CN)2 is a strong single electron reductant [Ru
2+

/ 

Ru
1+

 = -1.68 V] through the reductive quenching cycle, but a low E0,0 renders the excited state a 

weaker oxidant [*Ru
2+

/ Ru
1+

 = +0.37 V].
31

  The excited Ru(bpy)2(CN)2 is not a strong enough 

oxidant to oxidize the most commonly used reductive quenchers such as tertiary amines (Ered = 

+0.50 to +0.96 V).
32

  In contrast, fac-Ir(ppy)3 is also a strong reductant [Ir(IV)/ Ir(III)* = -1.73 

V] and a strong oxidant [Ir(IV)/ Ir(III) = +0.77 V] via the oxidative quenching cycle.
10

  Tertiary 

amines are suitable for reducing the ground state of Ir(IV) to (III).  The versatility of how 

photocatalysts such as Ru(II) and Ir(III) polypyridyl complexes participate in photoredox 

processes enable a variety of organic transformations with the proper choice of catalyst (metal-

ligand combinations) and presence of other chemical species such as organic or inorganic 
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quenchers. 

1.3. Synthetic Applications of Visible Light Photocatalysis 

The applications of photoredox properties of Ru(bpy)3
2+

 in organic synthesis were 

developed in the twentieth century by the pioneering efforts of research groups Kellogg,
33

 Pac,
34

 

Deronzier,
35

 Fukuzumi,
36

 Okada and Oda,
37

 Willner,
38

 and Tomioka.
39

   Their early attempts 

showcased reduction of carbon-halogen (C-X) bonds, olefins, carbonyls, nitroalkenes, and 

diazonium salts with Ru(bpy)3Cl2.  Although the limited number of examples remained 

unsuitable for important transformations in organic synthesis, these pioneer studies scratched the 

surface of the enormous potential of Ru(bpy)3
2+

’s ability to accomplish organic transformations 

and inspired organic chemists to pursue photocatalysis as one of the mainstream synthetic 

methods.  The inspiration rapidly expanded the concept and development in the field of visible 

light photoredox catalysis in 2008 and 2009 by seminal works of Nicewicz, MacMillan, Yoon, 

and Stephenson on applications of Ru(bpy)3Cl2 modes of reactivity.  Nicewicz and MacMillan 

showcased the application of dual catalysis by merging photoredox catalysis and organocatalysis 

to accomplish direct asymmetric α-alkylation of aldehydes (Scheme 1.1, Eq. 1).
18

  They 

envisioned the photogenerated strong reductant Ru(bpy)3
+
, produced from the photoredox 

pathway, to reductively cleave the C-Br bond, thus furnishing an electron-deficient radical that 

adds to the enamine, upon merging of the organocatalytic cycle.  High yields and high 

enantiocontrol were achieved with a variety of alkyl aldehydes and bromides. 

Yoon and coworkers reported that Ru(bpy)3Cl2 served as a photocatalyst  for [2+2] enone 

cycloadditions under visible light conditions (Scheme 1.1, Eq. 2).
40

  They proposed the 

photogenerated Ru(bpy)3
+
 would reduce the lithium-activated enone, subsequently generating the 

radical anion to initiate the [2+2] intramolecular cycloaddition.  A variety of aryl enones were 
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tolerable to furnish the cyclobutane products in high yields and excellent diastereoselectivity.  In 

2009, the Stephenson group demonstrated a tin-free reductive dehalogenation reaction using the 

combination of Ru(bpy)3Cl2, Hunig’s base, and formic acid/ Hantzsch ester as the hydrogen 

atom source (Scheme 1.1, Eq. 3).
23

  Their work harnessed visible light energy to 

chemoselectively remove halogens from complex functionalized intermediates in the presence of 

other functional groups such as hydroxyls, olefins, and alkynes.  The proposed mechanism 

details the excited state Ru(bpy)3
2+

* to be reductively quenched by the Hunig’s base to form the 

strong reductant Ru(bpy)3
+
, which reduces the C-Br bond via a single-electron transfer to 

generate the alkyl radical.  Subsequent hydrogen abstraction by the alkyl radical furnishes the 

dehalogenated product.    

The versatility and applicability of Ru(bpy)3
2+

 in the selected examples shown above 

have drawn much attention to the synthetic community due to its unique photophysical 

properties, enabling the use of abundant, inexpensive sources of visible light.  Useful organic 

Scheme 1.1. Application of Ru(bpy)3Cl2 modes of reactivity. 
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transformations initiated by one-electron redox processes were highlighted by the reactivity of 

Ru(bpy)3
2+

 and related complexes.  Its relevance in organic synthesis has impacted the future of 

preparative organic chemistry with the growing number of publications.  Moreover, the early 

contributions of MacMillan, Yoon, and Stephenson have catapulted the application of visible 

light photoredox catalysis by demonstrating the versatility of ruthenium and iridium complexes 

that participates in a reductive, oxidative, or energy transfer quenching cycle.  The ability to 

easily tune the complex to achieve desired redox potentials by ligand modification or changing 

the metal centre is another major advantage in improving available reactivity of photocatalysts.   

The following sections will illustrate recent literature reports of synthetic applications of using 

the three quenching cycles. 

1.3.1. Reductive Quenching Cycle 

The Stephenson group successfully demonstrated a reductive dehalogenation of organic 

halides possessing activated C-X (X = halogen) bonds via a reactive alkyl radical produced by 

Ru(bpy)3Cl2 (Scheme 1.1, Eq. 3).  Thereafter, the group modified conditions to develop a 

Scheme 1.2. Intramolecular radical functionalization of indoles and pyrroles. 
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reductive dehalogenation of reducing a range of bromomalonates 2 to intramolecularly add to 

indoles or pyrroles (Scheme 1.2).
41

  This environmentally benign chemical transformation is an 

alternative approach to previously reported methods of Mn(III)-based oxidative process of 

malonyl radicals by Kerr and Snider.
42

  Triethylamine (Et3N) was used as a reductive quencher 

to minimize the competing formation of dehalogenated products.  Other amine bases (DABCO, 

Me3N, and (HOCH2CH2)3N) were also screened, but their strong hydrogen donor abilities 

favored the formation of reduced indole 6.  They proposed the generated photoexcited state 

Ru(II)* would be reductively quenched by Et3N to give the corresponding amine radical cation 

and electron-rich Ru(I) complex.  Single electron transfer of the reduced Ru (I) species to 2 

affords alkyl radical 3 by selective homolysis of C-Br bond, thus regenerating the ground state 

catalyst.  Intramolecular radical cyclization of 3 provides benzylic radical 4, which subsequently 

undergoes oxidation by either the excited state Ru(II)* or 2 and then elimination to give 

aromatized product 5.  A range of substituted indoles and pyyroles were realized by this efficient 

intramolecular functionalization reaction initiated by visible light photoredox catalysis.   

Recently, Yoon and co-workers disclosed an efficient radical cation Diels-Alder 

cycloaddition of electron-rich dienophiles promoted by Ru(bpz)3
2+

 (Scheme 1.3).
19

  Ligand 

modification of Ru(bpy)3
2+

 provided a tris(bipyrazyl) analogue that can sufficiently oxdize 7 

(+1.1 V), without a co-oxidant, due to the excited state oxidation potential of Ru(bpz)3
2+ 

(Ru(II)*/Ru(I) = +1.45 V).  The counteranions (PF6 vs. BArF) were also examined and the BArF 

anion proved to be the most effective because of its ability to solubilize the Ru complex in less 

polar solvents.  Reduced catalyst loading to 0.5 mol % provided the Diels-Alder cycloaddition 

adducts in good to high yields (42-98%).  The mechanistic detail outlines the oxidation of 7 to 

the corresponding radical cation 7•+ by the photoexcited state of Ru(bpz)3
2+

*.  The resulting 
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radical cation can undergo a [4+2] cycloaddition to give the radical cation Diels-Alder adduct 

9•+.  Subsequent abstraction of an electron from 7 in a chain-propagation step furnishes the final 

product 9, while oxygen turns over the catalyst to regenerate photoactive ground state 

Ru(bpz)3
2+

.  Compared to traditional Diels-Alder reactions, Yoon’s radical cation Diels-Alder 

process exhibits an umpolung reactivity that reverses both intrinsic dienophile electronic 

character and the overall regiochemical preference.   Moreover, their convenient strategy 

promotes electronically mismatched Diels-Alder cycloadditions with electron-rich coupling 

partners, which is usually a challenging task that requires more forcing conditions and longer 

reaction times.  Notably, their method also showcased ligand modification of Ru complexes that 

enables tuning of electrochemical properties to accomplish the cycloaddition reactions. 

 

The use of the reductive quenching cycle was illustrated in an improved second-

generation total synthesis of (-)-aplyviolene by Overman,
43

 in 2012.  The key transformation 

features a stereoselective coupling of a tertiary carbon radical and carbon electrophile to provide 

new quaternary carbon stereocenters with high selectivity (Scheme 1.4).  The authors initially 

Scheme 1.3. Radical cation Diels-Alder cycloaddition. 
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noted the method of photodecarboxylation using (N-acyloxy)phthalimides developed by Okada
37

 

and realized the use of (N-acyloxy)phthalimides as radical precursors in conjugate addition 

reactions.  Their optimizing conditions included Ru(bpy)3(BF4)2 (1 mol%), Hantzsch ester (1.5 

equiv.), N,N-diisopropylethylamine (2.25 equiv.), and CH2Cl2 with blue LEDs.  A 

decarboxylative reduction of (N-acyloxy)phthalimides 10, mediated by Ru(bpy)3
2+

, produces 

tertiary radical 12 that adds in a 1,4-fashion to α-chlorocyclopentenone 11 and affords the 

desired intermediate 13 in 61% yield.  Overman later expanded the method and introduced N-

phthalimidoyl oxalate derivatives of tertiary alcohols for the reductive coupling of tertiary 

radicals and α,β-unsaturated systems.
44

  Most recently, a similar approach was reported by 

Overman and MacMillan using oxalate salts of tertiary alcohols for the redox-neutral formation 

of quaternary carbon centers through photocatalytic coupling with electron-deficient alkenes in 

the presence of Ir[dF(CF3)ppy]2(dtbbpy)PF6 (Scheme 1.5).
45

  The proposed pathway begins with 

irradiation of Ir(III) complex to generate long-lived (τ = 2.3 µs) excited state Ir(III)* [Ir(III)*/ 

Ir(II) = +1.21 V] that further oxidizes the conjugate base of 14 (Ered = +1.28 V) via single-

electron transfer.  Subsequent loss of two molecules of CO2 affords alkyl radical 17, which 

rapidly undergoes nucleophilic addition to an electron-deficient alkene, such as α,β-unsaturated 

system 15.  Finally the resulting adduct radical 16• (Ered = -0.59 to -0.73 V) is further reduced by 

strong reducing agent Ir(II) [Ir(III)/ Ir(II) = -1.37 V], followed by protonation to yield the 1,4-

addition product 16 while simultaneously, regenerating the ground-state Ir(III) complex, thus 

Scheme 1.4. Tertiary radical conjugate addition for synthesis of (-)-aplyviolene. 
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completing the catalytic cycle.   Upon optimization, the cesium salts of the starting acids were 

employed because of their bench stable and nonhygroscopic properties.  A 3:1 mixture of 

DME/DMF was the optimal solvent in addition to 10 equivalents of water that solubilize the 

oxalate salt and also provide a proton source after radical coupling and reduction.  The scope of 

the reaction included a variety of tertiary and secondary cesium oxalates coupling with a diverse 

array of electron-deficient alkenes to afford 1,4-addition products in high yields (70-98%).  

Moreover, the authors developed a redox-netural process of activating alcohols for radical 

generation under visible light photoredox conditions.   

 

 

Another successful example of utilizing the strong oxidizing Ir(III)* excited state is an 

amine α-heteroarylation developed by MacMillan and co-workers.
46

  Due to the high number of 

heterocycles and heteroaromatics present in pharmaceuticals, the ability to access relevant 

transformations for further functionalization/derivatization, such as coupling heterocyclic 

moieties with other molecular fragments, is essential in medicinal synthesis.  In particular, the 

Scheme 1.5. Cesium oxalates radical formation for coupling tertiary/secondary alcohols with 

Michael acceptors. 
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authors’ previous report of a photoredox-based α-C-H arylation of amines with electron-deficient 

benzonitriles
47

 has sparked their interest in development of amine α-heteroarylation via a 

different pathway of homolytic aromatic substitution.  α-Heteroarylations of tertiary amines 

successfully tolerated a wide range of electrophilic five- and six-membered heteroarenes 

(Scheme 1.6).  They postulated the strongly oxidizing photocatalyst Ir(III)* oxidized the amine 

18 to the amine radical cation 18•+, simultaneously forming a reduced Ir(II) complex.  

Deprotonation of radical cation 18•+ at the α-C-H position gives the neutral α-amino radical 

species 23, which may add to an electrophilic heteroarene 24 via homolytic aromatic 

substitution.  The newly formed radical σ-complex 25 is further reduced by Ir(II), followed by 

loss of an anion group (Cl
-
) to furnish the α-heteroaryl amine product 26 while concurrently, 

regenerating the ground state Ir(III) photocatalyst.   In contrast, this pathway is different than the 

radical anion-neutral radical coupling mechanism suggested in their findings of α-amine 

Scheme 1.6. Photoredox amine α-heteroarylation. 
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arylation with benzonitriles.
47

  Notably, the redox-neutral process is accredited to the anionic 

leaving group, incorporated in the arene coupling partner, which forms only byproduct HCl with 

no stoichiometric oxidants or reductants required. 

1.3.2. Oxidative Quenching Cycle 

 The ability of photoredox catalysts to initiate organic transformations has been employed 

by utilizing the reductive quenching cycle; however, competing side reactions (i.e. hydrogen 

atom abstraction and enamine coupling)
48

 from reactive intermediates in the intermolecular 

processes hinder the completion of the desired transformation.  Alternatively, the oxidative 

quenching pathway has been explored to suppress this issue and to develop highly useful 

synthetic methods.  In 2012, the Yoon group employed an oxidative quenching cycle to engage 

electron-rich bis(styrenes) in [2+2] cycloadditions via visible light photocatalysis (54-92% 

yield).
21

  Methyl viologen (MV
2+

) was selected to oxidatively quench Ru(bpy)3
2+*

 to generate the 

strongly oxidizing Ru(bpy)3
3+

 species.  Subsequent oxidation of the electron-rich styrene 27 

provides its radical cation 28 along with regenerating the ground state photocatalyst Ru(bpy)3
2+

.  

The radical cation then undergoes a [2+2] cycloaddition followed by reduction to furnish the cis-

substituted cyclobutane adduct 29 in excellent yield.  A limitation of the scope is the requirement 

Scheme 1.7. Photooxidative [2+2] cycloaddition of electron-rich bis(styrenes). 
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of at least one of the styrenes to bear an electron-donating substituent (typically a methoxy 

group) at the para or ortho position.  Notably, the efficiency of the Ru(bpy)3
2+

/MV
2+

 system to 

promote the radical cation mediated cycloaddition was highlighted on a gram scale, completed in 

2.5 h while providing identical yields to the smaller-scale experiments. 

Previously, the Akita group used the atom transfer radical addition (ATRA) method to 

develop a photoredox-catalyzed trifluoromethylative difunctionalization of olefins using 

electrophilic CF3 reagents such as Umemoto’s reagent (sulfonium salt) and Togni’s reagent 

(hypervalent iodine species).
49

  Their success inspired them to expand the method to aminative 

difunctionalization of olefins.  An application of utilizing the oxidative quenching cycle was 

disclosed by the group for the intermolecular aminotrifluoromethylation of alkenes catalyzed by 

Ru(bpy)3(PF6)2 (Scheme 1.8, Eq.1).
50

  This photocatalytic method enabled rapid access to CF3-

containing derivatives, which are structurally important in bioactive compounds.  Driven by 

visible light, highly efficient and regioselective functionalization of C=C bonds were 

accomplished to yield a range of β-trifluoromethylamines.  The substrate scope included terminal 

alkenes, specifically styrene derivatives, and internal alkenes.  They propose that the 

photoexcited Ru(bpy)3
2+

* is oxidatively quenched by Umemoto’s reagent 30, thus generating the 

Scheme 1.8. Vicinal difunctionalization of olefins. 
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trifluoromethyl radical (•CF3).  Interception of the β-trifluoromethylated carbocation 31 and 

hydrolysis via Ritter—type amination affords the aminotrifluoromethylated adduct 32.  Recently, 

the authors employed a similar strategy for the intermolecular aminohydroxylation of olefins 

shown in Scheme 1.8, Eq. 2.
51

  This route is an alternative to the Os-catalyzed system developed 

by Sharpless that uses toxic Os species.
52

  Synthesis of vicinal aminoalcohol derivatives 35 was 

realized by the regiospecific aminohydroxylation using a photocatalytic system.  The key 

reagent, N-protected 1-aminopyridinium salt 33, serves both as an electron acceptor and an 

amidyl radical precursor in the presence of the strong photoexcited state reductant fac-Ir(ppy)3.   

 Most recently, the MacMillan group extended their development of engaging photoredox 

catalysis in organic transformations, particularly sp
3
 carbon-fluorine bond formation, by 

unveiling a direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides.
53

  

Although important advances have been made in the development of sp
3 

C-F formation, it 

remains challenging to develop methods possessing attractive features of high regioselectivity, 

operation simplicity, bond strength independence, and accessibility to inexpensive starting 

Scheme 1.9. Decarboxylative fluorination of sp
3
 aliphatic carboxylic acids. 
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material.  Their previous findings of a photon-induced decarboxylation strategy
54

 was a blueprint 

to their investigated decarboxylative fluorination of sp
3
 carboxylic acids, in which 

Ir(dF(CF3)ppy)2(dtbbpy)PF6 was chosen as the optimal photocatalyst with blue LEDs as the light 

source.  Selecfluor was selected as the electrophilic source of fluorine.  A proposed pathway 

detailed an oxidative quenching of photoexcited Ir(III)* [Ir(IV)/ Ir(III)* = -0.89V) by N-F bond 

of Selectfluor 38 (+ 0.33 V) via SET process to provide the strongly oxidizing Ir(IV) agent 

(Scheme 1.9).  Subsequent oxidation of the aliphatic carboxylic acid 36, then decarboxylation 

generates the sp
3
-alkyl radical 41, while concomitantly reducing Ir(IV) to Ir(III) thus completing 

the catalytic cycle.  The formed radical 41 can abstract a fluorine atom from Selectfluor 38 to 

afford the desired fluoroalkane 37, while producing the corresponding Selectfluor radical cation 

39. The radical cation 39 can then serve as an appropriate electron acceptor to generate the 

strong oxidant Ir(IV) from Ir(III)* in subsequent photoredox cycles.  The redox-neutral 

decarboxylative fluorination protocol successfully tolerated a wide range of substituted 

carboxylic acids, including primary, secondary, and tertiary alkyl carboxylic acid to furnish alkyl 

fluorides in excellent yields (70-99%).   

Lastly, another example of utilizing the oxidative quenching cycle was presented by the 

Stephenson group in a fac-

Ir(ppy)3 catalyzed radical 

reductive dehalogenations of 

unactivated alkyl, alkenyl, and 

aryl iodides (Scheme 1.10).
55

  

Unlike their previous reports of 

reductive dehalogenation of Scheme 1.10. Radical reductive deiodination. 
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carbon-bromide bonds via the reductive quenching cycle, this method is driven by the strong 

reducing power of photoexcited state fac-Ir(ppy)3 (Ir(IV)/Ir(III)* = -1.73 V).  Harnessing Ir(III)’s 

capability of cleaving carbon-iodide bonds in alkyl, alkenyl, and aryl iodides is favorable due to 

their high negative reduction potentials that are measured between -1.59 V and -2.24 V.  The 

resulting carbon-centred radical may undergo intramolecular cyclization and/ or hydrogen atom 

abstraction from tributylamine in combination with Hantzsch ester or formate.  The reductive 

protocol exhibited excellent functional group compatibility and easy scale-up to provide good to 

excellent yields under mild conditions. 

The recent contributions by the pioneering groups have demonstrated the broad utility of 

transition metal photoredox catalysis in organic synthesis by highlighting the various new modes 

of reactivity.  The discussed synthetic applications of visible light photoredox catalysis 

emphasize the unique dual nature of ruthenium and iridium complexes by employing either a 

reductive or oxidative quenching cycle.  More importantly, the unique photophysical properties 

of photocatalysts and its ability to modulate permit challenging organic transformations to be 

accomplished.  The relevance of photoredox catalysis in organic synthesis continues to grow and 

show great promises.  

1.3.3. Energy Transfer Reactions 

The excited state species of the photoredox catalysts have been investigated and 

discussed thus far to trigger photochemical transformations by electron transfer pathways.  

Alternatively, another pathway for quenching the photoexcited states is an energy transfer 

process, typically a triplet-triplet energy transfer (TTET) (Figure 1.4).
16

  The energy transfer 

process occurs only when the emission spectrum of triplet excited state photocatalyst (PC*) and 

the absorption spectrum of acceptor (also referred as the substrate) overlaps, and the photons 
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emitted by PC* are absorbed by the acceptor.  Upon irradiation of photocatalyst (PC), followed 

by intersystem crossing (ISC), the long-lived lowest-energy triplet state (
3
PC*1) may engage in 

energy transfer.  Quenching of the triplet excited state PC* by an appropriate substrate results in 

promotion of its ground singlet state (
1
A0) to its lowest-energy triplet state (

3
A*1), with 

concurrent conversion of the triplet excited state PC* to the singlet ground state. 

The triplet-triplet energy transfer process, related to quenching the luminescence of 

Ru(bpy)3
2+

 by organic compounds, such as anthracene, trans-styryl pyridine, and trans-stillbene, 

has been well documented.
56

 However, synthetic applications involving triplet sensitization of 

organic substrates with visible light photocatalysts, to accomplish organic transformations, 

remain less explored.  An early example by Kutal reported the Ru(bpy)3
2+

-induced valence 

photoisomerization of substituted norbornadiene 42 to quadricyclene 43 (Scheme 1.11).
57

  Direct 

photoexcitation promotes norbornadiene to its triplet state by the triplet-triplet energy transfer 

from triplet excited state Ru(bpy)3
2+

*, which then isomerizes to the corresponding quadricyclane.  

An electron-transfer pathway is not likely to occur due to the insufficient oxidation and reduction 

potentials of substrate 42 to quench Ru(bpy)3
2+

*.  Another similar triplet-triplet energy transfer 

Figure 1.4. Triplet-triplet energy transfer from PC
*
 to acceptor. 

Scheme 1.11. Photoisomerization of substituted norbornadiene to quadricyclene. 



23 
 

process was demonstrated by Castellano in the dimerization of anthracene sensitized by 

Ru(dmb)3
2+

 (dmb = 4,4’-dimethyl-2,2’-bipyridine).
58

  

Recent reports by Yoon and co-workers described a [2+2] cycloaddition of styrenes 

catalyzed by Ru(bpy)3
2+

 via an electron transfer pathway.  However, an electron-rich substitutent 

was required for one of the styrene in order to undergo single-electron oxidation to generate the 

key radical cation intermediate.  To circumvent this limitation, the authors attempted to explore 

an energy transfer pathway for the [2+2] styrene photocycloaddition (Scheme 1.12).
59

 Their 

control studies selected Ir[dF(CF3)ppy]2(dtbbpy)PF6 as the energy transfer catalyst and DMSO as 

the optimal solvent.  They envisioned the Ir(III) complex to promote the [2+2] cycloaddition of 

Scheme 1.12. [2+2] styrene cycloaddition via energy transfer pathway. 
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the electron neutral styrene to furnish the cyclobutane adducts.  The styrene’s high oxidation 

potential (+ 1.42 V) does not permit single-electron oxidation to the corresponding radical cation 

by the Ir(III) complex due to the insufficient redox potential of the photocatalyst [Ir(III)*/Ir(II) = 

+1.21 V].  Therefore, it is highly unlikely that the reaction proceeds via electron-transfer 

pathway.  On the other hand, the excited state triplet energy of the Ir(III) complex, 61 kcal/mol, 

corresponds to the excited state triplet energies of styrenes, ~ 60 kcal/mol, thus enabling Ir(III) to 

promote sensitizing triplet-state reactions of styrene via an energy transfer pathway.  The authors 

also probed the impact of the two different pathways on the product formation by conducting 

two parallel reactions that involve the same electron-rich styrene 46, but under two different sets 

of conditions.  The [4+2] product 47 was generated through a radical cation intermediate via an 

electron-transfer pathway (Scheme 1.12, Eq. 1).  Conversely, the Ir(III) complex promoted 

cyclization of the electron-rich styrene 46 to yield the diastereomeric [2+2] cycloadduct 48 via 

an energy transfer pathway (Scheme 1.12, Eq. 2).  In exploring the reaction scope, a wide range 

of substituted styrenes possessing both electron-rich and electron-deficient characters, in addition 

to heterostyrenes, were susceptible to the photocycloaddition.  Enones, enoates, enol ethers, 

haloalkenes, and allenes were suitable coupling partners along with tolerable functional groups 

such as unprotected alcohols, halogens, and sulfonamides.  However, aliphatic, non-conjugated 

alkenes were unable to undergo photocycloaddition, due to their higher triplet state energies. 

 In 2001, Osawa and co-workers reported a photocatalytic trans-to-cis isomerization of 

cyanostilbene
60

 promoted by a bimetallic ruthenium (III) complex 49, composed of “light-

harvesting” ligand, identified as Pru.   The unique ligand Pru is composed of a tert-phosphane 

ligand bearing a photosensitizing Ru(bpy)2(phen) fragment as a substituent.  They envisioned 

photo-energy to be absorbed at the photoactive ruthenium complex (“sensitizer unit”) in the 
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Scheme 1.13. Trans-to-cis isomerization of cyanostilbene via 

energy transfer. 

phosphane ligand and 

transmitted to the non-

photoactive ruthenium metal 

center through a Ru-P bond.  

The authors prepared the 

bimetallic complex 

[CpRu(CH3CN)(CO)(Pru)](

PF6)3 (Cp= cyclopentadiene) 

to investigate the efficient 

visible-light activity at the CpRu center.  The trans-to-cis isomerization of 4-cyanostilbene was 

catalyzed by the CpRu—Pru system in 85% yield.  They postulated the formation of 

intermediate complex 50 in which the acetonitrile on the metal is substituted by 4-cyanostilbene.  

Through bridging the two ruthenium centers via the Ru—Pru bond, Osawa proposed the 

isomerization is mediated by triplet-triplet energy transfer from the Pru ligand to the 

cyanostilbene.  Moreover, high concentration of acetonitrile lead to a dramatic decrease in the 

trans-to-cis isomerization, likely due to blocking the coordination of 4-cyanostilbene to the 

CpRu center.   They concluded the approach of intramolecular sensitization via intermediate 50 

is much more effective than that of intermolecular sensitization. 

1.4. Amine Radical Cations* 

*Portion of this chapter has been published in Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. 

Beilstein J. Org. Chem. 2013, 9, 1977-2001. 

Amine radical cations have emerged as useful reactive intermediates in amine synthesis 

due to its ability to access several modes of reactivity.
61

  These odd-electron species can be 
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generated by the one-electron oxidation process of the corresponding amines.  This method of 

accessing amine radical cations has been realized by using electrochemistry,
62

 chemical 

oxidants,
63

 metal-catalyzed oxidation,
64

 UV light-mediated photochemistry,
65

 and most recently 

visible light photocatalysis.
66, 67

  Typically, due to amines inability to absorb visible light 

efficiently, photocatalysts such as ruthenium and iridium polypyridyl complexes or organic dyes 

are incorporated to initialize the single electron-transfer process.  The initiation results from the 

generated photoexcited state which can be reductively or oxidatively quenched by an electron 

donor or acceptor, respectively.  Amines are stable substrates, and are routinely used as reductive 

quenchers, to quench the photoexcited state while subsequently being oxidized to amine radical 

cations.   

Introduced in the late 1970s, examples of amines being used as sacrificial electron donors 

were reported in water splitting
4, 68

 and carbon dioxide reduction.
69

  The innovative approach of 

using amine radical cations, generated via oxidation of amines under visible light photoredox 

conditions, has not been brought to the forefront until recently.  Recent research efforts of the 

synthetic utility of amine radical cations have highlighted amines’ ability to function as both the 

sacrificial electron donor and the substrate as well as participate in cascade reactions to undergo 

Figure 1.5. Amine radical cations’ mode of reactivity. 
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multiple bond formations in one synthetic operation. 

 Reductive quenching of the photoexcited state photocatalyst PC*(n) by amine 52 is 

controlled by the reduction potentials of the photoexcited state and the amine (Figure 1.5). The 

amine’s reduction potential should be less positive than that of the photoexcited state (PC*). 

Upon oxidation, the fate of amine radical cations can vary depending on the reaction conditions.  

However, the pathways remain limited.  Typically, electron-transfer reactions involving amine 

radical cations favor polar solvent, although the optimal solvent should be determined 

experimentally. Once formed, amine radical cation 53 has shown to possess four modes of 

reactivity.  The first mode is the back electron transfer reaction of amine radical cation 53 to 

PC(n−1).  This competing pathway of 53 accepting an electron from to the reduced photocatalyst 

is a major side reaction.  Two alternatives
70

 can be suggested in addressing this competing side 

reaction: modify the ligand of the PC to increase the difficulty of back electron transfer or design 

fast, irreversible cascade reactions of 53.  The second mode involves the loss of a proton from 

amine radical cation 53 to form a nucleophilic α-amino radical 54.  The newly formed radical 

can add to an electron-deficient pi bond, such as an alkene substituted with an electron-

withdrawing group (EWG), to form a C-C bond and provide an α-amino substituted product 59 

or undergo another one-electron oxidation to produce an iminium ion 55.  The rate for 

deprotonating 53 has been experimentally measured by several groups, though a broad range was 

reported.
71

  The strong reducing nature of α-amino radical 54 suggests that the one-electron 

oxidation is facile.  The third mode involves the loss of a hydrogen radical from 53 to produce 

the iminium ion 55.  In the presence of a good hydrogen atom acceptor, hydrogen atom 

abstraction has been accomplished in several reported reductions
23, 36, 55, 72

 mediated by visible 

light.  The electrophilic iminium ion 55 can be intercepted by a variety of nucleophiles to furnish 
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α-amino substituted products like 58.  The last mode is cleavage of a C-C bond α to the amine of 

radical cation 53, thus generating iminium ion 56 and neutral free radical 57.  Notably, the 

synthetic utility of amine radical cations, as key intermediates to trigger cascade reactions, has 

been well documented in recent seminal works.  Of all the active modes of amine radical cations, 

the C-C bond cleavage α to the nitrogen atom has been less exploited, and reports involving the 

cleavage remain limited.  Select applications highlighting the fate of photogenerated amine 

radical cations that undergo C-C and N-N bonds are discussed in the following sections. 

1.4.1. Cleavage of C-C and N-N bonds 

An early report by the Whitten group in 1986 showcased the fate of the amine radical 

cation by the cleavage of C-C bond via irradiation of substituted tertiary amines with a 

ruthenium complex under visible light (Scheme 1.14).
73

  As a result, the generated carbon 

radicals (64a and 64b) were identified by trapping the radials using electron spin resonance 

(ESR) spectroscopy in the presence of a spin trap.   Detection of benzaldehyde by HPLC and 

vapor-phase chromatography (VPC) provided the evidence for the radical formation.  

In 2012, Li and 

Wang described the 

cleavage of 1,2-

diamines and 

exploited the utility 

of the cleaved 

products (Scheme 

1.15).
74

  Upon exposure to visible light, nitroalkanes 68 and tetramethylethylenediamine 

(TMEDA) were catalyzed by Ru(bpy)3Cl2 under a balloon of oxygen to provide the aza-Henry 

Scheme 1.14. Photoinduced C-C bond cleavage of tertiary amines. 
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products 69, reasonably by intercepting the iminium ion 66 that is formed by cleaving amine 

radical cation 65 of TMEDA (Eq. 1).  Formation of the amine radical cation is accomplished by 

the reductive quenching of Ru(II)* by TMEDA.  Additionally, the amino radical pathway was 

detected by free-radical photopolymerization of 2-hydroxyethylacrylate (HEA) in presence of 

TMEDA and photocatalyst (Eq. 2).  The incorporated dimethylamino group, generated by 

cleaving TMEDA, most likely induced the polymerization.  

Our group realized a photoinduced cleavage of N-N bonds of aromatic hydrazines and 

hydrazides by visible light (Scheme 1.16).
75

  The catalytic system, which included 

Ru(bpz)3(PF6)2, 13 W CFL, and air, was generally effective for N,N-disubstituted hydrazines and 

hydrazides.  An aryl group as one of the two substituents on the nitrogen atom was required.  

Electron-rich hydrazines were reported to be more reactive than hydrazides, as we postulated the 

photoexcited state of Ru(II) complex to be reductively quenched by these electron-rich donors.  

We proposed the initiation of cleavage corresponded to the oxidation of hydrazines/ hydrazides 

71 to the amine radical cation 73 by the photoexcited state catalyst.  Upon deprotonation, the 

formed neutral radical 74 reacted with oxygen to afford radical 75.  Radical 75 was converted to 

an oxygen-based radical 76, which subsequently underwent a cleavage reaction to give 

secondary amine radical 77.  Lastly, reduction followed by protonation of amine radical 77 

produced secondary amine 72. 

Scheme 1.15. Visible-light-promoted C-C bond cleavage. 
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In 2012, our group applied amine radical cations of N-cyclopropylanilines to cleave a C-

C bond, resulting in a [3+2] annulation with olefins catalyzed by Ru(bpz)3
2+

.
76

  The cleavage (α 

to the nitrogen atom) provided a distonic radical cation bearing a β-carbon radical and an 

iminium ion, which was then intercepted by olefins to yield the [3+2] annulation adducts 

(Scheme 1.17).  Cyclopropanes were introduced to serve as a three-carbon synthon, upon ring-

opening due to ring strain.  Mechanistically, we envisioned reductive quenching of the 

photoexcited state Ru(II)* by N-cyclopropylaniline 78, concomitantly being oxidized to the 

amine radical cation 81 and producing the reduced Ru(I).  The newly formed amine radical 

cation 81 then underwent a C-C bond cleavage to generate β-carbon radical iminium ion 82, 

which subsequently adds intermolecularly to the olefin 79 in a Giese-type fashion yielding a 

more stable radical 83.  Intramolecular addition of the stabilized radical to the iminium ion, 

followed by reduction via Ru(I) furnished the cyclopentane adduct 80, thus completing the 

catalytic cycle.  The optimal catalytic system detailed a degassed solution of Ru(bpz)3(PF6)2 (2 

mol %) in nitromethane at room temperature, irradiated with a 13 W CFL.  The concept of using 

amines as both the sacrificial donor and the substrate was introduced, although the scope was 

limited to secondary or tertiary amines substituted with an aryl group.  A required aryl group 

helps lower the reduction potential of the amine to allow the initial oxidation by photoexcited 

Scheme 1.16. Photoinduced cleavage of N-N bonds of aromatic hydrazines/hydrazides. 
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Ru(bpz)3 to occur readily.  Mono- and bicyclic cyclopropylanilines were susceptible to the 

annulation to afford cyclopentanes and fused bicyclic systems in moderate to excellent yields.  

However, modest diastereoselectivity was achieved with the bicyclic systems, unlike the 

monocyclic systems that underwent the annulation with little diastereoselectivity.  The described 

[3+2] annulation catalyzed by visible light photoredox catalysis was 100% atom economy and 

overall redox-neutral.  

Amine radical cations have displayed its utility in amine synthesis as reactive, synthetic 

intermediates.  As a result, the accessibility to several modes of their reactivity triggers multiple 

downstream pathways of generating diverse synthetic intermediates such as electrophilic 

iminium ions and nucleophilic radicals.  Trapping of these intermediates has accomplished 

various organic transformations to derivatize amines, which is beneficial in amine synthesis.  

Notably, synthetic methods detailing the use of amine radical cations in applications of C-C and 

N-N bond cleavage were induced by visible light photoredox catalysis, showcasing the new 

method for accessing synthetic intermediates.  In particular, our findings of the [3+2] 

Scheme 1.17. [3+2] annulation of cyclopropylanilines with olefins. 
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cycloaddition with olefins, which involved cyclopropyl C-C bond cleavage initiated by the 

photogenerated amine radical cation, have provided new insights to cycloaddition reactions. The 

combining of photoredox processes with cycloaddition reactions has further enhanced the 

benefits and values for this class of reactions.  Researchers have recently recognized this 

powerful tool and have investigated numerous cycloadditions mediated by visible-light. 

 

1.5. Visible-light Mediated [3+2] Cycloadditions 

Developing efficient and innovative approaches of constructing five-membered rings 

remains of great interest to synthetic chemists.  Five-membered rings, such as cyclopentanes and 

the heterocycles analogues, continue to serve as an important class of building blocks in organic 

synthesis.  A common method of accessing them is [3+2] cycloadditions.  This powerful class of 

reactions is an essential tool for constructing structurally complex compounds possessing five-

membered rings via the simultaneous formation of two new σ-bonds and up to four 

stereocenters.   Formation of new C-C and/or C-heteroatom bonds, rings, and stereocenters all in 

one application highlights the efficiency of this process.  Recently, a new variant of the [3+2] 

cycloaddition mediated by visible light has demonstrated great utility for the production of 

complex five-membered ring systems.  Reported examples have highlighted the reductive 

quenching of the photoexcited catalysts as the favorable pathway. 

Cycloaddition of azomethine ylide formation 

In 2011, Xiao
77

 and Rueping
78

 independently described a method of forming fused 

pyrrolidines and pyrrole via a [3+2] dipolar cycloaddition of tetrahydroisoquinolines and a range 

of dipolarphiles (Scheme 1.18).  The authors recognized that the photooxidation of derived 

tetrahydroisoquinolines, substituted with a methylene group adjacent to the N-atom, would form 

the highly reactive iminium ions which can be readily converted to the corresponding stabilized 
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azomethine ylide via loss of a proton.  This important class of ylides has been reported to 

participate in the [3+2] dipolar cycloaddition.  The azomethine ylides, generated in situ, was then 

intercepted by a range of dipolarophiles to produce fused pyrrolidines 87 and 91.  Additionally, 

Xiao recognized further oxidation of the pyrrolidine ring to furnish aromatized fused pyrrole 92 

upon treatment with NBS.  Separately, Xiao and Rueping successfully produced highly 

functionalized heterocycles in good to excellent yields.  The authors proposed a plausible 

mechanism of the [3+2] dipolar cycloaddition, illustrated in Scheme 1.18.  Upon irradiation by 

visible light, the photoexcited state of Ru
2+

 would oxidize tetrahydroisoquinoline 89 to amine 

radical cation 93.  The turnover of the catalyst, by oxidation with molecular oxygen, provided 

Scheme 1.18. [3+2] dipolar cycloaddition of azomethine ylide formation. 
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superoxide radical, which abstracted a hydrogen atom to generate the highly reactive iminium 

ion 94.  Deprotonation by a molecule of hydroperoxide anion would convert iminium ion 94 to 

azomethine ylide 95 with the release of hydrogen peroxide.  A subsequent [3+2] dipolar 

cycloaddition with a dipolarophile 90 would yield fused pyrrolidine 91.  In Xiao’s work, further 

oxidation aromatized the pyrrolidine moiety, furnishing pyrrole 92.  

Cycloaddition of aryl cyclopropyl ketones  

Yoon and co-workers disclosed cycloadditions of cyclopropyl ketones mediated by 

visible light photoredox conditions, based upon the formation of a distonic radical anion via ring 

opening of cyclopropyl ketones (Scheme 1.19).
20

  The [3+2] cycloaddition of simple aryl 

cyclopropyl ketones efficiently underwent the desired transformations based on a mechanism 

analogous to the one Yoon proposed for [2+2] cycloadditions involving the generation of radical 

anions.  They envisioned the photoreduced Ru(bpy)3
1+

 would initiate the ring opening of 

cyclopropyl ketones and catalyze the two C-C bond formation.  It was proposed that the one-

electron reduction of aryl cyclopropyl ketone 96 produced radical anion 97, which subsequently 

Scheme 1.19. [3+2] cycloaddition of aryl cyclopropyl ketones. 
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underwent ring opening to furnish distonic radical anion 98.  Upon two radical cyclization and 

loss of an electron, the intramolecular [3+2] cycloadduct 101 was provided.    In addition to 

Ru(bpy)3Cl2, a strong Lewis acid La(OTf)3, stoichiometric reductant TMEDA, and MgSO4 

played essential roles to afford the cycloadduct in acceptable yields (55-86%).  Various esters, 

ketones, and thioesters (in particular α-substituted) were well tolerated to provide excellent 

diastereoselectivity of the quaternary carbon stereocenters generated in the product.  In regards to 

the scope, the authors observed that a ketone bearing an aryl group was required. 

Cycloaddition of 2-(Iodomethyl)cyclopropane-1,1-dicarboxylate with Alkenes/Alkynes 

Atom-transfer radical additions or cyclizations (ATRA/ ATRC) have become a 

successful tool in constructing highly functionalized cyclic frameworks by forming two new C-C 

bonds.  However, stoichiometric hazardous radical initiators are usually employed.  

Alternatively, using strong reducing photoexcited Ir(ppy)3 presents a convenient method for 

Scheme 1.20. Yao’s intermolecular visible-light ATRC [3+2] cycloaddition. 
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forming carbon radicals from alkyl, alkenyl, or aryl halides.  Recently, Yao
79

 reported a 

nonreductive, intermolecular visible-light photoredox [3+2] ATRC reaction of unactivated alkyl 

iodides as radical precursors.  Initially optimizing the reaction with dimethyl-2-(iodomethyl) 

cyclopropane-1,1-dicarboxylate 102 and electron-rich terminal alkene 103, the ideal conditions 

required [Ir(ppy)3] as the photocatalyst using a 14 W CFL and N,N-diisopropylethylamine 

(DIEA) as the sacrificial electron donor to produce product cycloadduct 104.  Polar solvents (e.g. 

CH2Cl2/H2O (4:1)) displayed a significant effect in promoting the reaction to excellent yields.  

To their delight, the aide of a Lewis acid, which is thought to coordinate to the carbonyl groups 

of the dicarboxylate, enhanced the reactivity towards less electron-rich alkenes.  Zn(OAc)2•2H2O 

revealed to be the best Lewis acid among those screened.  The reaction conditions were applied 

to other substrates, proceeding smoothly to give the desired cyclopentane/cyclopentene 

derivatives.  Terminal alkynes and terminal alkenes with various functional groups were 

tolerated to afford the desired products in moderate to excellent yields (23-92%).  A radical chain 

reaction mechanism was proposed, depicted in Scheme 1.20.  An on/off light-switching 

experiment was employed as a mechanistic study to facilitate and support their plausible 

mechanism.  Upon irradiation, photoexcited Ir complex would be oxidized by malonic ester 102.  

As the halogen atom in 102 accepted the electron, it would leave as a halide anion while 

generating homoallylic radical 105.  Sequentially the [3+2] cyclization would occur with an 

olefin to furnish cyclopentyl carbinyl radical 106.  From here, two pathways may occur for 

conversion to the desired product 104.  Along pathway a, radical intermediate 106 could be 

oxidized by the Ir
+
 complex to give the cyclopentyl carbinyl cation 107, which then could be 

intercepted by the iodide anion to afford cycloadduct 104.  Along pathway b, abstraction of the 

iodine from 102 by 106 would give cycloadduct 104, thus regenerating radical 105.  In studying 
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the radical propagation step, Yao’s observations support a radical/polar crossover pathway 

(pathway a); however pathway b cannot be excluded. 

Visible light photoredox catalysis has shown to be a prominent tool to promote 

cycloaddition reactions.  This new attractive approach of merging the photoredox cycle with 

cycloaddition reactions has accomplished unique cycloaddition reactions, including the 

construction of highly functionalized and complex carbo- and heterocycles.  Notably, the 

development of photoredox catalyzed [3+2] cycloadditions has valued the use of radical ring-

opening of cyclopropanes.  Examples described by Yoon, Yao, and our group employed this 

strategy by recognizing the ability of cyclopropanes to serve as reactive three-carbon synthons.  

Thus, cyclopropanes are advantageous building blocks for the construction of complex systems 

due to its ring-opening strategies. 

1.6. Types of Activated Cyclopropane: Ring-opening Strategies 

Cyclopropane derivatives are widely used as versatile substrates in organic synthesis due 

to its excellent reactivity and accessibility.
80, 81

  They are commonly recognized in natural 

products of biological interest and applied as useful synthetic intermediates to prospective 

biologically active compounds.
82

  More recently, the ring opening strategies of cyclopropanes 

have drawn much attention to synthetic applications.
83, 84

  Because cyclopropanes are relatively 

stable, they are not susceptible to bond cleavage unless activated; thus, polarizing one of the C-C 

bonds is desired.  The activation of the strained three-carbon carbocycle (115 kJ/mol)
85

 is highly 

influenced by the nature of its substituents, generally electron-donating or –accepting functional 

groups.  As a result, different substituents would be able to access different reaction pathways of 

the ring system.  More importantly, the modified substituents are able to tune the reactivity and 

selectivity of activated cyclopropanes to achieve excellent regio- and stereoselectivities.  The 
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modes of activation for 

cyclopropanes, by nucleophiles or 

electrophiles, have accomplished 

various organic transformations that 

include ring opening or ring 

expansion reactions, 

cyclodimerizations and 

cycloadditions.  Among the activated 

cyclopropanes are three main classes 

of substituted cyclopropanes with an acceptor, a donor, or a donor-acceptor (Figure 1.6).  

Acceptor-substituted cyclopropane 108 functions as a homologous Michael system that can 

undergo nucleophilic attack, as opposed to a donor-substituted cyclopropane 110, a homologous 

enolate equivalent, that acquires an electrophile to further provide either 111 or 112.  

Prominently, donor-acceptor substituted (DA) cyclopropane 113 is commonly employed in a 

variety of synthetic applications due to its high versatility after ring cleavage.  The readily 

cleaved process results in zwitterionic intermediate 114 in which the negative charge is stabilized 

by the acceptor while the positive charge is stabilized by the donor.  The 1,3-zwitterionic 

relationship can further undergo different transformations such as cycloaddition and 

rearrangement.
80, 83, 86 

1.6.1. Acceptor-substituted Cyclopropanes 

Early approaches of utilizing electrophilic cyclopropanes in organic synthesis were 

investigated to study the ring-opening processes.
87

 Inter- and intramolecular nucleophilic ring-

openings of the activated cyclopropanes were disclosed, thus showing new methods and 

Figure 1.6. Types of substituted cyclopropanes. 
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strategies to access synthetic intermediates.  The early work of Danishefsky reported the ring-

opening strategies to formulate a homologous (or 1,5) version of the Michael reaction.
87

  In 

general, nucleophilic ring-openings involve two geminal substituents on the cyclopropanes, 

typically electron-withdrawing groups such as esters, carbonyls, nitriles, or other groups that can 

stabilize carbanions.  Cleavage of the doubly activated cyclopropane is rationalized by the 

overlapping of the cleaved C-C bond and both carbonyl activating groups.  For instance, 

intermolecular ring opening of diester activated cyclopropane (spiroacylal) 115 was realized with 

aromatic amine 116, subsequently followed by intramolecular acylation to yield 1-

arylpyrrolinone 118, which can be readily converted to Δ
3
-pyrrolone 119 (Scheme 1.21, Eq. 1).  

When activated cyclopropanes are extended with olefins, a new mode of the ring opening 

emerges.  Although the 1,5-addition pathway is predominantly favored, influences of certain 

nucleophiles can promote another possible mode of cleavage, referred as the 1,7-addition (Eq. 2).  

Danishefsky discovered this minor competing pathway in vinylcyclopropanes doubly activated 

Scheme 1.21. Inter- and intramolecular nucleophilic addition to electrophillic cyclopropane. 
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with ester groups such as 120.
88

  Danishefsky was also interested in the concept of achieving ring 

openings of doubly activated cyclopropanes via an intramolecular nucleophilic addition.   The 

approach of an intramolecular ring opening successfully demonstrated the conversion of amino 

diester 123 to lactam ester 124 (Eq. 3).  The author envisioned the method to provide new 

synthetic routes to the stereospecifc synthesis of necine bases, in addition to synthesis of bicyclic 

ring systems.  

The nucleophilic ring-opening reactions discussed above have been confined to doubly 

activated cyclopropanes, bearing two geminal electron-withdrawing groups.  Thus, 

accomplishing the same ring opening strategy with monoactivated cyclopropanes, under mild 

reaction conditions, would improve the scope of this strategy.  Dieter developed a method of 

introducing reagents such as Me3SiCl-NaBr, AlCl3-PhSH, and Me3SiI, in combination with an 

appropriate nucleophile, to successfully cleave the conjugated cyclopropanes (Scheme 1.22).
89

  

Importantly, the authors recognized the parallel between the soft β-carbon of cyclopropyl 

carbonyl compound and the α,β-unsaturated carbonyl compound to further explore the scope of 

the homologous Michael addition process.  Applying the hard and soft acids/bases principle, the 

most effective in promoting ring-opening of monoactivated cyclopropanes involved the 

combination of a hard acid with a soft nucleophile; however, the scope was limited to halide and 

sulfur nucleophiles. 

 

 
Scheme 1.22. Ring-opening of monoactivated electrophilic cyclopropanes. 
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 1.6.2. Donor-substituted Cyclopropanes 

The electron donor substituted cyclopropanes are frequently employed in electrophilic 

ring-opening reactions, primarily due to facile and regio-cleavage of the C-C bond.  They are 

regarded as homoenolate equivalents in which the activated donor substituted cyclopropane is 

attacked by an electrophile.  With respect to electrophilic ring-opening, cyclopropanes bearing 

hydroxy, silyloxy, silylmethyl, and aryl groups as donor substituents have been well-

documented; however, alkylthio, arylthio, and amino substitutents have been less studied.  In the 

late 1970s, trimethylsilylmethyl was introduced as donor substitutents to assist in ring opening of 

cyclopropanes, resulting in the production of substituted olefins.
90

  Due to its unique properties, 

silicon groups are commonly employed to aid in the stabilization of the β-carbocation through 

either hyperconjugation via the β-effect or formation of a siliranium cation via internal 

neighboring group participation.  In 2005, Akiyama and co-workers demonstrated a [3+2] 

cycloaddition reaction of cyclopropylmethylsilanes 125 and α-keto aldehyes 126 for the trans- 

and cis-selective preparation of 2-silylmethyltetrahydrofurans (Scheme 1.23).
91

  Lewis-acid 

SnCl4 was found to be the optimal promoter to form the trans-tetrahydrofuran derivatives 127, at 

0 °C.  However, conducting the reaction at -78 °C revealed the preferred cis-tetrahydrofuran 

derivatives.  To rationalize the stereochemical outcome, the authors proposed 

Scheme 1.23. [3+2] cycloaddition with trimethylsilylmethyl cyclopropane. 
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cyclopropylmethylsilane to attack the electrophillic SnCl4–activated aldehyde in an anti-

periplanar transition state, thus giving the β-silyl carbocation.  Upon ring closure, the cis adduct 

can be formed kinetically via transition state 128; however when warmed up to 0 °C, the 

intermediate can undergo isomerization through thermodynamic transition state 129 to further 

obtain the trans adduct.  Various silanes and α-keto aldehydes, including heteroaromatic 

glyoxals and butyl glyoxylate were suitable substrates to afford the tetrahydrofuran derivatives in 

43-90% yield.  Independently, the Dobbs group was intrigued by the facile access of the 2,5-

disubstituted THF motif as they are widely found in nature and in polyether-containing 

compounds and antibiotics.  The authors confirmed the temperature controlled outcome of the 

identical [3+2] cycloaddition reaction by further defining the scope as well as the relative 

stereochemistry of the adducts by NOE measurements and X-ray crystallography.
92

  Notably, the 

novel scaffolds demonstrated potential usage in heterocycle synthesis by subsequent 

transformation of the 2,5-disubstituted THF adducts.
93

  

In addition to silylmethylcyclopropane as effective donor-substituted cyclopropanes, 

frequent reports of ring-opening strategies have been documented with hydroxy-substituted 

cyclopropanes, cyclopropanols.  Among the most commonly used heteroatom-substituted 

cyclopropanes, cyclopropanol and its 

derivatives are characterized as 

useful intermediates in organic 

synthesis due to their ability to 

participate in synthetically useful transformations involving regiocontrolled ring opening of the 

strained carbocycle.
94

  The regioselective ring cleavage involves the hydroxyl group to direct the 

ring opening that result in the electron-deficient center to reside on the donor oxygen atom (as in 

Figure 1.7. Ring cleavage of cyclopropanol. 
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132), while the carbanion resides at the β-position of the carbonyl group (as in 131).   

Prominently, the resulted ring cleavage functions as a homoenolate anion equivalent to serve as a 

valuable tool for the synthesis of functionalized acyclic carbonyl-containing organic molecules.   

Recently, Cha and co-workers prepared functionalized zinc homoenolates, from the ring 

opening of cyclopropanols promoted by dialkylzinc reagents, for the synthesis of α-methyl 

substituted ketones (Scheme 1.24).
95

  They envisioned the zinc alkoxide 134 to undergo 

regioselective ring opening to furnish the zinc homoenolate 135, accompanied by a proton 

transfer pathway to yield 136.  The authors continued their studies of metal homoenolates by 

developing a SN2’ alkylation of cyclopropanols via mixed zinc/copper keto homoenolates to 

access C-C bond formation.
96

  To a THF solution of the racemic cyclopropanol 133 and ZnEt2 

was added CuCN•2LiCl and an allylating reagent (E
+
).  The in situ trapping of zinc homoenolate 

135 was accomplished by the allylic reagent to give the alkylating adducts 137.  The use of 

various allylating reagents, including nonracemic allylating reagents, and functionalized 

cyclopropanols were compatible to result in regioselective preference of SN2’ over SN2.   

Scheme 1.24. Zinc homoenolates via ring-opening of cyclopropanols. 
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The β-keto radicals, which are analogous to the homoenolates and also generated via 

ring-opening of cyclopropanols, have been routinely used to synthesize functionalized acyclic 

carbonyl compounds via C-C bond formation.  Notably, with the introduction of fluorine atoms 

found in organic molecules, developing an efficient fluorination method would be beneficial in 

pharmaceuticals, agrochemicals, and material sciences.  Thus, a regioselective synthesis of β-

fluorinated ketones from tertiary cycloalkanols via a silver-catalyzed ring opening strategy was 

described by Zhu and co-workers
97

 (Scheme 1.25).  The conversion of cyclopropanols to β-

fluorinated ketones was accomplished using silver salt AgNO3, and fluorinating agent, 

SelectFluor.  The authors proposed a mechanistic pathway that involves the formation of F-Ag
III

 

species 139 leading to oxo-radical cyclopropane 140.  The β-keto radical 141, formed upon ring 

opening, reacts with the F-Ag
II
 species to give the desired β-fluoroketone 142.  Recently, a 

photocatalyzed protocol of the same transformation was reported using photosensitizer 1,2,4,5-

tetracyanobenzene (TCB) and SelectFluor (Scheme 1.25).
98

  It was suggested that the 

photoexcited TCB* oxidizes the cyclopropanol to the radical cation 143 via electron transfer, 

which is followed by subsequent ring opening/fluorination to furnish the β-fluorinated ketones 

142.   

Continuing the development of new efficient fluorination strategies, recent efforts of the 

Dai group showcased the first copper-catalyzed ring-opening electrophilic trifluoromethylation 

Scheme 1.25. Ring-opening/ β-fluorination of cyclopropanols. 
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and trifluoromethylthiolation of cyclopropanols (Scheme 1.26).
99

  The transformations tolerated 

a wide range of functional groups for the synthesis of β-CF3 and β-SCF3 substituted ketones via 

the Togni reagent and a benziodoxole derivative 145, respectively.  The role of copper was 

proposed to undergo oxidation with the Togni reagent/ derivative 145 followed by ligand 

exchange of the Cu(III) intermediate 147 with cyclopropanol 144 to yield intermediate 148.  

Cyclopropyl C-C bond cleavage rendered homoenolate 149, which enabled the Csp3-CF3/ Csp3-

SCF3 bond formation.  Notably, their methodology was applied in the preparation of a clinical 

drug for type 2 diabetes mellitus.     

As discussed above, cyclopropanols have been overwhelmingly exploited to accomplish 

a variety of synthetic transformation via electrophilic ring-opening of the cyclopropyl group.  

However, reports with aminocyclopropanes still remain limited.  Over the past decade, the 

development of methods for C-H bond functionalization has significantly impacted synthetic 

strategies in organic synthesis, particularly sp
3
 C-H bonds.  Seminal work by Fagnou described a 

palladium(0)-catalyzed intramolecular arylation of cyclopropylanilines for the synthesis of 

qunioline and tetrahydroquinoline derivatives (Scheme 1.27).
100

  Substituted phenyl cyclopropyl 

carbamates 150 were subjected to the catalytic system (Pd source, base, and pivalate additive), to 

provide the dihydroquinolines 151.  Subsequent one-pot oxidation by 2,3-dichloro-5,6-

Scheme 1.26. Ring-opening/ β-trifluoromethylation of cyclopropanols. 
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dicyanobenzoquinone (DDQ) or reduction by Pd/C furnished the quinolines 152 or 

tetrahydroquinolines 153, respectively.  Mechanistic experiments supported the rationale of the 

sp
3
 C-H functionalization to occur prior to the ring opening.   

Electrophilic ring-opening reactions with donor substituted cyclopropanes have exhibited 

much value in the advances of new synthetic strategies applied in organic transformations.  

Moreover, the generated homoenolate equivalent serves as the key synthetic intermediate for 

new bond formations, thus illustrating its potential growth in the development of new 

opportunities for valuable applications. 

1.6.3. Donor-Acceptor (DA)- substituted Cyclopropanes 

The increased reactivity of donor-acceptor (DA) cyclopropanes 113 results from the 

vicinal relationship between both donor and acceptor groups, which work in a synergistic manner 

to activate the C-C bond for cleavage.
80, 101

  The activated vicinal DA cyclopropanes serve as 

synthetically useful 

1,3-dipolar synthons 

114, via the push-pull 

effect, to promote a 

variety of reactions 

Scheme 1.27. C-H arylation of cyclopropylanilines via ring opening. 

Figure 1.8. Reactions of activated vicinal DA cyclopropanes. 
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with nucleophiles, electrophiles, or dipolarphiles (Figure 1.8).  The dual activation of vicinal 

substituents further enhances the synthetic applications of cyclopropanes by combining both 

homo-Michael and homo-enolate equivalents into one synthon.  In addition, the acquired 

umplung reactivity is advantageous to achieve transformations that are challenging by previous 

routes.  One of the approaches to ring opening reactions of DA cyclopropanes is nucleophilic 

addition by heteroatom nucleophiles or electron rich arenes, usually mediated by a Lewis acid.  

The carbanion 154 bearing the acceptor group can then be protonated to provide 1,3-

bifunctionalized acyclic derivatives, which are found in biologically active small molecules .  A 

ring opening strategy by Charette reported a nucleophilic addition of primary or secondary amine 

nucleophiles to enantiomerically enriched DA cyclopropanes (methyl 1-

nitrocyclopropanecarboxylates 157) catalyzed by Ni(ClO4)2 as a Lewis acid (Scheme 1.28).
102

  

The amino-functionalized products 158 were achieved in good yields (63-94%) with complete 

retention of enantiomeric excess at C-4.  The doubly activated cyclopropanes were employed 

again in a similar ring opening strategy using a variety of phenol derivatives as nucleophiles to 

provide the 1,3-bifunctional adducts  159 (53-84%), in the presence of Cs2CO3 as the base.
103

 

This method enabled quick access to 3-aryl-3-phenoxypropane motifs, which are found in 

numerous monoamine reuptake inhibitors, such as Strattera.   

Another approach to ring opening of DA cyclopropanes proceeds through reactions with 

electrophiles to yield 1,3-substituted acyclic systems, analogous to the transformed adducts 

Scheme 1.28. Ring-opening reactions of DA cyclopropanes with nucleophiles. 



48 
 

Scheme 1.29. Ring-opening reactions of DA cyclopropanes with electrophiles. 

mentioned with nucleophiles.  Recent developments introduced transition metals to promote the 

ring cleavage, while employing acceptor-substituted vinylcyclopropanes as suitable substrates to 

undergo the transformation.  The key nucleophilic π-allyl-metal species formed thus enables an 

inverse of polarity and reactivity of DA cyclopropanes by the observed electrophilic trapping at 

the donor site.  In contrast to the normal polarity, the nucleophilic reactivity at the donor site 

arises as a result of the umpolung reactivity.  In 2011, the Krische group investigated a DA 

cyclopropane-mediated carbonyl allylation catalyzed by a cyclometalated iridium complex 

(Scheme 1.29).
104

  The enantioselective C-C coupling process tolerated alcohols or aldehyde 

oxidation levels as effective carbonyl electrophiles to provide the desired enantiomerically 

enriched products 161.  Moreover, further conversion to disubstituted δ-lactones 162 was 

successfully realized. 

In addition to the nucleophilic and electrophilic approaches to ring opening of activated 

DA cyclopropanes, cycloadditions with various dipolarophiles have been commonly exploited as 

a pathway to ring-opening cyclization.  Cycloadditions has become a prominent tool for the 

construction of highly functionalized and complex polycyclic structures, produced in one single 

step.  The bond breaking and bond forming event (stepwise or concerted) provides the ability to 
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control the stereochemical outcome of the reaction.  Moreover, high regioselectivity is attained 

by the preferential addition of the partially charged centers in the dipolarophiles with the 1,3-

dipole cyclopropane.  Both inter- and intramolecular cycloadditions of DA cyclopropanes have 

been widely investigated and have continued to showcase its applicability in organic synthesis 

and natural products.  For instance, numerous reports by Johnson,
105

 Waser,
106

 Yang,
107

 and 

others described aldehyde compounds undergoing [3+2] cycloadditions with DA cyclopropanes 

163 for the formation of tetrahydrofuran (THF) derivatives (Scheme 1.30, Eq. 1).  Alkyl- and 

aryl-substituents were susceptible donor groups on the cyclopropane while the acceptor groups 

were limited to geminal ester substituents.  Successfully catalyzed by various Lewis-acids, 

cycloadditions with neutral or electron-deficient aldehydes resulted in high stereoselectivity for 

the preferred 2,5-cis-configured tetrahydrofuran adducts 165.  Likewise, amino-substituted 

tetrahydrofuran derivatives were synthesized by replacing the donor group with an amine 

substituent (i.e. Nphth) on cyclopropane 163.  Notably, the stereochemical outcome of the 

cycloaddition was highly influenced by the choice of aldehyde as 2,5-trans products 166 were 

observed with electron-rich aryl aldehydes.   

Scheme 1.30. Ring-opening cycloaddition of DA cyclopropanes with aldehydes, imines, and 

nitrones. 
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Analogous to the carbonyl systems are imines and nitrones which have been reported to 

participate in the cycloadditions with DA cyclopropanes to provide tetrahydropyrroles/ 

pyrrolidines and 1,2-oxazines, respectively (Scheme 1.30, Eq. 2).  The Kerr group investigated 

the preparation of 2,5-cis-pyrrolidines 167 from a [3+2] cycloaddition of aldimines and 1,1-

cyclopropanediesters 163 catalyzed by a mild Lewis-acid, Yb(OTf)3.
108

  The diastereoselectivity 

was rationalized by model 167a, similar to Johnson’s, illustrating a Mannich-type ring closure in 

which the diaxial interaction between substituent (R
1
) of the imine and ester of the cyclopropane 

was minimized.  Under the same Lewis acidic conditions or promoted by magnesium iodide 

(MgI2), the authors revealed a [3+3] cycloaddition of nitrones with 1,1-cyclopropanediester to 

yield tetrahydro-1,2-oxazines 168, as the cis isomer exclusively.
109

  Upon generating the nitrone 

in situ, via an aldehyde and hydroxylamine, the oxygen anion produced is proposed to open the 

cyclopropane ring in a nucleophilic fashion (see 168a).  Further mechanistic evidences supported 

a stepwise pathway rather than a concerted pathway.  While much intermolecular ring opening 

cyclizations of DA cyclopropanes have been well-documented, examples involving an 

intramolecular transformation have become more frequent.
110

  Likewise, the required acid 

needed to activate the ring cleavage has lead to the ongoing development of various catalytic 

procedures.  Major advantages of the intramolecular route include increased and controllable 

reactivity to achieve high selectivities, as well as rapid formation of complex polycycles and 

natural products. 

The modes of activation for cyclopropanes have allowed development of various ring-

opening strategies to further showcase its broad utility in organic transformations.  The 

susceptibility to C-C bond cleavage has permitted substituted cyclopropanes to serve as valuable 

substrates in synthetic applications.  Among the activated cyclopropanes, cyclopropanols have 
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been most frequently investigated as donor-substituted cyclopropanes.  However, ring-opening 

strategies with aminocyclopropanes remain less explored.  Successful cycloadditions with DA 

cyclopropanes have sparked the interest of investigating cycloadditions with 

aminocyclopropanes as an effective ring-opening strategy for donor-substituted cyclopropanes.  

To the best of our knowledge, no reports of aminocyclopropane undergoing cycloaddition, 

mediated by visible light photocatalysis, has been documented prior to our group’s discovery of 

the [3+2] annulation of cyclopropylanilines.   

1.7. Conclusion 

 Visible light photoredox catalysis has emerged as a prominent tool for the development 

of efficient photochemical reactions.  The adopted photochemical method has showcased a 

variety of promising organic transformations contributed by a number of researchers.  The use of 

transition metal polypyridyl complexes, including ruthenium and iridium, highlighted the 

catalytic activation of organic substrates to engage in either single-electron transfer or energy 

transfer pathway.  Moreover, the advantage of tuning and modulating the photophysical 

properties of the photocatalysts has lead to newly discovered reactions in addition to 

accomplishing  challenging novel transformations and reaction efficiencies.  The emphasis of 

these photocatalysts operating as either strong reductants or oxidants has broadened their utility 

in organic synthesis, as demonstrated in recent synthetic applications which included the 

chemistry of amine radical cations.  Induced by photoredox catalysis, the synthetic utility of 

amine radical cations as reactive intermediates was highlighted by their accessibility to several 

modes of reactivity.  As a result, the finding of a ring-opening strategy of cyclopropylaniline was 

disclosed, which prompted the development of visible light mediated [3+2] annulation reactions.    

The effective and versatile method of merging visible light photocatalysis with 
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cycloaddition reactions has accomplished the construction of complex carbocyclic and 

heterocyclic substances, prepared in an atom economical fashion.  Furthermore, complex 

products can be formed under mild reaction conditions due to the benefits of incorporating the 

photoredox cycle.  The continuous efforts by organic chemist have uncovered the use of visible 

light to promote cycloadditions, which has greatly impacted the synthetic community.  Overall, 

visible light photoredox catalysis exhibits a promising future in the discovery of applicable 

synthetic chemistry.  The ongoing progress in this field continues to make significant advances 

by developing new and valuable transformations along with addressing challenges and 

limitations.  Bringing to the forefront are the diverse applications of visible light mediated 

reactions that establish new potential avenues for further exploitation. 
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Chapter 2. Intermolecular [3+2] Annulation of Cyclopropylanilines with Alkynes 

2.1. Introduction 

Cycloaddition or annulation reactions are among the most important classes of versatile 

reactions utilized in organic synthesis, particularly in natural products and biologically active 

substances.
111

  These types of reactions are most commonly effective for the production of 

structurally diverse and complex carbocycles and heterocycles of various sizes, such as small 

molecules, emphasizing their prominence in diversity-oriented synthesis (DOS).
112

  When 

considering what constitutes a cycloaddition reaction, one can consider the concerted or the 

stepwise reaction, proceding in either an intramolecular or intermolecular-like fashion.  In 

addition to their excellent atom economy, cycloaddition enables the construction of complex 

multiple bonds and stereocenters in one single step with predictable stereochemistry.  These 

appealing features highlight cycloadditions as preferred reactions in organic synthesis.  

Therefore, developing novel approaches to promote cycloaddition reactions has acquired the 

attention of synthetic chemist.   

Recently, visible light photocatalysis has been illustrated to promote cycloaddition 

reactions as a strong synthetic strategy.
16, 113, 114

 The activation is initiated by electron transfer or 

energy transfer via visible light in the presence of a photocatalyst.  This new attractive method of 

merging the photoredox cycle with cycloaddition reactions has accomplished unique organic 

transformations, while significantly expanding the scope and utility of cycloaddition reactions.  

Within the past eight years, newly reported cycloaddition methods mediated by visible light have 

been realized by several research groups.
20, 21, 40, 59, 76-79, 115

 Their use of reductive quenching 

cycle, oxidative quenching cycle, or energy transfer pathway sufficiently demonstrated the 

impact of visible-light promoted cycloadditions by forming multiple bonds and stereocenters in 
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one single step.  Our group was particularly intrigued in the development of visible-light 

mediated [3+2] cycloadditions.  The application of photoredox processes in atom economical 

reactions, for the construction of 5-membered rings, sparked our interest to further explore the 

potential of [3+2] annulation reactions.    Although several reports have showcased this 

cycloaddition/ annulation strategy,
20, 77-79

 much research effort to expand the scope of visible 

light photoredox catalysis to provide reactive intermediates for [3+2] annulation reactions and 

their application to synthesis is in continual progress.   

Our group’s initial investigation of an oxidation-triggered cycloaddition synthetic 

strategy resulted in the findings of a [3+2] annulation of mono- and bicyclic cyclopropylanilines 

with terminal 

olefins, such as 

styrene.
76

  

Mediated by 

photoredox 

catalysis, the 

annulation 

provided saturated heterocycles in synthetically useful yields and modest to poor 

diastereoselectivity, as shown in Scheme 2.1.  The afforded fused saturated heterocycles, from 

the annulation with bicyclic cyclopropylanilines, displayed synthetic relevance as a motif of 

interest commonly present in natural products and pharmaceuticals.  Interestingly in the presence 

of two olefins, such as a conjugated diene (i.e. 1-phenyl-1,3-butadiene), annulation was observed 

with the preferred terminal double bond in complete chemoselectivity.  Furthermore, 

diastereoselectivity was better achieved in annulation with the bicyclic cyclopropylanilines 

Scheme 2.1. [3+2] annulation of cyclopropylanilines with olefins. 
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versus the moncyclic cyclopropylanilines.  Driven to better comprehend the lack of 

diastereoselectivity, we directed our focus towards investigating the annulation of monocyclic 

cyclopropylanilines with alkynes to furnish unsaturated cyclopentenes. 

2.2. Results and Discussion: [3+2] Annulation with Alkynes* 

*Portion of this chapter has been published in Nguyen, T. H.; Maity, S.; Zheng, N. Beilstein J. 

Org. Chem. 2014, 10, 975-980. 

The visible-light mediated [3+2] annulation with olefins presented a facile method of 

synthesizing various amino-containing compounds from simple starting material.  To address the 

poor diastereoselectivity observed in the monocyclic system, it was envisioned that a similar 

intermolecular [3+2] annulation could be accomplished with alkynes, instead of alkenes, to 

provide aminocyclopentenes.
116

  These desired aminocyclopentenes can be useful synthetic 

building blocks for various amine derivatives such as aminocyclopentitols. This class of amine 

compounds has been shown to exhibit properties as a potent inhibitor for glycosidases, which are 

important targets for developing treatments of numerous diseases such as diabetes, cancer, and 

viral infections.
117

    Importantly, the synthetic strategy of utilizing the [3+2] annulation approach 

provides rapid access to cyclic allylic amines, which can further serve as templates to other 

unique derivatives. 

2.2.1. Reaction Optimization of Cyclopropylaniline with Phenylacetylene
 

Biphenylcyclopropylamine 1a and phenylacetylene 2a were chosen as the standard 

substrates to optimize the catalyst system for the [3 + 2] annulation with alkynes (Table 1).  The 

data was collected using gas chromatography (GC) with dodecane as the internal standard.  

Similar to the annulation with alkenes, several reactivity patterns were observed. CH3NO2 was 

far superior to DMF and CH3CN as the solvent (Table 1, entries 1–3).  CH3NO2 that was dried  
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over 4 Å molecular sieves was sufficient, since distilled CH3NO2 gave comparable yields.  

Ru(bpz)3(PF6)2 was observed to be the most effective photocatalyst when compared to 

Ru(bpy)3(PF6)2 and Ir(ppy)2(dtbbpy)PF6  (Table 1, entries 4 & 5).  Among the reduction potential 

Entry
a
 Catalyst Light Solvent GC yield (%)

b
 

1 Ru(bpz)3(PF6)2 (4a) 18 W LED CH3NO2 82 (80)
c
 

2 Ru(bpz)3(PF6)2 (4a) 18 W LED DMF 20 

3 Ru(bpz)3(PF6)2 (4a) 18 W LED CH3CN 36 

4 Ru(bpy)3(PF6)2 (4b) 18 W LED CH3NO2 55 

5 Ir(ppy)2(dtbbpy)PF6 (4c) 18 W LED CH3NO2 47 

6
d
 Ru(bpz)3(PF6)2 (4a) 18 W LED CH3NO2 41 

7 Ru(bpz)3(PF6)2 (4a) 13 W CFL CH3NO2 68 

8
e
 Ru(bpz)3(PF6)2 (4a) Blue LEDs CH3NO2 46

f 

9 Ru(bpz)3(PF6)2 (4a) 
(18 W LED) 

X 2 
CH3NO2 50 

10 No catalyst 18 W LED CH3NO2 6 

11 Ru(bpz)3(PF6)2 (4a) No light CH3NO2 3 

a
Conditions: 1a (0.2 mmol), 2a (1 mmol), solvent (2 mL), degassed, and irradiated at rt for 8 

h. 
b
Dodecane was used as an internal standard. 

c
Isolate yield by silica gel chromatography. 

d
The reaction was conducted in the presence of air. 

e
Reaction time of 45 h. 

f
NMR yield. 

Table 1. Optimization of [3+2] annulation with phenylacetylene. 
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of the photoexcited state of the three photocatalysts: Ru(II)*/(I) vs NHE: Ru(bpz)3, 1.45 V; 

Ru(bpy)3, 0.77 V; Ir(III)*/(II) vs NHE: Ir(ppy)2(dtbbpy) 0.66 V, Ru(bpz)3
2+

 possessed the 

highest reduction potential, thus characterized as the strongest oxidant.  Exposure to air was 

detrimental to the annulation reaction, further highlighting the importance of the required 

degassed conditions (Table 1, entry 6).  Previous finding of an unstable endoperoxide product 

was reported via an aerobic opening of cyclopropylaniline.
76

  Moreover, we observed the 

annulation with alkynes was slower than with alkenes, previously reported by our group.  To 

compensate for lower reactivity of alkynes, we investigated commercially available light sources 

that were stronger than 13 W compact fluorescent lamps (CFLs).  13 W CFLs were used as the 

light source to mediate the annulation with alkenes;
76

 however with alkynes, longer reaction time 

was required for completion and diminished yields were observed (Table 1, entry 7).  The same 

reaction pattern was observed with blue LEDs as an alternative light source (Table 1, entry 8).  

White 18 W LEDs were found to be more effective for the annulation with alkynes, resulting in a 

higher yield.  The reaction was then screened using two 18 W LEDs, conducted in a water bath 

to control the temperature as exposure to two LEDs generated heat; however no improvement in 

the yields (Table 1, entry 9).  Control studies indicated that both the photocatalyst and light were 

required, though some background reaction was observed (Table 1, entries 10 & 11).  The 

preliminary results sparked our curiosity of exploring another catalytic system because the 

photocatalyst often plays a significant role in determining the outcome of the annulation reaction.  

Experiments were conducted using biphenylcyclopropylamine 1a and phenylacetylene as 

substrates with photocatalyst Ir(ppy)2(dtbbpy)PF6 and a variety of solvents under degassed 

conditions (Table 2).  Surprisingly, the reaction condition using the Ir(III) complex in 

trifluoroethanol (CF3CH2OH) resulted in an isolated yield of 77% (Table 2, entry 1).  Various 



58 
 

alcohol solvents were screened, including CH3OH which provided comparable yields.  Other 

solvents that were previously explored in the annulation with alkenes, such as CH3NO2, DMF, 

and CH3CN, were also screened.  None of them gave a higher yield than trifluoroethanol (Table 

2, entries 5-7).  The unexpected result with CF3CH2OH as an optimal solvent with the Ir complex 

prompted us to examine Ru(bpz)3(PF6)2 in  CF3CH2OH (Table 2, entry  4); however, a 

diminished NMR yield was observed.  Although the catalytic system involving Ir(III) complex in 

CF3CH2OH appeared to be optimal, these conditions were best suitable for only 

cyclopropylanilne 1a in particular.  Ru(bpz)3(PF6)2 was found to be more effective than the Ir 

complex for most of the substrates other than 1a.   Therefore, the optimal conditions for the 

intermolecular [3+2] annulation detailed the use of 2 mol % Ru(bpz)3(PF6)2 in CH3NO2 under  

degassed conditions at room temperature, irradiated with one 18 W  LED. 

Further screening of additives was investigated in pursuit to improve the yields.  With concerns 

of water possibly having an effect on the reaction, 4Å molecular sieves and anhydrous MgSO4 

were incorporated, though providing a decrease in yields of 48% and 38%, respectively (Table 3,  

Table 2. Optimization of Ir(III) catalytic system. 

Entry
a 

Catalyst Solvent Time (h) NMR Yield
b
  

1 Ir(ppy)2(dtbbpy)PF6 CF3CH2OH 20 90% (77%)
c 

2 Ir(ppy)2(dtbbpy)PF6 CH3OH 20.5 81% (75%)
c 

3 Ir(ppy)2(dtbbpy)PF6 iPrOH 20 50% 

4 Ru(bpz)3(PF6)2 CF3CH2OH 18.5 65% 

5 Ir(ppy)2(dtbbpy)PF6 CH3NO2 18.5 69% 

6 Ir(ppy)2(dtbbpy)PF6 DMF 19.5 50% 

7 Ir(ppy)2(dtbbpy)PF6 CH3CN 19.5 70% 

a
Conditions: 1a (0.2 mmol), 2a (1 mmol), catalyst (2 mol%), solvent (2 mL), degassed, and 

irradiated with 18 W LED at rt. 
b
Dibromomethane was used as an internal standard. 

c
Isolate 

yield by silica gel chromatography. 
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entries 1 & 2).  Screening alternative light sources, such as 13 W CFL and blue LEDs, confirmed 

the 18 W LED to be optimal (Table 3, entries 3 & 4).  With no improvement, other additives, 

which include acid and graphene oxide (GO), were explored as they have been reported to 

enhance yields of various reactions by photoredox catalysis.  It was envisioned that the role of 

the acid, with regards to its participation in the proposed mechanism (Scheme 2.2), was to ensure 

protonation of the photogenerated iminium ions.  Although the use of GO as a “carbocatalyst” in 

organic transformations has been reported, the potential application of GO in synthetic 

photochemistry has not been deeply explored.
118

  A [3+2] annulation of phenylacetylene with 4-

cyano-N-cyclopropylaniline 1f to yield 3g was conducted in three separate experiments with the 

optimized conditions discussed previously as the control (Table 4, entry 1), followed by 

introduction of additives: one equivalence of pivalic acid and 50% by weight of GO, respectively 

(Table 4, entry 2 and 3).  NMR analysis was performed using dibromomethane as an internal 

standard to provide the following data in Table 4.  The results with the acid and GO afforded the 

cycloadduct in comparable yields though no significant improvment on the annulation.  The 

reaction time was screened at 19 h, although 6 h was sufficient for completion (Table 4, entry 4).  

The reported similar yields indicated that the cycloadduct was stable with no signs of 

Table 3. Screening of additives. 

Entry
a 

Additives Light Time (h) 
Isolated Yield

b 

(NMR Yield)
c 

1 4Å molecular sieves 18 W LED 6.5 48%
 

2 MgSO4 18 W LED 6.5 38%
 

3 MgSO4 13 W CFL 40.5 (46%)
c 

4 MgSO4 Blue LEDs 40.5 (63%)
c 

a
Conditions: 1a (0.2 mmol), 2a (1 mmol), Ru(bpz)3(PF6)2 4a (2 mol%), CH3NO2 (2 mL), 80 

mg of additive, degassed, and irradiated at rt. 
b
Isolated yield by silica gel chromatography. 

c
Dibromomethane was used as an internal standard. 
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decomposition or formation of undesired by-products while consuming longer exposure to light.  

Conclusively, the unsuccessful results of introducing additives lead to their omission in the 

reaction due to their inability to further exhibit progression in the development of the annulation.  

Thus, the lack of improvement has driven the annulation reactions to be conducted under the 

optimized condition in the absence of additives.  

 

 

  With the established optimized conditions, interest in the range of scalability was 

moderately explored.  The limited scalability of batch reactors in photochemical synthesis 

continues to be a challenging issue for synthetic chemists.  Moreover, conducting large scale 

processes in batch protocols usually require longer reaction times, which result in poor yields 

and/or production of side-products.  Our initial efforts involved the annulation of 3,5-Dimethyl-

N-cyclopropylaniline (1b) with phenylacetylene (Table 5).  The attention was focused on the 

scaling up of the annulation from the standard 0.2 mmol to 0.5 mmol.  By simply increasing the 

standard scale by a factor of 2.5, a significant decrease in yield (42%) was noted in comparison 

Entry
a 

Additives Time (h) NMR Yield
 
(%)

b 

1 None 19 50 (49%)
c 

2 Pivalic acid
d 

19 56
 

3 Graphene oxide
e 

19 53
 

4 None 6 46
c
 

a
Conditions: 1f (0.2 mmol), 2a (1 mmol), Ru(bpz)3(PF6)2 4a (2 mol%), CH3NO2 (2 mL), 

degassed, and irradiated at rt. 
b
Dibromomethane was used as an internal standard. 

c
Isolated 

yield by silica gel chromatography. 
d
One equivalent of pivalic acid. 

e
50% by weight of GO. 

Table 4. Screening of alternative additives and reaction time. 
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to the standard with 62% yield (Table 5, entries 1 & 2).  Due to the doubling of the reaction 

scale, attempts of doubling the catalyst loading to 4 mol% unfortunately furnished comparable 

yields (Table 5, entry 3).  Therefore, moving forward, the [3+2] annulations were performed only 

on a 0.2 mmol reaction scale. 

 

Entry
a 

Reaction Scale (1b ) Catalyst Loading Time (h) Isolated Yield
 
(%)

b 

1 0.2 mmol 2 mol% 8 62 

2 0.5 mmol
 

2 mol% 13 42
 

3 0.5 mmol
 

4 mol% 13 45
 

 

2.2.2. Proposed Catalytic Cycle
 

Mechanistically, the annulation with alkynes can be anticipated to proceed through a 

pathway similar to the one proposed for the annulation with alkenes (Scheme 2.2).  The key 

transformation involves the ring opening of a cyclopropyl ring, hence serving as a three-carbon 

building block.  To accomplish this, it was envisioned that an activated donor-substituted 

cyclopropane was required, thus an amino cyclopropyl ring was incorporated.  Amines have 

been used as a sacraficial electron donor to reduce the excited state of photocatalysts, while 

subsequently being oxidized to amine radical cations.  Our group and others have taken 

advantage of this facile redox process and developed a number of synthetic methods that harness 

Table 5. Screening of reaction scalability. 

a
Conditions: 1b (0.2 or 0.5 mmol), 2a (5 equiv.), Ru(bpz)3(PF6)2 4a (2 or 4 mol%), CH3NO2 (2 

or 5 mL, 0.1 M), degassed, and irradiated at rt. 
b
Isolated yield by silica gel  chromatography. 
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the synthetic potential of amine radical cations.
16, 66, 119

  Upon exposure to visible light, the 

generated photoexcited Ru(bpz)3
2+

* oxidizes cyclopropylaniline 1.1 to the corresponding amine 

radical cation 1.2 via single electron transfer (SET).  As a result, this triggers the cyclopropyl 

ring opening to generate distonic radical cation 1.3.   The primary carbon radical of iminium ion 

1.3 adds to the terminal carbon of electron deficient alkyne 2.1 to afford vinyl radical 1.4.  

Intramolecular addition of the vinyl radical to the iminium ion of distonic radical cation 1.4 

closes the five membered ring and furnishes amine radical cation 1.5.  Finally, Ru(bpz)3
1+

 

reduces amine radical cation 1.5 to the desired annulation product 3.1 while regenerating 

Ru(bpz)3
2+

.  The proposed mechanism accounts for lower reactivity of alkynes towards 

intermolecular addition of nucleophilic carbon-centered radicals as well as their regiochemistry 

in the annulations.
120

  Addition of radicals to alkynes generally occurs at the less hindered 

carbon, i.e., the terminal carbon.  

2.2.3. Substrate Scope/ Synthesis of Fused Indoline
 

With the optimized conditions in hand, the next objective was to investigate the substrate 

scope of the [3+2] annulation.  To determine the scope of the annulations process, a range of 

cyclopropylanilines with various electronic and steric characteristics were prepared.  The 

Scheme 2.2. Proposed catalytic cycle. 
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preparation of various monocyclic cyclopropylanilines, shown in Scheme 2.3, was accomplished 

by the Buchwald-Hartwig cross coupling reaction of aryl halides with cyclopropylamines.
121

 A 

range of aryl bromide and iodides, including electron-donating and electron-withdrawing 

substituents, were well tolerated and the corresponding products were obtained in good to 

excellent yields (60-98%). 

Intermolecular [3+2] annulation reactions of monocyclic cyclopropylanilines with 

electron-deficient terminal alkynes were successfully accomplished to furnish unsaturated 

cyclopentenes in moderate yields.  The results of the scope studies are summarized in Scheme 

2.4.  Both electron-donating (OMe, 3d, and OTBS, 3e) and electron-withdrawing (CF3, 3f, 3k, 

3o, and CN, 3g, 3j) substituents were suitable substrates, and the annulation products were 

generally obtained in modest to good yields.  The annulation process also tolerated steric 

hindrance.  Hindered cyclopropylanilines, such as those possessing an ortho-isopropyl group,  

Scheme 2.3. Preparation of monocyclic cyclopropylanilines. 
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Scheme 2.4. Substrate scope of [3+2] annulation with alkynes. 
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were satisfactorily converted to the annulation products (3c and 3i).  With respect to the other 

annulation partner, terminal alkynes substituted with an electron-withdrawing group were 

typically required for the annulation process.  Alkylsubstituted terminal alkynes (i.e. 1-hexyne) 

and internal alkynes (i.e. diphenylacetylene and dimethyl acetylenedicarboxylate) were not 

reactive under the optimized conditions.  This reactivity trend towards alkynes is consistent with 

that exhibited in intermolecular addition of nucleophilic carbon-based radicals to alkynes.
120

  In 

addition to phenylacetylene, acetylenic methyl ester was a viable annulation partner, leading to 

annulation products 3h-3k in good yields.  Heterocycles are commonly present in organic 

electronic materials
122

 and their abundance in pharmaceuticals
123

 emphasizes their promising 

values in medicinal chemistry.  Thus, the ability to incorporate them is usually considered a 

benchmark for developing new synthetic methods.  This method has certainly demonstrated this 

standard as two pairs of heterocycle-containing alkynes underwent the [3 + 2] annulation with 

cyclopropylanilines uneventfully (3l-3o).  The alkyne moiety at the C2 or C3 position of 

thiophene or pyridine showed comparable reactivity towards the annulation. 

Structural motifs of closely related indolines have been reported in a large number of 

various biologically active alkaloids and pharmaceuticals.
114, 124

  Like indoles, indoline motifs 

make up an important substructure of nitrogen-containing heterocycles that are prevalent in 

natural products.  An important subgroup of indoline motifs is fused indolines.  Eminent 

strategies of synthesizing fused indolines have been developed, which include functionalization 

of oxindoles,
125

 aromatic C-H aminations,
126

 C-H activation of N-cyclohexyl-substituted 

carbamate,
127

 and derivatization of indole precursors.
128

  Another approach to provide fast entry 

to fused indoline motifs is the [3+2] annulation of monocyclic cyclopropylanilines with alkynes 

(Scheme 2.5).  Starting from commercially available 1-bromo-2-iodobenzene 1.6 and 

Scheme 2.4. Substrate scope of [3+2] annulation with alkynes. 
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cyclopropylamine, 2-bromo-N-cyclopropylaniline 1h was prepared in 75% yield via the 

Buchwald-Hartwig amination.
129

   Under the optimized catalyst system, the [3+2] annulation of 

2-bromo-N-cyclopropylamine 1h and phenylacetylene 2a was completed to afford cyclic allylic 

amine 1.7 in 52% yield.  The fused indoline motif was formed by a cyclization via an 

intramolecular Heck reaction under Fu’s conditions
130

 to yield a mixture of two olefinic 

regioisomers 1.8, which were converted to saturated fused indoline 1.9 under standard catalytic 

hydrogenation conditions in a combined yield of 40% from 1.7.    

 

In summary, the expansion of the [3 + 2] annulation of cyclopropylanilines to include 

alkynes was successfully accomplished, yielding a variety of cyclic allylic amines in fair to good 

yields.  The annulation process with alkynes exposed some existing limitations in the annulation 

with alkenes.  The immediate benefits of using alkynes include eliminating the 

diastereoselectivity issue observed in the annulations of monocyclic cyclopropylanilines with 

alkenes and introducing an alkene functionality into the annulated adducts.  Furthermore, the 

rapid access to cyclic allylic amines is an attractive feature since the synthesis of these structures 

is non-trivial in general.  Serving as highly useful synthetic intermediates, the utility of the 

Scheme 2.5. Synthesis of fused indoline 1.9. 
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annulation products was demonstrated by a four-step synthesis of fused indolines in which the [3 

+ 2] annulation with alkynes was used to set up the backbone of indolines.  The next focused 

task was to continue the studies of the [3+2] annulation by further expanding the scope to include 

substituted anilines and other types of π-bonds.  

2.2.4. Experimental Section 

General Experimental Procedures   

All reactions were carried out under a nitrogen atmosphere. Nitromethane (CH3NO2), acetonitrile 

(CH3CN), and dimethylformamide (DMF) were pre-dried over molecular sieves.  Toluene was 

collected under argon from a solvent purification system. Column chromatography was 

performed using silica gel (230–400 mesh). All new compounds were characterized by 
1
H NMR, 

13
C NMR, IR spectroscopy, high-resolution mass spectroscopy (HRMS), and melting point. 

Nuclear magnetic resonance (NMR) spectra were obtained on a Bruker Avance DPX-300 and 

Bruker Avance DPX-400. Chemical shifts (δ) were reported in parts per million (ppm) relative to 

residual proton signals in CDCl3 (7.26 ppm, 77.23 ppm) at room temperature. Relative 

configurations of new compounds were established by HMQC experiments. IR spectra were 

recorded (thin film on NaCl plates) on a PerkinElmer Spectrum 100 series instrument. High 

resolution mass spectra were recorded on a Bruker Ultraflex II TOF/TOF mass spectrometer.  

Gas chromatography/mass spectroscopy (GC/MS) analyses were performed on an Agilent 

6890N Network GC System/5973 inert Mass Selective Detector. Gas chromatography analyses 

were performed using a Shimadzu GC-2010 Plus instrument. Melting points (m.p.) were 

recorded using Stuart SMP10 Melting Point Apparatus and were uncorrected.   

General Procedure 1: Preparation of N-cyclopropylanilines 

To an oven-dried test tube equipped with a stir bar were added 0.01 mmol of Pd2(dba)3 and 
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0.03 mmol of ligand ((R)-Tol-BINAP or BrettPhos). Glove box was used to add 1.5 mmol of 

NaO
t
Pent and the tube was sealed with a Teflon screw cap. 1 mmol of aromatic halide, 

1.6 mmol of cyclopropylamine, and 2 mL of toluene were then added to the reaction mixture and 

heated at 80 °C for 18 h. After completion, the reaction mixture was cooled to room temperature, 

diluted with diethyl ether, filtered over a short pad of silica gel, and concentrated in vacuum. 

Purification by flash chromatography on silica gel afforded N-cyclopropylaniline. 

N-Cyclopropyl-2-biphenylamine (1a).  Following GP1  with 2-bromobiphenyl (860 µL, 5 

mmol, 1 equiv.) and (R)-Tol-BINAP (102 mg, 0.15 mmol, 3 mol% equiv.), product was isolated 

after flash chromatography on silica gel (1:20 EtOAc/hexane) as a colorless oil (889 mg, 85%).
76 

3,5-Dimethyl-N-cyclopropylaniline (1b).  Following GP1 with 5-bromo-m-xylene (680 µL, 5 

mmol, 1 equiv.) and BrettPhos (80.5 mg, 0.15 mmol, 3 mol% equiv.), product was isolated after 

flash chromatography on silica gel (1:20 EtOAc/hexane) as a pale-yellowish oil (774 mg, 96%); 

IR υmax (cm
-1

) 3387, 3087, 2961, 1604, 1477, 1364, 1336, 824; 
1
H NMR (400 MHz, Chloroform-

d) δ 6.44 (dddd, J = 10.2, 2.9, 1.5, 0.7 Hz, 3H), 4.32 (s, 1H), 2.42 (tt, J = 6.4, 3.5 Hz, 1H), 2.30 – 

2.20 (m, 6H), 0.76 – 0.63 (m, 2H), 0.52 (dddd, J = 4.9, 3.9, 3.3, 2.1 Hz, 2H); 
13

C NMR (75 MHz, 

CDCl3) δ 148.66, 138.68, 119.62, 110.95, 25.17, 21.43, 7.34. GC/MS m/z [M+H]
+
, calc’d for 

C11H15N 162; found 162.12. 

2-Isopropyl-N-cyclopropylaniline (1c).  Following GP1 with 1-bromo-2-isopropylbenzene (150 

µL, 1 mmol, 1 equiv.) and  (R)-Tol-BINAP (20.4 mg, 0.03 mmol, 3 mol% equiv.), product was 

isolated after flash chromatography on silica gel (100:1 EtOAc/hexane) as a colorless oil (106 

mg, 60%); IR υmax (cm
-1

) 3420, 3007, 2961, 2870, 1603, 1503, 1451, 1365, 1302, 1039, 746; 
1
H 

NMR (400 MHz, Chloroform-d) δ 7.21 – 7.07 (m, 3H), 6.84 – 6.74 (m, 1H), 4.21 (s, 1H), 2.80 

(p, J = 6.8 Hz, 1H), 2.45 (tt, J = 6.4, 3.6 Hz, 1H), 1.29 – 1.23 (m, 6H), 0.82 – 0.73 (m, 2H), 0.61 
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– 0.52 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 145.40, 131.90, 126.62, 124.76, 117.73, 111.80, 

27.11, 25.51, 22.52, 22.36, 7.74; GC/MS m/z [M+H]
+
, calc’d for C12H17N 176; found 176.14. 

4-Methoxy-N-cyclopropylaniline (1d).  Following GP1 with 4-bromoanisole (628 µL, 5 mmol, 

1 equiv.) and BrettPhos (80.5 mg, 0.15 mmol, 3 mol% equiv.), product was isolated after flash 

chromatography on silica gel (1:5 EtOAc/hexane) as a pale-yellowish oil (602 mg, 74%); IR υmax 

(cm
-1

) 3378, 3002, 2947, 2832, 1607, 1512, 1365, 1237, 1035, 821; 
1
H NMR (400 MHz, 

Chloroform-d) δ 6.87 – 6.70 (m, 4H), 3.95 (d, J = 14.8 Hz, 1H), 3.76 (s, 3H), 2.39 (tt, J = 6.5, 

3.6 Hz, 1H), 0.75 – 0.65 (m, 2H), 0.55 – 0.46 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 152.34, 

142.89, 114.80, 114.19, 55.85, 25.94, 7.30; GC/MS m/z [M+H]
+
, calc’d for C10H13NO 164; 

found 164.10. 

4-tert-butyldimethylsilyl ether-N-cyclopropylaniline (1e).  Following GP1 with (4-

bromophenoxy)-tert-butyldimethylsilane (490 µL, 2 mmol, 1 equiv.) and BrettPhos (32.2 mg, 

0.06 mmol, 3 mol% equiv.), product was isolated after flash chromatography on silica gel (1:5  

EtOAc/hexane) as a colorless oil (486 mg, 92%); IR υmax (cm
-1

) 3377, 2945, 2858, 1509, 1465, 

1364, 1249, 916, 832; 
1
H NMR (400 MHz, Chloroform-d) δ 6.71 – 6.49 (m, 4H), 3.86 (s, 1H), 

2.29 (tt, J = 6.6, 3.1 Hz, 1H), 0.94 – 0.83 (m, 9H), 0.63 – 0.52 (m, 2H), 0.44 – 0.33 (m, 2H), 0.11 

– 0.02 (m, 6H); 
13

C NMR (101 MHz, CDCl3) δ 147.67, 143.11, 120.53, 114.02, 25.90, 25.79, 

18.20, 7.27, -4.45; GC/MS m/z [M+H]
+
, calc’d for C15H25NOSi 264; found 264.17. 

4-Trifluoromethyl-N-cyclopropylaniline (1f).  An oven-dried schlenk tube was charged with 

CuI (9.5 mg, 0.05 mmol), K2CO3 (276 mg, 2 mmol), proline (23 mg, 0.2 mmol), 

cyclopropylamine (140 μL, 2 mmol), 4-iodobenzotrifluoride (150 μL, 1 mmol), DMSO (2 mL) 

and a stir bar.  After purging with argon for a few seconds, the tube was sealed with a Teflon 

screw cap. The mixture was heated at 70 
o
C for 12 h. The reaction mixture was then cooled to 
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room temperature, quenched with brine and diluted with diethyl ether. The organic layer was 

separated and the aqueous layer was extracted with diethyl ether. The combined organic layers 

were dried over Na2SO4, filtered, and concentrated under vacuum. Purification of the residual 

mass by silica gel flash chromatography (5% EtOAc/hexane) afforded product (193 mg, 96%) as 

a yellowish oil.
76 

4-Cyano-N-cyclopropylaniline (1g).  Following GP1 with 4-bromobenzonitrile (1.82 g, 10 

mmol, 1 equiv.) and (R)-Tol-BINAP (204 mg, 0.3 mmol, 3 mol% equiv.), product was isolated 

after flash chromatography on silica gel (1:3 EtOAc/hexane) as a pale-yellowish solid (836 mg, 

53%); IR υmax (cm
-1

) 3364, 2991, 2210, 1603, 1519, 1338, 1166, 825; 
1
H NMR (400 MHz, 

Chloroform-d) δ 7.52 – 7.39 (m, 2H), 6.79 – 6.70 (m, 2H), 4.61 (s, 1H), 2.47 (ttd, J = 6.6, 3.6, 

0.6 Hz, 1H), 0.88 – 0.74 (m, 2H), 0.63 – 0.50 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 151.96, 

133.53, 120.53, 112.78, 99.20, 24.60, 7.63; GC/MS m/z [M+H]
+
, calc’d for C10H10N2 159; found 

159.09. 

2-Bromo-N-cyclopropylaniline (1h).  Following GP1 with 1-bromo-2-iodobenzene (128 µL, 1 

mmol, 1 equiv.) and  (R)-Tol-BINAP (20.4 mg, 0.03 mmol, 3 mol% equiv.), product was 

isolated after flash chromatography on silica gel (1:150 EtOAc/hexane) as a colorless oil (160 

mg, 75%).
100

 

General Procedure 2: [3+2] Annulation 

An oven-dried test tube (16 × 125 mm) equipped with a stir bar was charged with 

[Ru(bpz)3](PF6)2·2H2O
131

 (2 mol %), cyclopropylaniline (0.2 mmol), alkyne (1.0 mmol), and dry 

CH3NO2 (2 mL).  The test tube was sealed with a Teflon screw cap.  The reaction mixture was 

degassed by Freeze–Pump–Thaw cycles and then irradiated at room temperature with one white 

LED (18 watts) positioned 8 cm from the test tube.  After the reaction was complete as 
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monitored by TLC, the mixture was diluted with diethyl 

ether and filtered through a short pad of silica gel. The 

filtrate was concentrated in vacuum and purified by silica 

gel flash chromatography to afford the desired allylic 

amine. 

Catalyst Optimization (Table 1) 

Following the above procedure (GP2), N-cyclopropyl-2-

biphenylamine 1a (42 mg, 0.2 mmol), phenylacetylene 2a 

(116 μL, 1.0 mmol), [Ru(bpz)3](PF6)2·2H2O 4a (3.8 mg, 2 mol%), and solvent (2 mL) were 

mixed and irradiated with a LED light for 8 h.  The reaction mixture was then diluted with Et2O 

(2 mL) and n-dodecane (45 μL) was added as the internal standard.  An aliquot (0.5 mL) was 

filtered through a syringe filter, diluted to 1 mL, and analyzed by GC. 

Characterization (Scheme 2.4) 

N-(2-phenylcyclopent-2-enyl)biphenyl-2-amine (3a).  Following GP2 with N-cyclopropyl-2-

biphenylamine 1a (41.8 mg, 0.2 mmol) and phenylacetylene 2a (116 µL, 

1.0 mmol), product was isolated after column chromatography on silica 

gel (15:1 hexane/EtOAc) as a white yellowish solid, m.p. 113-115 °C, (48 

mg, 77%).  IR υmax (cm
-1

) 3300, 2939, 1559, 11505, 1488, 1436, 1312, 

1071, 755, 695; 
1
H NMR (400 MHz, Chloroform-d) δ 7.37 – 7.32 (m, 2H), 7.24 – 7.19 (m, 3H), 

7.19 – 7.14 (m, 2H), 7.11 (q, J = 1.0 Hz, 4H), 7.00 (dt, J = 7.4, 1.5 Hz, 1H), 6.83 – 6.76 (m, 1H), 

6.70 (tt, J = 7.4, 1.0 Hz, 1H), 6.18 (td, J = 2.5, 1.1 Hz, 1H), 4.83 (d, J = 7.2 Hz, 1H), 4.00 (s, 

1H), 2.54 – 2.38 (m, 2H), 2.36 – 2.25 (m, 1H), 1.90 (ddt, J = 12.8, 8.3, 3.0 Hz, 1H); 
13

C NMR 

(101 MHz, CDCl3) δ 144.50, 142.88, 139.28, 134.79, 130.51, 129.94, 129.16, 128.73, 128.72, 
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128.42, 127.73, 127.33, 126.95, 126.41, 116.70, 110.87, 59.55, 31.88, 31.08; HRMS (ESI) m/z 

[M+H]
+
, calc’d for C23H21N 312.1742; found 312.1708.  

3,5-dimethyl-N-(2-phenylcyclopent-2-enyl)aniline (3b). Following GP2 with 3,5-dimethyl-N-

cyclopropylaniline 1b (34.2 mg, 0.2 mmol) and phenylacetylene 2a 

(116 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (5:1 hexane/EtOAc) as a pale yellowish 

oil, (32.5 mg, 62%). IR υmax (cm
-1

) 3401, 2918, 1599, 1496, 1337, 

1183, 820, 757, 691; 
1
H NMR (400 MHz, Chloroform-d) δ 7.45 (ddd, J = 6.4, 3.8, 1.6 Hz, 2H), 

7.30 – 7.21 (m, 2H), 7.21 – 7.14 (m, 1H), 6.43 – 6.30 (m, 2H), 6.27 – 6.21 (m, 2H), 4.88 – 4.77 

(m, 1H), 3.68 (s, 1H), 2.60 (dddd, J = 15.3, 7.4, 6.0, 3.6 Hz, 1H), 2.45 (ddt, J = 17.6, 8.9, 3.1 Hz, 

1H), 2.35 – 2.25 (m, 1H), 2.23 – 2.18 (m, 6H), 1.99 (ddt, J = 13.4, 8.3, 2.8 Hz, 1H); 
13

C NMR 

(101 MHz, CDCl3) δ 147.66, 142.82, 138.99, 134.64, 129.97, 128.53, 127.31, 126.20, 119.05, 

110.91, 58.91, 31.74, 30.99, 21.58; HRMS (ESI) m/z [M+H]
+
, calc’d for C19H21N 264.1737; 

found 264.1708. 

2-isopropyl-N-(2-phenylcyclopent-2-enyl)aniline (3c).  Following GP2 with 2-isopropyl-N-

cyclopropylaniline 1c (35 mg, 0.2 mmol) and phenylacetylene 2a (116 µL, 

1.0 mmol), product was isolated after column chromatography on silica 

gel (25:1 hexane/EtOAc) as a yellow/orange oil, (24.1 mg, 43%). IR υmax 

(cm
-1

) 3440, 2960, 1602, 1503, 1448, 1304, 1038, 745, 692; 
1
H NMR (400 

MHz, Chloroform-d) δ 7.51 – 7.42 (m, 2H), 7.29 – 7.20 (m, 2H), 7.20 – 7.07 (m, 3H), 6.83 – 

6.66 (m, 2H), 6.38 (ddd, J = 3.2, 2.4, 1.0 Hz, 1H), 4.86 (d, J = 7.1 Hz, 1H), 3.75 (s, 1H), 2.67 – 

2.55 (m, 2H), 2.33 (ddt, J = 13.1, 8.9, 7.1 Hz, 1H), 1.99 (ddt, J = 13.4, 8.2, 2.8 Hz, 1H), 1.11 (d, 

J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 144.26, 142.94, 
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134.63, 132.23, 130.07, 128.52, 127.39, 126.76, 126.25, 125.06, 116.95, 110.81, 59.28, 31.82, 

31.12, 27.08, 22.28, 22.19; HRMS (ESI) m/z [M+H]
+
, calc’d for C20H23N 278.1891; found 

278.1864. 

4-methoxy-N-(2-phenylcyclopent-2-enyl)aniline (3d).  Following GP2 with 4-methoxy-N-

cyclopropylaniline 1d (32.6 mg, 0.2 mmol) and phenylacetylene 2a 

(116 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (10:1 hexane/EtOAc) as a reddish-

brown oil, (23.9 mg, 45%).  IR υmax (cm
-1

) 3394, 2929, 1510, 1231, 1178, 1038, 818, 753, 693; 

1
H NMR (400 MHz, Chloroform-d) δ 7.48 – 7.39 (m, 2H), 7.29 – 7.19 (m, 2H), 7.19 – 7.11 (m, 

1H), 6.78 – 6.69 (m, 2H), 6.60 – 6.49 (m, 2H), 6.30 (ddd, J = 3.3, 2.3, 1.0 Hz, 1H), 4.81 – 4.70 

(m, 1H), 3.68 (d, J = 0.7 Hz, 3H), 3.50 (s, 1H), 2.63 – 2.51 (m, 1H), 2.42 (ddt, J = 17.5, 9.1, 3.0 

Hz, 1H), 2.25 (ddt, J = 13.1, 9.0, 7.1 Hz, 1H), 2.02 – 1.88 (m, 1H); 
13

C NMR (101 MHz, CDCl3) 

δ 151.89, 142.97, 142.00, 134.74, 129.87, 128.56, 127.33, 126.22, 115.02, 114.27, 59.94, 55.89, 

31.60, 31.01; HRMS (ESI) m/z [M+H]
+
, calc’d for C18H19NO 266.1532; found 266.1500. 

4-(tert-butyldimethylsilyloxy)-N-(2-phenylcyclopent-2-enyl)aniline (3e).  Following GP2 

with 4-tert-butyldimethylsilyl ether-N-cyclopropylaniline 1e (52.7 

mg, 0.2 mmol) and phenylacetylene 2a (116 µL, 1.0 mmol), 

product was isolated after column chromatography on silica gel 

(10:1 hexane/EtOAc) as a reddish-brown oil, (48.1 mg, 66%).  IR υmax (cm
-1

) 3400, 2929, 2856, 

1508, 1250, 922, 839, 779, 756, 693; 
1
H NMR (400 MHz, Chloroform-d) δ 7.50 – 7.40 (m, 2H), 

7.29 – 7.19 (m, 2H), 7.20 – 7.11 (m, 1H), 6.68 – 6.60 (m, 2H), 6.51 – 6.41 (m, 2H), 6.30 (td, J = 

2.7, 1.0 Hz, 1H), 4.72 (dt, J = 7.1, 2.6 Hz, 1H), 3.41 (s, 1H), 2.66 – 2.49 (m, 1H), 2.47 – 2.35 (m, 

1H), 2.24 (ddt, J = 13.2, 9.0, 7.1 Hz, 1H), 2.00 – 1.89 (m, 1H), 0.91 (s, 9H), 0.10 (s, 6H); 
13

C 
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NMR (101 MHz, CDCl3) δ 147.82, 143.69, 142.89, 135.40, 130.46, 129.17, 127.93, 126.86, 

121.28, 114.83, 60.60, 32.23, 31.61, 26.44, 18.84, -3.78; HRMS (ESI) m/z [M+H]
+
, calc’d for 

C23H31NOSi 366.2247; found 366.2208. 

N-(2-phenylcyclopent-2-enyl)-4-(trifluoromethyl)aniline (3f).  Following GP2 with 4-

trifluoromethyl-N-cyclopropylaniline 1f (40.2 mg, 0.2 mmol) and 

phenylacetylene 2a (116 µL, 1.0 mmol), product was isolated after 

column chromatography on silica gel (20:1 hexane/EtOAc) as a 

yellow solid, m.p. 97-100 °C, (37.8 mg, 59%). IR υmax (cm
-1

) 3403, 3057, 2994, 2851, 1616, 

1530, 1326, 1112, 1064, 824, 755; 
1
H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.33 (m, 4H), 

7.30 – 7.23 (m, 2H), 7.22 – 7.16 (m, 1H), 6.64 – 6.53 (m, 2H), 6.37 (t, J = 2.7 Hz, 1H), 4.85 (d, J 

= 7.2 Hz, 1H), 4.03 (s, 1H), 2.69 – 2.53 (m, 1H), 2.47 (ddt, J = 17.6, 8.8, 3.1 Hz, 1H), 2.33 (ddt, 

J = 12.9, 8.8, 7.1 Hz, 1H), 1.93 (ddt, J = 13.7, 8.2, 2.9 Hz, 1H); 
13

C NMR (75 MHz, CDCl3) δ 

150.26, 142.48, 134.57, 130.93, 128.98, 127.90, 127.0 (q, J = 3.7 Hz), 126.42, 125.16 (q, J = 

270.7 Hz), 118.8 (q, J = 32.4 Hz), 112.41, 59.03, 31.74, 31.34; HRMS (ESI) m/z [M+H]
+
, calc’d 

for C18H16 F3N 304.1299; found 304.1268.  

4-(2-phenylcyclopent-2-enylamino)benzonitrile (3g).  Following GP2 with 4-cyano-N-

cyclopropylaniline 1g (31.6 mg, 0.2 mmol) and phenylacetylene 2a 

(116 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (5:1 hexane/ EtOAc) as a white-yellow 

solid, m.p. 108-109 °C, (25.5 mg, 49%). IR υmax (cm
-1

) 3348, 2983, 2212, 1606, 1519, 1338, 

1172, 824, 769; 
1
H NMR (400 MHz, Chloroform-d) δ 7.35 (dq, J = 8.2, 1.8, 1.1 Hz, 4H), 7.23 

(tt, J = 6.7, 1.3 Hz, 2H), 7.21 – 7.14 (m, 1H), 6.50 (dd, J = 9.2, 2.2 Hz, 2H), 6.42 – 6.31 (m, 1H), 

4.83 (dt, J = 7.3, 2.5 Hz, 1H), 4.20 (s, 1H), 2.67 – 2.52 (m, 1H), 2.46 (ddt, J = 17.7, 8.7, 3.1 Hz, 
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1H), 2.31 (ddt, J = 13.1, 8.7, 7.1 Hz, 1H), 1.89 (ddt, J = 13.7, 8.2, 3.0 Hz, 1H); 
13

C NMR (101 

MHz, CDCl3) δ 150.54, 141.82, 134.02, 133.78, 130.93, 128.70, 127.70, 126.04, 120.49, 112.54, 

98.61, 58.58, 31.37, 31.01; HRMS (ESI) m/z [M+H]
+
, calc’d for C18H16 N2 261.1383; found 

261.1347. 

methyl 5-(biphenyl-2-ylamino)cyclopent-1-enecarboxylate (3h).  Following GP2 with N-

cyclopropyl-2-biphenylamine 1a (41.8 mg, 0.2 mmol) and methyl 

propiolate (95 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (10:1 hexane/EtOAc) as a yellow oil, (42.1 

mg, 68%). IR υmax (cm
-1

) 3418, 2949, 1718, 1507, 1456, 1289, 1097, 748, 

703; 
1
H NMR (400 MHz, Chloroform-d) δ 7.39 – 7.30 (m, 4H), 7.24 (dddd, J = 10.0, 5.0, 2.4, 

1.2 Hz, 1H), 7.21 – 7.14 (m, 1H), 7.08 – 6.98 (m, 1H), 6.87 (td, J = 2.6, 1.2 Hz, 1H), 6.77 – 6.66 

(m, 2H), 4.61 (d, J = 7.5 Hz, 1H), 4.09 (s, 1H), 3.69 – 3.57 (m, 3H), 2.58 – 2.42 (m, 1H), 2.42 – 

2.21 (m, 2H), 1.89 (dddd, J = 13.3, 6.9, 3.0, 1.7 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 164.83, 

148.12, 144.65, 139.56, 136.59, 130.38, 129.33, 128.81, 128.59, 128.17, 127.12, 117.15, 111.52, 

58.77, 51.50, 32.07, 31.21; HRMS (ESI) m/z [M+H]
+
, calc’d for C19H19O2  294.1499; found 

294.1449. 

methyl 5-(2-isopropylphenylamino)cyclopent-1-enecarboxylate (3i).  Following GP2 with 2-

isopropyl-N-cyclopropylaniline 1c (35 mg, 0.2 mmol) and methyl 

propiolate (95 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (10:1 hexane/EtOAc) as an orange-brown 

oil, (33.6 mg, 65%).  IR υmax (cm
-1

) 3142, 2961, 1717, 1602, 1504, 1448, 

1361, 1291, 1100, 744; 
1
H NMR (400 MHz, Chloroform-d) δ 7.23 – 7.14 (m, 2H), 7.14 – 7.08 

(m, 1H), 6.86 – 6.70 (m, 2H), 4.78 – 4.66 (m, 1H), 4.15 (s, 1H), 3.77 (s, 3H), 2.87 (hept, J = 6.8 
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Hz, 1H), 2.76 – 2.62 (m, 1H), 2.62 – 2.47 (m, 1H), 2.41 (dddd, J = 13.4, 9.1, 7.4, 6.5 Hz, 1H), 

2.11 – 1.98 (m, 1H), 1.26 (t, J = 6.7 Hz, 6H); 
13

C NMR (101 MHz, CDCl3) δ 165.19, 148.32, 

144.53, 136.61, 133.12, 126.57, 124.97, 117.66, 111.63, 58.76, 51.62, 32.04, 31.36, 27.12, 22.52, 

22.16; HRMS (ESI) m/z [M+H]
+
, calc’d for C16H21O2  260.1643; found 260.1606. 

methyl 5-(4-cyanophenylamino)cyclopent-1-enecarboxylate (3j).  Following GP2 with 4-

cyano-N-cyclopropylaniline 1g (31.6 mg, 0.2 mmol) and methyl 

propiolate (95 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (2:1 hexane/EtOAc) as a white-yellow 

solid, m.p. 80-83 °C, (34.9 mg, 72%).  IR υmax (cm
-1

) 3356, 2949, 2211, 1714, 1606, 1523, 1296, 

1173, 1098, 825; 
1
H NMR (400 MHz, Chloroform-d) δ 7.49 – 7.38 (m, 2H), 7.06 (td, J = 2.6, 1.0 

Hz, 1H), 6.69 – 6.60 (m, 2H), 4.93 (s, 1H), 4.74 (dtd, J = 7.6, 2.6, 1.3 Hz, 1H), 3.73 (d, J = 0.7 

Hz, 3H), 2.77 – 2.63 (m, 1H), 2.61 – 2.48 (m, 1H), 2.38 (dddd, J = 13.6, 9.1, 7.6, 6.5 Hz, 1H), 

2.02 – 1.90 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 164.61, 150.60, 148.49, 135.86, 133.63, 

120.44, 112.94, 98.97, 57.80, 51.76, 31.59, 31.23; HRMS (ESI) m/z [M+H]
+
, calc’d for C14H14 

N2O2 243.1117; found 243.1089. 

methyl 5-(4-(trifluoromethyl)phenylamino)cyclopent-1-enecarboxylate (3k).  Following GP2 

with 4-trifluoromethyl-N-cyclopropylaniline 1f (40.2 mg, 0.2 

mmol) and methyl propiolate (95 µL, 1.0 mmol), product was 

isolated after column chromatography on silica gel (10:1 

hexane/EtOAc) as a pale-yellow solid, m.p. 103-105 °C, (41.8 mg, 70%).  IR υmax (cm
-1

) 3386, 

2954, 1710, 1616, 1533, 1328, 1298, 1105, 1063, 826; 
1
H NMR (400 MHz, Chloroform-d) δ 

7.45 – 7.36 (m, 2H), 7.05 (td, J = 2.4, 1.1 Hz, 1H), 6.69 – 6.60 (m, 2H), 4.77 – 4.70 (m, 1H), 

4.26 (s, 1H), 3.74 (d, J = 0.8 Hz, 3H), 2.75 – 2.60 (m, 1H), 2.59 – 2.45 (m, 1H), 2.45 – 2.31 (m, 



77 
 

1H), 2.02 – 1.90 (m, 1H); 
13

C NMR (75 MHz, CDCl3) δ 165.12, 150.33, 148.63, 136.51, 126.85 

(q, J = 3.9 Hz), 125.31 (q, J = 269.4 Hz), 119.28 (q, J = 32.5 Hz), 112.96, 58.40, 52.04, 31.93, 

31.57; HRMS (ESI) m/z [M+H]
+
, calc’d for C14H14F3NO2 286.1044; found 286.1010. 

N-(2-(thiophen-2-yl)cyclopent-2-enyl)biphenyl-2-amine (3l).  Following GP2 with N-

cyclopropyl-2-biphenylamine 1a (41.8 mg, 0.2 mmol) and 2-

ethynylthiophene (95 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (100:1 hexane/EtOAc) as a yellow solid, 

m.p. 104-106 °C, (30 mg, 45%).  IR υmax (cm
-1

) 3418, 3055, 2926, 1506, 

1488, 1436, 1310, 771, 747, 703; 
1
H NMR (300 MHz, Chloroform-d) δ 7.36 – 7.27 (m, 6H), 

7.19 (dd, J = 5.1, 1.3 Hz, 1H), 7.13 (dt, J = 7.5, 1.7 Hz, 1H), 7.06 (dd, J = 3.8, 1.4 Hz, 1H), 6.97 

(ddd, J = 5.1, 3.5, 1.4 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 6.82 (tt, J = 7.4, 1.4 Hz, 1H), 6.15 (hept, 

J = 1.2 Hz, 1H), 4.94 – 4.82 (m, 1H), 4.16 (s, 1H), 2.66 – 2.32 (m, 3H), 2.04 – 1.88 (m, 1H); 
13

C 

NMR (75 MHz, CDCl3) δ 144.66, 139.61, 139.14, 137.51, 130.85, 129.64, 129.56, 129.10, 

129.00, 128.25, 127.55, 127.37, 124.64 (two carbons overlap, see HMQC), 117.21, 111.40, 

61.22, 32.19, 31.27; HRMS (ESI) m/z [M+H]
+
, calc’d for C21H19NS 318.1313; found 318.1272. 

N-(2-(thiophen-3-yl)cyclopent-2-enyl)biphenyl-2-amine (3m).  Following GP2 with N-

cyclopropyl-2-biphenylamine 1a (41.8 mg, 0.2 mmol) and 3-

ethynylthiophene (98 µL, 1.0 mmol), product was isolated after column 

chromatography on silica gel (100:1 hexane/EtOAc) as a white-yellow 

solid, m.p. 104-106 °C, (27.2 mg, 41%).  IR υmax (cm
-1

) 3418, 3055, 2926, 

1506, 1488, 1436, 1310, 771, 747, 703; 
1
H NMR (400 MHz, Chloroform-d) δ 7.32 – 7.08 (m, 

9H), 7.03 (dq, J = 7.3, 1.9 Hz, 1H), 6.84 – 6.65 (m, 2H), 6.04 (tt, J = 2.5, 1.1 Hz, 1H), 4.80 – 

4.73 (m, 1H), 3.99 (s, 1H), 2.53 – 2.19 (m, 3H), 1.93 – 1.76 (m, 1H); 
13

C NMR (101 MHz, 
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CDCl3) δ 144.52, 139.33, 138.37, 136.60, 130.54, 129.21, 129.14, 128.77, 128.72, 127.82, 

127.02, 126.24, 125.48, 121.12, 116.76, 110.95, 60.49, 31.84, 30.84; HRMS (ESI) m/z [M+H]
+
, 

calc’d for C21H19NS 318.1305; found 318.1272. 

N-(2-(pyridin-3-yl)cyclopent-2-enyl)biphenyl-2-amine (3n).  Following GP2 with N-

cyclopropyl-2-biphenylamine 1a (41.8 mg, 0.2 mmol) and 3-

ethynylpyridine (103 mg, 1.0 mmol), product was isolated after column 

chromatography on silica gel (25:1 hexane/EtOAc) as a yellow-brown 

solid, m.p. 113-117 °C, (41.7 mg, 64%).  IR υmax (cm
-1

) 3416, 3030, 2928, 

2848, 1580, 1507, 1436, 1309, 748, 704; 
1
H NMR (300 MHz, Chloroform-d) δ 8.74 (s, 1H), 8.50 

(d, J = 4.8 Hz, 1H), 7.71 (dt, J = 7.8, 1.9 Hz, 1H), 7.35 – 7.21 (m, 7H), 7.11 (dd, J = 7.4, 1.7 Hz, 

1H), 6.95 – 6.76 (m, 2H), 6.39 (dt, J = 2.6, 1.5 Hz, 1H), 4.98 (d, J = 6.2 Hz, 1H), 3.94 (s, 1H), 

2.72 – 2.38 (m, 3H), 2.10 – 1.91 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 148.23, 147.83, 

144.09, 140.05, 139.16, 133.39, 131.77, 130.54, 130.52, 129.14, 128.73, 127.99, 127.08, 123.21, 

117.10, 111.03, 59.33, 31.61, 31.20, 31.13; HRMS (ESI) m/z [M+H]
+
, calc’d for C22H20N2 

313.1705; found 313.1660. 

N-(2-(pyridin-2-yl)cyclopent-2-enyl)-4-(trifluoromethyl)aniline (3o).  Following GP2 with 4-

trifluoromethyl-N-cyclopropylaniline 1f (40.2 mg, 0.2 mmol) and 2-

ethynylpyridine (101 µL, 1.0 mmol), product was isolated after 

column chromatography on silica gel (5:1 hexane/EtOAc) as a 

yellow-brown solid, m.p. 115-118 °C, (25.9 mg, 42%). IR υmax (cm
-1

) 3279, 2934, 1614, 1534, 

1326, 1112, 1063, 822, 775; 
1
H NMR (400 MHz, Chloroform-d) δ 8.47 (ddd, J = 4.8, 1.8, 0.9 

Hz, 1H), 7.52 (td, J = 7.7, 1.9 Hz, 1H), 7.39 – 7.28 (m, 2H), 7.28 – 7.22 (m, 1H), 7.05 (ddd, J = 

7.6, 4.8, 1.2 Hz, 1H), 6.84 – 6.74 (m, 1H), 6.65 – 6.53 (m, 2H), 4.88 (d, J = 7.2 Hz, 1H), 4.38 (s, 
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1H), 2.72 – 2.55 (m, 1H), 2.55 – 2.44 (m, 1H), 2.35 (ddt, J = 13.2, 9.0, 7.1 Hz, 1H), 2.02 – 1.92 

(m, 1H); 
13

C NMR (75 MHz, CDCl3) δ 153.62, 150.51, 149.83, 142.96, 136.93, 136.07, 126.9 (q, 

J = 3.8 Hz), 125.3 (q, J = 270.5 Hz), 122.50, 121.27, 118.9 (q, J = 32.5 Hz), 112.77, 58.98, 

31.90, 31.46; HRMS (ESI) m/z [M+H]
+
, calc’d for C17H15F3N2 305.1253; found 305.1221. 

2-bromo-N-(2-phenylcyclopent-2-enyl)aniline (1.7).  Following GP2 with 2-Bromo-N-

cyclopropylaniline 1h (42.4 mg, 0.2 mmol) and phenylacetylene 2a (116 µL, 

1.0 mmol), product was isolated after column chromatography on silica gel 

(100:1 hexane/EtOAc) as a white/pale yellow solid, m.p. 78-80 °C, (32.7 

mg, 52%).  IR υmax (cm
-1

) 3402, 3059, 2929, 2846, 1592, 1495, 1317, 1019, 

741, 691; 
1
H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.38 (m, 2H), 7.33 (dd, J = 7.9, 1.5 Hz, 

1H), 7.22 (tt, J = 6.8, 0.9 Hz, 2H), 7.19 – 7.11 (m, 2H), 6.73 (ddd, J = 8.1, 1.5, 0.6 Hz, 1H), 6.50 

(ddd, J = 7.8, 7.3, 1.5 Hz, 1H), 6.36 (ddd, J = 3.2, 2.4, 1.0 Hz, 1H), 4.80 (d, J = 7.0 Hz, 1H), 4.36 

(s, 1H), 2.70 – 2.54 (m, 1H), 2.50 – 2.38 (m, 1H), 2.28 (ddt, J = 13.1, 8.9, 7.1 Hz, 1H), 1.92 (tdd, 

J = 10.7, 5.4, 2.8 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 144.48, 142.36, 134.48, 132.60, 

130.57, 128.57, 128.49, 127.47, 126.13, 117.54, 111.88, 110.03, 59.45, 31.74, 31.02; HRMS 

(ESI) m/z [M+H]
+
, calc’d for C17H16BrN 314.0539, 316.0520; found 314.0500, 316.0479. 

Procedure for synthesis of fused indoline 1.9 (Scheme 2.5) 

To an oven-dried test tube equipped with a stir were added 1.7 (0.2 mmol) and Pd2(dba)3 (1.5 

mol%).  Inside the glovebox were then added Cy2NMe (1.1 eq), P(t-Bu)3 (3.0 mol%), and 

dioxane.  The reaction was sealed and removed from the glovebox.  The reaction vessel was 

heated at 110 °C for 16.5 h.  After completion, the reaction was quenched with diethyl ether and 

filtered through a short pad of silica gel.  The solution was concentrated in vacuum and purified 

by silica gel flash chromatography (10:1 Hexane/EtOAc) to afford mixture of two olefinic 
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products 1.8 (33 mg, 71% yield). Note: Cy2NMe and dioxane were degassed by Freeze-Pump-

Thaw cycles before taken into glovebox.   

For the catalytic hydrogenation: To a clean dried 3-neck round bottom flask equipped with a stir 

bar was added 1.8 (0.1 mmol).  After stirring in anhydrous MeOH (0.4 mL) for 5 min. Pd(C) (10 

mol%) was added carefully under N2 atmosphere.  A balloon filled with H2 was equipped to the 

flask and stirred for 22 h at room temperature.  After completion, celite was added to the reaction 

and stirred for additional 5 min. prior to filtering through a pad of celite and washing with 

MeOH.  The solution was concentrated in vacuum and purified by silica gel flash 

chromatography (10:1 Hexane EtOAc) to afford fused indoline 1.9. 

(3aS,8bR)-8b-phenyl-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole (1.9): red-brown  solid, 

m.p. 61-64 °C, (13.1 mg, 56%). Silica gel column chromatography (10:1 

hexane/EtOAc). IR υmax (cm
-1

) 3392, 3050, 2949, 16030, 1483, 740, 699, 432; 

1
H NMR (300 MHz, Chloroform-d) δ 7.42 – 7.28 (m, 4H), 7.26 – 7.15 (m, 1H), 

7.04 (td, J = 7.6, 1.3 Hz, 1H), 6.92 (ddd, J = 7.4, 1.3, 0.6 Hz, 1H), 6.77 – 6.60 

(m, 2H), 4.38 – 4.28 (m, 1H), 2.49 – 2.30 (m, 2H), 2.03 (ddt, J = 13.0, 11.8, 6.4 Hz, 1H), 1.94 – 

1.74 (m, 2H), 1.74 – 1.57 (m, 1H); 
13

C NMR (75 MHz, CDCl3) δ 150.83, 148.36, 135.95, 

128.32, 127.61, 126.31, 125.94, 124.60, 118.64, 108.79, 71.95, 62.49, 40.77, 38.09, 25.45; 

HRMS (ESI) m/z [M+H]
+
, calc’d for C17H17N 314.0539, 236.1426; found 236.1395. 
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2.3. Intermolecular [3+2] Annulation of Cyclopropylanilines with Alkynes, Enynes, and 

Diynes* 

*Portion of this chapter has been published in Nguyen, T. H.; Morris, S. A.; Zheng, N. Adv. 

Synth. Catal. 2014, 356 (13), 2831-2837. 

Photocatalyzed cycloaddition or annulation reactions are ideal reactions for constructing 

small molecule libraries due to the specific interaction of photoexcited catalysts and small 

molecules,
8, 10

 which facilitates high chemoselectivity for the photochemical transformations and 

exhibits tolerance for various functional groups.  The application of visible light photocatalysis 

in cycloaddition or annulation reactions has demonstrated great potential in DOS, as the success 

of a library of small molecules was developed in the [3+2] annulations of cyclopropylanilines 

with alkynes.
116

    However, the preliminary results displayed constraints with respect to both 

reacting partners, cyclopropylanilines and alkynes.  An aryl group on the cycloropylamine 

moiety was required, while only terminal alkynes were reactive.  In order to address both 

limitations, a full-scale study of the [3+2] annulation was thoroughly investigated.   

2.3.1. Reaction Optimization 

 Previous findings of the optimized conditions for the [3+2] annulation of 

cyclopropylanilines with alkynes using ruthenium polypyridyl complexes only provided the 

desired annulation products in modest yields.  Determined to improve the yields, more 

conditions were examined, as shown in Table 6.  Using cyclopropylaniline 1i and 

phenylacetylene 2a as the chosen standard substrates, the annulation was investigated in a 

continuous flow format (Table 6, entry 2).  Notably in comparison to the batch format (Table 6, 

entry 1), the reaction time was shortened from 8 h to 3 h as expected, though the yield did not 

improve.  The use of cyclometalated iridium complexes was also examined to catalyze the  
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annulation.  These complexes are another important class of photocatalysts that have been used 

in a number of synthetic applications in photochemistry.
9
  Two iridium complexes were 

explored, though neither furnished a better yield than Ru(bpz)3(PF6)2 (Table 6, entries 3 & 4).  

Lastly, the reaction was conducted in the presence of TEMPO (Table 6, entry 5).  It was 

previously proposed that the distonic radical cation 1.3 in Scheme 2.2 was one of the key 

intermediates in the [3+2] annulation of cyclopropylanilines with alkenes and alkynes.  The 

distonic radical cation is formed presumably from the ring opening of cyclopropylaniline that is 

induced by one-electron photooxidation of the parent amine to the amine radical cation via the 

excited state of Ru(bpz)3(PF6)2.  In principle, the use of TEMPO was designed to intercept the 

radical moiety of the distonic radical cation and quench the annulation.  Indeed, the annulation 

product was isolated in a negligible yield, thus supporting the involvement of distonic ion 1.3.  

Since no improvement in the yield was achieved using the flow or the Ir catalyst, the previous 

optimized conditions (Table 6, entry 1) were set as the standard conditions for the scope studies.  

Entry
a 

Catalyst Solvent Light GC Yield
 
(%)

b 

1 Ru(bpz)3(PF6)2 CH3NO2 18 W LED 69 (68)
c
 

2 Ru(bpz)3(PF6)2 CH3NO2 flow
d 

60
 

3 Ir(ppy)2(dtb-bpy)(PF6) CF3CH2OH 18 W LED 60
 

4 Ir[dF(CF3)ppy]2(dtb-bpy)(PF6) CF3CH2OH 18 W LED 36 

5
e,f

 Ru(bpz)3(PF6)2 CH3NO2 18 W LED 7 

a
Conditions: 1i (0.2 mmol), 2a (5 equiv.), catalyst (2 mol%), solvent (2 mL), degassed, and 

irradiated at rt for 8 h. 
b
Using dodecane as an internal standard. 

c
Isolated yield. 

d
Reaction 

time of 3 h. 
e
19 h reaction. 

f
Using 1 equiv. of TEMPO. 

Table 6. Additional reaction optimization of 3p. 
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2.3.2. [3+2] Annulation with Diynes and Enynes 

The use of 1,3-conjugated diynes and enynes in the [3+2] annulation offers great 

potential to further enhance the value of the annulation in diversity-oriented synthesis (DOS).  

The expected annulation products would possess a 1,3-conjugated enyne moiety from 1,3-

conjugated diynes or a 1,3-conjugated diene moiety from 1,3-conjugated enynes.  The 

conjugated adducts can further participate in cycloaddition reactions such as the Diels-Alder 

reaction to construct complex fused carbocycles or heterocycles, and thus enable cycloaddition 

cascades to access these complex structures, rapidly.  However, [3+2] annulation with 1,3-

conjugated diynes and enynes presented more challenges than with simple alkynes.  Preliminary 

results showcased that the annulation was sensitive to substitution on alkynes, including their 

electronic characters.  For instance, n-hexyne and diphenyl acetylene were unreactive.  Initially, 

it was uncertain whether addition of one more π bond would enhance the original π bond’s 

reactivity enough to take part in the annulation.  Moreover, addressing the predicted 

regiochemistry in 1,3-conjugated diynes and enynes could be challenging.  Lastly, the issue of 

chemoselectivity for unsymmetrical diynes and enynes, since two different π bonds are present, 

may arise as addition can occur to either or both π bonds. 

2.3.2.1. Scope Studies with Symmetrical and Asymmetrical Diynes 

To our surprise, under the optimized conditions, symmetrical and asymmetrical 1,3-

conjugated diynes successfully underwent the intermolecular [3+2] annulation with monocyclic 

cylopropylaniline 1b to afford the conjugated cyclopentene adducts 4b-h (Table 7).  

Symmetrical diynes bearing phenyl 2b, methyl 2c, and hydroxymethyl 2d groups proceeded in 

fair yields (20-45%).  Asymmetrical diynes also produced the annulation products in similar  

 



84 
 

 

Conditions: a solution of 1b (0.2 mmol), Ru(bpz)3(PF6)2 (2 mol%), and 2b-h (5 equiv.) in 2 

mL of CH3NO2 was degassed via freeze-pump-thaw cycles and irradiated using an 18 W 

white LED. 
a
Ratio >20:1, determined using GC. 

b
Isolated yields. 

c
Ratio 12:1, determined 

using GC. 
d
Unidentified minor isomer. 

Table 7. Scope studies with symmetrical and asymmetrical diynes. 
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yields (20-54%).  These diynes 2e–h all bore a phenyl group on one end, while a variety of 

moieties, such as n-Bu, hydroxymethyl, and acetoxymethyl groups, were tolerated on the other  

end.  It is worth noting that a quaternary center adjacent to the reactive carbon center of diyne 2e 

was well tolerated.  Although the annulation products were reported in modest yields, complete 

regiocontrol was observed universally in all but one example (Table 7, entry 7, 4h), where 12:1 

regioselectivity was observed. 

 In regards to the preparation of the diynes, symmetric diynes 2b-2d were commercially 

available, while asymmetric diynes 2e-2h were prepared according to literature procedures in 

two short steps.  Upon bromination of the commercially available terminal alkynes, subsequent 

Cadiot-Chodkiewicz cross coupling with phenylacetylene afforded diynes 2e, 2f, and 2h in high 

yields (Scheme 2.6).  Hydroxymethyl diyne 2f was subjected to acetic annhydride to furnish 

acetoxymethyl diyne 2g.  The initial approach was to synthesize 1-phenyl-1,3-butadiyne 2i for 

subjection to annulation, anticipating addition to occur at the terminal alkyne.  However, 

instability of diyne 2i due to polymerization led to the selection of its precursor, diyne 2e.   

2.3.2.2. Determining Regioselectivity and Rationale  

The complete regiocontrol observed in the [3+2] annulation with symmetric and 

Scheme 2.6. Preparation of asymmetrical diynes. 
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asymmetric diynes 

demonstrates great potential 

in diversity-oriented 

synthesis (DOS); however, 

addressing the issue of 

chemoselectivity in regards 

to which π bond underwent the annulation is more challenging (Figure 2.1).  Unfortunately, the 

routinely use of 1D NMR analysis was not sufficient to confidently assign the annulation 

product.  Several approaches to determine the regiochemistry included: 1) growing crystals of 

the annulation product and perform X-ray crystallography; 2) conducting 2D NMR experiments 

such as HMBC and NOESY; and 3) fragmentation reaction of the tertiary alcohol in adduct 4e-1 

using Carreira’s method
132

 to provide a terminal alkyne moiety which can be analyzed via 1D 

NMR.   Initial efforts of employing the last approach entailed the use of 4e-1 in the presence of 

18-crown-6 and K2CO3 in refluxing toluene, though no fragmentation of the tertiary alcohol was 

observed.  Carrerira reported the fragmentation of functionalized alkynes such as 2-methyl-3-

butyn-2-ol, an identical moiety depicted in the regioisomer 4e-1.  If the fragmentation was to 

occur, it can be supported that 4e-1 could be a possible regioisomer as it employs the same 

functionalized alkyne moiety.  Although the fragmentation was unsuccessful, the result was 

inconclusive to completely omitt 4e-1 as a possible regioismer.  The attention was then shifted 

towards confirming the assigned structure via X-ray crystallography.  Multiple attempts of 

growing crystals of adduct 4e, unfortunately, resulted in poor quality crystals.  Despite the poor 

sample quality with a high R-factor value of 17% (a non-ideal refinement), the predicted 

structure was resolved as shown in Figure 2.2 with the assistance of Prof. Wu at UCSB.  

Figure 2.1. Possible regioisomers of 4e. 
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Therefore, it can be concluded 

that the annulation occurred 

at alkyne C3-C4 rather than 

alkyne C1-C2.  Additional 

2D NMR analysis was 

collected for adduct 4f to 

support the assignment of 

the annulation product (See 

Experimental Section 

2.3.5.).   

With the structure 

assignment completed, the 

rationalization of the 

observed excellent regioselectivity was to be discussed.  The suggested rationale was based on 

the stability of radicals generated after the first C-C bond formation, shown in Figure 2.3.  To 

support this argument, DFT calculations on two regioisomeric radicals (2c-γ and 2c-δ) that 

model the proposed regioisomeric radicals (2c-αand 2c-β) were performed.  At the B3LYP/6-

31++g-dp level, enyne 2c-γ (5-methylhepta-2-yne-4-ene) with the radical at the C-4 position was 

found to be more stable than enyne 2c-δ (4-ethylhexa-2-yne-4-ene) with radical at C-5 by 44 

kJ/mol.  Images of the optimized lowest energy isomers of each radical structure are illustrated in 

Figure 2.3.  In radical structure 2c-γ, the double bond and triple bond are aligned with one 

another, presumably to enable a conjugating effect among the pi bonds.  In radical structure 2c-δ, 

with two isomers nearly isoenergetic at the calculated level, this feature is absent.  A similar 

Figure 2.2. X-ray crystallography of adduct 4e. 
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Figure 2.3. DFT calculations for the observed selectivity of diyne 2c. 
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stability trend of the two regioisomeric radicals was also observed in diyne 2b (Figure 2.4).  

Diyne 2b-γ (hex-3-en-1-yne-1,4-diyldibenzene) with the radical at the C-3 position was 

calculated to be more stable than 2b-δ at the B3LYP/6-31g* level by 41.92 kJ/mol.  While the 

radical seems to delocalize over the pi systems in both isomers and both seem to have some 

allene character, the more stable of the two has a greater degree of linearity due to the position of 

the ethyl group.  Upon formation of the initial C-C bond, the ethyl group forces the affected 

carbon into the traditional trigonal planar geometry. 

 2.3.2.3. Scope Studies with Enynes 

As anticipated, annulation reactions with enynes were more complicated than with diynes 

due to the issue of chemoselectivity, in addition to regioselectivity.  In the presence of both an 

Figure 2.4. DFT calculations for the observed selectivity of diyne 2b. 
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active alkyne and alkene moiety, a competition in the annulation proposes a problem.  Generally, 

alkenes are more reactive than alkynes, as observed in an earlier report of annulation with 

alkynes.
116

  However, because of steric effects, this reactivity trend can be reversed if the alkene 

is more substituted than the alkyne.  Moreover, if the alkene moiety is more reactive than the 

alkyne moiety, the issue of diastereoselectivity also needs to be addressed.  Indeed, 1,3-

conjugated enynes 2j-2m participated in the annulation to produce a mixture of isomeric 

products (Table 8).  Commercially available enyne, 2-methyl-1-buten-3-yne (2j), possessing 

both a terminal alkyne and a terminal alkene, successfully underwent the [3+2] annulation 

predominately with the alkene moiety to provide the annulation products in 50% combined 

yields, with the minor isomer being identified as the annulation with the alkyne.  The 

chemoselectivity, favoring the alkene moiety, was 10 to 1.  Commercially available enyne, 1-

ethynylcyclohexene (2k), bearing a terminal alkyne and a trisubstituted alkene, was subjected to 

the annulation with cyclopropylaniline 1b and 1a, respectively, to afford the corresponding 

conjugated 1,3-dienes 5b and 5c in moderate yields, 43-53%, (Table 8, entries 2 & 3).  In both 

cases, the annulation favored the terminal alkyne of enyne 2k.  It is worth noting that for these 

two enynes (2j and 2k), the catalyst system composed of Ir(ppy)2(dtb-bpy)(PF6) in a 1:1 mixture 

of CH3NO2 and CF3CH2OH proved to be more effective than the standard catalyst system of 

Ru(bpz)3(PF6)2 in CH3NO2.  Synthetically prepared enyne 2l, bearing a terminal alkyne and a 

1,2-disubstituted alkene, underwent the annulation to furnish annulated adduct 5d in 59% 

combined yields, with the 1,3-diene as the major isomer (Table 8, entry 4).  Lastly, enyne 2m 

was prepared and treated with cyclopropylaniline 1b under the standard conditions.  Possessing 

both an internal alkyne and a 1,2-disubstituted alkene, it was anticipated that the annulation 

would occur with the olefin due to its greater reactivity than alkynes.  The major products 5e, 
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Table 8. Scope studies with enynes. 
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composed of four diastereomers, were obtained in 66% combined yields with poor 

diastereoselectivity as expected.  The synthetic preparation of enynes 2l and 2m are described in 

Scheme 2.7.  Enyne 2l was prepared in two short steps involving a Sonogashira Cross-Coupling 

of β-bromostyrene and trimethylsilylacetylene, followed by deprotection of the trimethylsilyl 

(TMS) group with K2CO3 in methanol.  Likewise, enyne 2m was prepared in a similar fashion, 

excluding the deprotection step, using phenylacetylene and cis-1-bromo-1-propene. 

 

2.3.3. [3+2] Annulation of Substituted Cyclopropylanilines 

Since expanding the [3+2] annulation scope to include various types of π-bonds as 

annulation partners was successfully investigated, the next focus was to continue the expansion 

by studying the scope of cyclopropylanilines.  To maximize the potential of the [3+2] annulation, 

it was imperative to examine substituents on the nitrogen atom and the cyclopropyl ring.  

Particularly for the latter, if succeeded, it would allow decoration on the cyclopentene ring of the 

annulation products. 

2.3.3.1 Preparation of Substituted Cyclopropylanilines 

Limited use of cyclopropylanilines has been seen in organic synthesis.  This is due to the 

minimal access of making many structurally diverse cyclopropylanilines.  Our group has relied 

on two known methods for constructing N-arylcyclopropylamines: 1) Buchwald-Hartwig cross 

coupling reaction of aryl bromides and cyclopropylamines or Cu-catalyzed amination
133

 to 

Scheme 2.7. Preparation of enynes 2l and 2m. 
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synthesize 

monocyclic N-

arylcyclopropylam

ines;
121

 2) 

Kulinkovich-de 

Meijere reaction of 

amides to prepare 

bicyclic N-arylcyclopropylamines
134

 (Scheme 2.8).  Both methods, however, experience 

limitations.  For the Buchwald-Hartwig amination reaction, commercially available 

cyclopropylamines are limited, which includes restriction of substituents on the cyclopropyl ring.  

Methods of introducing substituents to the nitrogen atom and cyclopropyl ring of 

cyclopropylamines would be essential to decorate the cyclopentene ring of the annulation 

products.  For the Kulinkovic-de Meijere reaction, the precursor amides are often lengthy to 

synthesize.  Also, both methods lack the ability to achieve enantiomeric pure 

cyclopropylanilines.  Therefore, the synthetic routes to prepare N-(2-methylcyclopropyl)aniline 

1l and N-(trans-2-phenylcyclopropyl)aniline 1m were eagerly pursued.  Cyclopropylaniline 1l 

was simply prepared from a Buchwald-Hartwig amination of bromobenzene and 2-

methylcyclopropylamine, which was commercially available as a 4:1 trans:cis mixture (Scheme 

2.9, eq. 1).  The amination, commonly a high yielding reaction, unfortunately, afforded 1l in a 

moderate yield of 46%.  For the synthetic route to enantiomeric pure cyclopropylaniline 1m, it 

was initially envisioned a Cu-mediated amination of Boc-protected aniline 2.3 with β-

bromostyrene would furnish enamine 2.4 (Scheme 2.9, eq. 2).  Subsequent cyclopropanation of 

the enamine with diethylzinc would afford the carbamate 2.5.  Although the formation of 

Scheme 2.8. Preparation of N-arylcyclopropylamines. Scheme 2.8. Preparation of N-arylcyclopropylamines. 
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enamine 2.4 was high yielding, the cyclopropanation step was unsuccessful.  Discouraged by the 

results, an alternative synthetic route was pursued.  N-(trans-2-phenylcyclopropyl)aniline 1m 

was prepared from commercially available optically active 

  

trans-2-phenyl-1-cyclopropanecarboxylic acid 2.6 (Scheme 2.9, eq. 3).  A Curtius-type 

rearrangement via Shioiri’s method
135

 was then applied using diphenylphosphorylazide, 

triethylamine, and t-butanol to furnish carbamate 2.7.  Cu-mediated amination with iodobenzene 

was conducted to give newly formed carbamate 2.5, which then was subjected to deprotection of 

the Boc group using trifluoroacetic acid in dry dichloromethane to afford the desired enantio-

enriched cyclopropylaniline 1m.      

2.3.3.2 Scope Studies of Substituted Cyclopropylanilines with Phenylacetylene 

Scheme 2.9. Synthetic routes of cyclopropylanilines 1l and 1m. 
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Using phenylacetylene 2a as the model alkyne, the annulation of N-cyclopropyl-N-methylaniline 

1j to form 6a was investigated, but no reaction was observed (Table 9, entry 1).  This is in 

accordance with the result reported by Tanko and coworkers in which the ring opening of the 

a
A solution of 1j-m (0.2 mmol), Ru(bpz)3(PF6)2 (2 mol%), and 2a (5 equiv.) in 2 mL of 

CH3NO2 was degassed via freeze-pump-thaw cycles. The resulting solution was irradiated 

using an 18 W white LED. 
b
Isolated yields. 

c
Determined using GC-MS. 

d
Major isomer 

shown. 
e
Ratio 2:1 cis:trans, determined by GC-MS. 

f
Ratio 4:1 cis:trans, determined by GC-

MS. 

Table 9. Annulation of substituted cyclopropylanilines. 
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amine radical cation derived from 1j was found to be very sluggish.
136

  On the other hand, 

substitution on the cyclopropyl ring was generally tolerated.  N-(1-methylcyclopropyl) aniline 1k 

provided the annulation product 6b bearing a quaternary carbon center in 33% yield when 

subjected to the standard conditions (Table 9, entry 2).  The [3+2] annulation was also effective 

using 2-substituted cyclopropyl rings, as demonstrated with methyl 1l and phenyl 1m 

substituents (Table 9, entries 3 & 4).  In both examples, the ring opening was completely 

regioselective, presumably cleaving the C-C bond between substituent R
1
 and the amino group to 

generate the more substituted stable carbon radical 1.3.  Modest diastereoselectivity of 2:1 

cis:trans was observed in the [3+2] annulation with 2-methyl substituted cyclopropylaniline 1l, 

while a higher diastereoselectivty of 4:1 cis:trans was observed with 2-phenyl substituted 

cyclopropylaniline 1m.  The provided major products, cis isomer, were isolated in fair yields of 

30-40%.   

2.3.4. Cleavage of N-Aryl Group 

The requirement of an aniline moiety has been a limitation to the [3+2] annulation, as it lowers 

the generality of the reaction.  To circumvent this limitation, it was highly desired to install a 

removable aryl or heteroaryl group that was also capable of mediating the annulation.  Some of 

these potential candidates include pyrimidine 1n,
137

 pyridines 1o, lp
138

 and para-methoxyphenyl 

(PMP) 1q
139

 groups.  With this in mind, N-arylcyclopropylamines 1n–q were synthesized 

bearing these groups and subjected to the standard conditions to react with phenylacetylene 2a.  

The results are summarized in Table 10.  No reaction was observed with 2-pyrimidyl-substituted 

cyclopropylamine 1n (Table 10, entry 1).  Surprisingly, 2-pyridyl-substituted cyclopropylamine 

1o afforded the annulation product 7b in a low yield (13%), which was not synthetically useful 

(Table 10, entry 2).  In comparison, a much higher yield of 48% was obtained with 3-pyridyl-
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substituted cyclopropylamine 1p (Table 10, entry 3).  Unfortunately, the 3-pyridyl group was not 

cleavable.  A similar yield (47%) was achieved with PMP-substituted cyclopropylamine 1q   

(entry 4).  In addition to the cleavable aryl groups mentioned above, para-tert-

butyldimethylsilyloxy (OTBS) phenyl can be viewed as a cleavable group as oxidation of 

phenol, upon subsequent deprotection of TBS group, can transpire for cleavage.  Previously 

introduced in Scheme 2.4, para-(OTBS) substituted cyclopropylamine 1e underwent the 

a
A solution of 1d, n-p (0.2 mmol), Ru(bpz)3(PF6)2 (2 mol%), and 2a (5 equiv.) in 2 mL 

CH3NO2 was degassed via freeze-pump-thaw cycles. The resulting solution was irradiated 

using an 18 W white LED. 
b
Isolated yields. 

c
Determined using GC-MS. 

Table 10. Annulation of various anilines. 
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annulation to successfully afford cyclopentene 3e in 66% yield.  Thus, the initial approach for 

cleavage of the aryl group with annulated adduct 3e was investigated.  Efforts of exploring this 

aryl cleavage step are summarized in Table 11.  The first attempt inquired a two step procedure 

of converting the para-OTBS-phenyl moiety of 3e to phenol via cleavage of the silyl group in 

the presence of 

tetrabutylammoniu

m fluoride (TBAF), 

then  

subsequent 

oxidative cleavage 

with a hypervalent 

iodide reagent, 

[bis(trifluroacetoxy)iodo]benzene (Table 11, entry 1).  However, no desired cleavage product 3e-

1 was detected.  A similar observation was made when an alternative oxidant 

CAN/Fe(bpy)3(PF6)2
140

 was explored (Table 11, entry 2).  The concern of isolating the cleaved 

product as a free allylic amine was questioned as its stability was unknown.  Thus, it was 

envisioned for adduct 3e to be treated with a Boc protection step first, followed by oxidative 

cleavage to provide a Boc-protected 3e-1 (Table 11, entry 3).  Unfortunately, Boc-protecting the 

secondary allylic amine was ineffective.  Since the attempts of aryl cleavage with adduct 3e were 

unsuccessful, the attention was shifted towards studying the cleavage of the PMP group using 

1d.   

The PMP group is generally cleaved under oxidative conditions, and a number of 

oxidants are suitable for the cleavage.
139

  Annulated product 3d was subjected to various 

Entry
 

Conditions 

1 1. TBAF, 0 °C, THF;   2.  PhI(OCOCF3)2, CH3CN/H2O 

2 CAN, Fe(bpy)3(PF6)2, CH3CN/H2O 

3 1. NaHMDS, Boc2O, THF;   2.  oxidation 

Table 11. Aryl cleavage conditions for 3e. 
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oxidants, including ceric ammonium nitrate (CAN), periodic acid (H5IO6), trichloroisocyanuric 

acid (TCCA), and CAN/Fe (bpy)3(PF6)2 (Table 12, entries 1-4).  The effort of removing the 

methyl group with EtSNa to then subsequently cleave the para-hydroxy group with a hypervalent  

iodide was introduced (Table 

12, entry 5), though no trace 

of the converted phenol was 

observed.  Condition of 

acylating the adduct 3d, 

followed by CAN oxidation 

was examined, however, 

oxidative cleavage of the 

PMP group from the newly formed carbamate was difficult (Table 12, entry 6).  Thus, among the 

conditions examined, CAN in sulfuric acid provided the most promising results.  Upon 

subjection to the oxidative conditions with CAN, the cleavage product was initially isolated as 

the HCl salt 3d-1 and then immediately acylated in the presence of Et3N and acetyl chloride to 

give the corresponding acetamide 3d-2 in 68% isolated yield over 2 steps (Scheme 2.10).  The 

successful removal of the PMP group circumvents the previous limitation of our chemistry and 

allows for more structural diversification of the [3+2] annulation products. 

 In summary, the significant expansion on studies of the [3+2] annulation of 

cyclopropylanilines with alkynes was thoroughly examined and illustrated.  These studies were 

Entry
 

Conditions 

1 CAN, H2SO4, MeCN/ H2O, 0 °C 

2 H5IO6, 1 M H2SO4, MeCN/ H2O 

3 TCCA, H2SO4, MeCN/ H2O 

4 CAN, Fe(bpy)3(PF6)2, CH3CN/H2O 

5 1. EtSNa, DMF, 100 °C; 2.  PhI(OAc)2 

6 1. n-BuLi/ ClCO2Et; 2.  CAN, MeCN/ H2O 

Table 12.  Cleavage of PMP group under oxidative conditions. 

Scheme 2.10.  Deprotection of para-methoxyphenyl (PMP) group. 
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highlighted on multiple fronts including catalyst optimization, mechanistic studies, expansion of 

the substrate scope for both cycloproylanilines and alkynes, and identification of a removable N-

aryl group for cyclopropylamines.  Using simple building blocks, the [3+2] annulation enables 

rapid assembly of diverse cyclic allylic amine derivatives.  Most of these amines possess 

embedded functional groups that allow for further structural diversification.  Moreover, it can be 

anticipated that this method can find usage particularly in diversity-oriented synthesis (DOS). 

2.3.5. Experimental Section 

General Procedure 1 (GP1): Preparation of N-cyclopropylanilines (See Section 2.2.4.) 

N-Cyclopropylaniline (1i). Following procedure GP1 with bromobenzene (527 μL, 5 mmol, 1 

equiv.) and BrettPhos (80.5 mg, 0.15 mmol, 3 mol%), product was isolated after column 

chromatography on silica gel (3:100 EtOAc/hexane) as a colorless oil (611 mg, 92%). Spectral 

data correspond to those described in the literature.
141  

Preparation and characterization of compounds 3,5-Dimethyl-N-cyclopropylaniline (1b) and N-

Cyclopropyl-2-biphenylamine (1a) correspond to those described in the literature.
116

 (See 

Section 2.2.4.) 

N-cyclopropyl-N-methylaniline (1j). Following a literature procedure,
142

 to a suspension of 

cyclopropyl boronic acid (353 mg, 4.11 mmol, 2 equiv.), N-methylaniline (220 mg, 2.05 mmol, 1 

equiv.), and Na2CO3 (435 mg, 4.11 mmol, 2 equiv.) in dichloroethane was added Cu(OAc)2 (373 

mg, 2.05 mmol, 1 equiv.) and bipyridine (321 mg, 2.05 mmol, 1 equiv.). The mixture was 

warmed to 70 °C and stirred for 4 h. The resulting mixture was cooled to room temperature and a 

25% aqueous NH4OH solution was added. The organic layer was separated and the aqueous 

layer was extracted with CH2Cl2 three times. The combined organic layers were washed with 

brine, dried over Na2SO4, filtered, and concentrated under vacuum. Purification of the residual 
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mass by silica gel column chromatography (1:100 EtOAc/hexane) afforded the product as a 

colorless oil (101 mg, 33%). Spectral data correspond to those described in the literature.
143

 

Preparation and characterization of compound N-(1-methylcyclopropyl)aniline (1k) correspond 

to those described in the literature.
144

 

N-(2-methylcyclopropyl)aniline (1l). Following procedure GP1 with 2-

methylcyclopropylamine (71.1 mg, 1 mmol, 4:1 mixture purchased from Sigma-Aldrich, 1.6 

equiv.), bromobenzene (67 μL, 0.625 mmol, 1 equiv.) and BrettPhos (10.1 mg, 0.0188 mmol, 3 

mol% equiv.), product was isolated after column chromatography on silica gel (3:100 

EtOAc/hexane) as a colorless oil (68 mg, 46%). Spectral data correspond to those described in 

the literature.
144

 

Preparation and characterization of compound N-Cyclopropylpyrimidin-2-amine (1n) 

correspond to those described in the literature.
145

 

N-cyclopropylpyridin-2-amine (1o).  Following procedure GP1 with 2-bromopyridine (0.2 mL, 

2 mmol, 1 equiv.) and BrettPhos (32 mg, 0.06 mmol, 3 mol%), product was isolated after column 

chromatography on silica gel (1:1 EtOAc/hexane) as a yellow solid, m.p. 68-70 °C, (165 mg, 

61%).  IR υmax (cm
-1

) 3425, 3242, 1646, 1615, 1581, 1446, 1290, 1152, 776; 
1
H NMR (400 

MHz, Chloroform-d) δ 8.07 (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 7.48 (ddd, J = 8.7, 7.2, 1.9 Hz, 1H), 

6.73 (dt, J = 8.4, 1.0 Hz, 1H), 6.61 (ddt, J = 7.2, 5.0, 1.1 Hz, 1H), 5.23 (s, 1H), 2.49 (ttd, J = 6.7, 

3.6, 1.4 Hz, 1H), 0.82 – 0.69 (m, 2H), 0.58 – 0.47 (m, 2H); 
13

C NMR (101 MHz, CDCl3) δ 

160.03, 148.42, 137.78, 113.61, 106.31, 24.19, 7.78; HRMS (ESI) m/z [M+H]
+
, calc’d for 

C8H10N2  135.0917; found 135.0912.  
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N-cyclopropylpyridin-3-amine (1p).
76

  Following procedure GP1 with 3-bromopyridine (0.2 

mL, 2 mmol, 1 equiv.) and BrettPhos (32 mg, 0.06 mmol, 3 mol%), product was isolated after 

column chromatography on silica gel (1:1 EtOAc/hexane) as a yellow oil (228 mg, 85%). 

Preparation and characterization of compound 4-Methoxy-N-cyclopropylaniline (1d) 

correspond to those described in the literature.
116

 (See Section 2.2.4.) 

 N-((1R,2S)-2-phenylcyclopropyl)aniline (1m) (Scheme 2.9).  trans-2-Phenyl-1-

cyclopropanecarboxylic acid 2.6 (250 mg, 1.54 mmol, 1 equiv.), diphenylphosphoryl azide (0.36 

mL, 1.69 mmol, 1.1 equiv.), Et3N (0.26 mL, 1.85 mmol, 1.2 equiv.) and tert-butyl alcohol (1.5 

mL, 15.41 mmol, 10 equiv.) was stirred in toluene (5 mL) at 80-85 °C for 24 h.  The mixture was 

cooled to room temperature, H2O was added, and extracted with ethyl acetate three times.  The 

combined organic layers were washed with 1 N HCl, H2O, saturated NaHCO3, and brine then 

dried over MgSO4, filtered, and concentrated under vacuum.  Purification of the residual mass by 

silica gel column chromatography (1:5 EtOAc/hexane) afforded the product, trans-N-Boc-2 

phenylcyclopropylamine 2.7, as a yellow solid (216 mg, 60%). 

CuI (19.1 mg, 0.1 mmol, 0.2 equiv.), Cs2CO3 (327 mg, 1.0 mmol, 2 equiv.), and trans-N-Boc-2 

phenylcyclopropylamine 2.7 (117 mg, 0.5 mmol, 1 equiv.) were added to a test tube equipped 

with a stir bar.  After purging with N2 for a few seconds, the tube was sealed with Teflon screw 

cap.  N,N’-dimethylethylenediamine (22 µL, 0.2 mmol, 0.4 equiv.) and iodobenzene (62 µL, 0.55 

mmol, 2 equiv.) was added under N2 followed by the addition of dry THF (2 mL).  The resulting 

mixture was then heated to reflux for 24 h.  After completion, the mixture was cooled to room 

temperature, diluted with ethyl acetate, and filtered over a short pad of silica.  Purification of the 
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residual mass by silica gel column chromatography (1:5 EtOAc/hexane) afforded the product 2.5 

as a colorless oil (108 mg, 70%).  IR υmax (cm
-1

) 3034, 2979, 2934, 1712, 1601, 1494, 1346, 

1163, 1056, 776, 700; 
1
H NMR (400 MHz, Chloroform-d) δ 7.37 – 7.29 (m, 3H), 7.29 – 7.23 (m, 

3H), 7.22 – 7.16 (m, 2H), 7.11 – 7.07 (m, 2H), 3.17 (ddd, J = 7.5, 4.3, 3.3 Hz, 1H), 2.08 (ddd, J 

= 9.8, 6.6, 3.3 Hz, 1H), 1.45 (d, J = 0.5 Hz, 9H), 1.32 (dt, J = 7.0, 6.4 Hz, 1H), 1.17 – 1.08 (m, 

1H); 
13

C NMR (101 MHz, CDCl3) δ 155.53, 142.30, 140.81, 128.54, 128.45, 126.48, 126.34, 

126.18, 125.56, 80.77, 40.32, 28.56, 27.59, 18.55; HRMS (ESI) m/z [M+H]
+
, calc’d for 

C20H23NO2 310.1802; found 310.1805. 

To a solution of the carbamate 2.5 (1.07 mmol, 1 equiv.) in dry CH2Cl2 (2 mL) cooled to 0 °C 

was added trifluoroacetic acid (4.28 mmol, 4 equiv.).  The reaction was stirred for 5 h at 0 °C.  

Upon completion of the reaction, monitored by TLC, was added water.  The aqueous layer was 

basified and then extracted with CH2Cl2 three times.  The combined organic layers were washed 

with brine, dried over MgSO4, filtered, and concentrated in vacuum.  Purification of the residual 

mass by silica gel column chromatography (1:10 EtOAc/hexane) afforded the product N-

((1R,2S)-2-phenylcyclopropyl)aniline 1m as a clear-yellow oil (112 mg, 50%); IR υmax (cm
-1

) 

3398, 1628, 1507, 1314, 1269, 1179, 1034, 872, 762, 700; 
1
H NMR (400 MHz, Chloroform-d) δ 

7.28 – 7.21 (m, 2H), 7.18 – 7.07 (m, 3H), 7.05 (dq, J = 8.2, 1.5 Hz, 2H), 6.73 – 6.57 (m, 3H), 

4.20 (s, 1H), 2.55 (tdd, J = 6.4, 3.3, 0.9 Hz, 1H), 1.97 – 1.86 (m, 1H), 1.25 – 1.11 (m, 2H); 
13

C 

NMR (101 MHz, CDCl3) δ 148.35, 141.65, 129.56, 128.77, 126.17, 126.05, 118.30, 113.49, 

36.70, 26.45, 17.80; HRMS (ESI) m/z [M+H]
+
, calc’d for C15H15N 210.1277; found 210.1273. 

Synthesis of diynes and enynes  

Preparation and characterization of diynes 2e, 2f, 2g, 2h correspond to those described in the 

literature.
146

 Diyne 2b (1,4-Diphenylbutadiyne) was purchased from Sigma-Aldrich.  Diyne 2c 
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(2,4-Hexadiyne) was purchased from Alfa Aesar.  Diyne 2d (2,4-Hexadiyne-1,6-diol) was 

purchased from TCI America.  Enyne 2j (2-Methyl-1-buten-3-yne) was purchased from Acros.  

Enyne 2k (1-Ethynylcyclohexene) was purchased from Sigma-Aldrich.  

For the preparation of enyne 2l (Scheme 2.7): Pd(PPh3)2Cl2 (140 mg, 0.2 mmol, 2 mol%) and 

CuI (76 mg, 0.4 mmol, 4 mol%) were massed and transferred to a dry round bottom flask 

equipped with a stir bar.  The flask was then vacuumed and purged with N2 (3-5 cycles).  Under 

N2, β-bromostyrene (mixture of trans and cis) (1.30 mL, 10 mmol, 1 equiv.), TMS-acetylene (2.2 

mL, 15 mmol, 1.5 equiv.) and Et3N (2.8 mL, 20 mmol, 2 equiv.) were added, followed by dry 

THF (40 mL).  The reaction was stirred overnight.  Upon completion, the reaction was diluted 

with Et2O and filtered through a short pad of silica.  The crude product (801 mg, 4 mmol, 1 

equiv.) was then deprotected in MeOH (40 mL) with K2CO3 (553 mg, 4 mmol, 1 equiv.).  The 

product was then purified by silica gel flash chromatography to afford the desired product (436 

mg, 85% yield).  Spectral data correspond to those described in the literature.
147

 

For the preparation of enyne 2m (Scheme 2.7): To a solution of cis-1-bromo-1-propene (1.04 

mL, 12.2 mmol, 1 equiv.), Pd(PPh3)2Cl2 (257 mg, 0.37 mmol, 3 mol%) and CuI (46.5 mg, 0.24 

mmol, 2 mol%) in Et2NH (6 mL), cooled in an ice bath, was added phenylacetylene (1.3 mL, 

12.2 mmol, 1 equiv.).  The reaction was warmed to room temperature and solid Et2NH•HCl 

formed gradually.  After 1 h the reaction mixture color turned brownish-black.  Water was added 

then extracted with Et2O three times.   The combined organic layers were washed with brine, 

dried over MgSO4, filtered, and concentrated in vacuum.  The product was then purified by silica 

gel flash chromatography to afford the desired product (1.0 g, 58% yield).  Spectral data 

correspond to those described in the literature.
148
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General Procedure 2 (GP2): [3 + 2] annulation of cyclopropylanilines with alkyne, enyne, 

and diyne: an oven-dried test tube (16 × 125 mm) equipped with a stir bar was charged with 

catalyst (2 mol %), cyclopropylaniline (0.2 mmol), alkyne, enyne, or diyne (1.0 mmol), and dry 

solvent (2 mL).  The test tube was sealed with a Teflon screw cap.  The reaction mixture was 

degassed by Freeze–Pump–Thaw cycles and then irradiated at room temperature with one white 

LED (18 watts) positioned 8 cm from the test tube.  After the reaction was complete as 

monitored by TLC, the mixture was diluted with diethyl ether and filtered through a short pad of 

silica gel.  The filtrate was concentrated in vacuum and purified by silica gel flash 

chromatography to afford the desired product. 

N-(2-phenylcyclopent-2-enyl)aniline (3p).  Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol 

%) and dry CH3NO2 (2 mL).  White solid, m.p. 66-68 °C, (27 mg, 57%); 

Silica gel column chromatography (30:1 hexane/EtOAc);  IR υmax (cm
-1

) 

3411, 2848, 1639, 1605, 1505, 1429, 1318, 1256, 1097, 993, 752, 693; 
1
H 

NMR (400 MHz, Chloroform-d) δ 7.47 – 7.36 (m, 2H), 7.29 – 7.19 (m, 2H), 7.19 – 7.06 (m, 

3H), 6.65 (tq, J = 7.4, 1.1 Hz, 1H), 6.57 (dq, J = 7.7, 1.1 Hz, 2H), 6.35 (td, J = 2.5, 1.2 Hz, 1H), 

4.87 – 4.77 (m, 1H), 3.71 (s, 1H), 2.66 – 2.53 (m, 1H), 2.45 (ddt, J = 17.6, 9.0, 3.1 Hz, 1H), 2.36 

– 2.23 (m, 1H), 1.98 (dddd, J = 13.3, 7.3, 3.9, 2.2 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 

147.78, 142.91, 134.78, 130.27, 129.49, 128.74, 127.55, 126.38, 117.19, 113.22, 59.20, 31.78, 

31.20; HRMS (ESI) m/z [M+H]
+
, calc’d for C17H17N 236.1434; found 236.1436. 

3,5-dimethyl-N-(2-phenyl-3-(phenylethynyl)cyclopent-2-enyl)aniline (4b).  Following GP2 

with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry CH3NO2 (2 mL).   

Light yellow oil, (15 mg, 20%); Silica gel column chromatography 

(100:1 hexane/EtOAc to elute excess diyne then 20:1 hexane/EtOAc); 
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IR υmax (cm
-1

) 3397, 3034, 2925, 2854, 1600, 1487, 1335, 1187, 821, 757, 690; 
1
H NMR (400 

MHz, Chloroform-d) δ 8.02 – 7.92 (m, 2H), 7.45 – 7.39 (m, 2H), 7.37 – 7.32 (m, 3H), 7.32 – 

7.28 (m, 3H), 6.41 (d, J = 3.7 Hz, 3H), 4.82 – 4.73 (m, 1H), 4.04 (s, 1H), 3.02 (dddd, J = 17.0, 

8.8, 4.7, 2.0 Hz, 1H), 2.89 (dddd, J = 16.8, 8.2, 6.3, 1.5 Hz, 1H), 2.54 (dtd, J = 12.9, 8.4, 7.9, 4.8 

Hz, 1H), 2.26 (s, 6H), 1.97 – 1.85 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 148.40, 147.84, 

139.23, 136.10, 131.84, 128.75, 128.60, 128.56, 128.53, 127.63, 123.71, 120.75, 119.73, 111.76, 

96.85, 87.16, 63.99, 33.79, 31.86, 21.90; HRMS (ESI) m/z [M+H]
+
, calc’d for C27H25N 

364.2060; found 364.2063. 

3,5-dimethyl-N-(2-methyl-3-(prop-1-ynyl)cyclopent-2-enyl)aniline (4c).  Following GP2 with 

[Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry CH3NO2 (2 mL) .  Light 

yellow solid, m.p. 68-72 °C, (17 mg, 35%); Silica gel column 

chromatography (15:1 hexane/EtOAc); IR υmax (cm
-1

) 3396, 2917, 

2849, 1601, 1508, 1473, 1437, 1335, 1184, 820, 689; 
1
H NMR (400 MHz, Chloroform-d) δ 6.36 

(d, J = 1.1 Hz, 1H), 6.29 (d, J = 1.5 Hz, 2H), 4.43 – 4.36 (m, 1H), 3.85 (s, 1H), 2.52 – 2.40 (m, 

1H), 2.38 – 2.28 (m, 2H), 2.24 (s, 6H), 1.98 (s, 3H), 1.91 – 1.83 (s, 3H), 1.79 – 1.67 (m, 1H). 
13

C 

NMR (101 MHz, CDCl3) δ 149.12, 148.38, 139.09, 120.70, 119.46, 111.59, 90.73, 75.24, 62.65, 

36.05, 31.88, 21.86, 16.40, 4.89; HRMS (ESI) m/z [M+H]
+
, calc’d for C17H21N 240.1747; found 

240.1745. 

3-(3-(3,5-dimethylphenylamino)-2-(hydroxymethyl)cyclopent-1-enyl)prop-2-yn-1-ol (4d). 

Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry 

CH3NO2 (2 mL).   Light brown solid, m.p. 100-103 °C, (25 mg, 

45%); Silica gel column chromatography (1:1 hexane/EtOAc);  IR 

υmax (cm
-1

) 3361, 2922, 2856, 2216, 1601, 1336, 1184, 1017, 829, 
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691; 
1
H NMR (400 MHz, Chloroform-d) δ 6.39 (qd, J = 1.6, 1.1 Hz, 1H), 6.32 (dt, J = 1.7, 0.9 

Hz, 2H), 4.57 (ddd, J = 7.8, 5.0, 2.5 Hz, 1H), 4.38 (s, 2H), 4.32 (s, 2H), 2.67 – 2.56 (m, 1H), 

2.53 – 2.46 (m, 1H), 2.40 (dddd, J = 13.4, 8.8, 7.1, 4.1 Hz, 1H), 2.26 – 2.20 (s, 6H), 1.83 – 1.68 

(m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 152.68, 147.82, 139.16, 121.33, 120.25, 112.24, 94.36, 

80.39, 62.95, 60.83, 51.67, 32.08, 31.55, 21.81; HRMS (ESI) m/z [M+H]
+
, calc’d for C17H21NO2 

272.1645; found 272.1641. 

2-(3-(3,5-dimethylphenylamino)-2-(phenylethynyl)cyclopent-1-enyl)propan-2-ol (4e). 

Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry 

CH3NO2 (2 mL).  Orange brown oil, (31 mg, 43%); Silica gel 

column chromatography (5:1 hexane/EtOAc); IR υmax (cm
-1

) 3426, 

2973, 2929, 2857, 1604, 1492, 1335, 1186, 954, 825, 760, 692; 
1
H 

NMR (400 MHz, Chloroform-d) δ 7.31 – 7.25 (m, 5H), 6.45 – 6.30 (m, 3H), 4.60 (ddt, J = 7.3, 

5.3, 1.9 Hz, 1H), 3.06 (s, 1H), 2.67 – 2.61 (m, 1H), 2.55 – 2.47 (m, 1H), 2.38 (dddd, J = 13.0, 

8.5, 7.4, 4.6 Hz, 1H), 2.22 (s, 6H), 1.74 (dddd, J = 12.9, 8.9, 6.1, 5.4 Hz, 1H), 1.50 (s, 6H); 
13

C 

NMR (101 MHz, CDCl3) δ 159.94, 148.25, 139.19, 131.58, 128.73, 128.60, 123.12, 119.74, 

118.33, 111.71, 97.92, 84.94, 72.77, 63.48, 32.67, 31.94, 29.52, 29.27, 21.87; HRMS (ESI) m/z 

[M+H]
+
, calc’d for C24H27NO 346.2165; found 346.2166. 

(3-(3,5-dimethylphenylamino)-2-(phenylethynyl)cyclopent-1-enyl)methanol (4f). 

Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry 

CH3NO2 (2 mL).  Orange-brown oil, (25 mg, 40%); Silica gel 

column chromatography (2:1 hexane/EtOAc); IR υmax (cm
-1

) 3354, 

2925, 1600, 1489, 1336, 1186, 1032, 822, 755, 690; 
1
H NMR (400 

MHz, Chloroform-d) δ 7.33 – 7.13 (m, 5H), 6.39 – 6.29 (m, 1H), 6.27 (dd, J = 1.7, 0.9 Hz, 2H), 
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4.62 – 4.49 (m, 1H), 4.45 – 4.35 (m, 2H), 2.67 – 2.53 (m, 1H), 2.53 – 2.32 (m, 2H), 2.16 (s, 6H), 

1.79 – 1.63 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 152.27, 148.14, 139.17, 131.78, 128.65, 

128.57, 123.21, 122.18, 119.82, 111.75, 96.37, 83.95, 62.73, 61.34, 32.14, 32.08, 21.86; HRMS 

(ESI) m/z [M+H]
+
, calc’d for C22H23NO 318.1852; found 318.1854. 

(3-(3,5-dimethylphenylamino)-2-(phenylethynyl)cyclopent-1-enyl)methyl acetate (4g). 

Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry 

CH3NO2 (2 mL).  Orange-brown oil, (39 mg, 54%); Silica gel column 

chromatography (10:1 hexane/EtOAc); IR υmax (cm
-1

) 3386, 3023, 

2928, 2849, 1740, 1600, 1232, 1030, 822, 756, 690; 
1
H NMR (400 

MHz, Chloroform-d) δ 7.28 – 7.14 (m, 6H), 6.34 – 6.23 (m, 3H), 4.84 (d, J = 1.6 Hz, 2H), 4.56 

(dd, J = 7.6, 4.5 Hz, 1H), 3.80 (s, 1H), 2.59 – 2.31 (m, 4H), 2.18 – 2.13 (s, 6H), 2.02 (d, J = 0.7 

Hz, 3H), 1.78 – 1.66 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 171.18, 148.08, 147.01, 139.20, 

131.90, 128.72, 128.56, 124.92, 123.17, 119.85, 111.73, 96.83, 83.54, 62.59, 62.21, 32.35, 32.02, 

21.87, 21.18; HRMS (ESI) m/z [M+H]
+
, calc’d for C24H25NO2 360.1958; found 360.1955. 

N-(3-butyl-2-(phenylethynyl)cyclopent-2-enyl)-3,5-dimethylaniline (4h).  

Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry 

CH3NO2 (2 mL).  Light yellow oil, (14 mg, 20%); Silica gel column 

chromatography (100% hexane to elute excess diyne then 100:1 

hexane/EtOAc); IR υmax (cm
-1

) 2958, 2931, 2858, 1601, 1335, 1190, 824, 755, 693; 
1
H NMR 

(400 MHz, Chloroform-d) δ 7.38 – 7.31 (m, 2H), 7.29 – 7.25 (m, 3H), 6.42 – 6.31 (m, 3H), 4.56 

(d, J = 5.3 Hz, 1H), 3.92 (s, 1H), 2.60 – 2.47 (m, 1H), 2.45 – 2.34 (m, 4H), 2.26 – 2.22 (s, 6H), 

1.78 (ddt, J = 12.0, 9.1, 4.1 Hz, 1H), 1.54 – 1.45 (m, 2H), 1.43 – 1.32 (m, 2H), 0.96 (t, J = 7.3 

Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 155.57, 148.29, 139.03, 131.61, 128.40, 128.05, 123.85, 
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120.37, 119.44, 111.57, 94.51, 85.31, 62.40, 33.83, 31.97, 30.51, 29.95, 22.76, 21.76, 14.17; 

HRMS (ESI) m/z [M+H]
+
, calc’d for C25H29N  344.2373; found 344.2372. 

N-((1R,2R)-2-ethynyl-2-methylcyclopentyl)-3,5-dimethylaniline (5a). 

Following GP2 with Ir(ppy)2(dtb-bpy)(PF6) (2 mol %) and dry 1:1 

CF3CH2OH: CH3NO2 (2 mL).  Light yellow oil, (23 mg, 50%); Silica gel 

column chromatography (100% hexane to elute excess enyne then 20:1 

hexane/EtOAc); IR υmax (cm
-1

) 3405, 3293, 2966, 2868, 1602, 1517, 

1337, 1190, 822, 690, 633; 
1
H NMR (400 MHz, Chloroform-d) δ 6.50 – 6.31 (m, 3H), 3.95 (t, J 

= 7.6 Hz, 1H), 3.50 (s, 1H), 2.36 – 2.27 (m, 2H), 2.24 (q, J = 0.6 Hz, 6H), 2.18 (s, 1H), 2.12 – 

1.99 (m, 1H), 1.83 – 1.67 (m, 3H), 1.49 – 1.35 (m, 1H), 1.23 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 148.26, 139.14, 119.54, 111.59, 92.51, 68.78, 63.45, 40.69, 40.45, 32.82, 21.84, 21.80, 

21.28; HRMS (ESI) m/z [M+H]
+
, calc’d for C16H21N 228.1747; found 228.1745. 

1
H NMR (400 MHz, 

Chloroform-d, 

mixture of three 

isomers: two 

diastereomers and one regioisomer) δ 6.39 (dt, J = 1.3, 0.7 Hz, 2H), 6.35 (dddq, J = 5.9, 3.0, 1.5, 

0.8 Hz, 3H), 6.30 – 6.27 (m, 2H), 6.25 (dt, J = 1.4, 0.7 Hz, 2H), 5.97 (t, J = 2.6 Hz, 1H), 5.01 (dt, 

J = 1.7, 1.0 Hz, 1H), 4.96 (s, 1H), 4.58 (dt, J = 7.4, 2.0 Hz, 1H), 3.95 (t, J = 7.6 Hz, 1H), 3.41 

(dd, J = 9.1, 7.3 Hz, 1H), 2.57 (dt, J = 16.8, 7.7 Hz, 1H), 2.44 – 2.34 (m, 2H), 2.34 – 2.28 (m, 

2H), 2.28 – 2.26 (m, 2H), 2.25 (q, J = 0.6 Hz, 6H), 2.23 (q, J = 0.6 Hz, 11H), 2.20 – 2.13 (m, 

3H), 2.10 – 1.97 (m, 4H), 1.95 (dd, J = 1.4, 0.7 Hz, 4H), 1.89 (d, J = 17.2 Hz, 1H), 1.82 – 1.66 

(m, 5H), 1.66 – 1.59 (m, 2H), 1.59 – 1.50 (m, 3H), 1.46 – 1.36 (m, 2H), 1.33 (s, 3H), 1.28 – 1.23 
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(m, 5H), 1.22 (s, 4H); 
13

C NMR (101 MHz, CDCl3, mixture of three isomers: two diastereomers 

and one regioisomer) δ 148.36, 148.13, 148.12, 144.92, 139.10, 139.01, 137.83, 131.63, 119.39, 

119.19, 119.12, 113.82, 111.44, 111.39, 111.00, 92.38, 88.17, 71.83, 68.65, 63.31, 62.84, 58.81, 

43.10, 40.56, 40.31, 39.25, 32.69, 32.03, 31.21, 31.02, 29.94, 25.86, 21.78, 21.72, 21.72, 21.66, 

21.27, 21.15, 20.32 

N-(2-cyclohexenylcyclopent-2-enyl)-3,5-dimethylaniline (5b). 

Following GP2 with Ir(ppy)2(dtb-bpy)(PF6) (2 mol %) and dry 1:1 

CF3CH2OH: CH3NO2 (2 mL).  Light yellow oil, (24 mg, 43%); Silica 

gel column chromatography (100% hexane to elute excess enyne then 

20:1 hexane/EtOAc); IR υmax (cm
-1

) 3406, 3051, 2924, 2855, 1601, 

1335, 1305, 1191, 1097, 819, 690; 
1
H NMR (400 MHz, Chloroform-d) δ 6.41 – 6.32 (m, 1H), 

6.32 – 6.25 (m, 2H), 5.83 (dt, J = 6.7, 3.5 Hz, 2H), 4.56 (d, J = 6.8 Hz, 1H), 3.66 (s, 1H), 2.54 

(dt, J = 16.5, 8.0 Hz, 1H), 2.43 – 2.32 (m, 1H), 2.27 – 2.24 (s, 6H), 2.15 – 2.05 (m, 3H), 1.97 

(ddt, J = 13.0, 7.9, 2.0 Hz, 1H), 1.69 (dq, J = 10.0, 6.5, 5.7 Hz, 3H), 1.64 – 1.52 (m, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 148.29, 145.26, 139.22, 131.59, 127.66, 126.08, 119.09, 111.08, 

58.50, 31.90, 31.06, 26.58, 26.03, 23.08, 22.66, 21.91; HRMS (ESI) m/z [M+H]
+
, calc’d for 

C19H25N 268.2060; found 268.2064. 

 N-(2-cyclohexenylcyclopent-2-enyl)biphenyl-2-amine (5c). 

Following GP2 with Ir(ppy)2(dtb-bpy)(PF6) (2 mol %) and dry 1:1 

CF3CH2OH: CH3NO2 (2 mL).  Light yellow oil, (35 mg, 53%); Silica gel 

column chromatography (100% hexane to elute excess enyne then 20:1 

hexane/EtOAc); IR υmax (cm
-1

) 3426, 2925, 2851, 1649, 1509, 1492, 

1438, 1192, 746, 705; 
1
H NMR (400 MHz, Chloroform-d) δ 7.41 – 7.27 (m, 5H), 7.08 (ddt, J = 



111 
 

7.4, 1.7, 0.5 Hz, 1H), 6.81 – 6.70 (m, 2H), 5.79 – 5.70 (m, 2H), 4.57 (d, J = 7.2 Hz, 1H), 4.07 (s, 

1H), 2.44 (q, J = 8.4, 7.7 Hz, 1H), 2.39 – 2.28 (m, 1H), 2.26 – 2.14 (m, 2H), 1.94 (ddt, J = 13.1, 

8.2, 2.5 Hz, 1H), 1.68 – 1.60 (m, 2H), 1.56 (dt, J = 9.8, 3.1 Hz, 2H); 
13

C NMR (75 MHz, CDCl3) 

δ 145.16, 144.90, 139.94, 131.52, 130.69, 129.66, 129.00, 127.76, 127.70, 127.30, 126.15, 

116.65, 111.02, 100.30, 59.24, 32.08, 31.17, 26.61, 26.05, 23.11, 22.69; HRMS (ESI) m/z 

[M+H]
+
, calc’d for C23H25N 316.2060; found 316.2058. 

(E)-N-(2-styrylcyclopent-2-enyl)biphenyl-2-amine (5d). 

Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol 

%), enyne (1 mmol, 10:1 trans:cis) and dry 

CH3NO2 (2 mL).Yellow paste, (40 mg, 59%); 

Silica gel column chromatography (100% hexane 

to elute excess enyne then 25:1 hexane/EtOAc) as 

an inseparable mixture of two diastereoisomers; IR υmax (cm
-1

) 3428, 1646, 1508, 1491, 1439, 

1318, 966, 752, 707, 696; 
1
H NMR (400 MHz, Chloroform-d, mixture of diastereomers) δ 7.41 – 

7.38 (m, 1.3H), 7.38 (d, J = 1.5 Hz, 0.7H), 7.36 (t, J = 1.6 Hz, 2H), 7.34 (t, J = 1.6 Hz, 1.2H), 

7.33 (t, J = 1.6 Hz, 1H), 7.32 – 7.30 (m, 1.7H), 7.30 – 7.28 (m, 1H), 7.28 – 7.25 (m, 2H), 7.24 – 

7.22 (m, 2H), 7.21 (t, J = 0.4 Hz, 0H), 7.20 – 7.17 (m, 1.3H), 7.17 – 7.13 (m, 0.6H), 7.11 (dt, J = 

7.4, 1.7 Hz, 1H), 7.06 (dt, J = 7.5, 1.6 Hz, 0.3H), 6.88 – 6.83 (m, 1.4H), 6.83 – 6.77 (m, 1.6H), 

6.71 (td, J = 7.4, 1.2 Hz, 0.3H), 6.60 (d, J = 16.3 Hz, 1H), 6.54 (d, J = 8.2 Hz, 0.3H), 6.48 – 6.41 

(m, 0.3H), 6.04 (d, 0.3H), 5.97 (d, J = 3.0 Hz, 1H), 5.82 – 5.76 (m, 0.3H), 4.77 (d, J = 7.8 Hz, 

1H), 4.44 (s, 0.3H), 4.09 (s, 1H), 2.51 (dt, J = 16.6, 7.7 Hz, 1H), 2.45 – 2.39 (m, 1H), 2.39 – 2.28 

(m, 2H), 2.28 – 2.21 (m, 0.3H), 2.03 – 1.92 (m, 1H), 1.78 – 1.66 (m, 0.3H); 
13

C NMR (75 MHz, 

CDCl3) δ 144.72, 144.63, 142.61, 140.90, 139.73, 139.56, 138.01, 137.67, 135.19, 133.75, 
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131.46, 130.68, 130.37, 129.92, 129.53, 129.46, 128.96, 128.95, 128.85, 128.78, 128.63, 128.60, 

128.14, 127.93, 127.68, 127.58, 127.23, 127.19, 127.02, 126.49, 124.84, 123.58, 116.77, 116.70, 

111.14, 111.07, 60.85, 58.45, 32.04, 31.75, 31.08, 30.94; HRMS (ESI) m/z [M+H]
+
, calc’d for 

C25H23N  338.1903; found 338.1916. 

3,5-dimethyl-N-((1S,2S,3S)-3-methyl-2-(phenylethynyl)cyclopentyl)aniline (5e-1). 

Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry 

CH3NO2 (2 mL).   Light-yellow oil, (40 mg, 66% combined yields); 

Silica gel column chromatography (100% hexane to elute excess enyne 

then 2:1 hexane/EtOAc); IR υmax (cm
-1

) 3425, 2965, 2924, 2869, 1646, 1608, 1339, 1194, 824, 

759, 693; 
1
H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.32 (m, 2H), 7.31 – 7.27 (m, 3H), 6.40 – 

6.33 (m, 1H), 6.33 – 6.26 (m, 2H), 4.21 (s, 1H), 3.92 (q, J = 6.2 Hz, 1H), 2.71 (dd, J = 8.9, 6.9 

Hz, 1H), 2.35 – 2.25 (m, 1H), 2.24 (d, J = 0.8 Hz, 6H), 2.22 – 2.13 (m, 1H), 2.03 (dtd, J = 16.4, 

7.9, 3.7 Hz, 1H), 1.73 (dtd, J = 13.6, 8.5, 5.3 Hz, 1H), 1.30 – 1.23 (m, 1H), 1.19 (d, J = 6.7 Hz, 

3H); 
13

C NMR (75 MHz, CDCl3) δ 148.20, 139.00, 131.88, 128.41, 128.02, 123.71, 119.46, 

111.64, 100.19, 89.27, 56.35, 44.53, 40.66, 32.92, 32.14, 21.75, 20.06; HRMS (ESI) m/z 

[M+H]
+
, calc’d for C22H25N  304.2060; found 304.2063. 

3,5-dimethyl-N-((1S,2R,3R)-3-methyl-2-(phenylethynyl)cyclopentyl)aniline (5e-2). 

1
H NMR (400 MHz, Chloroform-d) δ 7.46 – 7.39 (m, 2H), 7.34 – 7.28 

(m, 3H), 6.36 (tt, J = 1.6, 0.7 Hz, 1H), 6.33 – 6.28 (m, 2H), 4.13 (s, 

1H), 3.96 (q, J = 7.8 Hz, 1H), 3.26 (t, J = 5.9 Hz, 1H), 2.23 (q, J = 0.6 

Hz, 6H), 2.21 – 2.12 (m, 2H), 1.89 – 1.76 (m, 1H), 1.70 – 1.56 (m, 2H), 1.19 (d, J = 6.7 Hz, 3H); 

13
C NMR (75 MHz, CDCl3) δ 148.08, 139.04, 131.90, 128.47, 128.01, 123.92, 119.67, 111.96, 

87.06, 86.91, 57.50, 42.11, 36.70, 30.84, 30.00, 21.74, 17.62. 
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3,5-dimethyl-N-(3-methyl-2-(phenylethynyl)cyclopentyl)aniline (5e-3 and 5e-4). 

1
H NMR (400 MHz, Chloroform-d, mixture of two diastereomers) δ 7.46 – 7.40 (m, 2H), 7.40 – 

7.35 (m, 2H), 7.33 – 7.26 (m, 4H), 6.40 – 6.36 (m, 3H), 6.35 (dt, J = 

1.5, 0.7 Hz, 2H), 3.98 (dt, J = 7.9, 4.4 Hz, 1H), 3.88 (td, J = 8.1, 5.9 

Hz, 1H), 3.74 (s, 2H), 2.94 – 2.88 (m, 1H), 2.49 – 2.37 (m, 1H), 2.31 

– 2.26 (m, 2H), 2.25 (q, J = 0.6 Hz, 6H), 2.23 (q, J = 0.6 Hz, 6H), 

2.16 – 2.05 (m, 1H), 1.93 (dddd, J = 23.7, 11.7, 7.4, 3.6 Hz, 2H), 

1.60 – 1.49 (m, 5H), 1.49 – 1.36 (m, 2H), 1.18 (dd, J = 6.7, 4.1 Hz, 6H); 
13

C NMR (75 MHz, 

CDCl3, mixture of two diastereomers) δ 144.59, 139.16, 139.06, 131.85, 131.81, 128.41, 128.34, 

127.83, 127.82, 124.17, 123.95, 119.79, 111.68, 90.21, 84.48, 65.51, 63.41, 61.69, 61.44, 61.42, 

59.45, 58.56, 47.58, 43.66, 41.40, 36.37, 32.98, 32.87, 32.26, 31.71, 21.77, 21.74, 19.43, 16.95. 

N-(1-methyl-2-phenylcyclopent-2-enyl)aniline (6b). Following GP2 

with [Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry CH3NO2 (2 mL).   Clear 

oil, (16 mg, 33%); Silica gel column chromatography (98:2 

hexane/EtOAc); IR υmax (cm
-1

) 3411, 3052, 2962, 2927, 2844, 1605, 1501, 1322, 1194, 762, 693;
 

1
H NMR (400 MHz, Chloroform-d) δ 7.53 – 7.47 (m, 2H), 7.20 – 7.13 (m, 3H), 7.07 – 6.98 (m, 

2H), 6.68 – 6.55 (m, 3H), 6.00 (t, J = 2.6 Hz, 1H), 3.84 (s, 1H), 2.58 – 2.31 (m, 3H), 1.88 – 1.75 

(m, 1H), 1.38 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 148.42, 146.83, 136.11, 129.46, 129.20, 

129.05, 128.31, 127.35, 117.47, 115.30, 67.43, 35.84, 29.31, 29.26; HRMS (ESI) m/z [M+H]
+
, 

calc’d for C18H19N 250.1590; found 250.1591. 

N-((1R,4S)-4-methyl-2-phenylcyclopent-2-enyl)aniline (6c). 

 Following GP2 with [Ru(bpz)3](PF6)2·2H2O (2 

mol %) and dry CH3NO2 (2 mL).   Clear oil, (23 
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mg, 46%); Silica gel column chromatography (99:1 hexane/EtOAc) as an inseparable mixture of 

two diastereoisomers; IR υmax (cm
-1

) 3411, 3052, 2955, 2927, 2869, 1600, 1501, 1311, 765, 748; 

1
H NMR (400 MHz, Chloroform-d, mixture of diastereomers) δ 7.57 – 7.48 (m, 3H), 7.36 – 7.30 

(m, 3H), 7.29 – 7.20 (m, 4.4H), 6.74 (tq, J = 7.3, 1.0 Hz, 1.4H), 6.69 – 6.62 (m, 3H), 6.34 (d, J = 

2.1 Hz, 0.4H), 6.33 (dd, J = 2.7, 1.3 Hz, 1H), 4.96 – 4.91 (m, 0.4H), 4.91 – 4.86 (m, 1H), 3.83 (s, 

1H), 3.11 (qt, J = 7.1, 2.1 Hz, 0.4H), 2.99 – 2.87 (m, 1H), 2.75 (ddd, J = 13.2, 8.4, 7.5 Hz, 1H), 

2.32 (ddd, J = 13.2, 7.3, 1.6 Hz, 0.4H), 1.82 (dt, J = 12.9, 7.1 Hz, 0.4H), 1.59 (dt, J = 13.2, 4.1 

Hz, 1H), 1.19 (t, J = 7.2 Hz, 4H).
 13

C NMR (101 MHz, CDCl3, mixture of diastereomers) δ 

147.72, 141.86, 136.45, 135.91, 134.80, 134.65, 129.54, 129.49, 128.76, 128.70, 127.64, 127.58, 

126.60, 126.35, 121.20, 118.00, 117.24, 117.17, 113.27, 113.14, 59.47, 59.15, 40.87, 40.51, 

38.80, 38.62, 22.60, 20.95 ; HRMS (ESI) m/z [M+H]
+
, calc’d for C18H19N 250.1590; found 

250.1589. 

N-((1R,4S)-2,4-diphenylcyclopent-2-enyl)aniline (6d). Following GP2 with 

[Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry 

CH3NO2 (2 mL).   Clear-yellow oil, (19 mg, 

30%); Silica gel column chromatography (50:1 

hexane/EtOAc) as an inseparable mixture of two 

diastereoisomers; IR υmax (cm
-1

) 3411, 3054, 2930, 2102, 1643, 1605, 1505, 1315, 752, 696;
 1

H 

NMR (400 MHz, Chloroform-d, mixture of diastereomers) δ 7.52 – 7.44 (m, 3H), 7.30 – 7.19 

(m, 9H), 7.19 – 7.08 (m, 5H), 7.02 – 6.97 (m, 0.8H), 6.86 (td, J = 7.3, 1.1 Hz, 0.4H), 6.64 (dtt, J 

= 12.3, 7.4, 1.1 Hz, 1H), 6.60 – 6.52 (m, 3H), 6.41 (d, J = 2.2 Hz, 0.3H), 6.31 (dd, J = 2.6, 1.5 

Hz, 1H), 4.99 – 4.95 (m, 0.3H), 4.93 (ddt, J = 7.3, 4.2, 1.5 Hz, 1H), 4.17 (tt, J = 7.7, 2.1 Hz, 

0.3H), 4.05 – 3.96 (m, 1H), 3.80 (s, 1H), 3.03 (ddd, J = 13.6, 9.1, 7.6 Hz, 1H), 2.54 (ddd, J = 
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13.3, 7.7, 1.6 Hz, 0.3H), 2.11 (ddd, J = 13.2, 7.6, 6.8 Hz, 0.3H), 1.86 (ddd, J = 13.6, 5.3, 4.4 Hz, 

1H).  
13

C NMR (75 MHz, CDCl3, mixture of diastereomers) δ 147.69, 147.59, 145.45, 145.25, 

143.95, 143.65, 143.29, 134.45, 134.23, 133.65, 132.78, 129.56, 129.54, 129.50, 128.88, 128.80, 

128.77, 128.04, 127.96, 127.59, 127.45, 126.85, 126.65, 126.56, 121.18, 117.98, 117.40, 113.26, 

59.45, 59.24, 49.95, 49.73, 42.71, 41.96; HRMS (ESI) m/z [M+H]
+
, calc’d for C23H21N 

312.1747; found 312.1746. 

N-(2-phenylcyclopent-2-enyl)pyridin-2-amine (7b).  Following GP2 with 

[Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry CH3NO2 (2 mL).  Orange solid, 

m.p. 102-105 °C, (6.2 mg, 13%); Silica gel column chromatography (2:1 

hexane/EtOAc);  IR υmax (cm
-1

) 3428, 2100, 1646, 1594, 1487, 1328, 1152, 

983, 762; 
1
H NMR (400 MHz, Chloroform-d) δ 8.12 (ddt, J = 5.1, 1.7, 0.8 Hz, 1H), 7.52 – 7.45 

(m, 2H), 7.41 (dddd, J = 8.4, 7.1, 1.9, 0.7 Hz, 1H), 7.29 (dddd, J = 7.5, 6.8, 1.6, 0.9 Hz, 2H), 

7.24 – 7.19 (m, 1H), 6.57 (ddt, J = 6.9, 5.1, 0.8 Hz, 1H), 6.44 – 6.34 (m, 2H), 5.29 (d, J = 6.1 Hz, 

1H), 4.57 (s, 1H), 2.64 (dddt, J = 13.1, 10.9, 5.7, 3.0 Hz, 1H), 2.57 – 2.40 (m, 2H), 2.03 – 1.90 

(m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 158.32, 148.39, 143.04, 137.53, 134.81, 130.41, 128.70, 

127.55, 126.40, 112.82, 107.65, 57.52, 32.50, 31.03; HRMS (ESI) m/z [M+H]
+
, calc’d for 

C16H16N2  237.1386; found 237.1381. 

N-(2-phenylcyclopent-2-enyl)pyridin-3-amine (7c).  Following GP2 with 

[Ru(bpz)3](PF6)2·2H2O (2 mol %) and dry CH3NO2 (2 mL).  White-ivory 

solid, m.p. 142-145 °C, (22 mg, 48%); Silica gel column chromatography 

(1:1 hexane/EtOAc);  IR υmax (cm
-1

)  3382, 2099, 1650, 1587, 1480, 1418, 

1308, 797, 762, 710; 
1
H NMR (400 MHz, Chloroform-d) δ 8.03 – 7.76 (m, 2H), 7.44 – 7.30 (m, 

2H), 7.22 (tt, J = 6.8, 1.3 Hz, 2H), 7.19 – 7.11 (m, 1H), 7.06 – 6.94 (m, 1H), 6.82 (ddd, J = 8.3, 
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2.9, 1.4 Hz, 1H), 6.33 (td, J = 2.7, 1.0 Hz, 1H), 4.78 (d, J = 7.1 Hz, 1H), 3.73 (d, J = 7.4 Hz, 1H), 

2.65 – 2.49 (m, 1H), 2.44 (ddt, J = 17.7, 8.9, 3.2 Hz, 1H), 2.29 (ddt, J = 13.2, 8.9, 7.1 Hz, 1H), 

1.96 – 1.85 (m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 143.69, 142.53, 138.70, 136.40, 134.51, 

130.65, 128.80, 127.72, 126.30, 123.93, 118.97, 58.99, 31.50, 31.17; HRMS (ESI) m/z [M+H]
+
, 

calc’d for C16H16N2  237.1386; found 237.1385. 

Preparation and characterization of compound 4-methoxy-N-(2-phenylcyclopent-2-enyl)aniline 

(3d)  correspond to those described in the literature.
116

 (See Section 2.2.4.) 

General Procedure 3 (GP3): Deprotection of the PMP Group (Scheme 2.10): To a pre-cooled 

solution of para-methoxyphenyl amine (51 mg, 0.2 mmol) in 3:1 CH3CN:H2O (2 mL) was 

slowly added concentrated H2SO4 (22 L, 0.385 mmol) at 0 °C.  Ceric ammonium nitrate (220 

mg, 0.4 mmol) was then added in one portion, and the mixture was stirred for one hour at 0 °C.  

The resulting mixture was then diluted with water (2 mL) and separated.  The aqueous phase was 

then washed with Et2O (3 x 5 mL).  The combined organic phase was then extracted with 0.1 N 

HCl (1 x 15 mL), and the obtained aqueous phase was added to the previous aqueous mixture, 

which was immediately basified to pH 14 using 5 N KOH.  The basic aqueous layer was then 

extracted with Et2O (2 x 30 mL).  The combined organic layer was then acidified to pH 1 using 

hydrogen chloride (2 M in Et2O).  The resulting solution was then dried over MgSO4 and 

concentrated to give the HCl salt as a dark brown oil.  The crude HCl salt was used in the next 

step without further purification. 

To a solution of the HCl salt (35 mg, 0.18 mmol) in dry CH2Cl2 (5 mL) was added Et3N (56 L, 

0.4 mmol) dropwise at room temperature.  Acetyl chloride (16 L, 0.22 mmol) was slowly added 

and the reaction was stirred for 6 hours at room temperature.  The reaction was quenched with 

water (10 mL) and the layers were separated.  The aqueous phase was extracted with CH2Cl2 (3 x 
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10 mL).  The combined organic layers were dried over MgSO4 and concentrated to give the 

crude product.  Purification using silica gel chromatography (1:1 hexanes:EtOAc) provided the 

desired acylated product (26.5 mg, 68% over 2 steps). 

N-(2-phenylcyclopent-2-enyl)acetamide (3d-2).  Following GP3 the product was isolated as a 

red-brown oil, (26.5 mg, 68% over two steps); Silica gel column 

chromatography (1:1 hexane/EtOAc); IR υmax (cm
-1

) 3421, 2934, 2855, 

1774, 1646, 1556, 1449, 1377, 1204, 759, 696; 
1
H NMR (300 MHz, 

Chloroform-d) δ 7.31 – 7.23 (m, 2H), 7.20 – 7.12 (m, 2H), 7.10 – 7.04 (m, 1H), 6.18 (t, J = 2.5 

Hz, 1H), 5.40 – 5.20 (m, 2H), 2.44 – 2.26 (m, 3H), 1.74 (s, 3H), 1.70 – 1.59 (m, 1H); 
13

C NMR 

(101 MHz, CDCl3) δ 169.91, 142.57, 134.29, 130.62, 128.83, 127.73, 126.23, 55.16, 32.78, 

30.88, 23.67; HRMS (ESI) m/z [M+H]
+
, calc’d for C13H15NO 202.1226; found 202.1232. 
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2.4. [3+2] Annulation of Bicyclic Cyclopropylanilines 

Preliminary results have showcased the participation of bicyclic cyclopropylanilines in 

the [3+2] annulation with alkenes to successfully afford fused saturated heterocycles.
76

  Due to 

the high volume of these motifs found in natural products and pharmaceuticals, it was of interest 

to synthesize these heterocyclic analogues for further studies of their biological activity 

potentials.  Initially intrigued with the success of the monocyclic cyclopropylanilines with 

alkynes,
116

 in addition to the preliminary results of annulation with the bicyclic 

cyclopropylanilines, the attention of subjecting bicyclic cyclopropylanilines and alkynes to the 

optimized standard conditions was eagerly explored.  Moreover, the issue of diastereoselectivity 

would be omitted, which is a contrast to the earlier work of annulation with alkene systems.  

Unlike the preparation of monocyclic cyclopropylanilines accomplished in one simple step, the 

synthetic route to bicyclic cyclopropylanilines required three steps.  The construction of the 

bicyclic framework 3.4 involved a titanium-mediated cyclopropanation of the corresponding 

carboxylic amide precursor 3.3 via an intramolecular Kulinkovich-de Meijere reaction (Table 

13).  The sequence of synthesizing the N-alkenyl amides 3.3 began with acylation of the 

appropriate aniline substrate with the desired acyl chloride to afford the aryl amide 3.1, followed 

by alkylation of the aryl amide with but-3-enyl toluene-4-sulfonate 3.2  (via tosylation of 3-

buten-1-ol).  A variety of bicyclic cycloproylanilines were synthesized including an array of 

alkyl groups (R
1
= Me, Et, and iPr) substituted on the quaternary carbon (α to the amine) and both 

electron donating (OMe and OBu) and electron withdrawing (CF3) aryl substitutents, which were 

well tolerated. 

2.4.1. Annulation with Phenylacetylene  

The prepared [3.1.0] bicyclic cyclopropylanilines 3.4 were then subjected to the  
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optimized conditions for cycloaddition with phenylacetylene, as the standard substrate, to 

provide 5,5-fused bicyclic heterocycles 3.5 (Scheme 2.11).  Surprisingly, the annulation 

proceeded in low to moderate yields in comparison to previous reports of the annulation with 

styrene.  As previously reported, cycloaddition of the bicyclic cyclopropylanilines with styrene 

provided two diastereomers in good diastereoselectivity.  In the case of cycloaddition with 

phenylacetylene, it was anticipated that one major cycloadduct would be formed, as an alkene 

Table 13. Preparation of bicyclic cyclopropylanilines. 
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moiety is introduced in the desired product.  However, two major isomers were isolated, 

unexpectedly, in moderate to poor selectivity.  The methyl substituted bicyclic 

cyclopropylaniline 3.4a underwent the cycloaddition to provide a 1:1 mixture of two isomers 

3.5a in a combined 57% yield, with the major product as shown.  As the methyl group of 3.5a 

was replaced with more sterically hindered substituents (i.e. ethyl and isopropyl), a dramatic 

decrease of yields in the annulation was observed (29% and 15%, respectively), but a significant 

increase in selectivity was obtained in particularly the later (>10:1).   This is in accordance with 

results reported by our group in regards to a cycloaddition of tert-butyl substituted bicyclic 

cyclopropylaniline with styrene, 28% yield, >25:1 d.r.  Electron-withdrawing (CF3) aryl 

substituted cycloadduct 3.5d was tolerated in moderate yield, though the annulation yielding the 

electron-donating (OBu) cycloadduct 3.5e was not synthetically useful.   

 Of the two inseparable isomers isolated after chromatography, for each substrate, one was 

identified as the predicted cycloadduct, as drawn in Scheme 2.11, and confirmed with further 

characterization using 
1
H NMR and 

13
C NMR, while the other isomer was undetermined.  The 

Scheme 2.11. [3+2] annulation of bicyclic cyclopropylanilines with phenylacetylene. 
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task of identifying the unknown isomer was quite challenging, considering the limited 

possibilities of alternative adducts based on the proposed mechanism.  Efforts to solving the 

unidentified isomer began with subjecting the 1:1 mixture of unsaturated fused heterocycle 3.5a 

and the unidentified isomer 3.5a-1 to catalytic hydrogenation conditions.  Gas chromatography/ 

mass spectroscopy (GC/MS) was used to confirm the identical mass and relative ratio of the 

fused heterocycles in the initial mixture.  It was envisioned that the alkene moiety would undergo 

hydrogenation to give the saturated fused heterocycle 3.8, which has been previously reported by 

our group.  Interestingly, upon hydrogenation of the inseparable mixture, GC/MS detected two 

peaks with a relative 1:1 ratio.  One peak (mass of 278) corresponded to the saturated fused 

heterocycle 3.8, while the other peak corresponded to a mass (276) identical to unknown isomer 

 
Figure 2.5. 

1
H NMR analysis of hydrogenation of mixture 3.5a and 3.5a-1. 
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3.5a-1 from the starting mixture.  
1
H NMR identified the saturated fused heterocycle 3.8, labeled 

as the red dot in Figure 2.5, thus confirming cycloadduct 3.5a as one of the isomers from the 

annulation.  Moreover, the unidentified isomer 3.5a-1, labeled as the blue dot, was unreactive 

under the hydrogenation conditions.  The results were very puzzling, as one isomer was 

hydrogenated while the other remained untouched.  Although the predicted annulation product 

3.5a was assigned and confirmed, efforts of identifying the unknown isomer were unsuccessful.    

2.4.2. Annulation with Olefins 

Discouraged by the unexpected results in the cycloaddition of bicyclic 

cyclopropylanilines with alkynes, the attention was shifted towards studying the cycloaddition of 

the bicyclic system with alkenes (Table 14). With the reported success of the cycloaddition with 

styrene as the standard substrate, advances in expanding the scope with various alkenes were 

investigated.  The objective was centered on generating a substrate scope comprised of various 

fused heterocycles that could be further submitted for evaluation of potential biological activity.  

Eli-Lilly provides an Open Innovation Drug Discovery program that uses a confidential, 

automatic algorithm to select structures for biological screening.
149

  Upon submission of the 

substrates, if a compound generates promising results, collaboration with Eli-Lilly in a 

partnership for further studies would be highly desired.  The cycloadditions with olefins were 

conducted under the optimized conditions, similar with alkynes, in the presence of one 18 W 

LED light source.  In exploring various alkenes, methyl acrylate and acrylonitrile were not 

suitable annulation partners, as no reaction and trace amount of product were observed via 

GC/MS, respectively. Conversely, alkene source phenyl maleimide underwent the [3+2] 

annulation to give fused saturated tricyclic heterocycles in moderate yields and good 

diastereoselectivity.  The cycloadducts were obtained as a separable mixture of two 
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diastereoisomers using preparative thin layer chromatography (prep TLC).  A similar reactivity 

trend of steric effects, mentioned previously, was observed when replacing methyl (9a) with 

isopropyl (9b) in the cycloaddition with phenyl maleimide.  Moreover, the electronic characters 

of both electron-donating and electron-withdrawing aryl groups were well tolerated.  Para-

methoxy-phenyl and 3,4,5-trimethoxy-phenyl of cycloadducts 8c and 8d were introduced to 

serve as cleavable groups to further increase the generality of the annulation.  Subjected under 

oxidative conditions with oxidant cerium ammonium nitrate (CAN), both removable groups were 

incapable of cleavage.  Instead, the cycloadducts were recovered with no decomposition.      

 

Table 14. Annulation of bicyclic cyclopropylanilines with olefins. 
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2.4.3. Experimental Section 

Synthesis of bicyclic cyclopropylanilines (Table 13).  For the preparation and characterization of 

compounds 3.4a and 3.4f: see (a) Madelaine, C.; Six, Y.; Buriez, O. Angew. Chem. Int. Ed. 2007, 

46, 8046 – 8049. For preparation and characterization of compound 3.4d and 4b: see Maity, S.; 

Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222-226. 

The following sequence was applied for the preparation of bicyclic cyclopropylanilines 3.4b, 

3.4c, 3.4e, and 3.4g: 

 

A solution of acid chloride in dichloromethane was added dropwise at 0 °C to a solution of 

aniline 3.0 and triethylamine.  The resulting mixture was stirred overnight at room temperature.  

Upon completion, the solvent was removed under vacuum and the crude was purified by silica 

gel chromatography to afford the anilide 3.1.  Potassium carbonate (1.02 equiv.), 

tetrabutylammonium hydrogensulfate (0.05 equiv.), ground sodium hydroxide (4 equiv.), and 

anilide 3.1 (7.4 mmol, 1 equiv.) were massed and transfer to a round bottom flask equipped with 

a stir bar.  Toluene (30 mL) was added and the mixture was stirred at 20 °C for 1 h, then at 80 °C 

for 15 min.  But-3-enyl-p-toluenesulfonate 3.2 (1.5 equiv.) was added and stirring was continued 

at 80 °C for 6 h.  After cooling to room temperature, 1N aqueous HCl solution (30 mL) was 

added.  The organic layer was separated, and the aqueous extracted with diethyl ether (3 x 50 

mL). The combined organic layers were dried with sodium sulfate, filtered and concentrated.  

Purification of the crude by column chromatography afforded the N-alkenyl amide 3.3.  To a 

magnetically stirred solution of N-alkenyl amide (6.98 mmol, 1 equiv.) in THF (35 mL) was 
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added titanium(IV) iso-propoxide (1.7 equiv.), followed by addition of cyclopentylmagnesium 

chloride (2.0 M in Et2O, 4.4 equiv.) dropwise at room temperature over 5 mins.  After 1 h, water 

(2 mL) was added at 0 °C and stirring was continued until the color dissipated.  Et2O (35 mL) 

was then added.  The organic layer was separated, and the aqueous phase was extracted with 

Et2O (30 mL x 2). The combined organic layers were dried over sodium sulfate and concentrated 

under reduced pressure.  Purification of the crude mass by column chromatography on silica/ 

alumina gel provided the bicyclic cyclopropylaniline 3.4. 

N-(but-3-enyl)-N-phenylpropionamide (3.3b). Following the above sequence with  N-

phenylpropanamide 3.1b (500 mg, 3.35 mmol), but-3-enyl-p-

toluenesulfonate 3.2 (1.14 g or 0.95 mL; 1.5 equiv), K2CO3 (472.3 mg, 

1.02 equiv), NaOH (536 mg, 4 equiv), and nBu4NHSO4 (57.7 mg, 0.05 

equiv or 5 mol%) in 13.4 mL toluene, product was isolated after column chromatography on 

silica gel (85:15 hexanes/EtOAc) as a yellow liquid, 78%; IR υmax (cm
-1

) 3511, 3075, 2979, 

2934, 1656, 1494, 1400, 1267, 916, 703; 
1
H NMR (300 MHz, Chloroform-d) δ 7.48 – 7.27 (m, 

3H), 7.19 – 7.08 (m, 2H), 5.74 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.10 – 4.92 (m, 2H), 3.82 – 3.68 

(m, 2H), 2.33 – 2.17 (m, 2H), 2.00 (q, J = 7.4 Hz, 2H), 1.01 (t, J = 7.5 Hz, 3H); 
13

C NMR (75 

MHz, CDCl3) δ 173.66, 142.66, 135.46, 129.72, 128.51, 127.91, 116.63, 48.40, 32.31, 27.92, 

9.72; GC/MS (CI) m/z [M+H]
+
 for C13H17NO found 204. 

(1R,5S)-1-ethyl-2-phenyl-2-azabicyclo[3.1.0]hexane (3.4b). Following the above sequence 

with N-(but-3-enyl)-N-phenylpropionamide 3.3b (190 mg, 0.93 mmol), 

Ti(O
i
Pr)4 (1.7 equiv, 470 uL), and Grignard reagent (4.4 equiv, 2 mL) in 

0.35 mL THF, product was isolated after column chromatography on silica 

gel  (98:2 hexanes/EtOAc) as a clear liquid, (117 mg, 67%); 
1
H NMR (400 MHz, Chloroform-d) 
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δ 7.41 – 7.30 (m, 2H), 7.01 – 6.93 (m, 2H), 6.88 (tt, J = 7.3, 1.1 Hz, 1H), 4.08 (td, J = 9.7, 3.8 

Hz, 1H), 3.07 (ddd, J = 9.9, 8.6, 7.8 Hz, 1H), 2.51 – 2.31 (m, 2H), 2.11 – 1.98 (m, 1H), 1.52 – 

1.38 (m, 2H), 1.10 – 0.97 (m, 4H), 0.83 (t, J = 5.1 Hz, 1H); 
13

C NMR (101 MHz, CDCl3) δ 

150.05, 128.85, 117.79, 116.66, 54.04, 48.64, 26.97, 25.27, 22.57, 18.93, 10.93; GC/MS (CI) m/z 

[M+H]
+
 for C13H17N found 188. 

N-(but-3-enyl)-2-methyl-N-phenylpropionamide (3.3c). Following the above sequence with  

2-methyl-N-phenylpropanamide 3.1c (547 mg, 3.35 mmol), but-3-enyl-p-

toluenesulfonate 3.2 (1.14 g or 0.95 mL; 1.5 equiv), K2CO3 (472.3 mg, 

1.02 equiv), NaOH (536 mg, 4 equiv), and nBu4NHSO4 (57.7 mg, 0.05 

equiv or 5 mol%) in 13.4 mL toluene, product was isolated after column chromatography on 

silica gel (85:15 hexanes:EtOAc) as a 
 
white solid (41–44 °C m.p.), 76%; IR υmax (cm

-1
) 3514, 

3068, 2973, 1653, 1594, 1403, 1257, 1136, 917; 
1
H NMR (300 MHz, Chloroform-d) δ 7.40 

(dddd, J = 14.3, 8.6, 5.2, 3.6 Hz, 3H), 7.21 – 7.12 (m, 2H), 5.76 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 

5.12 – 4.93 (m, 2H), 3.80 – 3.70 (m, 2H), 2.40 (p, J = 6.7 Hz, 1H), 2.32 – 2.21 (m, 2H), 1.00 (d, 

J = 6.7 Hz, 6H); 
13

C NMR (75 MHz, CDCl3) δ 177.06, 142.64, 135.38, 129.57, 128.35, 127.76, 

116.46, 48.30, 32.16, 31.26, 19.65; GC/MS (CI) m/z [M+H]
+
 for C13H17N found 218. 

(1R,5S)-1-isopropyl-2-phenyl-2-azabicyclo[3.1.0]hexane (3.4c). Following the above sequence 

with N-(but-3-enyl)-2-methyl-N-phenylpropionamide 3.3c (1.18 g, 5.43 

mmol), Ti(O
i
Pr)4 (1.7 equiv, 2.7 mL), Grignard reagent (4.4 equiv, 11.7 

mL) in 20 mL THF, product was isolated after column chromatography 

on silica gel (100% hexanes) as a clear liquid, (700 mg, 64%); IR υmax (cm
-1

) 3065, 3034, 2957, 

1599, 1498, 1361, 1312, 1035, 750, 695; 
1
H NMR (300 MHz, Chloroform-d) δ 7.19 – 7.08 (m, 

2H), 6.76 – 6.60 (m, 3H), 3.86 (tdd, J = 9.7, 4.3, 1.4 Hz, 1H), 2.90 (dddd, J = 10.2, 8.8, 7.3, 1.4 
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Hz, 1H), 2.41 (hept, J = 6.8 Hz, 1H), 2.21 – 2.05 (m, 1H), 1.86 (dddt, J = 12.9, 8.9, 4.4, 1.2 Hz, 

1H), 1.35 – 1.24 (m, 1H), 1.05 (ddt, J = 9.1, 5.3, 1.0 Hz, 1H), 0.91 (dd, J = 6.5, 1.7 Hz, 3H), 0.64 

(dd, J = 7.1, 1.5 Hz, 3H), 0.48 (td, J = 5.3, 1.5 Hz, 1H); 
13

C NMR (75 MHz, CDCl3) δ 149.94, 

128.86, 117.44, 116.37, 53.95, 52.92, 27.24, 26.28, 20.65, 18.73, 18.66, 17.87; GC/MS (CI) m/z 

[M+H]
+
 for C13H17N found 202. 

(1R,5S)-2-(4-methoxyphenyl)-1-methyl-2-azabicyclo[3.1.0]hexane (3.4e). Following the 

above sequence with N-3-buten-1-yl-N-(4-methoxyphenyl)-

acetamide 3.3e (1.53 g, 6.98 mmol), Ti(O
i
Pr)4 (1.7 equiv, 3.5 

mL), Grignard reagent (4.4 equiv, 15.3 mL) in 35 mL THF, 

product was isolated after column chromatography on alumina gel (15:1 hexanes: EtOAc) as a 

clear liquid, (933 mg, 66%); IR υmax (cm
-1

) 2954, 2929, 1506, 1463, 1452, 1444, 1370, 1235, 

1179, 816; 
1
H NMR (400 MHz, Chloroform-d) δ 6.99 – 6.88 (m, 2H), 6.88 – 6.79 (m, 2H), 3.84 

(td, J = 9.5, 1.9 Hz, 1H), 3.77 (s, J = 0.4 Hz, 3H), 2.66 (td, J = 9.9, 8.2 Hz, 1H), 2.35 – 2.19 (m, 

1H), 1.98 – 1.85 (m, 1H), 1.49 (s, 3H), 1.34 – 1.23 (m, 1H), 0.80 (t, J = 5.1 Hz, 1H), 0.75 – 0.66 

(m, 1H); 
13

C NMR (101 MHz, CDCl3) δ 153.27, 144.39, 119.54, 114.50, 55.83, 53.70, 43.34, 

26.42, 24.09, 20.15, 15.27; GC/MS (CI) m/z [M+H]
+
 for C13H17NO found 204. 

N-(but-3-enyl)-N-(3,4,5-trimethoxyphenyl)acetamide (3.3g).  Following the above sequence 

with N-(3,4,5-trimethoxyphenyl)-acetamide 3.1g (1.0 g, 4.44 

mmol), but-3-enyl-p-toluenesulfonate 3.2 (1.25 mL, 1.5 equiv), 

K2CO3 (626 mg, 1.02 equiv), NaOH (710 mg, 4 equiv), and 

nBu4NHSO4 (75.4 mg, 0.05 equiv or 5 mol%) in 25 mL toluene, 

product was isolated after column chromatography on silica gel (1:3 hexanes/EtOAc) as a yellow 

solid, (854 mg, 69%); 
1
H NMR (400 MHz, Chloroform-d) δ 6.38 (s, 2H), 5.78 (ddt, J = 17.0, 
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10.2, 6.7 Hz, 1H), 5.13 – 4.99 (m, 2H), 3.87 (d, J = 0.4 Hz, 3H), 3.85 (s, 6H), 3.79 – 3.70 (m, 

2H), 2.37 – 2.24 (m, 2H), 1.87 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 170.56, 153.89, 138.85, 

137.81, 135.77, 116.85, 105.72, 61.19, 56.46, 48.35, 32.61, 22.89; GC/MS (CI) m/z [M+H]
+
 for 

C15H21NO4 found 280. 

(1R,5S)-1-methyl-2-(3,4,5-trimethoxyphenyl)-2-azabicyclo[3.1.0]hexane (3.4g).  Following 

the above sequence with N-(but-3-enyl)-N-(3,4,5-

trimethoxyphenyl)acetamide 3.3g (803 mg, 2.87 mmol), Ti(O
i
Pr)4 

(1.7 equiv, 1.45 mL), Grignard reagent (4.4 equiv, 6.3 mL) in 15 

mL THF, product was isolated after column chromatography on alumina gel (10:1 

hexanes/EtOAc then 2:1 hexanes/EtOAc) as a clear liquid, (502 mg, 66%); 
1
H NMR (400 MHz, 

Chloroform-d) δ 6.15 (s, 2H), 3.90 (td, J = 9.6, 2.6 Hz, 1H), 3.85 (s, 6H), 3.79 (s, 3H), 2.81 (ddd, 

J = 9.8, 9.0, 8.4 Hz, 1H), 2.29 (dtd, J = 12.8, 9.3, 5.8 Hz, 1H), 1.93 (ddd, J = 13.0, 8.4, 2.6 Hz, 

1H), 1.53 (s, 3H), 1.34 (dq, J = 7.9, 5.4 Hz, 1H), 0.83 – 0.74 (m, 2H); 
13

C NMR (101 MHz, 

CDCl3) δ 153.56, 146.88, 131.22, 95.50, 61.25, 56.20, 53.84, 43.36, 26.52, 24.86, 20.29, 17.38; 

GC/MS (CI) m/z [M+H]
+
 for C15H21NO3 found 264. 

General Procedure 4 (GP4): [3 + 2] annulation of bicyclic cyclopropylanilines with 

phenylacetylene and olefins: an oven-dried test tube (16 × 125 mm) equipped with a stir bar 

was charged with Ru(bpz)3(PF6)2 (2 mol %), bicyclic cyclopropylaniline (0.2 mmol), 

phenylacetylene or olefin (1.0 mmol), and dry CH3NO2 (2 mL).  The test tube was sealed with a 

Teflon screw cap.  The reaction mixture was degassed by Freeze–Pump–Thaw cycles and then 

irradiated at room temperature with one white LED (18 watts) positioned 8 cm from the test 

tube.  After the reaction was complete as monitored by TLC, the mixture was diluted with 

diethyl ether and filtered through a short pad of silica gel.  The filtrate was concentrated in 
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vacuum and purified by silica/ alumina gel flash chromatography to afford 

the desired product. 

(3aR,6aS)-6a-methyl-1,6-diphenyl-1,2,3,3a,4,6a-

hexahydrocyclopenta[b]pyrrole (3.5a).  Following GP4, the product was 

isolated as a yellow oil, 57%; Silica gel column chromatography (20:1 hexanes/EtOAc); IR υmax 

(cm
-1

) 3020, 2922, 2843, 1597, 1500, 1325, 1155, 744, 690, 513; 
1
H NMR (400 MHz, 

Chloroform-d) δ 7.23 – 7.10 (m, 5H), 7.00 – 6.91 (m, 2H), 6.51 (t, J = 7.2 Hz, 1H), 6.35 – 6.25 

(m, 2H), 4.84 (d, J = 7.3 Hz, 1H), 3.54 (ddd, J = 9.6, 7.6, 2.0 Hz, 1H), 3.21 (td, J = 9.9, 6.6 Hz, 

1H), 2.82 (p, J = 7.7 Hz, 1H), 2.67 (dd, J = 16.2, 7.2 Hz, 1H), 2.27 – 2.14 (m, 2H), 1.91 (dtd, J = 

12.2, 10.2, 7.6 Hz, 1H), 1.62 (q, J = 1.3 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 149.16, 138.40, 

138.23, 135.45, 129.47, 128.53, 128.05, 126.62, 115.88, 112.99, 75.18, 49.34, 41.38, 40.30, 

32.30, 15.58; GC/MS (CI) m/z [M+H]
+
 for C20H21N found 276. 

(3aR,6aS)-6a-ethyl-1,6-diphenyl-1,2,3,3a,4,6a-hexahydrocyclopenta[b]pyrrole (3.5 b).  

Following GP4, the product was isolated as a 1:1 mixture of isomers, 

yellow oil, 29%; Silica gel column chromatography (20:1 

hexanes/EtOAc); IR υmax (cm
-1

) 3034, 2960,2845,1597, 1500, 1354, 1332, 

744, 690, 514; 
1
H NMR (400 MHz, Chloroform-d) δ 7.15 – 7.01 (m, 9H), 6.91 – 6.82 (m, 2H), 

6.81 – 6.73 (m, 1H), 6.47 – 6.39 (m, 2H), 6.25 – 6.19 (m, 2H), 6.19 – 6.14 (m, 2H), 5.40 (dd, J = 

2.9, 2.0 Hz, 1H), 4.75 (d, J = 7.3 Hz, 1H), 3.46 (ddd, J = 9.5, 7.8, 1.9 Hz, 1H), 3.38 (ddd, J = 9.5, 

7.2, 2.6 Hz, 1H), 3.24 (ddd, J = 9.9, 8.8, 6.0 Hz, 1H), 3.12 (ddd, J = 10.7, 9.2, 6.6 Hz, 1H), 2.82 

– 2.69 (m, 2H), 2.65 – 2.54 (m, 1H), 2.50 (ddd, J = 16.7, 7.1, 1.9 Hz, 1H), 2.21 – 2.03 (m, 4H), 

1.92 (dq, J = 14.8, 7.2 Hz, 2H), 1.81 (ddt, J = 19.4, 9.4, 2.6 Hz, 2H), 1.77 – 1.64 (m, 1H), 0.96 – 

0.84 (m, 3H), 0.61 (t, J = 7.3 Hz, 2H); 
13

C NMR (101 MHz, CDCl3) δ 149.58, 149.09, 147.25, 
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140.88, 139.40, 138.28, 137.93, 132.33, 129.48, 129.44, 128.50, 128.06, 128.02, 127.96, 127.78, 

126.96, 126.62, 116.57, 115.81, 115.38, 112.88, 82.84, 75.18, 50.88, 49.27, 48.45, 40.19, 38.01, 

35.35, 32.24, 30.77, 27.08, 22.65, 13.05, 8.75; GC/MS (CI) m/z [M+H]
+
 for C21H23N found 290. 

 (3aR,6aS)-6a-isopropyl-1,6-diphenyl-1,2,3,3a,4,6a-hexahydrocyclopenta[b]pyrrole (3.5c).  

Following GP4, the product was isolated as a red-brown oil, 15%; Silica 

gel column chromatography (20:1 hexanes/EtOAc); IR υmax (cm
-1

) 3032, 

2954, 2868, 1597, 1500, 1355, 1309, 1035, 993, 744, 690; 
1
H NMR (400 

MHz, Chloroform-d) δ 7.09 (dddd, J = 7.9, 7.0, 3.4, 1.7 Hz, 5H), 7.04 – 6.98 (m, 3H), 6.86 – 

6.79 (m, 1H), 6.74 – 6.67 (m, 3H), 6.56 – 6.42 (m, 2H), 6.39 (ddt, J = 8.3, 7.3, 1.0 Hz, 1H), 6.20 

– 6.07 (m, 3H), 5.54 – 5.44 (m, 1H), 3.34 (ddd, J = 8.9, 6.8, 3.4 Hz, 1H), 3.10 (td, J = 9.3, 5.9 

Hz, 2H), 2.84 – 2.72 (m, 2H), 2.48 – 2.35 (m, 2H), 2.17 – 2.02 (m, 4H), 1.74 – 1.62 (m, 3H), 

0.98 (d, J = 6.8 Hz, 4H), 0.59 (d, J = 6.6 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 147.41, 

139.89, 129.70, 129.44, 129.34, 128.49, 128.09, 128.01, 127.98, 126.86, 116.76, 115.97, 86.86, 

50.98, 43.99, 37.92, 32.21, 29.63, 18.30, 16.93; GC/MS (CI) m/z [M+H]
+
 for C22H25N found 

304. 

 (3aR,6aS)-6a-methyl-6-phenyl-1-(4-(trifluoromethyl)phenyl)-1,2,3,3a,4,6a-

hexahydrocyclopenta[b]pyrrole (3.5d).  Following GP4, the product was isolated as a 2:1 

mixture of isomers, yellow oil, 52%; Silica gel column 

chromatography (20:1 hexanes/EtOAc); IR υmax (cm
-1

) 2927, 2846, 

1612, 1525, 1317, 1101, 1066, 815, 700; 
1
H NMR (300 MHz, 

Chloroform-d) δ 7.60 – 7.44 (m, 1H), 7.28 – 7.21 (m, 2H), 7.19 (td, J = 5.1, 1.9 Hz, 5H), 7.14 (s, 

1H), 7.09 (dd, J = 7.3, 2.5 Hz, 3H), 6.27 (dd, J = 16.5, 8.7 Hz, 3H), 5.50 (t, J = 2.0 Hz, 0H), 4.90 

(dq, J = 7.3, 1.9 Hz, 1H), 3.57 (ddd, J = 10.1, 8.0, 2.4 Hz, 1H), 3.51 – 3.38 (m, 1H), 3.27 (td, J = 
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9.9, 6.8 Hz, 1H), 2.95 – 2.80 (m, 1H), 2.74 (dt, J = 7.0, 1.6 Hz, 0H), 2.68 (ddt, J = 6.0, 4.3, 2.2 

Hz, 1H), 2.65 – 2.59 (m, 0H), 2.34 – 2.14 (m, 3H), 1.96 (dddd, J = 14.6, 10.2, 7.3, 4.3 Hz, 2H), 

1.63 (q, J = 1.2 Hz, 3H), 1.52 (s, 2H); 
13

C NMR (101 MHz, CDCl3) δ 150.87, 149.91, 148.95, 

138.77, 137.82, 137.77, 136.24, 132.33, 129.35, 129.24, 128.51, 128.27, 128.23, 127.50, 127.42, 

126.91, 125.76 (q, J = 3.0 Hz), 125.18 (q, J = 4.0 Hz), 117.19 (q, J = 117.19 Hz), 114.45, 

112.13, 112.11, 79.03, 74.64, 53.67, 50.33, 49.03, 41.34, 40.33, 34.17, 32.08, 29.64, 22.49, 

22.46, 15.49, 15.46; GC/MS (CI) m/z [M+H]
+
 for C21H20F3N found 344. 

(3aR,6aS)-1-(4-butoxyphenyl)-6a-methyl-6-phenyl-1,2,3,3a,4,6a-

hexahydrocyclopenta[b]pyrrole (3.5e).  Following GP4, the product 

was isolated as a 5:1 mixture of isomers, brown oil, 10%; Silica gel 

column chromatography (50:1 hexanes/EtOAc); IR υmax (cm
-1

) 2956, 

2927, 1508, 1240, 1070, 813, 758, 698, 524; 
1
H NMR (300 MHz, Chloroform-d) δ 7.19 (s, 7H), 

6.53 – 6.44 (m, 2H), 6.35 – 6.27 (m, 2H), 5.50 (t, J = 2.5 Hz, 1H), 3.80 (t, J = 6.5 Hz, 3H), 3.41 

– 3.22 (m, 2H), 2.67 – 2.54 (m, 2H), 2.30 – 2.09 (m, 3H), 1.94 – 1.77 (m, 1H), 1.71 – 1.59 (m, 

4H), 1.45 (s, 4H), 0.97 – 0.86 (m, 5H); 
13

C NMR (75 MHz, CDCl3) δ 129.48, 129.11, 127.94, 

127.38, 126.88, 118.55, 115.20, 114.37, 113.96, 79.12, 68.26, 52.87, 50.70, 35.09, 32.60, 31.71, 

30.85, 23.57, 19.47, 14.11; GC/MS (CI) m/z [M+H]
+
 for C24H29NO found 348. 

(3aR,6S,6aS)-6a-isopropyl-1,6-diphenyloctahydrocyclopenta[b]pyrrole (8b).  Following 

GP4, the product was isolated as a yellow oil, 25%; Silica gel column 

chromatography (100:1 hexanes/EtOAc); IR υmax (cm
-1

) 2953, 2870, 1595, 

1500, 1355, 1336, 1309, 1141, 744, 694; 
1
H NMR (300 MHz, Chloroform-

d) δ 6.94 – 6.87 (m, 2H), 6.83 – 6.69 (m, 3H), 6.53 – 6.42 (m, 2H), 6.08 (tt, J = 7.2, 1.0 Hz, 1H), 

5.93 – 5.85 (m, 2H), 3.32 (ddd, J = 9.0, 8.0, 2.6 Hz, 1H), 3.11 – 2.90 (m, 2H), 2.70 – 2.54 (m, 
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2H), 1.94 – 1.80 (m, 2H), 1.80 – 1.59 (m, 2H), 1.55 – 1.35 (m, 2H), 0.86 (d, J = 6.8 Hz, 3H), 

0.30 (d, J = 6.6 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ 146.66, 144.43, 129.98, 127.86, 127.60, 

126.04, 115.09, 114.10, 81.05, 53.75, 51.94, 46.59, 36.57, 32.78, 31.12, 29.73, 19.72, 18.53; 

GC/MS (CI) m/z [M+H]
+
 for C22H27N found 306. 

(3aR,6S,6aS)-1-(4-methoxyphenyl)-6a-methyl-6-phenyloctahydrocyclopenta[b]pyrrole (8c). 

Following GP4, the product was isolated as a brown oil, 48%; 

Alumina gel column chromatography (30:1 hexanes/EtOAc); IR υmax 

(cm
-1

) 3043, 2946, 2870, 1620, 1452, 1244; 
1
H NMR (400 MHz, 

Chloroform-d) δ 7.28 – 7.19 (m, 3H), 7.19 – 7.13 (m, 2H), 6.49 – 6.40 (m, 2H), 6.19 – 6.09 (m, 

2H), 3.65 (s, 3H), 3.50 – 3.43 (m, 1H), 3.29 (ddt, J = 10.4, 9.1, 5.1 Hz, 1H), 2.90 (dd, J = 11.0, 

7.2 Hz, 1H), 2.59 – 2.51 (m, 1H), 2.13 – 2.04 (m, 3H), 1.99 – 1.92 (m, 1H), 1.92 – 1.81 (m, 2H), 

1.73 (ddt, J = 12.8, 6.2, 2.2 Hz, 1H), 1.41 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 151.01, 

143.62, 141.10, 129.68, 128.05, 126.17, 116.37, 113.39, 74.18, 58.24, 55.87, 55.65, 51.19, 36.18, 

29.28, 28.97, 27.19; GC/MS (CI) m/z [M+H]
+
 for C21H25NO found 308. 

Data for 5a: Following GP4, the product was isolated as a yellow oil, 55%; Silica gel column 

chromatography (10:1 hexanes/EtOAc then 5:1 hexanes/EtOAc); IR υmax 

(cm
-1

) 2929, 1697, 1597, 1490, 1454, 1379, 1265, 1186, 742, 688; 
1
H NMR 

(400 MHz, Chloroform-d) δ 7.22 (dddd, J = 7.8, 7.1, 1.6, 0.9 Hz, 2H), 7.17 – 

7.11 (m, 1H), 7.10 – 7.04 (m, 2H), 7.00 – 6.96 (m, 3H), 6.91 (dddd, J = 7.8, 

6.1, 1.6, 0.9 Hz, 1H), 3.27 – 3.20 (m, 1H), 3.04 – 2.98 (m, 1H), 2.96 – 2.88 (m, 2H), 2.71 – 2.65 

(m, 1H), 1.75 (dddd, J = 13.3, 10.5, 7.2, 2.5 Hz, 1H), 1.63 (d, J = 12.2 Hz, 1H), 1.51 (ddt, J = 

9.1, 6.9, 2.3 Hz, 1H), 1.40 (ddt, J = 12.1, 5.0, 1.4 Hz, 1H), 1.01 (s, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 179.90, 178.01, 150.77, 133.41, 130.51, 130.07, 129.92, 128.20, 127.71, 126.43, 68.54, 
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51.77, 50.42, 49.84, 46.26, 39.99, 32.21, 25.09; GC/MS (CI) m/z [M+H]
+
 for C22H22N2O2 found 

347.  

Data for 5a-1: 
1
H NMR (400 MHz, Chloroform-d) δ 7.54 – 7.45 (m, 2H), 7.45 – 7.36 (m, 1H), 

7.32 – 7.22 (m, 6H), 7.11 – 7.02 (m, 1H), 3.65 (dd, J = 10.3, 7.6 Hz, 1H), 3.42 (ddd, J = 13.5, 

7.2, 5.3 Hz, 1H), 3.32 – 3.20 (m, 2H), 3.02 (dtd, J = 7.6, 5.2, 2.5 Hz, 1H), 2.21 (d, J = 11.7 Hz, 

1H), 2.16 – 2.03 (m, 1H), 2.03 – 1.93 (m, 1H), 1.77 (ddd, J = 11.8, 4.9, 1.7 Hz, 1H), 1.42 (s, 3H). 

Data for 5b: Following GP4, the product was isolated as a yellow oil, 28%; Silica gel column 

chromatography (3:1 hexanes/EtOAc); IR υmax (cm
-1

) 2920, 1701, 1487, 

1377, 1186, 1143, 763, 742, 727, 704; 
1
H NMR (400 MHz, Chloroform-d) δ 

7.48 – 7.40 (m, 2H), 7.39 – 7.32 (m, 1H), 7.29 – 7.22 (m, 6H), 7.00 (p, J = 

4.6 Hz, 1H), 3.78 (d, J = 7.8 Hz, 1H), 3.46 – 3.31 (m, 1H), 3.14 (d, J = 7.7 

Hz, 1H), 2.98 – 2.84 (m, 2H), 2.79 (p, J = 6.7 Hz, 1H), 1.98 (d, J = 16.1 Hz, 1H), 1.74 (dd, J = 

4.1, 1.7 Hz, 2H), 1.69 – 1.59 (m, 1H), 0.80 (d, J = 6.5 Hz, 3H), 0.63 (d, J = 6.7 Hz, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 178.29, 150.90, 132.14, 129.23, 129.03, 128.59, 126.28, 124.22, 

123.11, 74.18, 51.69, 51.44, 48.82, 36.40, 35.33, 30.73, 29.60, 19.87, 19.73; GC/MS (CI) m/z 

[M+H]
+
 for C24H26N2O2 found 375. 

Data for 5c: Following GP4, the product was isolated as a yellow oil, 43%; Silica gel column 

chromatography (2:1 hexanes/EtOAc); IR υmax (cm
-1

) 1707, 1610, 

1496, 1456, 1371, 1321, 1161, 1103, 1068, 848, 732, 690;
 1

H NMR 

(400 MHz, Chloroform-d) δ 7.48 – 7.42 (m, 4H), 7.41 – 7.36 (m, 1H), 

7.35 – 7.30 (m, 2H), 7.24 – 7.18 (m, 2H), 3.64 (dd, J = 10.2, 7.6 Hz, 

1H), 3.49 – 3.38 (m, 1H), 3.27 (d, J = 10.2 Hz, 1H), 3.18 (dt, J = 12.7, 6.4 Hz, 1H), 3.00 (dddt, J 

= 8.5, 7.2, 4.8, 2.0 Hz, 1H), 2.29 – 2.20 (m, 1H), 2.18 – 2.07 (m, 1H), 2.01 – 1.91 (m, 1H), 1.77 
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(ddd, J = 12.0, 4.8, 1.6 Hz, 1H), 1.50 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 176.63, 176.03, 

152.54, 132.15, 129.43, 128.82, 126.59, 126.20, 125.39 (q, J = 3.6 Hz), 124.89, 115.62, 67.66, 

56.58, 50.60, 46.77, 44.77, 34.77, 27.07, 26.61; GC/MS (CI) m/z [M+H]
+
 for C23H21F3N2O2 

found 415. 

Data for 5d: Following GP4, the product was isolated as a yellow-brown oil, 30%; Alumina gel 

column chromatography (3:1 hexanes/EtOAc); IR υmax (cm
-1

) 2926, 

2850, 1764, 1703, 1508, 1373, 1172, 1136, 1016, 831, 742, 686; 
1
H 

NMR (400 MHz, Chloroform-d) δ 7.50 – 7.44 (m, 2H), 7.42 – 7.36 

(m, 1H), 7.32 – 7.28 (m, 2H), 7.15 – 7.10 (m, 2H), 6.77 – 6.72 (m, 

2H), 3.90 (t, J = 6.5 Hz, 2H), 3.61 (dd, J = 10.4, 7.6 Hz, 1H), 3.34 – 3.18 (m, 3H), 2.98 (dtd, J = 

7.8, 5.0, 2.9 Hz, 1H), 2.18 – 2.10 (m, 1H), 2.03 (dtd, J = 15.6, 7.8, 5.0 Hz, 1H), 1.94 (ddtd, J = 

12.8, 8.0, 4.9, 3.9, 2.6 Hz, 1H), 1.73 (dddd, J = 8.9, 7.8, 6.9, 5.9 Hz, 3H), 1.51 – 1.42 (m, 2H), 

1.32 (s, 3H), 0.96 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 177.11, 175.97, 156.15, 

143.00, 132.48, 129.41, 129.01, 128.67, 126.64, 114.11, 67.96, 67.29, 56.84, 50.00, 47.27, 46.92, 

35.75, 31.62, 27.21, 27.16, 19.48, 14.09; GC/MS (CI) m/z [M+H]
+
 for C26H30N2O3 found 419. 

2.5. Conclusion 

The [3+2] annulation of cyclopropylanilines with alkynes via visible light photocatalysis 

has been demonstrated as an effective atom-economical pathway for the construction of 

structurally diverse carbocycles substituted with amines from simple building blocks under mild 

conditions.  More importantly, the transformations were accomplished via the synthetic utility of 

amine radical cations, induced by photoredox catalysis, which resulted in a ring-opening strategy 

of cyclopropylanilines.  The annulation products from alkynes were showcased as highly useful 

synthetic intermediates in a four-step synthesis of fused indolines.  Continued studies on further 
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expanding the scope of the [3+2] cycloaddition to include substituted anilines and other types of 

π-bonds (i.e. enynes and diynes) were accomplished.  A rapid access to fused 

saturated/unsaturated heterocycles with bicyclic cyclopropylanilines was described and prepared 

in submission for further analysis of their biological potential.  Furthermore, the newly 

developed [3+2] cycloaddition, promoted by visible light photocatalysis, has emerged as an 

innovative method for synthesizing various cyclic allylic amine derivatives, thus contributing to 

the advances of newly developed transformations.  This successful environmentally sustainable 

chemical process highlights the growing potential avenues of introducing visible light mediated 

reactions to accomplish organic transformations in synthetic chemistry.    
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Appendices 

Appendix 1: [4+2] Cycloaddition of Cyclobutylanilines in Continuous Flow* 

*Portion of this chapter has been published in Nguyen, T. H.; Wang, J.; Zheng, N. Science China 

Chem. 2015, 59, 180-183. 

The merging of visible light photocatalysis and cycloaddition reactions has exhibited 

considerable potential as an effective, synthetic method to construct complex carbocycles and 

heterocycles.  More importantly, a [3+2] cycloaddition of cyclopropylanilines mediated by 

visible light has been established to serve as a new synthetic strategy for assembling amine-

substituted five-membered rings.   Utilizing the unique photophysical properties of ruthenium 

complexes, ring-opening strategy of a donor-substituted cyclopropane was disclosed.  The 

promoted cleavage was proposed by a photooxidation of the parent amine to the corresponding 

amine radical cation.  Thus, initiating the ring-opening of the cyclopropyl ring furnished a three-

carbon synthon, which further underwent the annulation.  Likewise, the same synthetic 

application can be envisioned for cyclobutylanilines in a [4+2] cycloaddition, as the oxidation 

potential of both cyclopropylaniline and cyclobutylanilines were found to be similar.  As a result, 

the ring-opening of a cyclobutyl ring would afford a four-carbon synthon, which subsequently 

follows an annulation sequence to provide a rapid entry to complex 6-membered carbocycles.  

Recently, our group developed a [4+2] annulation of cyclobutylanilines with alkynes under 

visible-light photocatalysis, furnishing an array of amine-substituted six-membered carbocycles 

in moderate to excellent yields.
1
 However, long reaction time (12 to 24 h) was typically required 

for reaction completion.  In addition, the scale-up strategy was problematic, which is a known 

disadvantage associated with batch photochemistry.  Thus, seeking an alternative method or 

technique to drive reactions’ efficiency and address the above issues was highly pursued.     
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Synthetic chemists have continued to explore potential innovative avenues for conducting 

chemical reactions more effectively and efficiently.  Recently, increasing attention has emerged 

in the advances of new technology, as alternative approaches for synthetic applications.
2
  In 

particular, continuous flow has productively showcased their applicability in photochemical 

transformations of both laboratory and industrial scales.
3
  Reactions conducted in continuous 

flow can be advantageous to circumvent some limitations and drawbacks reported in traditional 

batch reactions.  Because of the use of photons, photochemistry suffers some inherent limitations 

associated with how efficiently photons are transmitted through solutions.
4
  The benefits of using 

continuous flow as a preferred technology include shorter reaction time, decrease of undesired 

by-products, and higher yields.  This is attributed to the flow reactor’s high surface-to-volume 

ratio, precise control of irradiation time, and maximum penetration of light, which improves the 

reaction’s exposure to direct uniform irradiation of the solution.
5
  Most importantly, the limited 

scalability with batch reactions in photochemical synthesis can be addressed and assured with 

continuous flow, thus providing a resolution to the batch’s small scale restriction and improving 

the reactions’ efficiency to benefit production scale processes. 

Herein, the application of continuous flow in the [4+2] annulation of cyclobutylanilines 

with alkenes, alkynes, and diynes mediated by photoredox catalysis was investigated for 

improvement in the annulation’s efficiency.  

Although annulation with alkynes was recently 

developed, annulation of cyclobutylanilines 

with alkenes and diynes has not yet been 

reported.  Comparing against the previously 

reported annulation with alkynes in batch, 

Figure 2.6. The continuous flow setup. 
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similar and improved yields with significantly shorter reaction time were observed in continuous 

flow.  Moreover, using the continuous flow technique in a gram-scale annulation was 

successfully demonstrated.  A schematic drawing of the continuous flow setup is depicted in 

Figure 2.6 with more details described in the experimental section. 

Results and Discussion: [4+2] annulation of monocyclobutylaniline with alkynes  

  

Cyclobutylaniline 10a and phenylacetylene 2a were chosen as the standard substrates to 

optimize the catalyst system for the [4+2] annulation in flow (Table 15). Similar to the 

annulation in batch,
1
 the use of Ir (ppy)2(dtbbpy)PF6 (4c) as the catalyst in methanol showed to 

be superior (entry 1) among other catalysts that were screened in flow (entries 2–5). The desired 

Entry
a 

Catalyst Solvent GC Yield
 
(%)

b 

1 Ir(ppy)2(dtbbpy)PF6 (4c) MeOH 99% 

2 Ru(bpy)3(PF6)2 (4b) MeOH 81% 

 3
c 

Ru(bpz)3(PF6)2 (4a) MeOH + MeCN 51% 

 4
c 

Ir(ppy)3 (4d) MeOH + MeCN 43% 

5 Ir[dFCF3ppy]2(bpy)PF6 (4e) MeOH 54% 

 6
d
 None MeOH <1% 

 7
e
 Ir(ppy)2(dtbbpy)PF6 (4c) MeOH <1% 

 8
f
 Ir(ppy)2(dtbbpy)PF6 (4c) MeOH 65% 

Table 15. Optimization of [4+2] annulation in continuous flow. 

a
Reaction conditions: 10a (0.2 mmol, 0.1 mol/L in degassed solvent), 2a (0.6 mmol), 4a-d (2 

mol%) in flow with Royal blue LED; 
b
Used dodecane as an internal standard; 

c
Co-solvent of 

MeOH and MeCN (1:1) used due to the solubility issue of the catalyst; 
d
Reaction conducted 

in the absent of catalyst; 
e
Reaction conducted in dark; 

f
Reaction conducted in the presence of 

air. 
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Table 16. [4+2] annulation in cyclobutylanilines with various pi bonds. 
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product 11a was obtained in 99% GC yield (93% isolated yield) after 6 h irradiation.  The results 

were comparable with the previous reports in batch, except the reaction time was decreased by a 

half.  Control studies demonstrated that both light and catalyst were required for the annulation 

(entries 6 & 7), as no formation of product was observed in the absence of both components.  

When the reaction was conducted in the presence of air (oxygen in air), the yield of 11a was 

diminished to 65%.  The results from optimizing the reaction were fully consistent with those 

obtained in batch.  

Under the optimized conditions, the scope of the annulation of cyclobutylanilines with 

variable electronic and steric characters was examined in continuous flow and summarized in 

a
 Reaction condition: substrate (0.2 mmol, 0.1 M in degased MeOH), 2a-s (1 mmol), 4c (2 

mol%), flow LED. 
b
 Isolated yields. 

c
 d.r. = 3:2, 

d
 d.r. = 2:1 and 

e
 d.r. = 1:1 as determined by 

1
H NMR spectroscopy of crude products. 

f
DMSO used as solvent. 

Table 16 continued. 
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Table 16.  Substrate 10b with an electron-donating substituent (OTBS) afforded the desired 

product in an improved 32% yield, compared to an 8% yield after 24 h in batch (Table 16, entry 

1).  Conversely, substrate 10e with an electron-withdrawing substituent (CF3), which performed 

better in batch (79% yield after 24 h), provided comparable yields of 11e with shortening of the 

reaction time by half (Table 16, entry 4).  Observed in both batch and continuous flow, steric 

effects had no interference with the annulation.  Using flow, shorter reaction time was observed 

with ortho-isopropyl substituted 10c (entry 2) and also an improved yield for tolerated ortho-

phenyl substituted 10d (entry 3).  N-(3-pyridyl)-cyclobutylamine 10f, which had not been studied 

in the annulation with alkyne 2o in batch, underwent the annulation in flow uneventfully, 

providing pyridine-containing product 11f in a modest yield (entry 5).  Using flow, [4+2] 

annulation of cyclobutylanilines with alkenes (2p-2r) were subjected to the optimized conditions 

with completion in 6 to 8 h.  Modest to excellent yields were achieved, but with poor 

diastereoselectivity.  This was no surprise as the same selectivity issue was observed in the [3+2] 

annulation of cyclopropylanilines with alkenes.
6
 Unlike reactive alkenes, diynes generally 

exhibit poor reactivity, as reported in the [3+2] annulation.
7
 Unsymmetric diyne 2g and 

symmetric diyne 2s underwent the [4+2] annulation in a reasonable amount of time (12 to 14 h) 

with the assistance of flow.  Cycloadducts 11j and 11k, possessing a 1,3-conjugated enyne 

moiety, were afforded in good to excellent yields (60-85%) with complete regioselectivity.  This 

observation of complete regiocontrol is in accordance with the result reported in the [3+2] 

annulation.  Moreover, this commonality suggests that both types of annulation may proceed 

through similar reaction pathways involving the proposed distonic iminum ions.  To further 

confirm the structure of 11k, the two acetate groups were cleaved to provide the diols (11l, see 

below Experimental Section) and subsequent 2D NMR experiments were performed to assign 
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the structure.   

Gram-scale Reaction 

 Lastly, a gram scale reaction of a selected [4+2] cycloaddition was showcased in 

continuous flow.  Using the standard substrates acquired in the optimization studies, a slight 

modification of the conditions was considered.  Cyclobutylaniline 10a (1 g, 4.8 mmol), 

phenylacetylene 2a (1.46 g, 14.4 mmol), and [Ir(dtbbpy)(ppy)2](PF6) (21 mg, 0.024 mmol, 0.5 

mol%) were mixed with MeOH (30 mL). The resulting solution was sparged with argon for 30 

min and then flowed through the photoreactor (Scheme 2.12).  In continuous flow, much lower 

catalyst loading (0.5 mol % vs. 2 mol %) was realized; however, a longer reaction time (48 h vs. 

6 h) was acquired for completion.  Although the annulation was accomplished on a gram scale 

using flow, the isolated yield of product 11a was slightly diminished (73% vs. 93%). 

 

In summary, application of the [4+2] annulation of cyclobutylanilines with various π 

bonds in continuous flow was successfully developed, to further demonstrate the reactions’ 

improved efficiency and the shorter reaction times achieved.  Previously accomplished substrates 

of the [4+2] annulation with alkynes in batch were subjected to flow conditions.  In addition, the 

scope was extended to include alkenes and diynes that have not been reported.  Comparable and 

improved yields with significant decrease of reaction times were obtained.  Notably, the 

annulation reaction was conducted on a gram scale using a much lower catalyst loading with the 

assistance of the continuous flow technique. 

Scheme 2.12. Gram-scale reaction in continuous flow. 
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Experimental Section 

All reactions were carried out under argon atmosphere, unless stated otherwise.  Anhydrous 

methanol (CH3OH, AcroSeal) was purchased from Acros Organics and dimethylsulfoxide 

(DMSO) was pre-dried over molecular sieves.  Toluene was collected under argon from a 

solvent purification system. Phenylacetylene 2a, Ethyl phenylpropiolate 2o, Styrene 2p, and 

Acrylonitrile 2r were purchased from Sigma-Aldrich. Methyl propiolate 2n and 2-Bromostyrene 

2q were purchased from Matrix Scientific. Diynes 2g
8
 and 2s

9
 were prepared as described in the 

literature.  

General Procedure 5 (GP5): Preparation of N-cyclobutylanilines 

 

To an oven-dried test tube equipped with a stir bar were added 0.01 mmol of Pd2(dba)3 and 0.03 

mmol of ligand ((R)-Tol-BINAP or BrettPhos).  Glove box was used to add 1.5 mmol of 

NaO
t
Pent and the tube was sealed with a Teflon screw cap.  1 mmol of aromatic halide, 1.6 

mmol of cyclobutylamine, and 2 mL of toluene were then added to the reaction mixture and 

heated at 80 °C for 18 h.  After completion, the reaction mixture was cooled to room 

temperature, diluted with diethyl ether, filtered over a short pad of silica gel, and concentrated in 

vacuum.  Purification by flash chromatography on silica gel afforded N-cyclobutylaniline. 

4-tert-Butyldimethylsilyl ether-N-cyclobutylaniline (10b). Following GP5 with (4-

bromophenoxy)-tert-butyldimethylsilane (1.23 mL, 5 mmol, 1 equiv) and BrettPhos (80.5 mg, 

0.15 mmol, 3 mol % equiv), product was isolated after flash chromatography on silica gel (5:1 
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hexane/ EtOAc) as a colorless oil (1.22 g, 88%); IR υmax (cm-1) 3403, 

3062, 2956, 2931, 2889, 2857, 1509, 1471, 1463, 1247, 1163, 922, 908, 

839; 
1
H NMR (400 MHz, Chloroform-d) δ 6.70 – 6.60 (m, 2H), 6.48 – 6.39 (m, 2H), 3.86 – 3.75 

(m, 1H), 2.43 – 2.29 (m, 2H), 1.90 – 1.67 (m, 4H), 0.94 (d, J = 0.6 Hz, 9H), 0.13 (d, J = 0.6 Hz, 

6H);  
13

C NMR (101 MHz, CDCl3) δ 147.73, 141.74, 120.84, 114.48, 80.56, 50.11, 31.49, 25.97, 

18.39, 15.43, -4.26; HRMS (ESI) m/z [M+H]+, calc’d for C16H27NOSi 278.1935; found 

278.1927. 

Preparation and characterization of cyclobutylanilines 10a, 10b, 10c, 10d, 10e, 10f, 10g 

correspond to those described in the literature.
1  

The continuous flow setup 

The continuous flow setup was 

adopted from Professor 

Stephenson and coworkers’ 

method.
10

 Seven prearanged 

Luxeon Rebel high power 

LEDs (royal blue color, λmax 

= 447.5 nm) were used as the 

light source. PFA Tubing 

(IDEX Health and Science, 

Part # 1514L) was wrapped around three borosilicate glass test tubes, supported on both ends by 

small pieces of cardboards.  A total volume of 1.34 mL was placed inside the test tubes.  The 

tubing was then connected to the peristaltic pump tubing (IDEX Health and Science, Part # 

SC0717) with a conical adapter (IDEX Health and Science, Part # P-797). The distance between 
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the light and the tubing was 3 cm (Figure 2.6). 

General Procedure 6 (GP6): [4+2] annulation in continuous flow. An oven-dried test tube 

equipped with a stir bar was charged with Ir(dtbbpy)(ppy)2PF6 (2 mol%), cyclobutylaniline 

derivative (0.2 mmol), alkyne, olefin, or diyne derivative (1 mmol), and dry MeOH (2 mL). The 

test tube was capped with a Teflon screw cap, degassed by Freeze-Pump-Thaw (3-5 cycles), and 

then backfilled with argon. The reaction mixture was next pumped through a flow photoreactor 

in a closed loop system at a flow rate of 75 μL min-1 under the protection of an argon balloon. 

After the reaction was complete, monitored by TLC, the solution was collected in a flask and 

concentrated in vacuum. Purification by silica gel flash chromatography afforded the 

corresponding annulation products. 

Characterization of annulation products 11a, 11c, 11d, and 11e were described in the literature.
1
   

4-(tert-butyldimethylsilyloxy)-N-(2-phenylcyclohex-2-enyl)aniline (11b).  Following GP6 

with cyclobutylaniline 10b (55 mg, 0.2 mmol) and phenylacetylene 2a 

(110 µL, 1 mmol), cycloadduct 11b (24 mg, 32%) was obtained after 

silica gel column chromatography (30:1 hexane/ EtOAc) as colorless 

oil; IR υmax (cm
-1

) 3417, 3022, 2950, 2930, 2903, 1507, 1471, 1250, 1229, 1112, 838; 
1
H NMR 

(400 MHz, Chloroform-d) δ 7.54 – 7.39 (m, 2H), 7.33 – 7.26 (m, 2H), 7.26 – 7.20 (m, 1H), 6.76 

– 6.63 (m, 2H), 6.59 – 6.47 (m, 2H), 6.39 – 6.27 (m, 1H), 4.40 (d, J = 2.5 Hz, 1H), 3.49 (s, 1H), 

2.40 – 2.08 (m, 3H), 1.78 – 1.61 (m, 3H), 1.00 (s, J = 0.7 Hz, 9H), 0.19 (s, J = 0.7 Hz, 6H); 
13

C 

NMR (101 MHz, CDCl3) δ 147.29, 141.97, 140.58, 137.67, 128.70, 128.57, 127.14, 125.74, 

120.84, 114.31, 49.32, 27.86, 26.23, 25.98, 18.38, 17.25, -4.24; HRMS (ESI) m/z [M+H]
+
, calc’d 

for C24H33NOSi 380.2404; found 380.2414. 
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 Ethyl 2-phenyl-3-(pyridin-3-ylamino)cyclohex-1-enecarboxylate (3f).  Following GP6 with 

cyclobutylaniline 10f (30 mg, 0.2 mmol) and Ethyl phenylpropiolate 

2o (165 μL, 1 mmol), cycloadduct 11f (35 mg, 55%) was obtained 

after silica gel column chromatography (20:1 hexane/ EtOAc then 1:2 

hexane/ EtOAc) as a green gray solid, m.p. 151-153 °C; IR υmax (cm
-1

) 3261, 2941, 1689, 1585, 

1417, 1269, 1236, 1049, 790, 756, 696; 
1
H NMR (400 MHz, Chloroform-d) δ 7.93 – 7.83 (m, 

2H), 7.24 – 7.20 (m, 3H), 7.20 – 7.15 (m, 2H), 7.01 – 6.92 (m, 1H), 6.74 (ddd, J = 8.3, 3.0, 1.4 

Hz, 1H), 4.35 – 4.25 (m, 1H), 3.90 – 3.83 (m, 2H), 3.73 (d, J = 8.0 Hz, 1H), 2.67 – 2.54 (m, 1H), 

2.36 – 2.22 (m, 1H), 2.13 – 1.99 (m, 1H), 1.83 – 1.64 (m, 3H), 0.82 (td, J = 7.2, 0.4 Hz, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 170.14, 143.08, 142.16, 140.56, 139.02, 136.56, 133.28, 128.39, 

127.87, 127.65, 123.82, 118.96, 60.76, 51.75, 27.71, 27.11, 17.27, 13.72; HRMS (ESI/APCL) 

m/z [M+H]+, calc’d for C20H22N2O2 323.1754; found 323.175. 

Following GP6 with cyclobutylaniline 10a (41 mg, 0.2 mmol) and styrene 2p (115 μL, 1 mmol), 

annulation product 11g (55 mg, 90 %) was obtained after silica gel column chromatography 

(30:1 hexane/ EtOAc) as a 3:2 mixture of two diastereoisomers. 

4-tert-butyl-N-((1R,2S)-2-phenylcyclohexyl)aniline.  Data for trans-11g: red-brown oil; IR 

υmax (cm-1) 2926, 2854, 1614, 1516, 1448, 1259, 1193, 817, 754, 698, 

545; 
1
H NMR (400 MHz, Methylene Chloride-d2) δ 7.36 – 7.24 (m, 4H), 

7.24 – 7.17 (m, 1H), 7.16 – 7.06 (m, 2H), 6.48 – 6.40 (m, 2H), 3.48 (td, J = 

10.7, 3.8 Hz, 1H), 3.35 (s, 1H), 2.55 (ddd, J = 11.8, 10.4, 3.7 Hz, 1H), 2.44 (dtd, J = 10.6, 3.7, 

2.0 Hz, 1H), 1.99 (dddd, J = 13.2, 6.2, 3.6, 2.3 Hz, 1H), 1.92 – 1.81 (m, 2H), 1.71 – 1.37 (m, 

4H), 1.29 – 1.23 (m, 9H); 
13

C NMR (101 MHz, CD2Cl2) δ 145.77, 145.30, 140.00, 128.97, 
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127.99, 126.84, 126.36, 113.05, 56.76, 51.76, 36.46, 34.32, 34.16, 31.83, 27.07, 25.83; HRMS 

(ESI/APCL) m/z [M+H]+, calc’d for C22H29N 308.2373; found 308.2381. 

4-tert-butyl-N-((1R,2R)-2-phenylcyclohexyl)aniline.  Data for cis-11g: colorless oil; IR υmax 

(cm-1) 2920, 2854, 1614, 1517, 1323, 1192, 817, 748, 696, 542; 
1
H NMR 

(400 MHz, Methylene Chloride-d2) δ 7.38 – 7.22 (m, 4H), 7.16 (ddt, J = 

6.6, 5.9, 2.6 Hz, 1H), 7.09 – 7.01 (m, 2H), 6.40 – 6.32 (m, 2H), 3.79 (q, J 

= 3.2 Hz, 1H), 3.63 (s, 1H), 3.00 (dt, J = 12.5, 3.8 Hz, 1H), 2.16 – 2.02 (m, 1H), 1.96 – 1.80 (m, 

3H), 1.60 – 1.50 (m, 4H), 1.20 (s, 9H); 
13

C NMR (101 MHz, CD2Cl2) δ 146.02, 144.89, 139.97, 

128.68, 128.02, 126.63, 126.30, 113.22, 54.19, 46.76, 34.13, 31.80, 30.71, 26.60, 26.03, 20.75; 

HRMS (ESI/APCL) m/z [M+H]+, calc’d for C22H29N 308.2373; found 308.2382. 

Following GP6 with cyclobutylaniline 10d (45 mg, 0.2 mmol) and 2-Bromostyrene 2q (125 μL, 

1 mmol) in DMSO (2 mL), cycloadduct 11h (43 mg, 53%) was obtained after silica gel column 

chromatography (100 % hexane then 100:1 hexane/ EtOAc) as a mixture of two 

diastereoisomers. 

N-((1R,2R)-2-(2-bromophenyl)cyclohexyl)biphenyl-2-amine.  Data for cis-11h: colorless oil, 

IR υmax (cm
-1

) 2926, 2854, 1577, 1508, 1467, 1435, 1317, 1022, 1008, 

736, 702; 
1
H NMR (400 MHz, Methylene Chloride-d2) δ 7.55 – 7.47 (m, 

3H), 7.46 – 7.39 (m, 1H), 7.34 – 7.28 (m, 2H), 7.13 – 7.06 (m, 1H), 7.05 – 

6.97 (m, 2H), 6.94 (ddd, J = 7.5, 1.7, 0.4 Hz, 1H), 6.79 (dd, J = 7.7, 1.8 Hz, 1H), 6.57 (td, J = 

7.4, 1.1 Hz, 1H), 6.36 – 6.28 (m, 1H), 4.09 (d, J = 7.8 Hz, 1H), 3.98 (dq, J = 6.7, 3.1 Hz, 1H), 

3.31 (ddd, J = 11.3, 5.5, 3.2 Hz, 1H), 2.08 – 1.99 (m, 1H), 1.82 – 1.72 (m, 1H), 1.67 – 1.57 (m, 

1H), 1.54 (dd, J = 8.4, 3.3 Hz, 2H), 1.46 – 1.35 (m, 1H), 1.34 – 1.19 (m, 2H); 
13

C NMR (101 

MHz, CD2Cl2) δ 144.98, 143.02, 140.10, 133.27, 130.17, 130.06, 129.35, 129.32, 129.04, 
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128.27, 128.18, 127.82, 127.62, 125.11, 116.53, 110.79, 51.08, 46.51, 30.42, 26.69, 26.03, 

20.68; HRMS (ESI/APCL) m/z [M+H]+, calc’d forC24H24BrN 406.1165; found 406.1160. 

N-((1R,2S)-2-(2-bromophenyl)cyclohexyl)biphenyl-2-amine.  Data for trans-11h: colorless 

oil; IR υmax (cm
-1

) 2927, 2852, 1577, 1508, 1435, 1317, 1022, 744, 734, 

702; 
1
H NMR (400 MHz, Methylene Chloride-d2) δ 7.56 – 7.50 (m, 1H), 

7.27 (dddd, J = 4.9, 3.0, 1.9, 0.8 Hz, 5H), 7.16 – 7.09 (m, 1H), 7.09 – 7.03 

(m, 1H), 6.90 (ddd, J = 7.4, 1.7, 0.4 Hz, 1H), 6.88 – 6.80 (m, 2H), 6.68 – 

6.56 (m, 2H), 3.71 (d, J = 7.0 Hz, 1H), 3.46 (d, J = 32.3 Hz, 1H), 3.04 (td, J = 11.2, 3.6 Hz, 1H), 

2.37 (dddd, J = 12.0, 5.1, 3.5, 1.6 Hz, 1H), 1.95 – 1.85 (m, 1H), 1.85 – 1.71 (m, 2H), 1.53 – 1.31 

(m, 3H), 1.19 – 1.07 (m, 1H); 
13

C NMR (75 MHz, CD2Cl2) δ 144.74, 143.88, 139.72, 133.20, 

130.68, 129.49, 129.41, 129.01, 128.40, 128.31, 128.07, 127.79, 127.43, 125.85, 116.59, 110.42, 

57.17, 49.45, 34.90, 34.15, 26.81, 25.70; HRMS (ESI/APCL) m/z [M+H]+, calc’d for C24H24BrN 

406.1165; found 406.1159. 

Following GP6 with cyclobutylaniline 10e (43 mg, 0.2 mmol) and acrylonitrile 2r (65 μL, 1 

mmol), cycloadduct 11i (37 mg, 69%) was obtained after silica gel column chromatography (5:1 

hexane/ EtOAc) as a mixture of two diastereoisomers. 

(1R,2R)-2-(4-(trifluoromethyl)phenylamino)cyclohexanecarbonitrile.  Data for trans-11i: 

white solid, m.p. 117-119 °C; IR υmax (cm
-1

) 3338, 2951, 2247, 1614, 

1541, 1315, 1095, 1062, 831, 503; 
1
H NMR (400 MHz, Methylene 

Chloride-d2) δ 7.44 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 4.31 (d, J 

= 8.8 Hz, 1H), 3.52 (ddt, J = 12.5, 8.5, 4.0 Hz, 1H), 3.36 (p, J = 3.3 Hz, 1H), 2.08 (dp, J = 12.4, 

2.9 Hz, 1H), 2.04 – 1.95 (m, 1H), 1.95 – 1.86 (m, 1H), 1.77 – 1.69 (m, 1H), 1.68 – 1.60 (m, 2H), 

1.60 – 1.53 (m, 1H), 1.44 (qt, J = 12.7, 3.8 Hz, 1H);
 13

C NMR (75 MHz, CD2Cl2) δ 149.21, 
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127.29 (q, J = 3.7 Hz), 126.28 (q, J = 268.6 Hz), 120.06, 119.70 (q, J = 32.6 Hz), 113.00, 52.07, 

34.01, 29.95, 28.02, 25.17, 22.04; HRMS (ESI/APCL) m/z [M+H]
+
, calc’d for C14H15F3N2 

269.1260; found 269.1247. 

(1S,2R)-2-(4-(trifluoromethyl)phenylamino)cyclohexanecarbonitrile.  Data for cis-11i: 

yellow solid, m.p. 97-100 °C; IR υmax (cm
-1

) 3358, 2954, 2241, 1614, 

1533, 1317, 1093, 1062, 827, 590; 
1
H NMR (300 MHz, Methylene 

Chloride-d2) δ 7.40 (dd, J = 13.6, 8.5 Hz, 2H), 6.71 (dd, J = 8.8, 2.6 Hz, 

2H), 4.13 – 3.99 (m, 1H), 3.62 (qd, J = 9.1, 3.9 Hz, 1H), 2.56 (ddd, J = 10.0, 9.1, 3.9 Hz, 1H), 

2.24 – 2.04 (m, 1H), 1.76 (dddd, J = 14.0, 10.8, 6.3, 3.2 Hz, 2H), 1.56 – 1.42 (m, 1H), 1.41 – 

1.33 (m, 1H), 1.32 – 1.19 (m, 2H); 
13

C NMR (75 MHz, CD2Cl2) δ 149.78, 127.18 (q, J = 3.8 

Hz), 126.12 (q, J = 268.8 Hz), 121.66, 119.65 (q, J = 32.6 Hz), 114.53, 113.04, 53.48, 35.58, 

32.41, 29.23, 24.35, 24.07; HRMS (ESI/APCL) m/z [M+H]
+
, calc’d for C14H15F3N2 269.1260; 

found 269.1257. 

(3-(phenylamino)-2-(phenylethynyl)cyclohex-1-enyl)methyl acetate.  Following GP6 with 

cyclobutylaniline 10g (35 mg, 0.2 mmol) and diyne 2g (198 mg, 1 

mmol), cycloadduct 11j (45 mg, 60%) was obtained after silica gel 

column chromatography (30:1 hexane/ EtOAc) as yellow brown oil; 

IR υmax (cm
-1

) 3360, 2939, 2864, 1724, 1597, 1369, 1242, 1182, 

1024, 756, 690; 
1
H NMR (400 MHz, Methylene Chloride-d2) δ 7.39 – 7.15 (m, 5H), 6.44 – 6.25 

(m, 3H), 5.01 – 4.85 (m, 2H), 4.27 – 4.07 (m, 1H), 2.28 – 2.19 (m, 7H), 2.12 – 2.04 (m, 3H), 

1.90 – 1.64 (m, 5H); 
13

C NMR (101 MHz, CD2Cl2) δ 171.23, 148.38, 143.05, 139.31, 131.89, 

128.79, 128.71, 123.67, 121.90, 119.73, 111.72, 94.60, 87.52, 66.56, 51.93, 29.01, 27.61, 21.78, 

21.22, 18.71; HRMS (ESI/APCL) m/z [M+H]
+
, calc’d for C25H27NO2 374.2115; found 374.2130. 
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3-(2-(acetoxymethyl)-6-(biphenyl-2-ylamino)cyclohex-1-enyl)prop-2-ynyl acetate.  

Following GP6 with cyclobutylaniline 10d (45 mg, 0.2 mmol) and diyne 

2s (120 mg, 1 mmol), cycloadduct 11k (71 mg, 85%) was obtained after 

silica gel column chromatography (30:1 hexane/ EtOAc to elute excess 

diyne, then 10:1 hexane/ EtOAc) as brown oil; IR υmax (cm
-1

) 2933, 

2864, 1739, 1735, 1508, 1436, 1217, 1024, 908, 731, 704; 
1
H NMR (400 MHz, Chloroform-d) δ 

7.52 – 7.43 (m, 4H), 7.43 – 7.36 (m, 1H), 7.32 – 7.27 (m, 1H), 7.15 (dd, J = 7.5, 1.6 Hz, 1H), 

7.00 (d, J = 8.2 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 4.85 – 4.72 (m, 2H), 4.70 (s, 2H), 4.06 (d, J = 

5.0 Hz, 1H), 2.18 – 2.10 (m, 2H), 2.09 (d, J = 0.6 Hz, 3H), 2.08 (d, J = 0.7 Hz, 3H), 1.88 (ddt, J 

= 16.3, 7.6, 4.0 Hz, 1H), 1.82 – 1.72 (m, 1H), 1.66 – 1.50 (m, 2H); 
13

C NMR (101 MHz, CDCl3) 

δ 170.96, 170.32, 144.30, 144.04, 139.65, 130.71, 129.56, 129.03, 128.72, 128.05, 127.30, 

120.05, 117.15, 111.13, 88.31, 83.79, 66.10, 52.87, 51.64, 28.26, 27.00, 20.97, 20.88, 18.16; 

HRMS (ESI/APCL) m/z [M+H]
+
, calc’d for C26H27NO4 418.2040; found 418.2035. 

The diol was formed by cleavage of the two acetate groups of 11k. It was 

used to further confirm 11k’s structure.  Yellow oil; IR υmax (cm-1) 

3313, 2926, 2858, 1577, 1508, 1309, 1166, 1012, 742, 702; 
1
H NMR (400 

MHz, Methylene Chloride-d2) δ 7.50 – 7.38 (m, 3H), 7.38 – 7.29 (m, 

1H), 7.24 – 7.15 (m, 1H), 7.09 – 6.98 (m, 1H), 6.80 (dd, J = 8.5, 1.1 Hz, 1H), 6.72 (td, J = 7.4, 

1.1 Hz, 1H), 4.22 (s, 4H), 4.09 – 4.01 (m, 1H), 2.20 – 2.11 (m, 2H), 1.80 – 1.68 (m, 3H), 1.66 – 

1.49 (m, 4H); 
13

C NMR (101 MHz, CD2Cl2) δ 148.64, 145.12, 140.13, 130.99, 129.90, 129.47, 

129.06, 128.46, 127.72, 118.43, 117.37, 111.68, 92.56, 83.49, 65.19, 52.17, 51.83, 28.97, 27.47, 

18.92; HRMS (ESI/APCL) m/z [M+H]+, calc’d for C22H23NO2 334.1802; found 334.1809. 
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Appendix 2: Fused N-Arylindolines: Preparation of Styryl Anilines* 

*Portion of this chapter has been published in Morris, S. A.; Nguyen, T. H.; Zheng, N. Adv. 

Synth. Catal. 2015, 357, 2311 –2316. 

As previously discussed in section 2.2.3, the structural motifs of fused indolines are 

prevalently found in bioactive alkaloids and pharmaceuticals.  As an important substructure of 

nitrogen-containing heterocycles, their frequent occurrence in natural products has drawn 

chemists’ attention towards developing innovative and efficient approaches to their synthesis.  

An application of the developed [3+2] annulation of cyclopropylanilines with alkynes described 

a route of accessing fused indolines in four short synthetic steps.
11

  Recently, our group disclosed 

a diastereocontrol method of synthesizing fused N-arylindolines in one step from styrylanilines 

using visible light photoredox catalysis.
12

  The work was an expansion of a previous application 

of preparing mono- and disubstituted indoles (at the C-2 and C-3 positions) through an 

intermediate benzylic carbocation via a photogenerated amine radical cation (Scheme 3.1, eq. 

1).
13

  The same oxidative C-N bond formation cascade triggered by visible light was envisioned 

 Scheme 3.1. Routes to fused indoline synthesis. 
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for the synthesis of fused indolines, followed by subsequent interception of the benzylic 

carbocation with tethered nucleophiles (Scheme 3.1, eq. 2).  Appropriate nucleophiles included 

oxygen and nitrogen atoms.  In order to conduct the cascade, developing synthetic routes for 

accessing the starting materials, styrylanilines bearing a trisubstituted alkene and a para-

alkoxyphenylaniline substituent, were highly desired.   Two synthetic methods were disclosed 

with the first hinging on the use of a Wittig reaction of ketone 4.5 and the ylide generated from 

phosphonium salt 4.4 to furnish the trisubstituted alkene, subsequently followed by a Buchwald-

Hartwig amination to install the para-alkoxyphenylaniline group (Scheme 3.2, Route A).  

Scheme 3.2. Synthetic routes to styrylanilines. 
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However, this lengthy synthesis of styrylanilines, in which lacks convergence, lead to the 

development of an alternative and more convergent route (Scheme 3.2, Route B).  Route B 

describes a rapid access to styrylanilines centered on a Suzuki-Miyaura Cross-Coupling of 

boronate ester 4.7 and vinyl iodide 4.8.  Moreover, the use of synthetic Route B eliminates the 

need of protecting the hydroxyl group, as disclosed in Route A with OTBS groups.  The 

preparation of boronate ester 4.7 was accomplished in two short steps involving a Miyaura 

borylation of N-arylaniline 4.10 as a result of a Buchwald-Hartwig amination of commercially 

available arylhalide 4.11 and aniline 4.3.  Separately, vinyl iodide 4.8 was realized in one step 

via a zirconium-catalyzed carboalumination of 3-butyn-1-ol 4.9.  My contribution to this project 

focused on screening the Suzuki-Miyaura Cross-Coupling reaction in addition to the preparation 

of four styrylanilines utilizing Route B.    

 Boronate ester 4.7 and vinyl iodide 4.8 were used as standard substrates to screen the 

Suzuki-Miyaura Cross-Coupling reaction.  Considerable efforts were applied in finding suitable 

conditions for the reaction, as competitive protodeboronation of the boronate esters became a 

leading issue.  Protodeboronation of boronate esters is a known side reaction in the Suzuki-

Miyaura Cross-Coupling.
14

  With a number of approaches reported to remedy this issue,
15

 I 

planned to solve the problematic protodeboronation by choosing appropriate boronate esters 

and/or catalyst systems.  Initially, potassium trifluoroborate salt 4.7b was employed, as 

potassium trifluoroborate salts are considered as superior organoboron reagents in Suzuki-

Miyaura Cross-Coupling due to their slow release of the corresponding boronic acid.  However, 

significant protodeboronation was observed in the presence of Pd(OAc)2 with Buchwald ligands 

in a 10:1 mixture of toluene to H2O (Table 17, entries 1-3).  Likewise, changing the Pd source to 

Pd(PPh3)4 or PdCl2(dppf)•DCM offered no improvement to the yield of styrylaniline 4.6 (entries  
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Entry
a 

X Pd Source Ligand Solvent 
Yield of 

4.6
b 

Yield of 

4.6-a
b,c 

1 
BF3K 

4.7b 
Pd(OAc)2 RuPhos Toluene/ H2O (10:1) 5% 118% 

2 
BF3K 

4.7b 
Pd(OAc)2 SPhos Toluene/ H2O (10:1) 4% 125% 

3 
BF3K 

4.7b 
Pd(OAc)2 XPhos Toluene/ H2O (10:1) 5% 130% 

4 
BF3K 

4.7b 
Pd(PPh3)4 None Toluene/ H2O (10:1) 8% 76% 

5 
BF3K 

4.7b 

PdCl2(dppf) 

•DCM 
None Toluene/ H2O (10:1) 0% 81% 

6 
BPin 

4.7a 
Pd(OAc)2 RuPhos Toluene/ H2O (10:1) 55% 87% 

7 
Bpin 

4.7a 
Pd(OAc)2 SPhos Toluene/ H2O (10:1) 30% 124% 

8 
BPin 

4.7a 
Pd(OAc)2 XPhos Toluene/ H2O (10:1) 16% 135% 

9 
BPin 

4.7a 
Pd(PPh3)4 None Toluene/ H2O (10:1) 9% 115% 

10 
BPin 

4.7a 

PdCl2(dppf) 

•DCM 
None Toluene/ H2O (10:1) 10% 122% 

11 
BPin 

4.7a 
Pd(OAc)2 RuPhos THF/ H2O (10:1) 83% 13% 

12 
BPin 

4.7a 
Pd(OAc)2 RuPhos EtOH/ H2O (1:1) 90% 47% 

13 
BPin 

4.7a 
Pd(OAc)2 RuPhos 

Toluene/EtOH/H2O 

(2:1:1) 
91% 13% 

14 
BPin 

4.7a 
Pd(OAc)2 RuPhos 

Benzene/EtOH/ H2O 

(2:1:1) 
87% 12% 

15 
BPin 

4.7a 
Pd(OAc)2 RuPhos 

THF/ EtOH/ H2O 

(2:1:1) 

95% 

(88%)
d 11% 

Table 17. Screening of the Suzuki-Miyarua Cross-Coupling reaction. 
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4 & 5).  Alternatively, boronate ester 4.7a served as a suitable boron reagent providing the 

desired 4.6 in 55% GC yield with a slight decrease in protodeboronation (entry 6).  Screening of  

other Buchwald ligands suggested RuPhos to be the optimal ligand (entries 7 & 8).  It became 

apparent that Pd(PPh3)4 and PdCl2(dppf)•DCM were inferior to Pd source Pd(OAc)2  (entries 9 & 

10).  Other solvent mixtures were then investigated to find the optimal solvent system.  When 

toluene was replaced with THF and EtOH (with a ratio decrease of EtOH from 10 to 1), the yield 

dramatically increased to 83% and 90%, respectively (entries 11 & 12).  The yield was further 

increased with minimal protodeboronation observed when a 2:1:1 mixture of THF/EtOH/H2O 

was incorporated (entry 15).  Replacement of THF with toluene or benzene in the three-solvent 

system gave slightly inferior results, confirming the THF/EtOH/H2O mixture as the optimal 

solvent system (entries 13 & 14). 

 

 With the Suzuki-Miyaura screening established, Route B was acquired for the preparation 

of four targeted styrylanilines to contribute to the substrate scope.  It was envisioned to decorate 

the N-arylaniline with electron-donating and electron-withdrawing groups in addition to 

installing tethered oxygen and nitrogen nucleophiles.  To accomplish this, styrylanilines 

substituted with trifluoromethyl and methoxy groups para and meta to the para-methoxyphenyl 

a
conditions: boronate ester or trifluoroborate salt 4.7 (1.5 equiv.), Pd source (2 mol%), ligand 

(4 mol%), and ground K3PO4 (3 equiv.).  The reaction was sealed and then subjected to three 

cycles of evacuation/refill with N2.  Alcohol 4.8 (1 equiv., 0.22 mmol) and solvent (1 mL, 

degassed) were then added.  
b 

Used dodecane as an internal standard. 
c 
Since 1.5 equiv of 4.7 

was used, the maximum yield would be 150%. 
d
 Isolated yield. 

Figure 2.7. Targeted styrylanilines. 
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(PMP) moiety (4.9, 4.10, and 4.11) were prepared along with tethered amine nucleophile 4.12 

(Figure 2.7).  Initial efforts of synthesizing styrylaniline 4.9 began with introducing the PMP 

group to commercially available 2-bromo-4-(trifluoromethyl)aniline via an amination procedure 

with 4-iodoanisole.  Unexpectedly, the amination step was problematic as several conditions 

were screened, but provided no positive results (Scheme 3.3, eq. 1).  The combination of 

electronic characters with the aniline moiety and the arylhalide, bearing the methoxy group, 

appeared to have an effect on the amination step.   It was then strategized to install the boronate 

ester 4.9c first, followed by an amination to provide the precursor to the Suzuki-Miyaura Cross-

Coupling 4.9d (Scheme 3.3, eq. 2).  Although the amination step for this particular substrate was 

not synthetically useful, the Miyaura borylation and the Suzuki-Miyaura Cross-Coupling 

Scheme 3.3. Synthetic route of styrylaniline 4.9. 
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reaction were accomplished in good to excellent yields (50% and 95%, respectively) to afford 

the desired styrylaniline 4.9.  For the preparation of styrylaniline 4.10, substituted with a 

trifluoromethyl group meta to the PMP group, it was thought that the same sequence could be 

applied; however, amination of the prepared boronate ester 4.10b was unsuccessful (Scheme 3.4, 

eq. 1).  The boronate ester was then subjected to the Suzuki-Miyaura cross-coupling conditions, 

furnishing the trisubstituted alkene aniline 4.10c in 58% yield (eq. 2).  Unfortunately, the 

following amination step afforded styrylaniline 4.10 in a poor yield as a 2.5:1 mixture, detected 

by GC/MS.  It is unclear how two possible isomers are produced, thus the lowered ratio isomer 

of the mixture is currently unidentified.   The discouraging results lead to an attempt of acquiring 

Route B by introducing the amination step first.  Direct amination of 4-iodoanisole with 

conditions: (a) HBpin (3 equiv), (dppf)PdCl2.DCM, Et3N, dioxane; (b) Pd2(dba)3, (R)-tol-

BINAP [(b') DPEPhos], NaO
t
Pent, toluene; (c) Pd(OAc)2, RuPhos, K3PO4, THF:EtOH:H2O 

(2:1:1);  (d) Pd2(dba)3, DavePhos, LiN(TMS), THF; (e) CuI, Proline, K2CO3, DMSO; (f) 

NaNO2, KI H2O 

Scheme 3.4. Efforts toward the preparation of styrylaniline 4.10. 
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commercially available 2-bromo-5-(trifluoromethyl)aniline 4.10a detected no product formation 

(eq. 3), thus, the aniline was converted to iodobenzene derivative 4.10d in the presence of 

sodium nitrite and potassium iodide.  Buchwald-Hartwig amination of 4.10d with para-

methoxyaniline was carried out in a moderate yield of 59% using ligand (R)-tol-BINAP, as no 

reaction was observed with ligand DPEPhos (eq. 4).  Subsequent subjection to Miyaura 

borylation and Suzuki conditions successfully gave the desired styrylaniline 4.10 (Scheme 3.5,  

 

 

conditions: (a) NaNO2, KI, H2O; (b) Pd(OAc)2, (R)-tol-BINAP, [(b') DPEPhos], NaO
t
Pent, 

toluene; (c) B2(Pin)2, Pd2(dba)3, XPhos, KOAc, dioxane; (d) Pd(OAc)2, RuPhos, K3PO4, 

THF:EtOH:H2O (2:1:1); (e) phthalimide, PPh3, DIAD, THF; (f) N2H4H2O, EtOH, reflux; (g) 

Boc2O, DMAP, DCM 

Scheme 3.5. Preparation of styrylanilines 4.10-4.12. 
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eq. 1).  Likewise, the same sequence was applied for the synthesis of styrylaniline 4.11, 

substituted with a methoxy group instead of the trifluoromethyl group (eq. 1).  All four synthetic 

steps were high yielding (78% -91%), except for the conversion of aryl bromide 4.11e to 

boronate ester 4.11f (32%).   Lastly, styrylaniline 4.12 with a tethered amine nucleophile was 

easily generated from the corresponding alcohol substrate 4.12d using a Gabriel synthesis 

followed by a Boc protection.  Much like the previously disclosed syntheses, styrylaniline 4.12d 

was prepared via Route B in moderate to excellent yields.  

The styrylanilines were successfully synthesized and given to my colleague, Scott 

Morris, for the preparation of N-arylindolines subjected under visible light photoredox 

conditions.  Moreover, synthetic route B was developed for accessing the starting materials, 

substituted with various electronic characters, permitting flexibility in regards to decorating the 

N-arylindolines and ultimately expanding the substrate scope.  Finding the appropriate conditions 

suitable for the Suzuki-Miyarua cross-coupling reaction was a key component in contributing to 

the successful convergent synthesis of styrylanilines.       

Experimental Section 

General Procedure 7 (GP7): Preparation of N-Arylanilines using a Buchwald-Hartwig 

Amination 

Preparation of N–arylanilines was accomplished using a literature procedure.
13

 To an oven-dried 

Schlenk flask equipped with a stir bar was added 0.5–8 mol % Pd(OAc)2 or Pd2(dba)3 and 1.5– 

12 mol % ligand. Glove box was used to add 1.5–2 equiv of NaO
t
Pent and the tube was sealed. 1 

equiv of aromatic halide, 1.2–1.5 equiv of aniline, and anhydrous 1,4–dioxane or toluene (0.5–

0.8 M) were then added to the reaction mixture and heated at 110 °C for 18 h. After completion, 

the reaction mixture was cooled to room temperature, diluted with diethyl ether, filtered over a 
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short pad of silica gel, and concentrated in vacuum. Purification by flash chromatography on 

silica gel afforded the corresponding N-arylaniline. 

Preparation of (E)-4-iodo-3-methylbut-3-en-1-ol 4.8 

 

Preparation and characterization of (E)-4-iodo-3-methylbut-3-en-1-ol 4.8 from commercially 

available 3-butyn-1-ol in one step correspond to those described in literature.
16 

General Procedure 8 (GP8): Preparation of 1-bromo-2-iodoanilines  

Preparation of 1-bromo-2-iodoanilines was performed using a literature procedure.
17

  To a 

cooled solution (0 °C) of the aniline (1 equiv, 5 mmol) and aq. HCl (3.6 M, 13 mL) in a round 

bottom flask equipped with a stir bar was added slowly NaNO2 (1.2 equiv, 6 mmol, 414 mg) in 

H2O (10 mL, 0.6 M). Once the solid dissolved, a separate solution of KI (1.5 equiv, 7.5 mmol, 

1.24 g) in H2O (5 mL, 1.5 M) was added dropwise to the aniline-containing solution. The 

resulting solution was warmed to room temperature and stirred for 30 minutes prior to heating at 

70 °C for 1 hour. The mixture was then cooled to room temperature and neutralized by slow 

addition of Na2S2O3 (0.4 M). The neutralized solution was then extracted with DCM (3 x 20 

mL), and the combined organic layers were washed with H2O (3 x 20 mL). The organic layer 

was then dried over MgSO4 and concentrated in vacuum to give crude product. Purification by 

flash chromatography on silica gel provided the desired product. 

1-bromo-2-iodo-4-(trifluoromethyl)benzene. Following procedure GP8 with commercially 

available 2-bromo-5-(trifluoromethyl)aniline (1.2 g, 0.72 mL), the desired product was obtained 
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after flash chromatography on silica gel (100% hexanes) as a clear yellow 

oil (1.45 g, 83%). Characterization of the pure compound matched literature 

values.
17 

 1-bromo-2-iodo-4-methoxybenzene. Following procedure GP8 with commercially available 2-

bromo-5-methoxyaniline (1.01g, 0.66 mL), the desired product was obtained 

after flash chromatography on silica gel (100% hexanes) as a clear yellow oil 

(1.28 g, 82%). Characterization of the pure compound matched literature 

values.
17

 

2-bromo-N-(4-methoxyphenyl)aniline. Following procedure GP7 with commercially available 

1-bromo-2-iodobenzene 4.12a (1 equiv, 7.79 mmol, 2.20 g), Pd(OAc)2 (0.5 mol 

%, 0.039 mmol, 8.7 mg), DPEPhos (1.5 mol %, 0.117 mmol, 63 mg), p–anisidine 

(1.2 equiv, 9.35 mmol, 1.2 g) and NaO
t
Pent (1.5 equiv, 11.7 mmol, 1.3 g) in 15 

mL of toluene. Purification by flash chromatography on silica gel (99:1 hexanes:EtOAc) 

afforded the desired product as a white solid (2.17 g, 76%). Characterization of the pure 

compound matched described literature values.
18

 

2-bromo-N-(4-methoxyphenyl)-5-(trifluoromethyl)aniline.  Following procedure GP7 with 1-

bromo-2-iodo-4-(trifluoromethyl)benzene 4.10d (1 equiv, 2 mmol, 702 

mg), Pd(OAc)2 (8 mol %, 0.16 mmol, 36 mg), (R)-T-BINAP (12 mol %, 

0.24 mmol, 163 mg), p–anisidine (1.5 equiv, 3 mmol, 369 mg), and 

NaO
t
Pent (2 equiv, 4 mmol, 440 mg) in 4 mL of toluene. Purification by flash chromatography 

on silica gel (90:10 hexane:EtOAc) afforded the desired product as a red–orange oil (406 mg, 

59%). IR υmax (cm
–1

) 3408, 2838, 1602, 1514, 1433, 1333, 1249, 1169, 1125, 1079. 
1
H NMR 

(400 MHz, Chloroform-d) δ 7.58 (dq, J = 8.3, 0.8 Hz, 1H), 7.18 – 7.12 (m, 2H), 7.08 (dd, J = 



179 
 

2.2, 0.7 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.90 – 6.82 (m, 1H), 6.16 – 6.06 (m, 1H), 3.85 (s, 3H); 
13

C 

NMR (101 MHz, CDCl3) δ 157.37, 144.16, 133.34, 132.89, 130.94 (q, J = 32.3 Hz), 125.74, 

124.06 (q, J = 272.5 Hz), 115.60, 115.24, 113.46, 1, 109.92, 55.75; GC/MS (CI) m/z [M+H]+ for 

C14H11BrNO2 found 308. 

2-bromo-5-methoxy-N-(4-methoxyphenyl)aniline.  Following procedure GP7 with 1-bromo-2-

iodo-4-methoxybenzene 4.11d (1 equiv, 3.2 mmol, 1.0 g), Pd(OAc)2 (8 

mol %, 0.256 mmol, 57.5 mg), (R)-T-BINAP (12 mol %, 0.384 mmol, 

261 mg), p–anisidine (1.5 equiv, 4.8 mmol, 591 mg), and NaO
t
Pent (2 

equiv, 6.4 mmol, 705 mg) in 4 mL of toluene. Purification by flash chromatography on silica gel 

(95:5 hexane:EtOAc) afford the desired product as a pale cloudy oil (900 mg, 91%). IR υmax 

(cm
–1

) 3391, 3005, 2958, 2835, 1591, 1510, 1448, 1170, 832, 598. 
1
H NMR (400 MHz, 

Chloroform-d) δ 7.44 – 7.33 (m, 1H), 7.21 – 7.09 (m, 2H), 6.97 – 6.85 (m, 2H), 6.52 (t, J = 2.7 

Hz, 1H), 6.27 (ddd, J = 8.8, 2.8, 1.2 Hz, 1H), 5.95 (s, 1H), 3.83 (d, J = 0.9 Hz, 3H), 3.70 (d, J = 

0.9 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 160.11, 156.73, 144.30, 134.03, 133.12, 125.19, 

114.97, 105.25, 101.69, 100.23, 55.75, 55.57; GC/MS (CI) m/z [M+H]+ for C18H20N2O found 

281. 

General Procedure 9 (GP9): Preparation of N–aryl-2-(4,4,5,5-tetramethyl-1,3,2- 

dioxaborolan-2-yl)anilines from 2-bromo-N-arylanilines using a Miyaura Borylation 

Preparation of N–aryl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)anilines was performed 

using a literature procedure.
19

  To an oven-dried Schlenk flask equipped with a stir bar was 

added 1.2–2 equiv of Bis(pinacolato)diboron (B2(pin)2), 4 mol % Pd2(dba)3 and 8 mol % XPhos. 

Glove box was used to add 3 equiv of KOAc and the tube was sealed with a Teflon screw cap. 1 

equiv of Aromatic halide and 1,4-dioxane (0.33–0.5 M) were then added to the reaction mixture 
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and heated at 110 °C for 24–48 h. After completion, the reaction mixture was cooled to room 

temperature, diluted with diethyl ether, and filtered over a short pad of Celite. The Celite was 

washed with ethyl acetate and the combined filtrate was concentrated in vacuum and purified by 

flash chromatography on silica gel to afford the corresponding N–aryl-2-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)aniline. 

N-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline. Following 

procedure GP9 with 2-bromo-N-(4-methoxyphenyl)aniline (1 equiv, 14.4 mmol, 

4.0 g), B2(Pin)2 (2 equiv, 28.8 mmol, 7.3 g), Pd2(dba)3 (4 mol %, 0.57 mmol, 527 

mg), XPhos (8 mol %, 1.15 mmol, 548 mg), and KOAc (3 equiv, 43.1 mmol, 4.23 

g) in 30 mL of anhydrous 1,4–dioxane. The reaction was heated for 24 h. Purification by flash 

chromatography on silica gel (97:3 hexanes:EtOAc) afforded 4.7a as a brown solid, m.p. 89–91 

°C (2.6 g, 55%). IR υmax (cm
–1

) 3388, 2983, 2834, 1602, 1514, 1462, 1372, 1143, 1038, 753. 
1
H 

NMR (400 MHz, Chloroform-d) δ 7.71 (ddd, J = 7.4, 1.8, 0.5 Hz, 1H), 7.24 (ddd, J = 8.4, 7.2, 

1.8 Hz, 1H), 7.21 – 7.16 (m, 2H), 6.97 (ddd, J = 8.4, 1.0, 0.5 Hz, 1H), 6.93 – 6.88 (m, 2H), 6.73 

(td, J = 7.3, 1.0 Hz, 1H), 3.83 (s, 3H), 1.36 (s, 12H); 
13

C NMR (75 MHz, CDCl3) δ 153.92, 

151.20, 138.66, 137.52, 132.81, 118.24, 113.42, 99.33, 84.09, 61.26, 56.33, 25.24, 25.14; HRMS 

(ESI) m/z [M+H]+, calc’d for C19H24BNO3 326.1925; found 326.1926. 

N-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-

(trifluoromethyl)aniline. Following procedure GP9 with 2- bromo-N-(4-

methoxyphenyl)-5-(trifluoromethyl)aniline (1 equiv, 1.01 mmol, 350 mg), 

B2(pin)2 (1.2 equiv, 1.21 mmol, 308 mg), Pd2(dba)3 (4 mol %, 0.04 mmol, 

37 mg), XPhos (8 mol %, 0.08 mmol, 38 mg), and KOAc (3 equiv, 3.03 mmol, 298 mg) in 2 mL 

of anhydrous 1,4–dioxane. The reaction was heated for 24 h. Purification by flash 
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chromatography on silica gel (90:10 hexanes:EtOAc) afforded 4.10f as a yellow solid, m.p. 86–

90 °C. (220 mg, 55%) IR υmax (cm
–1

) 3390, 2986, 1576, 1511, 1435, 1333, 1248, 1167, 1126, 

861. 
1
H NMR (400 MHz, Chloroform-d) δ 7.78 (d, J = 7.7 Hz, 1H), 7.65 (s, 1H), 7.23 – 7.13 (m, 

2H), 7.10 (d, J = 1.6 Hz, 1H), 6.99 – 6.87 (m, 3H), 3.85 (s, 3H), 1.38 (s, 12H); 
13

C NMR (101 

MHz, CDCl3) δ 156.71, 152.84, 137.97, 134.46 (q, J = 31.7 Hz), 134.14, 125.32, 124.34 (q, J = 

272.8 Hz), 122.98, 115.03, 113.24, 108.05, 84.44, 55.78, 25.12; FTMS (ESI) m/z [M+H]+, 

calc’d for C20H23BF3NO3 394.1799; found 394.1800. 

5-methoxy-N-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline. 

Following procedure GP9 with 2-bromo- 5-methoxy-N-(4-

methoxyphenyl)aniline (1 equiv, 2.54 mmol, 783 mg), B2(pin)2 (1.2 equiv, 

3.05 mmol, 774 mg), Pd2(dba)3 (4 mol %, 0.1 mmol, 93 mg), XPhos (8 

mol %, 0.2 mmol, 97 mg), and KOAc (3 equiv, 7.62 mmol, 748 mg) in 5 mL of anhydrous 1,4–

dioxane. The reaction was heated for 24 h. Purification by flash chromatography on silica gel 

(85:15 hexanes:EtOAc) afforded 4.11f as a yellow, m.p. 121–125 °C (292 mg, 32%). IR υmax 

(cm
–1

) 3388, 2979, 2838, 1609, 1511, 1441, 1358, 1035, 861, 661. 
1
H NMR (400 MHz, 

Methylene Chloride-d2) δ 7.55 (d, J = 8.3 Hz, 1H), 7.18 – 7.11 (m, 2H), 6.91 – 6.85 (m, 2H), 

6.43 (d, J = 2.3 Hz, 1H), 6.26 (dd, J = 8.3, 2.3 Hz, 1H), 3.79 (s, 3H), 3.69 (s, 3H), 1.34 (s, 12H); 

13
C NMR (101MHz, CD2Cl2) δ 164.23, 156.53, 154.60, 139.18, 135.37, 124.99, 115.04, 103.81, 

97.59, 84.09, 56.01, 55.43, 25.23; FTMS (ESI) m/z [M+H]+, calc’d for C20H26BNO4 356.2031; 

found 356.2029. 

2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4- (trifluoromethyl)aniline. Preparation of 

4.9c was performed using a literature procedure.
20

  To an oven-dried 

Schlenk flask equipped with a stir bar was added Bis(pinacolato)diboron (2 
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equiv, 2 mmol, 508 mg), Pd2(dba)3 (4 mol %, 0.04 mmol, 37 mg) and XPhos (8 mol %, 0.08 

mmol, 38 mg). Glove box was used to add KOAc (3 equiv, 3 mmol, 294 mg) and the tube was 

sealed with a Teflon screw cap. Commercially available 2-bromo-4-(trifluoromethyl)aniline (1 

equiv, 1 mmol, 240 mg) and 1,4-dioxane (2 mL) were then added to the reaction mixture and 

heated at 110 °C for 24 h. After completion, the reaction mixture wascooled to room 

temperature, diluted with diethyl ether, and filtered over a short pad of Celite. The Celite was 

then washed with ethyl acetate. The combined filtrate was concentrated in vacuum and purified 

by flash chromatography on silica gel (90:10 hexanes:EtOAc) to afford boronic ester 4.9c (138 

mg, 48%). Characterization of the pure compound matched described literature values.
20

 

N-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-

(trifluoromethyl)aniline. Following procedure GP7 with 2-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trifluoromethyl)aniline 4.9c (1.2 

equiv, 0.48 mmol, 138 mg), Pd2(dba)3 (1 mol %, 0.004 mmol, 3.7 mg), 

RuPhos (3 mol %, 0.012 mmol, 5.6 mg), bromoanisole (1.0 equiv, 0.40 mmol, 75 mg) and 

NaO
t
Pent (1.5 equiv, 0.6 mmol, 66 mg) in 0.8 mL of anhydrous toluene. Purification by flash 

chromatography on silica gel (90:10 hexanes:EtOAc) afforded 4.9d as a white solid (36 mg, 

23%). IR υmax (cm
–1

) 3387, 2983, 1618, 1512, 1368, 1316, 1268, 1142, 1109, 1077. 
1
H NMR 

(400 MHz, Chloroform-d) δ 7.95 – 7.92 (m, 1H), 7.78 (s, 1H), 7.43 – 7.37 (m, 1H), 7.21 – 7.15 

(m, 2H), 6.97 – 6.91 (m, 2H), 6.90 –6.85 (m, 1H), 3.84 (s, 3H), 1.38 (s, 12H); 
13

C NMR (101 

MHz, CDCl3) δ 156.99, 155.24, 134.72, 133.81, 129.72, 129.18, 125.98, 125.21 (q, J = 270.6 

Hz), 118.72 (q, J = 32.5 Hz), 114.94, 111.15, 84.44, 55.78, 25.12; FTMS (ESI) m/z [M+H]+, 

calc’d for C20H23BF3NO3 394.1799; found 394.1801. 

Preparation of potassium trifluoro(2-(4-methoxyphenylamino)phenyl)borate 
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Preparation of potassium trifluoro(2-(4-methoxyphenylamino)phenyl)borate 4.7b was performed 

using a literature procedure.
21

  To a flask equipped with a stir bar was added N-(4-

methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline 4.7a (1 equiv, 9.22 

mmol, 3 g) and MeOH (25 mL, 0.37 M). Potassium hydrogen difluoride (5.6 equiv, 51.63 mmol, 

4.03 g) in H2O (11.25 mL, 4.5 M) was then added to the boronic ester solution and the contents 

were stirred for 15 minutes. The solution was then concentrated in vacuum and the resulting 

solid was dissolved in hot acetone. The mixture was then filtered and the filtrate was 

concentrated in vacuum. Recrystallization with hot acetone and diethyl ether yielded the desired 

trifluoroborate salt 4.7b as a white solid (2.02 g, 73%). IR υmax (cm
–1

) 1597, 1567, 1511, 1295, 

1274, 1247, 1190, 1035, 935, 758. 
1
H NMR (400 MHz, DMSO-d6) δ 7.29 – 7.21 (m, 1H), 7.02 – 

6.94 (m, 2H), 6.90 (td, J = 4.8, 4.2, 2.7 Hz, 3H), 6.85 – 6.76 (m, 2H), 6.57 (td, J = 6.3, 5.1, 2.7 

Hz, 1H), 3.70 (s, 3H). 
13

C NMR (101 MHz, DMSO) δ 153.08, 146.89, 137.65, 132.94, 132.91, 

125.98, 119.38, 117.80, 114.47, 112.24, 55.23. 

General Procedure 10 (GP10): Suzuki-Miyaura Cross Coupling Reaction 

To an oven-dried Schlenk flask equipped with a stir bar was added 1.1–1.5 equiv of the boronate 

ester 4.7a, 2 mol % Pd(OAc)2, 4 mol % RuPhos, and 3 equiv of ground K3PO4. The tube was 

then sealed with a Teflon screw cap and filled with nitrogen. Vinyl iodide 4.8 (1 equiv) and 

THF:EtOH:H2O (2:1:1, degassed via Freeze-Pump-Thaw or sparged with N2 for 30 minutes, 

0.15–0.5 M) were then added to the reaction mixture and the contents were heated at 90 °C for 

24 h. After completion, the reaction mixture was cooled to room temperature and the bottom 



184 
 

water layer was carefully removed using a glass pipette. The remaining contents were dried over 

MgSO4 and filtered over a short pad of silica gel. The filtrate was concentrated in vacuum and 

purified by flash chromatography on silica gel to afford the corresponding (E)-4-(2- 

(arylamino)phenyl)-3-methylbut-3-en-1-ol 4.6. 

(E)-4-(2-(4-methoxyphenylamino)phenyl)-3-methylbut-3-en-1-ol. Following procedure GP10 

with N-(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)aniline 4.7a  (1.5 equiv, 0.33 mmol, 107 mg), (E)-4-iodo-3-

methylbut-3-en-1-ol 4.8 (1 equiv, 0.22 mmol, 47 mg), Pd(OAc)2 (2 

mol %, 0.0044 mmol, 1 mg), RuPhos (4 mol %, 0.0088 mmol, 4.1 mg), and ground K3PO4 (3 

equiv, 0.66 mmol, 140 mg) in 0.44 mL of THF:EtOH:H2O (2:1:1). Purification by flash 

chromatography on silica gel (70:30 hexanes:EtOAc) afforded 4.6 as a yellow oil (55 mg, 88%). 

IR υmax (cm
–1

) 3389, 2943, 1599, 1518, 1452, 1293, 1240, 1041, 825, 751. 
1
H NMR (400 MHz, 

Chloroform-d) δ 7.17 – 7.08 (m, 2H), 7.08 – 7.02 (m, 3H), 6.90 – 6.80 (m, 3H), 6.26 – 6.20 (m, 

1H), 5.56 (s, 1H), 3.83 (d, J = 6.3 Hz, 2H), 3.81 (s, 3H), 2.48 (td, J = 6.3, 1.1 Hz, 2H), 1.78 (d, J 

= 1.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 155.29, 142.88, 137.99, 136.17, 130.36, 127.74, 

126.00, 123.75, 122.36, 119.12, 114.78, 114.42, 60.61, 55.78, 42.87, 17.66; HRMS (ESI) m/z 

[M+H]+, calc’d for C18H21NO2 284.1640; found 284.1641. 

(E)-4-(2-(4-methoxyphenylamino)-5-(trifluoromethyl)phenyl)-3-methylbut-3-en-1-ol. 

Following procedure GP10 with N-(4-methoxyphenyl)-2-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-

(trifluoromethyl)aniline 4.9d (1.2 equiv, 0.41 mmol, 163 mg), 

(E)-4-iodo-3-methylbut-3-en-1-ol 4.8 (1 equiv, 0.34 mmol, 73 mg), Pd(OAc)2 (2 mol %, 0.0069 

mmol, 1.5 mg), RuPhos (4 mol %, 0.014 mmol, 6.4 mg), and ground K3PO4 (3 equiv, 1.04 
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mmol, 220 mg) in 2 mL of THF:EtOH:H2O (2:1:1). Purification by flash chromatography on 

silica gel (70:30 hexanes:EtOAc) afforded 4.9 as a brown oil (115 mg, 96%). IR υmax (cm
–1

) 

3373, 2940, 1612, 1516, 1330, 1111, 1075, 1038, 912, 826. 
1
H NMR (400 MHz, Chloroform-d) 

δ 7.36 – 7.28 (m, 2H), 7.17 – 7.06 (m, 2H), 6.98 (dd, J = 9.3, 0.8 Hz, 1H), 6.94 – 6.85 (m, 2H), 

6.19 (s, 1H), 5.91 (s, 1H), 3.86 (t, J = 6.2 Hz, 2H), 3.82 (s, 3H), 2.50 (td, J = 6.3, 1.1 Hz, 2H), 

1.77 (d, J = 1.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 156.51, 146.36, 140.12, 134.24, 127.23, 

125.12 (q, J = 270.7 Hz), 124.96, 124.52, 124.46, 122.32, 119.95, 119.83 (q, J = 32.5 Hz), 

119.63, 114.95, 111.92, 60.52, 55.76, 42.64, 17.64; FTMS (ESI) m/z [M+H]+, calc’d for 

C19H20F3NO2 352.1519; found 352.1521. 

(E)-4-(2-(4-methoxyphenylamino)-4-(trifluoromethyl)phenyl)-3-methylbut-3-en-1-ol. 

Following procedure GP10 with N-(4-methoxyphenyl)-2-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-

(trifluoromethyl)aniline 4.10f  (1.2 equiv, 0.51 mmol, 200 mg), 

(E)-4-iodo-3-methylbut-3-en-1-ol 4.8 (1 equiv, 0.42 mmol, 89 mg), Pd(OAc)2 (2 mol %, 0.008 

mmol, 2 mg), RuPhos (4 mol %, 0.017 mmol, 8 mg), and ground K3PO4 (3 equiv, 1.27 mmol, 

270 mg) in 2 mL of THF:EtOH:H2O (2:1:1). Purification by flash chromatography on silica gel 

(70:30 hexanes:EtOAc) afforded 4.10 as an orange–brown oil (122 mg, 83%). IR υmax (cm
–1

) 

3388, 2939, 2840, 1575, 1513, 1434, 1338, 1245, 1121, 830. 
1
H NMR (400 MHz, Chloroform-d) 

δ 7.22 (dd, J = 1.8, 0.8 Hz, 1H), 7.17 (dt, J = 7.9, 0.9 Hz, 1H), 7.13 – 7.04 (m, 2H), 7.04 – 6.98 

(m, 1H), 6.95 – 6.85 (m, 2H), 6.20 (d, J = 1.8 Hz, 1H), 5.77 (s, 1H), 3.85 (t, J = 6.3 Hz, 2H), 

3.82 (s, 3H), 2.50 (td, J = 6.3, 1.1 Hz, 2H), 1.77 (d, J = 1.3 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 156.16, 143.72, 139.93, 134.71, 130.54, 129.92 (q, J = 31.9 Hz), 128.53, 124.53 (q, J = 
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272.2 Hz), 123.59, 122.53, 115.04, 115.00, 114.93, 109.59, 60.50, 55.76, 42.71, 17.69; FTMS 

(ESI) m/z [M+H]+, calc’d for C19H20F3NO2 352.1519; found 352.1521. 

(E)-4-(4-methoxy-2-(4-methoxyphenylamino)phenyl)-3-methylbut-3-en-1-ol. Following 

procedure GP10 with 5-methoxy-N-(4-methoxyphenyl)-2-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline 4.11f (1.1 

equiv, 0.51 mmol, 180 mg), (E)-4-iodo-3-methylbut-3-en-1-ol 

4.8 (1 equiv, 0.46 mmol, 98 mg), Pd(OAc)2 (2 mol %, 0.0092 mmol, 2.1 mg), RuPhos (4 mol %, 

0.0184 mmol, 8.6 mg), and ground K3PO4 (3 equiv, 1.38 mmol, 293 mg) in 2 mL of 

THF:EtOH:H2O (2:1:1). Purification by flash chromatography on silica gel (70:30 

hexanes:EtOAc) afforded 4.11 as an orange–brown oil (112 mg, 78%). IR υmax (cm
–1

) 3379, 

2946, 2839, 1607, 1515, 1445, 1291, 1168, 1041, 828. 
1
H NMR (400 MHz, Chloroform-d) δ 

7.13 – 7.05 (m, 2H), 7.02 (dt, J = 8.4, 0.7 Hz, 1H), 6.91 – 6.82 (m, 2H), 6.62 (d, J = 2.5 Hz, 1H), 

6.39 (dd, J = 8.3, 2.6 Hz, 1H), 6.17 (s, 1H), 3.83 – 3.78 (m, 5H), 3.74 (d, J = 0.7 Hz, 3H), 2.51 – 

2.41 (m, 2H), 1.79 – 1.74 (m, 3H); 
13

C NMR (101 MHz, CDCl3) δ 159.55, 155.53, 144.19, 

137.48, 135.66, 131.03, 123.27, 122.96, 118.53, 114.80, 104.06, 100.14, 60.61, 55.74, 55.33, 

42.88, 17.63; FTMS (ESI) m/z [M+H]+, calc’d for C19H23NO3 314.1751; found 314.1752. 

(E)-2-(4-(2-(4-methoxyphenylamino)phenyl)-3-methylbut-3-enyl)isoindoline-1,3-dione. The 

preparation of 4.12d was accomplished using a literature 

procedure.
22

  To an oven–dried flask equipped with a stir bar 

was added triphenylphosphine (2.4 equiv, 2.19 mmol, 573 mg) 

and anhydrous THF (2.0 mL) under N2 atmosphere. The 

contents were stirred at 0 °C for 10 minutes prior to the dropwise addition of DIAD (2 equiv, 

1.82 mmol, 0.353 mL). After stirring for 1 hour at the same temperature, a separate solution 
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containing (E)-4-(2-(4-methoxyphenylamino)phenyl)-3-methylbut-3-en-1-ol 4.6 (1 equiv, 0.91 

mmol, 258 mg) and phthalimide (1.5 equiv, 1.4 mmol, 201 mg) in THF (2 mL) was added 

dropwise over 10 minutes. After stirring at 0 °C for 1 hour, the ice bath was removed and the 

solution was stirred at room temperature for 7 hours. Once complete, the solution was 

concentrated in vacuum and purified by flash chromatography on silica gel (80:20 

hexanes:EtOAc) to afford the corresponding (E)-styrylisoindoline-1,3-dione 4.12d as a yellow 

oil (320 mg, 85%). IR υmax (cm
–1

) 3386, 2942, 1769, 1709, 1511, 1447, 1395, 1240, 1031, 719. 

1
H NMR (300 MHz, Chloroform-d) δ 7.83 – 7.72 (m, 2H), 7.71 – 7.62 (m, 2H), 7.00 (dd, J = 

20.3, 8.6 Hz, 6H), 6.90 – 6.67 (m, 3H), 6.09 (d, J = 2.2 Hz, 1H), 4.00 – 3.88 (m, 2H), 3.82 (s, 

3H), 2.59 (t, J = 6.3 Hz, 2H), 1.90 – 1.77 (m, 3H); 
13

C NMR (75 MHz, CDCl3) δ 168.70, 155.44, 

143.14, 138.15, 135.85, 134.14, 132.08, 130.39, 127.68, 125.24, 124.02, 123.44, 123.11, 118.75, 

114.67, 113.74, 55.77, 38.85, 36.81, 17.99; HRMS (ESI) m/z [M+H]+, calc’d for C26H24N2O3 

413.1860; found 413.1866. 

(E)-tert-butyl 4-(2-(4-methoxyphenylamino)phenyl)-3-methylbut-3-enylcarbamate. 

Preparation of 4.12 was achieved using a literature procedure.
22

 To an 

oven–dried flask equipped with a stir bar were added (E)-2-(4-(2-(4-

methoxyphenylamino)phenyl)-3-methylbut-3-enyl)isoindoline-1,3-

dione (1 equiv, 0.78 mmol, 320 mg) and EtOH (14 mL). Hydrazine hydrate (1.4 equiv, 1.1 

mmol, 54 μL) was then added and the reaction was refluxed for 24 hours. Once complete, the 

solution was cooled to room temperature and the mixture was filtered. The remaining white solid 

was washed with EtOH (3 x 10 mL) and concentrated HCl (10 equiv, 7.8 mmol, 0.7 mL) was 

added to the filtrate. The acidic solution was then stirred and heated at 60 °C for 30 minutes. The 

resulting solution was concentrated in vacuum, cooled to 0 °C, diluted with H2O (5 mL), and 
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basified to pH 13 using 10 M NaOH. The aqueous solution was then extracted with DCM (3 x 5 

mL). The combined organic layers were dried over Na2SO4 and concentrated in vacuum to give 

the intermediate styrylamine as a brown oil, which was taken to the next step without 

purification. 

The resulting styrylamine (1 equiv, 0.53 mmol, 150 mg), DMAP 

(10 mol %, 0.053 mmol, 6.5 mg) and anhydrous DCM (0.60 mL) 

was added to an oven-dried flask equipped with a stir bar. The 

resulting solution was stirred at 0 °C prior to the dropwise addition of di-tert-butyl dicarbonate 

(1.1 equiv, 0.58 mmol, 128 mg) in anhydrous DCM (0.5 mL) over 10 minutes. The mixture was 

then warmed to room temperature and stirred for 15 hours. Once complete, the solution was 

concentrated in vacuum and purified by flash chromatography on silica gel (80:20 

hexanes:EtOAc) to afford Boc–protected 4.12 as a clear oil (137 mg, 46%over 2 steps). IR υmax 

(cm
–1

) 3389, 2985, 1705, 1602, 1511, 1450, 1265, 1174, 1037, 755. 
1
H NMR (400 MHz, 

Chloroform-d) δ 7.14 – 7.02 (m, 5H), 6.90 – 6.84 (m, 2H), 6.84 – 6.77 (m, 1H), 6.20 (s, 1H), 

5.53 (s, 1H), 4.60 (s, 1H), 3.81 (s, 3H), 3.36 (q, J = 6.6 Hz, 2H), 2.39 (t, J = 6.6 Hz, 2H), 1.78 (d, 

J = 1.3 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 156.21, 155.38, 143.02, 138.68, 136.07, 130.49, 

127.73, 125.69, 123.20, 122.69, 118.99, 114.80, 114.24, 79.50, 55.79, 40.29, 39.01, 28.60, 

17.88; FTMS (ESI) m/z [M+H]+, calc’d for C23H30N2O3 383.2329; found 383.2328.  
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