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Abstract 

The prevalence of colorectal cancer (CRC) has been increasing in recent years 

worldwide. In the United States, it is ranked the second leading cause of cancer death. Risks of 

CRC increase with age and are associated with several lifestyle factors such as diet, drinking and 

smoking habits, and levels of physical activity. There is an abundance of scientific literature 

demonstrating the protective roles of several dietary components including fibers and 

polyphenolic compounds. These compounds have been shown to be able to positively modulate 

gastrointestinal ecology by increasing the production of short-chain fatty acids (SCFA) and 

promoting the population of beneficial bacteria. Whole grain cereals such as wheat, corn, 

sorghum, and rice are rich sources of these components. However, they are more abundant in the 

cereal bran layer which is typically removed during polishing. Research have shown that 

feruloylated arabinoxylan oligosaccharides (FAXO) isolated from cereals such as wheat, corn, 

and sorghum exerted prebiotic-like properties by increasing SCFA production and selectively 

promote microbiota population. Polyphenolic compounds have also been demonstrated to be able 

to modulate gut microbiota ecology. However, rice bran FAXO and rice bran polyphenolics 

(RBPP) have not been studied for such properties. Therefore, two rice bran components 

including FAXO and RBPP are hypothesized to have positive impacts on human gut microbiota. 

In this study, prebiotic-like properties of FAXO and RBPP were assessed by determining the 

fermentation patterns of FAXO and RBPP to increase SCFA production and by evaluating the 

impacts of FAXO and RBPP on the composition of human gut microbiota.  
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Introduction 

Awareness about colon health has been on a rise. In 2014, National Cancer Institute 

reported that colorectal cancer (CRC) is the third prevalent non-skin cancer in the United States. 

Moreover, it has been rated as the second most fatal type of cancer. Individuals with digestive 

disorders such as inflammatory bowel disease, ulcerative colitis, and polyps are most prone to 

CRC. Lifestyle factors including diet, levels of physical activity, smoking, alcohol consumption, 

and body composition have been associated with CRC (Doll and Peto 1981).  

Dietary components such as dietary fiber, probiotics and prebiotics, and phenolic 

compounds have been shown to confer positive colonic health effects. This is achieved by 

modulating gut microbiota and enhancing production of short-chain fatty acids (SCFA) 

(Macfarlane and Macfarlane 2003). 

Prebiotics are defined as “selectively fermented ingredients that result in specific changes 

in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefits 

upon host health” (Gibson et al. 2010).  

Currently, Bifidobacterium and Lactobacillus population are considered beneficial 

bacteria and are often targets for dietary intervention (Manning and Gibson 2004). 

Fructooligosaccharides (FOS), inulin, galactooligosaccharides (GOS), and lactulose are 

compounds that are currently considered true prebiotics since they have been reported to 

stimulate Bifidobacterium and Lactobacillus population (Gibson et al. 2010). In addition, other 

dietary materials have also been proposed to be candidate prebiotics. Non-digestible 

oligosaccharides are the primary new candidates since they appear to confer certain degrees of 

fermentation selectivity (Gibson et al. 2010). Among these oligosaccharides, feruloylated 

arabinoxylan oligosaccharides (FAXO) isolated from cereal bran such as wheat, barley, and corn 
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have gained much attention as they have been shown to exert prebiotic-like properties. FAXO 

have been implicated for having prebiotic-like activities because of their ability to pass through 

the upper gastrointestinal tract undigested to the colon where they are hydrolyzed and 

subsequently fermented by gut microbiota to produce SCFA (Englyst and Cummings 1985, 

Courtin et al. 2009). 

Another dietary component that can also positively affect the intestinal ecology is 

polyphenolics and their derived products. The intake of flavanol-rich foods has been shown to 

modify the composition of the gut microbiota by selectively inhibiting pathogen growth and 

stimulate the growth of beneficial bacteria, thus influencing the microbiota composition (Tzonuis 

et al. 2008) 

As mentioned above, FAXO isolated from cereal bran such as wheat, corn, and barley 

have been assessed for their prebiotic properties. However, FAXO and RBPP isolated from rice 

bran have not been studied for their potential colon health promoting properties including 

prebiotic activities. In addition, the synergistic activities of non-digestible oligosaccharides, 

particularly FAXO, and RBPP in improving colonic health has not been well studied. Therefore, 

the hypotheses of this study were that fermentation of rice bran components by colonic 

microbiota increases production of SCFAs, particularly butyric acid and that beneficial gut 

microbiota differentially increases after incubation with FAXO and RBPP. The objectives of the 

present study were to determine (1) the SCFA production of FAXO and RBPP by human gut 

microbiota, (2) the ability of FAXO and RBPP to stimulate beneficial human gut microbiota, and 

(3) the relationship of human gut microbiota and SCFA production. 
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Chapter 1: Literature Review 

1. Rice Bran 

Rice (Oryza sativa) is one of the major cereal crops and a staple food for half of the 

world’s population (Childs 2014). In the United States, Arkansas is the leading rice-producing 

state, accounting for about 50% of total U.S. rice production (Childs 2014). Rice bran is a 

byproduct from rice milling process to produce polished rice. Rice bran is defined as the brown 

outer layer of rice kernel comprising pericarp, aleurone layer and embryo (Figure 1), which 

account for 10-15% of rough rice by weight (Champagne et al. 2004). Rice bran has been 

intensively studied for its nutritional values. It has been reported to contain significant amounts 

of nutrients such as protein, unsaturated fat, vitamins, minerals, dietary fiber, and polyphenolic 

compounds, which have been shown to exhibit beneficial effects in various in vitro, animal, and 

human studies (Kahlon et al. 1992, Kahlon and Chow 2000, Qureshi et al. 2002). Although it is 

used primarily as animal feed, rice bran and its components are now finding major applications 

as value-added products (Jariwalla 2001, Ryan 2011). 

 

Figure 1. Structure of the rice grain. (Adapted from Juliano and Aldama 1937) 
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2. Feruloylated Arabinoxylan Oligosaccharides (FAXO) 

Arabinoxylans (AX) are the most abundant structural polysaccharides present in most 

cereals. They were first identified in wheat by Hoffman and Gortner (1927). Since then, similar 

polysaccharides have been found in other cereals such as rice, barley, rye, and corn (Izydorczyk 

and Biliaderis 1995). They are composed of a xylan backbone linked together by β(1→4) 

glycosidic bonds that are variably substituted with α-L-arabinofuranoside at either C-(O)-2 or C-

(O)-3 (Saulnier et al. 2007). Ferulic acid is present as substituents as well and they are generally 

linked to the C-(O)-5 position of arabinose units (Figure 2) (Izydorczyk and Biliaderis 1995), 

hence the name feruloylated arabinoxylans. AX together with other polysaccharides build up the 

cell walls of grain tissues and thus become part of the skeletal framework that maintains tissue 

(Rattan et al. 1994). The frequency and nature of substituents differ greatly amongst AX from 

different origins (Rattan et al. 1994). Specifically, AX from rice, maize, and sorghum bran 

contain more arabinose substituents than those from wheat, rye or barley bran (Rao and 

Muralikrishna 2007). Molecular mass of AX is difficult to determine since extraction process 

could lead to degradation of the polymers. However, it is generally estimated that they contain 

from 1,500 to 15,000 residues (Izydorczyk and Biliaderis 1995, Ebringerova and Heinze 2000). 

A small portion of AX in cereals is water-extractable (Maes and Delcour 2002). The majority is 

water-unextractable due to non-covalent interactions such as hydrogen linkages and covalent 

bonds with neighboring AX molecules through dehydrodiferulic acid bridges and with other cell 

wall components such as proteins, cellulose, and lignin (Iiyama et al. 1994, Izydorczyk et al. 

1998, Maes and Delcour 2002).  
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Figure 2. Structure of feruloylated arabinoxylans (Adapted from Buanafin 2009) 

 

Feruloylated arabinoxylan oligosaccharides (FAXO) are hydrolyzed products of AX of 

high degree of polymerization. Degradation of AX into FAXO can be achieved by using 

degrading enzymes, acid hydrolysis, or hydrothermal treatment (Vázquez et al. 2000).  

  

3. Pigmented Rice and Rice Bran Polyphenolics (RBPP) 

Whole grain rice products, especially those from pigmented varieties, provide a rich 

reservoir of polyphenolic compounds that have been suggested to have many health benefits 

(Min et al. 2012, Chen et al. 2012, Deng et al. 2013). Many epidemiological studies have shown 

that consumption of whole grain cereal is highly correlated with reduced incidence of chronic 

diseases (Jacobs et al. 1998, Liu et al. 1999, Anderson et al. 2000), of which free radicals are 

thought to play a critical role in the onset and progression (Sayre et al. 2008, Sen and 

Chakraborty 2011). Their protective effects are due to the scavenging of free radicals by 

polyphenolics that are rich in whole grain cereals (Sen and Chakraborty 2011).  
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According to the USDA National Small Grains Collection, pigmented rice can be 

classified into seven color classes: white, light-brown, speckled brown, brown, red, variable 

purple, and purple. Among them, light-brown rice is most commercially grown and has been the 

primary focus of rice polyphenolics-related studies. Other pigmented varieties such as red and 

purple bran rice have recently gained attention because they contain high amounts of phenolic 

compounds, including anthocyanins and proanthocyanidins, which have been reported to have 

health-promoting potentials (Biswas et al. 2011, Sompong et al. 2011, Min et al. 2012, Chen et 

al. 2012).  

The majority of polyphenolics in rice grains is present in the bran fraction which is a by-

product of the milling process. Lipophilic, hydrophilic, and insoluble forms of these compounds 

have been identified (Hudson et al. 2000, Cicero and Gaddi 2001, Pérez-Jiménez and Saura-

Calixto 2005). Phenolic compounds such as tricin, ferulic acid, caffeic acid, and 

methoxycinnamic acid have been identified in rice bran (Hudson et al. 2000). In addition, total 

polyphenolic content in the bran fraction of red and purple rice variety, which is made up mostly 

of free phenolics including proanthocyanidins and anthocyanins, is significantly higher than that 

of light-colored bran rice (Min et al. 2012).  

Polyphenolics of high molecular weight such as proanthocyanidins are poorly absorbed 

in the small intestine and largely remain intact when reaching the colon. Only a small percentage 

of dietary polyphenolics (5-10%), mainly monomeric and dimeric structures, may be directly 

absorbed in the small intestine, generally after deconjugation reactions. After being absorbed into 

the small intestine, these less complex polyphenolic compounds may be subjected to extensive 

Phase I (oxidation, reduction and hydrolysis) and particularly Phase II (conjugation) 

biotransformations in the enterocytes and then the hepatocytes, resulting in a series of water-
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soluble conjugate metabolites (methyl, glucuronide and sulfate derivatives) rapidly liberated to 

the systemic circulation for further distribution to organs and excretion in urine (Manach et al. 

2005). In the large intestine, remaining unabsorbed polyphenols are enzymatically hydrolyzed by 

colonic microbiota, subsequently resulting in polyphenolic compounds with lower degrees of 

polymerization (Aura et al. 2005). These polyphenolics are also further metabolized by 

microbiota through the cleavage of glycosidic linkages and the breakdown of the heterocyclic 

backbone (Aura et al. 2005). For example, the microbial catabolism of proanthocyanidins results 

in the production of lactones and aromatic and phenolic acids with different hydroxylation 

patterns and side-chain lengths, depending on the precursor structures (Manach et al. 2004, 

Saura-Calixto et al. 2007). All these microbial-derived phenolic metabolites may be absorbed in 

the intestine or excreted in feces. When absorbed, they reach the liver through the portal vein 

where they may be further subjected to extensive first-pass Phase II metabolism (including 

glucuronidation, methylation, sulfation or a combination of these) until they finally enter the 

systemic circulation and are distributed to the organs or eliminated in urine. 

Polyphenolic compounds are well known for their antioxidant properties, the ability to 

scavenger reactive oxygen species, which have been shown to be effective in preventing chronic 

diseases including cancer, hypertension, neurodegenerative diseases, and aging (Sen and 

Chakraborty 2011, Biswas et al. 2011). However, it has been suggested that health benefits of 

whole grain polyphenolics are more site-specific, being more effective in the colon (Adom and 

Liu 2002). This could be due to the fact that most polyphenolics in cereal bran are bound and 

may not be released by gut microbiota until they reach the colon (Adom and Liu 2002). This 

unique property may explain the reduced risk of colon cancer associated with increased 

consumption of whole grains and whole grain products (Thompson 1994, Jacobs et al. 1995). 
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Polyphenolics and their derived products can also positively affect the intestinal ecology. 

For example, the intake of flavanol-rich foods has been shown to modify the composition of the 

gut microbiota (Tzonuis et al. 2008). Polyphenolics and their metabolites selectively inhibit 

pathogen growth and stimulate the growth of beneficial bacteria, thus influencing the microbiota 

composition. For instance, resveratrol, a potent antioxidant found in wine, increased 

Bifidobacterium and Lactobacillus populations (Larrosa et al. 2009) and abolished the expression 

of virulence factors of Proteus mirabilis to invade human urothelial cells (Wang et al. 2006). In 

addition, phenolics and flavonoids may also reduce the adhesion ability of Lactobacillus 

rhamnosus to intestinal epithelial cells (Parkar et al. 2008). Tea catechins have also been shown 

to modify mucin content of the ileum in rat model which could modulate bacterial adhesion and 

colonization (Ito et al. 2006). Therefore, polyphenols appear to have potential to confer health 

benefits via modulation of the gut microbiota.  

 

4. Gut Microbiota and Human Health 

Although the human digestive tract is colonized by microorganisms, the distal gut 

(including cecum, large intestine or colon, and rectum) is the most densely populated part of the 

gut with 1012-1014 microorganisms including bacteria, archaea and yeast per gram feces 

(Whitman et al. 1998). Bacteria comprise about 40-55% of solid stool in people having typical 

Western diets (Stephen and Cummings 1980). Bacteroidetes and Firmicutes are the two 

dominant divisions accounting for almost 95% phylotypes. On the lower taxonomic levels, more 

than 50 genera and over 400 species have been identified in human gut (Eckburg et al. 2005). 

However, the composition and activity of the gut microbiota is extremely complex and unique 

for each individual as it is driven by many different factors (Nicholson and Wilson 2003). 
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Although the gut is essentially sterile at birth, it is rapidly populated with bacteria through 

environmental exposure (Palmer et al. 2007). Subsequently, the shaping of microbial landscape 

depends on a series of complex and dynamic interactions throughout life including diet, lifestyle, 

disease, and antibiotic use (Nicholson and Wilson 2003).  

The gut microbiota plays very important roles in health and disease in humans. It is 

involved in energy harvest and storage, as well as in a variety of metabolic functions such as 

fermenting and metabolizing undigested carbohydrates. More importantly, the gut microbiota 

interacts with the immune system, providing signals to promote the maturation of immune cells 

and the normal development of immune functions (Chow et al. 2010). The importance of the gut 

microbiota is unquestionable and it is sometimes referred to as the “forgotten organ” (O’Hara et 

al. 2006). Thus, it is important to maintain a healthy, or balanced, gut microbiota. Aberrations in 

the gut microbiota, or often referred to as dysbiosis, have been shown to correlates with many 

metabolic diseases such as colon cancer, inflammatory bowel disease, type 2 diabetes, and 

obesity (Ley et al. 2006, Peterson et al. 2008). However, the underlying roles and functionality of 

specific bacteria relative to disease still remain unclear (Gerritsen et al. 2011). 

 

4.1. Obesity 

The prevalence of obesity in the United States has increased by more than 75% over the 

past 25 years. Currently, nearly two-thirds of the U.S. population is overweight and 1 in 3 adults 

are clinically obese (Ogden et al. 2007). Obesity can lead to serious health consequences, 

including increased risk for type 2 diabetes, cardiovascular disease, pulmonary hypertension, and 

mortality (Hensrud and Klein 2006, Ogden et al. 2007). Although diet plays an important role in 

the development of obesity, interest has been focused on other factors that might contribute to 
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this disease. Particularly, the composition of gut microbiota has been implicated as a critical 

determinant in the development of obesity (DiBaise et al. 2012). 

The association between obesity and gut microbiota composition was first observed with 

mouse models by Ley et al. (2005). In their study, genetically obese mice showed 50% fewer 

Bacteroidetes accompanied by a proportional increase in Firmicutes compared to wild type 

counterparts (Ley et al. 2005). Consistent with the mouse model data, evidence also suggests that 

differences in the gut microbiota exist between obese and lean humans (Ley et al. 2006, 

Schwiertz et al. 2009). Changes in the gut microbiota upon weight loss in obese individuals also 

have been reported but results are not consistent. Schwiertz et al. (2009) showed that the 

proportion of Bacteroidetes was increased by weight loss. In contrast, Duncan et al. (2008) 

reported no relationship between percentage of Bacteroidetes in feces and amount of weight lost 

(kg) after a period of 8 weeks, comprising 4 weeks on each of two diets, either high-protein, low 

carbohydrate, ketogenic (LC) or high-protein, moderate-carbohydrate, non-ketogenic  (MC). 

However, there was a significant reduction in a group of butyrate producing Firmicutes in the 

obese group after diet intervention (Duncan et al. 2008). Thus, although diet changes 

undoubtedly have impacts on the gut microbiota, and in turn, on colonic health and function, the 

differences between the gut microbiota in lean and obese individuals remain incompletely 

understood and further investigation in the area is needed. 

 

4.2. Type 2 Diabetes 

Type 2 diabetes, a metabolic disease which primary cause is insulin resistance, has also 

been shown to be associated with changes in gut microbiota composition (Membrez et al. 2008) 

although it is far left behind as the focus of research compared to obesity. Larsen et al. (2008) 
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showed that the proportions of phylum Firmicutes and class Clostridia were significantly reduced 

in the diabetic group compared to the control group. Furthermore, they also found that the ratios 

of Bacteroidetes to Firmicutes were positively correlated with the severity of diabetes and 

plasma glucose concentration (Larsen et al. 2008). In addition, Bifidobacterium and 

Faecalibacterium prausnitzii abundance appeared to be lower in type 2 diabetic patients than in 

lean subjects (Furet et al. 2010, Wu et al. 2010). Interestingly, Bifidobacterium and 

Faecalibacterium prausnitzii are suggested to have anti-inflammatory effects by producing 

metabolites able to block NF-κB activation and the secretion of proinflammatory mediators 

(Furet et al. 2010, O’Mahony et al. 2010).  

Furthermore, other studies have demonstrated that the gut microbiota played a major role 

in the onset of insulin resistance and type 2 diabetes by triggering low-grade inflammation, 

which is also a common feature characterizing obesity and several metabolic disorders (Backhed 

et al. 2007, Cani et al. 2007, Shen et al. 2013). According to Cani et al. (2007), gut microbiota 

can control the host metabolism and contribute to the development of low-grade inflammation 

through several potential mechanisms. They proposed that disruption in the gut microbiota-host 

symbiotic relationship could cause increases in gut permeability by altering the expression, 

localization and distribution of tight junction proteins, overactivating the CB1 receptors, and 

decreasing intestinal alkaline phosphatase activity leading to a decrease in lipopolysaccharide 

detoxification. Gut barrier alterations are responsible for metabolic endotoxaemia leading to low-

grade inflammation and metabolic disorders (Everard and Cani 2013). 

Altogether, these data reveal an existing association between gut microbiota and the 

pathology of obesity and type 2 diabetes in humans. However, numerous questions still remain 

debatable or unanswered such as whether gut microbiota alterations are associated with the diet 
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or with the pathology of obesity and type 2 diabetes themselves and whether the gut microbiota 

changes observed in obesity and type 2 diabetes are a cause or a consequence of the pathology. 

Therefore, more detailed studies in humans are needed to further investigate the gut microbiota-

host relationship. 

  

5. Fermentation Patterns of Gut Microbiota and Colonic Health 

As discussed above, human gut microbiota is highly diverse with over 50 genera and over 

400 species of bacteria that have been identified (Eckburg et al. 2005). The dominant organisms 

in terms of numbers are anaerobes including bacteroides, bifidobacteria, eubacteria, streptococci, 

and lactobacilli (Topping and Clifton 2001). Undigested organic food components such as 

carbohydrates and peptides are often metabolized by the gut microbiota through fermentation to 

produce energy for microbial growth and maintenance and other metabolic end products. 

Fermentation is a complex process and involves a variety of reactions and metabolic processes in 

the anaerobic microbial breakdown of organic matter. Along with heat, major products of 

fermentation include gas such as H2, CH4, and CO2, and short-chain fatty acids (SCFA) (acetic, 

propionic, butyric acid - Figure 4) (Topping and Clifton 2001). Amino acid breakdown products 

including branched-chain fatty acids and ammonia are also found but in much smaller amounts 

(Roberfroid 2005).  

 

 
 

 

 

Figure 3. Acetic acid, propionic acid, and butyric acid structure 

Acetic acid Propionic acid Butyric acid 



13 

 

SCFA, fermentation end-products of carbohydrates by the gut microbiota, are strongly 

associated with colonic health in humans (Roediger 1980, Jenkins 1999, Smith et al. 2013). They 

are organic fatty acids with 1 to 6 carbon atoms and are the principal end products which arise 

from bacterial fermentation of undigested food components such as polysaccharides, 

oligosaccharides, peptide, amino acids, and glycoprotein precursors in the colon (Miller and 

Wolin 1979, Cummings and Macfarlane 1991). Linear SCFA, with acetic acid, propionic acid, 

and butyric acid (Figure 3) being the major products, in the fermentation process of undigested 

carbohydrates, have been the focus of interest in regards of colonic health (Macfarlane and 

Macfarlane 2003). SCFA modulate colonic functions in several different ways. Increases in 

SCFA result in the decreases of pH of the colonic luminal environment, which supports the 

growth of beneficial bacteria species while limits the growth of detrimental bacteria species 

(Jenkins et al. 1987). Decreases in pH also facilitate the absorption of certain vitamins and 

minerals in distal gut (Tuohy et al. 2005). More importantly, butyrate, the preferred energy 

source of colonocytes (Della Ragione et al. 2001), has been intensively investigated for its 

potentially protective activity against colon carcinogenesis, intestinal inflammation, and 

oxidative stress and for its contribution in improving the intestinal barrier. Although many in 

vitro and animal studies strongly suggest the protective role of butyrate against colon diseases, 

direct evidence in humans is still lacking (Bornet et al. 2002, Hijova and Chmelarova 2007). 

Butyrate is also involved in phosphorylation and acylation of histone proteins at molecular level 

which is thought to be crucial for the ability of butyrate to modulate the expression of numerous 

genes involved in colonic health (Archer and Hodin 1999).  
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Butyrate is not only produced directly from fermentable substrates but also produced 

from acetate by gut microbiota. Diez-Gonzalez et al. (1999) reported that butyrate was formed 

from two acetyl-CoA molecules that yielded acetoacetyl-CoA and then was converted into 

butyryl-CoA. Subsequently, butyryl-CoA was converted into butyrate via either butyrate kinase 

or butyryl-CoA:acetate-CoA transferase. According to Duncan et al. (2002), butyrate could be 

converted from acetate by butyrogenic bacteria including Coprococcus sp., Roseburia sp., and 

Faecalibacterium prausnitzii. Among those, six Roseburia and F. prausnitzii strains were shown 

to exhibit butyryl-CoA:acetate-CoA transferase but not butyrate kinase activity (Duncan et al. 

2002). They also showed acetate net utilization, especially F. prausnitzii, for which acetate is a 

growth requirement (Smith 1985). These findings suggest the complexity of the colonic 

ecosystem as metabolites can be interconverted into one another.  

Health effects of SCFA on gut health, especially butyrate, have been demonstrated in in 

vitro and in animal models. However, evidence in human is still lacking. Thus, further studies 

are needed to determine the activities of SCFA and to unravel the effects of diet on gut health in 

human.  

 

5.1. FAXO as Substrates for Gut Microbes 

Although many carbohydrates could be fermented by gut microbiota to produce SCFA, 

only a few are widely recognized as prebiotics. Originally, prebiotics were defined as “non-

digestible food ingredients that beneficially affect the host by selectively stimulating the growth 

and (or) activity of one or a limited number of bacterial species already resident in the colon, 

and, thus, improve host health” (Gibson and Roberfroid 1995). However, in 2008, the definition 

of “dietary prebiotics” was updated as “selectively fermented ingredients that result in specific 
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changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring 

benefit(s) upon host health” (Gibson et al. 2010) to account for modulation of other mixed 

microbial ecosystems by a prebiotic approach. To be considered a prebiotic, a food must meet all 

three criteria: (1) resistance to gastric acidity, to hydrolysis by mammalian enzymes, and to 

gastrointestinal absorption; (2) fermentation by intestinal microbiota; and (3) selective 

stimulation of growth and/or activity of beneficial intestinal bacteria (Gibson et al. 2004). 

Following this description, only a few carbohydrate compounds were considered prebiotics 

including inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) (Roberfroid 

et al. 2007). In recent years, many compounds, mostly oligosaccharides and polysaccharides, 

have been proposed to have prebiotic properties. However, at present, the evidence is not as 

convincing as for fructans and galactans.  

There is a growing body of evidence allowing FAXO to be considered to have prebiotic 

properties. FAXO from wheat source has been shown not only to be resistant to hydrolysis under 

gastric conditions (37oC, pH = 2) (Courtin et al. 2009), but also to escape digestion and 

absorption in small intestine due to the lack of enzymes to degrade these compounds (Englyst 

and Cummings 1985). A study by Glitso et al. (1999) found that rye AX were recovered as much 

as 100% in ileum in pigs. Thus, these findings suggest that FAXO remain largely intact and 

unabsorbed when reached the colon, where they are fermented by the gut microbiota. Many 

studies have confirmed the fermentability of AX and FAXO isolated from brewery's spent grain 

and wheat, including in vitro and in vivo in both animals and humans (Kabel et al. 2002, Grasten 

et al. 2003, Van Craeyveld et al. 2008). Increases in SCFA production upon fermentation of 

these compounds also have been corroborated (Grasten et al. 2003, Van Craeyveld et al. 2008). 

In addition, AX and FAXO appear to be relatively selective substrates. Several in vitro studies 



16 

have demonstrated that they can be utilized by some Bifidobacterium species and, to a lesser 

extent, some Bacteroides species and Lactobacillus species, but not by E.coli and Clostridium 

species (Yamada et al. 1993, Van Laere et al. 2000, Moura et al. 2007).   
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Chapter 2: Publication Manuscript 

 

Abstract 

Rice bran is a rich source of bioactive components that have potentials to promote 

gastrointestinal health but are typically removed with the bran during polishing. Feruloylated 

arabinoxylan oligosaccharides (FAXO) isolated from rice bran fiber and rice bran polyphenolics 

(RBPP) isolated from red rice bran are hypothesized to have positive impacts on human gut 

microbiota. The objectives of this study are to determine the prebiotic-like properties of FAXO 

and RBPP by determining the fermentation patterns of FAXO and RBPP and production of 

short-chain fatty acid (SCFA) and by evaluating their impacts on the composition of human fecal 

microbiota. Fresh fecal samples collected from healthy adults (n = 10, 5M, 5F) with no signs or 

symptoms of bowel diseases or conditions were diluted with anaerobic medium. Each sample 

received 5 treatments separately: CTRL (control, no substrates), FOS (fructooligosaccharides), 

FAXO, RBPP, and MIX (FAXO with RBPP). Samples were prepared inside an anaerobic 

chamber and then incubated at 37°C. An aliquot of 1.5 mL was withdrawn from each treatment 

tube at 0, 4, 8, 12, and 24 hours and stored immediately at -80°C. SCFA concentrations were 

measured quantitatively using gas chromatography. Microbial populations were determined by 

16S rRNA gene sequences via Illumina MiSeq platform and analyzed with QIIME (Quantitative 

Insights Into Microbial Ecology). Results showed that SCFA production was significantly 

increased with FAXO and was comparable to fermentation with the well-established prebiotic 

FOS. The synergistic effects of FAXO and RBPP in terms of SCFA production were not 

observed since RBPP alone and in combination with FAXO did not increase SCFA productions. 

Changes in microbiota population profiles were found, especially in Bacteroides, Prevotella, and 



26 

Dorea population, indicating that FAXO might be differently fermented, modulating microbiota 

profiles. Synergistic effects of FAXO and RBPP were also observed as they increased 

Coprococcus and Roseburia abundance. Results from this study suggested that FAXO and RBPP 

isolated from rice bran can potentially promote colon health. 
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1. Introduction 

Colorectal cancer (CRC) is the third common non-skin cancer and ranks second most 

common in mortality in the United States (National Cancer Institute, 2014). CRC is more 

prevalent in individuals with digestive disorders or gastrointestinal diseases such as 

inflammatory bowel disease, ulcerative colitis, and polyps. It has also been found to be 

associated with many lifestyle factors including diet, levels of physical activity, smoking, alcohol 

consumption, and body composition (Doll and Peto 1981). In recent years, there has been a 

growing interest in functional foods, such as prebiotics and probiotics, dietary fibers, and other 

dietary components that target the colon and improve colonic and systemic health by modulating 

gut microbiota and enhancing production of short-chain fatty acids (SCFA), which have been 

proved to confer positive colonic health benefits (Macfarlane and Macfarlane 2003).  

Prebiotics are defined as “selectively fermented ingredients that result in specific changes 

in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefits 

upon host health” (Gibson et al. 2010). Currently, only a few carbohydrates are considered true 

prebiotics, including fructooligosaccharides (FOS) and galactooligosaccharides (GOS). These 

compounds have been reported to stimulate Bifidobacterium and Lactobacillus population, 

which are considered beneficial bacteria and are often targets for dietary intervention (Manning 

and Gibson 2004).  

Many other dietary materials have been proposed to be candidate prebiotics. However, 

non-digestible oligosaccharides are mainly new candidates since they appear to confer the degree 

of fermentation selectivity (Gibson et al. 2010). Among these oligosaccharides, feruloylated 

arabinoxylan oligosaccharides (FAXO) isolated from cereal bran such as wheat, barley, and corn 

have gained much attention as they have been shown to exert prebiotic-like properties. FAXO 



28 

have been implicated for having prebiotic-like activities because of their ability to pass through 

the upper gastrointestinal tract undigested to the colon where they are hydrolyzed and 

subsequently fermented by gut microbiota to produce short-chain fatty acids (SCFA), which play 

important roles in regards of colon health (Englyst and Cummings 1985; Courtin et al. 2009).  

Polyphenolics and their derived products can also positively affect the intestinal ecology. 

The intake of flavanol-rich foods has been shown to modify the composition of the gut 

microbiota by selectively inhibiting pathogen growth and stimulate the growth of beneficial 

bacteria, thus influencing the microbiota composition (Tzonuis et al. 2008) 

FAXO and polyphenolics are present in abundance in whole grain cereals and their 

products, including whole grain rice. However, these components, which are present mostly in 

the bran, are typically removed from rice during polishing. FAXO and RBPP isolated from rice 

bran have not been studied for their potential colon health promoting properties including 

prebiotic activities. In addition, the synergistic activities of non-digestible oligosaccharides, 

particularly FAXO, and RBPP in improving colonic health has not been well studied. Therefore, 

the objectives of the present study were to determine (1) the SCFA production of FAXO and 

RBPP by human gut microbiota, (2) the ability of FAXO and RBPP to stimulate beneficial 

human gut microbiota, and (3) the relationship of human gut microbiota and SCFA production. 
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2. Materials and Methods 

2.1. Substrates and Standards 

Feruloylated arabinoxylan oligosaccharides (FAXO) were obtained from Dr. Savary, 

Arkansas State University (Jonesboro, AR, USA). Rice bran polyphenolic (RBPP) fraction 

isolated from red rice bran was obtained from Dr. Chen, Agricultural Research Service, USDA 

(Stuttgart, AR, USA) (Chen et al. 2012). The polyphenolic profile of RBPP is shown in Figure 1.  

Fructooligosaccharides (FOS) were purchased from Megazyme International Ireland Ltd. (Bray 

Business Park, Wicklow, Ireland). All materials were tightly sealed and stored at -20oC until use. 

SCFA standards including acetic acid, propionic acid, and butyric acid were of analytical grade 

and were purchased from Sigma-Aldrich (St. Louis, MO, USA).   

 

2.2. Subjects, Dietary Records, and Fecal Sample Collection 

The study protocol was approved by University of Arkansas Institutional Review Board 

(IRB #13-09-080). All participants were recruited from University of Arkansas (Fayetteville, 

AR, USA) and surrounding area (Appendix A). Thirty-two volunteers (15 males and 17 

females), 21-45 years of age, participated in a screening session to sign a consent form and a 

screening form. Only participants who were generally healthy (BMI < 25) with no digestive 

diseases, non-smokers, not currently taking any medications, and had not taken antibiotics in the 

last 6 months were recruited. During screening sessions, height and weight of subjects were 

recorded for Body Mass Index (BMI) calculation. Medical history and bowel movement habits 

were also recorded to confirm eligibility of participants. In addition, Food Frequency 

Questionnaires (FFQ) were completed by recruited participants.  
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Ten eligible subjects (5 males and 5 females) were recruited for the study. Each 

participant received a stool collection kit (Commode Specimen Collection System; Fisher 

Scientific, Pittsburgh, PA, USA) one or two days before the day of experiment. Subjects were 

instructed to deliver a tightly sealed fecal sample within one hour of defecation. Fecal samples 

were immediately transferred to an anaerobic chamber upon delivery to perform the experiment.  

 

2.3. In vitro Fermentation 

In vitro fermentation of substrates with the fecal inocula was carried out following the 

method described by Yang et al. (2013). In short, 50 mg each of FAXO, RBPP, their 

combination (MIX - FAXO with RBPP), and FOS used as control were mixed in 10 mL of 

sterile fermentation medium consisting of (per liter) peptone (2 g; Fisher Scientific, Waltham, 

MA, USA), yeast extract (2 g; Alfa Aesar, Ward Hill, MA, USA), bile salts (0.5 g; Oxoid, 

Hampshire, UK), NaHCO3
 (2 g), NaCl (0.1 g), K2HPO4 (0.08 g), MgSO4.7H2O (0.01 g), 

CaCl2.6H2O (0.01 g), L-cysteine hydrochloride (0.5 g; Sigma-Aldrich, St. Louis, MO, USA), 

bovine hemin (50 mg; Sigma-Aldrich, St. Louis, MO, USA), Tween 80 (2 mL), vitamin K (10 

μL; Sigma-Aldrich, St. Louis, MO, USA), and 0.025% (wt/vol) resazurin solution (4 mL). Fecal 

slurry was prepared by vortexing 1 g of fecal sample with 10 mL of sterile phosphate-buffered 

saline until homogenized then filtering through four layers of cotton gauge. Test tubes containing 

fermentation medium and treatments were then inoculated with 0.2 mL of fecal slurry. All steps 

for fermentation were conducted in an anaerobic chamber (Coy Laboratory Products Inc., Grass 

Lake, MI, USA). Test tubes were then capped, tightly sealed, and vortexed for 5 seconds to mix. 

Subsequently, test tubes were transferred to the incubator set at 37oC. Immediately before 

incubation, 1.5 mL of the mixture was taken out from each test tube using a sterile syringe for 
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time point 0 into a 2-mL centrifuge tube containing 0.1 mL of 2 M KOH stop solution. 

Subsequent aliquots were obtained in the same manner at 6, 12, and 24 hours and stored at -80oC 

until analysis. 

 

2.4. Short-Chain Fatty Acid Analysis 

Fermentation samples were thawed at room temperature and mixed with a vortex mixer. 

An amount of 225 µL was withdrawn from each aliquot and was treated with 25 µL of a mixture 

containing 5% meta-phosphoric acid and 5% copper sulfate with 50 mM 4-methyl-valeric acid 

added as an internal standard. After 10 min of reaction time, the mixture was centrifuged at 

12,000 x g for 2 min. A supernatant of 200 µL was transferred into a labeled tube and stored at -

20oC until analysis.  

SCFA standards were prepared using 1:2 serial dilution with the stock solution containing 

10% v/v of each SCFA (acetic acid, propionic acid, and butyric acid) in Milli-Q water. SCFA 

standards were also treated with the same mixture containing meta-phosphoric acid, copper 

sulfate, and 4-methyl-valeric acid as with fermentation samples.  

SCFA contents were analyzed using a gas chromatograph (GC) equipped with a flame 

ionization detector (FID) (Shimadzu Corp., Kyoto, Japan) and a fused silica capillary column 

(ID-BP21; SGE, L: 30 m, I.D: 0.25 mm, film: 25 µm, Ringwood, Victoria, Australia). 

Temperature ramp was as following: 4oC/min from 100oC (2 min) to 120oC (1 min), then 

3oC/min until 150oC. One µL of treated sample (thawed and homogenized) was injected in split 

mode (30:1). Nitrogen was used as a carrier gas. Data were recorded and processed using the 

integrated Shimadzu database. Concentrations of acetic acid, propionic acid, and butyric acid 
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were determined using a standard curve of each SCFA with concentration ranging from 0 to 30 

mM.  

 

2.5. DNA Extraction and Sequence Analysis 

Bacterial proliferation capability of each treatment was assessed by DNA sequence 

analysis of time 0 and 30 hours. Bacterial DNA was extracted from sample aliquots using 

QIAamp Fast DNA Stool Mini Kit (Qiagen, Gaithersburg, MD, USA). DNA concentrations were 

measured using NanoDrop 1000 (Thermo Fisher Scientific, Waltham, WA, USA). All samples 

were diluted with DNase- and RNase-free water to achieve concentrations of 10 ng/µL. DNA 

samples were then mixed with AccuPrime Pfx SuperMix (Thermo Fisher Scientific, Waltham, 

WA, USA) and primers and were amplified via polymerase chain reaction (PCR) using 

Eppendorf Mastercycler pro S (Eppendorf, Hamburg, Germany). Amplification of DNA samples 

were confirmed by agarose gel electrophoresis. Amplified DNA samples were normalized using 

SequalPrep Normalization Plate Kit (Thermo Fisher Scientific, Waltham, WA, USA) before 

pooling to make DNA sample library. Sequencing based on 16S-rRNA V4 region was performed 

using an Illumina MiSeq platform with the method developed by Kozich et al. (2013). Raw 

sequencing data acquired from Illumina BaseSpace were processed with a bioinformatics tool 

QIIME pipeline (Caporaso et al. 2010).  

 

2.6. Statistical Analyses 

All statistical analyses were carried out by JMP software (version 12; SAS Institute, 

Cary, NC, USA), using one-way ANOVA for comparing three or more data sets or paired t-test 



33 

for comparing two data sets. Data are presented as Mean ± SEM (Standard Error of Mean) unless 

specified as standard deviation (SD). Statistically significance was accepted at P < 0.05. 
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3. Results 

3.1. Subject Characteristics 

In the present study, 10 subjects (5 males, 5 females) were recruited. Participant 

information including age, height, weight, and body mass index (BMI) is shown in Table 2. BMI 

of all subjects were within normal range (19.6 – 24.6).  

 

3.2. Short-Chain Fatty Acid Analysis 

SCFA concentrations were quantified based on peak areas using a standard curve for 

each SCFA (Figure 1). Total SCFA concentrations were measured at different time points from 0 

hr to 24 hr (Table 3). FAXO appeared to be a preferred substrate by the microbiota as evidenced 

by the increase in total SCFA. Compared to FOS, a widely-recognized prebiotic, total SCFA 

production of FAXO was very comparable at later time points of 12 hr and 24 hr as no 

significant differences were found. However, at time point 4 hr and 8 hr, SCFA production of 

FOS was significantly higher compared to FAXO (P < 0.05), indicating different fermentation 

patterns of FOS and FAXO. Specifically, FAXO appeared to have slower and steadier 

fermentation rates throughout the incubation period compared to FOS, which were rapidly 

fermented in the beginning (time point 4 and 8 hr) but then slowed down over time.  

RBPP were not fermented by the microbiota as no significant SCFA were produced. 

Furthermore, there was no significant difference in total SCFA production between FAXO and 

MIX (FAXO with RBPP) at any time points, indicating that RBPP also did not affect the SCFA 

production from FAXO.  

Individual SCFA production (acetate, propionate, and butyrate) was also determined 

(Figure 2). Acetate (Figure 2A) showed to be the predominant SCFA produced as its 
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concentration at time point 24 hr was 3-4 times higher compared to propionate and butyrate 

(Figure 2B and C), which were produced at similar levels. Acetate production of all treatments 

also exhibited similar trends as observed in in total SCFA production. In particular, acetate 

production of FOS were significantly higher than that of FAXO at time point 4 hr and 8 hr but 

not at time point 12 hr and 24 hr.  However, for propionate and butyrate production, no significant 

differences were found at time point 4 hr and 8 hr in when comparing FOS and FAXO. No 

synergistic effects between FAXO and RBPP were observed as there was no significant 

difference between FAXO and MIX at any time point for all three individual SCFA.  

 

3.3. Microbiota Analysis 

The 16S rRNA sequencing data were analyzed to investigate the changes in microbiota 

composition after 24-hour incubation with FAXO, RBPP, and MIX compared with CTRL 

(control, no substrate) and FOS. At phylum level, four major phyla were identified in all samples 

including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Figure 3). After 24 

hours of incubation, different substrates appeared to be able to modulate the microbiota 

composition significantly. FAXO appeared to increase Bacteroidetes and decrease Firmicutes 

abundance significantly compared to CTRL (P < 0.05). Proteobacteria population was also 

suppressed significantly in FAXO compared to CTRL (P < 0.05). On the other hand, FOS, did 

not significantly affect the abundance of Bacteroidetes and Firmicutes compared to CTRL. FOS 

also showed a significant increase in Actinobacteria population and a significant decrease in 

Proteobacteria compared to CTRL (P < 0.05). RBPP alone and in combination with FAXO 

(MIX) only affected the Proteobacteria population as evidenced by a significant decrease in the 
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abundance of this phylum compared to CTRL (P < 0.05). However, RBPP seemed to decrease 

Proteobacteria to a lesser extent compared to FAXO. 

Relative abundance of representative genera was also investigated. Results showed that 

FOS increased Bifidobacterium abundance dramatically which indicated FOS were utilized by 

Bifidobacterium species (P < 0.05) (Figure 4A). An increase in Lactobacillus was observed; 

however, it was not significant compared to CTRL (Figure 4B). No significant changes were 

observed in Bifidobacterium and Lactobacillus with FAXO treatment. Similarly, RBPP and MIX 

did not appear to significantly affect the abundance of Bifidobacterium and Lactobacillus. 

Overall, FAXO, RBPP, and MIX did not seem to exert any effects on Bifidobacterium and 

Lactobacillus, two genera that are often targets for prebiotic action as they are commonly 

associated with many health benefits.  

However, considering other genera, significant differences were observed. Specifically, 

Bacteroides was increased significantly in FAXO and RBPP compared to both CTRL and FOS 

(P < 0.05) (Figure 4C). MIX treatment, however, did not affect Bacteroides abundance. FAXO 

also appeared to increase Prevotella abundance significantly compared to CTRL (P < 0.05) 

(Figure 4D). Population of Dorea was also affected by FOS, FAXO, and RBPP with significant 

decreases compared to CTRL (P < 0.05) (Figure 4E). In MIX, no significant difference in Dorea 

were found compared to CTRL. Akkermansia, a mucus-degrading genus which has gained 

significant attention in recent years because of its correlation to gut health, was also detected. 

However, no significant differences in Akkermansia population were found between treatments. 

The average abundance of Akkermansia ranged from 0.20% to 0.41% for all treatments. 

Faecalibacterium, a butyrate-producing genus, was increased significantly in abundance with 

RBPP and MIX compared to CTRL and FOS (P < 0.05) (Figure 4F). FAXO also seemed to 



37 

increase Faecalibacterium but no significant difference was observed. Taken together, these 

results suggested that although FAXO and RBPP did not alter Bifidobacterium and 

Lactobacillus, they appeared to be able to modulate other gut bacteria populations that could also 

play important roles in host health.  

 

3.4. Relationship of Human Gut Microbiota and SCFA Production  

The production of butyrate has been getting much attention because of its anti-

inflammatory and anti-neoplastic effects on colonocytes (Segain et al. 2000, Rosignoli et al. 

2001). Butyrate is not only produced directly from carbohydrate sources by butyrate-producing 

bacteria but can also be produced from acetate. As reported by Duncan et al. (2002), butyrate 

could be converted from acetate by butyrogenic bacteria including Coprococcus sp., Roseburia 

sp., and Faecalibacterium prausnitzii. The abundance of these bacteria groups was also assessed 

to evaluate the relationship of gut microbiota and SCFA production.  

As shown in Figure 5, synergistic stimulative effects of FAXO and RBPP were observed 

in Coprococcus and Roseburia as evidenced by a significant increase in MIX compared to CTRL 

in these two genera (P < 0.05) while both FAXO and RBPP did not differ from CTRL (Figure 

5A and B). F. prausnitzii, the most abundance species in Faecalibacterium genus, also exhibited 

similar trends as in its genus shown above. Comparing to CTRL, both RBPP and MIX appeared 

to increase the abundance of this particular species significantly (P < 0.05) (Figure 5C).  
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4. Discussion 

In recent years, FAXO have gained particular interest because of their prebiotic-like 

activities. Prebiotics, by definition, are selectively fermented ingredients that result in “specific 

changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring 

benefit(s) upon host health” (Gibson et al. 2010). Fermentation of prebiotics by gut microbiota 

results in production of SCFA and a shift in the composition colonic microbiota that is associated 

with improved over health.  

In the present study, FAXO were shown to be fermented by gut microbiota to produce 

SCFA. The fermentation patterns of FAXO were characterized by slower rates at time point 4 hr 

and 8 hr and faster rates at later time points compared to FOS. Rumpagaporn et al. (2015) also 

reported similar findings in fermentation patterns of cereal arabinoxylans isolated from wheat, 

corn, sorghum, and rice compared FOS (a positive control). As described in their study, fecal 

samples were collected from 3 healthy subjects and pooled. An amount of 50 mg of each 

substrate and 1 mL of pooled fecal slurry were used for the experiment. Arabinoxylans from 

different bran sources including corn and sorghum and hydrolyzed arabinoxylan products 

including corn, wheat, and rice were used in their study. In their study, total SCFA production in 

hydrolyzed rice bran arabinoxylan treatment were shown to have significant higher levels 

compared to FOS at time point 24 hr. In the present study, although total SCFA of FAXO was 

higher than that of FOS, no significant differences were found at time point 24 hr when 

comparing FAXO and FOS.  

Acetate was the major SCFA produced during fermentation of FAXO. Similar findings 

were also reported in wheat arabinoxylans (Hughes et al. 2007), arabinoxylan oligosaccharides 

from brewery spent grain (Kabel et al. 2002), and hydrolyzed rice arabinoxylans (Rumpagaporn 
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et al. 2015). Acetate production of FAXO and FOS also showed similar patterns as in total SCFA 

production. In colonic fermentation, acetate is considered the primary SCFA and is often used to 

monitor colonic events. In the colon, unlike propionate and butyrate, acetate is less metabolized 

and is readily absorbed. The presence of acetate also decreases colonic pH, which results in 

increased bio-availability of calcium and magnesium and inhibition of pathogenic bacteria 

(Teitelbaum and Walker 2002, Wong et al. 2006).  Also, acetate can also be converted to 

butyrate. Two mechanisms that have been reported for the production of butyrate in the colon are 

acetate utilization and lactate fermentation (Diez-Gonzalez et al. 1999).  

The propionate production of FAXO was also comparable to FOS in this study. Other 

studies have shown that arabinoxylans produced relatively high propionate (Rose et al. 2010, 

Rumpagaporn et al. 2015). Rumpagaporn et al. (2015) also reported that propionate 

concentration in rice arabinoxylans was significantly higher compared to FOS at time point 24 

hr. In this study, propionate production of FAXO at 24 hr tended to be higher compared to FOS; 

however, the differences were not significant. Upon produced by gut bacteria, propionate is 

absorbed into bloodstream and transported to liver (Wong et al. 2006). Propionic acid production 

has been shown to have beneficial health effects including lowering glucose-induced insulin 

secretion in isolated pancreatic islet cells of rats (Ximenes et al. 2007) and anti-proliferative 

effects on liver cells (Bindels et al. 2012).  

Among all SCFA, butyrate has been of greatest interest due to its protective effects of 

colonocytes against cancer. FOS has been known for the ability to increase butyrate production, 

hence the butyrogenic effects (Campbell et al. 1997, Djouzi and Andrieux 1997, Rycroft et al. 

2001). Fermentation of arabinoxylans was shown to generate lesser butyrate compared to FOS in 

a study by Rumpagaporn et al. (2015). However, in the present study, no significant differences 
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were found between FAXO and FOS. Butyrate has been shown to be the preferred energy source 

for colonocytes (Della Ragione et al. 2001) and inhibit the growth of colonic carcinoma cells. As 

discussed above, the production of butyrate also comes from the conversion of acetate. 

Therefore, the production of each individual SCFA depends on other SCFA and SCFA 

concentrations in anaerobic fermentation can be changed interdependently.  

Beside SCFA production upon fermentation, another criterion that a prebiotic must meet 

is the ability to selectively stimulate the growth and/or activity of intestinal bacteria associated 

with health and well-being. Bifidobacteria and lactobacilli were thought to be the targets of 

prebiotic effects since they have been the focus of research, especially bifidobacteria as they are 

more abundant in human gut microbiota than lactobacilli. However, in recent years, many studies 

have reported the potential health effects of different groups of bacteria other than bifidobacteria 

and lactobacilli.  

FAXO appeared to be a relatively selective substrate as demonstrated in several studies. 

Pure cultures of different Bifidobacterium, Bacteroides, and Lactobacillus species were shown to 

efficiently utilize FAXO (Yamada et al. 1993, Van Laere et al. 2000, Moura et al. 2007). 

Another study conducted by Vardakou et al. (2007) found that in vitro fermentation of 

arabioxylan oligosaccharides significantly raised Bifidobacterium sp. and reduced Bacteroides 

levels. In the present study, FAXO did not appeared to stimulate the growth of Bifidobacterium 

and Lactobacillus genus.  However, when assessing populations of other bacteria genera, FAXO 

seemed to confer certain positive health effects. Specifically, FAXO increased Bacteroides and 

Prevotella abundance while reduced Dorea abundance.  

Bacteroides is one of the most abundant genera in the gut microbiota. Aside from its 

correlation with increased propionate production, Bacteroides has also been shown to have 
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protective effects against the invasion of exogenous bacteria in the colon by producing antagonic 

substances including bacteriocins (Nakano et al. 2006). This bacterial characteristic might play 

an important role in establishing and maintaining the intestinal ecosystem. 

It was also interesting to see an increase in Prevotella sp. with FAXO. This genera is 

often associated with people with diets high in carbohydrates and fiber (Wu et al. 2011). 

However, the variation between subjects in FAXO is quite large and comparing to FOS, FAXO 

did not differ significantly (Figure 4D). A study conducted by De Filippo et al. (2010) revealed 

the differences in changes in gut microbiota of European and African children when solid food 

was introduced. European children’s diet was rich in fat and low in fiber while African children’s 

diet was rich in fiber and low in fat and animal proteins. During breast-milk feeding period, no 

significant differences in gut microbiota were found between two groups of children. However, 

when solid food was introduced, differences in bacteria populations were observed. There was a 

significant enrichment of Prevotella genus in gut microbiota of African children compared to 

that of European counterparts. The differences were explained by the ability to produce 

cellulases and xylanases of this genus. Therefore, an increase in Prevotella with FAXO was 

expected.  

Compared to other genera, Dorea was far less studied. However, correlation between 

Dorea population and disease has been demonstrated. Specifically, it has been shown that 

irritable bowel syndrome (IBS) was characterized by an increase in Dorea population and a 

decrease in Bifidobacterium and Faecalibacterium (Rajilić-Stojanović et al. 2011; Saulnier et al. 

2011). These findings suggest that there might be a link between gut microbiota and IBS which 

could potentially be used for therapeutic treatments.  
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Another genus that has gained attention in recent years is Akkermansia. Isolated in 2004, 

Akkermansia has been known for its mucus-degrading abilities (Derrien et al. 2004). As a result 

of mucus degradation, Akkermansia sp. also have the ability to produce SCFA (Derrien et al. 

2004). Since Akkermansia sp. are often localized within the mucus layer close to the epithelial 

cells, these SCFA are more readily available to the host. Furthermore, recent studies also found 

that the abundance of Akkermansia sp. might be correlated with gut health. Specifically, A. 

municiphila was shown to be significantly more abundant in healthy controls compared to 

patients with IBD (Png et al. 2010). Other studies found that amount of Akkermansia sp. was 

inversely proportional to the severity of appendicitis and obesity (Zhang et al. 2009; Swidsinki et 

al. 2011). These findings suggest that Akkermansia could be associated with anti-inflammatory 

and protective activities.  Akkermansia has also been shown to be promoted by the 

administration of prebiotics in animal models (Everard et al. 2011; van den Abbeele et al. 2011). 

However, in the present study, no significant differences in Akkermansia were found between 

treatments. This could be due to the limitations of in vitro models which might not be ideal for 

this particular genera.  

As discussed above, some bacteria are also capable of converting acetate to butyrate, 

namely Coprococcus, Roseburia, R. intestinalis, and Faecalibacterium prausnitzii (Duncan et al. 

2002). It is interesting that while both FAXO and RBPP did not appeared to modulate 

Coprococcus and Roseburia abundance, MIX treatment showed significant increases in both 

genera, especially in Roseburia where FOS also did not affect its population. These results 

suggested that there might be synergistic effects between FAXO and RBPP in modulating gut 

microbiota. Although these butyrogenic bacteria were increased in abundance, no significant 
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differences were observed in neither acetate production nor butyrate production between FAXO 

and MIX.  

The study was conducted using an in vitro anaerobic fermentation model which is 

commonly used for first assessment of impacts of various compounds on metabolic activities of 

gut microbiota. However, this method certainly has its limitations. First of all, since it is a closed 

system, metabolites produced are limited by amounts of substrates used. Second, the 

accumulation of end-products during fermentation period could alter the conditions of 

fermentation environment and affect the formation of certain metabolites. Third, in vitro methods 

do not fully replicate in vivo intestinal conditions which affects the in vivo relevance of the study. 

Moreover, due to limitations of substrates, only 10 subjects were recruited for the study. The 

small sample size could have also reduced the statistical power and undermined the effects of 

treatments.  

The present study investigated the fermentibility of FAXO and RBPP and the changes in 

gut microbiota during fermentation with these components. The results demonstrated that FAXO 

had different fermentation patterns compared to FOS. FAXO were also found to be able to 

modulate several bacteria populations which could contribute to overall host health.  
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5. Conclusion 

Production of SCFA from FAXO extracted from rice bran by gut microbiota was 

comparable with that from FOS, although the fermentation pattern of FAXO were generally 

steadier compared to that of FOS. Furthermore, FAXO also showed to have modulating effects 

on microbiota profiles. Synergistic effects of FAXO and RBPP in modulating certain butyrate-

producing bacteria were also observed. This study warrants further investigation to confirm the 

prebiotic-like properties of these rice bran components.  
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Table 1. Concentration of phenolics in red rice RBPP (Chen et al. 2012). 

Phenolic subgroup Concentration (mg/g extract) % total phenolics 

Benzoic acid 2.466 ± 0.045 5.1% 

Cinnamic acid 20.115 ± 0.022 41.9% 

Flavonoid 1.955 ± 0.115 4.1% 

Proanthocyanidin 23.489 ± 1.904 48.9% 

Total phenolics 48.025 ± 2.042 100% 

Values are expressed as mean ± SD.  
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Table 2. Subject Characteristics 

Measurements All (n=10) Male (n=5) Female (n=5) 

Age 25.8 ± 4.7 26.0 ± 5.1 25.6 ± 4.2 

Height (cm) 170.9 ± 5.8 173.6 ± 4.2 168.2 ± 5.9 

Weight (kg) 66.6 ± 7.3 69.8 ± 7.5 63.5 ± 5.8 

BMI (kg/m2) 22.8 ± 2.0 23.1 ± 1.8 22.5 ± 2.3 

Values are expressed as mean ± SD. 
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Table 3. Total production of SCFA during in vitro fermentation with human fecal samples. 

 Total SCFA (mM) 

Time point (hr) FOS FAXO RBPP MIX 

0 1.5 ± 0.3a 1.5 ± 0.3a 0.6 ± 0.2a 1.3 ± 0.3a 

4 4.0 ± 0.8a 2.4 ± 0.7b 0.3 ± 0.1c 2.9 ± 1ab 

8 10.2 ± 1.1a 6.7 ± 1.8b 0.0 ± 0.2c 4.9 ± 1.7b 

12 9.9 ± 1.1a 10.5 ± 2.7a 0.1 ± 0.2b 9.3 ± 3.1a 

24 9.3 ± 1.1a 14.0 ± 3.6a 0.8 ± 0.7b 11.7 ± 3.2a 

Values are expressed as mean ± SEM. Treatments with different superscripts within the same row 

are significantly different (P < 0.05). FOS: fructooligosaccharides, FAXO: feroloylated 

arabinoxylan oligosaccharides, RBPP: rice bran polyphenolics, MIX: mixture of FAXO and 

RBPP. 
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Figure 1. GC chromatogram of (A) SCFA standards and (B) FAXO fermentation sample at time 

point 24 hr. (1) Acetate; (2) Propionate; (3) Butyrate; (4) Valerate as internal standard.  
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Figure 2. Individual SCFA production during in vitro fermentation. (A) Acetate production; (B) 

Propionate production; (C) Butyrate production; FOS: fructooligosaccharides, FAXO: 

feroloylated arabinoxylan oligosaccharides, RBPP: rice bran polyphenolics, MIX: mixture of 

FAXO and RBPP. Different letters at the same incubation time denote significant difference (P 

<0.05) 
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Figure 3. Microbiota composition at phylum level after 24-hr incubation with different 

substrates. CTRL: no substrate, FOS: fructooligosaccharides, FAXO: feroloylated arabinoxylan 

oligosaccharides, RBPP: rice bran polyphenolics, MIX: mixture of FAXO and RBPP. Different 

letters in the same phylum denote significant difference (P <0.05). 
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Figure 4. Changes in abundance of different genera after 24-hr incubation with different 

substrates. CTRL: no substrate, FOS: fructooligosaccharides, FAXO: feroloylated arabinoxylan 

oligosaccharides, RBPP: rice bran polyphenolics, MIX: mixture of FAXO and RBPP. Different 

letters denote significant difference (P <0.05). 
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Figure 5. Changes in abundance of different butyrogenic bacteria after 24-hr incubation with 

different substrates. CTRL: no substrate, FOS: fructooligosaccharides, FAXO: feroloylated 

arabinoxylan oligosaccharides, RBPP: rice bran polyphenolics, MIX: mixture of FAXO and 

RBPP. Different letters denote significant difference (P < 0.05). 
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Chapter 3: Overall Conclusion 

The present study added to the growing body of evidence on prebiotic-like properties of 

rice bran components such as FAXO and RBPP. Compared to FOS, FAXO tended to be 

fermented at slower yet steadier rates. RBPP did not appeared to affect the production of SCFA 

from FAXO. In terms of microbiota composition, both FAXO and RBPP had significant impacts 

on bacteria abundance to a certain degree. At phylum level, FAXO appeared to significantly 

increase Bacteroidetes and increase Firmicutes abundace, which are two major phyla in gut 

microbiota. Although FAXO and RBPP did not seem to affect bifidobacteria and lactobacilli 

population, they appeared to be able to modulate bacteria populations of other genera. FAXO 

significantly increase Bacteroidetes and Prevotella population and decrease Dorea population. 

RBPP was found to significantly increase Faecalibacterium abundance. Synergistic effects of 

FAXO and RBPP were observed in butyrogenic bacteria population Coprococcus and Roseburia 

by significant increases compared to FAXO and RBPP. Results from this study reaffirm that 

FAXO had potentials to be prebiotics. However, further investigation is needed to clarify the 

prebiotic functions of these rice bran components.  
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