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Abstract 

 

 Photoreactive complexes to study the kinetics of electron transfer of proteins have been 

in use for a long time.  It has always been speculated that complexes bind near the heme or the 

electron transfer reaction would not occur.  But it is unkown exactly how the complex interacts 

with the protein.  The structural, thermodynamic, and kinetic properties of rat liver microsomal 

cytochrome b5 were investigated when bound to ruthenium dimer complexes.  Heteronuclear 

Single Quantum Coherence studies support a dynamic binding model of a dimer Ru complex 

bound near the protein’s heme involving residues H39, E44, G42, V61, G62, and H63.  The 

enthalpy of binding ΔH was found to be unfavorable: +200 cal/mol, despite a very favorable 

equilibrium dissociation constant Kd was found to be 40 µM indicating an entropically controlled 

process.  These insights will help with the design of future photoreactive complexes for the study 

of electron transfer reactions in metalloproteins. 
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Chapter 1 -- Introduction 

 

1.1 The Electron Transport Chain 

 

All organisms require energy to drive the biochemical processes that are necessary for life 

functions.  This is accomplished, in part, by a series of electron transfer reactions between 

hemeproteins bound to the mitochondrial membrane.  These metalloproteins make up an electron 

transport chain which is part of the metabolic pathway known as oxidative phosphorylation.  The 

free energy from electrons moving through the system is utilized to create a proton gradient 

across the mitochondrial or chloroplast membrane.  This buildup of protons creates concentration 

imbalance.  The free energy from restoring this imbalance is used to convert adenosine 

diphosphate, ADP, into adenosine triphosphate, ATP (respiration) (Cordes et al., 2009).  ATP is 

used to power the various reactions needed to grow, reproduce, and maintain life.  Figure 1-1 

depicts a representation of the typical electron transfer reactions involved in respiration (Raven 

et al., 1986).  Moreover, electron transfer between proteins is a fundamental step for many other 

metabolic processes (Cordes et al., 2009).   

In respiration, the production of energy typically begins with the metabolism of glucose in 

glycolysis and the citric acid cycle.  During these processes, the molecules nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) are produced in a reduced form.   

The first mitochondrial protein in the electron transport chain is known as NADH-Q 

oxidoreductase, or complex I.    Complex I oxidizes NADH and transfers two electrons to 

through several iron-sulfur clusters to reduce lipid soluble coenzyme Q, also called Q or  
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   Figure 1-1: Representation of the electron transfer reactions  

   involved in respiration.  

Raven, P. H., and G. B. Johnson.  1986. Biology. 2nd ed. St. Louis, Mo.: 

Times Mirror/Mosby College. 
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ubiquinone, inside the membrane.  During this process, four protons are pumped from the 

mitochondrial matrix to the intermembrane space.   

Succinate-Q oxidoreductase, also known as complex II, reduces succinate to fumarate as part 

of the Krebs cycle.  Electrons are transferred through an FADH2 prosthetic group as well as a 

series of iron-sulfur clusters to reduce coenzyme Q to QH2, or ubiquinol.  No protons are 

translocated as a result of these electron transfers.  Complex II contains an iron heme group that 

does not play a role in the reduction of Q, but may be involved in reducing the production of 

reactive oxygen species (Yankovskaya et al., 2003). 

Complex III is also called Q-cytochrome c oxidoreductase or cytochrome bc1, and only 

functions as a dimer.  Complex III transfers electrons from QH2 through an iron-sulfur cluster 

and three cytochromes: one cytochrome c1 and two b cytochromes (Iwata et al., 1998).  One 

electron is used to reduce a cytochrome c molecule that is electrostatically bound.  The other 

goes through a Q-cycle to partially reduce a ubiquinone molecule.  After two molecules of QH2 

have been oxidized, two molecules of cytochrome c have been reduced and one ubiquinone has 

been reduced back to an ubiquinol, which enters back into the QH2 pool (Berry et al., 2000).  As 

a result, four protons are pumped to the inner membrane space. 

Reduced cytochrome c then binds electrostatically to complex IV, cytochrome c oxidase.  

Electrons enter cytochrome oxidase from cytochrome c through a copper redox center CuA.  The 

electrons then travel through a heme a, to a binuclear center with a heme a3 and CuB.  From 

there, the electrons reduce bound molecular oxygen, which is the final electron acceptor in the 

chain.  It takes four electrons to reduce molecular oxygen to two waters, so the cycle involves the 

binding of four cytochrome c molecules.  In the process, four protons are pumped across the 

inner mitochondrial membrane. 
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1.2 The Study of Biological Electron Transfer 

 

Studies of the structure these proteins (Argos et al., 1975; Iwata et al., 1998;  Berry et al., 

2000;  Grigorieff, 1998; Sun et al., 2005) initiated a wide variety of investigations into the nature 

of electron transfer reactions.   An important aspect of understanding these reactions is 

measuring the rate of electron transfer.  Determining the kinetics of electron transfer while 

varying the conditions such as temperature, ionic strength, viscosity, and mutated residues, gives 

important insight to the nature of biological electron transfer (Durham et al. 1997).  Important 

concepts include how electrons are transferred efficiently between redox centers, how electron 

transfer is coupled to charge gradients and the production of energy, recognition between natural 

electron transfer partners, and the regulation of the flow of electrons in vivo (Durham et al. 

1997).   

An electron-transfer reaction that does not involve breaking or making of bonds is classified 

as an , outer-sphere electron transfer reaction (Davidson, 2000).  This classification was 

originally developed to describe simple inorganic reactions and on loosely holds for the reactions 

of most metalloproteins (Gray et al., 2003).  In these reactions the ligands immediately 

surrounding the metals remain intact during the redox process and thus the criteria is met.  

However, the process of creating the proton gradient does involve bond changes although 

remove from the metal center.   

Many biological electron transfer reactions actually occur faster than 10
3
 s

-1
, (27).  This 

means that the method of monitoring the reaction must be faster than the reaction itself, or the 

determined kinetics will be limited by the recording device.  One method commonly used to 

investigate fast reactions is stopped-flow.  This method works by rapid mixing two different 
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solutions of redox reactive biological species though injection.  However, the method is limited 

by mixing time, which precludes this method for any reaction that occurs faster than a few 

milliseconds. 

Pulse radiolysis is a technique that can be applied to very fast reactions.  This method utilizes 

a rapid burst of high energy-electrons to generate reactive species in solution. (Isied et al., 1984). 

This method, however, is non-specific and many reactive species are often generated.  A variety 

of reagents are typically added to the solutions of interest in order to scavenge for unwanted 

reactants.  Despite this difficulty some early work with metalloproteins was performed 

successfully with this technique.  

Flash photolysis is another rapid kinetic method with an early development history similar to 

pulse radiolysis.  Development of turn-key lasers, fast transient recorders and personal computers 

made laser flash photolysis one of the primary tools for the study of all aspects of electron 

transfer.  This technique uses a short laser pulse to create the reactive species instead of a high 

energy electron pulse.  The basic instrumental configuration is shown in Figure 1-2.  Some 

molecules are naturally photoreactive and the photoreaction is used to create the reactive species.  

In other cases a photoreactive molecule is added and various reaction schemes are used to create 

the appropriate reactants.  Reactions are typically followed spectrophotometrically. 

Metalloproteins in general are not photoreactive and without some modification are not 

suitable for the flash photolysis experiment.  One modification is substitution of the metal to 

produce a photoreactive metal center.  A few researchers have substituted a zinc atom in place of 

an iron in a heme.  When the zinc-substituted heme is hit with a laser flash, its excited state 

lifetime is sufficient to transfer an electron to an acceptor protein (Peterson-Kennedy et al., 30).   
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Figure 1-2: Typical setup of a laser flash photolysis experiment. 

   Havens, J. (2010) “Ruthenium flash initiated studies of electron  

   transfer between cytochrome c and the b hemes of cytochrome b5  

and sulfite oxidase, and the electron transfer within cytochrome  

bc1” Dissertation, University of Arkansas, Fayetteville, AR  
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While the substitution of a zinc atom causes little structural change within the protein, it is not 

native and some of its properties such as redox potential are altered.   

Nocera et al. (1984) and Isied et al. (1982) were able to covalently link a [Ru(NH3)5]
2+

 

complex to a surface histidine of cytochrome c.  Techniques like the previously described pulse 

radiolysis or zinc-heme analogue were necessary to measure the rates of electron transfer 

between the proteins and the complex.  The focus of these studies was on determining how an 

electron is transferred through a protein when redox centers are separated by 20 to 40 Å (Durham 

et al. 1997).  A few theoretical studies were able to detail the movement of electrons in the 

experimental systems (Regan et al., 1993; Beratan et al., 1991).   

Another technique is the use of flavin derivatives reduced with laser light that generate 

reactive redox species.  This technique was used extensively by Tollen et al. (1991) in the 

investigation of cytochrome c peroxidase. 

 

1.3 The Use of Ru Complexes in Laser Flash Photolysis 

 

None of the proteins in the electron transport chain are photoreactive and thus not 

suitable to the flash photolysis experiment unless a suitable photoinitiation reagent is present.  

Several schemes have been developed using ruthenium bipyridine complexes that allow laser 

flash photolysis to be used to investigate the electron transfer reactions.    A typical reaction 

scheme is shown in Figure 1-3.  Electron transfer is initiated, using a laser, by exciting a Ru 

complex attached to the protein (Durham et al., 1989).  The ruthenium complex, which has a 

reasonably long lived excited state, injects an electron into the heme iron, converting the Fe (III) 

to Fe (II)..  The resulting ruthenium (III) is re-reduced by a sacrificial electron donor in the  
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   Figure 1-3: Schematic representing the reduction of the Fe
3+

 atom of a  

heme protein by a bound and unbound Ru
2+

 complex.   

Durham, B.  Millet, F.  (1989)  “Photoinduced Electron-Transfer kinetics 

 of singly labeled ruthenium bis(bipyridine) dicarboxybipyridine  

Cytochrome c Derivatives”  Biochemistry 28 : 8659-8665 
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solution, and the heme is permanently reduced on the time scale of the experiment. If another 

protein (e.g., a physiological partner) in the appropriate oxidation state is present in solution, the 

reaction of the between the newly reduced protein and its physiological partner can be monitored 

on a time scale comparable to the laser pulse, nanoseconds.   
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   Figure 1-4: Ruthenium monomer and dimer  

complexes that have been used to study electron  

   transfer reactions.     
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1.4 Ru Complexes used  

 

A wide variety of Ru complexes have been used over the past few decades (Durham et al. 

1989).  See Figure 1-4 for examples.  Some of these are covalently attached to a protein and 

some are simply added to the solution where they bind electrostatically to a protein and allow the 

laser flash photolysis experiment to proceed.  In 2001, Tracey Jackson investigated whether the 

overall charge of the Ru complex, the type and length of the charged group, and the number of 

Ru nuclei can affect binding affinity.  He synthesized complexes with positively charged amino 

groups on long, flexible aliphatic arms to see if chain length allowed the complex to better 

interact with the negatively charged regions of the proteins surface for tighter binding.  See 

Figure 1-5. He showed that the binding affinity for cytochrome b5 increases with increasing 

charge, but all complexes of similar charge show the same basic affinity (Jackson, 2001). See 

Figure 1-6. 

 

1.5  Cytochrome b5 

 

The characterization of these complexes and understanding of how they interact with 

proteins provides insight into the reactions they facilitate and can lead to improvements in the 

design of new complexes. Because there is abundant data about its structure, interactions, and 

mechanisms, cytochrome b5 has become a model protein for theoretical and experimental studies 

(Ozols 1989; Wendoloski et al., 1987; Rodgers et al., 1989; Funk et al., 1990).  Cytochrome b5 is 

a hemoprotein that participates in a wide variety of physiological redox reactions.  They are 

present in animal, plant, fungi, and purple photosynthetic bacteria species.  In animal tissues, the  
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   Figure 1-5: Ruthenium complexes designed 

   by Tracey Jackson (2001) to investigate 

   electron transfer reactions of cytochrome b5. 
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Figure 1-6:  Graph of fraction bound of Tracey Jackson’s ruthenium 

complexes vs. concentration of cytochrome b5.  Graph shows that all 

complexes of similar overall charge bind with the same affinity. 

Jackson, Tracy (2001) “Electrostatically bound metal complexes for the 

study of electron transfer in metalloproteins” Dissertation, University of 

Arkansas, Fayetteville, AR 
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sequence is highly conserved and can be found in both membrane bound and water soluble 

forms, each produced by alternative splicing during expression (Mathews et al., 1985).  

The membrane bound form is primarily found in the endoplasmic reticulum of liver cells.  

It reduces unsaturated fatty acids before they enter the metabolic degradation pathways 

(Strittmatter et al., 1974).  It also acts as an electron source for cytochrome P450 in a variety of 

reactions that hydroxylate toxins in order to make them more soluble and easier to degrade, 

which facilitates elimination (Imai et al. 1977).  Cytochrome b5 is also found on the inner surface 

of the outer membrane of mitochondria.  It is reduced by cytoplasmic NADH-cytochrome b5 

reductase.  Cytochrome b5 then transfers an electron to cytochrome c in the mitochondria (Matlib 

et al., 1976).  

The water soluble form is found in mammalian and avian erythrocytes.  Its primary 

function is to reduce methemoglobin to hemoglobin using NAD
+
 (Hultquist et al., 1984).  If one 

of the hemoglobin tetramers becomes oxidized, Fe
2+

 to a Fe
3+

, it loses its ability to bind oxygen 

and causes the other three to bind oxygen tighter, preventing them from releasing oxygen to 

tissues.  This results in a condition called methemoglobinemia, which can lead to tissue hypoxia 

(do Nascimento et al., 2008). 

The structure of rat liver microsomal cytochrome b5 has previously been determined by 

x-ray crystallography (Argos, et al. 1975) and NMR (Lee et al., 1994).  It has been shown that 

the binding affinity for ruthenium complexes increases with higher positive charges (Chaudaev 

et al., 2001).  It was speculated that the binding location is at the negatively charged residues 

near the heme, which is the site for cytochrome b5’s natural substrates (Wang et al., 2003).  See 

Figure 1-6 for an electrostatic surface potential map of cytochrome b5.  
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A truncated form cytochrome b5 is commonly used where the hydrophobic tail that 

anchors it into a membrane is eliminated in order to increase its solubility in water.  NMR studies 

have shown that cytochrome b5 exists in two isoforms referred to as A (major) and B (minor) 

(Keller et al., 1976).  The heterogeneity results from a 180˚ rotation of the heme group about the 

axis along the α and γ meso carbons (La Mar et al., 1981).  The two isoforms differ in reduction 

potential by 27 mV (Sarma et al., 1996).  The ratio of major to minor isoforms varies with 

species: chicken 20:1, calf 8.9:1, rat 6:4 (Lee et al., 1994).  See Figure 1-7 for a stereo view of 

the heme of cytochrome b5 and its ligating residues. 

Rat liver cytochrome b5 is unique in that it has the highest detectable heterogeneity in 

solution.  This can give rise to 40% more resonances in 
1
H-

15
N HSQC spectra making resonance 

assignments difficult (Sarma et al., 1996).  Any 2D NMR studies of rat liver cytochrome b5 will 

have to take both conformers into account. 
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   Figure 1-7: Electrostatic surface map ofcytochrome b5 from  

PDB 1AW3 rendered with Pymol. 

  



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1-8:  Stereoview of cyt b5.  Heme Fe axial ligands His 63  

and His 39are shown in blue (36). 

Altuve, Adriana; Silchenko, Svetlana; Lee, Kyung-Hoon; Kuczera, 

Krzysztof; Terzyan, Simon; Zhang, Xuejun; Benson, David R.; 

Rivera, Mario "Probing the Differences between Rat Liver Outer 

Mitochondrial Membrane Cytochrome b5 and Microsomal 

Cytochromes b5".  Biochemistry 2001, 40 9469-9483 
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1.6 The Cytochrome b5 and Cytochrome c complex 

 

One of the most intensely studied interactions of electron transfer proteins is the complex 

formed between cytochrome b5 and cytochrome c.  Salemme (1976) was the first to propose a 

detailed structural model of the complex.  Available crystal structures (Argos et al. 1975, Takano 

et al., 1973) were aligned with a least squares minimization of the distance between hemes to 

give a well-defined model with a stoichiometric ratio of 1:1 and four interprotein charge 

interactions: E44-K13, E44-K27, D60-K72, and the 6 propionate-K79 (cytochrome b5 residues 

listed first).  See Figure 1-8.  This model included excluded water molecules at the binding 

interface and nearly coplanar hemes 8 Å apart.  This model prompted the development of 

experimental techniques to determine the structural properties and electron transfer mechanism 

of the complex.   

Gel permeation and ultracentrifugation studies provided the first evidence that the c-b5 

complex does form with a ratio of 1:1 (Stoneheurner et al., 1979).    This conclusion was 

supported by electronic spectroscopy (Mauk et al., 1982), and NMR studies (Eley et al., 1983).  

Researchers used chemical modification of the lysine residues of cytochrome c along with steady 

state kinetics to determine which residues play a role in complex binding (Ng et al., 1977; Smith 

et al., 1980).  Researchers also esterified the propionate groups of the heme of b5 and used 

spectrophotometry to determine the role they play in complex formation (Reid et al., 1984, Mauk 

et al. 1986).  Later, mutagenesis of the negatively charged residues of cytochrome b5 was used in 

combination with hyperbaric spectroscopy to determine their involvement in the binding reaction 

(Rodgers et al. 1988, Rodgers et al. 1991).  These studies generally supported the Salemme 

model of the complex, but found that different interactions might also play a role.  Mauk (1986) 
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   Figure 1-9: Proposed model of the complex formed between  

   bovine cytochrome b5 and horse heart cytochrome c.  The model 

   posits four electrostatic charge interactions: E44-K13, E44-K27,  

D60-K72, and the 6 propionate-K79 (cytochrome b5 residues listed 

first). 

   Salemme F.  (1976)  “An Hypothetical Structure for an  

Intermolecular Electron Transfer Complex of Cytochromes c and 

b5” Journal of Molecular Biology 102, 563-568  
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suggested that the ionic strength dependence (Stoneheurner et al., 1979) of charge transfer 

reaction between cytochrome c and cytochrome b5 is likely due to five to seven interactions 

(Mauk et al. 1986). 

It became clear that the static Salemme model did not accurately account for increasingly 

acquired observations of the nature of the binding between cytochrome c and cytochrome b5 

(Willie et. al., 1992).   Brownian dynamic simulation studies concluded that while there is only 

one binding domain involved in complex formation, there are multiple docking conformations 

contributing to electron transfer (Northrup et al., 1993).  Observations NMR titration curves and 

the line-broadening at higher cytochrome c concentrations suggest that a ternary complex with 

one cytochrome b5 and two cytochrome c molecules may be in equilibrium with the binary 

complex (Whitford et al., 1990).   

Volkov et al. (2005) investigated the complex formation of cytochrome b5 and cytochrome c 

using HSQC and modelling with the HADDOCK docking algorithm.  For a description of the 

HSQC technique, see the following section.  The researchers determined that a small patch of 

residues on the surface of cytochrome c is involved in the interaction.  In contrast, residues all 

over the surface of cytochrome b5 play a role in binding.  See Figure 1-9 for a surface map of 

these residues.  The NMR data and the docking study show a dynamic binding model with 

multiple conformations. 

 

1.7 Heteronuclear Single Quantum Coherence Spectroscopy 

 

A powerful tool in the investigation of protein binding dynamics has been the use of 

Heteronuclear Single Quantum Spectroscopy.  The experiment was pioneered by Bodenhausen  
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Figure 1-10: Surface map of bovine cytochrome b5(PDB 1CYO).  

Residues that show significant perturbation in the HSQC spectrum are 

colored red.  Moderately perturbed residues are orange, andSlightly 

perturbed residues are yellow. 
Volkov, A.  (2005)  “The orientations of cytochrome c in the highly 

dynamic complex with cytochrome b5 visualized by NMR and docking 

using HADDOCK” Protein Science  14:799–811  
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and Ruben in 1980 (Bodenhausen et al., 1980).  The technique uses two dimensional NMR with 

proton 
1
H as one axis and a different atom, usually 

15
N or 

13
C, as the other.  A corresponding 

resonance represents a coupling from a single proton bonded to a hetero atom.  In a folded 

protein, each backbone hydrogen is in a unique chemical environment.   So each resonance on 

the spectra corresponds to the backbone proton of a single residue (Cavanagh et al., 2007).  For 

sample spectra, see Figure 3-2. 

Compounds are inserted into an applied magnetic field.  A radio pulse of a specific 

frequency causes a polarization in the nucleus of a 
1
H atom.  Next a series of radio simultaneous 

pulses transfers that polarization to a bonded 
15

N nucleus.  The system is allowed to relax for a 

certain time, before another series of pulses transfers the polarization back to the 
1
H.  As the 

polarization transfers back, the 
15

N decouples from the 
1
H, and the 

1
H returns to its original state.  

The signal from the 
1
H is recorded as it returns to equilibrium as free induction decay.  The FID 

is processed with Fourier Transform algorithm and a two dimensional spectra is obtained 

(Gomathi, 1996).  See Figure 1-10 for a schematic of the pulses used. 
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   Figure 1-11: Schematic of an HSQC experiment.   

Black bars represent radio pulses, and the numbers  

above them show the angle of incidence to the 

   magnetic moment. 

   http://chemwiki.ucdavis.edu/@api/deki/files/9360/=HSQC.png  
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1.9 Aim of Present Work 

While these compounds have been used to study electron transfer reactions for decades, little 

is known about how they interact with proteins.  Preliminary evidence supports a simple 

electrostatic model.  It is reasonable to assume that the complexes must bind near the heme, 

otherwise charge transfer would not happen (Guiles et al., 1993).  The role of other forms of 

molecular interactions has not been investigated.  Dissociation equilibrium constants have been 

calculated for some compounds, but the specific thermodynamic details are unknown.  What is 

the enthalpy and entropy of binding and how can binding be improved?  Do all complexes of 

identical charge have the same binding affinity?  The present work seeks to answer these 

questions.  The answers will help with the future design of complexes to study biological 

electron transfer.  This work also seeks to evaluate some recently developed ruthenium dimer 

complexes that haven’t been studied with biological systems.  See Figures 1-11 and 1-12 for 

these new complexes. 
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   Figure 1-12: Ruthenium dimers used in this study.  
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   Figure 1-13:  3-D view of [(Ru-bpy2)2-diphen]
4+

.   

   Distance between ruthenium atoms is 11.77 Å. 
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Chapter 2 - Experimental 

 

2.1 – Preparation of Ru Complexes 

 

 Samples of [(Ru-bpy2)2-diphen](PF6)4 and [(Ru-diphen2)2-diphen](PF6)4 were obtained 

from other researchers in the group.  For a complete description of the synthesis of these 

compounds, refer to the dissertations of Roland Njabon and Latisha Puckett and the master’s 

thesis of Yinling Zhang.   

Ruthenium complexes with PF6 
- 
counterions are not very soluble in water, so it necessary 

to convert the counterion in order to use them with proteins.  Solid [(Ru-bpy2)2-diphen](PF6)4 

was dissolved in a minimal amount of anhydrous acetone.  [(Ru-bpy2)2-diphen]Cl4 was 

precipitated by adding a few drops of saturated LiCl in anhydrous acetone.  The solution was 

filtered and the precipitant was washed with more anhydrous acetone. 

The resulting chloride salt was highly sensitive to atmospheric water and was stored in a 

desiccator.  The salt was also photosensitive and the vial was wrapped in aluminum foil to shield 

it from ambient light.   

 

2.2 - Cytochrome b5 production 

 

The plasmid for microsomal rat liver cytochrome b5 was obtained from Dr. Steven Sligar 

at University of Illinois, Urbana–Champagne (Beck von Bodeman et al., 1986).  2.0 μL of the 

plasmid was added to 25 μL of BL21DE3 competent E. coli cells in a Falcon tube and incubated 

in an ice bath for 30 minutes.  The tube was removed from the ice and heat pulsed for two 
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minutes at 42°C.  The tube was returned to ice for two additional minutes.  0.5 ml of 2xYT broth 

(4g Tryptone, 2.5 g yeast extract, 1.25 g NaCl, 250 ml DDI water) was added to the tube then 

spread out over a 2xYT agar plate containing ampicillin.  The plate was incubated overnight at 

37 °C. 

Two liters of M9 minimal media were prepared in a 6L flask with 25.6 g of 

Na2HPO4·7H20, 6.0 g KH2PO4, 1.0 g NaCl,  4ml 1M MgSO4, 0.2 ml 1 M CaCl2, 40 ml of 20% 

glucose solution, and 2.0 g 
15

NH4Cl as the only nitrogen source (Neidhardt et al., 1974; 

McIntosh et al., 1987).  The media was sterilized by autoclave.  Two ml of AMP100 ampicillin 

solution was added to flask with the media.  Two single colonies from the agar plate were 

removed with sterile toothpicks and added to the flask.  The flask was incubated at 37 °C 

overnight on a shaker.  Media remained translucent after incubation. 

The next day 2 ml of 1 M IPTG (isopropyl-B-D-thiogalactoside) solution was added to 

induce expression.  After 10 minutes, 2ml of 17mg/ml ALA (sigma-aminolevulinic acidHCl) 

was added as a precursor for heme assembly, and 2 ml of 100mg/ml FeCl2 was added as an iron 

source for the heme.  The flask was returned to 37 °C incubation on a shaker overnight.   

The next day the media appeared turbid and a gray-pink color indicating heme 

expression.  The media was aliquoted out into centrifuge bottles and spun at 10,000 rpm for 15 

minutes.  The supernatant was discarded and the weight of the cells was determined.  The cells 

were resuspended in 3ml of lysis buffer (50 mM Tris pH 7.5, 1mM EDTA, 100 mM NaCl) per 

gram of cells.  160 μL of 10 mg/ml lysozyme solution and 32 μL of 50 mM PMSF 

(phenylmethyl sulfonyl fluoride) in ethanol per gram of cells were added to the suspension.  The 

solution was stirred at room temperature for 20 minutes.   Four milligrams of deoxycholic acid 

per gram of cells was added to the solution.  The solution was stirred at 37 °C for 20 minutes  
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   Figure 2-1:  Graph of the ratio of absorbance at 412nm (heme b) to  

280 nm (tryptophan indole), vs. fraction number after ion exchange 

gravity column.  The purest fractions are from 26-29.  
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then one hour at room temperature.  The solution was then frozen overnight at -80 °C.  The 

freeze-thaw process is important to ensure cells are disrupted properly. 

The solution was thawed then centrifuged for one hour at 19,000 rpm.  The pellet was 

discarded and the supernatant appeared a pale red color.  The solution was concentrated using 

Amicon concentrators with a 5 kDa cut off at 4000 rpm down to about 30 ml.  The solution was 

added to an ice bath on a stir plate.  Solid ammonium sulfate was slowly added while the 

solution was stirred to reach a concentration of 300 g/L (about 47% saturation) then stirred for an 

hour. 

The solution was centrifuged at 10,000 rpm for 15 minutes and the pellet was discarded.  

The solution was then added to a dialysis bag with a 6-8 kDa cut off and placed into 10L of 10 

mM Tris pH 8.0 buffer.  The solution was allowed to dilalyze for 24 hours at 4 °C.   

A 30 cm DEAE column was equilibrated with 10 mM Tris pH 8.0 buffer and the protein 

was loaded onto the column.  250 ml of 10 mM pH 8.0 Tris buffer and 250 ml of 0.3 M NaCl in 

10 mM pH 8.0 Tris buffer were loaded into an auto-gradient apparatus and the gradient was 

allowed to flow through the column.  The protein eluted around 0.15 M - 0.2 M NaCl and 

fractions were collected. 

The absorbance at 412 nm and 280 nm of each fraction was measured using an HP diode 

array spectrophotometer.  The wavelengths represent the heme and tryptophan peaks 

respectively.  The ratio of absorbances was calculated for each fraction.  A ratio greater than 1.0 

is considered high enough purity.  All fractions below this ratio were discarded.  See figure 2-1. 

The fractions with higher purity were pooled and the buffer exchanged into 10 mM Tris 

pH 8.0 with no salt.  The protein solution was loaded into a Waters 1500G HPLC with a Q12 

column.  A solvent bottle of 5 mM phosphate buffer pH 7.0 and a bottle of 500 mM phosphate 
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   Figure 2-2: Absorbance spectrum of purified cytochrome b5.  
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buffer pH 7.0 were programmed to run through the column as follows:  minutes 0-5 ramps up to 

20% 500 mM, minutes 6-45 ramps up to 60% 500 mM, minutes 46-55 ramps up to 100% 500 

mM.  Fractions were collected from the eluant and the ratio of absorbance at 412 nm to 280 nm 

were measured.  Any fraction with a ratio higher than 1.0 was considered pure.  The other 

fractions were discarded.  See Figure 2-2 for a UV/Vis spectrum of the purified protein. 

Fractions containing the purified protein were pooled then concentrated to a dark red 

color using Amicon concentrators with a 5 kDa cut off and washed with a pH 7.0 100 mM 

phosphate buffer.    The purity of the protein sample was verified using 20% polyacrylamide gel 

electrophoresis (Figure 2-3). 

 

2.3 - NMR experiments 

 

NMR samples were prepared by combining 51 μL of a 170 µM cytochrome b5 solution in 

10 mM phosphate buffer pH 7.0 with 9 μL of D2O (15%) in a 5 mm diameter NMR tube.  A one 

dimensional 
1
H spectra was obtained on a Bruker 500 MHz NMR spectrometer and the exact 

chemical shift of the water peak was determined.  The water peak was suppressed and a 2D 

HSQC spectrum was obtained with a spectral width of 8008.91 Hz for proton and 1606.60 for 

nitrogen atoms.  Relaxation times were 0.1278 seconds for 
1
H and 0.0651 for 

15
N.  The data was 

acquired at 40 °C using Topsin software.  Further data processing was conducted with 

ACD/Labs ACD/NMR Processor Academic Edition version 12.01. 

The HSQC spectrum of 
15

N enriched cytochrome b5 at 40 °C was compared to the 

assignments previously made by Guiles et. al., (1993) and Sarma et al., (1996).  The axes from 

the acquired data were shifted 0.4 ppm to the left and 3.1 ppm down for the purpose of  
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   Figure 2-3:  SDS 20% polyacrylamide gel verifying purity of cytochrome  

   b5 (right channel, 11 kDa) and homemade molecular weight standards  

(left channel).  Molecular weights of standards are, from top to bottom: 

   102.5 kDa, 55.8 kDa, 27.6 kDa, 6.4 kDa.  
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assignments only.  A few assignments from that paper appear to have been mislabeled in the 

authors’ table.  See Figure 2-4.  For example, residues N57 A and B, E44 A and B, and D60A 

appear to have assigned coordinates that do not match on the published spectra.  Other errors 

from the coordinate table include switching of assigned residues, omission of certain residues, 

and coordinates given for peaks that do not appear on the published or experimental spectra.  A 

complete list of experimentally determined peaks, the corresponding published coordinates, and 

observed errors from the published table can be found in Table 2-1.  Spectra of the protein at 

both 10 mM and 100 mM phosphate buffer pH 7.0 were recorded to verify that any perturbations 

were not the result of ionic strength alone.  See Figure 2-4 for a histogram of resonances at 10 

and 100 mM buffer strength.  

 Adding the ruthenium bipyridine complex to the protein solution at 40 °C resulted in 

significant aggregation and unusable data.  A series of boundary condition experiments (see 

section 2-3) revealed that aggregation could not be avoided at 40 °C.  However, data collected at 

25 °C was coherent and resulted in no observed aggregation, but the positions of the peaks at 25 

°C had shifted to the point where assignments could not be made.  It was necessary to reassign 

every peak.  This was accomplished by taking spectra at 40°, 37°, 34° 31°, 28°, and 25°.  Peaks 

were tracked at each step which allowed for accurate peak assignments at 25°.   

Once accurate peak assignments were made, a 760 µM solution of ruthenium bipyridine 

complex [(Ru-bpy2)2-diphen]
4+

 was titrated into 500 µL of a 10% D2O solution of cytochrome b5 

in 10 mM phosphate buffer pH 7.0 in a 30 mm diameter NMR tube, 55 µL aliquots at a time and 

a NMR spectrum was acquired at each step.  See Table 2-2 for exact concentrations of each 

species at each step.   

 

 



51 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4:  Overlay of published spectra of cytochrome b5 with a plot  

of coordinates from the published table. 

Guiles, R. D.; Basus, Vladimir J.; Sarma, Siddhartha; "Novel 

heteronuclear methods of assignment transfer from a diamagnetic to a 

paramagnetic protein: application to rat cytochrome b5" Biochemistry 

1993 32, 8329-8340   
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Table 2-1: List of experimentally determined peaks for cytochrome b5, the 

corresponding published coordinates, and observed errors from the published  

table. 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

8.308 117.743 D1 8.270 117.400 

 
8.073 120.123 K2 8.090 119.600 

Very clustered here.  

Experimental and published 

spectra look identical.  

8.189 117.634 D3 8.160 117.400 
marked in a different place 

on the spectra in the paper.  

Confidence low 

7.629 120.595 V4 7.590 120.700 

 8.047 126.753 K5 8.000 126.500 

 8.103 121.587 Y6 8.060 121.400 

 8.672 118.281 Y7 8.620 118.000 

 9.115 115.032 T8 9.130 114.800 

 9.758 123.798 L9 9.700 123.400 

 8.389 117.002 E10 8.350 116.800 

 7.648 118.325 E11 7.610 118.200 

 8.440 121.477 I12 8.370 121.200 

 8.113 115.098 Q13 8.070 114.900 

 

7.299 115.448 K14 7.230 115.100 

marked in a different place 

on the spectra in the paper.  

Switched with I87.  

Confidence low 

7.643 121.383 H15 7.600 121.100 

 7.455 117.156 K16 7.420 116.800 

 8.083 121.083 D17 8.060 121.000 

 

  

S18 7.390 113.200 

no sign of this peak on the 

experimental or literature 

spectrum.  Not sure what 

they are defining.  Possible 

multiple in K14, I87 cluster 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

8.072 119.398 K19 8.040 119.200 
Very clustered here.  

Experimental and published 

spectra look identical.  

7.528 113.171 S20 7.480 112.800 

 
8.711 122.922 T21 8.660 122.400 marked in a slightly different 

place on the spectra in the 

paper.  Confidence high 

8.619 126.797 W22A 8.580 126.600 A and B peaks on top of one 

another 

  

W22B 8.590 126.600 

 8.412 112.931 V23A 8.390 112.400 marked opposite B and A 

from paper to spectrum labels 

8.456 112.199 V23B 8.420 111.800 marked opposite B and A 

from paper to spectrum labels 

7.936 122.506 I24A 7.870 122.200 

 7.871 122.047 I24B 7.820 121.700 

 8.579 122.453 L25A 8.550 122.300 

 8.610 122.540 L25B 8.580 122.400 

 9.252 125.615 H26A 9.210 125.400 

 9.291 125.615 H26B 9.230 125.400 

 8.550 107.658 H27 8.500 107.500 

 8.318 121.674 K28A 8.260 121.800 

 

  

K28B 8.280 122.800 

no sign of this peak on the 

experimental or literature 

spectrum.  Not sure what 

they are defining. 

8.320 120.886 V29A 8.270 120.600 

 8.365 121.018 V29B 8.320 120.800 

 8.792 126.162 Y30A 8.740 125.800 

 8.836 126.315 Y30B 8.790 126.000 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

8.137 119.270 D31 8.050 118.200 

marked in a different place 

on the spectra in the paper.  

Likely in the K19, K2, F35 

cluster.  Confidence low 

8.499 121.871 L32A 8.490 121.600 

 

  

L32B 8.450 121.900 

Very clustered here.  They 

saw four peaks where I only 

saw two.  Experimental and 

published spectra look 

identical.  

8.761 119.617 T33 8.710 119.500 

 9.269 117.253 K34A 9.140 116.900 

 

9.146 117.296 K34B 9.250 116.900 

 

8.128 119.792 F35A 8.110 119.500 
Very clustered here.  

Experimental and published 

spectra look identical.  

8.072 119.398 F35B 8.040 119.200 
Very clustered here.  

Experimental and published 

spectra look identical.  

7.830 119.048 L36A 7.770 118.700 

 7.696 118.522 L36B 7.620 118.400 

 8.576 112.440 E37 8.530 112.200 

 8.308 117.743 E38A 8.270 117.400 

 8.269 117.743 E38B 8.230 117.400 

 8.847 120.033 H39A 8.790 119.900 

 8.708 119.704 H39B 8.650 119.500 

 

  

P40 

  

 

  

G41 

  not defined anywhere 

10.272 111.958 G42A 10.230 111.700 

 10.503 112.265 G42B 10.480 112.000 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

9.906 120.799 E43A 9.920 120.600 

 9.970 121.018 E43B 9.970 

 

No 15N coordinate published 

in table 

9.557 123.885 E44A 9.570 121.800 
marked in a different place 

on the spectra in the paper.  

Confidence low 

9.596 124.039 E44B 9.610 121.900 
marked in a different place 

on the spectra in the paper.  

Confidence low 

9.318 113.237 V45A 9.270 112.900 

 9.243 112.177 V45B 9.180 111.800 

 7.377 116.674 L46A 7.320 116.300 

 
7.372 116.937 L46B 

  

Spectra has two forms labled 

but only one published in 

table 

8.348 118.128 R47A 8.320 117.800 

 8.212 118.172 R47B 8.180 117.800 

 8.172 116.783 E48A 8.130 116.600 

 8.058 116.543 E48B 8.010 116.400 

 6.757 113.200 Q49A 6.690 112.800 

 6.726 113.030 Q49B 6.670 113.000 

 6.923 120.865 A50A 6.870 120.600 

 6.845 120.427 A50B 6.800 120.200 

 9.352 109.353 G51A 9.320 109.100 

 9.321 108.762 G51B 9.280 108.500 

 7.403 104.637 G52A 7.360 104.400 

 7.267 104.265 G52B 7.220 103.800 

 8.342 117.524 D53A 8.300 117.400 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

8.382 117.239 D53B 8.350 117.300 

 8.426 129.271 A54A 8.420 129.000 

 8.516 130.124 A54B 8.530 129.900 

 7.952 117.406 T55A 7.920 117.200 

 7.891 117.277 T55B 7.840 117.000 

 
8.610 119.310 E56 8.580 117.300 

marked in a different place 

on the spectra in the paper.  

Confidence low 

7.756 116.411 N57A 7.660 114.200 marked in a different place 

on the spectra in the paper.  

Confidence medium 

7.659 116.608 N57B 7.590 114.400 marked in a different place 

on the spectra in the paper.  

Confidence medium 

8.159 118.413 F58A 8.130 116.300 
marked in a different place 

on the spectra in the paper.  

Confidence low 

8.078 118.128 F58B 8.000 116.100 
marked in a different place 

on the spectra in the paper.  

Confidence low 

8.945 119.507 E59 8.890 119.400 

 

9.132 122.266 D60A 9.050 121.800 

marked in a different place 

on the spectra in the paper.  

Probable typo.  Confidence 

high 

9.043 121.959 D60B 8.970 122.100 

 8.211 114.594 V61A 8.100 114.300 marked opposite B and A 

from paper to spectrum lables 

8.033 115.120 V61B 7.930 114.800 marked opposite B and A 

from paper to spectrum lables 

8.929 109.040 G62A 8.850 108.600 

 
8.918 108.777 G62B 

  

Spectra has two forms labled 

but only one published in 

table 

10.636 118.785 H63A 10.690 118.600 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

10.703 118.872 H63B 10.740 118.700 

 11.696 126.469 S64A 11.630 126.000 

looks fine.  confidence high 

11.498 126.075 S64B 11.430 125.600 

looks fine.  confidence high 

8.847 120.033 T65 8.810 119.700 

 8.312 122.309 D66A 8.270 122.100 

 8.226 121.674 D66B 8.170 121.500 

 8.853 124.323 A67A 8.830 124.000 marked opposite B and A 

from paper to spectrum lables 

8.900 124.323 A67B 8.790 124.000 marked opposite B and A 

from paper to spectrum lables 

9.202 118.741 R68A 9.160 120.600 

marked in a different place 

on the spectra in the paper.  

Probable typo.  Confidence 

high 

9.079 118.457 R68B 9.000 118.200 

 8.981 123.404 E69A 8.950 123.200 

 9.062 123.163 E69B 9.030 123.000 

 8.429 122.069 L70A 8.360 121.800 

 8.521 122.069 L70B 8.470 121.800 

 8.348 113.325 S71A 8.310 113.200 

 8.434 113.544 S71B 8.410 113.400 

 7.272 120.420 K72A 7.230 120.100 

 7.436 120.996 K72B 7.390 120.700 

 7.717 112.308 T73A 7.670 112.000 

 7.713 112.071 T73B 7.670 111.700 

 7.433 117.659 Y74A 7.390 117.500 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

7.582 117.803 Y74B 7.550 117.500 

 6.803 120.558 I75A 6.760 120.400 

 6.847 120.777 I75B 6.800 120.600 

 8.610 119.310 I76A 8.590 119.000 

 8.741 119.245 I76B 8.640 119.100 

 7.365 110.428 G77 7.280 110.100 

 9.040 118.916 E78 8.890 118.600 

 8.733 123.338 L79 8.680 123.200 

 9.054 130.715 H80 9.010 130.400 

 

  

P81 

  

 11.007 121.018 D82 10.980 120.800 

 
8.197 115.660 D83 8.160 115.300 

marked in a different place 

on the spectra in the paper.  

Confidence low 

7.375 119.748 R84 7.340 119.500 

 7.799 125.527 S85 7.780 125.400 not apparent on published 

spectra 

7.623 121.149 K86 7.600 120.800 

 

7.282 114.741 I87 7.260 114.600 

marked in a different place 

on the spectra in the paper.  

Switched with K14.  

Confidence low 

7.779 126.600 A88 7.820 126.100 

 8.499 121.871 K89 8.470 121.600 

 

  

P90 

  

 

  

S91 

  not defined anywhere 
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Experimental 

 
Literature 

 

 F2 
1
H F1 

15
N residue F2 

1
H F1 

15
N 

Notes: 

  

E92 7.780 126.400 

no sign of this peak on the 

experimental or literature 

spectrum.  Not sure what 

they are defining. 

8.211 114.594 T93 8.110 114.300 

 7.902 130.803 L94 7.840 130.400 
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The perturbations were calculated using the quadratic formula with the difference in 

coordinates.  A correction factor of 0.2 was applied to N-axis perturbations in order normalize it 

with the 
1
H coordinates.  

 

2.4 – Aggregation Assay 

 

 To determine the boundary conditions for aggregation, an Omega MPS10 Series Melting 

Point Apparatus was used.  Ruthenium bypyridine complex solutions of concentrations from 100 

µM to 1000 µM in 10 mM phosphate buffer pH 7.0 were combined with a 170 µM solution of 

cytochrome b5 in 10 mM phosphate buffer pH 7.0.  A few microliters of the mixture were added 

to a capillary tube with one end sealed.  The capillary tube was inserted into the melting point 

apparatus, and the solution was observed under magnification for aggregation as the temperature 

was slowly raised from 25 °C to 40 °C.  Some mixtures were also preheated in a 40 °C water 

bath, centrifuged, and the supernatant was observed in the melting point apparatus.  The exact 

temperature at each concentration when aggregation occurred was recorded. 

 

2.5 - UV/visible Spectroscopy 

 

All UV/visible spectroscopy data was acquired on an HP model 8452A diode array 

spectrophotometer.  A deuterium lamp served as the light source and was allowed to warm up at 

least 30 minutes prior to ensure maximum intensity.  A one centimeter quartz cuvette was used 

in all measurements.  Protein concentrations were determined using absorbance measurement at  
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   Table 2-2: Exact concentrations of cytochrome b5 and (Ru-bpy2)2-diphen 

   at each step of titration during NMR acquisition. 

 

  



64 

 

 

 

 

 

 

Concentration  

of b5 µM 

Concentration of Ru 

complex µM 

Total volume of 

solution µL 

Ratio of Ru complex 

to b5 

153.0  0 500 0 

137.8  75.3 555 0.546 

125.4  137.0 610 1.09 

115.0 188.6 665 1.64 

106.3 232.2 720 2.18 
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412 nm with an extinction coefficient of 117,000 M
-1 

(Wang et al., 2003).  Ruthenium dimer 

concentrations were measured at 453 nm with an extinction coefficient of 28,500 M
-1

 (Puckett, 

2015).  Solutions were diluted from 10:1 to 100:1 so that no absorbance measurement was above 

1.0 absorbance units in order to ensure accuracy. 

 

2.6 – Isothermal Calorimetry 

 

Calorimetry studies were conducted using a Microcal VP-ITC calorimeter.  The protein 

concentration was 60.21 µM and ruthenium bipyridine complex concentration was 955 µM for a 

ratio of 15.86:1 ligand to protein.  The complex solution was injected into the cell in increments 

of 40µL increments.  The heat of dilution was determined by injecting the Ru complex into 

water.  The heat of dilution was subtracted from the heats determined in the complex to protein 

experiment.  The accuracy of the instrument was checked by running a water to water 

experiment.  The heats determined from the complex to protein experiment were best fit using a 

single binding site model.  The coefficient of determination,r
2
, was determined to verify the 

validity of the model.  From this fit the Origin 75K2 software Version 7.0383 was used to 

calculate the values for the stoichiometric binding ratios, the heat of binding, and the entropy of 

binding. 

 

2.7 - Laser experiments 

 

All samples were excited with the third harmonic (355 nm) from  a Nd:YAG laser 

(QuantaRay model DCR-1) with a 10 ns pulse width.  A 2.5 cm plano convex lens 100 cm focal 
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length was used to focus the beam into the sample.  A PMT perpendicular to the beam was used 

to monitor emission lifetimes at 600 nm.  A high pass filter was placed in front of the PMT to 

minimize scatter light from the laser. The signal was recorded on a Lecroy 5462 digital 

oscilloscope.  More than 100 transients were averaged to improve the signal to noise ratio.  The 

data from the oscilloscope was transferred to a PC and processed using software developed in-

house (Jackson, 2001).   The data was fit to a two exponential model.   

Microsoft Visual Basic 6.0 was used to fit the data with successive integration 

algorithms.  SI fitting has the advantage of making the parameters of an exponential expression 

linear, eliminating errors from the fitting process (Matheson, 1987).  For a complete discussion 

of the SI fitting process and examples of code employed, see the appendix of Tracey Jackson’s 

dissertation (Jackson, 2001). 

For biphasic emission decay, the emission can be expressed as: 

Et = E0 · (A1 · e
-k

1
t
 + A2 · e

-k
2

t
)      Equation 2-1 

where Et is the emission at time t, E0 is the emission immediately after excitation by the laser, k1 

and k2 are the rate of decay of each phase, and A1 and A2 are the amplitude of each phase of 

emission (Havens, 2010).   The ratio of the amplitudes of each phase corresponds to the ratio of 

bound to unbound species.  See section 3-3 for a description of how those ratios are used to 

determine equilibrium dissociation constants. 

Samples were prepared in 1 mM phosphate buffer solution at pH 7.0 in a 1 cm glass 

cuvette.  Protein concentrations ranged from 20 µM to 40 µM.  Ru dimer concentrations were 

about 5-6 µM.  Measurements were taken at 9°, 21°, and 29° C.   
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2.8 – Modeling 

The structure for cytochrome b5 was obtained from the 1AW3 file from the RCSB 

Protein Data Bank (Arnesano et al., 1998).  RasMol software version 2.7.2.1.1 was used for all 

rendering.   

All ruthenium complexes were drawn with ACD Labs ChemSketch software version 12.0 

and used a simple 3-D optimization.  The molecules were then rendered in RasMol 2.7.2.1.1.  All 

distance calculations for both the protein and small molecule were done with RasMol.   
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Chapter 3 – Results 

 

3.1 NMR Analysis 

 

 The HSQC spectrrum of 
15

N enriched cytochrome b5 was obtained in both 10 mM and 

100 mM phosphate buffer to ensure that ionic strength did not produce any significant changes to 

the peak coordinates.  The two spectra were essentially identical.  Figure 3-1 shows the 

histogram of the difference in peak coordinates for each residue.  All differences were minimal. 

 The HSQC spectra for cytochrome b5 at 25 °C and 40 °C were compared.  Figure 3-2 

shows the histogram of the difference in peak coordinates for each residue.  Several resonances 

show a significant movement of the protein backbone over the temperature range.  This is the 

expected result as the tertiary structure of the protein would be perturbed at higher temperatures.  

Figure 3-3 shows a scatter plot of the coordinates of each peak at the two temperatures.  While 

some of the peripheral resonances show significant movement, their assignments are still 

obvious.  However, the assignments for resonances in the clustered center area are not as 

obvious, which is why it was necessary to obtain spectra over a gradual temperature change.  

Figure 3-4 shows the spectra at each temperature over the range. 

 As the ruthenium bipyridine dimer was titrated into the cytochrome b5 solution, some 

resonances gradually moved.  These resonances correspond to the residues whose backbone N-H 

resonances are shifted in the presence of the complex.  Figure 3-5 shows the movement of 

glycine 42 of both isoforms as more Ru is added.  It is interesting to note that peaks did not move 

after the second addition.  This implies that at concentrations higher than 137.0 µM, the binding 

sites of the protein are effectively saturated and no more binding is taking place. 
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Figure 3-1: Histogram of perturbations of the HSQC spectrum of 

cytochrome b5 in 10 mM and 100 mM phosphate buffer. 
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Figure 3-2: Histogram of perturbations of the HSQC spectrum of 

cytochrome b5 in 25 °C and 40 °C.  
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Figure 3-3: Scatter plot of the coordinates of the HSQC spectrum of 

cytochrome b5 in at 25 °C and 40 °C.  



74 

 

 

 

 

 

 

 

   

103.000

108.000

113.000

118.000

123.000

128.000

133.000

6.0007.0008.0009.00010.00011.00012.000

Scatter plot of the coordinates of cyt b5- 25°C vs 
40°C  

40C

25C



75 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 3-4:  HSQC spectra of cytochrome b5 at temperatures  

from 40°-25°.   
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Figure 3-5: Overlayed HSQC spectra of the two isoforms of glycine 42 of 

cytochrome b5 as ruthenium bipyridine complex is added.  Blue represents 

no ruthenium present.  Green is 75.3 µM Ru.  Red is 137.0 µM Ru.  And 

gray is 232.2 µM Ru.  
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The coordinates for each peak were compared from the first spectra (0 µM Ru) and the 

last (232.2 µM).  Perturbations were calculated as outlined above and multiplied by 100 as a 

visualization tool. 

 Resonance perturbations ranged from less than one to more than thirteen with a standard 

deviation of 2.05.  See Figure 3-6 for histogram of all perturbations.  All perturbations above two 

times the standard deviation, 4.10, were considered significant; all perturbations below this 

number were considered background.  Table 3-1 shows the coordinates of each residue with 

significant perturbation after each addition of (Ru-bpy2)2-diphen, and Table 3-2 shows the 

perturbation of each residue after each addition. Histidine 39 ligates the iron ion of the heme, and 

the A and B isoforms showed an average perturbation of 3.18, which is just under the cut-off.  It 

is included in these tables because of its importance in coordinating the iron. 

Figure 3-7 shows a portion of the HSQC spectra after the final addition of (Ru-bpy2)2-

diphen.    Residues H63, G42, and V61A show significant perturbation while residues V23, S71 

show very little.  Peak V61B seems to have disappeared in this example.  Since both isoform 

peaks moved in parallel in the presence of Ru bipyridine complex and in the temperature study, 

it is likely that V61B moved to the same position as Q13, which did not move.   

 Those residues with significant perturbations were highlighted on a model of microsomal 

rat liver cytochrome b5 (PDB 1AW3).  See Figure 3-8.  From the figure, residues clustered 

around either side of the heme show the most perturbation.   
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   Figure 3-6: Histogram of residue perturbations in the presence of  

232.2 µM (Ru-bpy2)2-diphen 
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Table 3-1: Coordinates of significantly perturbed residues after each 

addition of [(Ru-bpy2)2-diphen]
4+

 solution.   
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   Table 3-2:  Perturbations of significant residues after each 

   addition of [(Ru-bpy2)2-diphen]
4+

 solution. 
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b5 conc μM 153 137.8 125.4 115 106.3 

Ru conc μM 0 75.3 137 188.6 232.2 

H39A 0.00 0.45 2.84 2.59 2.94 

H39B 0.00 1.29 3.46 3.28 3.41 

G42A 0.00 3.78 7.06 6.99 7.45 

G42B 0.00 3.77 6.93 7.34 7.52 

E44A 0.00 3.28 4.64 4.43 4.69 

E44B 0.00 3.06 4.10 4.28 4.40 

V61A 0.00 8.47 14.15 14.24 13.64 

G62A 0.00 3.92 6.48 5.91 6.04 

G62B 0.00 2.44 5.63 6.05 5.61 

H63A 0.00 4.31 8.21 9.24 9.01 
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  Figure 3-7: Portion of HSQC spectra of cytochrome b5 in the presence  

[(Ru-phen2)2-diphen]
2+

 (red) and without [(Ru-phen2)2-diphen]
2+

 (blue).  Peak 

assignments  as well as three dimensional coordinates (
1
H shift, 

15
N shift, 

intensity) are labeled. 
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Figure 3-8: Solution ball and stick structure of microsomal rat liver cytochrome 

b5 (PDB 1AW3).  Residues with a perturbation from 3.0-8.0 are highlighted in  
  yellow, and residues with perturbations from 8.1-14.0 are highlighted in  

  green.  Residues that show no perturbation are blue and the heme is red.  
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3.2  Isothermal Calorimetry 

 

 Isothermal calorimetry studies were used to investigate the thermodynamic properties of 

cytochrome b5 binding with the ruthenium bipyridine complex.  The heat of binding was 

measured in as the ruthenium bipyridine complex was titrated in.  Using this data and the 

concentrations of each solution, values for enthalpy of binding, dissociation equilibrium 

constant, stoichiometric ratio, and entropy of reaction were calculated. 

 After several trials, the data fit was poor every time which resulted in large chi squared 

values and error ranges.  Experiments with ratio of 9.8 and 15.7:1 concentrations of ruthenium 

bipyridine complex to cytochrome b5 resulted in the data never leveling off, which means 

saturation of the binding sites on the protein was never achieved.  Saturation is critical for proper 

data fit.  Increasing the ratio to 26.3:1 and 37.1:1 resulted in the data leveling off too quickly and 

increased noise, which also yields a poor fit.  See figure 3-10. 

 Processing the data with the OneSites binding model gave stoichiometric ratios from 

0.941 to 1.06, disassociation equilibrium constants Kd from 1,600 to 160,000 mM
-1

, enthalpy of 

binding ΔH from +2,200 to +22,000 calories per mole, and change in entropy ΔS from 31.5 to 

90.8 calories per mole per degree Kelvin.  See Table 3-3 for representative calorimetry data. 

 

3.3  Laser Flash Photolysis 

 

 The emission decay of Ru was used to determine the ratio of bound to unbound 

cytochrome b5 to the ruthenium complex [(Ru-phen2)2-diphen]
4+

.  The excited state lifetime of 

free ruthenium was measured using the emission at 600 nm.  The decay of the emission at 600  
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  Figure 3-9: Representative calorimetry data including graphs of the change in 

  heat during the titration vs. time, graphs of total heat of each injection vs. molar 

  ratio with trendline, and calculated thermodynamic values with statistical analysis 
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Table 3-3:  Summary of data acquired with isothermal calorimetry experiments.  

All experiments used a stock ruthenium bipyridine complex  concentration of 1 

mM.  Experiment 1 used a b5 concentration of 102 µM for a Ru:b5 ratio of 9.77 .  

Experiment 2 used a b5  concentration of 63.0 µM for a ratio of 15.86.  

Experiment 3 used a b5 concentration of 28.8 µM for a ratio of 37.33.  
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 Experiment 1 Experiment 2 Experiment 3 

Stiochemtric ratio  (n) 
Ru : protein  

0.941 ± 12.9 0.951 ± 0.058  1.06 ± 0.84 

Binding constant  (K) 

mM
-1 

 

1.65 ± 2.66 4.48 ± 0.58 167 ± 170 

Enthalpy of binding (ΔH) 
cal/mol  

+22690 ± 328700 +4462 ± 502 +2276 ± 2300 

Entropy of reaction (ΔS) 
cal/mol·°K  

+90.8 +31.7  +31.5  
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nm was best fit using a single exponential algorithm.  In the presence of cytochrome b5, 

however, the decay of the excited state showed two distinctive phases.  The resulting transient 

shows a rapid decay of the excited state from quenching and the slower decay from unbound 

ruthenium phenanthroline complex.  These biphasic transients were fit with a two-exponential 

algorithm.  See Figure 3-10. 

 Comparison of the amplitudes of each phase yields a ratio of bound to unbound 

ruthenium phenanthroline complex.   Table 3-4 shows the ratios and percent bound ruthenium 

phenanthroline complex at varying concentrations and temperatures.  Using the bound to 

unbound ratio, the change in concentration can be calculated by: 

 x  =  ratio of bound to unbound · initial concentration of Ru complex Equation 3-1  

           1 + ratio 

  

The dissociation constant Kd can be calculated by substituting in equilibrium expression: 

   Kd  =  [Rui - x] · [b5i – x]      Equation 3-2 

     x 

 

The Kd values at the same temperature were averaged and a plot of the inverse of the temperature 

in Kelvin vs. the natural log of the Kd values was made.  See Figure 3-11.  The enthalpy of 

dissociation can be calculated from the plot as: 

   ΔH˚  =  -slope / R      Equation 3-3 

And the entropy of dissociation can be calculated as: 

   ΔS˚ = intercept / R      Equation 3-4 

From the graph, the slope is 463.42.  Multiplying by -1 and dividing by R (1.987 cal/ mol · K) 

yields a ΔH˚ of dissociation = -200 ± 200 cal / mol after applying the standard error of slope/R.  

The intercept is -11.6.  Dividing by R gives a ΔS˚ = -6 ± 1 with the standard error slope/R. 
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Figure 3-10: Typical fit of biphasic absorbance decay of ruthenium 

phenanthroline complex (6.2 µM) with cytochrome b5 (22.6 µM) at 25˚C. 
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   Table 3-4:  Table of dissociation constants, ratios, and percent bound  

ruthenium phenanthroline complex with cytochrome b5 with varying 

temperatures andconcentrations acquired using laser flash photolysis and 

excited state lifetime analysis. 
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Ru conc 
µM 

b5 conc 
µM Temp K 

ratio bound 
to unbound % bound Δ conc µM Kd µM 

6.2 22.6 294 0.473 32.11 1.99 43.57 

6.2 22.6 294 0.434 30.27 1.88 47.73 

6.2 22.6 282 0.453 31.19 1.93 45.59 

6.2 22.6 282 0.413 29.25 1.81 50.28 

6.2 22.6 302 0.470 31.97 1.98 43.87 

5.2 38.9 294 0.913 47.73 2.48 39.87 
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   Figure 3-11: Graph of the inverse of the temperature  

1/T vs. ln Kd for the dissociation reaction:  

[(Ru-phen2)2-diphen]
2+

--cyt b5 ⇋ [(Ru-phen2)2-diphen]
2+

 + cyt b5 
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Chapter 4 – Discussion 

 

4.1 – Significance 

 

The redox properties of the excited state of ruthenium(II) bipyridine complexes make 

them ideal candidates for the study of electron transfer reactions in general.  The long lived 

excited state provides a means of generating sufficient quantities of reactive intermediates in 

experiments such as laser flash photolysis to ensure high signal to noise ratios and ultimately 

high quality kinetic data.  Covalent binding of the ruthenium complex to a metalloprotein was an 

obvious first step and early investigators took this step which proved to be extremely fruitful.  

The early work was done with relatively small proteins that were sufficiently robust to allow the 

chemistry required to produce a covalent bond.  Application to much larger proteins such as 

those found in the electron transport chain did not appear to be practical.  Fortunately a 

remarkable discovery was made by Nilsson in (1992).  Nilsson showed that it was possible to use 

ruthenium trisbipyridine in solution to transfer an electron to cytochrome c oxidase.  This was a 

remarkable finding and strongly suggested that the ruthenium complex bound to an area very 

near to CuA.  A strong electrostatic interaction was presumed.  Subsequent work by Millett et al. 

showed that complexes with higher charge were able to provide better signals with significantly 

smaller concentrations of ruthenium complex. 

Tracey Jackson (2001) did an in depth study and as mentioned in the introduction found 

in a model study with cytochrome b5 that binding of complexes with the same charge was very 

similar and independent of the structure of the complex.  He also found that binding affinity 

increased with the overall charge of the complex.  His data was obtained by examining the 
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excited state decay kinetics in the presence of increasing amounts of cytochrome b5.  The excited 

state kinetics was determined by monitoring the emission from the ruthenium complexes as a 

function of time.  In all cases biphasic kinetics were observed at high concentrations of protein.  

The observations were interpreted in terms of a two reaction model.  In one reaction the 

ruthenium complex was bound to the protein resulting in very fast quenching and in the second 

reaction the ruthenium complex simply decayed naturally as if in absence of protein.  The latter 

was easily verified by examining the decay kinetics in the absence of protein.   

At this point it is reasonable to assume that the ruthenium complex must interact with the 

protein close to the heme because the reaction must take place within the life time of the excited 

state.  The experimental data as well as many other experiments with excited states supports the 

idea that diffusion of the complex while in the excited state will not lead to any significant 

quenching by the protein. 

At the beginning of the project described in this dissertation the question was asked 

whether or not additional information about the binding could be obtained.  Specifically, could 

the binding domain be identified?  Recent advances in NMR technology have made many 

experiments routine that were previously not workable because of the amounts of material 

required.  
15

N HSQC for example can be done with extremely small amounts of protein and it is 

one of the experiments of choice identifying binding domains.  The work described in this 

dissertation was focused primarily on this experiment.  In addition, several attempts were made 

to obtain thermodynamic data related to the binding. 
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4.2 – NMR Analysis 

 

 It has long been speculated that ruthenium complexes binds at the protein’s natural 

substrate binding site near the heme during laser flash photolysis experiments (Guiles et al., 

1993; Durham et al., 1997).  Proximity from the ruthenium atom of the bipyridine complex to the 

iron atom of the heme would provide the lowest energy pathway for electron transfer to occur.  It 

has also been shown that binding affinity increases with overall charge of the complex 

(Davidson, 2000).  This is likely due to the preponderance of negatively charged residues in the 

protein’s natural substrate binding site.  But there has never been evidence that proves 

conclusively that this is the case.   

 The NMR data presented in this study demonstrates that these speculations are likely 

correct.  The residues most perturbed in the presence of the ruthenium bipyridine complex fall 

right on either side of the heme cleft of the protein.  It has been shown that the heme proprionate 

groups play a role in cytochrome b5 (Gray et al., 2003).  This technique only reveals distortion of 

the protein’s backbone.  It does not rule out interaction of ruthenium complexes with the heme 

proprionates.   

 Figure 4-1 shows a plot of the perturbations of each residue vs. the molar ratio of Ru 

dimer to cytochrome b5.  Each line levels off around a molar ratio of 1.  This is evidence that the 

binding stoichiometry is 1:1.  The graph also includes a theoretical fit of the data using a 

hypothetical Kd of 5 µM.  Valine 61 is the most perturbed residue.  It is reasonable to assume 

that as the bipyridine complex binds near this residue, its perturbation is propagated through the 

backbone affecting other residues proportionately.  It is interesting to note that there was no 

difference in binding between isoforms. 
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   Figure 4-1:  Plot of NMR perturbation vs. molar ratio of Ru/b5. 

   Included is a theoretical fit of the data using a hypothetical Kd of 5 µM. 
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Figure 4-2 shows a backbone diagram of cytochrome b5 showing charged residues and the 

residues that show significant shifts in resonances energies in the HSQC spectra upon the 

addition of the ruthenium bipyridine dimer. 

Cytochrome b5 has been shown to bind to substrates in multiple orientations and sites 

(Volkov et al., 2005).  It is likely that ruthenium dimer complexes also bind in a similar dynamic 

manner.  Resonances in the spectra represent an average of all the species in solution over time. 

The timescale of the HSQC experiment is above the rapid exchange limit of the binding reaction.   

 

4.3 – Isothermal Calorimetry Analysis 

 

 Previous studies utilizing laser flash photolysis techniques have calculated the 

dissociation constant Kd for ruthenium complexes with an overall charge of +4 of 8.8 µM in 1 

mM phosphate buffer (Jackson, 2001).  Taking the reciprocal and converting to mM
-1

 gives a 

binding constant Ka of 113 mM-1.  The present work using ITC found a Ka between 1 and 200 

mM
-1

 in 10 mM phosphate buffer.  While there is a substantial error range with this figure, the 

previous determined values do fall within this range even if the ionic strength differs by a factor 

of ten. 

 The value for the enthalpy of binding ΔH for ruthenium dimer complexes has not been 

determined previously using other methods. But the values from these experiments from +2,200 

to +22,000 calories per mole.  This is not consistent with favorable binding equilibrium constant.  

Previous research has evaluated the ΔH for the binding of cytochrome b5 to cytochrome c using 

similar techniques in 2 mM phosphate buffer around 1000 cal/mole (Mclean et al., 1995), which 

is comparable. 



108 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Solution backbone structure of microsomal rat liver cytochrome b5 

(PDB 1AW3).  Residues with a significant perturbation are in green and acidic  

  residues are in red.  The coordinating histidines are in purple. 
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The values for the entropy of the binding reaction ranged from +31 to +91 cal/mol·K.  

The entropy of interaction between the Ru bipyridine complex dimer has not been evaluated 

previously, but researchers determined the entropy of binding for cytrochrome b5 and 

cytochrome c in 2 mM phosphate buffer to be about 33.9 cal/mol·K (Mclean et al., 1995).  This 

number is also comparable despite the difference in ionic strength.  The large positive values of 

entropy indicate that the binding is entropy controlled, i.e, the entropy component of the free 

energy is much larger than the small enthalpy of reaction. 

 Because the data was a poor fit, the error range for the stiochiometric binding ratio is 

large.  But all experiments in this work determined a protein to complex binding ratios ranging 

from 0.941 to 1.06 with an average of 0.984.  While this data appears to support the NMR data 

indicating a 1:1 binding ratio, the scattered nature of the data makes all values determined by 

these experiments suspect. 

 

4.4 – Laser Flash Photolysis Analysis 

 New data points for [(Ru-diphen2)2-diphen]
4+

  were added to a plot of previously 

determined values for fraction of ruthenium complex bound to cytochrome b5 (Figure 4-3) 

(Jackson, 2001).  The points fall in between the trend for other Ru complexes with an overall 

charge of +4 and [Ru(bpy)3]
2+

.  See Figure 1-7.  

 The data for fraction of the phenanthroline complex bound was used to calculate the 

value for the dissociation constant Kd (Table 3-3).  The average Kd value for all determinations 

was found to be 43.7 µM at 25 °C, which is higher than the Tracey Jackson’s results of 8.8 µM 

for compounds with an overall charge of +4.  This also lends evidence that the dimer with its 

more sterically shielded positive charge binds less tightly.   
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Figure 4-3: Graph of fraction of phenanthroline complex bound to cytochrome b5 

vs. the concentration of cytochrome b5 from Tracey Jackson’s work (2001).  New 

data points representing [(Ru-diphen2)2-diphen]
4+

 arein red.   

Jackson, Tracey (2001) “Electrostatically bound metal complexes for the study of 

electron transfer in metalloproteins” Dissertation, University of Arkansas, 

Fayetteville, AR  
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The inverse temperature 1/T was plotted vs. the natural log of the dissociation constant 

Kd.  From the slope and intercept of this line, the values for the enthalpy of dissociation ΔH and 

entropy of dissociation ΔS were determined to be -233 cal/mol and -5.84 cal/mol·K respectively  

 (Figure 3-11).  The corresponding values for the association reaction gives the enthalpy and 

entropy of binding equal to +200 ± 200 cal/mol and +6 ± cal/mol·K.  Again we see a reaction 

that is entropy controlled.  These values are lower than the values from the calorimetry 

experiments, ΔH of about +3000 cal/mol and ΔS of about +30 cal/mol·K likely because of the 

difference in ionic strength. 

 

4.5 – Conclusions 

 

 Photoreactive ruthenium complexes to study the kinetics of electron transfer of proteins 

have been in use for decades (Isied et al., 1984; Tollin et al., 1991; Peterson-Kennedy et al., 

1985; Nocera et al., 1984).  It has always been speculated that complexes bind near the heme or 

the electron transfer reaction would not occur.  But there has never been any data to show that is 

the case.  NMR studies in this body of this work supports the long believed model of a ruthenium 

dimer binding dynamically near the heme.  The thermodynamic properties of the binding 

between Ru dimer complexes to cytochrome b5 had not been explored previously.  This study 

confirms that the binding reaction is energetically favorable, and that equilibrium favors the 

bound state, and the binding stoichiometry is indeed 1:1.  These insights will help with the 

design of future photoreactive complexes for the study of electron transfer reactions in 

metalloproteins. 
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