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Abstract 

 

 Building monumental architecture has been one method used by humans to rise above an 

earthbound existence.  In the United States, large earthen mounds were constructed from the 

Archaic period to the Mississippian period.  The Collins Mound Site in Arkansas was recently 

dated to the Late Woodland period.  For this study, soil samples were extracted from the northern 

section of the site for description and particle-size analysis.  Erosion from plowing, wind, water, 

and gravity is the most likely process causing a decreased mound height and increased basal 

diameter.  Mound fill likely originated near the river for two of the mounds and was collected 

from the topsoil in close proximity to the third mound.  The absence of an A horizon indicates 

the mound builders prepared the surface before construction.  
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1. Introduction 

 
 Monumental architecture has been built around the world for thousands of years by 

different cultures and for different reasons.  Monuments elevate an earthbound being to a higher 

plane.  For me, it’s not just the change in worldview that I find fascinating, but the act of 

building such a large structure.  In the United States, these large structures are earthen mounds. 

Treating mounds as artifacts can provide insights into the builder’s social structures, ritual and 

symbolic beliefs, and technological knowledge (Kay, Sabo III, & Merletti, 1989; Sherwood and 

Kidder, 2011).  This thesis is only a small step towards understanding the mound builders of the 

Collins Mound Site (Figure 1). 

 

    
 

Figure 1. View of Mound C and Mound B to the north at the Collins Mound Site (Photo By 

Author). 

 

This thesis is a continuation of a project that began in the fall of 2014.  The next phase of 

the project involved extracting cores in the fall of 2015, including the five cores used in 

Rathgaber’s study on the velocity and migration of the Whiter River.   While the results of 

Rathgaber’s study are notable and applicable, they are not within the scope of my research.  For 

my research, three areas of interest were focused on, with the following questions as guidelines. 
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1. Mound height – Have the mounds decreased in height?  Can this be seen by 

comparing the quantities of sand from the summit, slope, and base of the mounds?   

2. Mound fill origin – Is it possible to determine the location of the source of mound fill 

using particle size analysis?  Were the builders seeking out a specific texture of 

sediment? 

3. Human and natural influences – Is it possible to see the effects of human influences, 

particularly plowing, and natural influences, such as flooding, on the mounds through 

the use of particle size analysis? Is it possible that the mounds have been significantly 

altered by these influences? 

       

The study of mounds has a long history, crossing many disciplines, and utilizing many 

approaches, all with the goals of discovering the use, construction, chronology, and/or beliefs 

involved with these large structures.  There have been several research projects conducted on 

mound sites within close proximity to the Collins site.  At the Norman site in eastern Oklahoma, 

digital photography was used to study mound stratigraphy, ultimately exhibiting the importance 

of sediment color to the mound builders (Vogel, Kay, and Vogele, Jr., 2005).  In 1982, the 

excavation of the Copple Mound at the Spiro Mounds site found a highly complex mound 

stratigraphy with multiple stages of use and capping episodes (Leonhardy, 1989).  Kerr (1992) 

and Mulvihill (1996) used phosphate analysis to research two mounds at the Huntsville site.  

Kerr’s research focused on the ceremonial and burial activities of Mound A.  Mulvihill focused 

on the use of phosphate signatures in identifying and comparing different features, activities, and 

historic influences on Mound C.  My study continues and adds to a long, multi-faceted tradition 

of evaluating and treating mounds as artifacts in the search for a greater understanding of the 
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prehistoric people who built them.  By using coring and particle-size analysis to examine the 

cultural and natural processes that have formed and transformed the Collins site, this research 

contributes to the ongoing conversation concerning these large earthen structures. 

 
      1.1   The Collins Site 

 

The Collins Site is located near the town of Elkins in Washington County, Arkansas 

(Figure 2).  It consists of five mounds, labeled A, B, C, D, and E, within an 18 hectare area 

(Figure 3).  The mounds are on private land, with two different owners.  Mounds A and E, the 

southernmost mounds, are inaccessible.  Mounds B, C, and D, along an east-west line in the 

northern section of the site, are accessible for investigations, excluding excavation.  Mound D 

lies slightly southwest of Mounds B and C.  Mound heights range between 0.5 and 3 meters 

above the surrounding landscape and have basal diameters between 21 and 51 meters (Kay et al., 

1989; Sullivan & McKinnon, 2013).  Though Mound B is shorter than Mound A, it is about 2.5 

m high and the tallest of the three accessible northern mounds.  Mound C is about 61 cm shorter 

than Mound B and Mound D about 89 cm shorter than Mound C and 1.5 m shorter than Mound 

B.   
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Figure 2. Location of the Collins site and nearby mound centers (after Vogel, Kay, 

& Vogele Jr., 2005; Kay, Sabo, & Merletti, 1989). 

 

 

Historically, the land has been used for agriculture and grazing cattle.  The last evidence 

of plowing, including on the mounds, was in an aerial photograph from 1941 (Vogel, 2005).  The 

land has been used for pasture for at least the last 50 - 60 years (Fritz, 1986).  Reports indicate 

that the study area was plowed using horse and mule teams (Fritz, 1986) and “maybe never 

chisel plowed” (Flenniken, 1971).  Due to plowing and erosion, the mounds are likely shorter 

and wider than when originally constructed (Fritz, 1986; Kay et al., 1989).   
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Figure 3. Mounds A - E at the Collins Site (from Sullivan & McKinnon, 2013).  Darker 

area near B, C, and D is the current channel of the White River.  Darker area near A and E 

is an old channel.  Contours indicate elevation. 

  

Over the years, there have been reports of trenches, excavation, and looting in the 

mounds.  Mounds A and E were looted in 1979 (Fritz, 1980).  Mound A was trenched in the 

1940s (Flenniken, 1971; Fritz, 1978; Vogel, 2005).  Mound B might have been trenched in the 

1930s (Fritz, 1978) and excavated in 1941 (Fritz, 1986).  An undocumented excavation of 

Mounds C and D by the University of Arkansas (U of A) museum took place in the 1930s (Kay 

et al., 1989). 

In 2013, Sullivan and McKinnon published an article on their geomagnetic survey of 

Mounds B, C, and D, which drew similarities between the structures in the mounds to structures 

on Caddo sites.  Mound B contains a 20 x 20 m square structure with off-mound structures to the 

east and west.  Mound C contains a 45 x 30 m rectangular structure with internal and off-mound 

structures.  The contours of Mounds B and C show possible ramps departing from the mounds 

south into the “plaza area” between the northern and southern groups.  Mound D contains a 30 x 
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15 m structure with no off-mound structures.  Sullivan and McKinnon (2013) propose that 

Mound C had a ceremonial purpose based on indications that it may contain remnants of a 

charnel house, similar to those found at the Harlan, Goforth-Saindon, and Huntsville sites (Kay 

et al., 1989; Kay & Sabo, 2006), and a south-facing entranceway opening onto a central open 

area, a feature commonly found on Caddo sites (Pertulla, 2009).   

 

1.2  Regional Setting 

 

The East Fork of the White River near Elkins, Arkansas is located near the escarpment 

between the Springfield and Boston Mountain Plateaus (Figure 4).  These plateaus are two of 

three plateaus located in the Ozark Plateaus.  The most northern plateau of the three is the Salem 

Plateau, which includes north-central Arkansas and the St. Francois Mountains in southeastern 

Missouri.  The southern border of the Salem Plateau is separated from the Springfield Plateau by 

an escarpment with relief that is less than 30 m (Guccione, 1991).  On the southern border of the 

Springfield Plateau, the escarpment relief begins at about 150 m and increases to 300 m where 

the Boston Mountain Plateau begins (Guccione, 1991).  The Ozark Plateaus create the southern 

slope of a dome, with the apex at the St. Francois Mountains in Missouri.   Originating in the 

Boston Mountains, the White River flows north as three branches, the West, Middle, and East 

Forks, and joins at a confluence near Fayetteville, Arkansas at the southern edge of the 

Springfield Plateau border (Guccione and Rieper, 1988).   
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Figure 4. The Collins Site within the Ozark Plateaus (modified from open source image, 

Wikimedia Commons). 

      

The St. Francois Mountains are Precambrian Era (4700 to 570 MYBP) intrusive and 

extrusive rocks (Guccione, 1993a).   This area, including that at what is now the Collins site, was 

later covered by a shallow sea, about 200 meters deep.  Occasionally, this area would be exposed 

to weathering when the sea level dropped (Guccione, 1993a).  The sedimentary bedrock exposed 

at the Collins site would form from the carbonate and mudstones that accumulated during the 

Late Paleozoic Era (570 to 245 MYBP) (Guccione, 1993a).  During the late Pennsylvanian, the 

Ozarks were uplifted above sea level exposing the area to weathering and erosion.  The glaciers 

that covered a large portion of the North American continent during the Quaternary Period (1.65 

MYBP to today) never extended as far south as Arkansas.  Instead, fluvial systems, such as the 



8 

 

White River drainage, incised the uplifted Ozark Dome, forming the floodplains and terraces, 

and providing landforms conducive to habitation by humans (Guccione, 1991, 1993a).   

The current channel of the White River borders the Collins site on its north and east 

sides.  A paleochannel is about 300 meters to the west of Mounds B, C, and D (Fritz, 1978) and 

west and south of Mounds A and E (Figure 3) (Kay et al., 1989).  The White River is a small, 

meandering stream, with point bars of gravel and sand and up to three terraces in some areas 

(Guccione, 1993b).  When the water level is low, Boone Formation limestone with chert 

inclusions is visible in several areas in the White River channel (Guccione and Reiper, 1998; Soil 

Survey Staff, 2014). 

 The soil from the river to the bases of Mounds B and C on the north and east sides is a 

Cleora sandy loam (Soil Survey Staff, 2003).  This well-drained soil is commonly found on 

floodplains and has loamy alluvium parent material.  A typical profile includes sandy loam that 

becomes a loam at depth.  The rest of the study area is a Razort loam.  This is also a well-drained 

soil and common to stream terraces.  Like Cleora, it also derives from a loamy alluvium parent 

material.  The typical profile has a loam surface, overlying a silt loam and becomes very gravelly 

at depth.  

Although further tests are needed, preliminary results from Rathgaber’s study (2015) 

suggest a migrating river with at least three large flood events and a possible shift in channel 

position to the south (Figure 5).  The site has been known to flood during significant rainfall, 

with the level reaching the base of the mounds (M. Kay, personal communication, 2015).  

Frequent flooding accounts for the vertical accretion of sediments seen on the floodplains of 

Ozark streams (Guccione, 1991).  
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Figure 5. Possible coarse change (the purple lines) of the White River at Collins 

(from Rathgaber, 2015). 

 

 

Because there has been no documented formal excavation at Collins, less information is 

known about the subsurface of the mounds.  Goforth-Saindon and Huntsville are the closest 

mound centers to Collins.  Mound 1 at Goforth-Saindon and Mound A at Huntsville have been 

excavated.  The stratigraphic evidence at both of these mound sites demonstrates the 

complexity of layers that were developed over centuries of mound construction.  Surfaces 

are repeatedly prepared for specific ritualistic purposes.  The sediments used for these 

surfaces are commonly specific in their color and texture.  Kay et al. (1989) propose that 

the builders of these mounds, either the Caddo or a group affiliated with the Caddo, linked 

the sediments, surfaces, structures, and site configurations to cosmological beliefs and 

rituals and not just technological needs.  

What little is known comes from a report submitted after the looting of Mounds A and E 

(Fritz, 1980), aerial photographs taken in 1936 and 1941 (Vogel, 2005), and the geophysical 

survey done by Sullivan and McKinnon (2013).  During the looting of 1979, a rough description 

of mound stratigraphy was noted using clods of soil from the backhoe excavation (Vogel, 2005).  

Textures included sand and clay with dark yellowish brown, strong brown, and very dark gray 
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colors.  Within the clods, the colors of the sediment changed in less than one centimeter, 

suggesting a “loading of contrasting matrix” (Vogel, 2005).  

  From the aerial photographs, Vogel noted changes in soil color where the mounds are 

located (2005).  In the 1936 photograph, Mounds B, C, and D are patches of lighter color 

surrounded by rings of soil that are darker.  In the 1941 photograph, Mounds B and C are still the 

lighter color.  However, Mound D is a darker patch.  In both photographs, the fields are still 

cultivated.  Vogel (2005) suggests that the darker line between Mounds C and D is another 

paleochannel of the White River.   

 

   1.3   Fluvial Setting 

 

Meandering streams in the Ozarks have low gradients and a fairly stable flow of 

water (Figure 6) (Waters, 1992).  Flooding of adjacent landforms occurs once or twice a 

year.  During normal levels of flow, water travels between concave and convex banks.  The 

velocity of the water increases near the concave bank of the stream, eroding sediments, and 

slows on the convex bank, depositing sediment.  The repetition of erosion, or degradation, 

and deposition, or aggradation, causes a lateral movement of the stream’s channel.   Lateral 

accretion of sediments, in the channel, as a result of this migration creates the coarser 

bottom stratum of gravel and cobbles.  Vertical accretion produces the top stratum, which 

contains fine sand, silt, and clay.  The aggradation of the top stratum gradually increases 

the elevation of the floodplain (Brackenridge, 1988; Waters, 1992).  A period of stability, 

when little erosion and deposition occurs, allows soil formation (pedogenesis).   Erosion, 

deposition, and pedogenesis contribute to the formation of point bars, levees, and terraces 

on the floodplain. 
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Figure 6. Cross-section of a meandering stream.  Arrows indicate movement of water. 

 

In a meandering stream, the highest velocity and turbulence are found on the channel 

floor (Waters, 1992).  Above the bedrock, channel lag, the bedload gravel and sand, accumulates 

along with blocks of eroded sediments and saturated plant debris in the deep area of the channel 

on the concave bank of the meander.  Finer silts and clays are incapable of settling in this 

environment.  During normal flow, point bars form on the convex bank of the channel.  

Sediments eroded from the concave bank accumulate on the point bar as the water velocity 

slows.  Finer particles, fine to coarse sands, settle further from the channel and higher on the 

point bar and coarser particles, channel lag, lower down on the point bar and closer to the 

channel (Brown, 1997).  This creates a lateral fining up sequence.  The types of sediments that 

are deposited on a point bar depends on the consistency of the sediments carried by the river.  

When overbank flooding occurs, a vertical fining up sequence may also be seen with the 

deposition of silts and clays on the surface of the point bar. 
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Natural levees are also a product of overbank flooding.  Sediments deposited are a 

combination of sand, silt, and clay, usually with a higher, weakly structured sand content 

(Waters, 1992; Holliday, 2004).  These sediments become thinner and finer as the levee extends 

away from the channel.  Levees are commonly heavily vegetated and plant debris becomes 

interspersed with the laminations of sediments.   

Beyond the levee, in the low lying, flat area adjacent to the channel is the flood basin of 

the floodplain, or simply, the floodplain.  During overbank flooding, as the water velocity slows 

with distance from the channel, larger quantities of finer sediments, like silt and clay, are 

deposited.  The combination of lower elevation and more poorly draining sediments can produce 

mottling and gleying.  Like the point bar, the vertical accretion of these finer sediments creates a 

fining up sequence in the soil profile.  Often the floodplain develops above an old point bar and a 

bottom stratum is seen below the finer sediments.  When a meander is cut off from the channel, 

meander scars can also be seen in a floodplain.  The remaining area can eventually fill in with 

sediment and creates a crescent shaped area with a profile that has an old channel at the bottom 

(bedrock and gravel) and a top stratum above.  Overlapping meander scars are common to 

migrating meandering streams, such as the White River. 

  

   1.4   Coring in Archaeology 

 

Coring is valuable when studying archaeological sites in depositional environments like 

fluvial settings (Price, Hunter, & McMichael, 1964; Mandel & Bettis, 2001), especially in areas 

with high water tables and wet sand (Rapp & Hill, 2006).  In comparison to excavation, it is 

efficient, less costly, and less destructive (Stein, 1986; Rapp & Hill, 2006; Arco, Adelsberger, 
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Hung, & Kidder, 2006).  Deeply buried sites are more likely to be discovered (Price et al., 1964; 

Mandel & Bettis, 2001; Holliday, 2004; Rapp & Hill, 2006; Arco et al., 2006) and with “modern 

safety requirements”, coring is a viable alternative for finding such sites (Canti & Meddens, 

1998).  Coring can provide carbon samples for dating, pollen, microartifacts, pottery, and many 

other materials for laboratory analysis (Reed, Bennet, & Porter, 1968; Stein, 1986; Mandel & 

Bettis, 2001; Holliday, 2004; Rapp & Hill, 2006).  Samples are kept intact when extracted, 

quickly providing a window into the natural and cultural stratigraphy of sites (Figure 7) (Stein, 

1986; Holliday, 2004), and mounds (Reed et al., 1968; Saunders & Allen, 1994; Mehta, Lowe, 

Stout-Evans, & Connaway, 2012).  Coring accurately and efficiently provides the boundaries of 

large sites and focuses excavation efforts, saving time and expense (Stein, 1986; Saunders and 

Allen, 1994; Holliday, 2004).  Coring can also verify and enhance the results of geophysical 

investigations, such as magnetometry and down-hole magnetic susceptibility (Rapp & Hill, 2006, 

Mehta et al., 2012). 

Even though coring is highly beneficial, it does have limitations.  It provides only a 

narrow 3 to 9 cm window into the stratigraphy of a site (Figure 7).  The miniscule size of a core 

sample limits the amount of information gained (Canti & Meddens, 1998; Holliday, 2004).  Soil 

compaction is another issue, which can be resolved to some extent with a compression 

calculation (Appendix B) (Reed et al., 1968; Canti & Meddens, 1998; Rapp & Hill, 2006; Mehta 

et al., 2012).  During extraction, cores can accumulate and mix materials from the sides of the 

hole, or even lose material (Reed et al., 1968).  Care must be taken when describing cores and 

calculating depths of layers by taking these possibilities into account.  Lastly, the high cost of a 

Giddings machine, similar to the one used for this study, can be prohibitive (about $29,000 

(www.soilsample.com).  
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Figure 7. Example of half a soil core Site (Photo By Author). 

 

 

Though there are some definite disadvantages to coring, its popularity as a research tool 

in archaeology can be traced as far back as the 1930s.  Stein (1986) provides a brief history of 

coring in archaeology, dividing it into Period I and Period II.  During Period I (1935 to 1955), 

researchers in the Department of Geography and Anthropology at Louisiana State University 

combined geology’s approach to dating, that of stratigraphy and fossils, with archaeology’s 

approach, that of dates based on ceramic typology.  Coring was used to measure the depths of 

archaeological sites and the subsurface sediments of the Mississippi River Delta.  A correlation 

between these two measurements resulted in a mutually beneficial method for dating subsurface 

geological and archaeological layers of sediment.  This method became antiquated when 

radiocarbon dating was invented.  Thus, Stein’s Period II (1964 to present) of coring in 

archaeology focused more on collecting samples for chemical and biological analyses and for 

radiocarbon dating, as well as, to reconstruct the natural and cultural subsurface stratigraphy of 

sites.  It was at the beginning of this period that truck-mounted hydraulic drilling machines, like 

the Giddings rig, were introduced to archaeology. 
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   2.  Methods 

   2.1   Coring and GPS 

Cores for this study were extracted using a trailer-mounted Giddings Hydraulic Soil 

Sampling, Coring, and Drilling Machine and 1 ¾” x 48” PETG Plastic Soil Tube Liners.  GPS 

coordinates were documented with a Leica Geosystems Viva GS15 antenna and CS15 controller 

(GNSS/GPS surveying equipment) in WGS84 reference coordinate system and converted to 

meters above mean sea level with Geoid 12A.  Geoid heights were obtained from the National 

Oceanic and Atmospheric Administration’s National Geodetic Survey website for Geoid 12A 

computations (http://www.ngs.noaa.gov/cgibin/GEOID_STUFF/geoid12A_prompt1.prl).  

Orthometric height (meters above mean sea level (m amsl)) was manually calculated using 

Microsoft Excel.  GPS coordinates for the 2014 fieldwork and the Digital Elevation Map used to 

create the contours for the maps in this thesis were provide by Stephanie Sullivan (Sullivan, 

Ostrowski, & Kasper, 2015; Sullivan, 2016).   

Cores 1, 2, 4, 5, and 6 were extracted for Rathgaber’s study on river velocity and were 

placed close to the river at roughly equal intervals before, at, and downstream from the bend in 

the river (Figure 8).  Rathgaber analyzed and discussed these cores in a paper for her Quaternary 

Environments class (2015).   The rest of the cores focused on Mounds B, C, and D.  In 2014, 

Core 3 was extracted near the river and north of Mound C to study the origin of the mound fill. 

To attempt studying erosion on the mound’s slopes, cores were placed at the summit of 

each mound, slightly downslope from the summit, and at or near the base.  These locations were 

also placed where structures found by Sullivan and McKinnon (2013) might be encountered, in 

an attempt to extract carbon for dating.  For Mound B, these cores include Core 8 (base), Core 9 

(summit), and 10 (slope).  For Mound C, this included Core 18 (south base), Core 25(summit), 
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Core 26 (slope), Core 19 (near west base) and Core 27 (north base).  For Mound D, this included 

Core 20 (near east base), Core 21 (summit), and Core 22 (slope).   

To study flooding across the site, locations were selected between the mounds and the 

river.  For Mound B, this includes cores 4, 12, and 11.  For Mound C, these cores are 3, 28, and 

27.  For Mound D, these cores were 2, 24, and 23.  Where possible, cores were extracted 

between the mounds and the southern fence line to look for prepared surfaces in what might have 

been a plaza area between the northern and southern mound groups.  From east to west, these are 

cores 7, 15, 16, and 17.   

In addition, cores were extracted between Mounds B and C, Core 13 and Core 14, and 

between Mounds C and D, Core 19 and Core 20, to determine whether these areas had prepared 

surfaces and to aid in answering the questions about flooding and erosion on the mounds.  The 

cores between Mounds B and C were also selected to determine whether the area was 

intentionally elevated.  A possible borrow pit north of Mound B was explored by extracting Core 

12.  Core 25 and Core 26 were chosen by Sullivan based on her geophysical data (Sullivan and 

McKinnon, 2013).  Core 25 was intended to sample a magnetic anomaly in the center of the 

mound and retrieve carbon for dating.  Results for Sullivan’s radiocarbon dating are found in 

Appendix A.  Core 26 was intended to sample a wall of the structure. 

To present the results of this study, I have divided the cores into six areas (Table 2, 

Figure 12). 
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Table 1. Division of areas with correlating cores and designation as fill, alluvium, or 

presence of prepared surface. 

 

 
 

 
 

 
 

Figure 8. Core locations on the Collins site (modified from Google, 2016, Sullivan et al., 

2015, and Sullivan, 2016). 
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   2.2   Soil Description, Particle-Size Analysis, and Sand Fraction Analysis 

 

After extraction, the cores were described using the texture diagram on the United States 

Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) website, 

the USDA Soil Survey Manual, the Munsell Soil Color Chart, and the Field Book for Describing 

and Sampling Soils (Version 2.0, National Soil Survey Center, NRCS, USDA, Lincoln, 

Nebraska, 2002).  A list of soil horizon nomenclature and definitions used in this thesis are in 

Appendix C.  Tables of the descriptions for all the cores are included in Appendix D.   

 Particle size was determined using a modified hydrometer method (Day, 1965; Gee, 

Bauder, & Klute, 1986; Gee & Or, 2002; Brye, 2014) supplied by the Department of Crop, Soil, 

and Environmental Sciences at the U of A.  Measurements were taken with an ELE International, 

Inc. Soil Hydrometer Type 152H ASTM Model # CL-277A.  The reading taken at 40 seconds 

measures the amount of silt and clay left in suspension and is used to calculate the sand 

percentage of the soil.  The readings taken at 6 and 11 hours provide a more accurate reading for 

calculating the percentage of clay.  Once the clay and sand fractions are known, the silt fraction 

can be calculated.  Calculations for the sand, silt, and clay percentages are explained in Appendix 

B and were processed using a Microsoft Excel spreadsheet.  During disposal of the cylinder 

contents, sand was retained using a U.S.A. Standard Sieve #230 (0.0625 mm).  Graphs and a list 

of all the PSA results and correlating textures can be found in Appendix E. 

 Sand fractions were determined using a WS Tyler Ro-Tap Model RX-29 Test Sieve 

Shaker and U.S.A Standard Testing Sieves.  The sizes of the sieves were selected to separate 

very coarse, coarse, medium, fine, and very fine sand sizes (Table 1).  All sand fraction results 

and graphs are in Appendix F and the calculation is in Appendix B. 
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Table 2. Sieve number with correlating sand size and fraction (based on Guccione, 1993b, 

USGS Wentworth Grain Size Chart (http://pubs.usgs.gov/of/2003/of03-

001/htmldocs/nomenclature.htm)). 

 

Sieve Number Sand Size Range (mm) Sand Fraction 

10 >2.0 Gravel 

18 2.0-1.0 Very Coarse 

35 1.0-0.5 Coarse 

60 0.5-0.25 Medium 

120 0.25-0.125 Fine 

230 0.125-0.0625 Very Fine 

 

 

   3.  Results 

   3.1   North – South Transect 

 

 

Figure 9. Cores on the North – South Transect (modified from Google, 2016, Sullivan et al., 

2015, and Sullivan, 2016). 

 

 

 
The North – South Transect includes Cores 2, 20, 21, 22, 23, and 24 (Figures 9).  Core 2 

is closest to the White River.  Core 23 and Core 24 are in the flat area between the river and 

Mound D.  Core 21 and Core 22 are in Mound D.  Core 20 is near the east base of Mound D.  
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This transect was selected for further sand fraction analysis because of the consistency between 

particle sizes in each core, making them more readily comparable.  When comparing particle 

size, Cores 2, 20, 23, and 24 have very similar fining up sequences for the B and C horizons until 

just below the A horizon near the ground surface (Figure 10).  The A horizon coarsens for all of 

them but with different percentages of clay, silt, and sand.  For more detail on these percentages 

see Appendix E.   Below the mound fill, Core 21 and Core 22 have fining up sequences more 

similar to each other than with the rest of the cores on the transect (Figure 11).  The sequences 

for these two cores occur at elevations about 40 to 50 cm higher than for Core 23 and Core 24.   

 

 

Figure 10. Core 24 (off mound), particle size graph with elevation (m amsl), Horizon (label 

shown for the top of each horizon on left side), and Interpretation of a sedimentary 

environment on the right side of the graph. 
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Figure 11. Core 21 (in mound), particle size graph with elevation (m amsl), Horizon (label 

shown for the top of each horizon on left side), and Interpretation of a sedimentary 

environment on the right side of the graph. 

 

 

The fining up sequence continues for the sand fraction.  The sand fractions for Core 23 

and Core 24 are most similar to each other (Figure 12).  Core 2 and Core 20 are only different in 

that they coarsen at the top more than Core 23 and Core 24.  However, Core 2 begins to coarsen 

at a depth of about 150 cm, whereas Core 20 coarsens at about 36 cm.  The sand fraction below 

the mound fill for Core 21 and Core 22 exhibits the same fining up sequence as the rest of the 

cores on this transect (Figure 13). 
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Figure 12. Core 24 (off mound), sand fraction graph with elevation (m amsl), Horizon 

(label shown for the top of each horizon on left side), and Interpretation of a sedimentary 

environment on the right side of the graph. 
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Figure 13. Core 21 (in mound), sand fraction graph with elevation (m amsl), Horizon (label 

shown for the top of each horizon on left side), and Interpretation of a sedimentary 

environment on the right side of the graph. 

 

All of the cores, excluding Core 2, have plow zones that are 10 cm or less.  Core 2, along 

with all of the cores at the river except for Core 3, were described by Rathgaber and I use her 

descriptions in discussing this core.  Because our methods and observations are slightly different, 

terminology is also slightly different but the particle sizes are easily compared.  In the off mound 

cores, there is a 15 to 40 cm A horizon following the plow zone (Figure 14).  Below the A 

horizon, there is a Bt horizon until the very bottom of the cores where there is a C horizon.  For 

Core 2, Rathgaber labels everything below the A horizon a B horizon with soil development 

occurring until the last 52 cm, which is labeled alluvium.  This is the area I typically labeled the 

C horizon with very little to no soil development, more redoximorphic features, and occasionally 
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gravel and cobbles.  In all the cores except Core 21 and Core 22, this C horizon has much higher 

sand content than the rest of the core.  In Core 21 and Core 22, the sand content was not as high 

and the clay content was much higher.  These cores reached a depth about 20 to 30 cm shallower 

than cores 20, 23, and 24 and about 2.65 meters shallower than Core 2.  This may be why these 

two cores are missing the increase in sand and decrease in clay seen in the other cores.   

 

 

Figure 14. Core profiles on the North – South Transect with elevation. 

 

Core 21 and Core 22 differ from the others in several other ways.  Both the particle-size 

and sand fraction analysis shows that the mound fill alternates between finer and coarser 

particles and finer and coarser sands, indicating multiple sources for the fill (Figures 11 and 13).  

The particle size for Core 22 doesn’t exhibit this variation quite as intensely as Core 21.  This 

might be due to the location of this core in the backfill from a previous excavation.  The sand 

fraction for Core 22 shows some variation, but, like the particle size, not as highly varied as Core 

21.  The lack of an A horizon where the submound elevation begins can be seen in the steep 
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increase in the sand content going from 24 to 47 percent in Core 21 and 24 to 40 percent in Core 

22 (Figure 11).  The change from a B horizon to A horizon in the cores off mound is much more 

gradual (Figure 10).  The mound fill has particle sizes and sand fractions most similar to the A 

horizons of the cores located nearby (Figure 15) and to Core 3 and Core 6 near the river (Figure 

16). 

 

Figure 15. Comparison of sand percentages in Mound D fill to cores in nearby flat areas. 
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Figure 16. Comparison of sand percentages in Mound D fill to the cores on the river. 

 

 

The particle-size analysis shows that off mound the cores have higher total clay and silt 

fractions than the cores on the summit and slope of Mound D (Figure 17).  Because the velocity 

of the flooding would slow as the water moves farther from the channel, higher amounts of the 

finer particles, clay, silt, and very fine sand, are deposited on these lower elevation areas.  Core 

20, at or near the base of the mound, is in an area that may have been more disturbed by the 
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building of a north – south fence line and is at a lower elevation and may see more flooding.  In 

general, its particle sizes more closely resemble Cores 23, 24, and 2.   

 

 

Figure 17. Total clay and silt percentage for Mound D compared to other North – South 

Transect cores. 

 

 

From the summit, Core 21, to the slope, Core 22, to the base, Core 20, the very fine sand 

increases very slightly (Figure 18).  Fine sand decreases slightly and the coarser sands stay close 

to the same.  Fine sand would be the most likely fraction of the total sand fraction to be 

susceptible to erosion due to water and gravity.   
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Figure 18. Comparison of very fine sand to fine and very coarse, coarse, and 

medium sand on Mound D. 

 

 

Off mound and submound, the clay percentages in the B horizon exhibit clay illuviation 

with percentages between 18 and 33 percent, gradually increasing with depth until the C horizon.  

The B horizon for the mound fill is also different from the rest.  Clay percentages within the 

mound are between 10 and 18 percent.    In the mound fill, Core 21 the clay content alternates 

between a higher and lower percentage, giving this core alternating Bw and Bt soils.  Core 22 

has only one Bw and Bt sequence, again, likely due to a disturbance of the mound in this area, 

which is visible in the mottled appearance of the soil (Figure 19) and in the undulating surface of 

the mound.  



29 

 

 

Figure 19. Mottled area in Core 22 (Photo By Author). 

 

Core 21 is more representative of the mound fill.  In this core, two prepared surfaces are 

visible (Figure 20).  The first is between 33 and 48 cm and is a dark brown loam.  The second is 

between 48 and 57 cm and is a dark grayish brown sandy loam.  Mound fill continues below 

these two surfaces until the submound stratigraphy starts at 109 cm deep and at a very similar 

elevation to the tops of Core 23 and Core 24.  As mentioned earlier, the submound stratigraphy 

starts with a Bt horizon and lacks an A horizon. 

 

 

Figure 20. Core 21 prepared surfaces (Photo By Author). 
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Core 2 is slightly different than the other cores on this transect.  It has higher silt and clay 

content beginning higher up in the core.  It also has lower sand content but a higher very fine 

sand fraction after the A horizon until the bottom where it becomes more similar to the bottom 

half of the rest of the cores only at a much deeper elevation.  The profile of Core 2 is likely more 

directly influenced by its close proximity to the river.  Graphs for the particle-size and sand 

fraction analysis are available for this core in Appendices E and F. 

The bottoms of the cores on this transect vary.  Core 20 and Core 21 have a broken 

cobble at the bottom that spanned the width of the core liner.  Core 22 and Core 24 have a few 

subround pebbles.  Core 23 has 6 cm of gravel and small pebbles at the bottom, with an 

additional 2 cm layer of similar consistency about 10 cm above (Figure 21).  These additional 

layers were not seen in nearby cores.  The layers of gravel and cobbles at or near the bottoms of 

these cores are evidence of either a high turbulence flood event or channel deposits that occurred 

long before the mounds were built.    

 

 

Figure 21. Core 23 flood event and channel deposit at bottom of core (Photo By Author). 
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3.2   Fence Line 

 

 

Figure 22. Core locations on the southern fence line (modified from Google, 2016, Sullivan 

et al., 2015, and Sullivan, 2016). 

 

The cores along the south fence line are located in what might have been the plaza area of 

the site (Figure 22).  Along the transect, ground surface rises by about 17 cm moving from east 

to west (Figure 23).  The location of Core 15 was recorded by the GPS unit, but no reliable 

elevation is available.  Thus, for Core 15, an estimated elevation was assigned based on the trend 

seen in the other three, consistent with field observations.  It was hoped that prepared surfaces 

might be visible in these cores.  Though there are minute differences among the horizons at each 

location, no prepared surfaces were noted.   
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Figure 23. Core profiles on the Fence Line with elevation. 

 

 

The particle sizes are fairly uniform, with all exhibiting the fining upward sequence until 

the coarsening up in the A horizon that was seen in Core 23 and Core 24 on the North – South 

Transect.  However, the sequence occurs at different elevations for these four cores.  Core 7 and 

Core 15, which are adjacent, have similar elevations.  The sequence in Core 16 occurs about 5 

cm higher than in Core 7 and Core 15 and in Core 17 occurs about 5 cm higher than in Core 16.  

In all four cores, sand percentages are between 36 and 48 percent at the ground surface, decrease 

in intermediate depths, and increase to percentages greater than those near the ground surface in 

the basal portion of the cores.  Silt percentages are between 44 and 53 percent and gradually 

decrease to between 12 and 23 percent.  Clay content is low in the A horizon, between 8 and 12 

percent, increases in the middle to form a clay bulge by illuviation, and decreases with depth as 

the profile gets closer to what was either a high turbulence flood event or channel gravel.  This 

gravel is only visible at the bottom of Core 16 and Core 17 (Figures 24 and 25). 
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Figure 24. Channel gravel in Core 16 (Photo By Author). 

 

 

Figure 25. Bottom of Core 17 (Photo By Author). 

 

Core 7 and Core 15, on the east end of the transect, share profiles more similar to each 

other than to Core 16 and Core 17.  The only difference between the two is that Core 7 contains 

more redoximorphic features at the bottom and Core 15 has the occasional round or subround 

pebble in its bottom half.   

Core 16 and Core 17, on the west end of the transect, are more similar to each other than 

to Core 7 and Core 15.  Core 16 and Core 17 have slightly higher sand content in the upper 

horizons, with 43 and 48 percent, respectively, compared to 36 and 38 percent in Core 7 and 

Core 15.  The other difference is the presence of bedded pebbles, cobbles, and shale fragments at 

the bottom of Core 16 and Core 17, indicating a high turbulence flood event.  The layer in Core 

16 is 13 cm (Figure 24).  In Core 17, the layer is 23 cm and includes a broken cobble very 

similar to the ones seen at the bottom of Core 20 and Core 21 (Figure 25).  The high turbulence 
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flood layer is similar to the one seen at the bottom of Core 23.  The particle size percentages in 

the A horizons of Core 16 and Core 17 are very similar to the percentages seen in the some of the 

fill for Mound D (Figure 15).   

 

3.3   River Bank 

 

Figure 26. Core locations near the river (modified from Google, 2016, Sullivan et al., 2015, 

and Sullivan, 2016). 

 

 

Figure 27. Core profiles on the River with elevation. 
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This area includes cores 1 through 6.  Rathgaber’s (2015) study of the cores along the 

river (Figures 26 and 27) shows that Core 6, at the east end of the transect, exhibited at least 

three large flood events (Figure 28).  The noticeable increases in coarser grains in adjacent Core 

5 and Core 6 are indicative of flooding along the inside river bend.  As noted by Rathgaber, the 

cores downstream of the bend exhibit the typical gradual fining upward sequence.  Cores 3, 4, 5, 

and 6 have sand percentages similar to those seen in the mound fill (Figure 29).  Because of this 

similarity, it is possible that the mound builders were utilizing the more readily available and 

easily attainable sediment close to the river and to the mounds (Angeles, 2014). 

 

Figure 28. Core 6 particle size graph with flood events (modified from Rathgaber, 2015) 

with elevation (m amsl), Horizon (label shown for the top of each horizon on left side), and 

Interpretation of a sedimentary environment on the right side of the graph. 
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Sand is the least weathered fraction of sediment, making it the most stable percentage for 

making a comparison between mound fill and possible locations of fill origin on the site. 

Assuming that the mound builders would acquire the materials at or near the surface, I have 

restricted my consideration of the sand percentages to the upper 120 cm.  In addition, the sand 

fraction in the first 120 cm is an adequate representation of the sand percentages for the entire 

length of the core. 

For Core 1, located at the west end of the transect and northwest of Mound D, the 

percentage of sand ranged from 17 to 42 percent.  Directly north of Mound D, Core 2 ranges 

from 9 to 41 percent.  Only the upper 30 cm of Core 1 and the upper 10 percent of Core 2 have 

sand percentages similar to the mound fill (Figure 29).  Directly north of Mound C, Core 3 

ranges between 32 and 56 percent.  This core’s similarity to mound fill begins at ground surface.  

Directly north of Mound B, Core 4 ranges between 33 and 76 percent, with similarity to mound 

fill beginning between 10 and 20 cm.  Core 5, northeast of Mound B, ranges between 53 and 88 

percent, with similarity to mound fill beginning between 20 and 30 cm.  East of Mound B, Core 

6 ranges between 43 and 65 percent, with similarity to mound fill beginning at the ground 

surface.  The highest sand fraction for most of the cores along the river are found in the upper 40 

cm, with one exception.  Below the upper 10 cm, the sand percentage in Core 6 increases with 

depth.  It is possible that the increase in sand is simply due to the decrease of silt and clay as a 

result of historic plowing.   

In 2014, a profile of the riverbank was done just slightly north of Core 3.  Particle-size 

analysis showed the sand fraction in most of the bank ranges from 45 to 85 percent, with the 

closest similarity to mound fill between 19 and 69 cm and 110 to 130 cm.  A basal sample 
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directly above the river level was almost 93 percent sand.  A sand percentage this high was never 

noted in the mound fill and gaining access to this area would depend on the river level. 

 

Figure 29. Sand percentage comparison between the mounds and the cores near the river 

(upper 120 cm of core where available). 
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   3.4   Mounds B and C 

      For this section, I’ll describe the cores that were within the mounds and the ones closest 

to or within what was likely the original base of the mounds.  For Mound B, those cores are 8, 9, 

and 10 (Figures 30 and 31).  For Mound C, those cores are 18, 19, 25, 26, and 27.  Though likely 

not directly within the base of Mound C, Core 19 was the most similar to Core 18 and is included 

in the Mound C discussion. 

 

3.4.1   Mound B 

 

Figure 30. Core locations in the Mound B area (modified from Google, 2016; Sullivan et al., 

2015; Sullivan, 2016). 
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Figure 31. Core profiles on Mound B with elevation. 

 

 

Core 9 is located on the summit of the mound, with Core 10 at an elevation 68 cm lower 

and downslope from Core 9.  These cores have similar profiles and particle size graphs to each 

other and to Core 21 in Mound D.  The upper horizons of both have higher sand content, 61 

percent in 9 and 68 percent in 10, above mound fill with alternating strata of anthropogenic 

sediments.  Within the mound fill, there are frequent changes in colors, some very subtle (Figure 

32).  It is possible that these are individual basket loads, changes in source materials, or a result 

of the effects of pedogenesis.  The percentages of sand range from 23 to 63, with the majority in 

the 50th percentile.  Like the colors, the sand fraction changes frequently and may further support 

the presence of basket loads or a change in fill origin (Cremeens, 1995).  These are sand 

percentages most similar to those found in the cores near the river (Figure 29).  Like Mound D, 

directly below the most basal anthropogenic strata, the submound stratigraphy lacks an A 

horizon and starts with a Bt horizon.  Also similar to Mound D, the Bt horizon below the mound 
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exhibits a clay bulge and continues until the C horizon at the bottom of the cores, where sand 

content increases. 

 

 

Figure 32. Frequent subtle changes in Mound B fill (Photo By Author). 

 

The differences between Core 9 and Core 10 are found in the anthropogenic strata.  In 

Core 9, small flecks of charcoal are present at 24 cm and gradually increase in frequency with 

depth. Two pebbles found in the fill, one at 15 cm and another at 102 cm, were likely transported 

in with the fill.  At a depth of 240 cm, and continuing for 20 cm, there are thin and thick 

alternating layers (Figure 33).  These layers contain a mixture of charcoal, a pale brown 

sediment, which has been depleted of color by exposure to rain, and sediment similar to the fill, 

which is mixed with flecks of red clay or daub.  At about 249 cm, there is a large chunk of 

charcoal, followed by an area at 252 cm that includes nodules of burnt daub and a small area of 

brownish yellow sediment.  Immediately following this section, the alternating layers continue.  

It is possible that these are multiple prepared surfaces.  Where there are larger quantities of 

charcoal may have been ritual burns with the deepest and larger one being the remains of a burnt 

structure. 
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Figure 33. Multiple prepared surfaces with charcoal, daub, and layers exposed to 

weathering in Core 9.  Lack of A horizon after prepared surfaces (Photo By Author). 

 

Core 10 has two distinct strata of prepared surfaces.  The first stratum starts at a depth of 

110 cm and ends at 118 cm (Figure 34).  It includes alternating layers of dark brown 

concentrations and very pale brown depletions, which are indicative of exposure to weathering, 

particularly, rain (Vogel, Kay, & Vogele, Jr., 2005).  The basal prepared surface is similar to the 

one in Core 9, except that there are no large pieces of charcoal, burnt daub, or pockets of 

brownish yellow sediment (Figure 35).  Interestingly, in both cores, these cultural surfaces at the 

base of Mound B have low sand fractions, ranging between 23 and 30 percent.  This range of 

percentages is similar to that found in the top 167 cm of Core 12, an area thought to possibly be a 

borrow pit.  Core 12 is discussed in more depth in section 3.5. 

 

Figure 34. Alternating layers exposed to weathering in Core 10 (Photo By Author). 
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Figure 35. Prepared surface before submound stratigraphy in Core 10, Mound B (Photo By 

Author). 

 

Core 8 was extracted from an area in the south base of Mound B that might have been a 

slightly elevated ramp leading to a southwestern facing entryway of the structure within the 

mound (Figure 35).   The top elevation is 2 meters below the top of the mound and 64 cm above 

the base elevation.  It is about 134 cm below the top of Core 10.  The profile for this core is very 

different.  The first 20 cm contain 70 percent sand, 2 percent more than the top of Core 10 and 9 

percent more than the top of Core 9.  This increase in sand content moving down the slope from 

the summit to the base is a good indicator of erosion down the slope.  In addition, the layers with 

higher percentages of sand increase in length moving from summit downslope to base (Figure 

36).  
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Figure 36. Cores 9, 10, and 8 – sand percentage and vertical length increase moving from 

summit to base of Mound B. 

 

 

 Up to 40 cm, the sediment is a dark yellowish brown sandy loam.  At 40 cm, the 

sediment changes to a very dark brown sandy loam with flecks of charcoal and the sand fraction 

drops to between 46 and 53 percent for the next 20 cm.  Fractions like this are more reminiscent 

of those seen within the mound.  This layer occurs at approximately the same elevation as the 

basal prepared surfaces in the mound and has been interpreted as a prepared surface, possibly 

related to a south ramp (Figure 37).   
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Figure 37. Prepared surface, possibly south ramp of Mound B (Photo By Author). 

 

The 10 to 20 cm below the prepared surface gradually lighten in color and have similar particle 

size percentages to the A horizons of the off mound cores.  It is possible that the builders did not 

remove the A horizon in the ramp area as they did with the mound.   

While this core exhibits a Bt and C horizon and a fining up sequence of sediments like 

the other cores on the site, it is slightly different (Figure 38).  The fining up sequence is not as 

smooth and gradual, with two spikes in the finer sediments, silt and clay.  These increases may 

be a result of the large flood events noted by Rathgaber in Core 6 (Figure 28). 
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Figure 38. Core 8 particle size analysis graph.  Top layers show erosion from mound. 

 

 

3.4.2   Mound C 

 

Figure 39. Core locations in the Mound C area (modified from Google, 2016, Sullivan et al., 

2015, and Sullivan, 2016). 
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Figure 40. Core profiles on Mound C with elevation. 

 

 

This area includes Cores 18, 19, 25, 26, and 27 (Figures 39 and 40).  Core 18 and Core 27 

are within the slope near the base of the mound at 1.33 m and 1.24 m, respectively, below the 

summit, Core 25.  Core 19 is near the west base of the mound.  Core 26 is downslope from 25 at 

an elevation 76 cm lower than the summit.  The fining up sequence of overbank sediment 

remains true for the soil profiles of all the cores in this group, excluding the strata that are within 

the mound.  Cores 18, 19, and 27 are almost identical to the cores along the fence line.  The 

differences are in the sand content in the upper horizons and the depth attained by these cores. 

Core 18 reached a depth only about 7 cm shallower than Core 17, which is located south 

of 18 on the fence line.  However, the sand content in the upper horizon of 18 is at 63 percent 

and 17 is at 48 percent.   The depth of Core 19 is 23 cm shallower than 18 and the sand content is 
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64 percent at the ground surface.  Core 27 is near the north base of the mound, has a sand content 

of 73 percent at ground surface and a depth of roughly equivalent to Core 19.  The increase in the 

sand percentage in the upper horizons of these cores might be due to erosion on the slope of the 

mound (Figure 43). 

A prehistoric anthropogenic stratum was identified in Cores 25, 26, and 18.  In Core 25, 

the feature is at about 2 meters from the surface and carbon was extracted for radiocarbon dating 

(Appendix A) (Sullivan, 2016).  In Core 26, the structure is between a depth of 1.19 and 1.45 m.  

This layer has alternating layers of concentrations and depletions, similar to those seen in Core 

10 from Mound B (Figure 41).  In Core 18, below the upper horizons, there is a 6 cm buried A 

horizon that looks like a prepared surface (Figure 42).  At a similar elevation to the surface in the 

possible south ramp of Mound B, this buried A might be the south ramp of Mound C. 

 

 

Figure 41. Alternating layers in Core 26 (Photo By Author). 
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Figure 42. Core 18 prepared surface, possibly a south ramp of Mound C (Photo By 

Author). 

 

  The mound fill for Core 25 has sand fractions between 38 and 68 percent.  For Core 26, 

the sand fraction ranges between 65 and 78 percent.  These are percentages most similar to cores 

3 through 6, which are close to the river, and at the riverbank (Figure 29).  The top layer of Core 

25 is at 68 percent, while slightly downslope, the top layer in Core 26 contains 78 percent sand.  

The increase in sand content in the upper horizons from summit to base seen in Mound B and in 

the very fine sand for Mound D does not hold true for Mound C (Figure 43).  The sand 

percentages in the upper horizons of Cores 18, 19, and 27, while still high, are lower than those 

for the summit and slope.  It is possible that historic plowing in the area around Mound C has 

affected the base of this mound differently. 
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Figure 43. Sand percentage and vertical length increase moving from summit to base of 

Mound C. 
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3.5   Area between Mounds B and C 

 

Figure 44. Core locations in the area between Mounds B and C (modified from Google, 

2016, Sullivan et al., 2015, and Sullivan, 2016). 

 

 

 
 

Figure 45. Core profiles on Mound B with elevation. 

 

Core 13 and Core 14 are in the area between Mounds B and C, near the bases of each 

mound (Figures 44 and 45).  The purpose of this placement was to determine whether there 
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might have been an elevated prepared surface between the two mounds as was seen with the 

Norman Site’s “double-mound arrangement” (Vogel et al., 2005).  In addition, it was also hoped 

that they each might be in a structure or have evidence of slope wash from the mound.  This area 

is relatively flat and is presumed to have experienced a greater amount of historic plowing than 

the mounds.  Unfortunately, there is no visible prepared surface or evidence of a structure.  The 

sand fraction at the top of the cores was 42 percent in Core 13 and 49 percent in Core 14.  Any 

slope wash from the mound either didn’t reach this far or was translocated by plowing. 

Although slightly different from each other, both of these cores have the typical fining up 

sequence.  The top of Core 13 is about 21 cm above the submound of Mound B and 2.58 m 

below the top elevation for Core 9.  The soil profile closely mirrors those of the cores along the 

fence line.  Core 14 has the same sequence until the bottom.  Although, the bottom depths of 

both these cores are only about 4 cm apart, the particle sizes at the bottom of Core 14 are most 

similar to a depth about 74 cm higher in Core 13.  So, while Core 14 has a sand percent of 25 at 

the bottom, the sand percent in Core 13 is at 56.   

These cores also have a layer of mottled sediment.  This layer is visible between 23 and 

50 cm in Core 13 (Figure 46).  In Core 14, this layer is deeper, between 59 and 96 cm.  Because 

the top elevations for both Core 13 and Core 14 are higher than the start of the submound 

stratigraphy for both Mounds B and C and have similar top elevations and soil profiles to the 

cores on the fence line, it’s likely that the area between the mounds was not a purposefully 

elevated prepared surface.  Although the mottled layer in both cores may indicate some 

manipulation of the area, it is hard to link it to a particular influence, either human or natural. 
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Figure 46. Mottled layer in Core 13.  Similar layer present in 14 (Photo By Author). 

 

3.6  Area between Mounds B and C and the White River 

 

Figure 47. Core locations in the area between Mounds B and C and the White River 

(modified from Google, 2016, Sullivan et al., 2015, and Sullivan, 2016). 
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Figure 48. Core profiles on Mound B with elevation. 

 

 
Cores 11, 12, and 28 are discussed together because they are located in the low elevation 

between Mounds B and C and the White River (Figures 47 and 48).  During floods, this area is 

likely to be the first inundated by water and the last to dry out.  The profiles for these cores are 

not only dissimilar to each other but also to most of the cores outside this area.  The only 

exception is Core 28. 

Core 28 is most similar to Core 3, which is one of the cores near the river and is located 

about 25 m north and 9 m east of Core 28.  This core has the short fining up sequence for about 

50 cm and then coarsens up for the next 1.5 meters above that, where the upper horizons again 

fine up.  This is different from the usual coarser materials found in the A horizons.  The sand 

content in the top 120 cm ranges between 28 and 63 percent, similar percentages to those found 

in the fill for all three mounds.   The first 30 cm have a high silt content, 42 to 50 percent, similar 

to the other off-mound cores.   
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Core 11 is located near the north base of Mound C.  I chose this location to not only study 

the erosion and flooding effects on the mound but also because this area may have been 

disturbed by an old farm track.  For approximately the upper 70 cm, the particle sizes of the 

sediment are highly variable, similar but different to the mound fill.  Percentages within the 

mound fill stay fairly consistent.  There is no consistency in the percentages for this first 70 cm 

and percentages cover wider than usual ranges.  Sand content is between 12 and 50 percent.  Silt 

content is between 41 and 63 percent.  Clay content is between 7 and 27 percent.  Below these 

variable layers, which are possibly due to historic disturbance, the trend exhibits very stable 

overbank deposits with no fining or coarsening up sequence.  Had this core gone deeper, it is 

likely, given the pattern across the site, that a fining up sequence would be noted. 

Core 12 was extracted in the depression between Mound B and the river that resembles a 

borrow pit.  In general, this core exhibits a fining up sequence.  However, like the mound fill, 

Core 5 and Core 6, and the upper horizons of Core 11, the sequence is highly variable with very 

little consistency in particle sizes.  As previously mentioned, this area holds water the longest 

(Figure 49).  Because of this, after flooding, silt and clay would have adequate time to settle out 

of suspension.  Supporting this is the high percentage of silt and clay, 56 and 12, respectively, 

near the ground surface.  This is the highest clay content at this depth in all of the cores.  The 

bottom 35 cm of this core also make it unique.  Within these last centimeters, sand content spikes 

to between 87 and 93 percent, similar to the sample collected at the river.  Above the coarse sand 

bedding, there is 19 cm of gravel (Figure 50).  If this was a borrow pit, the only location within 

any of the mounds that has sand percentages similar to the ones in this core is the basal prepared 

surfaces of Mound B.   
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Figure 49. Location of Core 12 in the low area north of Mound B (in the background) 

(Photo By Author). 

 

 

Figure 50. Bottom of Core 12 – gravel and bedding (Photo By Author). 

 

 
4.  Discussion 

  With the recent radiocarbon dating of Mound C placing its construction between 730 and 

960 A.D. (Sullivan, 2016), the Collins site has a long history of being altered by human activity 

and natural processes.  The purpose of this study was to increase our knowledge about the site by 

using soil descriptions and particle size analysis to explore the change in mound height, the 

origin of mound fill, and how the human and natural influences have affected the mounds.  
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While this study adds some information, there are some definite limitations and problems that 

need to be addressed and continuing investigations at the site could potentially solve these issues. 

This study suggests that flooding was a less likely factor in any decrease in mound 

height.  During flooding, textures become finer as overbank sediment is deposited farther from 

the channel (Guccione, 1993; Brown, 1997).  Mound D is the lowest of the three mounds and the 

farthest from the river.  However, in comparison to the other cores on the North – South 

Transect, the sand fraction on the surface of the summit, slope, and base of the mound have less 

of the very fine sand and a larger percent of coarse sand.  The top layers of the cores on the 

summit and slope also contain less clay and silt and a higher total sand fraction (57 percent) than 

the cores at the base and in the surrounding floodplain.   It is possible that unless the flood event 

is one of great magnitude the summit of Mound D would stay above the level of the water.   

The summits of Mounds B and C are both at higher elevations than Mound D but also 

progressively closer to the river.  Like Mound D, both have surface sand fractions larger than the 

surrounding floodplain surface.  Mound B has a 61 to 70 percent surface sand fraction and 

Mound C, 63 to 78 percent.  This indicates that during the majority of flood events at the site, 

water levels rarely exceed the height of the mounds or if they do, recede too quickly for clay and 

silt to settle out of suspension.   

Erosion caused by plowing, wind, water (from rainfall), and gravity more likely factored 

into the decrease in the height of the mounds.  Each one begins eroding by loosening the 

structure of sediment.  Once the structure is broken, sheet erosion from water can more readily 

carry particles downslope.  Sand, being the least cohesive fraction of sediment, is one of the 

more likely particles to erode (Goldberg & Macphail, 2008). As the sand collects at the base of 

the mound, the original border becomes obscured, the diameter of the mound enlarges, and 
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height decreases (Kay et al., 1989; Vogel, 2005). The top one to two layers of sediment on the 

mounds at Collins contain the highest sand fraction and are the most exposed to surface erosion.  

In Mounds B and C, these layers become thicker from the summit to the base.  For Mound D, 

this is true for the cores in the summit and the slope.   

Core 20, which was likely at the base of Mound D, is in an area that was disturbed by the 

installment of the fence line.  The top of this core has a higher silt than sand fraction.  In 

addition, while there is very little change in the total amount of fine and very fine sand from the 

summit of Mound D to the slope, there is a very small increase of 1.5 percent in just the very fine 

sand.  This pattern continues with Core 20, which is at or near the base of Mound D and has a 3 

percent increase in very fine sand.  This further supports the movement of sediment from the 

summit to the base of the mound. 

While factors like plow depth, slope gradient, direction of plowing, and moisture content 

of soil determine the level of erosion, plowing is known to not only physically translocate soils 

down a slope, it also worsens wind and water erosion (Olson, Jones, Gennadiyev, Chernyanskii, 

Woods, & Lang, 2003).  Wind erodes by sorting out and removing the finer particle sizes (Lyles, 

1988).  Therefore, it is possible that wind erosion might have contributed to the lower fractions 

of silt, clay, and very fine sand noted in the top layer of Mound D and the lower silt and clay 

fractions on the surface of the other two mounds.  Regardless, the mounds likely decreased in 

height with both human and natural influences factoring into the alteration. 

While there is sufficient support for the conclusions stated above, like Mound D, Mound 

C is an interesting conundrum.  It has the increase in the sand fraction from the summit to the 

slope.  However, the bases vary.  Near the east base, Core 14 has a sand fraction of only 49 

percent.  As mentioned in the Result section, this could be because it is located slightly beyond 
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the base of the mound and the sand simply does not erode that far out.  Core 27, in the base to the 

north, is at 72 percent.  Core 18, in the base to the south, is at 63 percent.  Core 19, near the base 

to the west, is at 64 percent.  Some of this variation could be due to differences in the gradient of 

each slope and differences in the amount of historic agricultural alterations in each area.  

  The final purpose of this study was to locate the source of mound fill and determine 

whether the builders were selectively choosing particular textures.  Trying to understand the 

reasoning behind the selection of building materials by mound builders has been a subject of 

many investigations (Parsons, Scholtes, & Riecken, 1962; Reed et al., 1968; Kay et al., 1980; 

Saunders & Allen, 1994; Arco et al., 2006; Sherwood & Kidder, 2011; Mehta et al., 2012; 

Schilling, 2012; Sherwood, Blitz, & Downs, 2013).  The results of the 2014 particle-size analysis 

for Mound C showed that the builders were likely collecting mound fill from areas close to river 

with higher sand fractions (Core 3, Core 28, and the riverbank) (Angeles, 2014).  The sandy, 

weak structure of these sediments allows large quantities of fill to be more easily acquired.  With 

the addition of the particle-size analysis results from the cores extracted in 2015, the sand 

fractions of the mound fill in B and C are found to be most similar to those found in Cores 3, 4, 

5, and 28, with Core 3 being the best match.   

However, Mound D is different.  The majority of the mound fill in Core 21 and Core 22 

contains between 40 and 49 percent sand.  Fractions in that range are found only in the top 5 to 

10 cm of a handful of scattered cores, most notably Core 23 and Core 24, which are close to 

Mound D, and Cores 1, 2, 16, and 17, which are farther away.  There are similar sand 

percentages in Core 3, Core 28, and the top 60 cm of Core 6, which is on the opposite side of the 

study area.  If the builders were in fact using the most easily attainable sediments, it would 

appear that for Mound D, they were simply scraping up the loamy topsoil from nearby areas.  
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While Core 3 and Core 28 aren’t as far as Core 6, it would still be a considerable distance over 

which to transport a heavy basket load of sediment. 

One question that carried over from 2014 was whether the low-lying area to the north of 

Mound B might have been a borrow pit.  The first prepared surface of Mound B was the only 

part of any of the mounds that could be tied to this area.  The sand fraction for this surface, 

between 23 and 30 percent, matches the top 120 cm of Core 12, which is between 16 and 37 

percent.    

The majority of the fill in Mounds B and C has a sand fraction between 51 and 78 

percent.  I offer three possible reasons for this seemingly purposeful selection.  First, the mound 

builders were selecting sediments that were easy to dig up.  Second, they were selecting 

sediments with higher drainage capability, believing this would be more structurally 

advantageous.  Third, there was a ritual or belief surrounding the selection.  If color was a factor 

in the selection of building materials, it was not noticeable in the narrow window provided by the 

cores.  The layers of alternating color are visible but subtle.  They are not the “zebra-stripe” 

layers seen at Goforth-Saindon (Kay et al., 1989) or the “alternating layers of light and dark 

colored sediments” at Huntsville (Sabo, 1986).  They could just represent natural processes, like 

slope wash or animal burrows.  Alternatively, they could be evidence of basket loads, prepared 

surfaces, or veneers and were purposefully selected based on color and/or texture (Kay et al., 

1989; Vogel et al., 2005; Sherwood & Kidder, 2011).  Answers to questions about the true nature 

of these layers will best be discovered through excavation, or even close interval coring. 

  Mound fill origin wasn’t the only interesting information learned about the mounds from 

the cores.  First, none of the mounds had an A horizon below the initial cultural layer, indicating 

that the ground surface was prepared before building began.  This practice has been seen on 
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other mound sites.  Sherwood and Kidder (2011) took note of this practice at the Late Archaic 

sites of Nolan (Arco et al., 2006) and Watson Brake (Saunders et al., 2005) and at the effigy 

mounds from the Late Woodland period in the northern United States (Barrett, 1933; Barrett & 

Hawkes, 1919; Birmingham & Eisenberg, 2000).  Like the purposeful selection of sandy textures 

in the mound fill, the removal of the A horizon could be of ritual or technological significance.   

Second, the Bt horizon designated as the beginning of the submound stratigraphy for the 

mounds is higher in elevation than the first Bt horizon for the cores between the mounds and the 

river and at elevations very close to or slightly above those along the fence line.  This indicates 

that the mounds were purposefully placed on a slightly elevated area of the floodplain. 

Lastly, if all other reasons, such as erosion and deposition, are ruled out, it is possible that 

the mounds were purposefully capped with sediments containing higher fractions of sand.  

Sediments used for mound fill with the highest sand fraction were found at the summits of 

Mounds B and C.  The summit of Mound D was not as significantly high in sand but also may be 

the most disturbed.  The undulating surface of the mound and the mixture of horizons in Core 22 

would suggest that the reports of an excavation of this mound by the U of A museum are true.      

 

   4.1   Problems and Future Investigations 

 

There is a general consensus that the hydrometer method for particle size analysis is less 

accurate in comparison to the pipette method.  While this may be true, the hydrometer method 

has provided results with adequate accuracy for this particular study.  There was an effort to 

acquire a more accurate clay fraction, by taking measurements at 6 and 11 hours, providing the 

clay more time to fall out of suspension.   
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Another issue is that the procedure for selecting samples was different between the 2014 

and 2015 samples and between Rathgaber’s samples and my samples from 2015.  For 2014 and 

Rathgaber in 2015, the cores were cut into 10 cm samples regardless of horizons.  For my 2015 

cores, samples were selected based on horizon change with a buffer in between horizons.  While 

the difference in results might be negligible, it should be mentioned that there was a difference in 

procedure.   

The depth of bedrock would have added to understanding the fluvial processes across the 

site.  An assumption was made that the depth at which the Giddings rig refused to proceed was at 

or close to the bedrock.  Access to the necessary geophysical and GPS equipment would have 

solved this problem.  Time was also a factor in this and many other aspects of this project.   

      With more time, a long list of additional analyses could have been performed.  The main 

one among them would be processing the sand fraction for all of the cores, not just the North – 

South Transect.  This would have increased the understanding of the natural and cultural 

processes across the whole study area with much more precision.  It would especially help with 

more closely determining the source of the mound fill as comparisons could be made across the 

site.  In addition, sand fractions on the slopes of Mound B and C would help to verify the results 

for Mound D and help explain the variation in sand fractions around the base of Mound C.  More 

cores at closer intervals would also clarify many questions or blank spots in this data.  Cores at 

closer intervals along the slopes and at the bases would improve the visualization of slope wash 

and clarify to what extent the bases spread.  They would also provide us with an estimation of 

exactly how much shorter the mounds have become. 

      In order to advance our knowledge of the mound stratigraphy, the best future 

investigation would be excavation.  A major limitation of coring is the very narrow window it 
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provides.  This study could only give hints as to the meaning of the alternating colors in the 

mound fill.  Mounds C and D might be sufficiently explored with two to three 2 m x 2 m units.  

Mound B would benefit from a trench, as it is likely to be deeper than Occupational Safety and 

Health Administration regulations would allow for a unit.    

      Adding a comparison of this study’s data to Sullivan’s (2016) geophysical survey results 

and GPS coordinates would benefit any future investigations at the site.  Along with the new 

radiocarbon date from Mound C that Sullivan obtained, radiocarbon dating the sample of 

charcoal collected from Mound B would improve our knowledge of the chronology of the site. 

 

     5.  Conclusion 

      The conclusions presented in this thesis, though susceptible to alteration by future 

investigations, add to our knowledge of the Collins site.  Through the use of coring, particle size 

analysis, sand fraction analysis, and soil profile descriptions suggestions have been made 

concerning the decrease in height of the mounds, the origin of mound fill, and the human activity 

and natural processes that have altered the mounds.  Erosion caused by plowing, wind, water, 

and gravity is suggested here to be the cause of the decrease in mound height and, in addition to 

historic plowing, the lateral spreading of the bases.  The origin of the mound fill for Mounds B 

and C was found to be most similar to the sediments found near the river and may have been 

purposefully chosen for its ease of access, a ritual belief or purpose, or for a perceived structural 

benefit.  The origin of fill for Mound D was most similar to sediments from nearby cores.  Core 

22 tentatively confirms a past excavation in Mound D and an unintentional discovery was the 

removal of the A horizon before mound construction began.   
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The new radiocarbon date for Mound C (Sullivan, 2016), though not a direct result of this 

study, is an exciting byproduct.  A comparison between Sullivan’s geophysical data and the 

coring data from this project is definitely warranted.  The coring from this project might confirm 

the structures she has found or may have completely missed them.  While this project has been 

an excellent learning experience for me, it is the contributions of this study to any future 

investigations that I find most satisfying.   
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Appendix A: Radiocarbon dating of Mound C (Sullivan, 2016), calibrated using IntCal13. 

 

 

 
 

Location of charcoal used for radiocarbon dating in Core 25 particle size graph. 

 

 

 

Prepared surface in Core 25 (Photo By Author). 
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Appendix B: Calculations 

 

To decompress a soil core 
Divide depth of soil core hole by length of extracted soil  

 
Calculation for Stoke’s Law (Brown, 1997) 

F = 6πrnv 
where F is the drag force on a sphere as it travels through a fluid; r is the radius of the sphere; n 

is the velocity of the fluid; and v is the velocity of the sphere. 

 

Calculations for the Hydrometer Method (modified from Gee and Or, 2002) 
Find C = concentration of soil in suspension using the calculation 

C = R - RL 

where R = uncorrected reading and Rl= blank reading.   
 
Find P = the summation percentage for the given time interval using the calculation  

P = (C/Co)/100 
where Co is the weight of the soil in grams. 
 

Find X = the mean particle diameter in suspension (µm) at time t, using the calculation 

X=(θt-1/2 ) temperature correction 

where θ=the determination of a particle size from observed hydrometer readings and 
t=sedimentation time in minutes.   
 

Temperature correction is found with the calculation 
SQRT((2.0614-(0.0499*mean temperature))+(0.0005*mean temperature^2)) 
 
 
 

The 6 hour θ calculation is 
12.18*(SQRT(16.295-(0.164*6 hour reading)) 

 

The 11 hour θ calculation is 
12.18*(SQRT(16.295-(0.164*11 hour reading)) 
 

To find the clay fraction 
mln(2/X11) + P11 
where X11 is the mean particle diameter in suspension at 11 hours, P11 is the summation 
percentage at 11 hours, , m = (P6 – P11)/ln(X6/X11) which is the slope fo the summation 
percentage curve between 6 and 11 hours, where X6 is the mean particle diameter in suspension 
at 6 hours and P6 is the summation percentage at 6 hours. 
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To find the sand fraction 
100 – ((average of the 40 second readings – mean blank reading)/oven dry weight in grams) x 
100 
 

To find the silt fraction 
100 – (sand percentage + clay percentage) 
 

Calculation for sand fraction analysis 
Weight of very coarse, coarse, medium, fine, or very fine fraction divided by Total sand fraction 
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Appendix C: Soil Master Horizon and Subhorizon Nomenclature and Definitions (modified 

from Soil Science Society of America website 

(https://www.soils.org/publications/glossary/appendix/)). 

 

Master horizons 
O horizon - Layers dominated by organic material. Some are saturated with water for long 
periods or were once saturated but are now artificially drained; others have never been saturated. 

 
A horizon - Mineral horizons that formed at the surface or below an O horizon, that exhibit 
obliteration of all or much of the original rock structure, and that show one or more of the 
following: (1) an accumulation of humified organic matter intimately mixed with the mineral 
fraction and not dominated by properties characteristic of E or B horizons (defined below) or (2) 
properties resulting from cultivation, pasturing, or similar kinds of disturbance. 

B horizon - Horizons that formed below an A, E,, or O horizon and are dominated by obliteration 

of all or much of the original rock structure and show one or more of the following: 

1. illuvial concentration of silicate clay, iron, aluminum, humus, carbonates, gypsum, or 
silica, alone or in combination; 

2. evidence of removal of carbonates; 
3. residual concentration of sesquioxides; 
4. coatings of sesquioxides that make the horizon conspicuously lower in value, higher in 

chroma, or redder in hue than overlying and underlying horizons without apparent 
illuviation of iron; 

5. alteration that forms silicate clay or liberates oxides or both and that forms granular, 
blocky, or prismatic structure if volume changes accompany changes in moisture content; 
or 

6. brittleness. 

 
C horizon - Horizons or layers, excluding hard bedrock, that are little affected by pedogenic 
processes and lack properties of O, A, E, or B horizons. The material of C layers may be either 
like or unlike that from which the solum presumably formed. The C horizon may have been 
modified even if there is no evidence of pedogenesis. 

 
Subhorizons 

p - Tillage or other disturbance.  This symbol is used to indicate a disturbance of the surface 
layer by mechanical means, pasturing, or similar uses. A disturbed organic horizon is designated 
Op. A disturbed mineral horizon is designated Ap even though clearly once an E, B, or C 
horizon. 
t - Accumulation of silicate clay. This symbol is used to indicate an accumulation of silicate clay 
that has formed and subsequently translocated within the horizon or has been moved into the 
horizon by illuviation, or both. At least some part should show evidence of clay accumulation in 
the form of coatings on surfaces of peds or in pores, or as lamellae, or bridges between mineral 
grains.  
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w - Development of color or structure.  This symbol is used with “B” to indicate the 
development of color or structure, or both, with little or no apparent illuvial accumulation of 
material. It should not be used to indicate a transitional horizon. 
 

Vertical subdivision 
Used for subdividing thick layers that are slightly different.  Indicated by consecutively placing 
an Arabic numeral after a master horizon or subhorizon.  For example, C1, C2, C3 or Bt1, Bt2, 
Bt3…. 
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Appendix D: Soil Descriptions 

 

Core 1 (from Rathgaber, 2015) 

 
 

Core 2 (from Rathgaber, 2015) 

 
 

 

 

Core 3 (from Angeles, 2014) 

 
 

 

 

Depth (cm) Horizon Color Structure Roots Boundary
Clay 

Film

0-3 AB 10YR 3/3 Granular, Weak
Common, 

Fine
Gradual Y

3-50 10YR 3/3 Granular, Moderate

Few, Very 

fine, Very 

coarse

Gradual Y

50-59 Bt1 7.5YR 3/3 Granular, Moderate
Very Few, 

Very fine
Gradual N

Core 3
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Core 4 (from Rathgaber, 2015) 

 
 

Core 5 (from Rathgaber, 2015)  
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Core 6 (from Rathgaber, 2015) 
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Depth 

(cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-28 Ap

10YR 4/3 

Brown

Silt 

Loam NA NA

Weak,Very 

Coarse, 

Granular

Many, 

Fine

Many, Very 

Fine NA Clear Plow zone

28-53 A

10YR 4/3 

Brown

Silt 

Loam NA

Few, faint 

manganese; 

increases with 

depth

Moderate, 

Coarse, 

Subangular 

Blocky

Common

, Fine

Many, Very 

Fine NA Clear

53-72 Bt1

7.5YR 4/3 

Dark 

Brown

Silt 

Loam NA NA

Moderate, 

Coarse, 

Subangular 

Blocky

Common

, Fine

Common, 

Very Fine

Very 

Few, 

Thin, 

Patchy Gradual Soil formation

72-182 Bt2

7.5YR 4/6 

Strong 

Brown

Silt 

Loam/ 

Clay 

Loam NA NA

Moderate, 

Coarse, 

Subangular 

Blocky

Few, 

Fine

Common, 

Very Fine

Few, 

Thin, 

Patchy Gradual

Overbank 

sediment 

begins

182-221 C1

7.5YR 5/4 

Brown 

(mottled)

Clay 

Loam NA

Few, Medium, 

Faint, Root 

Pores; 

Concentrations 

- 5YR 3/4 

Dark Reddish 

Brown, 

Depletions - 

10YR 6/4 

Light Yellowish 

Brown

Moderate, 

Coarse, 

Subangular 

Blocky

Few, 

Fine

Common, 

Very Fine

Few, 

Thin, 

Patchy Gradual

221-249 C2

10YR 5/4 

Yellowish 

Brown Loam NA

Few, Medium, 

Faint, Root 

Pores (very 

few, fine); 

Concentrations 

- 7.5YR 3/2 

Dark Brown, 

Depletions - 

10YR 7/6 

Yellow

Moderate, 

Coarse, 

Subangular 

Blocky

Few, 

Fine

Common, 

Fine

Few, 

Thin, 

Patchy Gradual

249-283 C3

7.5YR 4/4 

Dark 

Yellowish 

Brown

Sandy 

Loam NA

Few, Medium, 

Distinct, Root 

Pores-very 

few, fine; 

Concentrations 

- 7.5YR 3/2 

Dark Brown, 

Depletions - 

10YR 7/6 

Yellow

Moderate, 

Coarse, 

Subangular 

Blocky

Few, 

Fine Few, Fine NA Clear

Core 7
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Depth 

(cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

283-300 C4

7.5YR 3/4 

Dark 

Brown

Sandy 

Loam NA

Same as 

previous level

Weak, 

Medium, 

Subangular 

Blocky NA

Very Few, 

Fine NA

Bottom 

stratum

Core 7 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-11 Ap

10YR 

4/4, Dark 

Yellowish 

Brown

Sandy 

Loam(v. 

fine sand) NA NA

Weak, 

coarse, 

granular

Common, 

fine

Common, 

fine NA Gradual Plow zone

11-32 C

10YR 

4/4, Dark 

Yellowish 

Brown

Sandy 

Loam(v. 

fine sand) NA NA

Moderate, 

coarse, 

granular

Common, 

very fine

Common, 

very fine NA Clear

32-40 A

10YR 

3/4, Dark 

Yellowish 

Brown

Sandy 

Loam(v. 

fine sand) NA NA

Moderate, 

coarse, 

subangular 

blocky

Common, 

very fine

Few, very 

fine NA Clear

40-95 (40-

60 prepared 

surface) Ab

10YR 

2/2, Very 

Dark 

Brown 

with 

charcoal

Sandy 

Loam/Silt 

Loam NA NA

Moderate, 

medium, 

subangular 

blocky

Common, 

fine

Few, very 

fine NA Gradual

Prepared 

surface

95-190 Bt1

7.5YR 

4/6, 

Strong 

Brown

Silt 

Loam/Silty 

Clay 

Loam/Clay 

Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Very few, 

very fine Few, fine

Few, thin, 

patchy Clear

Overbank 

sediment 

begins

190-243 Bt2

7.5YR 

5/6, 

Strong 

Brown

Clay 

Loam/Silty 

Clay Loam NA NA

Moderate, 

coarse, 

subangular 

blocky NA

Very few, 

fine

Few, thin, 

patchy with 

few, fine 

Mn stains 

on cutans Gradual

243-253 Bt3

7.5YR 

4/6, 

Strong 

Brown Loam NA See Cutans

Moderate, 

medium, 

subangular 

blocky NA Few, fine

Very few, 

thin, patchy 

with 

Common, 

fine 

manganese 

films Abrupt

253-286 C1

10YR 

4/4, Dark 

Yellowish 

Brown

Sandy 

Loam NA See Cutans

Moderate, 

coarse, 

subangular 

blocky NA Few, fine

Common, 

thin, 

continuous 

with Few, 

medium 

manganese 

films Abrupt

Core 8
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

292-326 C3

10YR 

4/4, Dark 

Yellowish 

Brown

Sandy 

Loam (fine 

sand) NA

Concentrations 

- common, 

medium, faint 

(5YR 3/4 

Dark Reddish 

Brown); 

Depletions - 

common, 

medium, 

distinct (10YR 

6/4 Light 

Yellowish 

Brown); root 

pores present

Moderate, 

medium, 

subangular 

blocky NA Few, fine NA Abrupt

326-330 C4

10YR 

4/4, Dark 

Yellowish 

Brown

Sandy 

Loam

Few, 

subround

Concentrations 

- common, 

medium, faint 

(5YR 3/4 

Dark Reddish 

Brown); 

Depletions - 

common, 

medium, 

distinct (10YR 

6/2 Light 

Brownish 

Gray); Few, 

medium 

manganese 

films along 

root pores

Moderate, 

medium, 

subangular 

blocky NA Few, fine NA

Core 8 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root PoresCutans Boundary Interpretation

0-9 Ap

10YR 

4/6, Dark 

Yellowish 

Brown

Sandy 

Loam NA NA

Weak, 

coarse, 

subangular 

blocky

Many, 

very fine Many fine NA Clear

Plowzone, 

previously Fill

9-24 Bw1

10YR 

4/3,  

Brown Loam

Few, 

round (1 

at 15 cm) NA

Moderate, 

medium, 

subangular 

blocky

Common, 

very fine

Few, very 

fine NA Gradual Fill

24-

61(charcoal 

at 50 and 

58) Bt1

10YR 

4/3,  

Brown

Sandy 

Clay 

Loam/  

Loam NA NA

Strong, 

coarse, 

subangular 

blocky Few, fine

Common, 

fine

Few, thin, 

patchy Clear Fill

61-132 

(charcoal at 

81, 110) Bt2/Bw2

7.5YR 

3/4 Dark 

Brown

Sandy 

Loam

Pebble at 

102 NA

Moderate, 

medium, 

subangular 

blocky

Common, 

fine

Common, 

fine

Few, thin, 

patchy Clear Fill

Core 9
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root PoresCutans Boundary Interpretation

132-222 

(charcoal at 

144; flake 

at 139 in 

archived 

half) Bw3/Bt3

7.5YR 

3/4 Dark 

Brown

Sandy 

Loam/ 

Loam/ 

Sandy 

Loam NA NA

Moderate, 

medium, 

subangular 

blocky Few, fine

Common, 

fine

Few, thin, 

patchy Clear Fill

222-240 

(charcoal 

increases) Bw4

10YR 

3/3, Dark 

Brown Silt Loam NA NA

Moderate, 

fine, 

subangular 

blocky NA NA

Few, thin, 

patchy Very Clear Fill

240-260 

(large 

charcoal, 

burnt clay at 

252)

Bt4 

(Burnt 

clay - 

10YR 

2/1 Black 

and 

lighter 

area - 

10YR 

6/6 

Brownish 

Yellow at 

257)

5YR 3/4 

Dark 

Reddish 

Brown 

with 

flecks of 

2.5YR 

5/8 Red 

changing 

to 7.5YR 

3/3 Dark 

Brown 

with 

charcoal Silt Loam NA NA

Moderate, 

fine, 

subangular 

blocky NA Few, fine

Common, 

medium, 

patchy Clear

Surfaces begin 

and continue 

until beginning 

of next horizon

260-404 1Bt/C

7.5YR 

3/4 Dark 

Brown

Silty 

Loam/Silty 

Clay 

Loam NA NA

Moderate, 

coarse, 

subangular 

blocky NA

Common, 

fine

Common, 

medium, 

discontinuous Clear

Submound; 

No A horizon; 

possibly 

prepared 

ground before 

building or 

prairie mound

404-468 2Bt/C

10YR 

3/6, Dark 

Yellowish 

Brown

Clay 

Loam NA

Concentrations 

- few, fine, 

faint, 5YR 3/3 

Dark Reddish 

Brown; 

Depletions - 

same, 10YR 

7/6 Yellow

Moderate, 

coarse, 

subangular 

blocky NA Few, fine

Common, 

medium, 

discontinuous Clear

Overbank 

sediment

468-492 C1

10YR 

4/4, Dark 

Yellowish 

Brown Loam NA

Concentrations 

- few, fine, 

faint, 5YR 3/3 

Dark Reddish 

Brown; 

Depletions - 

same, 10YR 

7/6 Yellow

Moderate, 

coarse, 

subangular 

blocky NA

Common, 

fine

Common, 

thin, patchy Gradual

Overbank 

sediment

492-554 C2

10YR 

3/6, Dark 

Yellowish 

Brown

Sandy 

Loam NA

Concentrations 

- few, fine, 

faint, 5YR 3/3 

Dark Reddish 

Brown; 

Depletions - 

same, 10YR 

7/6 Yellow

Moderate, 

medium, 

subangular 

blocky NA

Common, 

fine NA

Bottom 

Stratum

Core 9 (Cont.)
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root PoresCutans Boundary Interpretation

0-8 Ap

10YR 4/3,  

Brown

Sandy 

Loam NA NA

Weak, fine-

medium, 

subangular 

blocky

Many, 

very fine Many, fine NA Clear Plowzone; Fill

8-24 Bw1

10YR 4/3,  

Brown with 

very small 

black 

flecks

Sandy 

Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Many, fine Many, fine NA Clear Fill

24-32 Bw2

10YR 3/3, 

Dark 

Brown with 

few black 

flecks - 

larger than 

last layer - 

some very 

small 

charcoal Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Many, fine Many, fine NA Clear Fill

32-51 Bw3

10YR 4/3,  

Brown Loam

Few, 

round, 1 

6mm 

pebble NA

Moderate, 

coarse, 

subangular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Clear Fill

51-73 Bw4

7.5YR 3/3 

Dark 

Brown Loam NA NA

Weak, 

medium, 

subangular 

blocky

Common, 

fine Many, fine

Very few, 

thin, very 

patchy Clear Fill

73-91 

(charcoal 

but less than 

lower 

levels) Bw5

10YR 3/4, 

Dark 

Yellowish 

Brown

Sandy 

Loam NA NA

Weak, 

fine, 

subangular 

blocky Few, fine Many, fine

Very few, 

thin, very 

patchy Clear Fill

91-110 

(larger 

pieces of 

charcoal) Bw6

10YR 3/3, 

Dark 

Brown Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Few, fine

Common, 

fine

Few, thin, 

patchy Abrupt Fill

110-118 Bw7

10YR 3/3, 

Dark 

Brown with 

10YR 7/4 

Very Pale 

Brown, 

alternating 

laminated 

layers 

Sandy 

Loam NA NA

Strong, 

coarse, 

subangular 

blocky NA Few, fine NA Abrupt

Prepared 

Surfaces with 

sequences of 

weathering

118-128 Bw8

10YR 3/3, 

Dark 

Brown Loam

Few, 

round, 1 

2.5 cm X 

3 cm 

pebble NA

Moderate, 

coarse, 

subangular 

blocky Few, fine

Common, 

very fine NA Clear

Alternating 

colors; Layers 

of fill?

Core 10
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root PoresCutans Boundary Interpretation

128-154 Bw9

7.5YR 3/4 

Dark 

Brown

Loam/ 

Sandy 

Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Few, fine Many, fine NA Clear

Alternating 

colors; Layers 

of fill?

154-190 Bw10

10YR 3/4, 

Dark 

Yellowish 

Brown

Sandy 

Loam NA NA

Moderate, 

medium, 

subangular 

blocky Few, fine Many, fine

Very few, 

thin, very 

patchy Abrupt Fill

190-211

Bt1(Cultu

ral)

7.5YR 3/2 

Dark 

Brown; 

many 

charcoal 

flecks and Silty Loam NA NA

Moderate, 

coarse, 

subangular 

blocky NA Many, fine

Common, 

medium, 

discontinuous Clear

Cultural - 

structure 

surface?

211-216 Bt1

7.5YR 3/3 

Dark 

Brown Silt Loam NA

Concentrations 

- common, 

medium, faint, 

7.5YR 3/2 

Dark Brown

Moderate, 

medium, 

subangular 

blocky NA

Common, 

fine

Few, thin, 

patchy Clear

Submound 

begins/ 

Overbank 

sediment 

begins

216-225 Bt2

7.5YR 3/4 

Dark 

Brown Silt Loam NA NA

Strong, 

coarse, 

subangular 

blocky NA Many, fine NA Clear

225-247 

(238-244 

flecks of 

burnt clay; 

243- chunk 

of charcoal)

Bt/C 

(Cultural)

7.5YR 3/3 

Dark 

Brown with 

charcoal 

and flecks 

of 7.5YR 

6/8 

Reddish 

Yellow Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky NA

Common, 

fine

Common, 

medium, 

discontinuous Clear

Cultural or just 

charcoal in B?

247-296 Bt/C

7.5YR 4/6 

Strong 

Brown

Silt Loam/ 

Silty Clay 

Loam NA NA

Moderate, 

fine, 

angular 

blocky NA Many, fine

Few, thin, 

patchy Clear

296-341 Bt3

7.5YR 4/6 

Strong 

Brown

Silty Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky NA

Common, 

fine

Common, 

medium, 

discontinuous Gradual

341-354 Bt4

10YR 4/4 

Dark 

Yellowish 

Brown

Silty Clay 

Loam NA

Depletions - 

common, 

coarse, faint, 

masses - 

10YR 8/4 

Very Pale 

Brown

Moderate, 

very 

coarse, 

angular 

blocky NA

Very few, 

very fine

Few, thin, 

patchy Clear

Overbank 

sediment ends

Core 10 (Cont.)
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root PoresCutans Boundary Interpretation

354-429 C1

10YR 4/6 

Dark 

Yellowish 

Brown

Loam/Clay 

Loam/ 

Loam/ 

Sandy Clay 

Loam NA

Concentrations 

- faint, masses, 

few, 10YR 8/4 

Very Pale 

Brown; 

Depletions - 

few, fine, 

distinct 10YR 

3/2 Very Dark 

Grayish Brown

Moderate, 

coarse, 

angular 

blocky NA

Common, 

fine

Very few, 

thin,  patchy Clear

Bottom 

Stratum

429-445 C2

10YR 4/4 

Dark 

Yellowish 

Brown

Sandy 

Loam NA

Concentrations 

- faint, masses, 

very few, 

10YR 8/4 

Very Pale 

Brown; 

Depletions - 

very few, fine, 

distinct 10YR 

3/2 Very Dark 

Grayish Brown

Moderate, 

coarse, 

angular 

blocky NA Many, fine NA

Bottom 

Stratum

Core 10 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-6 Ap

10YR 

3/3, Dark 

Brown Loam NA NA

Moderate, 

medium, 

subangular 

blocky Many, fine

Many, 

medium NA Clear Plow zone

6-28 A

10YR 

4/3,  

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Common, 

fine

Common, 

medium NA Gradual Soil formation

28-38 (1 - 

3 cm 

charcoal)

A or 

Cultural? 

Surface? 

Deep 

Plowzone?

10YR 

2/2 Very 

Dark 

Brown Loam NA

Concentrations 

- few, medium, 

distinct; 

spherical 

nodules - 

10YR 6/8 

Brownish 

Yellow

Moderate, 

coarse, 

angular 

blocky

Common, 

fine

Many, 

medium NA Clear

Historic 

disturbance?

38-47 (1 

fleck of 

charcoal)

Ab or 

Cultural? 

Surface? 

Deep 

Plowzone?

7.5YR 

2.5/2 

Very 

Dark 

Brown Silt Loam NA

Concentrations 

- common, 

coarse, 

distinct; 

irregular nodes 

- 7.5YR 5/6 

Strong Brown

Moderate, 

coarse, 

angular 

blocky

Common, 

fine

Many, fine - 

medium NA Clear

Historic 

disturbance?

Core 11
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

47-53 Bt

7.5YR 

3/3 Dark 

Brown Loam NA

Concentrations 

- few, fine, 

faint; irregular 

nodes - 7.5YR 

5/6 Strong 

Brown 

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine NA Clear

Overbank 

sediment 

begins

53-72 Bt

7.5YR 

4/3 

Brown

Silty Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, 

thin, 

patchy Clear

72-172 Bt

7.5YR 

4/3 

Brown

Silty Clay 

Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Few, fine Many, fine

Common

, medium, 

discontin

uous Gradual

172-244 Bt/C

7.5YR 

4/3 

Brown

Silty Clay 

Loam NA

Depletions - 

few, fine, faint, 

thin ribbons, 

10YR 6/8 

Yellowish 

Brown

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Many, 

thick, 

discontin

uous

Beginning of 

bottom stratum

Core 11 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-6 Ap

10YR 

4/2 Dark 

Grayish 

Brown Silt Loam NA NA

Weak, 

medium, 

subangular 

blocky

Many, 

fine

Common, 

fine NA Clear Plow zone

6-17 Ap

10YR 

4/2 Dark 

Grayish 

Brown Silt Loam NA NA

Moderate, 

medium, 

subangular 

blocky

Common, 

fine

Common, 

fine NA Clear Plow zone

17-36 A

10YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine NA Clear Soil formation

36-56 AB1

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Few, 

thin, 

patchy Clear

Old channel/ 

Backswamp?

56-71 AB2

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Few, fine Many, fine

Few, 

thin, 

patchy Clear

71-167 AB3

7.5YR 

4/3 

Strong 

Brown

Loam/ 

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, 

thin, 

patchy Clear

167-219 AB4

7.5YR 

4/3 

Strong 

Brown

Silty Clay 

Loam/ 

Loam 

(fine 

sand) NA NA

Moderate, 

coarse, 

subangular 

blocky NA

Common, 

fine NA Clear

Core 12
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

219-247 AB5

7.5YR 

4/2 

Brown

Loam/ 

Sandy 

Loam 

(larger 

grain 

sand) NA

Depletions - 

few, fine, faint, 

thin ribbons, 

10YR 6/8 

Yellowish 

Brown

Moderate, 

coarse, 

angular 

blocky NA

Common, 

fine NA Abrupt

247-256

C1/ 

Alluvium

7.5YR 

4/2 

Brown

Sandy 

Loam 

(larger 

grain than 

previous 

level, 

mixed 

with 

gravel)

Common, 

round to 

well 

rounded NA

Weak to 

moderate, 

fine to 

coarse, 

granular to 

subangular 

blocky NA NA NA Abrupt

Bottom Stratum 

begins

256-265

C2/ 

Alluvium NA

Fine 

Sand 

(very 

coarse 

with 

gravel)

Abundant, 

round NA

Weak, 

granular, 

single grain, 

structureless NA NA NA Abrupt

265-279

Alluvium 

(Bedding)

Silty Clay 

Loam NA

Concentrations 

and depletions, 

distinct layers; 

10YR 6/4 

Light Yellowish 

Brown, 10YR 

4/1 Dark Gray, 

10YR 6/6 

Brownish 

Yellow, 10YR 

5/6 Yellowish 

Brown, 7.5YR 

3/2 Dark 

Brown, 10YR 

5/6, 7.5YR 

3/2, 10YR 5/6, 

10YR 3/6 

Dark Yellowish 

Brown, 7.5YR 

3/2, 10YR 5/6

Moderate, 

coarse, 

angular 

blocky NA NA NA Abrupt

279-282

C3/ 

Alluvium 

(Bedding)

7.5YR 

3/3 Dark 

Brown

Fine 

Sand

Few, 

subround NA

Moderate, 

medium, 

subangular 

blocky NA NA NA

Core 12 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-6 Ap1

7.5YR 

3/3 Dark 

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

fine Few, fine NA Clear Plow zone

Core 13
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

6-33 Ap2

10YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

fine Many, fine NA Clear

Plow zone or 

prehistoric?    

23-50 and 72 - 

mottled 

sediments 

similar seen in 

14

33-45 Bt1

7.5YR 

3/4 Dark 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine

Common, 

fine NA Clear

Overbank 

sediment begins

45-189 Bt2

7.5YR 

4/4 

Brown

Silt 

Loam/ 

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine

Many, 

medium

Few, thin, 

patchy Gradual

189-225 C

7.5YR 

4/6 

Strong 

Brown

Sandy 

Clay 

Loam NA

Concentrations - 

few, fine, faint, 

small masses, 

10YR 7/6 Very 

Pale Brown; 

Depletions - 

very small, 

distinct nodules, 

7.5YR 2.5/2 

Very Dark 

Brown

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Common, 

medium, 

patchy - 

root pores Bottom Stratum

Core 13 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-13 Ap

10YR 

4/2 Dark 

Grayish 

Brown

Sandy 

Loam NA NA

Moderate, 

medium, 

subangular 

blocky Many, fine Many, fine NA Clear Plow zone

13-21 A1

10YR 

4/3,  

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Many, fine Many, fine NA Clear Soil formation

21-54 A2

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky Many, fine Many, fine

Common, 

medium, 

patchy Clear Soil formation

54-65 Ab

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine

Many, 

medium

Many, 

medium, 

discontinuous Clear

Historic or 

prehistoric 

disturbance?  

59-96 mottled 

sediments 

similar seen in 

13

Core 14
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

65-185 Bt1

7.5YR 

4/3 

Brown

Silty Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Many, thick, 

discontinuous Gradual

Overbank 

sediment

185-240 Bt2

10YR 

4/4 Dark 

Yellowish 

Brown

Silty Clay 

Loam/ 

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Common, 

medium, 

patchy

Overbank 

sediment

Core 14 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots RP Cutans Bound. Interpretation

0-4 Ap

10YR 

4/2 Dark 

Grayish 

Brown Silt Loam NA NA

Moderate, 

medium, 

subangular 

blocky

Many, 

fine, 

medium

Common, 

fine NA Clear Plow zone

4-28 A

10YR 

4/2 Dark 

Grayish 

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

fine Many, fine

Very few, 

thin, patchy Clear Soil Formation

28-49 Bt1

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Many, thick, 

discontinuous Clear Soil Formation

49-128 Bt2

7.5YR 

4/4 

Brown

Silt 

Loam/ 

Clay 

Loam/ 

Silty Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine (less 

than last 

level)

Many, 

medium

Many, thick, 

discontinuous Clear

Overbank 

sediment begins

128-178 Bt3

7.5YR 

4/3 

Brown

Silty Clay 

Loam/ 

Clay 

Loam

Few, 

round, 1 - 

1.5 X 1.5 

cm pebble NA

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Many, thick, 

discontinuous Gradual

178-234 C1

7.5YR 

5/6 

Strong 

Brown

Clay 

Loam

Few, 

subround, 

1 - 2 cm 

pebble at 

192 in 

archived 

side NA

Moderate, 

coarse, 

angular 

blocky NA

Common, 

fine

Many, thick, 

discontinuous Clear

234-258 C2

7.5YR 

5/3 

Brown Loam

Few, 

round, 1 - 

0.5 cm 

pebble NA

Moderate, 

medium, 

angular 

blocky Few, fine Many, fine

Few, thin, 

patchy Clear

258-277 C3

10YR 

4/3 

Brown

Sandy 

Loam NA

Very few 

manganese

Moderate, 

medium, 

angular 

blocky Few, fine Many, fine

Few, thin, 

patchy Bottom Stratum

Core 15
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-5 Ap

10YR 

4/2 Dark 

Grayish 

Brown Loam NA NA

Moderate, 

medium, 

subangular 

blocky Many, fine Many, fine NA Clear  Plow zone

5-20 A

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

medium, 

angular 

blocky Many, fine

Common, 

fine NA Clear Soil formation

20-30 Bt1

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky Many, fine Many, fine NA Clear Soil formation

30-143 Bt2

7.5YR 

4/4 

Brown

Silt 

Loam/ 

Silty Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Many, thick, 

discontinuous Gradual

Soil formation/ 

Overbank 

sediment begins

143-191 Bt3

7.5YR 

4/3 

Brown

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Many, 

medium, 

more 

discontinuous 

than last level Gradual

191-217 C1

7.5YR 

5/6 

Strong 

Brown

Sandy 

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Few, thin, 

patchy Abrupt

217-230

C2/ 

Alluvial 

bands

7.5YR 

4/3 

Brown

Sandy 

Loam

Few, 

subangular/ 

subrounded,

cobbles NA

Moderate, 

medium, 

subangular 

blocky NA Many, fine

Few, thin, 

patchy Abrupt Bottom stratum

230-240

High 

velocity 

turbulent 

flood 

event

7.5YR 

4/4 

Brown 

with 

charcoal Sand

Abundant, 

subangular/ 

subround 

cobbles and 

pebbles NA

Weak, 

fine, 

granular NA NA NA

Note: 

Fines 

upward to 

next level Bottom stratum

Core 16

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-6 Ap

10YR 4/2 

Dark 

Grayish 

Brown Loam NA NA

Moderate, 

medium, 

subangular 

blocky

Many, fine 

and 

medium Many, fine NA Clear Plow zone

6-21 A1

7.5YR 4/2 

Brown Loam NA NA

Moderate, 

medium, 

subangular 

blocky Many, fine Many, fine NA Clear Soil formation

21-32 A2

7.5YR 4/3 

Brown Silt Loam NA NA

Moderate, 

medium, 

angular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Clear Soil formation

Core 17
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

32-99 Bt

7.5YR 4/4 

Brown with 

2 cm of 

10YR 4/3

Silt Loam/ 

Clay Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Many, thick, 

discontinuous Clear

Overbank 

sediment 

begins

99-146 Bt/C

7.5YR 4/4 

Brown

Clay Loam/ 

Sandy Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Common, 

medium, 

patchy Clear

146-211

C 

(banded, 

charcoal 

at 180)

7.5YR 4/4 

Brown (slate 

or 

manganese?)

Sandy Clay 

Loam/ 

Sandy 

Loam 

(increasing 

sand with 

depth 

starting at 

this level)

Few, 

round, 1 - 

slate-like, 

black, 1.5 

X 2 cm and 

1 - 2 X 3 

cm at 194, 

1 - 1.5 X 

1.75 cm at 

187) NA

Moderate, 

medium, 

subangular 

blocky Few, fine Many, fine NA Clear

Bottom 

Stratum

211-236

Alluvial 

bands 

(highly 

turbulent 

flood)

10YR 4/4 

Dark 

Yellowish 

Brown with 

charcoal or 

manganese?

Sandy 

Loam 

(mostly 

sand)

Common, 

round, 1 - 

3 X 4 cm 

and 1 - 2 X 

3 cm at 

218) NA

Moderate, 

medium, 

subangular 

blocky NA NA NA

Bottom 

stratum

Core 17 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-11 Ap

10YR 

4/2 Dark 

Grayish 

Brown

Sandy 

Loam NA NA

Moderate, 

medium, 

subangular 

blocky Many, fine Many, fine NA Gradual Plow zone

11-24 A1

7.5YR 

4/2 

Brown

Sandy 

Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Common, 

fine Many, fine NA Gradual Soil formtion

24-37 A2

7.5YR 

4/2 

Brown

Sandy 

Loam NA NA

Moderate, 

medium, 

angular 

blocky

Common, 

fine Many, fine NA Abrupt Soil formation

37-43

Ab or 

prepared 

surface?

10YR 

4/2 Dark 

Grayish 

Brown Loam NA

Depletions - 

common 

(quantity -2), 

fine, distinct, 

mass, 10YR 

7/4 Very Pale 

Brown

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Few, very 

thin, patchy Abrupt

Possible ramp 

of south side of 

mound

43-58 Bt1

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Many, thick, 

discontinuous Clear

Core 18
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

58-94 Bt2

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Many, thick, 

continuous Clear

94-171 Bt3

7.5YR 

4/4 

Brown

Silt 

Loam/Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Many, 

medium, 

discontinuous Gradual

171-230

Bt/C - 

Alluvium

7.5YR 

4/3 

Brown

Clay Loam 

(increasing 

sand size 

and 

quantity 

starting at 

this level)

Few, 

subrounded 

1 pebble at 

185 NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Common, 

medium, 

discontinuous Gradual

230-264

C - 

Alluvium - 

bands of 

slate start 

at 245

7.5YR 

4/3 

Brown

Loam/ 

Sandy 

Loam

Few, 

rounded, 

cobbles at 

256

Few, black  

slate-like 

concentrations

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Few, thin, 

patchy

Bottom 

Stratum

Core 18 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-8 Ap

7.5YR 

4/2 

Brown

Sandy 

Loam NA NA

Moderate, 

medium, 

subangular 

blocky

Many, 

fine

Common, 

fine NA Clear Plow zone

8-23 A

7.5YR 

4/3 

Brown

Sandy 

Loam

Few, 

subrounded, 

1 - 1X1 cm, 

1 - 2 X 1.5 

cm pebble NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

fine Many, fine NA Clear Soil formation

23-35

A/B 

(charcoal? 

mottled? 

At 34)

7.5YR 

4/2 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Many, 

fine Many, fine

Common, 

medium, 

discontinuous Clear

Historic or 

prehistoric 

disturbance? 

Similar mottling  

to 13 and 14

35-73 Bt1

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Many, 

fine Many, fine

Common, 

medium, 

discontinuous Clear

Overbank 

sediment begins

73-136 Bt2

7.5YR 

4/4 

Brown

Silty Clay 

Loam/ 

Clay 

Loam/Silty 

Clay Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Many, thick, 

discontinuous Clear

136-153 Bt3

7.5YR 

4/3 

Brown Clay Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Many, thick, 

continuous Gradual

Core 19
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

153-182 Bt4

7.5YR 

5/4 

Brown

Clay Loam 

(increasing 

sand size 

and 

quantity 

starting at 

this level) NA

Concentrations 

- few, fine, 

faint, 5YR 3/3 

Dark Reddish 

Brown

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Common, 

medium, 

discontinuous Gradual

182-212

Bt/C 

(Alluvial? - 

faint 

bands)

7.5YR 

5/6 

Strong 

Brown

Clay 

Loam/ 

Sandy Clay 

Loam NA

Concentrations 

- common, 

fine, distinct, 

slate-like, 

7.5YR 2.5/1 

Black

Moderate, 

coarse, 

angular 

blocky NA

Common, 

fine

Few, thin, 

patchy Bottom stratum

Core 19 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-3 Ap

10YR 

4/2 Dark 

Grayish 

Brown Silt Loam NA NA

Moderate, 

medium, 

subangular 

blocky

Many, 

fine Many, fine NA Clear Plow zone

3-22 A

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

fine Many, fine NA Clear Soil formation

22-61 Bt1

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Many, 

fine and 

one 

medium Many, fine

Many, 

medium, 

discontinuous Clear

Overbank 

sediment 

begins

61-88 Bt2

7.5YR 

4/4 

Brown

Clay 

Loam NA NA

Moderate, 

medium, 

angular 

blocky

Common, 

fine Many, fine

Many, thick, 

discontinuous Clear

88-133 Bt3

7.5YR 

4/3 

Brown

Clay 

Loam/ 

Loam

Few, 

subrounded, 

1 - 3 x 3 cm 

- broken at 

88

Concentrations 

- few, fine, 

distinct, slate-

like, 7.5YR 

2.5/1 Black

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Common, 

medium, 

patchy Clear

133-151

C - 

Alluvium, 

banded

7.5YR 

4/3 

Brown

Sandy 

Clay 

Loam

Few, 

subrounded, 

1 - 3 x 3 cm 

at 143, 1 - 

3.5 x 4 cm 

at bottom 

(possibly 

bedrock)

Concentrations 

- common, 

medium, 

distinct, slate-

like, 7.5YR 

2.5/1 Black, 

increasing with 

depth

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Common, 

medium, 

patchy Bottom stratum

Core 20

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-17 Ap

7.5YR 

4/2 

Brown

Sandy 

Loam

Few, 

subrounded

, 1 - 0.7 x 

0.5 cm and 

1 - 1 x 1.5 

cm pebbles NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

fine Many, fine NA Clear Plow zone; Fill

Core 21
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

17-22 Bw1

7.5YR 

4/2 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Many, 

medium Many, fine NA Clear Fill

22-33 Bt1

7.5YR 

4/2 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Abrupt Fill

33-48

Bt2; 

Prepared 

Surface

7.5YR 

3/2 Dark 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Abrupt

Prepared 

Surface #1

48-57

Bw2; 

Prepared 

Surface

10YR 

3/2 Very 

Dark 

Grayish 

Brown 

mottled 

with 

7.5YR 

3/2 at the 

border 

with 

previous 

level

Sandy 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine NA Abrupt

Prepared 

Surface #2

57-66 Bt3; Fill

7.5YR 

4/2 

Brown Loam NA

Concentrations 

- few, fine, 

very faint, 

7.5YR 3/2 

Dark Brown

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Common, 

thin, patchy Clear

Fill - to build up 

for prepared 

surface

66-109 Bw3; Fill

7.5YR 

4/2 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Clear

Fill - to build up 

for prepared 

surface

109-177 Bt1

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Clear

Submound - 

abrupt change 

in sand; 

Overbank 

sediment begins

177-245 Bt1

7.5YR 

4/3 

Brown

Silt 

Loam/ 

Clay 

Loam NA

Concentrations 

- common, 

medium, faint 

and distinct, 

7.5YR 3/1 

Very Dark 

Gray

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Many, 

medium, 

discontinuous Clear

245-258

C 

(Alluvium - 

banded)

7.5YR 

4/4 

Brown

Clay 

Loam

Few, 

subangular/

subrounded 

1 - cobble, 

broken on 

all sides

Concentrations 

- few, fine, 

faint, 10YR 

2/1 Black; 

Depletions - 

few, very faint, 

fine, 10YR 7/4 

Very Pale 

Brown

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Few, thin, 

patchy Bottom stratum

Core 21 (Cont.)
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-13 Ap

10YR 

4/3 

Brown

Sandy 

Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Many, fine Many, fine NA Clear Plow zone

13-22 Bw

10YR 

4/3 

Brown

Sandy 

Loam

Few, 

subrounded - 

1 pebble NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

medium Many, fine NA Clear Fill

22-34 Bt

7.5YR 

3/3 Dark 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Clear Fill

34-82

Ab - 

disturbed 

area

10YR 

4/2 Dark 

Grayish 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Common, 

medium, 

patchy Clear Fill

82-107

Bt1 (1 

very 

small 

charcoal 

at 89)

7.5YR 

3/4 Dark 

Brown

Loam/Silt 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Few, thin, 

patchy Gradual

Submound at 

94 - Overbank 

sediment begins

107-191 Bt2

7.5YR 

4/4 

Brown

Silt Loam/ 

Clay Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Common, 

medium, 

discontinuous Gradual

191-219 C

7.5YR 

4/6 

Strong 

Brown

Clay Loam 

(increased 

sand size 

and 

quantity)

Common, 

rounded, at 

199 - 1.5 x 

2.5 cm, at 

215 - 3 x 1 

cm and 2 x 

1 cm, at 219 

- 2.5 x 2 cm

Concentrations 

- common, 

fine, distinct, 

slate-like, 

7.5YR 2.5/1 

Black

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Common, 

thin, patchy Bottom stratum

Core 22

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root PoresCutans/SiltansBoundary Interpretation

0-7 Ap

10YR 

4/2 Dark 

Grayish 

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky Many, fine

Common, 

fine NA Clear Plow zone

7-31 A1

7.5YR 

4/3 

Brown Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine NA Clear Soil formation

31-50 A2

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Common, 

medium, 

discontinuous Clear Soil formation

50-113 Bt1

7.5YR 

4/3 

Brown

Silt Loam/ 

Loam/ 

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Many, thick, 

discontinuous Abrupt

Overbank 

sediment begins

Core 23
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Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root PoresCutans/SiltansBoundary Interpretation

113-146 Bt2

7.5YR 

4/3 

Brown

Clay 

Loam 

(increasing 

sand size 

and 

quantity 

into next 

level)

Common, 

round, 1 - 

1.5 x 2.5 

cm and 

smaller

Concentrations 

- many, fine to 

medium, 

distinct, slate-

like, 

manganese?, 

7.5YR 2.5/1 

Black

Moderate, 

coarse, 

angular 

blocky Few, fine Many, fine

Many, 

medium, 

discontinuous Abrupt

146-174

C1 - 

Alluvium

10YR 

4/4 Dark 

Yellowish 

Brown

Sandy 

Clay 

Loam

Common, 

round, 4 x 

2.5 cm 

and 

smaller

Concentrations 

- same as 

previous

Moderate, 

coarse, 

angular 

blocky NA Many, fine

Common, 

thin, patchy Abrupt

Bottom stratum 

begins; High 

velocity, 

turbulent flood 

event

174-195

C2 - 

Alluvium

10YR 

4/3  

Brown

Sandy 

Clay 

Loam

Common, 

rounded

Concentrations 

- same as 

previous

Moderate, 

coarse, 

subangular 

blocky NA NA

Few, thin, 

patchy

2 High velocity, 

turbulent flood 

event events, 

similar to 17

Core 23 (Cont.)

Depth (cm) Horizon Color Texture Gravel RMF Structure Roots Root Pores Cutans Boundary Interpretation

0-13 Ap

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

subangular 

blocky

Many, 

fine Many, fine NA Clear Plow zone

13-30 A

7.5YR 

4/2 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine NA Clear Soil formation

30-47 Bt1

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Common, 

medium, 

discontinuous Clear

Overbank 

sediment 

begins

47-89 Bt2

7.5YR 

4/3 

Brown Silt Loam NA NA

Moderate, 

coarse, 

angular 

blocky

Common, 

fine Many, fine

Common, 

thick, 

discontinuous Clear

89-152 Bt3

10YR 

4/3 

Brown

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine

Common, 

fine

Many, thick, 

discontinuous Clear

152-169

C1 - 

Alluvium

10YR 

4/4 Dark 

Yellowish 

Brown

Sandy 

Clay 

Loam NA NA

Moderate, 

coarse, 

angular 

blocky Few, fine

Common, 

fine

Many, 

medium, 

discontinuous Clear Bottom stratum

169-185

C1 - 

Alluvium

10YR 

4/4 Dark 

Yellowish 

Brown

Sandy 

Clay 

Loam

Few, 

subround

ed, at the 

bottom, 

1.25 x 1 

cm - 

bedrock?

Concentrations 

- common, 

fine, distinct, 

slate-like, 

10YR 2/1 

Black

Moderate, 

coarse, 

subangular 

blocky Few, fine

Common, 

fine

Few, thin, 

patchy Bottom stratum

Core 24
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Depth (cm) Horizon Color Structure Roots Boundary Clay Film

0-3 Oi 10YR 3/3
Subangular blocky, 

Weak

Common, 

Fine
N

3-6 Oe 10YR 3/3
Subangular blocky, 

Moderate
Few, Fine Gradual N

6-10 AB 10YR 3/3
Granular, 

Moderate

Few, Very 

fine
Gradual N

10-53 Bt1 7.5YR 3/3 Massive, Strong
Few, Very 

fine
Gradual Y

53-63 Bt1 10YR 4/6
Subangular blocky, 

Moderate

Few, Very 

fine
Gradual Y

63-79 Bt1

7.5YR 3/3, 

10YR 5/3, 

7.5YR 5/8

Granular, 

Moderate

Few, Very 

fine

Abrupt, 

smooth
Y

79-81.5

removed for 

radiocarbon 

dating

81.5-211.5 Bt1 7.5YR 4/4 Massive, strong None
Abrupt, 

smooth
Y

211.5-242 Bt2 10YR 4/6
Subangular blocky, 

Moderate
None Y

Core 25 (from Angeles, 2014)

Depth (cm) Horizon Color Structure Roots Boundary
Clay 

Film

0-20 A1 10YR 3/4
Granular, 

Weak

Common, 

Very fine
Gradual N

20-80 A2 10YR 3/3

Subangular 

blocky, 

Moderate

Few, Very 

fine, and 

Fine

Abrupt, 

smooth
N

80-96 Cultural(?) 10YR 5/6

Subangular 

blocky/ 

Massive

Few, Very 

fine

Abrupt, 

smooth
N

Core 26 (from Angeles, 2014)
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96-106 Cult/Layer Moderate
Few, Very 

fine

Abrupt, 

smooth
Y

106-118 Cult/Layer

Subangular 

blocky, 

Moderate

Few, Very 

fine

Abrupt, 

smooth
Y

118-208 Bt1 7.5YR 4/6

Subangular 

blocky, 

Moderate

Few, Very 

fine

Abrupt, 

smooth

208-240 Bt2 10YR 5/8

Subangular 

blocky, 

Moderate

none
Abrupt, 

smooth

240-243 rock

Subangular 

blocky, 

Moderate

Abrupt, 

smooth

243-246 Bt(?) 7.5YR 3/4 none

Core 26 (from Angeles, 2014) (Cont.)

Depth (cm) Horizon Color Structure Roots Boundary Clay Film

0-1 O 10YR 3/6
Granular, 

Weak

Common, 

Very fine
Gradual N

1-14 A 10YR 3/6
Granular, 

Weak

Few, Very 

fine
N

14-24 Cultural 10YR 5/6
Granular, 

Moderate
none

Abrupt, 

Irregular
N

24-143 Bt1 10YR 4/6

Subangular 

blocky, 

Moderate

none Gradual Y

143-144.5 Bt2
10YR 3/4, 

7.5YR 3/4

Granular, 

Moderate
None Y

Core 27 (from Angeles, 2014)
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Depth (cm) Horizon Color Structure Roots Boundary Clay Film

0-10 AB1 10YR 3/3 Granular, Moderate
Common, 

Very fine
Gradual Y

10-43 AB2 10YR 3/3 Granular, Moderate
Few, Very 

fine
Gradual Y

43-53 Cultural 10YR 4/6 Granular, Weak none Gradual N

53-93 Bt1 10YR 3/3 Subangular blocky, Moderate
Few, Very 

fine
Gradual Y

93-213 Bt1 10YR 3/3 Subangular blocky, Moderate
Few, Very 

fine
Gradual Y

213-245.8 Bt2 10YR 3/3 Granular, Moderate none Y, less

Core 28 (from Angeles, 2014)
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Appendix E: Results of particle size analysis with correlating texture (when available).  L = 

Loam, LS = Loamy Sand, C = Clay, CL = Clay Loam, SCL = Sandy Clay Loam, SiL = Silty 

Loam, SiCL = Silty Clay Loam, SL = Sandy Loam. 

 

 
 

 
 

Depth (cm) Sand % Silt % Clay %

0-10 41.95 54.09 3.96

10-20 37.17 52.25 10.59

20-30 34.50 54.89 10.61

30-40 23.67 60.39 15.95

40-50 19.67 59.15 21.18

50-60 19.00 55.90 25.10

60-70 18.50 56.31 25.19

70-80 18.67 54.78 26.56

80-90 16.50 55.40 28.10

90-100 17.33 54.16 28.51

100-110 18.67 52.31 29.02

110-120 18.00 54.73 27.27

120-130 21.00 51.83 27.17

130-140 21.83 51.10 27.07

140-150 23.83 49.10 27.07

150-160 26.17 46.15 27.69

160-170 32.67 40.87 26.46

170-181 40.62 34.51 24.87

Core 1 (from Rathgaber, 2015)

Depth (cm) Sand % Silt % Clay %

0-10 41.00 48.97 10.03

10-20 37.83 50.06 12.11

20-30 32.67 53.72 13.61

30-40 27.67 58.66 13.68

40-50 21.17 59.41 19.42

50-60 17.17 60.41 22.42

60-70 14.66 59.70 25.56

70-80 12.67 58.62 28.71

80-90 9.83 58.85 31.31

90-100 10.50 58.81 30.69

100-110 11.83 58.42 29.75

110-120 12.67 57.06 30.27

Core 2 (from Rathgaber, 2015)
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110-120 12.67 57.06 30.27

120-130 12.67 56.54 30.79

130-140 12.83 55.96 31.21

140-150 13.67 54.91 31.42

150-160 13.33 54.27 32.36

160-170 13.00 53.64 33.32

170-181 12.67 53.02 34.31

180-190 14.00 51.04 34.96

190-200 12.67 52.38 34.96

200-210 14.33 50.19 35.48

210-220 14.33 49.15 36.52

220-230 17.00 49.72 33.28

230-240 20.33 48.35 31.31

240-250 22.17 44.94 32.89

250-260 25.33 42.81 31.85

260-270 26.83 42.98 30.19

270-280 27.23 42.92 29.85

280-290 27.63 42.86 29.51

290-300 28.03 42.80 29.17

300-310 28.43 42.74 28.83

310-320 28.83 42.67 28.50

320-330 35.33 37.41 27.26

330-340 39.17 35.58 25.25

340-350 34.00 38.31 27.69

350-360 41.83 32.55 25.61

360-370 45.33 29.88 24.79

370-382 49.67 24.96 25.38

Core 2 (from Rathgaber, 2015) (Cont.)

Depth (cm) Sand % Silt % Clay % Texture

0-10 50.3 42.4 7.3 L

10-20 48.4 44.8 6.8 SL

20-31 40.3 51 8.7 SiL

31-41 32.5 56.8 10.8 SiL

41-50 41.6 48.6 9.8 L

50-59 56.1 37 6.9 SL

Core 3 (from Angeles, 2014)
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Depth (cm) Sand % Silt % Clay %

0-10 76.33 15.67 8.00

10-20 69.00 20.51 10.49

20-30 49.17 42.32 8.52

30-40 40.83 48.13 11.04

40-50 35.33 54.63 10.04

50-60 33.51 57.19 9.31

60-70 30.67 58.27 11.07

70-80 33.50 54.43 12.07

80-90 33.50 56.95 9.55

90-100 42.17 48.79 9.04

100-110 48.50 42.97 8.53

110-120 58.00 34.51 7.49

120-130 67.50 25.52 6.98

130-140 64.50 27.00 8.50

140-150 62.67 29.84 7.50

150-160 58.83 32.14 9.03

160-170 65.50 25.48 9.02

170-181 65.33 27.17 7.49

180-190 60.83 30.13 9.04

190-200 59.83 30.61 9.56

200-210 59.77 30.07 10.16

210-220 59.71 29.53 10.91

220-230 59.65 28.99 11.66

230-240 59.59 28.45 12.41

240-250 59.50 27.90 12.60

250-260 66.17 33.83 0.00

260-270 66.67 21.22 12.11

270-280 68.83 19.06 12.11

280-290 73.67 26.33 0.00

290-300 75.67 14.31 10.03

300-310 79.17 11.81 9.02

310-320 80.00 13.50 6.50

320-330 78.00 13.98 8.02

330-340 79.50 12.48 8.02

Core 4 (from Rathgaber, 2015)
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Depth (cm) Sand % Silt % Clay %

0-10 88.17 8.88 2.96

10-20 82.17 13.89 3.95

20-30 72.00 22.01 5.99

30-40 68.33 27.21 4.46

40-50 56.83 37.19 5.98

50-60 56.67 35.31 8.02

60-70 64.17 27.81 8.02

70-80 65.00 26.47 8.53

80-90 56.67 35.30 8.03

90-100 53.17 36.78 10.05

100-110 48.17 40.22 11.62

110-120 57.00 34.96 8.04

120-130 74.33 20.20 5.47

130-140 75.08 19.21 5.81

140-150 75.83 18.22 5.47

150-160 76.58 17.23 5.13

160-170 77.33 16.24 4.79

170-181 78.08 15.25 4.45

180-190 78.83 14.26 4.11

190-200 82.33 14.24 3.42

200-210 86.50 11.59 1.91

210-220 90.83 8.86 0.30

220-230 92.00 7.60 0.40

230-240 71.33 21.66 7.01

240-250 64.17 24.68 11.15

250-260 64.17 22.29 13.55

260-270 66.00 21.95 12.05

270-280 68.33 21.58 10.09

280-290 67.83 21.60 10.57

290-300 66.50 22.40 11.10

300-310 66.33 22.54 11.12

310-320 66.50 20.84 12.66

320-330 70.83 18.11 11.05

330-340 77.83 13.66 8.51

340-350 76.67 13.81 9.52

350-360 77.83 13.66 8.51

Core 5 (from Rathgaber, 2015)
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Depth (cm) Sand % Silt % Clay %

0-10 51.00 49.00 0.00

10-20 47.67 43.83 8.51

20-30 47.17 43.30 9.54

30-40 46.17 42.78 11.05

40-50 43.33 45.60 11.07

50-60 46.17 42.77 11.07

60-70 59.50 30.96 9.54

70-80 50.83 38.60 10.57

80-90 60.00 28.96 11.04

90-100 65.17 26.31 8.52

100-110 72.83 21.17 5.99

110-120 80.00 15.03 4.97

120-130 68.73 23.47 7.80

130-140 52.42 37.74 9.85

140-150 60.25 30.99 8.76

150-160 65.75 27.52 6.73

160-170 64.42 26.83 8.76

170-181 65.08 24.09 10.83

180-190 68.25 20.89 10.86

190-200 69.08 19.56 11.36

200-210 69.08 20.56 10.35

210-220 65.08 23.04 11.87

220-230 61.75 25.39 12.86

230-240 65.08 21.50 13.42

240-250 66.75 20.35 12.90

250-260 71.08 18.11 10.80

260-270 76.42 14.80 8.78

270-280 73.92 16.29 9.80

280-290 67.75 19.41 12.84

290-300 68.42 18.72 12.86

300-310 69.58 17.56 12.86

310-320 71.75 16.92 11.33

320-330 76.42 14.28 9.30

330-340 81.92 12.86 5.22

340-350 83.25 12.54 4.21

Core 6 (from Rathgaber, 2015)
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Depth (cm) Sand % Silt % Clay% Texture

0-10 36 53 12 SiCL

15-24 32 56 12 SiCL

33-40 33 55 12 SiCL

43-49 30 57 14 SiCL

58-66 25 58 17 SiL

78-85 21 56 23 SiL

124-134 22 48 30 L

169-178 22 49 29 L

187-193 25 46 29 L

210-216 31 42 27 CL

226-231 37 38 26 CL

238-245 42 35 24 C 

257-263 49 28 23 C 

269-276 59 22 19 C 

286-293 69 15 17 C 

Core 7

Depth (cm) Sand % Silt % Clay% Texture

0-11 70 27 3 SL

11-21 70 27 3 SL

21-32 68 24 8 SL

32-40 63 31 7 SL

40-50 53 38 9 SL

50-60 46 48 6 SL

60-71 38 54 8 SiL

71-82 31 56 13 SiL

82-94 25 61 14 SiL

94-105 24 58 18 SiL

138-149 11 58 31 SiCL

180-190 24 46 30 CL

195-205 23 46 31 CL

213-223 29 41 31 CL

231-239 12 50 38 SiCL

243-253 46 30 24 L

258-266 60 22 18 SL

274-280 69 16 15 SL

286-292 70 16 14 SL

Core 8
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Depth (cm) Sand % Silt % Clay% Texture

297-303 64 20 17 SL

312-320 71 14 15 SL

326-330 67 19 15 SL

Core 8 (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-9 61 32 7 SL

11-22 50 35 15 L

31-39 54 26 20 SCL

48-57 49 31 20 L

67-76 56 28 16 SL

93-101 55 32 13 SL

119-124 54 33 13 SL

137-144 53 32 15 SL

172-176 51 37 12 L

211-218 59 24 17 SL

227-234 36 50 14 SiL

239-248 23 54 23 SiL

248-257 30 52 19 SiL

265-272 18 64 18 SiL

320-331 19 50 31 SiCL

390-401 20 49 31 SiCL

411-420 22 48 30 CL

432-442 29 42 29 CL

455-462 33 40 27 CL

473-482 47 30 23 L

497-504 63 21 17 SL

517-524 67 17 16 SL

547-554 69 15 16 SL

Core 9

Depth (cm) Sand % Silt % Clay% Texture

0-8 68 28 4 SL

12-18 60 30 10 SL

24-32 51 35 14 L

39-46 43 44 13 L

Core 10
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Depth (cm) Sand % Silt % Clay% Texture

57-64 50 37 13 L

79-86 63 27 10 SL

96-102 52 35 12 L

111-118 59 31 10 SL

121-128 52 34 14 L

133-142 51 35 14 L

142-150 56 30 14 SL

157-163 58 29 14 SL

176-184 56 31 12 SL

191-201 27 56 18 SiL

201-210 23 56 21 SiL

212-216 22 58 19 SiL

217-225 23 60 18 SiL

230-238 22 58 20 SiL

252-260 20 55 25 SiL

267-274 19 53 28 SiCL

283-291 19 51 30 SiCL

302-309 19 51 30 SiCL

316-323 18 50 32 SiCL

329-337 19 51 31 SiCL

348-352 19 49 33 SiCL

355-360 20 47 33 L

372-378 28 42 30 CL

392-398 40 35 26 L

416-423 54 26 20 SCL

435-445 64 19 17 SL

Core 10 (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-6 50 42 7 L

11-22 28 58 15 SiL

29-36 37 45 18 L

40-46 12 63 26 SiL

48-53 40 41 19 L

59-66 18 56 27 SiCL

77-85 14 57 29 SiCL

110-118 14 56 30 SiCL

Core 11



106 

 

 
 

 
 

 
 

Depth (cm) Sand % Silt % Clay% Texture

155-164 11 58 31 SiCL

178-187 12 58 31 SiCL

208-216 15 56 30 SiCL

236-244 14 55 31 SiCL

Core 11 (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-6 31 56 12 SiL

6-17 35 54 12 SiL

23-31 24 61 15 SiL

41-48 16 63 20 SiL

61-66 33 50 17 SiL

76-82 37 43 20 L

107-115 27 46 26 L

149-159 27 47 27 CL

173-182 40 38 22 SiCL

189-197 52 29 20 L

205-213 42 38 20 L

225-233 47 34 19 L

238-247 79 11 11 SL

247-256 70 22 8 SL

256-265 93 -1 7 fine sand

268-275 87 7 6 SCL

279-282 93 4 3 fine sand

Core 12

Depth (cm) Sand % Silt % Clay% Texture

0-6 42 51 7 SiL

11-18 34 52 14 SiL

21-28 24 55 21 SiL

37-44 20 57 22 SiL

51-57 20 55 25 SiL

99-106 21 48 31 CL

146-152 24 48 28 CL

178-184 35 37 28 CL

Core 13
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Depth (cm) Sand % Silt % Clay% Texture

194-202 50 27 23 SCL

218-225 56 22 22 SCL

Core 13 (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-7 49 46 5 SL

14-21 37 50 13 SiL

26-32 20 59 21 SiL

42-48 19 60 21 SiL

57-66 18 59 23 SiL

70-76 17 55 28 SiCL

112-118 15 53 32 SiCL

172-178 16 49 35 SiCL

190-197 16 49 35 SiCL

212-218 20 46 33 SiCL

233-240 25 43 32 CL

Core 14

Depth (cm) Sand % Silt % Clay% Texture

0-4 38 53 9 SiL

9-16 34 55 12 SiL

16-23 27 60 13 SiL

33-40 23 58 19 SiL

54-61 20 56 24 SiL

88-95 22 50 27 CL

116-123 19 50 31 SiCL

133-141 20 47 32 SiCL

150-158 21 48 31 CL

166-173 23 46 31 CL

182-189 23 44 33 CL

201-208 28 41 31 CL

221-228 35 37 28 CL

238-244 45 32 23 L

244-253 48 30 23 L

262-272 58 23 19 SL

Core 15
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Depth (cm) Sand % Silt % Clay% Texture

0-5 43 49 8 L

10-17 38 54 9 SiL

22-29 25 60 15 SiL

36-43 21 57 22 SiL

82-89 20 50 30 SiCL

130-135 25 43 32 CL

148-156 28 40 32 CL

172-181 36 36 29 CL

197-204 50 25 25 SCL

204-209 54 22 24 SCL

218-229 65 17 18 SL

Core 16

Depth (cm) Sand % Silt % Clay% Texture

0-6 48 44 8 L

11-20 46 46 9 L

23-30 33 53 14 SiL

37-45 22 55 23 SiL

62-71 21 52 27 CL

86-94 27 46 27 CL

105-112 34 40 27 CL

120-127 39 34 27 CL

133-141 46 27 27 SCL

151-159 54 23 24 SCL

174-181 64 16 21 SCL

197-206 73 11 17 SL

218-234 74 12 14 SL

Core 17

Depth (cm) Sand % Silt % Clay% Texture

0-8 63 33 4 SL

14-21 60 35 5 SL

26-32 54 38 8 SL

37-43 45 45 10 L

48-54 28 54 18 SiL

63-70 22 58 21 SiL

Core 18
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Depth (cm) Sand % Silt % Clay% Texture

82-89 22 56 23 SiL

99-106 20 54 26 SiL

129-136 21 51 28 CL

159-166 24 45 31 CL

176-183 28 40 32 CL

197-204 30 39 30 CL

218-225 37 35 28 CL

235-243 46 29 25 L

253-262 60 23 18 SL

Core 18 (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-8 64 32 4 SL

11-20 64 30 7 SL

24-31 50 35 15 L

40-47 22 57 22 SiL

60-68 20 55 24 SiL

79-87 20 53 27 SiCl

101-108 21 51 28 CL

122-131 20 48 32 SiCl

141-148 24 43 33 CL

156-162 30 39 32 CL

169-177 34 36 30 CL

189-197 41 31 28 CL

201-210 50 27 23 SCL

Core 19

Depth (cm) Sand % Silt % Clay% Texture

0-3 42 52 6 SiL

8-18 36 54 10 SiL

28-36 25 55 20 SiL

39-47 23 56 21 SiL

49-56 23 54 23 SiL

66-77 25 47 28 CL

93-101 33 39 29 CL

107-117 40 32 28 CL

Core 20
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Depth (cm) Sand % Silt % Clay% Texture

121-130 47 29 25 L

139-148 64 16 20 SCL

Core 20 (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-10 57 35 8 SL

17-22 43 41 15 L

22-31 40 43 18 L

34-43 42 42 16 L

48-56 57 28 15 SL

58-65 44 38 18 L

71-81 49 36 15 L

94-104 47 39 14 L

114-123 24 58 18 SiL

138-148 23 57 20 SiL

162-172 23 55 22 SiL

181-191 23 51 26 SiL

206-216 23 48 29 CL

229-239 27 42 31 CL

247-257 33 35 32 CL

Core 21

Depth (cm) Sand % Silt % Clay% Texture

0-10 63 32 6 SL

15-23 57 33 10 SL

23-32 48 36 17 L

41-50 42 42 16 L

55-64 39 43 18 L

70-77 43 40 17 L

84-94 40 42 18 L

94-103 24 55 21 SiL

113-123 23 55 23 SiL

142-150 21 51 27 CL

179-187 33 38 29 CL

196-206 37 31 32 CL

209-219 45 27 28 CL

Core 22
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Depth (cm) Sand % Silt % Clay% Texture

0-7 40 53 7 SiL

12-22 40 49 11 L

36-46 31 54 16 SiL

55-63 23 54 23 SiL

77-87 26 48 26 L

100-108 30 44 27 CL

118-128 36 35 29 CL

128-140 41 31 28 CL

153-164 53 23 24 SCL

179-190 70 14 16 SL

Core 23

Depth (cm) Sand % Silt % Clay% Texture

0-10 38 56 6 SiL

17-28 31 55 14 SiL

35-43 26 55 18 SiL

52-62 22 55 23 SiL

73-84 22 52 26 SiL

94-104 22 48 30 CL

116-126 26 41 33 CL

138-148 37 32 31 CL

157-166 46 26 27 SCL

173-183 56 21 23 SCL

Core 24

Depth (cm) Sand % Silt % Clay% Texture

0-10 68.1 27.8 4.1 SL

10-20 54.4 30.7 14.9 SL

20-30 62.6 24.5 12.9 SL

30-40 62.8 26.7 10.5 SL

40-53 59.9 29.1 10.9 SL

53-63 38.6 37.3 24.1 L

63-79 59.1 28.2 12.7 SL

79-81.5

81.5-91.5 26 61.4 12.6 SiL

Core 25 (from Angeles, 2014)

removed for radiocarbon dating
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Depth (cm) Sand % Silt % Clay% Texture

91.5-101.5 26.1 60.3 13.6 SiL

101.5-111.5 27.6 57.9 14.5 SiL

111.5-121.5 25.3 56.3 18.4 SiL

121.5-131.5 25.4 54.4 20.1 SiL

131.5-141.5 27.6 50.1 22.3 SiL

141.5-151.5 27.6 49.2 23.2 L

151.5-161.5 28.4 47.5 24.1 L

161.5-171.5 29.8 47 23.2 L

171.5-181.5 35.8 41.2 23 L

181.5-191.5 36.3 40.4 23.3 L

191.5-201.5 39.6 38.4 22 L

201.5-211.5 41.6 39.3 19.1 L

211.5-221.5 46.3 33.3 20.5 L

221.5-231.5 50.6 28.6 20.8 L

231.5-242 55.3 25.8 18.9 SL

Core 25 (from Angeles, 2014) (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-10 78.2 20.1 1.7 L(fine)S

10-20 71.4 21.9 6.7 SL

20-30 68 22 9.9 SL

30-40 65.9 23.8 10.3 SL

40-50 68.2 22 9.8 SL

50-60 70.4 23.8 5.9 SL

60-70 72 23.2 4.8 SL

70-80 67.4 26.4 6.3 SL

80-96 63 28.2 8.8 SL

96-106 56 34.5 9.4 SL

106-118 34.5 49.4 16.1 L 

118-128 28.5 58.4 13.1 SiL

128-138 27.9 59.2 12.9 SiL

138-148 25.7 59.7 14.6 SiL

Core 26 (from Angeles, 2014)

Depth (cm) Sand % Silt % Clay% Texture

0-10 72.8 23 4.2 SL

Core 27 (from Angeles, 2014)
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Depth (cm) Sand % Silt % Clay% Texture

10-24 64 27.2 8.9 SL

24-34 21.3 56.8 21.9 SIL

34-44 19.5 61.9 18.6 SIL

44-54 21 55.9 23.1 SIL

54-64 20.5 65.3 14.2 SIL

64-74 19.8 54.1 26.1 SIL

74-84 20.8 52.1 27.1 CL

84-94 20.5 52.6 26.9 SL

94-104 23 49.4 27.6 CL

104-114 16.8 55.1 28.1 SiCL

114-124 23.8 47.4 28.8 CL

124-134 26.3 45.2 28.5 CL

134-143 25.6 47.9 26.4 L

143-144.5 55.6 30.9 13.4 SL

Core 27 (from Angeles, 2014) (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-10 44.9 50.4 4.7 SiL

10-20 49.9 46.6 3.6 SL

20-30 51.7 42 6.3 SL

30-43 63.2 29.3 7.5 SL

43-53 46.2 44.9 8.9 L

53-63 39.5 52 8.5 SiL

63-73 32.7 57.2 10.1 SiL

73-83 33.9 55.5 10.7 SiL

83-93 33.9 55 11.2 SiL

93-103 31.4 56.5 12.1 SiL

103-113 28.2 57.6 14.2 SiL

113-123 25.2 58.3 16.5 SiL

123-133 23.9 58.7 17.3 SiL

133-143 25 57 18 SiL

143-153 21.9 60.3 17.9 SiL

153-163 21.5 61.8 16.7 SiL

163-173 21.8 61.2 17 SiL

173-183 20.6 61.2 18.2 SiL

183-193 22 60.7 17.3 SiL

193-203 24.3 57.5 18.2 SiL

Core 28 (from Angeles, 2014)
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Depth (cm) Sand % Silt % Clay% Texture

203-213 29.1 52.7 18.1 SiL

213-223 39.8 43.6 16.6 L

223-233 60 26 14 SL

233-245.8 61.3 24.3 14.4 SL

Core 28 (from Angeles, 2014) (Cont.)

Depth (cm) Sand % Silt % Clay% Texture

0-19 77.7 19.2 3.1 Llfine)S

19-69 45.2 48.5 6.3 SL

69-110 85.2 13.7 1.1 L(fine)S

110-130 60.4 36 3.7 SL

Riverbank (from Angeles, 2014)

Depth (cm) Sand % Silt % Clay% Texture

92.7 5.7 1.6 Fine Sand

Directly above River (from Angeles, 2014)
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Core 9 
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Core 13 
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Core 14 
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Core 16 
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Core 17 
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Core 19 
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Core 20 
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Core 21 
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Core 25 
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Core 26 
% Particle Size

0 20 40 60 80 100

E
le

va
tio

n 
(m

 a
m

sl
)

362

363

364

365

366

367

368

369

370

Clay

Clay + Silt 

Clay Silt Sand

 
 
 
 
 
 
 
 
 



141 

 

Core 27 
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Appendix F: Percentages and graphs for sand fraction for Cores 2 and 20 – 24 on the 

North – South Transect. 

 

 
 

 
 

 

 

 

 

Depth (cm)

Coarse, 

Coarse, 

Medium Fine Very Fine

0-10 19.07 39.62 41.32

30-40 15.03 36.79 48.18

80-90 15.06 28.48 56.46

140-150 18.75 23.09 58.16

210-220 13.65 42.47 43.88

260-270 24.99 41.26 33.75

330-340 9.88 50.18 39.94

370-382 14.79 50.21 35.00

Core 2

Depth (cm)

Very 

Coarse, 

Coarse, 

Medium Fine Very Fine

0-3 26.64 40.69 32.68

8-18 20.00 41.67 38.33

28-36 17.62 41.11 41.27

39-47 17.51 35.16 47.33

49-56 18.95 37.02 44.02

66-77 22.06 38.85 39.09

93-101 30.34 28.21 41.45

107-117 30.84 45.44 23.72

121-130 35.89 44.00 20.11

139-148 51.46 34.30 14.23

Core 20
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Depth (cm)

Very 

Coarse, 

Coarse, 

Medium Fine Very Fine

0-10 26.12 45.80 28.08

17-22 24.65 41.58 33.77

22-31 24.16 42.73 33.11

34-43 18.47 50.06 31.48

48-56 50.35 35.39 14.26

58-65 23.99 42.59 33.42

71-81 24.44 46.78 28.78

94-104 24.86 46.04 29.10

114-123 23.78 32.90 43.33

138-148 26.78 30.83 42.39

162-172 29.15 30.95 39.90

181-191 28.13 30.13 41.75

206-216 37.20 32.04 30.76

229-239 48.10 32.16 19.73

247-257 54.27 30.92 14.81

Core 21

Depth (cm)

Very 

Coarse, 

Coarse, 

Medium Fine Very Fine

0-10 26.89 43.52 29.59

15-23 32.59 42.33 25.08

23-32 27.85 43.76 28.38

41-50 26.27 43.37 30.37

55-64 19.04 44.04 36.93

70-77 25.57 42.41 32.02

84-94 36.63 39.45 23.92

94-103 30.64 32.36 37.00

113-123 30.57 32.54 36.90

142-150 31.90 32.06 36.04

179-187 49.30 33.86 16.83

196-206 52.01 35.03 12.97

209-219 60.22 30.21 9.57

Core 22
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Depth (cm)

Very 

Coarse, 

Coarse, 

Medium Fine Very Fine

0-7 14.87 40.47 44.66

12-22 20.29 43.56 36.15

36-46 18.09 43.50 38.41

55-63 19.75 37.13 43.12

77-87 22.18 40.23 37.59

100-108 27.76 43.16 29.08

118-128 34.43 45.65 19.92

128-140 33.26 46.53 20.22

153-164 38.00 43.63 18.36

179-190 48.31 38.77 12.92

Core 23

Depth (cm) Very Coarse Fine Very Fine

0-10 11.71 40.51 47.78

17-28 17.77 41.56 40.67

35-43 18.51 39.49 42.00

52-62 18.15 35.89 45.96

73-84 19.36 34.91 45.72

94-104 27.10 39.86 33.04

116-126 32.08 42.93 24.99

138-148 35.14 43.87 20.99

157-166 36.58 43.70 19.72

173-183 36.70 43.48 19.81

Core 24
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