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Abstract

In this dissertation, we complete the work of constructing arbitrary order conformally

invariant operators in higher spin spaces, where functions take values in irreducible

representations of Spin groups. We provide explicit formulas for them.

We first construct the Dirac operator and Rarita-Schwinger operator as Stein Weiss

type operators. This motivates us to consider representation theory in higher spin spaces.

We provide corrections to the proof of conformal invariance of the Rarita-Schwinger

operator in [15]. With the techniques used in the second order case [7, 18], we construct

conformally invariant differential operators of arbitrary order with the target space being

degree-1 homogeneous polynomial spaces. Meanwhile, we generalize these operators and

their fundamental solutions to some conformally flat manifolds, such as cylinders and Hopf

manifolds. To generalize our results to the case where the target space is a degree k

homogeneous polynomial space, we first construct third order and fourth order conformally

invariant differential operators by similar techniques. To complete this work, we notice that

the techniques we used previously are computationally infeasible for higher order (≥ 5)

cases. Fortunately, we found a different approach to conquer this problem. This approach

relies heavily on fundamental solutions of these differential operators. We also define a

large class of conformally invariant convolution type operators associated to fundamental

solutions. Further, their inverses, when they exist, are conformally invariant analogues of

pseudo-differential operators.

We also point out that these conformally invariant differential operators with their

fundamental solutions can be generalized to some conformally flat manifolds, for instance,

cylinders and Hopf manifolds. This can be done with the help of Eisenstein series as in [31].
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1 Introduction

Classical Clifford analysis started as a generalization of aspects of the analysis of functions

in one complex variable to m-dimensional Euclidean spaces. At the heart of this theory is

the study of the Dirac operator Dx on Rm, a first order conformally invariant differential

operator which generalizes the role of the Cauchy-Riemann operator. Moreover, this

operator is related to the Laplace operator by D2
x = −∆x. The classical theory is centered

around the study of functions on Rm taking values in a spinor space [1, 3], and abundant

results have been found. See for instance [3, 9, 36, 21, 41, 42].

In constructing a first order relativistically covariant equation describing the dynamics

of an electron, P.A.M. Dirac constructed a differential operator using Clifford modules;

hence the name Dirac operator. Moreover, in the presence of an electromagnetic field, the

Dirac Hamiltonian gives an additional contribution formally analogous to internal angular

momentum called spin, from which the Spin group and related notions take their name; for

the electron, spin has the value 1
2

[28]. Indeed, in dimension four with appropriate

signature, the Dirac operator reproduces the relativistically covariant dynamical equation

of a massless particle of spin 1
2
, also called the Weyl equation.

Rarita and Schwinger [38] introduced a simplified formulation of the theory of particles

of arbitrary half-integer spin k + 1
2

and in particular considered its implications for

particles of spin 3
2
. In the context of Clifford analysis, the so-called higher spin theory was

first introduced through the Rarita-Schwinger operator [6], which is named analogously to

the Dirac operator and reproduces the wave equations for a massless particle of arbitrary

half-integer spin in four dimensions with appropriate signature [39]. (The solutions to these

wave equations may not be physical [49, 50].) The higher spin theory studies

generalizations of classical Clifford analysis techniques to higher spin spaces

[7, 4, 6, 15, 17, 33]. This theory concerns the study of the operators acting on functions on

Rm, taking values in arbitrary irreducible representations of Spin(m). These arbitrary
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representations are defined in terms of polynomial spaces that satisfy certain differential

equations, such as j-homogeneous monogenic polynomials (half-integer spin) or

j-homogeneous harmonic polynomials (integer spin). More generally, one can consider the

highest weight vector of the spin representation as a parameter [44], but this is beyond our

present scope.

In what we have discussed, two matters are emphasized. First, physics is the motivation

for essential ideas in Clifford analysis and certainly for the higher spin theory. In particular,

the Dirac and Rarita-Schwinger operators emerge naturally from physics. Any approach to

Clifford analysis should readily include these operators. Second, the theory of group

representations emerges naturally in physics when considering the quantization of angular

momentum or spin, and this representation theory is needed to construct higher spin

operators motivated by physics. It is desirable to construct the Dirac and Rarita-Schwinger

operators using strictly representation theoretic methods. We will do this using the

generalized gradient construction of Stein and Weiss [48]. The operators generated by this

method are the obvious choice for studying first order differential operators on spinor

spaces, which should be considered as irreducible representation spaces for Spin group.

This construction naturally provides the immensely important Atiyah-Singer Dirac

operator, which generalizes the Euclidean Dirac operator to a spin manifold.

In principle, all conformally invariant differential operators on locally conformally flat

manifolds in higher spin theory are classified by Slovák [46]. This classification is

non-constructive, showing only between which vector bundles these operators exist and

what their order is. Explicit expressions of these operators are still being found. Eelbode

and Roels [17] point out that the Laplace operator ∆x is no longer conformally invariant

when it acts on C∞(Rm,H1), where H1 is the degree one homogeneous harmonic

polynomial space (correspondingly M1 for monogenic polynomials). They construct a

second order conformally invariant operator on C∞(Rm,H1), called the (generalized)
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Maxwell operator. In dimension four with appropriate signature it reproduces the Maxwell

equation, or the wave equation for a massless spin-1 particle (the massless Proca equation)

[17]. De Bie and his co-authors [7] generalize this Maxwell operator from C∞(Rm,H1) to

C∞(Rm,Hj) to provide the higher spin Laplace operators, the second order conformally

invariant operators generalizing the Laplace operator to arbitrary integer spins. Their

arguments also suggest that Dk
x is not conformally invariant in the higher spin theory. This

raises the following question: What operators generalize kth-powers of the Dirac operator

in the higher spin theory? We know these operators exist, with even order operators taking

values in homogeneous harmonic polynomial spaces and odd order operators taking values

in homogeneous monogenic polynomial spaces [46]. Using similar techniques as in [17, 7],

we successfully discovered third order and fourth order conformally invariant differential

operators in higher spin spaces, see [11]. However, in application, the computation with

such a technique in [11] becomes impossible to complete when the order of the operator

increases. This forces us to find a new approach.

The methods we use to construct conformally invariant operators are usually either of

the following types:

1. Verify some differential operator is conformally invariant under Möbius

transformations with the help of an Iwasawa decomposition, for instance as in [15].

2. Show the generalized symmetries of some differential operator generate a conformal

Lie algebra, for instance as in [7, 17].

In our recent paper [14], we find a different method to solve the higher order cases. We

start by applying Slovák [46] and Souček’s [47] results with arguments of Bureš et al. [6] to

get fundamental solutions of arbitrary order conformally invariant differential operators in

higher spin spaces. Then we only need to construct differential operators with those

specific fundamental solutions. In particular, from the fundamental solutions of the first
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and second order conformally invariant differential operators obtained from the preceding

argument, we can also find the Rarita-Schwinger operators and higher spin Laplace

operators [7] by verifying they have such fundamental solutions. Arguing by induction, we

then complete the work of constructing conformally invariant operators in higher spin

spaces by providing explicit forms of arbitrary j-th order conformally invariant operators in

higher spin spaces with j > 2.

Notably, we discover a new analytic approach to show that a differential operator is

conformally invariant. More specifically, we use its fundamental solution to define a

convolution type operator, and then the fundamental solution can be realized as the inverse

of the corresponding differential operator in the sense of such convolution. Hence, if we can

show the fundamental solution (as a convolution operator) is conformally invariant, then as

the inverse, the corresponding differential operator will also be conformally invariant. Thus

the intertwining operators of the fundamental solution (as a convolution operator) are the

inverses of the intertwining operators of the differential operators. This method gives us an

infinite class of conformally invariant convolution type operators in higher spin spaces.

Further, their inverses, if they exist, are conformally invariant pseudo-differential operators.

More details can be found in Section 4.1.

Our study of conformally invariant differential operators in higher spin spaces suggests

a distinct Representation-Theoretic approach to Clifford analysis, in contrast to the

classical Stokes approach. In the latter approach, the motivation for Dirac-type operators

is to obtain operators satisfying a Stokes-type theorem. This does not require irreducible

representation theory. In contrast, in the Representation-Theoretic approach, we consider

functions taking values in irreducible representations of the Spin group. This forces us to

consider irreducible representation theory, as happens elsewhere in the literature where

Dirac operators are used [21] and especially in spin geometry [28]. Moreover, irreducible

spin representations are natural for studying spin invariance and in particular conformal
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invariance. However, we should not dismiss the Stokes approach—it is used, for instance,

to establish the L2 boundedness of the double layer potential operator on Lipschitz graphs

[35]. Other applications are found in such works as [3]. Though the present work aims to

demonstrate the value of the Representation-Theoretic approach, in future work the two

distinct approaches may complement each other.

1.1 Dissertation Outline

This dissertation is organized as follows:

In Section 2, we introduce Clifford algebras with some well known properties; we then

introduce some real subgroups in real Clifford algebra, in particular, the special orthogonal

group and Spin group which is the double covering group of the special orthogonal group.

In Section 3, Euclidean Dirac operator is defined and some classical results of the Dirac

operator are introduced, such as, Cauchy’s integral formula, Cauchy’s theorem and

fundamental solutions. Since the main topic of this thesis is constructing conformally

invariant differential operators, conformal transformations with some well known results

are introduced, for instance, Möbius transformations and Ahlfors-Vahlen matrices. At the

end of this section, we review several results on conformal invariance of Dirac operators in

Euclidean space.

In higher spin theory, we consider functions taking values in irreducible representations

of Spin groups. Some basic knowledges of representation theory are introduced in Section

4. More specifically, we first give the definitions for Lie group and representations of Lie

group. In the context of Lie group, highest weights and highest weight vectors are

introduced. Several irreducible representations of Spin groups are provided at the end for

further use.

In sections 5 through 9, we demonstrate how to construct conformally invariant

differential operators in higher spin spaces.
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In Section 5, we start with a counterexample which shows that the Euclidean Dirac

operator Dx is no longer conformally invariant in higher spin spaces. We then show

alternative representation theoretic constructions for the Euclidean Dirac operator and

Rarita-Schwinger operator as Stein Weiss type operators. It turns out that this

construction fits better in this thesis, since representation theory emerges naturally in

higher spin spaces. We next provide corrections to the proofs of conformal invariance and

intertwining operators for the Rarita-Schwinger operator in [33]. Further, we explore these

properties for other Rarita-Schwinger type operators as well.

In [7, 18], second order conformally invariant differential operator in higher spin spaces

is constructed. Motivated by techniques used there, we construct arbitrary order

conformally invariant differential operators in higher spin spaces with target space degree-1

homogeneous polynomial spaces in Section 6. They are named as fermionic operators for

odd order and bosonic operators for even order because of their connection with particles

in physics. More details can be found in this section. Fundamental solutions and ellipticity

of these operators are also provided.

In [30, 31], Rarita-Schwinger operators with their fundamental solutions are generalized

to cylinders and Hopf manifolds with the help of Eisenstein series [23]. In Section 7, we

generalize our fermionic operators and bosonic operators to cylinders and Hopf manifolds

as well with similar arguments as in [31, 30].

In the previous section, there is a restriction for our results; we require that the target

space must be degree-1 polynomial space. In Section 8, we construct conformally invariant

differential operators in higher spin spaces with degree-j homogeneous polynomial space as

the target space. Third order fermionic operator and fourth order bosonic operator are

constructed with similar techniques used in Section 7. This technique does not apply for

other higher order cases due to its complicated calculations when the order of differential

operator increases.
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In Section 9, we provide an approach, which is different from [7, 17], to construct the

other higher order conformally invariant differential operators. This approach relies heavily

on fundamental solutions of these conformally invariant differential operators. We also

define a convolution type operator associated to each fundamental solution to show each

fundamental solution is actually the inverse of the corresponding differential operator. An

explicit proof for the intertwining operators of these convolution type operators is provided

here. This implies conformal invariance of these convolution type operators and conformal

invariance of the corresponding differential operators is shown immediately. We also point

out that this idea gives an infinite class of conformally invariant convolution type operators.

Moreover, their inverses, if they exist, are conformally invariant pseudo-differential

operators. We also show that the Rarita-Schwinger and higher spin Laplace operators [7]

can be derived from this approach. Then we introduce bosonic operators, D2j, as the

generalization of D2j
x when acting on C∞(Rm,Hk) and fermionic operators, D2j−1, as the

generalization of D2j−1
x when acting on C∞(Rm,Mk). The connections between these and

lower order conformally invariant operators are also revealed in the construction.

Moreover, since the construction is explicitly based on the uniqueness of the operators and

their fundamental solutions with the appropriate intertwining operators for a conformal

transformation, the conformal invariance and fundamental solutions of the bosonic and

fermionic operators arise naturally in our formalism.

In Section 10, we list several unsolved problems which are related to my work in this

thesis. These are the problems for my future work.

2 Clifford algebras

2.1 Definitions and properties

Clifford algebras are the algebras that form the basis of this thesis. They are naturally

associated with bilinear forms on vector spaces. A bilinear form can be considered as a

7



generalization of an inner product and is defined as follows:

Definition 2.1. Suppose V is a vector space over R. A bilinear form B is a map

B : V × V −→ R; (u, v) 7→ B(u, v),

which is linear in both arguments:

B(au1 + bu2, v) = aB(u1, v) + bB(u2, v);

B(u, av1 + bv2) = aB(u, v1) + bB(u, v2).

One can associate a matrix B = (aij)ij ∈ Rm×m to every bilinear form on an m-dimensional

vector space:

B(u, v) =
m∑
i=1

m∑
j=1

uiaijvj = uTBv,

where u, v ∈ V . If the matrix B is symmetric, the associated bilinear form is called

symmetric and if det(B) 6= 0, the associated form is called non-degenerate, i.e. for all

non-zero vector u ∈ V there exists a non-zero vector v ∈ V such that B(u, v) 6= 0.

Definition 2.2. If V is a real vector space equipped with a symmetric, non-degenerate

bilinear form B, then (V,B) is called a non-degenerate orthogonal space.

Note that with a proper choice of a basis for V , every non-degenerate orthogonal space

can be reduced to a space Rp,q with p+ q = m = dim(V ). (p, q) are called the signature of

the orthogonal space (V,B). The physical interpretation of the numbers p and q are the

number of time-like and space-like dimensions respectively. This means that there exist a
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basis {e1, · · · , ep, ep+1, · · · , ep+q} such that:

B(ei, ej) = 0, if i 6= j;

B(ei, ei) = 1, if 1 ≤ i ≤ p;

B(ei, ei) = −1, if p+ 1 ≤ i ≤ p+ q.

For instance, the Minkowski space has signature (1, 3) or (3, 1), depending on the

convention, while the classical Euclidean space has signature (3, 0). We always assume that

the basis is orthonormal. In other words, the associated matrix B is diagonal and of the

type B = diag(1, · · · , 1,−1, · · · ,−1). We are now in a position to give a definition for a

Clifford algebra. First, the most general definition is given. Afterwards, a more useful

definition that we will continue using throughout this thesis will be given.

Definition 2.3. Suppose that B is a non-degenerate bilinear form on a real vector space

V . The Clifford algebra Cl(V,B) associated to the bilinear form B is a associative algebra

with unit 1 ∈ R defined as

Cl(V,B) := T (V )/I(V,B).

Here, T (V ) is the universal tensor-algebra

T (V ) :=
⊕
k∈N

(
k⊗
V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · ,

and I(V,B) is the two-sided ideal generated by all elements of the form u⊗ u− B(u, u)1,

with u ∈ V .

From now on, we will drop the tensor symbol u⊗ v, i.e. we will simply write uv

instead. Moreover, we will also drop the unit because we only work with fields R and C.

Earlier, we showed that real non-degenerate orthogonal spaces can be classified according

to their signature and that generates a universal real Clifford algebra. After a proper
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choice for a basis for V , Cl(V,B) can be reduced to the Clifford algebra Cl(Rp,q,Bp,q).

Lemma 2.1. For every (p, q) with p+ q = m, a basis for Cl(Rp,q,Bp,q) is given by the set

{1, e1, · · · , em, e1,2, · · · , em−1m, · · · , e12···m},

where ei1···ek is a shorthand for ei1 · · · eik .

If (V,B) = Rp,q, the associated Clifford algebra Cl(Rp,q,Bp,q) will be denoted by Clp,q.

An alternative and much more useful definition for this Clifford algebra is the following:

Definition 2.4. For all (p, q) ∈ N× N with p+ q = m, the algebra Rp,q is an associative

algebra (with unit) that is multiplicatively generated by the basis {e1, · · · , em} satisfying

the following multiplication rules:

e2
i = 1, if 1 ≤ i ≤ p;

e2
i = −1, if p+ 1 ≤ i ≤ p+ q;

eiej + ejei = 0, if i 6= j.

These are called the universal Clifford algebra for the space Rp,q with dimR(Clp,q) = 2m.

It is clear that a basis for the algebra is given by

Clp,q = Span{ei1···ik : 1 ≤ i1 < · · · < ek ≤ m}.

Let k ∈ N and A = {i1, · · · , ik} ⊂ {1, · · · ,m}, then every element of Clp,q is of the form∑
A

aAeA with aA ∈ R. If A = ∅, we let e∅ = 1. Elements of a Clifford algebra are called

Clifford numbers. We usually use Clm as a shorthand notation for Cl0,m. We also define the

following spaces:
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Definition 2.5. For all 0 ≤ k ≤ m, we define the space Cl(k)
p,q of k-vectors as:

Cl(k)
p,q := SpanR{eA : |A| = k},

with Cl(0)
p,q = R. In particular, the space of Cl(1)

p,q is called the space of vectors and the space

of Cl(2)
p,q is called the space of bivectors. Hence, we have

Clp,q = ⊕Cl(k).
p,q

Above decomposition can also be rewritten as

Clp,q = Clep,q ⊕ Clop,q

where Clep,q = ⊕Cl(2n)
p,q , and Clop,q = ⊕Cl(2n−1)

p,q . This tells us Clp,q is a Z2-graded algebra.

To conclude this section, we introduce some (anti-)involutions on Clp,q. We first define

them on the basis elements, the action on arbitrary Clifford numbers follows by linear

extension.

1. The inversion on Clp,q is defined as êi1···ik := (−1)kei1···ik .

2. The reversion on Clp,q is defined as ẽi1···ik := eik···i1 .

3. The conjugation on Clp,q is defined as ēi1···ik := ˜̄ei1···ik = (−1)
k(k+1)

2 ei1···ik .

In the rest of this thesis, we only deal with Clm over R unless it is specified.

2.2 Real subgroups of real Clifford algebras

One of many applications of Clifford algebras Clm is the following: they can be used to

introduce some important groups which define double coverings of orthogonal group O(m)
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and special orthogonal group SO(m). These groups are crucial in the study of the spinor

representations.

Definition 2.6. The orthogonal group O(m) is the group of linear transformations on Rm

which leave the bilinear form invariant, i.e.,

{ϕ ∈ End(Rm) : B(u, v) = B(ϕ(u), ϕ(v)),∀u, v ∈ V } = {A ∈ Rm×m : ATA = Id}.

An important subgroup of O(m) is the special orthogonal group

SO(m) = {A ∈ O(m) : detA = 1}.

Suppose a is a unit vector on the unit sphere Sm−1 ⊂ Rm and x ∈ Rm, if we consider axa,

we may decompose

axã = axa‖ ã+ axa⊥ ã = −xa‖ + xa⊥ .

So, the action axã describes a reflection Ra of x in the direction of a. These reflections are

the building blocks for the entire group O(m):

Theorem 2.2. (Cartan-Dieudonné) Every element of O(m) is a composition of at

most m reflections with respect to hyperplanes in Clm, i.e. For any ϕ ∈ O(m), there exist

k ≤ m and a1, · · · , ak ∈ Sm−1, such that

ϕ = Ra1 ◦Ra2 ◦ · · · ◦Rak .

If k is even, then ϕ is a rotation and if k is odd then ϕ is an anti-rotation.

Hence, we are motivated to define

Pin(m) := {a = y1 · · · yp : p ∈ N and y1, · · · , yp ∈ Sm−1}
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where for a ∈ Pin(m) we have axã = Oax for appropriate Oa ∈ O(m). Under Clifford

multiplication Pin(m) is a group. Further, we have a group homomorphism as follows.

θ : Pin(m) −→ O(m); a 7→ Oa.

We also define

Spin(m) := {a ∈ Pin(m) : for some q ∈ N, a = y1 · · · y2q}.

The Spin(m) group is a subgroup of Pin(m) and θ is also a group homomorphism from

Spin(m) to SO(m). Indeed, it can be shown that θ is surjective with Kerθ = {−1, 1}.

Thus, Pin(m) and Spin(m) are double cover of O(m) and SO(m) respectively. See more

details in [37].

3 Clifford analysis

Now we have established Clifford algebras and some of their properties, we are concerned

with defining a differential operator and performing analysis with Clifford algebras.

3.1 Dirac operators and Clifford analyticity in Clm

Definition 3.1. Consider Rm as a subset of Clm and write x ∈ Rm as

x = x1e1 + · · ·+ xmem. Then we define

Dx :=
m∑
j=1

ej∂xj

to be the Dirac operator for Rm, where ∂xj is the partial derivative with respect to xj.

Notice that D2
x = −∆, where ∆ is the Laplacian in Rm. This definition suggests we
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should also consider the following two differential operators in Clm

D′x := ∂x0 +
m∑
j=1

ej∂xj ; D
′
x := ∂x0 −

m∑
j=1

ej∂xj ,

which have the property D′xD
′
x = ∆m+1. D′x and D′x are also called the Cauchy-Riemann

operator and the conjugate Cauchy-Riemann operator, respectively. In particular, when

m = 1, this is the one complex variable case. This tells us that the Dirac operator is the

generalization of the Cauchy-Riemann operator in analysis of one complex variable to

higher dimensions.

As the generalization of analytic function in one complex variable case, a Clm-valued

function f defined on a domain U ⊂ Rm is called left-monogenic if it is a solution for the

Dirac equation, i.e. Dxf(x) = 0. Since multiplication of Clifford numbers is not

commutative in general, we have a similar definition for right-monogenic.

3.2 Integral formulas and fundamental solutions for Euclidean Dirac

operator

In complex analysis, the most important properties of analytic functions are Cauchy’s

integral formula and Cauchy’s theorem. Since analytic functions can also be considered as

solutions for the Cauchy-Riemann operator, as the generalization of Cauchy-Riemann

operator to higher dimensions, the Euclidean Dirac operator also has such integral

formulas.

(Cauchy’s theorem) [9] Fix a domain U ⊂ Rm and V ⊂⊂ U with its boundary ∂V a

C1 hypersurface. Suppose f, g : U −→ Clm are C1 and gDx = 0 = Dxf on all of U . Then

∫
∂V

g(x)n(x)f(x)dσ(x) = 0,

where n(x) is the outer normal vector and dσ(x) is the surface measure on ∂V .
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Define G : Rm\{0} −→ Rm\{0} by G(x) :=
x

||x||m
. Note that this function, considered

as a function to Clm, is left and right monogenic. This is the Clifford analysis analogue of

the Cauchy kernel
1

z − w
on C. Indeed, we have

(Cauchy’s Integral Formula) [9] Fix a domain U ⊂ Rm and V ⊂⊂ U with its

boundary ∂V a C1 hypersurface. Suppose f : U −→ Clm is C1 and Dxf = 0 on all of U .

Then for y ∈ V , we have

f(y) =
1

ωm−1

∫
∂V

G(x− y)n(x)f(x)dσ(x),

where ωm−1 is the area of the (m− 1)-dimensional unit sphere Sm−1.

In analogy to complex analysis, the Clifford analysis version of Cauchy’s integral

formula immediately gives one a great deal of results, such as the analyticity (interpreted

in the appropriate sense) of monogenic functions.

Now given f(x), a C1 function defined in a neighborhood of a bounded domain V , we

define its Cauchy transform by the convolution integral

1

ωm−1

∫
V

G(x− y)f(x)dxm.

Theorem 3.1. [40] Suppose f and V are as above. Then for each y ∈ V , it holds that

f(y) =
1

ωm−1

Dy

∫
V

G(x− y)f(x)dxm.

Usually one writes Tf(y) for

∫
V

G(x− y)f(x)dxm. Note that the previous theorem

solves the following problem: Given g, a function C1 in a neighborhood of V , find f on V

so that Df = g and f = Tg.

Corollary 3.2. [40] Suppose f ∈ C∞0 (Rm, Clm). Then DTf = f . In particular, if we
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rewrite Tf as G ∗Rm f , the previous theorem says that

DG ∗Rm f = f,

G ∗Rm Df = f.

In this sense, D and G∗Rm are inverses of each other over C∞0 (Rm, Clm) and G is the

fundamental solution of D.

3.3 Möbius transformations and Ahlfors-Vahlen matrices

In analysis of one complex variable, a function f sending a region in R2 = C into C is

conformal at z if it is complex analytic and has a non-zero derivative, f ′(z) 6= 0 (we only

consider sense-preserving conformal mappings). The only conformal transformations of the

whole plane C are affine linear transformations: compositions of rotations, dilations and

translations. The Möbius mapping

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0,

is affine linear when c = 0; otherwise, it is conformal at each z ∈ C except z = −d
c

. The

Möbius mapping f sends C\{−d
c
} onto C\{a

c
}. If we agree that f(−d

c
) =∞ and

f(∞) =
a

c
, then f becomes a (one-to-one) transformation of C ∪∞, the complex plane

compactified by the point at infinity. These transformations are called Möbius

transformations of C ∪ {∞}. Möbius transformations are compositions of rotations,

translations, dilations and inversions. Möbius transformations send circles (and affine lines)

to circles (or affine lines). The derivative of a Möbius transformation is a composition of a

rotation and a dilation.

In the higher dimensional case, a conformal mapping preserves angles between

intersecting curves. Formally, a differomorphism φ : U −→ Rm is said to be conformal if for
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each x ∈ U ⊂ Rm and each u,v ∈ TUx, the angle between u and v is preserved under Dφx.

When the dimension m > 2, Liouville’s Theorem states that any smooth conformal

mapping on a domain of Rm can be expressed as compositions of translations, dilations,

orthogonal transformations and inversions: they are Möbius transformations. Ahlfors and

Vahlen find a connection between Möbius transformations and a particular matrix group,

when the dimension m > 2. They show that given a Möbius transformation on Rm ∪ {∞}

it can be expressed as y(x) = (ax+ b)(cx+ d)−1 where a, b, c, d ∈ Clm and satisfy the

following conditions:

1. a, b, c, d are all products of vectors in Rm;

2. ab̃, cd̃, b̃c, d̃a in Rm;

3. ad̃− bc̃ = ±1.

The associated matrix

a b

c d

 is called a Vahlen matrix of the Möbius transformation

y(x) of Rm, see more details in [37]. All Vahlen matrices form a group under matrix

multiplication, the Vahlen group. Notice that

y(x) = (ax+ b)(cx+ d)−1 = ac−1 + (b− ac−1d)(cx+ d)−1, this suggests that a conformal

transformation can be decomposed as compositions of translation, dilation, reflection and

inversion. This is called the Iwasawa decomposition for the Möbius transformation y(x).

3.4 Conformal invariance of Dirac operators

One important fact about the conformal mapping is that it preserves monogenic functions,

which also means the conformal invariance of the Dirac equation. This has been

established for many years, see [36, 41, 42].

Theorem 3.3. (Conformal invariance of Dirac equation)[40]
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Assume f ∈ C1(Rm, Clm) and Dyf(y) = 0. If y = M(x) = (ax+ b)(cx+ d)−1 is a

Möbius transformation, then

Dx
c̃x+ d

||cx+ d||m
f(M(x)) = 0.

In other words, the kernel of the Dirac operator is invariant under Möbius transformations.

Further, we have intertwining operators for the Euclidean Dirac operator, i.e., it is

conformally invariant.

Proposition 3.4. [36] If y = (ax+ b)(cx+ d)−1, then we have

c̃x+ d

||cx+ d||m+2
Dyf(y) = Dx

c̃x+ d

||cx+ d||m
f((ax+ b)(cx+ d)−1).

We just reviewed the first order conformally invariant differential operator in classical

Clifford analysis with some properties. Recall that, in harmonic analysis, as a second order

differential operator, the Laplacian ∆ is also conformally invariant, and we already knew

that −∆ = D2
x. Hence, we expect that Dj

x is conformally invariant as well for j > 2. This

has been confirmed and similar results on fundamental solutions and intertwining operators

have also been established. First, let y = M(x) = (ax+ b)(cx+ d)−1 be a Möbius

transformation, we denote

Gj(x) =
x

||x||m−2n
, if j = 2n+ 1; Gj(x) = ||x||m−2n, if j = 2n;

Jk(M,x) =
c̃x+ d

||cx+ d||m−2n
, if j = 2n+ 1, Jk(M,x) = ||cx+ d||m−2n, if j = 2n;

J−k(M,x) =
c̃x+ d

||cx+ d||m+2n
, if j = 2n+ 1, Jk(M,x) = ||cx+ d||m+2n, if j = 2n.

Then we have

Proposition 3.5. [36](Intertwining operators for j-Dirac operator)
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If y = M(x) = (ax+ b)(cx+ d)−1 is a Möbius transformation, then

J−k(M,x)Dj
yf(y) = Dj

xJk(M,x)f((ax+ b)(cx+ d)−1).

Notice that conformal invariance of the j-Dirac equation Dj
xf(x) = 0 can be deduced

from this easily.

Proposition 3.6. [36](Fundamental solutions for Dj
x)

The fundamental solution of Dj
x is Gj(x) (up to a multiplicative constant), where Gj(x)

is defined as above. However, when the dimension m is even, we require that j < m.

Notice that, for instance, when the dimension m is even and m = j, then the candidate

for the fundamental solution Gj(x) is a constant, which can not be a fundamental solution.

4 Representation theory of Spin group

In this section, we will discuss some classical results of representation theory of Lie groups,

which play an important role in later sections. First, we start with some general definitions

and notations, then we will review some basic knowledges of weight theory. Finally, some

well-known representations of Spin group are given as examples. These representation

spaces are often considered as the target spaces of functions in Clifford analysis. This also

points out that representation theory emerges naturally in Clifford analysis.

4.1 General definitions and notations

A Lie group is a smooth manifold G which is also a group such that multiplication

(g, h) 7→ gh : G×G −→ G and inversion g 7→ g−1 : G −→ G are both smooth. A

representation of a Lie group G on a finite dimensional complex vector space V is a

homomorphism ρ : G −→ GL(V ) of G to the group of automorphisms of V ; we say that

such a map gives V the structure of a G-module. We sometimes call V itself a

19



representation of G and write gv̇ or gv instead of ρ(g)v. The dimension of V is sometimes

called the degree (or dimension) of ρ.

A G-module homomorphism ϕ between two representations V and W of G is a vector

space homomorphism ϕ : V −→ W such that

V
ϕ−−−→ W

g

y g

y
V

ϕ−−−→ W

commutes for every g ∈ G.

A subrepresentation of a representation V is a vector subspace W of V , which is

invariant under G action. A representation V is called irreducible if its only

subrepresentations are {0} and itself.

If V and W are both representations, the direct sum V ⊕W and the tensor product

V ⊗W are also representations, the latter via

g(v ⊗ w) = gv ⊗ gw.

The dual V ∗ = Hom(V,C) of V is also a representation, though not in the most obvious

way: we want the two representations of G to respect the natural pairing (denoted 〈·, ·〉)

between V ∗ and V , so that if ρ : G −→ GL(V ) is a representation and ρ∗ : G −→ GL(V ∗)

is the dual, we should have

〈ρ∗(g)(v∗, ρ(g)(v))〉 = 〈v∗, v〉

for all g ∈ G, v ∈ V and v∗ ∈ V ∗. This in turn forces us to define the dual representation

by

ρ∗(g) = tρ(g)−1 : V ∗ −→ V ∗
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for all g ∈ G.

In this thesis, we only deal with finite dimensional representations of compact Lie

groups, which have the following important property.

Proposition 4.1. (Complete Reducibility) Any finite dimensional representation of a

compact Lie group is a direct sum of irreducible representations.

Thanks to the following Schur’s lemma, the above decomposition is unique.

(Schur’s Lemma)[22] If V and W are irreducible representations of G and ϕ is a

G-module homomorphism, then

1. Either ϕ is a G-module isomorphism, or ϕ = 0;

2. If V = W , then ϕ = λI for some λ ∈ C, where I is the identity.

4.2 Weight and weight vectors

Given a compact Lie group G, we can consider the closed, connected, abelian sub-groups of

G. Each of these groups is a direct product of copies of the unit circle S1. A maximal

abelian subgroup of G is called a maximal torus of G, and it is denoted by T . The maximal

torus has the form T = {(eiθ1 , · · · , eiθk) : θj ∈ R, ∀j}. Since T is abelian, each irreducible

complex representation of T must be one-dimensional, hence has the form

(eiθ1 , · · · , eiθk) 7→ ei(θ1m1+θ2m2+···+θkmk).

Given a representation ρ of G, we may write the restriction ρ|T as a direct sum of

irreducible (i.e. one-dimensional) representations

(eiθ1 , · · · , eiθk) 7→ ei(θ1m1+θ2m2+···+θkmk).
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Definition 4.1. Given a representation ρ of G, a weight of ρ is a k-tuple (m1, · · · ,mk) of

integers corresponding to an irreducible representation

(eiθ1 , · · · , eiθk) 7→ ei(θ1m1+θ2m2+···+θkmk)

of T when ρ is restricted to T . The vectors in each (one-dimensional) irreducible

representation space are called weight vectors.

The set of weights of a representation can be given the lexicographic ordering. That is

(m1, · · · ,mk) > (n1, · · · , nk) if the first nonzero difference of mi − ni is positive. The

weight which is largest with respect to this ordering is called the highest weight of

representation. and its weight vectors are also called highest weight vectors. These two

terminologies play an important role in the representation theory of compact Lie groups,

since every representation of a compact Lie group possesses a unique highest weight, and

the representation space can be constructed from its highest weight vector by applying

group elements to it successively. See more details in [20].

Maximal torii play an integral role in the representation theory of Lie groups. Every

element in a compact Lie group is conjugate to an element in a maximal torus, and any

two maximal tori are themselves conjugate by an automorphism of G. If we let

N(T ) = {g ∈ G | gTg−1 = T} denote the normalizer of T , then we define the Weyl group

associated to the Lie group G by

W = N(T )/T.

The Weyl group of a Lie group acts on a maximal torus by conjugation. Hence, one has an

action on the set of weights by conjugation. See more details in [22].
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4.3 Irreducible representations of Spin groups

We now introduce three representations of Spin(m). The first representation space of the

Spin group is used as the target space in spinor-valued theory and the other two

representation spaces of the Spin group are frequently used as the target spaces of

functions in higher spin theory.

4.3.1 Spinor representation space S

The most commonly used representation of the Spin group in Clm(C)-valued function

theory is the spinor space. To this end, consider the complex Clifford algebra Clm(C) with

odd dimension m = 2n+ 1. The space of vectors Cm is embedded in Clm(C) as

(x1, x2, · · · , xm) 7→
m∑
j=1

xjej : Cm ↪→ Clm(C).

We denote x for a vector in both interpretations. The space of k−vectors is defined as

Clm(C)(k) = spanC{ei1 . . . eik : 1 ≤ i1 < · · · < ik ≤ m}.

The Clifford algebra Clm can be rewritten as a direct sum of the even subalgebra and the

odd subalgebra:

Clm(C) = Clm(C)+ ⊕ Clm(C)−,

where

Clm(C)+ = ⊕mj=1Clm(C)(2j); Clm(C)− = ⊕mj=1Clm(C)(2j−1).

The Witt basis elements of C2m are defined by

fj :=
ej − iej+n

2
, f †j := −ej + iej+n

2
.
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Let I := f1f
†
1 . . . fnf

†
n. The space of Dirac spinors is defined as

S := Clm(C)+I.

This is a representation of Spin(m) under the following action

ρ(s)S := sS, for s ∈ Spin(m).

Note S is a left ideal of Clm(C). For more details, see [9]. An alternative construction of

spinor spaces is given in the classic paper of Atiyah, Bott and Shapiro [1].

4.3.2 Homogeneous harmonic polynomials on Hj(Rm,C)

It is well known that the space of harmonic polynomials is invariant under action of

Spin(m), since the Laplacian ∆m is an SO(m) invariant operator. It is not irreducible for

Spin(m), however, and can be decomposed into the infinite sum of k-homogeneous

harmonic polynomials, 0 ≤ j <∞. Each of these spaces is irreducible for Spin(m). This

brings the most familiar representations of Spin(m): spaces of j-homogeneous harmonic

polynomials on Rm, denoted by Hj. The following action has been shown to be an

irreducible representation of Spin(m) [27]:

ρ : Spin(m) −→ Aut(Hj), s 7−→
(
f(x) 7→ f(sys̃)

)
with x = sys̃. This can also be realized as follows

Spin(m)
θ−−→ SO(m)

ρ−−→ Aut(Hj), a 7−→ Oa 7−→
(
f(x) 7→ f(Oay)

)
,

where x = Oay, θ is the double covering map, and ρ is the standard action of SO(m) on a

function f(x) ∈ Hj with x ∈ Rm. The function φ(z) = (z1 + izm)j is the highest weight
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vector for Hj(Rm,C) having highest weight (k, 0, · · · , 0). See [21] for details. Accordingly,

we say the spin representations given by Hj(Rm,C) have integer spin j; we can either

specify an integer spin j or the degree of homogeneity j of harmonic polynomials.

4.3.3 Homogeneous monogenic polynomials on Clm

Let Mk denote the space of Clm-valued monogenic polynomials, homogeneous of degree k.

Note that if hk ∈ Hk, the space of Clm-valued harmonic polynomials homogeneous of

degree k, then Dhk ∈Mk−1, but Dupk−1(u) = (−m− 2k + 2)pk−1u, so

Hk =Mk ⊕ uMk−1, hk = pk + upk−1.

This is an Almansi-Fischer decomposition of Hk. See [15] for more details. From the above

decomposition, we have another important representation of Spin(m): the space of

j-homogeneous monogenic polynomials on Rm, denoted by Mj. Specifically, the following

action has been shown to be an irreducible representation of Spin(m):

π : Spin(m) −→ Aut(Mj), s 7−→ f(x) 7→ sf(sys̃)

with x = sys̃. When m is odd, in terms of complex variables zs = x2s−1 + ix2s for all

1 ≤ s ≤ m−1
2

, the highest weight vector is ωk(x) = (z̄1)kI for Mj(Rm,S) having highest

weight (k + 1
2
, 1

2
, · · · , 1

2
), where z̄1 is the conjugate of z1; S is the Dirac spinor space; and I

is defined as in Section 2.2.1. For details, see [27]. Accordingly, the spin representations

given by Mj(Rm,S) are said to have half-integer spin j + 1
2
; we can either specify a

half-integer spin j + 1
2

or the degree of homogeneity j of monogenic polynomials.

In classical Clifford analysis, the Euclidean Dirac operator and its j-th power have

been proved as conformally invariant differential operators. These operators act on

functions taking values in Clifford numbers, see [36, 41, 42] etc. In contrast, operator
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theory in higher spin spaces considers functions taking values in irreducible representations

of the Spin group, for instance, j-homogeneous monogenic or j-homogeneous harmonic

polynomial spaces. In the following several sections, we will complete the work of

constructing conformally invariant differential operators in higher spin spaces.

5 First order conformally invariant differential operators in Euclidean space

In 1941, Rarita and Schwinger [38] introduced a simplified formulation of the theory of

fermions and in particular its implications for spin 3
2
. Bures et al. [6] systematically

studied the first order conformally invariant differential operator, named the

Rarita-Schwinger operator, in 2002. It has the following analytic construction.

Recall the Almansi-Fischer decomposition

Hk =Mk ⊕ uMk−1.

We define Pk as the projection map

Pk : Hk −→Mk.

Suppose U is a domain in Rm. Consider f : U × Rm −→ Clm, such that for each x ∈ U ,

f(x, u) is a left monogenic polynomial homogeneous of degree k in u. The

Rarita-Schwinger operator is defined as follows

Rk := PkDxf(x, u) = (
uDu

m+ 2k − 2
+ 1)Dxf(x, u).

We also have a right projection Pk,r : Hk −→Mk, and a right Rarita-Schwinger operator

Rk,r = DxPk,r. See [6, 15].

In classical Clifford analysis, the Euclidean Dirac operator was initially motivated from
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Stokes’ Theorem [40] and Clifford algebras were used to study it. When we consider

function theory in higher spin spaces, since these functions take values in irreducible

representations of Spin groups, it turns out representation theory provides a quite different

approach for operator theory in higher spin spaces. Abundant results have been found with

this approach: for instance, [7, 4, 8, 17]. In 1968, Stein and Weiss [48] pointed out that

many first order differential operators can be constructed as projections of generalized

gradients with the help of representation theory. Fegan [19] showed that such operators are

conformally invariant with certain conditions. Since this construction generalizes further to

representations of principal bundles over oriented Riemannian spin manifolds, by which one

constructs the Atiyah-Singer Dirac operator, we argue the Stein and Weiss construction is

the natural way to construct other Dirac type operators as in [45, 21]. Hence, we will show

the constructions of the Euclidean Dirac and Rarita-Schwinger operators as Stein-Weiss

type operators. First, let us see the definition for Stein-Weiss type operators.

5.1 Stein Weiss type operators

Let U and V be m-dimensional inner product vector spaces over a field F. Denote the

groups of all automorphisms of U and V by GL(U) and GL(V ), respectively. Suppose

ρ1 : G −→ GL(U) and ρ2 : G −→ GL(V ) are irreducible representations of a compact Lie

group G. We have a function f : U −→ V which has continuous derivative. Taking the

gradient of the function f(x), we have

∇f ∈ Hom(U, V ) ∼= U∗ ⊗ V ∼= U ⊗ V, where ∇ := (∂x1 , · · · , ∂xm).

Denote by U [×]V the irreducible subrepresentation of U ⊗ V whose representation space

has largest dimension. This is known as the Cartan product of ρ1 and ρ2 [16]. Using the
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inner products on U and V , we may write

U ⊗ V = (U [×]V )⊕ (U [×]V )⊥.

If we denote by E and E⊥ the orthogonal projections onto U [×]V and (U [×]V )⊥,

respectively, then we define differential operators D and D⊥ associated to ρ1 and ρ2 by

D = E∇; D⊥ = E⊥∇.

These are named Stein-Weiss type operators after [48]. The importance of this

construction is that one can reconstruct many first order differential operators with it by

choosing proper representation spaces U and V for a Lie group G, such as Euclidean Dirac

operators and Rarita-Schwinger operators.

1. Euclidean Dirac operators

Here we only show the odd dimension case, but the even dimensional case is similar.

Theorem 5.1. Let ρ1 be the representation of the spin group given by the standard

representation of SO(m) on Rm

ρ1 : Spin(m) −→ SO(m) −→ GL(Rm)

and let ρ2 be the spin representation on the spinor space S. Then the Euclidean Dirac

operator is the differential operator given by projecting the gradient onto (Rm[×]S)⊥ when

m = 2n+ 1.

Outline proof: Let {e1, · · · , em} be an orthonormal basis of Rm and

x = (x1, · · · , xm) ∈ Rm. For a function f(x) having values in S, we must show that the

system
m∑
i=1

ei
∂f

∂xi
= 0
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is equivalent to the system

D⊥f = E⊥∇f = 0.

We have

Rm ⊗ S = Rm[×]S ⊕ (Rm[×]S)⊥

and [48] provides an embedding map

η : S ↪→ Rm ⊗ S,

ω 7→ 1√
m

(e1ω, · · · , emω).

Actually, this is an isomorphism from S into Rm ⊗ S. For the proof, we refer the reader to

page 175 of [48]. Thus, we have

Rm ⊗ S = Rm[×]S ⊕ η(S).

Consider the equation D⊥f = E⊥∇f = 0, where f has values in S. So ∇f has values in

Rm ⊗ S, and the condition D⊥f = 0 is equivalent to ∇f being orthogonal to η(S). This is

precisely the statement that

m∑
i=1

(
∂f

∂xi
, eiω) = 0, ∀ω ∈ S.

Notice, however, that as an endomorphism of Rm ⊗S, we have −ei as the dual of ei. Hence

the equation above becomes

m∑
i=1

(ei
∂f

∂xi
, ω) = 0, ∀ω ∈ S,

which says precisely that f must be in the kernel of the Euclidean Dirac operator. This

completes the proof.
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2. Rarita-Schwinger operators

We first introduce decomposition of the following tensor product representation of

Spin(m).

Theorem 5.2. Let ρ1 be defined as above and ρ2 be the representation of Spin(m) on Mk.

Then as a representation of Spin(m), we have the following decomposition

Mk ⊗ Rm ∼=Mk[×]Rm ⊕Mk ⊕Mk−1 ⊕Mk,1.

Proof. In this theorem, Mk,1 stands for the simplicial-(k, 1) homogeneous monogenic

polynomial space, which is an irreducible representation of Spin(m). More details can be

found in [4, 27]. To prove the above theorem, we need several facts of representations of

Spin(m) as follows, which can also be found in [21, 22]. Here we only treat the odd

dimensional case for the Lie group Spin(m). The even dimensional case is similar.

The fundamental weights for Spin(m), which are the ‘basis’ for highest weights of

irreducible representations of Spin(m), are denoted by m entries as follows

{
(1, 0, · · · , 0), (1, 1, 0, · · · , 0), · · · , (1, · · · , 1, 0), (

1

2
, · · · , 1

2
)
}
,

where the ‘basis’ means that all highest weights of any irreducible representation of

Spin(m) can be written as linear combinations of the above fundamental weights.

δ = (k − 1

2
, k − 3

2
, · · · , 1

2
) is the sum of all fundamental weights of Spin(m). The Weyl

group W of Spin(m) acts on the set of weights by permutations and sign reversals of

entries. The length of an element ω ∈ W will be denoted by |ω|. The set of dominant

integral weights ΛW consists of weights µ = (µ1, · · · , µm) satisfying

µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 0. For each µ ∈ ΛW we denote by Vµ the irreducible representation

of Spin(m) with highest weight µ and by Πµ its set of all weights. Now, we introduce the

Brauer-Klimyk formula [8].
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Proposition 5.3. For every pair µ, ρ ∈ ΛW ,

Vµ ⊗ Vρ =
⊕
µ′∈Πµ

σ(ρ+ µ′ + δ)mµ(µ′)V[ρ+µ′+δ]−δ,

where σ(ω) = 0 if there is some λ ∈ W that fixes ω and σ(ω) = (−1)|λ(ω)| where λ(ω)

means the unique element of W such that [ω] := λ(ω)ω ∈ ΛW and mµ(µ′) is the multiplicity

of the weight µ′ in Vµ.

The highest weight of Mk is ρ = (k +
1

2
,
1

2
, · · · , 1

2
) and the highest weight of the

standard representation Rm is µ = (1, 0, · · · , 0). Let

Πµ = {(±1, 0, · · · , 0), (0,±1, 0, · · · , 0), · · · , (0, · · · , 0,±1), (0, · · · , 0)}.

Hence, for µ′ ∈ Πµ, we have

ρ+ δ + µ′ = (2k, k − 1, k − 2, · · · , 1) + µ′.

Notice that if µ′ ∈ {(0,−1, 0, · · · , 0), (0,±1, 0, · · · , 0), · · · , (0, · · · , 0,±1, 0), (0, · · · , 0, 1)},

then there are two identical entries in ρ+ δ + µ′. Since the Weyl group of Spin(m) acts on

the set of weights by permutations and sign reversals of entries, there exists an element of

the Weyl group which fixes ρ+ σ + µ′. Hence, in the Brauer-Klimyk formula,

σ(ρ+ δ + µ′) = 0 for these choices of µ′. In other words, µ′ can only be chosen from

{(±1, 0, · · · , 0), (0, 1, 0 · · · , 0), (0, · · · , 0,−1), (0, · · · , 0)}. However, we notice that on the

right side of the Brauer-Klimyk formula, V[ρ+µ′+δ]−δ = Vρ+µ′ in our circumstance, since

entries of ρ+ µ′ + δ are all integers. We also require ρ+ µ′ to be a dominant weight (all

entries must be positive), which rules out (0, · · · , 0,−1). Thus, the only remaining weights

in Πµ are

{(1, 0, · · · , 0), (−1, 0, · · · , 0), (0, 1, 0, · · · , 0), (0, · · · , 0)}.
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These give the following highest weights in the decomposition

(k +
3

2
,
1

2
, · · · , 1

2
), (k − 1

2
,
1

2
, · · · , 1

2
), (k +

1

2
,
1

2
, · · · , 1

2
), (k +

1

2
,
3

2
,
1

2
, · · · , 1

2
),

which correspond to the following irreducible representations of Spin(m) [21, 27]

Mk[×]Rm, Mk−1, Mk, Mk,1.

The multiplicities of these irreducible representations in the decomposition are 1, which

can be obtained easily from the Kostant’s weight multiplicity formula. Since this requires

more details of representation theory of Lie groups, which are beyond the scope of this

thesis, we refer the readers to [5] for more details.

Given the previous theorem, we have a construction for the Rarita-Schwinger operator

as a Stein Weiss type operator as follows.

Theorem 5.4. The Rarita-Schwinger operator is the differential operator given by

projecting the gradient from Mk ⊗ Rm onto the Mk component of the decomposition given

in the previous theorem.

Proof. Consider f(x, u) ∈ C∞(Rm,Mk). We observe that the gradient of f(x, u) satisfies

∇f(x, u) = (∂x1 , · · · , ∂xm)f(x, u) = (∂x1f(x, u), · · · , ∂xmf(x, u)) ∈Mk ⊗ Rm.

Since

Mk ⊗ Rm =Mk[×]Rm ⊕ V1 ⊕ V2 ⊕ V3,

where V1
∼=Mk, V2

∼=Mk−1 and V3
∼=Mk,1 as Spin(m) representations. Similar
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arguments as on page 175 of [48] show

θ : Mk −→Mk ⊗ Rm, qk(u) 7→ (qk(u)e1, · · · , qk(u)em)

is an isomorphism from Mk into Mk ⊗ Rm. Hence, we have

Mk ⊗ Rm =Mk[×]Rm ⊕ θ(Mk)⊕ V2 ⊕ V3.

Let P ′k be the projection map from Mk ⊗ Rm to θ(Mk). Consider the equation

P ′k∇f(x, u) = 0 for f(x, u) ∈ C∞(Rm,Mk). Then, for each fixed x, ∇f(x, u) ∈Mk ⊗ Rm

and the condition P ′k∇f(x, u) = 0 is equivalent to ∇f being orthogonal to θ(Mk). This

says precisely
m∑
i=1

(qk(u)ei, ∂xif(x, u))u = 0, ∀qk(u) ∈Mk,

where (p(u), q(u))u =

∫
Sm−1

p(u)q(u)dS(u) is the Fischer inner product for any pair of

Clm-valued polynomials. Since −ei is the dual of ei as an endomorphism of Mk ⊗ Rm. The

previous equation becomes

m∑
i=1

(qk(u), ei∂xif(x, u)) = (qk(u), Dxf(x, u))u = 0.

Since f(x, u) ∈Mk for fixed x, then Dxf(x, u) ∈ Hk. According to the Almansi-Fischer

decomposition, we have

Dxf(x, u) = f1(x, u) + uf2(x, u), f1(x, u) ∈Mk and f2(x, u) ∈Mk−1.

We then obtain (qk(u), f1(x, u))u + (qk(u), uf2(x, u))u = 0. However, the Clifford-Cauchy

theorem [15] shows (qk(u), uf2(x, u))u = 0. Thus, the equation P ′k∇f(x, u) = 0 is equivalent
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to

(qk(u), f1(x, u))u = 0, ∀qk(u) ∈Mk.

Hence, f1(x, u) = 0. We also know, from the construction of the Rarita-Schwinger

operator, that f1(x, u) = Rkf(x, u). Therefore, the Stein-Weiss type operator P ′k∇ is

precisely the Rarita-Schwinger operator in this context.

We have demonstrated one application of the Representation-Theoretic approach to

Clifford analysis: the Stein-Weiss generalized gradient construction of the Euclidean Dirac

and Rarita-Schwinger operators. The operators are realized on irreducible representations

of the Spin group. In higher spin theory, we consider operators on functions taking values

in irreducible spin representations that have higher spin. Seeing our success already, we

will use the Representation-Theoretic approach to extend the higher spin theory to

arbitrary order conformally invariant differential operators of arbitrary spin in the next

several sections. Now, we prefer to introduce a counterexample, which actually motivates

our work. Then we provide corrections for some proofs in [15]. Finally, we introduce all

first order conformally invariant differential operators in higher spin spaces with some of

their properties.

5.2 Properties of the Rarita-Schwinger operator

5.2.1 A counterexample

We know that the Dirac operator Dx is conformally invariant in Clm-valued function theory

[42]. But in the Rarita-Schwinger setting, Dx is not conformally invariant anymore. In

other words, in Clm-valued function theory, the Dirac operator Dx has the following

conformal invariance property under inversion: If Dxf(x) = 0, f(x) is a Clm-valued

function and x = y−1, x ∈ Rm, then Dy
y

||y||m
f(y−1) = 0. In the Rarita-Schwinger setting,

if Dxf(x, u) = Duf(x, u) = 0, f(x, u) is a polynomial for any fixed x ∈ Rm and let
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x = y−1, u =
ywy

||y||2
, x ∈ Rm, then Dy

y

||y||m
f(y−1,

ywy

||y||2
) 6= 0 in general.

A quick way to see this is to choose the function f(x, u) = u1e1 − u2e2, and use

u =
ywy

||y||2
= w − 2

y

||y||2
〈w, y〉, ui = wi − 2

yi
||y||2

〈w, y〉, where i = 1, 2, . . . ,m. A

straightforward calculation shows that

Dy
y

||y||m
f(y−1,

ywy

||y||2
) =
−2wy(y1e1 − y2e2)

||y||m+2
6= 0,

for m > 2. However, P1Dy
y

||y||m
f(y−1,

ywy

||y||2
) =

(wDw

m
+ 1
)
w
−2y(y1e1 − y2e2)

||y||m+2
= 0.

5.2.2 Conformal Invariance

In [15], the conformal invariance of the equation Rkf = 0 is proved and some other

properties under the assumption that Dx is still conformally invariant in the

Rarita-Schwinger setting. This is incorrect, as we just showed. In this section, we will use

the Iwasawa decomposition of Möbius transformations and some integral formulas to

correct this. As observed earlier, according to this Iwasawa decomposition, a conformal

transformation is a composition of translation, dilation, reflection and inversion. A simple

observation shows that the Rarita-Schwinger operator is conformally invariant under

translation and dilation and the conformal invariance under reflection can be found in [27].

Hence, we only show it is conformally invariant under inversion here.

Theorem 5.5. For any fixed x ∈ U ⊂ Rm, let f(x, u) be a left monogenic polynomial

homogeneous of degree k in u. If Rk,uf(x, u) = 0, then Rk,wG(y)f(y−1,
ywy

||y||2
) = 0, where

G(y) =
y

||y||m
, x = y−1, u =

ywy

||y||2
∈ Rm.

To establish the conformal invariance of Rk, we need Stokes′ Theorem for Rk.

Theorem 5.6 ([15]). (Stokes’ theorem for Rk)

Let Ω′ and Ω be domains in Rm and suppose the closure of Ω lies in Ω′. Further suppose
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the closure of Ω is compact and ∂Ω is piecewise smooth. Let f, g ∈ C1(Ω′,Mk). Then

∫
Ω

[
(g(x, u)Rk, f(x, u))u + (g(x, u), Rkf(x, u))

]
dxm

=

∫
∂Ω

(g(x, u), Pkdσxf(x, u))u

=

∫
∂Ω

(g(x, u)dσxPk,r, f(x, u))u,

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x), dσ(x) is the area

element. (P (u), Q(u))u =
∫
Sm−1 P (u)Q(u)dS(u) is the inner product for any pair of

Clm-valued polynomials.

If both f(x, u) and g(x, u) are solutions of Rk, then we have Cauchy’s theorem.

Corollary 5.7 ([15]). (Cauchy’s theorem for Rk)

If Rkf(x, u) = 0 and g(x, u)Rk = 0 for f, g ∈ C1(,Ω′,Mk), then

∫
∂Ω

(g(x, u), Pkdσxf(x, u))u = 0.

We also need the following well-known result.

Proposition 5.8 ([41]). Suppose that S is a smooth, orientable surface in Rm and f, g are

integrable Clm-valued functions. Then if M(x) is a conformal transformation, we have

∫
S

f(M(x))n(M(x))g(M(x))ds =

∫
S−1

f(M(x))J̃1(M,x)n(x)J1(M,x)g(M(x))dS−1,

where M(x) = (ax+ b)(cx+ d)−1, S−1 = {x ∈ Rm : M(x) ∈ S}, J1(M,x) =
c̃x+ d

||cx+ d||m
.

Now we are ready to prove Theorem 5.5.
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Proof. First, in Cauchy’s theorem, we let g(x, u)Rk,r = Rkf(x, u) = 0. Then we have

0 =

∫
∂Ω

∫
Sm−1

g(x, u)Pkn(x)f(x, u)dS(u)dσ(x)

Let x = y−1. According to Proposition 5.8, we have

=

∫
∂Ω−1

∫
Sm−1

g(u)Pk,uG(y)n(y)G(y)f(y−1, u)dS(u)dσ(y),

where G(y) =
y

||y||m
. Set u =

ywy

||y||2
. Since Pk,u interchanges with G(y) [33], we have

=

∫
∂Ω−1

∫
Sm−1

g(
ywy

||y||2
)G(y)Pk,wn(y)G(y)f(y−1,

ywy

||y||2
)dS(w)dσ(y)

=

∫
∂Ω−1

(g(
ywy

||y||2
)G(y), Pk,wdσyG(y)f(y−1,

ywy

||y||2
))w,

According to Stokes’ theorem,

=

∫
Ω−1

(g(
ywy

||y||2
)G(y), Rk,wG(y)f(y−1,

ywy

||y||2
))w

+

∫
Ω−1

(g(
ywy

||y||2
)G(y)Rk,w, G(y)f(y−1,

ywy

||y||2
))w.

Since g(x, u) is arbitrary in the kernel of Rk,r and f(x, u) is arbitrary in the kernel of Rk,

we get g(
ywy

||y||2
)G(y)Rk,w = Rk,wG(y)f(y−1,

ywy

||y||2
) = 0.

5.2.3 Intertwining operators of Rk

In Clm-valued function theory, if we have the Möbius transformation

y = φ(x) = (ax+ b)(cx+ d)−1 and Dx is the Dirac operator with respect to x and Dy is the

Dirac operator with respect to y then Dx = J−1
−1 (φ, x)DyJ1(φ, x), where

J−1(φ, x) =
cx+ d

||cx+ d||m+2
and J1(φ, x) =

c̃x+ d

||cx+ d||m
[41]. In the Rarita-Schwinger setting,

we have a similar result as follows.
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Theorem 5.9. ([15]) For any fixed x ∈ U ⊂ Rm, let f(x, u) be a left monogenic polynomial

homogeneous of degree k in u. Then

J−1
−1 (φ, y)Rk,y,ωJ1(φ, y)f(φ(y),

˜(cy + d)ω(cy + d)

||cy + d||2
) = Rk,x,uf(x, u),

where x = φ(y) = (ay + b)(cy + d)−1 is a Möbius transformation., u =
˜(cy + d)ω(cy + d)

||cy + d||2
,

Rk,x,u and Rk,y,ω are Rarita-Schwinger operators.

Proof. We use the techniques in [17] to prove this Theorem. Let

f(x, u), g(x, u) ∈ C∞(Ω′, Clm) and Ω and Ω′ are as in Theorem 5.6. We have

∫
∂Ω

(g(x, u), Pkn(x)f(x, u))udx
m

=

∫
φ−1(∂Ω)

(
g(φ(y),

yωy

||y||2
)PkJ1(φ, y)n(y)J1(φ, y)f(φ(y),

yωy

||y||2
)
)
ω
dym

=

∫
φ−1(∂Ω)

(
g(φ(y),

yωy

||y||2
)J1(φ, y), Pkn(y)J1(φ, y)f(φ(y),

yωy

||y||2
))ωdy

m

Then we apply the Stokes’ Theorem for Rk,

∫
φ−1(Ω)

(
g(φ(y),

yωy

||y||2
)J1(φ, y)Rk, J1(φ, y)f(φ(y),

yωy

||y||2
)
)
ω

+
(
g(φ(y),

yωy

||y||2
)J1(φ, y), RkJ1(φ, y)f(φ(y),

yωy

||y||2
)
)
ω
dym, (1)
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where u =
yωy

||y||2
. On the other hand,

∫
∂Ω

(g(x, u), Pkn(x)f(x, u))udx
m

=

∫
Ω

[(
g(x, u)Rk, f(x, u)

)
u

+
(
g(x, u), Rkf(x, u)

)
u

]
dxm

=

∫
φ−1(Ω)

[(
g(x, u)Rk, f(x, u)

)
u

+
(
g(x, u), Rkf(x, u)

)
u

]
j(y)dym

=

∫
φ−1(Ω)

[(
g(x, u)Rk, f(x, u)j(y)

)
u

+
(
g(x, u), J1(φ, y)J−1(φ, y)Rkf(x, u)

)
u

]
dym, (2)

where j(y) = J−1(φ, y)J1(φ, y) is the Jacobian. Now, we let arbitrary g(x, u) ∈ kerRk,r and

since J1(φ, y)g(φ(y),
yωy

||y||2
)Rk,r = 0, then from (1) and (2), we get

∫
φ−1(Ω)

(
g(φ(y),

yωy

||y||2
)J1(φ, y)RkJ1(φ, y)f(φ(y),

yωy

||y||2
)
)
ω
dym

=

∫
φ−1(Ω)

(
g(φ(y),

yωy

||y||2
), J1(φ, y)J−1(φ, y)Rkf(x, u)

)
u
dym

=

∫
φ−1(Ω)

(
g(φ(y),

yωy

||y||2
)J1(φ, y)J−1(φ, y)Rkf(x, u)

)
ω
dym

Since Ω is an arbitrary domain in Rm, we have

(
g(φ(y),

yωy

||y||2
)J1(φ, y)RkJ1(φ, y)f(φ(y),

yωy

||y||2
)
)
ω

=
(
g(φ(y),

yωy

||y||2
)J1(φ, y)J−1(φ, y)Rkf(x, u)

)
ω

Also, g(x, u) is arbitrary, we get

J1(φ, y)RkJ1(φ, y)f(φ(y),
yωy

||y||2
) = J1(φ, y)J−1(φ, y)Rkf(x, u).

Theorem 5.9 follows immediately.
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5.3 Rarita-Schwinger type operators

5.3.1 Constructions

In the construction of the Rarita-Schwinger operator above, we notice that the

Rarita-Schwinger operator is actually a projection map Pk followed by the Dirac operator

Dx, where in the Almansi-Fischer decomposition,

Mk
Dx−→ Hk ⊗ S =Mk ⊕ uMk−1

Pk : Hk ⊗ S −→Mk;

I − Pk : Hk ⊗ S −→Mk−1.

If we project to the uMk−1 component after we apply Dx, we get a Rarita-Schwinger type

operator from Mk to uMk−1.

Mk
Dx−→ Hk ⊗ S

I−Pk−−−→ uMk−1.

Similarly, starting with uMk−1, we get another two Rarita-Schwinger type operators.

uMk−1
Dx−→ Hk ⊗ S

Pk−→Mk;

uMk−1
Dx−→ Hk ⊗ S

I−Pk−−−→ uMk−1.

In a summary, there are three further Rarita-Schwinger type operators as follows:

T ∗k : C∞(Rm,Mk) −→ C∞(Rm, uMk−1), T ∗k = (I − Pk)Dx =
uDu

m+ 2k − 2
Dx;

Tk : C∞(Rm, uMk−1) −→ C∞(Rm,Mk), Tk = PkDx = (
uDu

m+ 2k − 2
+ 1)Dx;

Qk : C∞(Rm, uMk−1) −→ C∞(Rm, uMk−1), Qk = (I − Pk)Dx =
uDu

m+ 2k − 2
Dx,
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T ∗k and Tk are also called the dual-twistor operator and twistor operator. See [6]. We also

have

T ∗k,r : C∞(Rm,Mk) −→ C∞(Rm,Mk−1u), T ∗k,r = Dx(I − Pk,r);

Tk,r : C∞(Rm,Mk−1u) −→ C∞(Rm,Mk), Tk = DxPk,r;

Qk,r : C∞(Rm,Mk−1u) −→ C∞(Rm,Mk−1u), Qk = Dx(I − Pk,r).

5.3.2 Conformal Invariance

We cannot prove conformal invariance and intertwining operators of Qk with the

assumption that Dx is conformally invariant. Here we correct this using similar techniques

that we used in Section 3 for the Rarita-Schwinger operators.

Following our Iwasawa decomposition we only need to show the conformal invariance of

Qk under inversion. We also need Cauchy’s theorem for the Qk operator.

Theorem 5.10 ([33]). (Stokes’ theorem for Qk operator)

Let Ω′ and Ω be domains in Rm and suppose the closure of Ω lies in Ω′. Further,

suppose the closure of Ω is compact and the boundary of Ω, ∂Ω, is piecewise smooth. Then

for f, g ∈ C1(Ω′,Mk−1), we have

∫
Ω

[(g(x, u)uQk,r, uf(x, u))u + (g(x, u)u,Qkuf(x, u))u]dx
m

=

∫
∂Ω

(g(x, u)u, (I − Pk)dσxuf(x, u))u

=

∫
∂Ω

(g(x, u)udσx(I − Pk,r), uf(x, u))u

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x), dσ(x) is the area

element. (P (u), Q(u))u =
∫
Sm−1 P (u)Q(u)dS(u) is the inner product for any pair of

Clm-valued polynomials.
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When g(x, u)uQk,r = Qkuf(x, u) = 0, we get Cauchy’s theorem for Qk.

Corollary 5.11 ([33]). (Cauchy’s theorem for Qk operator)

If Qkuf(x, u) = 0 and ug(x, u)Qk,r = 0 for f, g ∈ C1(,Ω′,Mk−1), then

∫
∂Ω

(g(x, u)u, (I − Pk)dσxuf(x, u))u = 0

The conformal invariance of the equation Qkuf = 0 under inversion is as follows.

Theorem 5.12. For any fixed x ∈ U ⊂ Rm, let f(x, u) be a left monogenic polynomial

homogeneous of degree k − 1 in u. If Qk,uuf(x, u) = 0, then

Qk,wG(y)
ywy

||y||2
f(y−1,

ywy

||y||2
) = 0, where G(y) =

y

||y||m
, x = y−1, u =

ywy

||y||2
∈ Rm.

Proof. First, in Cauchy’s theorem, we let ug(x, u)Qk,r = Qkuf(x, u) = 0. Then we have

0 =

∫
∂Ω

∫
Sm−1

g(u)u(I − Pk)n(x)uf(x, u)dS(u)dσ(x)

Letting x = y−1, we have

=

∫
∂Ω−1

∫
Sm−1

g(u)u(I − Pk,u)G(y)n(y)G(y)uf(y−1, u)dS(u)dσ(y),

where G(y) =
y

||y||m
. Set u =

ywy

||y||2
, since I − Pk,u interchanges with G(y) [15], we have

=

∫
∂Ω−1

∫
Sm−1

g(
ywy

||y||2
)
ywy

||y||2
G(y)(I − Pk,w)n(y)G(y)

ywy

||y||2
f(y−1,

ywy

||y||2
)dS(w)dσ(y)

=

∫
∂Ω−1

(
g(
ywy

||y||2
)
ywy

||y||2
G(y), (I − Pk,w)dσyG(y)

ywy

||y||2
f(y−1,

ywy

||y||2
)
)
w
.
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According to Stokes’ theorem for Qk,

=

∫
Ω−1

(
g(
ywy

||y||2
)
ywy

||y||2
G(y), Qk,wG(y)

ywy

||y||2
f(y−1,

ywy

||y||2
)
)
w

+

∫
Ω−1

(
g(
ywy

||y||2
)
ywy

||y||2
G(y)Qk,w, G(y)

ywy

||y||2
f(y−1,

ywy

||y||2
)
)
w
.

Since ug(x, u) is arbitrary in the kernel of Qk,r and uf(x, u) is arbitrary in the kernel of Qk,

we get g(
ywy

||y||2
)
ywy

||y||2
G(y)Qk,w = Qk,wG(y)

ywy

||y||2
f(y−1,

ywy

||y||2
) = 0.

To complete this section, we provide the Stokes′ theorem for other Rarita-Schwinger

type operators as follows:

Theorem 5.13. (Stokes’ theorem for Tk)

Let Ω′ and Ω be domains in Rm and suppose the closure of Ω lies in Ω′. Further,

suppose the closure of Ω is compact and ∂Ω is piecewise smooth. Let f, g ∈ C1(Ω′,Mk).

Then

∫
Ω

[
(g(x, u)Tk, f(x, u))u + (g(x, u), Tkf(x, u))

]
dxm

=

∫
∂Ω

(g(x, u), Pkdσxf(x, u))u

=

∫
∂Ω

(g(x, u)dσxPk,r, f(x, u))u,

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x) and

(P (u), Q(u))u =
∫
Sm−1 P (u)Q(u)dS(u) is the inner product for any pair of Clm-valued

polynomials.

Theorem 5.14. (Stokes’ theorem for T ∗k )

Let Ω′ and Ω be domains in Rm and suppose the closure of Ω lies in Ω′. Further suppose
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the closure of Ω is compact and ∂Ω is piecewise smooth. Let f, g ∈ C1(Ω′, uMk−1). Then

∫
Ω

[
(g(x, u)T ∗k , f(x, u))u + (g(x, u), T ∗k f(x, u))

]
dxm

=

∫
∂Ω

(g(x, u), (I − Pk)dσxf(x, u))u

=

∫
∂Ω

(g(x, u)dσx(I − Pk,r), f(x, u))u,

where Pk and Pk,r are the left and right projections, dσx = n(x)dσ(x) and

(P (u), Q(u))u =
∫
Sm−1 P (u)Q(u)dS(u) is the inner product for any pair of Clm-valued

polynomials.

Theorem 5.15. (Alternative form of Stokes’ Theorem)

Let Ω and Ω′ be as in the previous theorem. Then for f ∈ C1(Rm,Mk) and

g ∈ C1(Rm,Mk−1), we have

∫
∂Ω

(
g(x, u)udσxf(x, u)

)
u

=

∫
Ω

(
g(x, u)uTk, f(x, u)

)
u
dxm +

∫
Ω

(
g(x, u)u, T ∗k f(x, u)

)
u
dxm.

Further

∫
∂Ω

(
g(x, u)udσxf(x, u)

)
u

=

∫
∂Ω

(
g(x, u)u, (I − Pk)f(x, u)

)
u

=

∫
∂Ω

(
g(x, u)udσxPk, f(x, u)

)
u
.

6 Higher order fermionic and bosonic operators

6.1 Motivation

We have mentioned that the Laplace operator (acting on a C-valued field) is related to the

Dirac operator (acting on a spinor-valued field) and they are both conformally invariant
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operators [42]. Moreover, the kth-power of the Dirac operator Dk
x for k a positive integer, is

shown also to be conformally invariant in the spinor-valued function theory [42]. However,

the Dirac operator Dx and the Laplace operator are not conformally invariant anymore in

the higher spin spaces [7, 17], and for the Dirac operator case in the previous section. The

first generalization of the Dirac operator to higher spin spaces is instead the so-called

Rarita-Schwinger operator [6, 15], and the generalization of the Laplace operator to higher

spin spaces is the so-called higher spin Laplace or Maxwell operator given in [7, 17].

Let us look deeper into this lack of conformal invariance of the Dirac operator Dx.

Given a function f(x, u) ∈ C∞(Rm,Mj), we apply inversion x = y−1 to it. There is also a

reflection of u in the direction y given by
yuy

||y||2
; this reflection involves y, which changes

the conformal invariance of Dx. This explanation also applies for the Laplace operator ∆x

in the higher spin spaces. The explanation we just mentioned further implies that the

kth-power of the Dirac operator Dk
x is not conformally invariant in the higher spin spaces.

In this section, we will provide the generalization of Dk
x when it acts on C∞(Rm, U), where

U = H1 or U =M1, depending on the order. More generally, we provide nomenclature for

higher order operators in higher spin theory.

6.2 Construction and conformal invariance

By arguments of Slovák [46], for integers j ≥ 0 and k > 0 there exist conformally invariant

differential operators in the higher spin setting

Dj,k : C∞(Rm, U) −→ C∞(Rm, U),

where U = Hj if k is even and U =Mj if k is odd. As a Spin representation Hj is

associated with integer spin j and particles of integer spin are called bosons, so the

operators Dj,k : C∞(Rm,Hj) −→ C∞(Rm,Hj) are named bosonic operators. Thus in the

spin 0 case we have the Laplace operator and its k-powers, the spin 1 case the Maxwell
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operator and its generalization to order k = 2n, and general higher spin Laplace operators

and their generalization to order k = 2n. Correspondingly, as a Spin representation Mj is

associated with half-integer spin j + 1
2

and particles of half-integer spin are called fermions,

so the operators Dj,k : C∞(Rm,Mj) −→ C∞(Rm,Mj) are named fermionic operators.

Thus in the spin 1
2

case we have the Dirac operator and its k = 2n+ 1 powers, the spin 3
2

case the simplest Rarita-Schwinger operator and its generalization to order k = 2n+ 1, and

general Rarita-Schwinger operators and their generalization to order k = 2n+ 1. Note our

notation indexes according to degree of homogeneity of the target space j and differential

order k, so fractions are not used in the notation; if we indexed according to spin,

fractional spins would need to be used for odd order operators.

We will consider the higher order spin 1 and spin 3
2

operators

D1,k : C∞(Rm, U) −→ C∞(Rm, U), where U = H1 for k even and U =M1 for k odd. Note

that the target space U here is a function space. That means any element in C∞(Rm, U) is

of the form f(x, u) with f(x, u) ∈ U for each fixed x ∈ Rm and x is the variable which D1,k

acts on. The construction and conformal invariance of these two operators are considered

as follows.

k even, k = 2n, n > 1 (The bosonic case)

Theorem 6.1. For positive integer n, the unique 2n-th order conformally invariant

differential operator of spin-1 D1,2n : C∞(Rm,H1) −→ C∞(Rm,H1) has the following form,

up to a multiplicative constant:

D1,2n = ∆n
x −

4n

m+ 2n− 2
〈u,Dx〉〈Du, Dx〉∆n−1

x .

For the case n = 1, we retrieve the Maxwell operator from [17].

According to the Iwasawa decomposition of Möbius transformations, to show this

operator is conformally invariant we only must show it is invariant under translation,
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dilation, reflection, and inversion. From the expression of D1,2n, it is obvious that it is

invariant under translation and dilation. This operator consists of an inner product

operator and a power of Laplace operator, which are both invariant under reflection. So

D1,2n is invariant under reflection. Hence to prove conformal invariance, we only show

invariance under inversion. To do so, we need the concept of harmonic inversion ([2]),

which is an involution mapping solutions for D1,2n to solutions for D1,2n.

Definition 6.1. The harmonic inversion is a conformal transformation defined as

J2n : C∞(Rm,H1) −→ C∞(Rm,H1) : f(y, v) 7→ J2n[f ](y, v) := ||x||2n−mf(
x

||x||2
,
xux

||x||2
),

with y = −x−1 and v =
xux

||x||2
.

Note that this inversion consists of the classical Kelvin inversion J on Rm in the

variable x composed with a reflection u 7→ ωuω acting on the dummy variable u (where

x = ||x||ω), and satisfies J 2
2n = 1.

Then we have the following lemma.

Lemma 6.2. The special conformal transformation is given as follows.

C2n := J2n∂xjJ2n = 2〈u, x〉∂uj − 2uj〈x,Du〉+ ||x||2∂xj − xj(2Ex +m− 2n).

Proof. As similar calculation as in Proposition A.1 in [7] will show the conclusion.

Further we need the concept of generalized symmetry (see [7, 17]):

Definition 6.2. An operator η1 is a generalized symmetry for a differential operator D if

and only if there exists another operator η2 such that Dη1 = η2D. Note that for η1 = η2,

this reduces to a definition of a symmetry in the sense that Dη1 = η1D.
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Proposition 6.3. The special conformal transformations C2n, with j ∈ {1, 2, . . . ,m} are

generalized symmetries of D1,2n. More specifically,

[D1,2n, C2n] = −4nxjD1,2n.

Note: In particular, this shows that J2nD1,2nJ2n = ||x||4nD1,2n, which is the

generalization of the case of the classical higher order Laplace operator ∆n
x. This also

implies D1,2n is invariant under inversion.

If one can show C2n is a generalized symmetry of D1,2n, then applying J2n will give the

intertwining operator for D1,2n under inversion. This reveals that D1,2n is invariant under

harmonic inversion. See more details in the proof of the following proposition. It states

that the special conformal transformations induce generalized symmetries of the operator

D1,2n. For the case n=1, similar results to the following proposition and Lemmas 2 and 3

can be found in [7, 17].

First, let us prove following technical lemmas. It is worth pointing out that since we

are dealing with degree-1 homogeneous polynomials in u, terms involving second derivative

with respect to u disappear.

Lemma 6.4. For all 1 ≤ j ≤ m, we have

[∆n
x, C2n] = −4nxj∆

n
x + 4n〈u,Dx〉∂uj∆n−1

x − 4nuj〈Du, Dx〉∆n−1
x .

Proof. We prove this by induction. First, we have ([7])

[∆x, C2] = −4xj∆x + 4〈u,Dx〉∂uj − 4uj〈Du, Dx〉.

Assuming the lemma is true for ∆n−1, applying the fact that for general operators A, B
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and C, we have [AB,C] = A[B,C] + [A,C]B and C2n = C2 + (2n− 2)xj, we have

[∆n
x, C2n] = ∆n−1

x [∆x, C2n] + [∆n−1
x , C2n]∆x.

Since C2n = C2n−2 + 2xj, a straightforward calculation leads to the conclusion.

Lemma 6.5. For all 1 ≤ j ≤ m, we have

[〈u,Dx〉〈Du, Dx〉∆n−1
x , C2n]

= −4nxj〈u,Dx〉〈Du, Dx〉∆n−1
x + (m+ 2n− 2)

(
〈u,Dx〉∂uj − uj〈Du, Dx〉

)
∆n−1
x .

Proof. First, we have [7]:

[〈u,Dx〉〈Du, Dx〉, C2]

= 2||u||2∂uj〈Du, Dx〉 − 4xj〈u,Dx〉〈Du, Dx〉+
(
〈u,Dx〉∂uj − uj〈Du, Dx〉

)
(2Eu +m− 2)

= −4xj〈u,Dx〉〈Du, Dx〉+m
(
〈u,Dx〉∂uj − uj〈Du, Dx〉

)
,

Then

[〈u,Dx〉〈Du, Dx〉∆n−1
x , C2n]

= 〈u,Dx〉〈Du, Dx〉[∆n−1
x , C2n] + [〈u,Dx〉〈Du, Dx〉, C2n]∆n−1

x

together with the previous lemma proves the conclusion.

With the help of Lemma 6.4 and 6.5, a straightforward calculation shows that

[D1,2n, C2n] = −4nxjD1,2n.
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We rewrite the previous equation as

D1,2nJ2n∂xjJ2n − J2n∂xjJ2nD1,2n = −4nxjD1,2n.

Then we apply J2n to both sides with the fact that J 2
2n = 1 to write

J2nD1,2nJ2n∂xj − ∂xjJ2nD1,2nJ2n = −4n
xj
||x||2

J2nD1,2nJ2n.

In Section 4, we will provide the fundamental solution of this conformally invariant

operator. Since the proof there does not rely on the specific expression of the operator, the

fundamental solution is unique (up to a multiplicative constant). Therefore, this

conformally invariant operator is also unique (up to a multiplicative constant). This

suggests that J2nD1,2nJ2n = ||x||4nD1,2n is our only option. This can also be rewritten as

D1,2n,y,w||x||2n−mf(y, w) = ||x||−m−2nD1,2n,x,uf(x, u), ∀f(x, u) ∈ C∞(Rm,H1),

where y = x−1 and w =
xux

||x||2
. Therefore, we have proven D1,2n is invariant under inversion

and, more generally, is conformally invariant.

k odd, k = 2n− 1, n > 1 (The fermionic case)

Theorem 6.6. For positive integer n, the unique (2n− 1)-th order conformally invariant

differential operator of spin-3
2
D1,2n−1 : C∞(Rm,M1) −→ C∞(Rm,M1) has the following

form, up to a multiplicative constant:

D1,2n−1 = Dx∆
n−1
x − 2

m+ 2n− 2
u〈Du, Dx〉∆n−1

x − 4n− 4

m+ 2n− 2
〈u,Dx〉〈Du, Dx〉∆n−2

x Dx.

When n = 1, we have the Rarita-Schwinger operator appearing in [6, 15] and elsewhere.

The same strategy in the even case applies: we only must show invariance under
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inversion. We have the definition for monogenic inversion as follows.

Definition 6.3. The monogenic inversion is a conformal transformation defined as

J2n+1 : C∞(Rm,M1) −→ C∞(Rm,M1);

f(y, v) 7→ J2n+1[f ](y, v) :=
x

||x||m−2n
f(

x

||x||2
,
xux

||x||2
),

with y = −x−1 and v =
xux

||x||2
.

Note that this inversion also consists of the classical Kelvin inversion J on Rm in the

variable x composed with a reflection u 7→ ωuω acting on the dummy variable u (where

x = ||x||ω), but it satisfies J 2
2n+1 = −1 instead.

Similarly, the monogenic inversion is an involution mapping solutions for D1,2n−1 to

solutions for D1,2n−1 ([39]). Then we have the following lemma:

Lemma 6.7. The special conformal transformation is given as follows.

C2n−1 := J2n−1∂xjJ2n−1

= −ejx− 2〈u, x〉∂uj + 2uj〈x,Du〉 − ||x||2∂xj + xj(2Ex +m− 2n),

C2n−1 = C2n−3 − 2xj = −C2n−2 − ejx− 2xj.

Proof. A similar calculation as in Proposition A.1 in [7] will show the conclusion.

Then we arrive at the main proposition, stating that the special conformal

transformations are generalized symmetries of operator D1,2n−1.

Proposition 6.8. The special conformal transformations C2n−1, with j ∈ {1, 2, . . . ,m} are

generalized symmetries of D1,2n−1. More specifically,

[D1,2n−1, C2n−1] = (4n− 2)xjD1,2n−1.
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Note: In particular, this shows that J2n−1D1,2n−1J2n−1 = ||x||4n−2D1,2n−1, which is the

generalization of the case of the classical higher order Dirac operator D2n−1
x . This also

implies D1,2n−1 is invariant under inversion.

To prove this proposition, we need the following technical lemmas as in the even case:

Lemma 6.9. For all 1 ≤ j ≤ m, we have

[Dx∆
n−1
x , C2n−1]

= (4n− 2)xjDx∆
n−1
x + (4n− 4)

(
uj〈Du, Dx〉 − 〈u,Dx〉∂uj

)
Dx∆

n−2
x − 2u∂uj∆

n−1
x .

Lemma 6.10. For all 1 ≤ j ≤ m, we have

[u〈Du, Dx〉∆n−1
x , C2n−1]

= (4n− 2)xju〈Du, Dx〉∆n−1
x − (m+ 2n− 2)u∂uj∆

n−1
x − (2n− 2)uej〈Du, Dx〉∆n−2

x .

Lemma 6.11. For all 1 ≤ j ≤ m, we have

[〈u,Dx〉〈Du, Dx〉∆n−2
x Dx, C2n−1] = (4n− 2)xj〈u,Dx〉〈Du, Dx〉∆n−2

x Dx

−(m+ 2n− 2)
(
〈u,Dx〉∂uj − uj〈Du, Dx〉

)
∆n−2
x Dx + uej〈Du, Dx〉∆n−2

x Dx.

We combine Lemma 6.9, 6.10 and 6.11 to get

[D1,2n−1, C2n−1] = (4n− 2)xjD1,2n−1.

This implies J2n−1D1,2n−1J2n−1 = ||x||4n−2D1,2n−1 and D1,2n−1 is invariant under inversion

according to an explanation similar to that for the even case.

Let D1,k,x,u and D1,k,y,w be the higher order higher spin operators with respect to x, u
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and y, w, respectively and y = φ(x) = (ax+ b)(cx+ d)−1 is a Möbius transformation. Let

Jk =
c̃x+ d

||cx+ d||m−2n
, for k = 2n+ 1;

Jk =
1

||cx+ d||m−2n
, for k = 2n;

J−k =
c̃x+ d

||cx+ d||m+2n+2
, for k = 2n+ 1;

J−k =
1

||cx+ d||m+2n
, for k = 2n,

with n = 1, 2, 3, · · · . See [36].

Then we claim that

Theorem 6.12. Let y = φ(x) = (ax+ b)(cx+ d)−1 be a Möbius transformation, then

J−kD1,k,y,wf(y, w) = D1,k,x,uJkf(φ(x),
(cx+ d)u(c̃x+ d)

||cx+ d||2
),

where w =
(cx+ d)u(c̃x+ d)

||cx+ d||2
.

We only prove the bosonic (order k = 2n) case, as the fermionic (order k = 2n+ 1) case

can be done similarly. As we observed earlier, according to the Iwasawa decomposition, we

only prove this with respect to orthogonal transformation and inversion, since translation

and dilation cases are trivial.

Orthogonal transformations a ∈ Pin(m)

Lemma 6.13. If x = ayã, u = awã, then D1,2n,x,uf(x, u) = aD1,2n,y,wãf(y, w).
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Proof.

D1,2n,x,uf(x, u) =

(
4x −

4n

m+ 2n− 2
〈u,Dx〉〈Du, Dx〉

)
∆n−1
x f(x, u)

=

(
a4yã−

4n

m+ 2n− 2
a〈w,Dy〉ãa〈Dw, Dy〉ã

)
a∆n−1

y ãf(y, w)

= a

(
4y −

4n

m+ 2n− 2
〈w,Dy〉〈Dw, Dy〉

)
∆n−1
y ãf(y, w)

= aD1,2n,y,wãf(y, w).

Inversions

Lemma 6.14. Let x = y−1 and u =
ywy

||y||2
, then

D1,2n,y,w||x||m−2nf(y, w) = ||x||m+2nD1,2n,x,uf(x, u).

Proof. Recall that [D1,2n,J2n∂xjJ2n] = −4nxjD1,2n, where J2n is the harmonic inversion.

This implies that J2nD1,2nJ2n = ||x||4nD1,2n. It can also be written as

D1,2n,y,w||x||m−2nf(y, w) = ||x||m+2nD1,2n,x,uf(x, u).

Theorem 3 now follows using the Iwasawa decomposition. See [11] for the first order

case.

6.3 Fundamental solutions of D1,k

To get the fundamental solutions of either D1,k, we use the technique used in [6].
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k even, k = 2n (The bosonic case)

The identity of End(H1) can be represented by the reproducing kernel Z1(u, v) for the

zonal spherical harmonics of degree 1. The zonal spherical harmonics satisfy

P1(v) = (Z1(u, v), P1(u))u =

∫
Sm−1

Z1(u, v)P1(u)dS(u),

where ( , )u denotes the Fischer inner product with respect to u. A homogeneous

End(H1)-valued C∞-function x→ E(x) on Rm\{0} satisfying D1,2nE(x) = δ(x)Z1(u, v)

will be referred to as a fundamental solution for the operator D1,2n. We will show that such

a fundamental solution has the form E1,2n(x, u, v) = c1||x||2n−mZ1( xux||x||2 , v). Since Z1(u, v) is

a trivial solution of D1,2n, then according to the invariance of D1,2n under inversion, we

obtain a non-trivial solution D1,2nE1,2n(x, u, v) = 0 in Rm\{0}. Clearly this function is

homogeneous of degree 2n−m in x and belongs to Lloc1 (Rm). Because δ(x) is the only (up

to a multiple) distribution homogeneous of degree −m having its support at the origin, we

have in the sense of distributions:

D1,2nE1,2n(x, u, v) = δ(x)P1(u, v)
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for some P1(u, v) ∈ H1 ⊗H∗1. Thus for all Q1 ∈ H1,

∫
Sm−1

D1,2nE1,2n(x, u, v)Q1(v)dS(v)

= D1,2n

∫
Sm−1

c1||x||2n−mZ1(
xux

||x||2
, v)Q1(v)dS(v)

= D1,2n

∫
Sm−1

c1||x||2n−mZ1(
xux

||x||2
,
xv′x

||x||2
)Q1(

xv′x

||x||2
)dS(v′)

= D1,2n

∫
Sm−1

c1Z1(u, v′)||x||2n−mQ1(
xv′x

||x||2
)dS(v′)

= c1D1,2n||x||2n−mQ1(
xux

||x||2
)

= δ(x)

∫
Sm−1

P1(u, v)Q1(v)dS(v).

As the reproducing kernel Z1(u, v) is invariant under the Spin(m)-representation

H : f(u, v) 7→ sf(sus̃, svs̃)s̃, the kernel E1,2n(x, u, v) is also Spin(m)-invariant:

sE1,2n(sxs̃, sus̃, svs̃)s̃ = E1,2n(x, u, v).

From this it follows that P1(u, v) must be also invariant under H. Let now φ be a test

function with φ(0) = 1. Let L be the action of Spin(m) given by L : f(u) 7→ sf(sus̃)s̃.

Then

〈D1,2n

(
c1||x||2n−mL(

x

||x||
)L(s)Q1(u)

)
, φ(x)〉

=

∫
Sm−1

P1(u, v)L(s)Q1(v)dS(v)

= L(s)

∫
Sm−1

P1(u, v)Q1(v)dS(v)

= 〈L(s)
(
D1,2nc1||x||2n−mL(

x

||x||
)Q1(u)

)
, φ(x)〉.

In this way we have constructed an element of End(H1) commuting with the

L-representation of Spin(m) that is irreducible; see Section 2.2.2. By Schur’s Lemma
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([20]), it follows that P1(u, v) must be the reproducing kernel Z1(u, v) if we choose c1

properly. Hence

D1,2nE1,2n(x, u, v) = δ(x)Z1(u, v).

k odd, k = 2n− 1 (The fermionic case)

Let Z1(u, v) be the zonal spherical monogenic polynomial, which is the reproducing kernel

of M1. With similar arguments and the fact that Z1(u, v) is also Spin(m)-invariant under

the same Spin(m)-action as in the even case, one can show that

E1,2n−1(x, u, v) = c′1
x

||x||m−2n+2
Z1(

xux

||x||2
, v)

is the fundamental solutions of D1,2n−1, where c′1 is a non-zero, real constant.

Since E1,k(x, u, v) is the fundamental solution of D1,k, we have

∫
Rm

∫
Sm−1

E1,k(x− y, u, v)D1,kψ(x, u)dS(u)dxm = ψ(y, v),

where ψ(x, u) ∈ C∞(Rm, U) with compact support in x for each u ∈ Rm, U =M1 when k

is odd and U = H1 when k is even. Hence, we have D1,kE1,k = Id and E1,k = D−1
1,k in the

above sense. On the other hand,

J−kD1,k,y,wψ(y, w) = D1,k,x,uJkψ(φ(x),
(cx+ d)u(c̃x+ d)

||cx+ d||2
),

where y = φ(x) = (ax+ b)(cx+ d)−1 is a Möbius transformation and

w =
(cx+ d)u(c̃x+ d)

||cx+ d||2
as in Theorem 3. We get

J−1
k D

−1
1,k,x,uJ−k = D−1

1,k,y,w.
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Alternatively,

J−1
k E1,k,x,uJ−k = E1,k,y,w.

This gives us the intertwiners of the fundamental solution E1,k under Möbius

transformations, which also reveals that the fundamental solutions are conformally

invariant under Möbius transformations.

6.4 Ellipticity of the operator D1,k

Notice that the bases of the target space H1 and M1 have simple expressions. We can use

techniques similar to those in [7, 17] to show that the operators D1,k are elliptic. First, we

introduce the definition for an elliptic operator.

Definition 6.4. A linear homogeneous differential operator of k-th order

D1,k : C∞(Rm, V1) −→ C∞(Rm, V2) is elliptic if for every non-zero vector x ∈ Rm its

principal symbol, the linear map σx(D1,k) : V1 −→ V2 obtained by replacing its partial

derivatives ∂xj with the corresponding variables xj, is a linear isomorphism.

Then we prove ellipticity of D1,k in the even and odd cases individually.

k even, k = 2n (The bosonic case)

Theorem 6.15. The operator D1,2n :=

(
4x − 4n

m+2n−2
〈u,Dx〉〈Du, Dx〉

)
∆n−1
x is an elliptic

operator.

Proof. In [17] it was shown that the operator 4x − 4
m
〈u,Dx〉〈Du, Dx〉 is elliptic. In our

case, the term in the parentheses is the same as the previous one up to a constant

coefficient, so a similar argument shows 4x − 4n
m+2n−2

〈u,Dx〉〈Du, Dx〉 is elliptic. Since the

symbol of ∆n−1
x is non-negative,

(
4x − 4n

m+2n−2
〈u,Dx〉〈Du, Dx〉

)
∆n−1
x is elliptic.
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k odd, k = 2n− 1 (The fermionic case)

Theorem 6.16. The operator

D1,2n−1 := Dx∆
n−1
x − 2

m+ 2n− 2
u〈Du, Dx〉∆n−1

x − 4n− 4

m+ 2n− 2
〈u,Dx〉〈Du, Dx〉∆n−2

x Dx

is an elliptic operator.

Proof. To prove the theorem, we will show that for fixed x ∈ Rm the symbol of the

operator D1,2n−1, which is given by

x||x||2n−2 − 2

m+ 2n− 2
u〈Du, x〉||x||2n−2 − 4n− 4

m+ 2n− 2
〈u, x〉〈Du, x〉||x||2n−4x,

is a linear isomorphism from M1 to M1. As the symbol is clearly a linear map, it remains

to be proven that the map is injective. An arbitrary element of M1 can be written as∑m
j=1 αj(ejum + emuj) with αj ∈ C for all 1 ≤ j ≤ m. We have to show that the following

system of equations has an unique solution:

(
x||x||2 − 2u〈Du, x〉||x||2

m+ 2n− 2
− 4n− 4

m+ 2n− 2
x〈u, x〉〈Du, x〉

)( m∑
j=1

αj(ejum + emuj)
)

= 0.

With c1 = 2
m+2n−2

, c2 = 4n−4
m+2n−2

, ai = (c1ei||x||2 + c2xxi), bj = xmej + xjem, and

1 ≤ i, j ≤ m− 1, this equation system can be written in matrix notation as follows:



−x||x||2em − a1b1 −a1b2 . . . −a1bm−1

−a2b1 −x||x||2em − a2b2 . . . −a2bm−1

...
...

. . .
...

−am−1b1 −am−1b2 . . . −x||x||2em − am−1bm−1





α1

α2

...

αm−1


= 0.
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In order to show that this system has an unique solution, it suffices to prove that

∣∣∣∣∣∣∣∣∣∣∣∣∣

−x||x||2em − a1b1 −a1b2 . . . −a1bm−1

−a2b1 −x||x||2em − a2b2 . . . −a2bm−1

...
...

. . .
...

−am−1b1 −am−1b2 . . . −x||x||2em − am−1bm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

Using the notation ~a = (a1, a2, . . . , am−1)T and ~b = (b1, b2, . . . , bm−1)T , the determinant can

be written more compactly as

P (x) = det
(
− x||x||2emIm−1 − ~a ·~bT

)
6= 0.

As a function,

P (x) = det
(
− x||x||2emIm−1 − ~a ·~bT

)
= det

(
− x||x||2emIm−1 − ~a ·~bT

)T
= −x||x||2em − ~aT ·~b = −x||x||2em −

m−1∑
j=1

(c1ej||x||2 + c2xxj)(xmej + xjem)

= −x||x||2em + (c1 + c2)||x||2xm − (c1 + c2)x||x||2em

Checking each ej-th component with 1 ≤ j ≤ m, it is easy to see P (x) is non-zero if x is

non-zero. This completes the proof.

7 Higher order fermionic and bosonic operators on cylinders and Hopf

manifolds

Conformally flat manifolds are manifolds with atlases whose transition functions are

Möbius transformations. They can be constructed by factoring out a subdomain U of

either the sphere Sm or Rm by a Kleinian group Γ of the Möbius group, where Γ acts

strongly discontinuously on U and Γ is not cyclic. This gives rise to a conformally flat
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manifold U/Γ. Cylinders are examples of conformally flat manifolds of type Rm/Zl where

Zl is an integer lattice and 1 ≤ l ≤ m.

In this section, we will follow the strategy in [30, 31] to define kth order higher spin

operators on cylinders and Hopf manifolds, where k is a positive integer. We also construct

fundamental solutions of these operators by applying translation groups or dilation groups.

7.1 The higher order higher spin operator on cylinders

For an integer l, 1 ≤ l ≤ m, we define the l-cylinder Cl to be the m-dimensional manifold

Rm/Zl, where Zl denote the l-dimensional lattice defined by Zl := Ze1 + · · ·+ Zel. We

denote its members m1e1 + · · ·+mlel for each m1, · · · ,ml ∈ Z by a bold letter m. When

l = m, Cl is the m-torus, Tm. For each l the space Rm is the universal covering group of

the cylinder Cl. Hence there is a projection map πl : Rm −→ Cl.

An open subset U of the space Rm is called l-fold periodic if for each x ∈ U the point

x+ m ∈ U . So U ′ := πl(U) is an open subset of the l-cylinder Cl.

Suppose that U ∈ Rm is a l-fold periodic open set. Let f(x, u) be a function defined on

U ×Rm with values in Clm. Then we say that f(x, u) is a l-fold periodic function if for each

x ∈ U we have that f(x, u) = f(x+ m, u). Moreover, we will assume throughout that f is

a monogenic polynomial homogeneous of degree j in u.

Now, if f : U × Rm −→ Clm is an l-fold periodic function, then the projection πl

induces a well defined function

f ′ : U ′ × Rm −→ Clm,

where f ′(x′, u) = f(x, u) for each x′ ∈ U ′ and x an arbitrary representative of π−1
l (x′).

Moreover, any function f ′ : U ′ × Rm −→ Clm lifts to an l-fold periodic function

f : U × Rm −→ Clm, where U = π−1
l (U ′).

The projection map πl induces a projection of the higher order higher spin operator
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D1,k to an operator DCl1,k acting on domains on Cl × Rm which is defined by replacing Dx

and ∆x with D′x and ∆′x in D1,k, respectively, where D′x is the projection of the Dirac

operator Dx and ∆′x is the projection of the Laplace operator ∆x. Essentially this is the

method in [30]. That is

DCl1,2n = ∆′nx −
4n

m+ 2n− 2
〈u,D′x〉〈Du, D

′
x〉∆′n−1

x ;

DCl1,2n−1 = D′x∆
′n−1
x − 2

m+ 2n− 2
u〈Du, D

′
x〉∆′n−1

x − 4n− 4

m+ 2n− 2
〈u,D′x〉〈Du, D

′
x〉∆′n−2

x D′x.

We call the operator DCl1,2n an l-cylindrical higher order bosonic operator of spin 1 and

DCl1,2n−1 an l-cylindrical higher order fermionic operator of spin 3
2
.

Fundamental solutions of DCl1,k

We follow the techniques in [30] and [11], requiring that the order of the operator k < m

when the dimension m is even. Let U be a domain in Rm. We recall the fundamental

solution of the higher order higher spin operators D1,k in Rm:

E1,k(x, u, v) = c1Gk(x)Z1(
xux

||x||2
, v),

where c1 is a non-zero real constant, Z1(u, v) is the reproducing kernel of degree-1

homogeneous harmonic (respectively monogenic) polynomials if k is even (resp. odd), and

Gk(x) :=


1

||x||m−2n
, if k = 2n;

x

||x||m−2n+2
, if k = 2n− 1.

Now we consider sums of the following form:

cotl,1,k(x, u, v) =
∑

(m1,··· ,ml)∈Zl
E1,k(x+m1e1 + · · ·+mlel, u, v), (3)
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for all 1 ≤ p ≤ m− k − 1.

We will show these functions are defined on the l-fold periodic domain Rm/Zl for fixed

u and v in Rm and are Clm-valued. They are also l-fold periodic functions.

To prove the locally uniform convergence of the series (3), use the locally normal

convergence of the series ∑
m∈Zl

Gk(x+ m)

established by the following proposition [26].

Proposition 7.1. Let p ∈ N with 1 ≤ p ≤ m− k − 1. Let Zp be the p-dimensional lattice.

Then the series

∑
m∈Zp

qk0(x+ m)

converges normally in Rm\Zp.

Here qk0 is in the kernel of the kth-power of Dx and qk0 is exactly our Gk above. The

proof follows from Proposition 2.2 appearing in [26].

Returning to the series defined by (3),

cotl,1,k(x, u, v) =
∑

(m1,··· ,ml)∈Zl
E1,k(x+m1e1 + · · ·+mlel, u, v)

=
∑
m∈Zl

Gk(x+ m)Z1(
(x+ m)u(x+ m)

||x+ m||2
, v), 1 ≤ l ≤ n− k − 1,

we observe that Z1(
(x+ m)u(x+ m)

||x+ m||2
, v) is a bounded function on a bounded domain in

Rm because its first variable,
(x+ m)u(x+ m)

||x+ m||2
, is a reflection in the direction

(x+ m)

||x+ m||
for each m, and hence is a linear transformation which is a continuous function.

Furthermore, the norm of
(x+ m)u(x+ m)

||x+ m||2
is equal to the norm of u, so the bound of Z1
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with respect to the first variable does not depend on m. On the other hand, we would get

with respect to the second variable, bounded homogeneous functions of degree 1.

Consequently, applying the former proposition, the series

cotl,1,k(x, u, v) =
∑

(m1,··· ,ml)∈Zl
E1,k(x+m1e1 + · · ·+mlel, u, v),

for 1 ≤ l ≤ m− k − 1, is a uniformly convergent series and represents a kernel for the

higher order higher spin operators under translations by m ∈ Zl, with 1 ≤ l ≤ m− k − 1.

Using similar argument to those in [30], we define the (m− k)-fold periodic cotangent.

In order to do that, we decompose the lattice Zl into three parts: the origin {0} and a

positive and a negative part. The last two parts are equal and disjoint:

Λl = {m1e1 : m1 ∈ N} ∪ {m1e1 +m2e2 : m1,m2 ∈ Z,m2 > 0}

∪ · · · ∪ {m1e1 + · · ·+mlel : m1, · · · ,ml ∈ Z,ml > 0}

and

−Λl = (Zl\{0})\Λl.

For l = m− k, we define

cotm−k,1,k(x, u, v) = E1,k(x, u, v) +
∑

m∈Λm−k

[
E1,k(x+ m, u, v) + E1,k(x−m, u, v)

]
.

The following proposition [26] and a similar argument as in [30] shows the above series

converges normally.

Proposition 7.2. Let Zm−k be the (m− k)-dimensional lattice. Then the series

qk0(x) +
∑

m∈Zm−k\{0}

(
qk0(x+ m)− qk0(m)

)
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converges normally.

The proof follows Proposition 2.2 appearing in [26]. Hence, it is a kernel for the higher

order higher spin operator under translation by m ∈ Λm−k.

For x, y ∈ Rm, the function cotl,1,k(x− y, u, v) induces functions on Cl:

cot′l,1,k(x
′, y′, u, v) = cotl,1,k(x− y, u, v).

for each x′, y′ ∈ U ′ and x, y arbitrary representatives of π−1
l (x′) and π−1

l (y′). These

functions are defined on (Cl × Cl)\diagonal(Cl × Cl) for each fixed u, v ∈ Rm, where

diagonal(Cl × Cl) = {(x′, x′) : x′ ∈ Cl}

and they satisfy

DCl1,kcot
′
l,1,k(x

′, y′, u, v) = 0.

Conformally inequivalent spinor bundles on Cl

Previously the spinor bundle over Cl was trivial, Cl × Clm. However, there are 2l spinor

bundles on Cl. See more details in [33]. The following construction is for some of the spinor

bundles over Cl and all the others can be constructed similarly.

First let p be an integer in the set {1, 2 · · · , l} and consider the lattice

Zp := Ze1 + · · ·+ Zep. We also consider the lattice Zl−p := Zep+1 + · · ·+ Zel. In this case

Zl = {m + n : m ∈ Zp, n ∈ Zl−p}. Suppose that m = m1e1 + · · ·+mpep. Let us make the

identification (x,X) with (x+ m + n, (−1)m1+···+m+pX) where x ∈ Rm and X ∈ Clm. This

identification gives rise to a spinor bundle Ep over Cl.
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We adapt functions in previous section as follows. For 1 ≤ l ≤ m− k − 1 we define

cotl,1,k,p(x, u, v) =
∑

mZp, n∈Zl−p
(−1)m1+···+mpE1,k(x+ m + n, u, v).

These are well defined functions on Rm\Zl. Therefore, we obtain from these functions the

cotangent kernels

cotl,1,k,p(x, y, u, v) =
∑

mZp, n∈Zl−p
(−1)m1+···+mpE1,k(x− y + m + n, u, v).

Again applying the projection map πl these kernels give rise to the kernels

cot′l,1,k,p(x
′, y′, u, v).

In the case l = m− k, by considering the series

cotm−k,1,k(x, y, u, v) = E1,k(x, u, v) +
∑

m∈Λm−k

[
E1,k(x+ m, u, v) + E1,k(x−m, u, v)

]
,

we obtain the kernel

cotm−k,1,k(x, y, u, v)

= E1,k(x− y, u, v) +
∑

m∈Λm−k

[
E1,k(x− y + m, u, v) + E1,k(x− y −m, u, v)

]
,

which in turn using the projection map induces kernels

cot′m−k,1,k(x
′, y′, u, v).
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Defining

cotm−k,1,k,p(x, u, v) = E1,k(x+ m + n, u, v)

+
∑

m∈Zp,n∈Zm−k−p
m+n∈Λm−k

(−1)m1+···+mp
[
E1,k(x+ m + n, u, v) + E1,k(x−m− n, u, v)

]
,

we obtain the cotangent kernels

cotm−k,1,k,p(x, y, u, v) = E1,k(x− y + m + n, u, v)

+
∑

m∈Zp,n∈Zm−k−p
m+n∈Λm−k

(−1)m1+···+mp
[
E1,k(x− y + m + n, u, v) + E1,k(x− y −m− n, u, v)

]
,

and by πl the kernels

cot′m−k,1,k,p(x
′, y′, u, v).

7.2 The higher order higher spin operator on Hopf manifolds

In this section, we use similar arguments as in [33] and [11] to get the generalization of

higher order higher spin operators to Hopf manifolds. It is worth pointing out that the two

spin structures introduced there also apply for our fermionic and bosonic operators. Let

U = Rm and Γ = {ti : i ∈ Z}, where t is an arbitrary strictly positive real number distinct

from 1. Then by factoring out U by Γ we have the conformally flat spin manifold

S1 × Sm−1 which we denote by Hm and call a Hopf manifold. As
∏

1(S1 × Sm−1) = Z for

m > 2, it follows that the Hopf manifold Hm has two distinct spin structures. On this

space, we can define the higher order higher spin operators and construct their kernels over

the two different spinor bundles over S1 × Sm−1.

In all that follows Rm\{0} will be a universal covering space of the conformally flat

manifold S1 × Sm−1 ([25]). So there is a projection map p : Rm\{0} −→ S1 × Sm−1.

Further, for each x ∈ Rm\{0} we shall denote p(x) by x′. Further, if V is a subset of
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Rm\{0}, then we denote p(V ) by V ′.

One spinor bundle F1 over S1 × Sm−1 can be constructed by identifying the pair (x,X)

with (tix, t
i(m−1)

2 X) for every k ∈ Z, where x ∈ Rm\{0} and X ∈ Clm.

Consider a domain V ⊂ Rm\{0} satisfying tix ∈ V for each i ∈ Z and x ∈ V . We will

call such a domain a k-factor dilation domain. Further, we define an i-factor dilation

function as a function f(x, u) : V × Rm −→ Clm such that f is a monogenic polynomial

homogeneous of degree l in u satisfying f(x, u) = t
i(m−1)

2 f(tix, u) for each x ∈ V and each

integer i.

The projection map p induces a well defined function

f ′ : V ′ × Rm −→ F1,

where f ′(x, u) = t
i(m−1)

2 f(x, u) for each x′ ∈ V ′ and x an arbitrary representative of π−1
l (x′).

The higher order higher spin operator over Rm\{0} induces a higher order higher spin

operator acting on sections of the bundle F1 over Hm. We will denote this operator by

DHm1,k . If DHm1,k (f ′) = 0 then f ′ is called an F1-left higher order higher spin section.

Moreover, any F1-left higher order higher spin section f ′ : V ′ × Rm −→ F1 lifts to a

k-factor dilation function f : V × Rm −→ Clm, where V = p−1(V ′) and D1,k(f) = 0.

Now we consider the series

EHm
1,k,1(x, y, u, v) =

0∑
i=−∞

Gk(t
ix− tiy)Z1(

(tix− tiy)u(tix− tiy)

||(tix− tiy)||2
, v)

+ t2(k−m)Gk(x)Z1(
xux

||x||2
, v)
[ ∞∑
i=1

Gk(t
−ix−1 − t−iy−1)

Z1(
(t−ix−1 − t−iy−1)u(t−ix−1 − t−iy−1)

||t−ix−1 − t−iy−1||2
, v)
]
Gk(y)Z1(

yuy

||y||2
, v),

where x, y ∈ Rm\{0} and y 6= tix for all i ∈ Z. From the definition of Z1(u, v) and the

homogeneity of Gk(x), it is easy to obtain that EHm
1,k,1 converges normally on any compact
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subset K not containing the points y = tix where i ∈ Z. Since

EHm
1,k,1(tx, ty, u, v) = EHm

1,k,1(x, y, u, v), this kernel is periodic with respect to the Kleinian

group {ti : i ∈ Z}. The kernel for the higher order higher spin operators on

(S1 × Sm−1)× (S1 × Sm−1)\diagonal(S1 × Sm−1) is then the projection of EHm
1,k,1(x, y, u, v) on

(S1 × Sm−1)× (S1 × Sm−1)\diagonal(S1 × Sm−1):

EHm
1,k,1(x′, y′, u, v) = EHm

1,k,1(x, y, u, v),

for x, y representatives of π−1
l (x′) and π−1

l (y′) as earlier.

The second spinor bundle F2 over S1 × Sm−1 can be constructed by identifying the pair

(x, X) with (tix, (−1)it
i(m−1)

2 X).

Now we introduce the normally convergent series:

EHm
1,k,2(x, y, u, v) =

0∑
i=−∞

(−1)iGk(t
ix− tiy)Z1(

(tix− tiy)u(tix− tiy)

||(tix− tiy)||2
, v)

+ (−1)it2(k−m)Gk(x)Z1(
xux

||x||2
, v)
[ ∞∑
i=1

Gk(t
−ix−1 − t−iy−1)

Z1(
(t−ix−1 − t−iy−1)u(t−ix−1 − t−iy−1)

||t−ix−1 − t−iy−1||2
, v)
]
Gk(y)Z1(

yuy

||y||2
, v)

where x, y ∈ Rm\{0} and y 6= tix for all i ∈ Z. This function induces through the

projection map p on the variable x, y ∈ Rm\{0}, the higher order higher spin kernel

associated with F2 :

EHm
1,k,2(x′, y′, u, v) = EHm

1,k,2(x, y, u, v),

for x and y again as earlier.
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8 Third order fermionic and fourth order bosonic operators

In Section 5, we used the concept of generalized symmetry as in [7, 18] to construct

arbitrary order conformally invariant differential operators. Unfortunately, we require the

target spaces of functions to be degree one polynomial spaces. With the same technique,

we start constructing conformally invariant differential operators acting on functions taking

values in arbitrary k-homogeneous harmonic (or monogenic) polynomial spaces. More

specifically, in this section, we will give specific expressions for third order fermionic and

fourth order bosonic operators with some of their properties. Then, we plan to solve the

other higher order cases by induction. Unfortunately, it does not work as we expected

because of the complicated calculation for generalized symmetries. However, this will be

solved in the next section with a different approach.

8.1 3rd order higher spin operator D3

Our main result in the 3rd order higher spin case is the following theorem.

Theorem 8.1. Up to a multiplicative constant, the unique 3rd-order conformally invariant

differential operator is D3,k : C∞(Rm,Mk) −→ C∞(Rm,Mk), where

D3 = D3
x +

4

m+ 2k
〈u,Dx〉〈Du, Dx〉Dx −

4||u||2〈Du, Dx〉2Dx

(m+ 2k)(m+ 2k − 2)
− 2u〈Du, Dx〉D2

x

m+ 2k

− 8u〈u,Dx〉〈Du, Dx〉2

(m+ 2k)(m+ 2k − 2)
− 8u3〈Du, Dx〉3

(m+ 2k)(m+ 2k − 2)(m+ 6k − 10)
.

Hereafter we may suppress the k index for the operator since there is little risk of

confusion. Note the target space Mk is a function space, so any element in C∞(Rm,Mk)

has the form f(x, u) ∈Mk for each fixed x ∈ Rm and x is the variable on which D3 acts.

The theorem is proved by a strategy similar to that used in Section 5. According to the

Iwasawa decomposition, a Möbius transformation can be decomposed into a composition of

reflections, translations, dilations, and inversions. It is obvious that all these six terms in
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the operator are invariant under translation, dilation, and reflection. We need only show it

is invariant under inversion here. We have the definition for monogenic inversion as follows.

Definition 8.1. Monogenic inversion is a (conformal) transformation defined as

J3 : C∞(Rm,Mk) −→ C∞(Rm,Mk) : f(x, u) 7→ J3[f ](x, u) :=
x

||x||m−2
f(

x

||x||2
,
xux

||x||2
).

Note that this inversion also consists of the classical Kelvin inversion J on Rm in the

variable x composed with a reflection u 7→ ωuω acting on the dummy variable u (where

x = ||x||ω), but it satisfies J 2
3 = −1 instead. Then we have the following lemma:

Lemma 8.2. The special conformal transformation is defined as

C3 := J3∂xjJ3 = xej − 2〈u, x〉∂uj + 2uj〈x,Du〉 − ||x||2∂xj + xj(2Ex +m− 2),

Proof. A similar calculation as in Proposition A.1 in [7] will show the conclusion.

Further we need the concept of generalized symmetry (see [7, 17]):

Definition 8.2. An operator η1 is a generalized symmetry for a differential operator D if

and only if there exists another oprator η2 such that Dη1 = η2D. Note that for η1 = η2, this

reduces to a definition of a symmetry in the sense that Dη1 = η1D.

Then we arrive at the main proposition, stating that the special conformal

transformations are generalized symmetries of operator D3.

Proposition 8.3. The special conformal transformations C3, with j ∈ {1, 2, . . . ,m} are

generalized symmetries of D3. More specifically,

[D3, C3] = 6xjD3.
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In particular, this shows J3D3J3 = ||x||6D3, which generalizes the case of the classical

higher order Dirac operator D3
x. This also implies D3 is invariant under inversion.

To prove this proposition, we first introduce the following technical lemmas:

Lemma 8.4. For all 1 ≤ j ≤ m, we have

[D3
x, C3] = 4〈u,Dx〉Dx∂uj − 2u∂ujD

2
x − 4ujDx〈Du, Dx〉+ 6xjD

3
x.

Lemma 8.5. For all 1 ≤ j ≤ m, we have

[〈u,Dx〉〈Du, Dx〉Dx, C3] = −(m+ 2k)〈u,Dx〉Dx∂uj − eju〈Du, Dx〉Dx

+(m+ 2k − 2)uj〈Du, Dx〉Dx − 2u〈u,Dx〉〈Du, Dx〉∂uj − 2|u|2〈Du, Dx〉Dx∂uj

+6xj〈u,Dx〉〈Du, Dx〉Dx.

Lemma 8.6. For all 1 ≤ j ≤ m, we have

[|u|2〈Du, Dx〉2Dx, C3] = 2|u|2〈Du, Dx〉2ej − (2m+ 4k − 4)|u|2〈Du, Dx〉Dx∂uj

−2u|u|2〈Du, Dx〉2∂uj + 6xj|u|2〈Du, Dx〉2Dx.

Lemma 8.7. For all 1 ≤ j ≤ m, we have

[u〈Du, Dx〉D2
x, C3] = −2eju〈Du, Dx〉Dx − 4uj〈Du, Dx〉Dx − (m+ 2k)uD2

x∂uj

+4u〈u,Dx〉〈Du, Dx〉∂uj − 4uju〈Du, Dx〉2 + 6xju〈Du, Dx〉D2
x.

Lemma 8.8. For all 1 ≤ j ≤ m, we have

[u〈u,Dx〉〈Du, Dx〉2, C3] = −ej|u|2〈Du, Dx〉2 − (2m+ 4k − 4)u〈u,Dx〉〈Du, Dx〉∂uj

−2u|u|2〈Du, Dx〉2∂uj + (m+ 2k − 2)uju〈Du, Dx〉2 + 6xju〈u,Dx〉〈Du, Dx〉2.
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Lemma 8.9. For all 1 ≤ j ≤ m, we have

[u3〈Du, Dx〉3, C3] = −(m+ 6k − 10)u3〈Du, Dx〉2∂uj + 6xju
3〈Du, Dx〉3.

To prove these lemmas, we calculate the commutators of our operator and each

component of C3, then combining them gives the results. We use these lemmas to obtain

[D3, C3] = 6xjD3.

We rewrite the previous equation as

D3J3∂xjJ3 − J3∂xjJ3D3 = 6xjD3;

then we apply J3 to both sides with the fact that J 2
3 = −1:

−J3D3J3∂xj + ∂xjJ3D3J3 = 6
xj
||x||2

J3D3J3.

This gives that J3D3J3 = ||x||6D3, which can be rewritten as

D3,y,w
x

||x||m−2
f(y, w) =

x

||x||m+2
D3,x,uf(x, u), ∀f(x, u) ∈ C∞(Rm,Mk),

where y = x−1 and w =
xux

||x||2
. Therefore, we have proved D3 is invariant under inversion

and, by earlier arguments, is conformally invariant.

8.2 4th order higher spin operator D4

Now for the main result in the 4th order higher spin case.

Theorem 8.10. Up to a multiplicative constant, the unique 4th-order conformally
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invariant differential operator is D4 : C∞(Rm,Hk) −→ C∞(Rm,Hk), where

D4 = D2
2 −

8

(m+ 2k − 2)(m+ 2k − 4)
D2∆x.

Hereafter we may suppress the k index for the operator since there is little risk of

confusion. The strategy is similar to that used above. It is sufficient to show only

invariance under inversion. We have the definition for harmonic inversion as follows.

Definition 8.3. Harmonic inversion is a (conformal) transformation defined as

J4 : C∞(Rm,Hk) −→ C∞(Rm,Hk) : f(x, u) 7→ J4[f ](x, u) := ||x||4−mf(
x

||x||2
,
xux

||x||2
).

Note this inversion consists of the classical Kelvin inversion J on Rm in the variable x

composed with a reflection u 7→ ωuω acting on the dummy variable u (where x = ||x||ω). It

satisfies J 2
4 = 1. Then a similar calculation as in Proposition A.1 in [7] provides the

following lemma.

Lemma 8.11. The special conformal transformation is defined as

C4 := J4∂xjJ4 = 2〈u, x〉∂uj − 2uj〈x,Du〉+ ||x||2∂xj − xj(2Ex +m− 4).

Proposition 8.12. The special conformal transformations C4, with j ∈ {1, 2, . . . ,m} are

generalized symmetries of D4. More specifically,

[D4, C4] = −8xjD4.

In particular, this shows J4D4J4 = ||x||8D4, which generalizes the case of the classical

higher order Dirac operator D4
x. This also implies D4 is invariant under inversion and

hence conformally invariant.
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This proposition follows immediately with the help of the following two lemmas.

Lemma 8.13.

[
D2

2, C4

]
= −8xjD2

2 +
32〈u,Dx〉∆x∂uj
(m+ 2k − 2)2

− 32uj〈Du, Dx〉∆x

(m+ 2k − 2)2

−
128〈u,Dx〉2〈Du, Dx〉∂uj

(m+ 2k − 2)2(m+ 2k − 4)
+

128||u||2〈Du, Dx〉∆x∂uj
(m+ 2k − 2)2(m+ 2k − 4)2

−
128||u||2〈Du, Dx〉2∂xj

(m+ 2k − 2)2(m+ 2k − 4)2
+

128uj〈u,Dx〉〈Du, Dx〉2

(m+ 2k − 2)2(m+ 2k − 4)

+
128||u||2〈u,Dx〉〈Du, Dx〉2∂uj
(m+ 2k − 2)2(m+ 2k − 4)2

− 128uj||u||2〈Du, Dx〉3

(m+ 2k − 2)2(m+ 2k − 4)2
.

Lemma 8.14.

[
D2∆x, C4

]
= −8xjD2∆x +

4m+ 8k − 16

m+ 2k − 2
〈u,Dx〉∆x∂uj −

16〈u,Dx〉2〈Du, Dx〉∂uj
m+ 2k − 2

+
16||u||2〈Du, Dx〉∆x∂uj

(m+ 2k − 2)(m+ 2k − 4)
+

16||u||2〈u,Dx〉〈Du, Dx〉2∂uj
(m+ 2k − 2)(m+ 2k − 4)

−4m+ 8k − 16

m+ 2k − 2
uj〈Du, Dx〉∆x +

16uj〈u,Dx〉〈Du, Dx〉2

m+ 2k − 2

−
16||u||2〈Du, Dx〉2∂xj

(m+ 2k − 2)(m+ 2k − 4)
− 16uj||u||2〈Du, Dx〉3

(m+ 2k − 2)(m+ 2k − 4)
.

Proof. With the help of [AB,C] = A[B,C] + [A,C]B, where A, B and C are operators, a

straightforward calculation leads to the result that

[D4, C4] = −8xjD4.

Similar arguments as in the 3rd order case complete the proof.

8.3 Connection with lower order conformally invariant operators

To construct higher order conformally invariant operators, one possible method is by

composing and combining lower order conformally invariant operators. In this section, we
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will rewrite our operators D3 and D4 in terms of first order and second order conformally

invariant operators. We expect this will help us when we consider other higher order

conformally invariant operators.

Recall D3 maps C∞(Rm,Mk) to C∞(Rm,Mk). If we fix x ∈ Rm, then for any

f(x, u) ∈Mk, we have D3f(x, u) ∈Mk. In other words, D3 should be equal to the sum of

contributions to Mk of all terms in D3. Notice that if we apply each term of D3 to

f(x, u) ∈ C∞(Rm,Mk), we will get a k-homogeneous polynomial in u that is in the kernel

of ∆2
u. Hence, we can decompose it by harmonic decomposition as follows

Pk = Hk ⊕ u2Hk−2.

where Pk is the k-homogeneous polynomial space and Hk is the k-homogeneous harmonic

polynomial space. The Almansi-Fischer decomposition provides further

Hk =Mk ⊕ uMk−1,

where Mk is the k-homogeneous monogenic polynomial space; therefore, the contribution

of each term to Mk can be written with two projections. For instance, the contribution of

u3〈Du, Dx〉3f(x, u) to Mk is PkP1u
3〈Du, Dx〉3f(x, u), where

Pk
P1−→ Hk

Pk−→Mk,

and

P1 = 1 +
u2∆u

2(m+ 2k − 4)
, Pk = 1 +

uDu

m+ 2k − 2
.
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We also notice that for fixed x ∈ Rm and f(x, u) ∈Mk,

u3〈Du, Dx〉3f(x, u), |u|2〈Du, Dx〉2Dxf(x, u) ∈ u2Hk−2,

and u〈Du, Dx〉D2
x ∈ uMk−1. Hence, their contributions to Mk are all zero. Therefore,

D3 = PkP1

(
D3
x +

4

m+ 2k
〈u,Dx〉〈Du, Dx〉Dx −

8u〈u,Dx〉〈Du, Dx〉2

(m+ 2k)(m+ 2k − 2)

)
.

It is useful to recall some first and second order conformally invariant operators in higher

spin spaces [7, 6]:

Rk : C∞(Rm,Mk) −→ C∞(Rm,Mk), Rk = PkDx = (1 +
uDu

m+ 2k − 2
)Dx;

Tk : C∞(Rm, uMk−1) −→ C∞(Rm,Mk), Tk = PkDx = (1 +
uDu

m+ 2k − 2
)Dx;

T ∗k : C∞(Rm,Mk) −→ C∞(Rm, uMk−1), T ∗k = (I − Pk)Dx =
uDu

m+ 2k − 2
Dx;

D2 : C∞(Rm,Hk) −→ C∞(Rm,Hk), D2 = P1(∆x −
4

m+ 2k − 2
〈u,Dx〉〈Du, Dx〉Dx).

Hence,

D3 = PkP1

(
D3
x +

4〈u,Dx〉〈Du, Dx〉Dx

m+ 2k − 2

)
−PkP1

(
8〈u,Dx〉〈Du, Dx〉Dx

(m+ 2k)(m+ 2k − 2)
− 8u〈u,Dx〉〈Du, Dx〉2

(m+ 2k)(m+ 2k − 2)

)
= −PkP1D2Dx −

8PkP1

(m+ 2k)(m+ 2k − 2)

(
〈u,Dx〉〈Du, Dx〉Dx + u〈u,Dx〉〈Du, Dx〉2

)
.

Since for f(x, u) ∈ C∞(Rm,Mk), we have [7]:

D2 = −R2
k +

4u〈Du, Dx〉
(m+ 2k − 2)(m+ 2k − 4)

Rk.
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A straightforward calculation leads to

D3 = R3
k +

4

(m+ 2k)(m+ 2k − 4)
TkT

∗
kRk.

Recall these conformally invariant second order twistor and dual-twistor operators [7]:

Tk,2 = 〈u,Dx〉 −
||u||2〈Du, Dx〉
m+ 2k − 4

: C∞(Rm,Hk−1) −→ C∞(Rm,Hk),

T ∗k,2 = 〈Du, Dx〉 : C∞(Rm,Hk) −→ C∞(Rm,Hk−1), and

D2 = ∆x −
4Tk,2T

∗
k,2

m+ 2k − 2
.

Hence

D4 = D2
2 −

8D2∆x

(m+ 2k − 2)(m+ 2k − 4)

= D2
2 −

8D2

(m+ 2k − 2)(m+ 2k − 4)

(
D2 +

4Tk,2T
∗
k,2

m+ 2k − 2

)
=

(m+ 2k)(m+ 2k − 6)

(m+ 2k − 2)(m+ 2k − 4)
D2

2 −
32D2Tk,2T

∗
k,2

(m+ 2k − 2)2(m+ 2k − 4)
.

8.4 Fundamental solutions and Intertwining operators

Using similar arguments as in [12], we obtain the fundamental solutions and intertwining

operators of D3 and D4 as follows.

Theorem 8.15. (Fundamental solutions of D3)

Let Zk(u, v) be the reproducing kernel of Mk. Then the fundamental solutions of D3 are

c1
x

||x||m−2
Zk(

xux

||x||2
, v),

where c1 is a constant.

Theorem 8.16. (Fundamental solutions of D4)
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Let Zk(u, v) be the reproducing kernel of Hk. Then the fundamental solutions of D4 are

c2||x||4−mZk(
xux

||x||2
, v),

where c2 is a constant.

Theorem 8.17. (Intertwining operators)

Let y = φ(x) = (ax+ b)(cx+ d)−1 be a Möbius transformation. Then

c̃x+ d

||cx+ d||m+4
D3,y,ωf(y, ω) = D3,x,u

c̃x+ d

||cx+ d||m−2
f(φ(x),

(cx+ d)u ˜(cx+ d)

||cx+ d||2
),

where ω =
(cx+ d)u ˜(cx+ d)

||cx+ d||2
and f(y, ω) ∈ C∞(Rm,Mk);

||cx+ d||−m−4D4,y,ωf(y, ω) = D4,x,u||cx+ d||4−mf(φ(x),
(cx+ d)u ˜(cx+ d)

||cx+ d||2
),

where ω =
(cx+ d)u ˜(cx+ d)

||cx+ d||2
and f(y, ω) ∈ C∞(Rm,Hk).

It is worth pointing out that our above results generalize to conformally flat manifolds

according to the method in our paper on cylinders and Hopf manifolds [13].

9 Construction of arbitrary order conformally invariant differential operators

in higher spin spaces

As mentioned in the previous section, the approach with the concept of generalized

symmetries does not work for the rest of the higher order (≥ 5) cases. That is because

when the order increases, it becomes impossible to find the generalized symmetries of our

conformally invariant differential operators. In this section, we will introduce a different

representation theoretic approach to solve the rest of the higher order cases. This approach
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relies heavily on fundamental solutions of these conformally invariant differential operators.

See more details below.

9.1 Motivation

The arbitrary t-th-order conformally invariant differential operator is denoted by

Dt : C∞(Rm, V ) −→ C∞(Rm, V ),

where the target space V is Mk or Hk. Thanks to results in [46, 47], the existence and

uniqueness (up to a multiplicative constant) of Dt are already established. More

specifically, even order conformally invariant differential operators only exist when V = Hk

and odd order conformally invariant differential operators only exist when V =Mk. This

can be easily obtained by taking Mk or Hk as the irreducible representation of Spin(m) in

Theorems 2 and 3 in [47]; these theorems also give the conformal weights of Dt, which

provides the intertwining operators of Dt. Recall the fundamental solution of the

Rarita-Schwinger operator is c
x

||x||m
Zk(

xux

||x||2
, v), where Zk(u, v) is the reproducing kernel

of Mk and c is a non-zero constant [6]. The fundamental solution of Dk
x is [36]

c2j+1
x

||x||m−2j
, if k = 2j + 1; c2j||x||2j−m, if k = 2j;

where c2j+1 and c2j are both non-zero constants. However, when dimension m is even, we

also require that k < m, because for instance, when m = k = 2j, the only candidate for a

fundamental solution is a constant. We expect the fundamental solutions of our higher

order higher spin conformally invariant differential operators Dt to have a conformal weight

factor and a reproducing kernel part, behaving as follows.

1. The conformal weight changes with increasing order similar to the powers of the

Dirac operator, differing in the even and odd cases.
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2. The reproducing kernel factor changes with increasing degree of homogeneity of the

target polynomial space similar to the Rarita-Schwinger operator, differing according

to whether it is the space of harmonic or monogenic polynomials.

Thus we guess candidates for the fundamental solutions as follows.

1. For D2j, c||x||2j−mZk(
xux

||x||2
, v), where Zk(u, v) is the reproducing kernel of Hk.

2. For D2j−1, c
x

||x||m−2j+2
Zk(

xux

||x||2
, v), where Zk(u, v) is the reproducing kernel of Mk.

These can be verified with intertwining operators of Dt and arguments similar to those in

[6, 12]. We initially expect when the dimension m is even, we must restrict order 2j or

2j − 1 to be less than m, analogously to the powers of the Dirac operator. However, the

reproducing kernel factor renders this restriction on the order unnecessary for even

dimensions. Therefore, constructing a conformally invariant differential operator becomes

finding an operator which has a particular fundamental solution.

In the rest of this section, we first introduce convolution type operators associated to

fundamental solutions, then we point out fundamental solutions are actually the inverses of

the corresponding differential operators in the sense of the previous type of convolution.

Further, we show these convolution type operators are conformally invariant. Therefore,

operators with such fundamental solutions should also be conformally invariant,

considering they are the inverses of their fundamental solutions in the sense of convolution.

This also brings us a class of conformally invariant convolution type operators and their

inverses, if they exist, are conformally invariant pseudo-differential operators. Then we

explain how the Rarita-Schwinger operator and higher spin Laplace operator can also be

derived from the representation-theoretic approach. Then, since even and odd order

conformally invariant differential operators have different target spaces, we will show the

constructions in even and odd order cases separately. The even order operators, which have

integer spin, are named bosonic operators in analogy with bosons in physics, which are

81



particles of integer spin. Correspondingly, the odd order operators, which have half-integer

spin, are named fermionic operators after fermions, which are particles of half-integer spin.

9.2 Convolution type operators

Assume Ek(x, u, v) is the fundamental solution of Dk. Then we define a convolution

operator as follows.

Φ(f)(y, v) = Ek(x− y, u, v) ∗ f(x, u) :=

∫
Rm

∫
Sm−1

Ek(x− y, u, v)f(x, u)dS(u)dxm.

Notice this is not the usual convolution operator, as it has an integral over the unit sphere

with respect to the variable u. Since Ek(x, u, v) is the fundamental solution of Dk, we have

Dk,x,uEk(x− y, u, v) ∗ f(x, u) :=

∫
Rm

∫
Sm−1

Dk,x,uEk(x− y, u, v)f(x, u)dS(u)dxm = f(y, v),

where f(y, v) ∈ C∞(Rm, U) (U = Hk orMk) with compact support in y for each v ∈ Rm.

Hence, we have DkEk = Id and E−1
k = Dk in the sense above. This implies that if we can

show our convolution operator Φ is conformally invariant, then its corresponding

differential operator should also be conformally invariant by taking its inverse.

Denote

E2j(x, u, v) = ||x||2j−mZk(
xux

||x||2
, v) and E2j−1(x, u, v) =

x

||x||m−2j+2
Zk(

xux

||x||2
, v),

where Zk(u, v) is the reproducing kernel of Hk in the even case and the reproducing kernel

of Mk in the odd case.

Next, we will show the above convolution operator Φ is conformally invariant under

Möbius transformations. Thanks to the Iwasawa decomposition, it suffices to verify it is

conformally invariant under orthogonal transformation, inversion, translation, and dilation.
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Conformal invariance under translation and dilation is trivial; hence, we only show the

orthogonal transformation and inversion cases here.

Proposition 9.1. (Orthogonal transformation) Suppose a ∈ Spin(m). If x′ = axã,

y′ = ayã, u′ = auã, and v′ = avã, then

1. E2j(x
′ − y′, u′, v′) ∗ f(x′, u′) = Ek(x− y, u, v) ∗ f(axã, auã),

2. E2j−1(x′ − y′, u′, v′) ∗ f(x′, u′) = aE2j−1(x− y, u, v)ã ∗ f(axã, auã)

Proof. Case 1. Let f(x, u) ∈ C∞(Rm,Hk). Since the reproducing kernel of Hk is

rotationally invariant, axã is a rotation of x in the direction of a for a ∈ Spin(m), and

aã = 1, we have

E2j(x
′ − y′, u′, v′) ∗ f(x′, u′)

=

∫
Rm

∫
Sm−1

||x′ − y′||2j−mZk(
(x′ − y′)u′(x′ − y′)
||x′ − y′||2

, v′)f(x′, u′)dS(u′)dx′m

=

∫
Rm

∫
Sm−1

||a(x− y)ã||2j−mZk(
a(x− y)ãauãa(x− y)ã

||axã||2
, avã′)f(axã, auã)dS(u)dxm

=

∫
Rm

∫
Sm−1

||x− y||2j−mZk(
a(x− y)u(x− y)ã

||x− y||2
, avã)f(axã, auã)dS(u)dxm

=

∫
Rm

∫
Sm−1

||x− y||2j−mZk(
(x− y)u(x− y)

||x− y||2
, v)f(axã, auã)dS(u)dxm

= E2j(x− y, u, v) ∗ f(axã, auã)

Case 2. Since the reproducing kernel of Mk has the property

Z(u, v) = aZk(auã, avã)ã

for a ∈ Spin(m), similar arguments as in Case 1 give the result.

Proposition 9.2. (Inversion) Let x′ = x−1 = − x

||x||2
, y′ = y−1 = − y

||y||2
, u′ =

yuy

||y||2

and v′ =
xvx

||x||2
. Then
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1. E2j(x
′ − y′, u′, v′) ∗ f(x′, u′) = ||y||m−2jE2j(x− y, u, v)||x||−m−2j ∗ f(x−1,

yuy

||y||2
),

2. E2j−1(x′−y′, u′, v′)∗f(x′, u′) =
( y

||y||m−2j+2

)−1
E2j−1(x−y, u, v)

x

||x||m−2j
∗f(x−1,

yuy

||y||2
).

Proof. Case 1. Suppose f(x, u) ∈ C∞(Rm,Hk). Notice

x−1−y−1 = −x−1(x−y)y−1 = −y−1(x−y)x−1 = − x

||x||2
(x−y)

y

||y||2
= − y

||y||2
(x−y)

x

||x||2
.

Recall that, as the reproducing kernel of Hk, Zk(u, v) has the property

Zk(u, v) = Zk(
xux

||x||2
,
xvx

||x||2
)

for x ∈ Rm. Hence, we have

E2j(x
′ − y′, u′, v′) ∗ f(x′, u′)

=

∫
Rm

∫
Sm−1

||x′ − y′||2j−mZk(
(x′ − y′)u′(x′ − y′)
||x′ − y′||2

, v′)f(x′, u′)dS(u′)dx′m

=

∫
Rm

∫
Sm−1

||x−1(x− y)y−1||2j−mZk(
x(x− y)yu′y(x− y)x

|y(|x− y)x||2
, v′)

·f(x−1, u′)j(x−1)dS(u′)dxm

=

∫
Rm

∫
Sm−1

||x−1(x− y)y−1||2j−mZk(
(x− y)u(x− y)

||x− y||2
, v)

·f(x−1,
yuy

||y||2
)j(x−1)dS(u)dxm

where j(x−1) = ||x||−2m is the Jacobian. Hence,

=

∫
Rm

∫
Sm−1

||y||m−2j||x− y||2j−mZk(
(x− y)u(x− y)

||x− y||2
, v)||x||−m−2j

·f(x−1,
yuy

||y||2
)dS(u)dxm

= ||y||m−2jE2j(x− y, u, v)||x||−m−2j ∗ f(x−1,
yuy

||y||2
).
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Case 2. Recall that, as the reproducing kernel of Mk, Zk(u, v) has the property

Zk(u, v) =
x

||x||
Zk(

xux

||x||2
,
xvx

||x||2
)
x

||x||

for x ∈ Rm. Then, by arguments similar to those above, we have

E2j−1(x′ − y′, u′, v′) ∗ f(x′, u′)

=

∫
Rm

∫
Sm−1

x′ − y′

||x′ − y′||m−2j+2
Zk(

(x′ − y′)u′(x′ − y′)
||x′ − y′||2

)f(x′, u′)dS(u′)dx′m

=

∫
Rm

∫
Sm−1

y−1(x− y)x−1

||y−1(x− y)x−1||m−2j+2
· Zk(

x(x− y)yu′y(x− y)x

|x(x− y)y||2
, v′)

·f(x−1, u′)j(x−1)dS(u′)dxm

=

∫
Rm

∫
Sm−1

( y

||y||m−2j+2

)−1 x− y
||x− y||m−2j+2

(
x

||x||m−2j+2
)−1

· x
||x||

Zk(
(x− y)u(x− y)

||x− y||2
, v)

x

||x||
f(x−1,

yuy

||y||2
)||x||−2mdS(u)dxm

=

∫
Rm

∫
Sm−1

( y

||y||m−2j+2

)−1
E2j−1(x− y, u, v)

x

||x||m−2j
f(x−1,

yuy

||y||2
)dS(u)dxm

=
( y

||y||m−2j+2

)−1
E2j−1(x− y, u, v)

x

||x||m−2j
∗ f(x−1,

yuy

||y||2
).

Hence, the intertwining operators for the convolution operators are as follows.

Proposition 9.3. Suppose x′ = ϕ(x) = (ax+ b)(cx+ d)−1 is a Möbius transformation,

u′ =
(cy + d)u ˜(cy + d)

||cy + d||2
, and v′ =

(cx+ d)v ˜(cx+ d)

||cx+ d||2
. Recall

Jk(ϕ, x) =
c̃x+ d

||cx+ d||m−2j+2
, if k = 2j − 1,

Jk(ϕ, x) = ||cx+ d||2j−m, if k = 2j;

J−k(ϕ, x) =
c̃x+ d

||cx+ d||m+2j
, if k = 2j − 1,

J−k(ϕ, x) = ||cx+ d||−m−2j, if k = 2j.
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Then

Ek(x
′ − y′, u′, v′) ∗ f(x′, u′)

= J−1
k (ϕ, y)Ek(x− y, u, v)J−k(ϕ, x) ∗ f(ϕ(x),

(cy + d)u ˜(cy + d)

||cy + d||2
).

Recall that Dk is the inverse of its fundamental solution in the sense of convolution.

Hence, we obtain the intertwining operators of Dk as follows.

Proposition 9.4. Suppose y′ = (ay + b)(cy + d)−1 is a Möbius transformation and

u′ =
(cy + d)u ˜(cy + d)

||cy + d||2
. Then

Dk,y′,u′ = J−1
−k (ϕ, y)Dk,y,uJk(ϕ, y),

where Jk and J−k are defined as above.

It is worth pointing out that for general α ∈ R, if we denote

Eα,1
k (x− y, u, v) =

x

||x||α
Zk(

xux

||x||2
, v)

where Zk(u, v) is the reproducing kernel of Mk, and

Eα,2
k (x− y, u, v) = ||x||αZk(

xux

||x||2
, v)

where Zk(u, v) is the reproducing kernel of Hk, then we can define a class of convolution

type operators

∫
Rm

∫
Sm−1

Eα,i
k (x− y, u, v)fi(x, u)dS(u)dxm

where fi(x, u) ∈ C∞(Rm, Ui) with U1 =Mk and U2 = Hk. More importantly, these
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convolution type operators are conformally invariant with similar arguments as above and

their inverses, if they exist, are conformally invariant pseudo-differential operators.

9.3 Rarita-Schwinger and higher spin Laplace operators

From the preceding argument, we expect the fundamental solution of the first-order

conformally invariant differential operator is c
x

||x||m
Zk(

xux

||x||2
, v), where c is a non-zero

constant and Zk(u, v) is the reproducing kernel of Mk. To show Rk = (1 +
uDu

m+ 2k − 2
)Dx

has such a fundamental solution, all we need are the following two theorems.

Theorem 9.5. [15] For each ψ ∈ C∞(Rm,Mk) with compact support,

∫∫
Rm
−(Ek(x− y, u, v), Rkψ(x, v))vdx

m = ψ(y, u),

where

(f(v), g(v))v =

∫∫
Sm−1

f(v)g(v)dS(v)

is the Fischer-inner product for two Clifford valued polynomials,

Ek(x, u, v) =
1

ωm−1ck

x

||x||m
Zk(

xux

||x||2
, v), Zk(u, v) is the reproducing kernel of Mk, the

constant ck is
m− 2

m+ 2k − 2
, and ωm−1 is the area of (m− 1)-dimensional unit sphere.

Theorem 9.6. [15] Let Ω and Ω′ be domains in Rm and suppose the closure of Ω lies in

Ω′. Further suppose the closure of Ω is compact and ∂Ω is piecewise smooth. Let

f, g ∈ C1(Rm, Clm). Then

∫
∂Ω

(g(x, u)dσxf(x, u))u =

∫
Ω

(g(x, u)Rk, f(x, u))udx
m +

∫
Ω

(g(x, u), Rkf(x, u))udx
m,

where dσx = n(x)dσ(x), σ is is scalar Lebegue measure on ∂Ω, and n(x) is unit outer

normal vector to ∂Ω.

87



Notice that our function ψ(x, u) has compact support in x, so the above theorem also

applies in our case with Ω = Rm. Therefore, one can have

∫∫
Rm

(RkEk(x− y, u, v), ψ(x, v))vdx
m

=

∫∫
Rm
−(Ek(x− y, u, v), Rkψ(x, v))vdx

m = ψ(y, u)

for each ψ ∈ C∞(Rm,Mk) with compact support. This exactly means Ek(x, u, v) is the

fundamental solution of Rk. Hence, Rk is the first order conformally invariant differential

operator, which is the Rarita-Schwinger operator.

Similarly, we know the fundamental solution of the second order conformally invariant

differential operator should be c||x||2−mZk(
xux

||x||2
, v), where Zk(u, v) is the reproducing of

Hk and c is a non-zero constant. In [7], it is showed that the differential operator

D2 = ∆x −
4〈u,Dx〉〈Du, Dx〉
m+ 2k − 2

+
||u||2〈Du, Dx〉2

(m+ 2k − 2)(m+ 2k − 4)

has fundamental solution

(m+ 2k − 4)Γ(
m

2
− 1)

4(4−m)π
m
2

||x||2−mZk(
xux

||x||2
, v).

Therefore, D2 is the second order conformally invariant differential operator, which is the

higher spin Laplace operator in [7].

There is, however, a much simpler way to recover the higher spin Laplace operator

instead of using generalized symmetries as in [7]. Consider the second order twistor and

dual twistor operators from the same reference:

Tk,2 = 〈u,Dx〉 −
||u||2〈Du, Dx〉
m+ 2k − 4

: C∞(Rm,Hk−1) −→ C∞(Rm,Hk),

T ∗k,2 = 〈Du, Dx〉 : C∞(Rm,Hk) −→ C∞(Rm,Hk−1).
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Any second order operator C∞(Rm,Hk) −→ C∞(Rm,Hk) reduces to a linear combination

of the second order operators ∆x and Tk,2T
∗
k,2, since these two are the only second order

differential operators mapping from C∞(Rm,Hk) to C∞(Rm,Hk) which also do not change

the degree of the variable u; more details can be found in [7]. These are scalar-valued as

desired, since Hk is a scalar-valued function space. A linear combination of ∆x and Tk,2T
∗
k,2

that annihilates c||x||2−mZk(
xux

||x||2
, v), where Zk(u, v) is the reproducing kernel of Hk and c

is a non-zero constant, is the higher spin Laplace operator up to a multiplicative constant:

D2 = ∆x −
4Tk,2T

∗
k,2

m+ 2k − 2
.

9.4 Bosonic operators: even order, integer spin

With a similar strategy as in the previous section and arguing by induction, we now

construct higher order conformally invariant differential operators in higher spin spaces.

We start with the even order case. Denote the 2j-th order bosonic operator by

D2j : C∞(Rm,Hk) −→ C∞(Rm,Hk).

As the generalization of D2j
x in Euclidean space to higher spin spaces, it is conformally

invariant and has the following intertwining operators:

||cx+ d||2j+mD2j,y,ωf(y, ω) = D2j,x,u||cx+ d||2j−mf(φ(x),
(cx+ d)u ˜(cx+ d)

||cx+ d||2
),

where y = φ(x) = (ax+ b)(cx+ d)−1 is a Möbius transformation and

ω =
(cx+ d)u ˜(cx+ d)

||cx+ d||2
.

As mentioned above, the uniqueness (up to a multiplicative constant) and existence of

D2j having the above intertwining operators can be justified by Theorems 2, 3 and 4 of [47]

and Chapter 8 of [46], where the irreducible representation of Spin(m) is Hk with highest
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weight λ = (k, 0, · · · , 0).

Recall we expect the fundamental solution of D2j to be

c||x||2j−mZk(
xux

||x||2
, v),

where c is a non-zero real constant and ||x||2j−m is the conformal weight J2j. Indeed, this is

proved by similar arguments as in [6, 12]. Therefore, to find the 2j-th order conformally

invariant differential operator, we need only find a 2j-th order differential operator whose

fundamental solution is c||x||2j−mZk(
xux

||x||2
, v). Here is our first main theorem.

Theorem 9.7. Let Zk(u, v) be the reproducing kernel of Hk. When j > 1, the 2j-th order

conformally invariant differential operator on C∞(Rm,Hk) is the 2j-th bosonic operator

D2j = D2

j∏
s=2

(D2 −
(2s)(2s− 2)

(m+ 2k − 2)(m+ 2k − 4)
∆x)

that has the fundamental solution

a2j||x||2j−mZk(
xux

||x||2
, v),

where

D2 = ∆x −
4Tk,2T

∗
k,2

m+ 2k − 2

is the higher spin Laplace operator [7],

Tk,2 = 〈u,Dx〉 −
||u||2〈Du, Dx〉
m+ 2k − 4

and T ∗k,2 = 〈Du, Dx〉

are the second order twistor and dual twistor operators, and a2j is a non-zero real constant

whose expression is given later in this section.

To prove the previous theorem, we start with the following proposition.
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Proposition 9.8. For every Hk(u) ∈ Hk(Rm, C), when α > 2−m,

(D2 −
(m+ α)(m+ α− 2)

(m+ 2k − 2)(m+ 2k − 4)
∆x)||x||αHk(

xux

||x||2
) = cα+m||x||α−2Hk(

xux

||x||2
),

in the distribution sense, where

cα+m = −(m+ α)(m+ α− 2)
(α− 2k)(α− 2k − 2) + 2k(m+ 2α− 2k − 4)

(m+ 2k − 2)(m+ 2k − 4)
.

Proof. In order to prove the above proposition with an arbitrary function Hk(u) ∈ Hk, as

stated in [7], we can rely on the fact Hk is an irreducible Spin(m)-representation generated

by the highest weight vector 〈u, 2f1〉k. As D2 and ∆x are both Spin(m)-invariant operators,

it suffices to prove the statement for

||x||α〈 xux
||x||2

, 2f1〉k = ||x||α−2k〈xux, 2f1〉k = ||x||α−2k〈u||x||2 − 2〈u, x〉x, 2f1〉k.

First, we assume x 6= 0. On the one hand, we have

∆x||x||α−2k〈xux, 2f1〉k = ∆x||x||α−2k〈u||x||2 − 2〈u, x〉x, 2f1〉k

= ∆x(||x||α−2k)〈xux, 2f1〉k + ||x||α−2k∆x(〈xux, 2f1〉k) +
m∑
j=1

∂xj(||x||α−2k)∂xj(〈xux, 2f1〉k).

Since

∂xj〈xux, 2f1〉k = ∂xj〈u||x||2 − 2〈u, x〉x, 2f1〉k

= k〈xux, 2f1〉k−1〈2uxj − 2ujx− 2〈u, x〉ej, 2f1〉,
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and from [7]

∆x〈xux, 2f1〉k

= 4k(k − 1)||u||2〈x, 2f1〉2〈xux, 2f1〉k−2 + 2k(m+ 2k − 4)〈u, 2f1〉〈xux, 2f1〉k−1.

Therefore,

∆x||x||α−2k〈xux, 2f1〉k

=
[
(α− 2k)(α− 2k − 2) + 2k(m− 2k + 2α− 4)

]
||x||α−2k−2〈xux, 2f1〉k

+4k(m+ 2k − 4)〈u, x〉〈x, 2f1〉||x||α−2k−2〈xux, 2f1〉k−1

+4k(k − 1)||u||2〈x, 2f1〉2||x||α−2k〈xux, 2f1〉k−2.

On the other hand, we have [7]

D2||x||α−2k〈xux, 2f1〉k = (m+ α− 2)(α +
4k

m+ 2k − 2
)||x||α−2k−2〈xux, 2f1〉k

+(m+ α− 2)(m+ α)
4k

m+ 2k − 2
〈u, x〉〈x, 2f1〉||x||α−2k−2〈xux, 2f1〉k−1

+
4k(k − 1)(m+ α)(m+ α− 2)

(m+ 2k − 2)(m+ 2k − 4)
||u||2〈x, 2f1〉2||x||α−2k〈xux, 2f1〉k−2.

Combining the above two equalities completes the proof when x 6= 0. Next, we consider the

singularity of φ(x, u) at x = 0. Notice that singularity only occurs in the ||x||α part and

that ||x||α is weak differentiable if α > −m+ 1 with weak derivative ∂xi ||x||α = αxi||x||α−2.

Hence, with the assumption that α > 2−m, every differentiation in the process above is

also correct in the distribution sense. This completes the proof.

Now, we can prove the following proposition immediately.
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Proposition 9.9. For integers j > 1,

D2ja2j||x||2j−mHk(
xux

||x||2
) = δ(x)Hk(u),

where Hk(u) ∈ Hk(Rm, C) and

a2j =
(m+ 2k − 4)Γ(m

2
− 1)

4(4−m)π
m
2

j∏
s=2

c−1
2s ,

c2s defined by Proposition 9.8 for α = 2s−m.

Proof. We prove this proposition by induction. First, when j = 2,

D4a4||x||4−mHk(
xux

||x||2
)

= (D2 −
8

(m+ 2k − 2)(m+ 2k − 4)
∆x)D2a4||x||4−mHk(

xux

||x||2
)

= D2(D2 −
8

(m+ 2k − 2)(m+ 2k − 4)
)∆xa4||x||4−mHk(

xux

||x||2
)

= D2

(m+ 2k − 4)Γ(m
2
− 1)

4(4−m)π
m
2

||x||2−mHk(
xux

||x||2
),

where the last line follows using α = 4−m in Proposition 9.8. Thanks to Theorem 5.1 in

[7], this last equation is equal to δ(x)Hk(u).

Assume when j = s that the proposition is true. Then for j = s+ 1, we have

D2s+2a2s+2||x||2s+2−mHk(
xux

||x||2
)

= (D2 −
2s(2s+ 2)

(m+ 2k − 2)(m+ 2k − 4)
∆x)D2sa2sc

−1
2s+2||x||6−mHk(

xux

||x||2
)

= D2s(D2 −
24

(m+ 2k − 2)(m+ 2k − 4)
∆x)c

−1
2s+2a2s||x||2s+2−mHk(

xux

||x||2
)

= D2sa2s||x||2s−mHk(
xux

||x||2
) = δ(x)Hk(u),

where the penultimate equality follows using α = 2s+ 2−m in Proposition 9.8. This last

93



equation comes from our assumption j = s. Therefore, our proposition is proved.

In particular, from the above proposition, we have

D2ja2j||x||2j−mZk(
xux

||x||2
, v) = δ(x)Zk(u, v),

where Zk(u, v) is the reproducing kernel of Hk. Hence, Theorem 9.7 is proved and the even

order case is resolved.

9.5 Fermionic operators: odd order, half-integer spin

We denote the (2j − 1)-th fermionic operator

D2j−1 : C∞(Rm,Mk) −→ C∞(Rm,Mk)

as the generalization of D2j−1
x in Euclidean space to higher spin spaces. With similar

arguments as in the bosonic case, it is conformally invariant with the following intertwining

operators

c̃x+ d

||cx+ d||m+2j
D2j−1,y,ωf(y, ω) = D2j−1,x,u

c̃x+ d

||cx+ d||m−2j+2
f(φ(x),

(cx+ d)u ˜(cx+ d)

||cx+ d||2
),

where y = φ(x) = (ax+ b)(cx+ d)−1 is a Möbius transformation and

ω =
(cx+ d)u ˜(cx+ d)

||cx+ d||2
. Furthermore, its fundamental solution is

c
x

||x||m−2j+2
Zk(

xux

||x||2
, v),

where c is a non-zero real constant and Zk(u, v) is the reproducing kernel of Mk. Here is

our second main theorem.

Theorem 9.10. Let Zk(u, v) be the reproducing kernel of Mk. When j > 1, the (2j − 1)-th
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order conformally invariant differential operator on C∞(Rm,Mk) is the (2j − 1)-th order

fermionic operator

D2j−1 = Rk

j−1∏
s=1

(
−R2

k −
4s2TkT

∗
k

(m+ 2k − 2s− 2)(m+ 2k + 2s− 2)

)

that has the fundamental solution

λ2s
x

||x||m−2j+2
Zk(

xux

||x||2
, v),

where

Tk = (1 +
uDu

m+ 2k − 2
)Dx and T ∗k =

uDuDx

m+ 2k − 2

are the twistor and dual twistor operators defined in [10] and λ2s is a non-zero real constant

whose expression is given later in this section.

To prove Theorem 9.10, we start with the following proposition.

Proposition 9.11. For any fk(u) ∈Mk, we denote

Bm−β = ∆x + am−β||u||2〈Du, Dx〉2 + bm−β〈u,Dx〉〈Du, Dx〉+ cm−βu〈Du, Dx〉Dx.

When β ≤ m− 2, we have

Bm−β
x

||x||β
fk(

xux

||x||2
) = dm−β

x

||x||β+2
fk(

xux

||x||2
)
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in the distribution sense, where

am−β =
4

(β + 2k − 2)(2m+ 2k − β − 2)
;

bm−β = − 4(m+ 2k − 2)

(β + 2k − 2)(2m+ 2k − β − 2)
;

cm−β = − 4

(β + 2k − 2)(2m+ 2k − β − 2)
;

dm−β = (β + 2k)(β + 2k −m) + 2k(m− 2β − 2k − 2) +
4k(m+ 2k − 2)

β + 2k − 2
.

It is worth pointing out that if β = m− 2s, then B2s is exactly the term in the

parenthesis in Theorem 9.10. Details can be found later in this section.

In order to prove the above proposition with arbitrary functions fk(u) ∈Mk, as stated

in [7], we can rely on the fact that Mk is an irreducible Spin(m)-representation generated

by the highest weight vector 〈u, 2f1〉kI, where I is defined in Section 2.2.1. It suffices to

prove the statement for

x

||x||β
〈 xux
||x||2

, 2f1〉kI =
x

||x||β+2k
〈xux, 2f1〉kI =

x

||x||β+2k
〈u||x||2 − 2〈u, x〉x, 2f1〉kI.

First, we assume that x 6= 0, and we have the following technical lemmas.

Lemma 9.12.

∆x
x

||x||β+2k
〈xux, 2f1〉kI

=
[
(β + 2k)(β + 2k −m) + 2k(m− 2β − 2k − 2)

] x

||x||β+2k+2
〈xux, 2f1〉kI

−4k
u〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I + 4k(m+ 2k − 2)
x

||x||β+2k+2
〈u, x〉〈x, 2f1〉〈xux, 2f1〉k−1I

+4k(k − 1)||u||2〈x, 2f1〉2
x

||x||β+2k
〈xux, 2f1〉k−2I.
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Proof. Since

∆x
x

||x||β+2k
= (β + 2k)(β + 2k −m)

x

||x||β+2k+2

and [7] gives

∆x〈xux, 2f1〉k

= 4k(k − 1)||u||2〈x, 2f1〉2〈xux, 2f1〉k−2I + 2k(m+ 2k − 4)〈u, 2f1〉〈xux, 2f1〉k−1I,

we have

∆x
x

||x||β+2k
〈xux, 2f1〉kI

= ∆x(
x

||x||β+2k
)〈xux, 2f1〉kI +

x

||x||β+2k
∆x(〈xux, 2f1〉k)I

+2
m∑
i=1

∂xi
x

||x||β+2k
∂xi〈xux, 2f1〉kI

= (β + 2k)(β + 2k −m)
x

||x||β+2k+2
〈xux, 2f1〉kI

+
x

||x||β+2k

(
4k(k − 1)||u||2〈x, 2f1〉2〈xux, 2f1〉k−2I

+2k(m+ 2k − 4)〈u, 2f1〉〈xux, 2f1〉k−1
)
I

+2k
m∑
i=1

(
ei

||x||β+2k
− (β + 2k)xix

||x||β+2k+2
)〈2uxi − 2uix− 2〈u, x〉ei, 2f1〉〈xux, 2f1〉k−1I.

Notice that I = f1f
†
1f2f

†
2 · · · fnf†n and f21 = 0. Therefore, we obtain

= (β + 2k)(β + 2k −m)
x

||x||β+2k+2
〈xux, 2f1〉kI

+4k(k − 1)||u||2〈x, 2f1〉2
x

||x||β+2k
〈xux, 2f1〉k−2I

+2k(m− 2β − 2k − 2)
x

||x||β+2k
〈u, 2f1〉〈xux, 2f1〉k−1I

−4k
u〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I + 8k(β + 2k)
x〈u, x〉〈x, 2f1〉
||x||β+2k+2

〈xux, 2f1〉k−1I.
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With the help of 〈u||x||2, 2f1〉 = 〈xux, 2f1〉+ 2〈u, x〉〈x, 2f1〉, this lemma is proved

immediately.

Lemma 9.13.

||u||2〈Du, Dx〉2
x

||x||β+2k
〈xux, 2f1〉kI

= k(k − 1)(2m− β + 2k − 2)(2m− β + 2k − 4)
||u||2x
||x||β+2k

〈x, 2f1〉2〈xux, 2f1〉k−2I; (4)

u〈Du, Dx〉Dx
x

||x||β+2k
〈xux, 2f1〉kI

= −k(2m− β + 2k − 2)

[
(β −m)

u〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I

+2(k − 1)||u||2 x

||x||β+2k
〈x, 2f1〉2〈xux, 2f1〉k−2I

]
; (5)

〈u,Dx〉〈Du, Dx〉
x

||x||β+2k
〈xux, 2f1〉kI

= −k(2m− β + 2k − 2)

[
x〈xux, 2f1〉k

||x||β+2k+2
I − (β + 2k − 2)

x〈u, x〉〈x, 2f1〉
||x||β+2k+2

〈xux, 2f1〉k−1I

+
u〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I − 2(k − 1)
||u||2x
||x||β+2k

〈x, 2f1〉2〈xux, 2f1〉k−2I

]
(6)

Proof. Since these three operators on the left contain 〈Du, Dx〉, first let us check:

〈Du, Dx〉
x

||x||β+2k
〈xux, 2f1〉kI =

m∑
i=1

∂ui

(( ei
||x||β+2k

− (β + 2k)xix

||x||β+2k+2

)
〈xux, 2f1〉kI

+k
x

||x||β+2k
〈xux, 2f1〉k−1〈2uxi − 2uix− 2〈u, x〉ei, 2f1〉I

)
=

m∑
i=1

k
( ei
||x||β+2k

− (β + 2k)xix

||x||β+2k+2

)
〈xux, 2f1〉k−1〈ei||x||2 − 2xix, 2f1〉I

+
m∑
i=1

k(k − 1)
x〈xux, 2f1〉k−2

||x||β+2k
〈ei||x||2 − 2xix, 2f1〉〈2uxi − 2uix− 2〈u, x〉ei, 2f1〉I

+
m∑
i=1

k
x〈xux, 2f1〉k−1

||x||β+2k
〈2eixi − 2x− 2xiei, 2f1〉I.
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The last expression simplifies as

−k(2m− β + 2k − 2)
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I.

Hence, to verify Eq. (4), we only need to check

〈Du, Dx〉
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I

=
m∑
i=1

∂ui

(( ei
||x||β+2k

− (β + 2k)xix

||x||β+2k+2

)
〈x, 2f1〉〈xux, 2f1〉k−1I +

x〈ei, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I

+(k − 1)
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−2〈2uxi − 2uix− 2〈u, x〉ei, 2f1〉I
)

=
m∑
i=1

( ei
||x||β+2k

− (β + 2k)xix

||x||β+2k+2

)
〈x, 2f1〉(k − 1)〈xux, 2f1〉k−2〈ei||x||2 − 2xix, 2f1〉I

+
m∑
i=1

x〈ei, 2f1〉
||x||β+2k

(k − 1)〈xux, 2f1〉k−2〈ei||x||2 − 2xix, 2f1〉I

+
m∑
i=1

(k − 1)
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−2〈2eixi − 2x− 2xiei, 2f1〉I

+
m∑
i=1

(k − 1)
x〈x, 2f1〉
||x||β+2k

(k − 2)〈xux, 2f1〉k−3

·〈2uxi − 2uix− 2〈u, x〉ei, 2f1〉〈ei||x||2 − 2xix, 2f1〉I.

This last expression simplifies as

−(k − 1)(2m− β + 2k − 4)
x〈x, 2f1〉2

||x||β+2k
〈xux, 2f1〉k−2I.

Hence, Eq. (4) is verified.
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For Eq. (5), we check

uDx
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I

= u

m∑
i=1

ei

(( ei
||x||β+2k

− (β + 2k)xix

||x||β+2k+2

)
〈x, 2f1〉〈xux, 2f1〉k−1I +

x〈ei, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I

+(k − 1)
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−2〈2uxi − 2uix− 2〈u, x〉ei, 2f1〉I
)

= u

[
(β + 2k −m)〈x, 2f1〉

||x||β+2k
〈xux, 2f1〉k−1I − 2

〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I

−2(k − 1)
〈x, 2f1〉〈u||x||2, 2f1〉

||x||β+2k
〈xux, 2f1〉k−2I

−2(k − 1)
ux

||x||β+2k
〈x, 2f1〉2〈xux, 2f1〉k−2I + 4(k − 1)

〈u, x〉〈x, 2f1〉2

||x||β+2k
〈xux, 2f1〉k−2I

]
= (β −m)

u〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I + 2(k − 1)
||u||2x
||x||β+2k

〈x, 2f1〉2〈xux, 2f1〉k−2I.

For Eq. (6), we check

〈u,Dx〉
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I

=
m∑
i=1

ui

(( ei
||x||β+2k

− (β + 2k)xix

||x||β+2k+2

)
〈x, 2f1〉〈xux, 2f1〉k−1I +

x〈ei, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1

+(k − 1)
x〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−2〈2uxi − 2uix− 2〈u, x〉ei, 2f1〉I
)

=
x〈xux, 2f1〉k

||x||β+2k+2
I − (β + 2k − 2)

x〈u, x〉〈x, 2f1〉
||x||β+2k−2

〈xux, 2f1〉k−1I

+
u〈x, 2f1〉
||x||β+2k

〈xux, 2f1〉k−1I − 2(k − 1)
||u||2x
||x||β+2k

〈x, 2f1〉2〈xux, 2f1〉k−2I.

Therefore, Eqs. (5) and (6) are verified.

Recall the fact mentioned in the 2j-th order bosonic operator case, ||x||α is weak

differentiable if α > −m+ 1 with weak derivative ∂xi||x||α = αxi||x||α−2. Hence, when

β ≤ m− 2, Lemmas 9.12 and 9.13 are both true in the distribution sense. Combining them
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completes the proof of Proposition 9.11. With the help of Proposition 9.11 and similar

arguments as in Proposition 9.9, we have the following proposition by induction.

Proposition 9.14. Let fk(u) ∈Mk. For integers j > 1,

[
j−1∏
s=1

B2sd
−1
2s

]
x

||x||m−2j+2
fk(

xux

||x||2
) =

x

||x||m
fk(

xux

||x||2
)

in the distribution sense, where a2s, b2s, c2s, d2s are defined as in Proposition 9.11 with

β = m− 2s.

In the above proposition, it is worth pointing out that

B2s1B2s2 = B2s2B2s1 ,

where s1 6= s2. Indeed, with a straightforward calculation, one can get

R2
k = −∆x +

4〈u,Dx〉〈Du, Dx〉
m+ 2k − 2

− 4||u||2〈Du, Dx〉2

(m+ 2k − 2)2
+

4u〈Du, Dx〉Dx

(m+ 2k − 2)2
.

Then

B2s = ∆x +
4
(
||u||2〈Du, Dx〉2 − (m+ 2k − 2)〈u,Dx〉〈Du, Dx〉2 − u〈Du, Dx〉Dx

)
(m+ 2k − 2s− 2)(m+ 2k + 2s− 2)

= ∆x −
(m+ 2k − 2)2

(m+ 2k − 2s− 2)(m+ 2k + 2s− 2)
(R2

k + ∆x). (7)

So B2s is a linear combination of R2
k and ∆x. This is no surprise, since [8] points out

{Ri
k∆

j
x, 0 ≤ i ≤ min(2p+ 1, 2k + 1), 0 ≤ j, i+ 2j = p}

is the basis of the space of Spin(m)-invariant constant coefficient differential operators of

order p on Mk. D2j−1 is conformally invariant, so it is also Spin(m)-invariant and hence
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can be expressed in this basis. Furthermore, with the help of −∆x = R2
k − TkT ∗k and Eq.

(7), we can also rewrite B2s in terms of first order conformally invariant operators:

B2s = −R2
k −

4s2TkT
∗
k

(m+ 2k − 2s− 2)(m+ 2k + 2s− 2)
.

Now, we have fundamental solution of D2j−1 restated as follows.

Theorem 9.15. Let Zk(u, v) be the reproducing kernel of Mk. When j > 1, the (2j − 1)-th

order fermionic operator D2j−1 has fundamental solution

λ2s
x

||x||m−2j+2
Zk(

xux

||x||2
, v), λ2s =

−(m+ 2k − 2)

(m− 2)ωm−1

j−1∏
s=1

d−1
2s ,

where d2s is defined in Proposition 9.11 with β = m− 2s and ωm−1 is the area of the

(m− 1)-dimensional unit sphere.

Proof. With the help of Proposition 9.14 and noticing that

−(m+ 2k − 2)

(m− 2)ωm−1

x

||x||m
Zk(

xux

||x||2
, v)

is the fundamental solution of Rk [6], the above theorem follows immediately.

Hence, Theorem 9.10 is proved and the odd order case is resolved.

On a concluding note, using similar arguments as in our previous paper [13], one can

generalize our conformally invariant differential operators to conformally flat spin

manifolds in the fermionic case and conformally flat Riemannian manifolds in the bosonic

case. Further, if M is a conformally flat manifold with spin structure then the conformal

weight structure allows us to lift the fermionic differential operators to act on sections on

certain bundles. This will be developed more formally elsewhere.
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10 Future work

We have finished the work of constructing conformally invariant differential operators in

higher spin spaces. However, there are still many interesting problems related to it. I list

some of them below as my future work.

1. In [43], one can find that Cauchy Green type formulas exist for the kth-power of the

Dirac operator Dk
x. Since our fermionic and bosonic operators are generalizations of

Dk
x to higher spin spaces, they should also have Cauchy Green type formulas. Such

integral formulas for the first order conformally invariant differential operators (the

Rarita-Schwinger operators) have already been found [6, 15]. For the other higher

order cases, integral formulas are still undiscovered.

2. At the end of Section 9, we mentioned that our differential operators can be

generalized to conformally spin (Riemannian) flat manifolds in the fermionic

(bosonic) case. This should be clarified in detail. Further, intertwining operators and

fundamental solutions should also be explored in these circumstances.

3. The first order conformally invariant differential operators in higher spin spaces are

called Rarita-Schwinger operators, which map from C∞(Rm,Mk) to C∞(Rm,Mk).

In Section 5, we also point out that there are other conformally invariant

Rarita-Schwinger type operators:

Twistor operator : Tk : C∞(Rm, uMk−1) −→ C∞(Rm,Mk);

Dual Twistor operator : T ∗k : C∞(Rm,Mk) −→ C∞(Rm, uMk−1).

De Bie et al. [7] also find the following conformally invariant twistor and dual twistor
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operators:

Twistor operator : Tk : C∞(Rm,Hk−1) −→ C∞(Rm,Hk);

Dual Twistor operator : T ∗k : C∞(Rm,Hk) −→ C∞(Rm,Hk−1).

Hence, higher order twistor and dual twistor operators should be investigated in the

future.
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