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Abstract

Massive multiple-input multiple-output (MIMO) is the concept of deploying a very large num-

ber of antennas at the base stations (BS) of cellular networks. Frequency-division duplexing

(FDD) massive MIMO systems in the downlink (DL) suffer significantly from the channel

estimation overhead. In this thesis, we propose a minimum mean square error (MMSE)-based

channel estimation framework that exploits the spatial correlation between the antennas at the

BS to reduce the latter overhead. We investigate how the number of antennas at the BS affects

the channel estimation error through analytical and asymptotic analysis. In addition, we derive

a lower bound on the spectral efficiency of the communication system. Close form expressions

of the asymptotic MSE and the spectral efficiency lower bound are obtained. Furthermore,

perfect match between theoretical and simulation results is observed, and results show the

feasibility of our proposed scheme.
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1 Introduction

1.1 Motivation

Massive multiple-input multiple-output (MIMO) is the concept of deploying a very large num-

ber of antennas at the base stations (BS) of cellular networks, and has been shown to dramat-

ically mitigate the inter-user interference with simple low complexity precoders and receive

combiners [1]. It is one of the highly considered candidates for the deployment of the fifth

generation (5G) of cellular networks [2] [3]. It provides the next generation network with

capabilities to help satisfy the demand of users by 2020 [4]. Massive MIMO systems (also

called Large-Scale Antenna Systems, Large-Scale MIMO, ARGOS, Full-Dimension MIMO,

or Hyper-MIMO) has shown the potential to improve the spectral efficiency by order of mag-

nitude through relatively simple processing [5]. Although massive MIMO offers high spectral

efficiency for next generation cellular systems, this monumental gain cannot be met without

the knowledge of channel state information at the transmitter (CSIT) [6] [7].

Most current cellular systems are implemented in frequency-division duplexing (FDD).

One apparent advantage of FDD is that it is generally regarded as more efficient in terms of

delay sensitivity and traffic symmetry compared to the time-division duplexing (TDD) mode

[8]. Meanwhile, there is much less research work on FDD massive MIMO than on TTD. One

of the main reasons for this tendency to the TDD mode is the feasibility of obtaining CSIT in

this mode. In TDD, channel state information at the BS can be obtained via the use of uplink

pilots under the assumption of channel reciprocity [9]. However, FDD massive MIMO suffers

greatly from the pilot and feedback overhead when conventional channel estimation techniques

are used. As the number of antennas at the BS increases, the number of pilot symbols and the

CSI feedback overhead become prohibitively large. Hence, obtaining CSI at the transmitter is

essential to exploit the benefits of FDD massive MIMO [10].
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We find in the literature some work to tackle the channel estimation overhead prob-

lem. The Joint Spatial Division and Multiplexing (JSDM) approach diminishes the channel

estimation overhead [11]. It reduces the CSIT by exploiting the structure of channel corre-

lation. Another recent method to reduce the latter overhead was proposed in [12]. The idea

was to design downlink pilot sequences and uplink channel feedback codebooks in a way

that it decreases the said overhead by exploiting the multiuser spatial channel correlation. In

[13], a feedback overhead reduction technique was introduced based on the antenna grouping

concept. Whereas in [14], a CSIT estimation method was proposed to reduce the pilot and

feedback overhead by using the compressive sensing concept. It should be noted that this is

not an exhaustive list of the methods used to reduce the channel estimation overhead in FDD

massive MIMO systems.

The closest to our work, to the best of our knowledge, is presented in [15]. Adriana et

al. proposed a strategy that exploits transmit antenna correlation, which is due to the short

distance between the antennas in the massive MIMO system. Their idea is to acquire instan-

taneous CSI for a subset of antennas and use averaging over the received CSI to obtain the

channel estimates at the remaining antennas.

1.2 Objectives

The focus of our work is to reduce the pilot and feedback overhead in downlink FDD massive

MIMO systems. To this end, we use the same idea as in [15], namely, the BS sends pilots to

the user from just a subset of the antennas, the user estimates the channel at the antennas that

have sent pilots and feeds back the estimated coefficients to the BS, then the BS computes the

channel estimates at the remaining antennas through exploiting the spatial correlation between

the antennas at the BS. Our work differs from [15] in many ways. First, we do not use averag-

ing over the estimated coefficients, instead we propose to use the minimum mean square error

(MMSE) estimator to compute the channel at the antennas that did not send pilots. Second,

we derived analytical as well as asymptotic channel estimation MSE of the system. We also
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derived a lower bound on the spectral efficiency of the system. Finally, our numerical results

were obtained using system simulations and not Monte Carlo simulations. Our approach re-

sults in a 50% reduction of the channel estimation overhead.

It should be noted that our proposed channel estimation framework was inspired from

the work in [16], where the context was in a temporally correlated single-input single-output

(SISO) channel over a fast time-varying fading channel.

1.3 Outline

The thesis is presented as follows, chapter 1 outlines a literature review on overhead reduc-

tions schemes for FDD massive MIMO systems and our contributions, chapter 2 presents the

theoretical analysis of our proposed scheme, where we first introduce the system model, then

we present the derivations of the analytical and the asymptotic mean square error (MSE) of

the channel estimation as well as the spectral efficiency of the system with imperfect channel

estimation. Chapter 3 summarizes simulation results. Finally, in chapter 4 we terminate our

thesis with conclusions and future work.
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2 Theoretical analysis

2.1 System Model

We consider a downlink FDD Massive MIMO system of Nt transmit antennas and a single

receive antenna. Particularly, the deployment scenario of our system is according to the linear

antenna array configuration [17], as depicted in Fig 1. Equivalently, our system can be called

an FDD massive multiple-input single-output (MISO) system, which employs pilot-assisted

channel estimation and experiences Rayleigh fading. The channel coefficients between the

antennas at the BS are correlated, and therefore the fading channel is spatially correlated.

Figure 1: Some possible antenna configurations and deployment scenarios for a massive MIMO
base station [17].

The BS sends T pilot signals using only Np antennas out of Nt , see Fig. 2. In our work,

we fix the value of Np to Nt
2 , which results in a 50% reduction in the pilot and feedback over-

head, and we consider T = Np for maximal overhead reduction. It should be noted that more

than 50% reduction of the overhead results in unacceptable communication performance, hence

choosing Np =
Nt
2 .
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Antenna that send pilots Antenna that do not send pilots

Figure 2: Antennas that send pilots in a linear massive MIMO system.

We also define the pilot percentage as d =
Np
Nt

= 1
2 . The input-output relation can be

written as in [18]:

yp = X

H
hp + zp (1)

where yp 2 CT⇥1 is the received signal, X = [x[0]...x[T � 1]] 2 CNp⇥T is the transmitted pilot

signals in a matrix form, each column x[i] represents one pilot signal sent from Np transmit

antennas, [·]H denotes the matrix Hermitian operator, hp 2 CNp⇥1 are the channel fading coef-

ficients, zp 2 CT⇥1 is the additive white Gaussian noise vector at the receiver with covariance

matrix Rz = s2
z IN .

Since we consider a spatially correlated block-fading channel, the channel vector h can

be modeled as in [19]:

h = R

1
2
hw (2)

where R=E[hh

H ] is the spatial correlation matrix of the channel vector h, and hw ⇠ CN (0, INp)
1

is an independent and identically distributed (i.i.d.) complex Gaussian vector.

1CN denotes the circular symmetric complex Gaussian distribution
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The correlation matrix R can be modeled in many ways depending on the spatial posi-

tioning of the antennas. The exponential model is commonly used to model spatial correlation

matrices [20] [21] mainly because of its simplicity. Even with its simplicity, the exponential

model accurately characterizes uniform linear array (ULA) antennas in different scenarios, as

the experiments in [22] show.

The cross correlation between the antenna of index i and the antenna of index j channels

according to the exponential model is given by

r(i� j) = r|i� j| (3)

where 0  r  1. The correlation coefficient r depends mainly on the distance between the

antennas at the BS and also on the user locations.

2.2 Channel estimation MSE

In this section, we investigate how the number of antennas at the base station affects the chan-

nel estimation error through analytical and asymptotic analysis. The channel estimation is

performed in two steps: the channel coefficients at the antennas that send pilots are estimated,

then the channel coefficients at the remaining antennas are obtained by the use of MMSE

interpolation over the estimated coefficients.

2.2.1 MMSE Channel Estimation at Pilot Antennas

The BS sends a pilot signal of T symbols from its Np antennas. The received signal yp 2 CT⇥1

at the user is used to estimate the channel vector hp by minimizing the average MSE s2
p,Np

=

1
Np
E(kĥp �hpk2) with k·k denoting the Euclidean norm, which can be written as

ĥp = E(hp|yp) = W

H
p yp (4)

where E is the mathematical expectation operator, ĥp 2 CNp⇥1 is the estimate of hp, and Wp is
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the MMSE estimation matrix such that W

H
p = S

hpypS�1
ypyp

We derive S
hpyp and S

ypyp as follows:

S
hpyp = E[hpy

H
p ]

= E[hp(h
H
p X+ z

H
p )]

= E[hph

H
p ]X+E[hp]E[z

H
p ]

= RpX (5)

Note that E[zp] = 0 because the noise is zero mean.

S
ypyp = E[hpy

H
p ]

= E[(XH
hp + zp)(X

H
hp + zp)

H ]

= E[XH
hph

H
p X+X

H
hpz

H
p + zph

H
p X+ zpz

H
p ]

= X

HE[hph

H
p ]X+X

HE[hp]E[z
H
p ]+E[zp]E[h

H
p ]X+E[zpz

H
p ]

= X

H
RpX+s2

z INp (6)

Hence, by combining (5) and (6), we obtain the following:

W

H
p = RpX

✓
X

H
RpX+

1
g0

INp

◆�1
(7)

with Rp = E[hph

H
p ] 2 CNp⇥Np being the correlation matrix between antennas that send pilots,

which is a symmetric Toeplitz matrix with its row defined as [r(K ⇥ 0),r(K ⇥ 1), ...,r(K ⇥

(Np � 1))], such that K = 1
d where d is the pilot percentage, r is defined in (3), g0 represents

the SNR without fading, and INp is a size-Np identity matrix.
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The error covariance matrix is defined as R

p
ee = E[epe

H
p ] with ep = (ĥp � hp) and ĥp

being the estimate of hp, and can be computed as in [23] as:

R

p
ee = E[ep(ĥp �hp)

H ]

= E[epĥ

H
p ]�E[eph

H
p ]

=�E[(ĥp �hp)h
H
p ]

=�E[ĥph

H
p ]+E[hph

H
p ]

= Rp �E[WH
p yph

H
p ]

= Rp �E[WH
p (X

H
hp + zp)h

H
p ]

= Rp �W

H
p X

HE[hph

H
p ]�W

H
pE[zp]E[h

H
p ]

= Rp �RpX

✓
X

H
RpX+

1
g0

INp

◆�1
X

H
Rp. (8)

Note that E[epĥ

H
p ] = 0 because of the orthogonal principle. Hence, the average channel

estimation MSE is calculated as

s2
p,Np =

1
Np
E(khp � ĥpk2) =

1
Np

tr(Rp
ee) (9)

where tr(·) represents the trace operation. The computation of the average MSE involves ma-

trix inversion and trace operation. For this reason, it is not straightforward to analyze the im-

pact of the number of antennas at the BS on the channel estimation MSE. Thus, we resort to

asymptotic analysis by letting Np ! • and Nt ! • while keeping a finite pilot percentage d .

For simplicity of the derivation of the asymptotic MSE, we assume that the average

energy of pilot signals is normalized to 1, E(kxk2) = 1, and X

H
X = IT , i.e., the pilot signals

are orthogonal to each other. This assumption can be easily met using constant amplitude

symbols, such as phase shift keying. It should be noted that data symbols are not subject to

this assumption.
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Consequently, the error covariance matrix reduces to

R

p
ee = Rp �Rp

✓
Rp +

1
g0

INp

◆�1
Rp. (10)

Asymptotic results are presented as follows.

Proposition1 : When Np ! • and Nt ! •, while keeping a finite pilot percentage d , the

asymptotic channel estimation MSE, s2
p = limNp!• s2

p,Np
, of the estimated channel coefficients

at the pilot antennas corresponds to results in [24, Eq. (11)] and can be represented as

s2
p =


(1+ g0)

2 +
4gor

2
d

(1� r
2
d )

�� 1
2
. (11)

Proo f : By taking into consideration the pilot percentage d , the reduced error covariance

matrix becomes:

R

p
ee = Rp �Rp

✓
Rp +

d
g0

INp

◆�1
Rp. (12)

The eigenvalue representation of R

p
ee is:

R

p
ee =

1
Np

Np

Â
n=1


ln �

✓
ln +

d
g0

◆�1
l 2

n

�

=
1

Np

Np

Â
n=1


ln �

✓
g0ln +d

g0

◆�1
l 2

n

�

=
1

Np

Np

Â
n=1


ln �

g0l 2
n

g0ln +d

�

=
1

Np

Np

Â
n=1


dln

g0ln +d

�

=
1

Np

Np

Â
n=1


g0ln +d

dln

��1

=
1

Np

Np

Â
n=1

✓
1
ln

+
g0

d

◆�1
(13)
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Using Szego's Theorem [25], when Np ! •, the average channel estimation MSE, s2
p,Np

,

can be rewritten as

s2
p = lim

Np!•
s2

p,Np =
1

2p

Z +p

�p


1

Lp(W)
+

g0

d

��1
dW (14)

where Lp(W) = Â+•
�• r |n|e� jnW is the discrete-time Fourier transform (DTFT) of sequence

of the correlation coefficients {r |n|}n, and can be computed as follows:

Lp(W) =
+•

Â
�•

r |n|e� jnW

=
�1

Â
�•

�
re� jW��n

+
+•

Â
0

�
re� jW�n

=
+•

Â
1

�
re� jW��n

+
+•

Â
0

�
re� jW�n

=
re� jW

1�re� jW +
1

1�re� jW

=
1�r2

1�2r cosW+r2 (15)

Consequently, s2
p becomes:

s2
p =

1
2p

Z +p

�p


1�2r cosW+r2

1�r2 +
g0

d

��1
dW

=
1

2p

Z +p

�p

✓
d (1�r2)

d (1+r2)+ g0(1�r2)�2dr cosW

◆
dW. (16)

We solve the integral in (16) with [26, Eq. (2.553.3)], we obtain result in (11).
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2.2.2 MMSE Channel Interpolation

Once the channel coefficients are estimated at the user, the latter feeds back the estimated co-

efficients, ĥp, to the BS. These estimated coefficients can be interpolated to obtain the channel

estimates at the remaining antennas as follows

ĥn = E(hn|ĥp) = S
hnĥp

S
ĥpĥp

ĥp (17)

We derive S
hnĥp

and S
ĥpĥp

as follows:

S
hnĥp

= E[hnĥ

H
p ]

= E[hn(h
H
p X+ z

H
p )Wp]

= E[hnh

H
p ]XWp +E[hn]E[z

H
p ]Wp

= RnpXWp (18)

where ĥn 2 CNp⇥1 is the estimate of hn, Rnp = E(hnh

H
p ) 2 RNp⇥Np is the cross-correlation

matrix between channel fading vectors hn and hp, which is a Toeplitz matrix with its first

row being [r(1),r(K � 1), ...,r((Np � 1)⇥K � 1))] and the first column being [r(1),r(K +

1), ...,r((Np � 1)⇥K + 1))]T such that K = 1 where d is the pilot percentage, with [·]T denot-

ing the transpose operator.

S
ĥpĥp

= E[ĥpĥ

H
p ]

= E[WH
p (X

H
hp + zp)(X

H
hp + zp)

H
Wp]

= W

H
pE[X

H
hph

H
p X+X

H
hpz

H
p + zph

H
p X+ zpz

H
p ]Wp

= W

H
p
⇥
X

HE[hph

H
p ]X+X

HE[hp]E[z
H
p ]+E[zp]E[h

H
p ]X+E[zpz

H
p ]
⇤
Wp

= W

H
p
⇥
X

H
RpX+s2

z INp

⇤
Wp (19)
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Hence, by combining (18) and (20), we obtain the following:

ĥn = S
hnĥp

S
ĥpĥp

ĥp

= RnpXWp
�
W

H
p
⇥
X

H
RpX+s2

z INp

⇤
Wp
��1

W

H
p yp

= RnpX

✓
X

H
RpX+

1
g0

INp

◆�1
yp (20)

The corresponding error correlation matrix of the channel estimation at non-pilot anten-

nas, R

n
ee , E

⇥
(ĥn �hn)(ĥn �hn)H⇤, can be computed in the same way as R

p
ee as

R

n
ee = Rnn �RnpX

✓
X

H
RpX+

1
g0

INp

◆�1
X

H
Rpn (21)

where Rnn = E(hnh

H
n ) = Rp is the auto-correlation matrix of the fading vector hn, and Rpn =

R

H
np.

The average channel estimation MSE of the spatial interpolation is therefore given by

s2
n,Np =

1
Np
E(khn � ĥnk2) =

1
Np

tr(Rn
ee). (22)
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However, when assuming orthogonal pilot signals, the error correlation matrix of the

channel estimation at the non-pilot antennas reduces to

R

n
ee = Rnn �Rnp

✓
Rp +

1
g0

INp

◆�1
Rpn (23)

Hence, the asymptotic channel estimation MSE at non-pilot antennas results are presented in

the following proposition.

Proposition2 : When Np ! • and Nt ! •, while keeping a finite pilot percentage d , the

asymptotic channel estimation MSE , s2
n = limNp!• s2

n,Np
, of the estimated channel coefficients

at the non-pilot antennas can be expressed as

s2
n =

 
1
g0

+
1� r

1
d

1+ r
1
d

! 1
2
 

1
g0

+
1+ r

1
d

1� r
1
d

!� 1
2

. (24)

Results were derived in exact same way as in s2
p , equation (11). Note that the above

equation has the same form as in [24, Eq. (17)], where the asymptotic MSE of interpolation

was derived in the context of distortion-tolerant wireless sensor networks.
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2.3 Spectral efficiency with imperfect channel estimation

The estimated channel coefficient ĥi is complex Gaussian random variable with zero mean and

a variance of 1�s2
e , namely ĥi ⇠ CN (0,1�s2

e ) where s2
e represents the channel estimation

MSE. |ĥi|2 is therefore exponentially distributed with parameter (1�s2
e )

�1. Hence, the average

capacity lower bound of the MISO system with per-antenna constraint can be expressed as

C̄low =
Z +•

0
log2

 
1+

1
s2

e +
1
g0

a

!
Pa(a)da (25)

with a = ÂNt
i=1 |ĥi|2, which is the sum of correlated exponential random variables, and Pa(a) is

the probability density function of a [27] and is defined as

Pa(a) =
Nt

Â
i=1

Nt

’
j=1
j 6=i

(li)Nt�1

l j �li
exp
✓

a
li

◆
(26)

where li and l j are the eigenvalues of the covariance matrix Rĥ that is defined as E(ĥĥ

H).

Note that the eigenvalues have to be different.

The spectral efficiency lower bound, hlow = (1�d )C̄low, is expressed as

hlow =
(1�d )

ln2

Nt

Â
i=1

exp(b )Ei(�b )
Nt

’
j=1
j 6=i

(li)Nt�1

l j �li
(27)

with b = 1
li
(s2

e +
1
g0
), and Ei(x) =�

R •
�x

e�t

t dt is the exponential integral.
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3 Simulation results

In this section, we will verify and validate the feasibility of the proposed channel estimation

scheme through analytical and simulation results.

3.1 Impact of number of antennas on the channel estimation MSE

In Fig. 3, we plot the analytical, asymptotic, and simulated channel estimation MSE at both

antennas that send pilots and the ones that do not as a function of the number of antennas Nt .

The parameters used in the simulation are r = 0.9, and g0 = 10 dB. The analytical results are

calculated according to (9) and (22), and the asymptotic results at the pilot antennas and the

non-pilot antennas are defined in (11) and (24), respectively. We observe that the channel es-

timation MSE decreases as the total number of antennas, Nt , increases and it converges to the

asymptotic MSE, with the non-pilot MSE values greater than the pilot MSE values. Increasing

the number of antennas increases leads to more coefficients to estimate the channel, which

results in better channel estimation, and hence the decrease of the channel estimation MSE.

0 50 100 150 200 250

Number of antennas at BS

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

M
S

E

Analytical MSE at pilot antennas
Analytical MSE at non-pilot antennas
Simulated pilot antennas MSE
Simulated non-pilot antennas MSE
Asymptotic pilot MSE
Asymptotic non-pilot MSE

Figure 3: The MSE of the channel estimation as a function of Nt .
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3.2 Impact of the SNR on the channel estimation MSE

Fig. 4 depicts the channel estimation MSE as a function of the SNR. The values used for the

simulation are r = 0.9 and Nt = 256. The analytical results are calculated according to (9) and

(22), and the asymptotic results at the pilot antennas and the non-pilot antennas are defined

in (11) and (24), respectively. We observe that the channel estimation MSE at pilot-antennas

decreases linearly with the SNR, because the latter MSE converges to zero as the SNR in-

creases, as (10) indicates, i.e. when SNR tends •, the term inside the parentheses reduces

to Rp, which leads to 0 in the channel estimation MSE overall equation. However, the non-

pilot MSE decreases with the SNR and remains constant after a certain value of g0. This can

be explained by examining the channel estimation MSE expression in (23), the term with the

g0 will vanish with high SNR values, but a constant term will remain mainly due to the cross

correlation between the channel coefficients.
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Figure 4: The channel estimation MSE as a function of the SNR.
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3.3 Effect of the channel estimation MSE and SNR on the Spectral Efficiency

Fig. 5 plots the spectral efficiency lower bound hlow, defined in (27), as a function of SNR.

One curve is computed using the pilot channel estimation MSE and the other one using the

non-pilot channel estimation MSE, defined in equations (11) and (24), respectively. The values

used for the simulation are r = 0.8 and Nt = 128. hlow with the pilot MSE increases linearly

with the SNR because hlow is inversely proportional to the channel estimation MSE. However,

hlow with the non-pilot MSE increases with the SNR and remains constant after a certain value

of g0, behaving in accordance with the non-pilot channel estimation MSE. Hence, transmitting

data through the antennas that send pilots leads to higher spectral efficiency when compared to

data transmission using the non-pilot antennas.
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Figure 5: he spectral efficiency h as a function of the SNR.
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4 Conclusions and future work

An MMSE-based channel estimation scheme for downlink FDD massive MIMO systems was

introduced in this thesis to reduce the pilot and feedback overhead by 50%, through exploiting

the spatial correlation between the antennas at the base station. Analytical and asymptotic

channel estimation MSE along with the spectral efficiency lower bound of the system were

derived. A perfect match was observed between analytical and simulated results. Moreover,

simulation results show that the channel estimation MSE for the interpolated channel coeffi-

cients is less than 0.2, which indicates an acceptable communication performance.

As for future work, experimentation of our proposed scheme might be performed to

assess the practicality of the scheme in deploying future cellular communication systems. Fur-

thermore, a complexity analysis for our proposed channel estimation framework can me carried

out in comparison to other channel estimation schemes.
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