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ABSTRACT 

Soybean components provide health benefits to humans. Soybean hulls, a major by-

product of the soybean processing industry consist of complex carbohydrates, proteins, lipids and 

polyphenols such as anthocyanidins, proanthocyanidins and isoflavones. The polyphenolic 

compounds in the hulls give them various colors such as black, brown, green, yellow or even a 

mottled appearance. Studies have reported different soybean varieties with varying total phenolic 

compounds in their seed hulls, which have antioxidant property. Phenolic extracts can be used as 

substitutes for synthetic antimicrobials and preservatives to assist in preventing the growth of 

pathogens such as Salmonella Typhimurium, E coli 0157:H7, and Campylobacter jejuni, and 

work as angiotensin-converting enzyme (ACE) inhibitory. In this study we: 1) Prepared phenolic 

extracts from four selected colored soybean varieties, 2) Determined the minimum inhibitory 

effects of the extracts on S. Typhimurium, E coli 0157:H7, and Campylobacter jejuni in broth 

cultures, 3) Evaluated the inhibitory effects of extracts on Salmonella Typhimurium, E coli, and 

Campylobacter jejuni attached to chicken skin, and 4) Investigated the ACE-I inhibitory activity 

of the soybean hull phenolic extracts. The highest phenolic content was observed in R07-1927, 

the darkest colored soybean hull (4.29 mg CAE/g DW), and was found to be significantly 

different (P <0.0001) from the conventional soybean variety, R08-4004 (1.63 mg CAE/g DW). 

For the antimicrobial activity of the extracts, a 3 day incubation with the phenolic extract from 

R07-1927 was found to produce 2 log reductions in E coli and C. jejuni counts, whereas a 6 day 

incubation was found to reduce S. Typhimurium and E. coli at 2 and 3 logs respectively. For the 

chicken skin study black soybean hull extract alone was used as it had the highest concentration 

of total phenolics. Log reductions of 1.39 was observed for S. Typhimurium and 1.24 for E. coli 

when inoculated chicken skins were incubated with the extract for 6 days. The results of our 



	
   	
  

 
	
   	
  

study showed that soybean hull extracts may be used to reduce foodborne bacterial pathogens. 

The preliminary study showed that the ACE-I inhibitory activity for the R07-1927 (black) 

phenolic extract was 52% while the R08- 4004 (yellow) extract showed 21%. 
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CHAPTER 1 

1.1 INTRODUCTION 

Soybean components provide various health benefits due to their high protein and fiber 

content.  Protein, oil, fatty acids, carbohydrates, isoflavones, and mineral contents determine the 

nutritional value of soybean seeds (Torres, Torre-Villalvazo& Tovar, 2006). In the United States, 

soybean ranks second among the most planted field crops with about 90% of its oil production 

coming from soybeans (Hamrick, 2016). In the state of Arkansas, soybeans stand as one of the 

top three cash crops of Arkansas farmers generating an income of about $1.7 billion annually. 

Soybeans are on around 3.3 million acres of land with 41 out of 75 counties in the state 

cultivating the crop (Soybean Production in Arkansas, 2014).   

The seed coat of soybeans known as soybean hull, is a by-product of the soybean oil and 

soybean meal industry, which constitute about 8% of the whole seed (Gnanasambandam & 

Proctor, 1999). Soybean hulls come in a variety of colors such as yellow, green, brown and 

black. The presence of polyphenols such as anthocyanins and proantocyanidins are responsible 

for the different seed coat colors in soybeans (Todd& Vodkin, 1993). Polyphenols are secondary 

metabolites of plants, which are found in abundance in fruits, vegetables as well as legumes such 

as soybeans, and they impart color, flavor and sensory properties like sweetness, bitterness and 

astringency (Pratt, & Hudson, 1990; Cuppett & Schnepf, 1997; Floridi et al., 2003). Studies have 

reported that different soybean varieties containing varying levels of total phenolics in their seed 

hulls, can supply excellent antioxidant and antimicrobial effects against several foodborne 

pathogens (Xu and Chang, 2008). Malenčić et al (2012) reported that all varieties of soybeans 

contain varying types of polyphenols such as anthocyanins and pronthocyanidins in abundance in 

dark colored hulls such as black and brown. Black soybeans have long been consumed as 
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significant source of food providing antimicrobial activity due to the rich phenolic content in 

their seed hulls (Xu & Chang, 2007; Astadi & et al, 2009). Additionally, research by Sebei et al 

(2013) showed that the phenolics in soybean were higher than in cowpea and mung bean sprouts.  

Polyphenols are compounds possessing one or more hydroxyl groups attached to one or 

more aromatic hydrocarbon groups and form the most abundant antioxidants in human diet 

(Tapiero et al., 2002). The polyphenols present in plants are involved in providing immunity or 

protection against ultraviolet radiation, different plant pathogens and parasites. Polyphenols are 

classified into different categories such as phenolic acids, flavonoids, stilbenes and lignans 

depending upon the number of phenol rings that they contain (Pandey and Rizvi, 2009).   

Phenolic compounds from different plant sources have been studied for their wide 

spectrum of biological activities such as antioxidant, antimicrobial, and anticarcinogenic effects 

and so these can be used as replacement for synthetic compounds (Carbonaro et al., 2002; 

Tapiero et al., 2002; Floridi et al., 2003; Nakamura et al., 2003). Soybean hulls are a rich source 

of dietary fiber comprising of 86 % polysaccharides such as pectin, cellulose and hemicellulose 

along with polyphenols, phytic acid, vitamins and minerals (O'Bryan et al., 2014). Studies by Xu 

& Chang (2007) shows that around 73 % of the total phenolics in soybeans are present in the 

seed coats or hulls.  

Phenolics can be extracted from the hulls of soybeans using different solvents. The hulls 

of soybean need milling, grinding and sieving to obtain smaller particles of uniform size for 

efficient extraction of total phenolics. Solvents such as methanol, ethanol, acetone and ethyl 

acetate or their combinations with different proportions of water are used to extract total phenols 

from plant sources. Choosing the right solvent impacts the percentage of extracted phenolics 

(Abascal et al., 2005; Xu & Chang 2007). For the extraction of phenolics from anthocyanin rich 
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plant sources commonly acidified organic solvents such as ethanol or methanol is used (Dai & 

Mumper, 2010). Methanol can be used to extract free and simple phenolics for analytical 

purposes, but it is not acceptable as a food grade solvent since it is considered as an 

environmental hazard due to its toxicity (Shi et al., 2005). On the other hand, extraction of 

phenolics using ethanol is generally recognized as safe (GRAS) for human consumption (Li et 

al., 2014). Several studies indicate that total phenolics as well as individual phenolic compounds 

extracted from different plant sources are able to inhibit foodborne pathogens (Madhavi et al., 

1995; Proestos et al., 2005; Proestos et al., 2006; Bolanho and Beléia, 2011; Junqueira-

Gonçalves et al., 2015).  

Foodborne illness is a common public health problem worldwide with around 1 in every 

6 person being affected in the United States each year. Consumption of poultry meat has been on 

the rise in recent years, which might have led poultry to be implicated in about 17-18 % of 

foodborne illnesses (Painter et al., 2013). Raw poultry meat is often contaminated with bacteria 

such as Salmonella, E coli, Campylobacter, Arcobacter, Listeria, Staphylococcus and 

Clostridium (Doležalová et al., 2010).  Some of these bacteria such as Salmonella and 

Campylobacter are able to survive in the feather follicles or on the skin of poultry even after the 

different treatments during processing (Zhang et al., 2013; Chaine et al., 2013). Nearly 2.4 

million cases are caused by Campylobacter, 1.4 million cases are caused by nontyphoidal 

Salmonella serovars, and 270,000 cases are caused by pathogenic Escherichia coli, including E. 

coli O157:H7 (mead et al., 1999).  

Raw chicken skin is vulnerable to contamination during their production, distribution and 

sale (Conner et al., 2001). There are several ways in which contamination by these pathogens 

can occur including production, processing, distribution, retail marketing, handling and 
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preparation. Numerous epidemiological studies report that foods from animal sources are the 

main cause for foodborne disease (Todd, 1996; Petersen& James, 1998). Researchers have 

demonstrated effectiveness of an immersion in or spray of antimicrobials to reduce bacteria on 

chicken skin (Sukumaran et al., 2015). Thus, varieties of chemical preservatives are used in the 

food industry to inhibit the growth of pathogenic bacteria. Phenolic extracts are used as 

substitutes for synthetic antimicrobials and preservatives to partially assist to prevent pathogen 

growth, and decrease the foodborne diseases (Microvet, 2011). While Salmonella, E coli, and 

Campylobacter are the main causes of foodborne illness from chicken which make them the 

organisms of greatest global concern, others include Arcobacter, Helicobacter spp (Cavitte, 

2003). Campylobacter, Salmonella, and pathogenic E. coli are colonies that have a wide risk for 

human consumption, especially in chicken, and commercial chicken has been identified as the 

most significant source of these pathogens (Meng& Doyle, 1998). Studies worldwide reported 

that Salmonella, E coli, and Campylobacter are predominantly present in fresh meat and poultry 

(Todd, 1996). 

Besides the antimicrobial, phenolics can work also as an Angiotensin-converting-enzyme 

inhibitor which is known to be responsible for causing hypertension, one type of heart disease 

(Ademiluyi& Oboh, 2013). More than 50% of the deaths for men and women cause are due to 

heart disease (CDC, 2015). Heart disease by hypertension is the number two killer in the U.S. 

(Farley et al., 2010; Nwankwo et al., 2013). It has been shown that antihypertensive activity 

connected inhibits the Angiotensin-I converting-enzyme (ACE-I) of catalytic activity (Lee et al., 

2010). ACE-I is known to be a major risk factor for causing hypertension (Liesmaa, 2010). ACE 

enzyme converts the hormone angiotensin I to the active vasoconstrictor angiotensin II by 
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removal of two C-terminal residues which lead to an increase in blood pressure (Maruyama & 

Suzuki, 1982).   

Angiotensin-converting enzyme (ACE) inhibitors have the ability to block the enzyme 

which forms a substance for vascular constriction. Thus, blood vessels relax as well as decrease 

in blood volume, which leads to reduced blood pressure and prevents a heart attack or stroke 

(Drugs for hypertension, 2012). For ACE inhibitors there are many different medicines which 

help decrease the blood pressure, but at the same time they have side effects and interact with 

other medicines (Choi et al., 2001; Hong et al., 2008; García et al., 2013). Recently, the search 

try to use the  natural sources as alternatives to synthetic drugs which is great interest to prevent 

several side effects (Wijesekara & Kim, 2010). There are many diferent reports that soybean 

sources can inhibit the ACE-I (Chiang et al., 2005; Yang et al., 2011; Lassissi et al., 2014). But 

the research in the use of phenolic extracts from different colored soybean hulls in inhibiting 

ACE -1 inhibition is very limied. Hence a preliminary study was conducted to determine the 

feasibility of phenoloc soybean hull extracts in the inhibition of ACE -1 inhibitiors. 

1.2 Hypothesis  

Phenolic extracts from the hulls of soybean seeds can inhibit common foodborne 

pathogens such as Salmonella Typhimurium, E coli, and Campylobacter jejuni, commonly found 

on raw poultry as well as an affective ACE-I inhibitor. 

1.3 The objectives of this study were to: 

Objective 1: Prepare phenolic extracts from selected colored soybean varieties and quantify total 

phenolics.  

Objective 2: Determine the minimum inhibitory effects of the extracts on S. Typhimurium, E 

coli 0157:H7, and Campylobacter jejuni in broth cultures. 
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Objective 3: Evaluate the inhibitory effects of extracts on Salmonella Typhimurium, E coli, and 

Campylobacter jejuni attached to chicken skin.  

Objective 4: Conduct a preliminary feasibility study to investigate the ACE-I inhibitory activity 

of the extracts.  
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Soybeans 

2.1.1 Parts of soybean  

Soybean seeds contain two parts: 1. the embryo comprising of two cotyledons which 

serves as the store house for protein and oil; 2. the seed coat (hull) which protects the cotyledons.  

The seed coat of soybeans also known as soybean hull, is a by-product of the soybean oil and 

soybean meal industry, which constitute about 8% of the whole seed (Gnanasambandam & 

Proctor, 1999).  The cotyledons are the major constituents and make up 90% of the whole seed 

and the remaining 2% forms the embryonic axis (Oliveira et al., 2007). 

          

Figure 1. Soybean seed parts and installation (Medic et al., 2014) 

Soybean hulls are a rich source of dietary fiber comprising of 86 % polysaccharides such 

as pectin, cellulose and hemicellulose along with polyphenols, phytic acid, vitamins and minerals 
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(Liu et al., 2013; O'Bryan et al., 2014). The seed coats or hulls of soybeans have a variety of 

colors such as yellow, green, brown, black or sometimes a mixture of colors giving them a 

mottled appearance. Presence of polyphenolic compounds such as anthocyanins and 

proanthocyanidins in soybean hulls give the seed coats a variety of colors (Todd & Vodkin, 

1993; Duenas et al., 2006; Xu & Chang 2008; Malenčić et al., 2012). However the yellow 

variety of soybeans was found to have not much of polyphenolics but was rich in isoflavones 

such as genistein (Todd & Vodkin, 1993; Malenčić et al., 2012). Black soybeans have long been 

a part of Asian diet as a significant source of proteins in the seed and phenolic compounds in the 

seed coat (Xu, 2007; Astadi et al., 2009). 

2.1.2 Soybean production statistics:   

Soybeans ranks second after corn among the most planted field crops (Hamrick, 2016). 

United States is the leading producer as well as exporter of soybeans with around 90 % of the 

country’s oilseed production coming from this wonderful legume seeds.  The farmers of the state 

of Arkansas has a soybean cultivation on around 3.3 million acres of land in 41 counties out of 

the total 75, which generates an income of about $1.7 billion annually. Thus soybeans stand as 

one of the top three cash crops of Arkansas with farmers (Soybean Production in Arkansas, 

2014). 

2.1.3 Phenolic Compounds:   

Phenolic compounds are classified as simple phenols or polyphenols based on the number 

of phenol rings in the molecule. Phenol compounds are a class of chemical compounds 

consisting of a hydroxyl group (—OH) bonded directly to an aromatic q2 hydrocarbon group 

(Khoddami et al., 2013). The simplest of the class is phenol, also called as carbolic acid 

(C6H5OH).  Phenolic structures have the possibility to strongly interact with proteins because of 
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their hydrophobic benzenoid rings and hydrogen-bonding potential of the phenolic hydroxyl 

groups, which make the phenolics, work as antioxidants. Polyphenols are secondary metabolites 

of plants which are found in abundance in fruits, vegetables as well as legumes such as soybeans 

and they impart color, flavor and sensory properties like sweetness, bitterness and astringency 

(Floridi et al., 2003). They are compounds form the most abundant antioxidants in human diet 

(Tapiero et al., 2002). Phenolics in plants are involved in providing immunity against ultraviolet 

radiation, different plant pathogens and parasites. Polyphenols are classified into different 

categories such as phenolic acids, flavonoids, stilbenes and lignans (Figure 2) depending upon 

the number of phenol rings that they contain (Pandey and Rizvi, 2009).  Many studies have 

reported the relationship between antimicrobial activity and total or individual phenolics 

extracted from different sources (Rauha, 2000; Cavanagh, 2003; Puupponen-Pimiä, 2005; 

Pereira et al., 2006; Ayala-Zavala et al., 2010). 

        

Figure 2. Structures of common phenolic compounds (Pandey et al., 2009) 
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2.2 Foodborne illness concern on health and economics:  

Foodborne illness is a global issue with around 600 million cases of foodborne illness and 

420,000 deaths around the world each year due to consumption of food contaminated by various 

pathogens (Guerra et al., 2016). Centers for Disease Control and Prevention (CDC) reports that 

every year nearly 1 in 6 or about 48 million people become ill with 128,000 hospitalizations and 

3,000 deaths from foodborne illnesses in the United States (CDC, 2015; Kadariya et al., 2014).  

Illnesses and deaths due to foodborne illness with the source as poultry and poultry products 

have led to serious concerns over the safety of public health (Wu et al., 2015). Foodborne 

illnesses are estimated to cause a huge economic loss of around 15.5 billion in the United States 

alone (Hoffmann et al., 2015). Even though the different United States government agencies 

have attempted to control the contamination of food products by ensuring strict regulations in 

food manufacturing facilities, foodborne pathogens have been thriving and are considered as the 

main causes of foodborne illnesses in the country (Buzby et al., 2001). The public health 

tracking system for disease outbreaks has recorded that there are about 31 known pathogens 

which include different types of bacteria, parasites and viruses that cause serious illness in 

humans (CDC, 2014).   

Bacteria are the main reason for many food poisoning cases, generally because of 

improper food handling. Some bacteria, in small amounts, are not harmful, and they do not affect 

human health due to the fact that the human body is equipped to fight them. On the other hand, 

there are different kinds of harmful bacteria that are multiplying and spreading in human and 

they cause many diseases. Researchers predicted that pathogens that were involved in most food-

borne disease (FBD) were norovirus (5.5 million, 58%), nontyphoidal Salmonella. (1.0 million, 

11%), Clostrodium perfringens (1.0 million, 10%), and Campylobacter. (0.8 million, 9%). The 
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leading causes of FBD in the United States are Salmonella, Escherichia coli and Campylobacter 

(Scallan et al., 2011& Kadariya et al., 2014).   

The infections from these pathogens can occur when food is not cooked very well or not 

cooled properly (Mead et al., 1999, Crim et al., 2014). Chicken can be infected by Salmonella, 

Campylobacter and Escherichia coli. Quantitative Risk Assessment (QRA) by FAO /WHO has 

found that all strains have the same pathogenic potential and there is a growing problem of 

antimicrobial impedance of diseases associated with chicken (Mbata, 2005).   

2.3 Foodborne pathogens associated with Chicken:  

Chicken can be contaminated with different pathogens that cause many diseases in 

humans. This is an important public health issue. Foodborne illness occur on raw chicken, 

undercooked product during several steps such as manufacture, package, transport the product to 

the markets due to thousands kinds of pathogens are present in our environment (Bruhn & 

Schutz, 1999). In the United States several studies reported that harmful pathogens were found 

on chicken breasts (Zhao et al., 2001). These bacteria were Salmonella, Campylobacter, 

verotoxigenic Escherichia coli, Arcobacter spp, Helicobacter spp and Listeria monocytogenes. 

Numerically, the most significant agents are Salmonalle and Campylobacter. In 2001 in the 

European Union (EU), there were 157822 person that become ill due to salmonellosis and 

156232 illness by Campylobacter enteritis and the figures are likely to be considerably higher 

(Cavitte, 2003). Contaminated raw or undercooked poultry are a significant source of 

transmitting these food-borne pathogens. Additionally, in food processing environments 

Salmonella, E. coli and Campylobacter are required to survive a multitude of fatigues which 

demands that they use specific survival mechanisms. Contact with farm animals and pets as well 

as person-to-person transmission have also been found as sources of human infections with 
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Campylobacter, Salmonella, and Shiga toxin-producing Escherichia coli. Most E coli bacteria 

(STEC) (Tauxe, 1997). Because of their significant risk on raw poultry skin, the Food Safety & 

Inspection Services (FSIS) of US Department of Agriculture (USDA) have developed 

compliance guidelines for the control of Salmonella, and Campylobacter (Wang et al., 2014).  

Salmonella Typhimurium 

Salmonella is a rod shaped, gram negative, non-spore forming bacteria that is the most 

frequent cause of foodborne illnesses. It is a bacterium that belongs to the family of 

enterobacteriaceae. The pathogen causes salmonellosis, which affects the intestinal tract. 

Salmonella bacteria typically lives in animals, specifically, in poultry, swine and human 

intestines and are shed through feces. The symptoms of this kind of bacteria are diarrhea and 

abdominal cramps 12 to 72 hours after infection. Each year, there are around 400,000 cases of 

salmonellosis (Berger et al., 2010). There were one million salmonellosis cases in the United 

States with 19,000 hospitalizations and 380 deaths (CDC, 2016).  

Foodborne illnesses caused by Salmonella have been linked to the consumption of 

tomatoes, melons, sprouts, poultry, peanuts, and other food products. Salmonella has been 

associated with poultry products (Bryan and Doyle 1995; Yang and others 2001). United States 

Department of Agriculture (USDA) reported that 25% of chicken is contaminated with 

Salmonella, with estimated 1 million cases annually (DeWaal, 1996). CDC and the U.S. 

Department of Agriculture’s Animal and Plant Health Inspection Service (USDA-APHIS) found 

that eight separate outbreaks of human Salmonella contamination are related with chicken (CDC, 

2016). Most Salmonella found on poultry are non-host specific, which causes human food 

poisoning. The most common serotypes in the United States are both Typhimurium and 

Enteritidis (Cormican et al., 2002). Chickens skin are carries of this pathogen and when they 
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come into the processing plant can cause contamination in the final poultry products (Morris and 

Wells 1970; Bryan and Doyle 1995; Heyndrickx et al., 2002). Acute fatal and chronic 

Salmonellosis happens when chicken is contaminated by Salmonella serovars (Hofstad et al., 

1992& Chappell et al., 2009). Literature information is available on Salmonella contamination 

and the mechanism of transfer to humans (Parker, 1990; Wales& Davies, 2011). Salmonella can 

grow in temperatures ranging from 20-47°C and so can survive very well in chickens as they 

have a body temperature of 41- 42°C (Troxell et al., 2015; CDC 2016). Several researchers used 

natural antimicrobial to inhibit Salmonella from chicken skin (Goode et al., 2003; Touch et al., 

2004). 

Campyplobacter jejuni  

Campylobacter jejuni is a genus of Gram-negative, microaerophilic, oxidase-positive, 

nonfermentative bacteria. Campylobacter species are spiral shaped and has the ability to move 

via unipolar or bipolar flagella. Campylobacter jejuni is considered to be the most common 

cause of bacterial illness (Hajieh et al., 2016). Campylobacter jejuni causes an annual 

approximate 850,000 cases of disease burden and more than 8000 hospitalizations exist in the 

United States (Scallan et al., 2011). In 2014 in the United States, the Active surveillance through 

the Foodborne Diseases Active Surveillance Network (FoodNet) reported that Campylobacter 

causes almost 14 diagnosed every year for each 100,000 persons and 76 persons die due to the 

infections (CDC, 2014). The symptoms of Campylobacter jejuni are diarrhea and bloody 

diarrhea. There are serious consequences in the long term. Some people may develop Guillain-

Barré syndrome which is a rare disease that can lead to paralysis, while other people develop 

arthritis. The infection of this bacteria is more current in the summer months than in the winter 

because the temperature has the ability to affect behavioral factors. Also, Campylobacteriosis 
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infection occurs in infants and young adults considerably than other ages and in men more than 

women (Patrick et al., 2004; CDC, 2014). 

Campylobacter jejuni is one of the main source of human pathogenic illness. The reason 

for the increasing number of human diseases of campylobacteriosis is not known, but poultry is 

the major source of human contamination (Harrison et al., 2001; Moore et al., 2002; 

Anonymous, 2003). Because thermophilic Campylobacters are mainly Campylobacter jejuni, 

thermophilic Campylobacters become main cause of human campylobacteriosis (Dingle et al., 

2001). Wilson et al (2008) reported that chicken is the main source of campylobacteriosis while 

wild animal and environmental sources are responsible for only 3% of the infection of the 

Campylobacter jejuni. As a result, health authorities are focusing significantly on reducing the 

contamination of chicken products by biosecurity measures, which has not been very effective 

(Humphrey et al., 1993). Many studies indicate that Campylobacter are found in chickens as a 

natural inhabitant in their intestines and that the bacterium can be isolated from the feathers and 

skin of chickens (Berrang et al., 2000 &Atterbury et al., 2003). Whyte et al (2001) studied the 

addition of hyperchlorite to water in scalding and chilling tanks on the reduction of pathogens 

such Campylobacter present on chicken skin. Despite the use of various techniques to reduce/ 

eliminate Campylobacter during the slaughtering and processing of birds, it has been found that 

fresh poultry harbors C. jejuni at levels ranging from 102 to 105 per carcass and 89% of chicken 

skin samples were found to harbor the organism  (Jacobs-Reitsma, 2000).  

Escherichia coli O157:H7: 

Escherichia coli O157:H7 is a gram negative, rod-shaped foodborne pathogen. There are 

6 different serotypes: enteroaggregative, enteroinvasive, enteropathogenic, enterotoxigenic, 

diffuse adherent, and enterohemorrhagic. In 1982, Escherichia coli was discovered in 
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hamburgers from fast food chains (Tauxe 1997; Feng 2012). Escherichia coli (STEC) cause 

approximately 100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United 

States (Mead et al., 1999; CDC, 2009). In 2005, a study reported estimated the annual cost of E. 

coli O157:H7 illnesses to be $405 million, which included $370 million for premature deaths, 

$30 million for medical care, and $5 million for lost productivity (Frenzen et al., 2005). 

Escherichia coli can be found naturally in the human gut, which can be beneficial to the 

host to inhibit the harmful pathogens colonization in the gut. On other hand, Escherichia coli can 

be harmful due to the fact that it has the ability to produce Shiga toxins, so it causes disease for 

human (Feng, 2012). Infection of the E coli O157:H7 causes hemorrhagic colitis (HC) and the 

symptoms of it are severe abdominal cramp and bloody diarrhea. Also, it can cause dehydration 

and kidney failure, which is known as Hemolytic-Uremia Syndrome and is potentially life-

threatening disease. Escherichia coli has the high risk for young children and the elderly while 

healthy adults recover within 5-10 days (Food safety, 2013). 

Escherichia coli has always been associated with outbreaks in which the food source is 

raw meat or meat products. E coli O157:H7 infections secondary to respiratory infections in 

broilers, egg-type pullets and layers, and turkeys, and this is an important disease scenario. E coli 

contamination comes during slaughter and when infected chicken intestines or feces come in 

contact with the other chicken (Silagyi et al., 2009). Moreover, the ability of E coli O157:H7 to 

compose a biofilm on chicken surfaces (skin) creates a high risk of cross contamination 

(Jackson, 2007).   

2.4 Heart Disease Facts: 

Heart disease is a range of conditions that affects the human heart, which can cause death 

in the end. There are many different types of heart diseases such as hypertension, coronary heart 
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disease, heart attack, congestive heart failure, and congenital heart disease. High blood pressure 

(Hypertension) occurs if the systolic blood pressure is increased more than 140 mm Hg or the 

diastolic blood pressure is increased more than 90 mmHg (Chobanian, 2008). Hypertension is 

one of the major causes of heart disease throughout the world and is estimated to be the cause of 

death in about 375,000 Americans each year (American Heart Association, 2015). The national 

Health and Nutrition Examination reported that between 2005–2008 there are 76,400,000 or 

approximately 33.5%, men and women in the US that have hypertension and 44% of African 

Americans have hypertension, which is the highest percentage of that disease around the worlds 

(Roger et al., 2011). The world Health Organization (WHO) and the Centers for Disease Control 

and Prevention (CDC) indicate that the primary cause of death in several countries, such as the 

UK, USA, Canada and Australia, is heart disease. Additionally, 1 in every 4, or about 610,000 

people die every year in the USA because of heart disease (CDC, 2015). Annually, in the US 

about 735,000 people are infected by heart attacks. 525,000 of those people have a first heart 

attack while 210,000 occurs in humans who have a heart attack in the past (Mozaffarian et al., 

2011; CDC, 2015). In the United States alone annually the health care services for heart diseases 

are estimated to cost approximately $ 207 billion (Mozzafarian et al., 2016). 

There are many reasons which causes heart diseases such as high blood pressure, 

diabetes, obesity, high cholesterol, excessive alcohol use and smoking. Almost 47% of 

Americans have one or two of these three danger factors (Fryar et al., 2012 & American Heart 

Association 2014). High blood pressure is one of the risk factors of heart failure which causes 

left ventricular hypertrophy and cause less active muscle relaxation between heart beats. There 

are many different symptoms for heart failure such as shortness of breath, swelling in the feet, 

ankles, difficulty sleeping flat in bed, bloating, irregular pulse, nausea, fatigue and greater need 
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to urinate at night (Malik et al., 2014). For treatment of the hypertensive heart disease it should 

assist in decreasing high blood pressure and inhibits the production of angiotensin II (Smith et 

al., 2015).   

2.5 Angiotensin- converting enzyme (ACE) inhibitory:  

Angiotensin- converting enzyme (ACE) works significantly in circulatory homeostasis. It 

is found in plasma and its membrane restricted enzyme in endothelial cells and epithelial cells. 

ACE stimulates the conversion of angiotensin I to the potent vasoconstrictor octapeptide 

angiotensin II and activates the vasodilator bradykinin (Shi et al., 2010). Angiotensin I can be 

formed by angiotensinogen with renin-angiotensin system (RAS), which is produced from the 

liver and progressive in the blood. Angiotensin I can be turns into Angiotensin II by the enzyme 

angiotensin converting enzyme (ACE). Thus, the human body can produce Angiotensin II in the 

blood, which has the ability to contract the muscles surrounding blood vessels, so narrowing the 

vessels, which causes high blood pressure (hypertension) (Azizi & Ménard, 2004). Additionally, 

angiotensin II increases the size of cardiovascular structures, which become thicker and stiffer 

(hypertrophy). This leads to cholesterol deposits and blockages in the arteries, which make the 

heart attacks and strokes, happen (Sweitzer, 2003).  

The angiotensin-I-converting enzyme (ACE) inhibitor is physiologically significant in 

blood pressure regulation. It assists to treat the increase of blood pressure (Hong et al., 2008). 

ACE inhibitors can decrease or prevent activity of the enzyme ACE, so it inhibits producing 

angiotensin II (Figure 3). Therefore, blood pressure decreases, blood vessels are relaxed and the 

blood volume reduces. The reducing of blood pressure assists the heart to pump blood easily and 

it reduces the chances of heart failure. This is the reason ACE inhibitors were initially used to 

lower blood pressure in humans with hypertension (Farquharson & Struthers, 2000; Granger et 
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al., 2003). Sweitzer (2003) reported that using ACE inhibitors appears to be a particularly 

influential treatment for decreasing heart attacks in patients. There are many ACE inhibitors such 

as Captopril, Lisinopril, and Enalapril that are used for hypertension treatment, which are assist 

to reduce blood pressure (Hong et al., 2008; Hernández-Ledesma et al., 2011).  

Even though those synthetic compounds have the beneficial effect of inhibiting 

hypertension, they have side effects such as coughing, taste disturbances, and skin rashes. 

Therefore, food derived ACE inhibitors are preferred an alternative which can prevent 

hypertension without harmful side effects at a cheap cost (Hong et al., 2008; García et al., 2013). 

Soybean is one of the plant sources that are producing ACE inhibitors with a low price (Segura-

Campos et al., 2013). There are many compounds derived from soybeans, such as globulin or 

glycinin, that are reported to be robust competitive inhibitors of ACE and to be resistant to 

digestion by proteases of the gastrointestinal tract (Mallikarjun Gouda et al., 2006).  Kwon et al 

(2008) concluded that phenolic-enriched, which is extracted from eggplant, had high α-

glucosidase inhibitory activity, which works as a angiotensin I-converting enzyme (ACE) 

inhibitory activity. A study reported that extracted phenolics from two of the most popular 

species of edible bamboo shoots in Korea (Phyllostachys pubescens and Phyllostachys nigra) 

have high angiotensin converting enzyme (ACE) inhibition activity (Park & Jhon, 2010). 
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Figure 3. Showing the impacts of angiotensin II on the blood vessels and heart (Sweitzer, 
2003) 
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Chapter 3: Preparation of phenolic extracts from selected colored soybean varieties and 

quantify total phenolics.  

3.1 Introduction 

Soybeans rank the second among the most planted field crops after corn in the United 

States with the state of Arkansas growing about 3.3 million acres of soybeans annually (Soybean 

Production in Arkansas, 2014). The seed coat of soybeans known as soybean hull is a by-product 

of the soybean oil and soybean meal industry constitute about 10% of the whole seed (Duenas et 

al., 2006). Soybean hulls are a rich source of dietary fiber comprising of 86% polysaccharides 

such as pectin, cellulose and hemicellulose along with polyphenols, phytic acid, vitamins and 

minerals (Liu et al., 2013; O'Bryan et al., 2014). Polyphenols are secondary metabolites of plants 

which are found in abundance in fruits, vegetables as well as legumes such as soybeans and they 

impart color, flavor and sensory properties like sweetness, bitterness and astringency (Floridi et 

al., 2003). They are compounds possessing one or more hydroxyl groups attached to one or more 

aromatic hydrocarbon groups and form the most abundant antioxidants in human diet (Tapiero et 

al., 2002). 

Soybean hulls come in a range of colors like yellow, green, blue, brown and black or 

might have a mottled appearance. The highest concentration of the polyphenolic compounds like 

anthocyanins and proanthocyanidins present in soybean hulls especially those with dark colored 

seed hulls, and are, responsible for giving them a variety of colors (Todd & Vodkin, 1993; 

Duenas et al., 2006; Xu & Chang 2008; Malenčić et al., 2012). 

Phenolic compounds or phenolic phytochemicals (phenolic acids, flavones, flavo- nols, 

flavanones, flavanonol, isoflavones, and anthocyanidins) are vastly found in fruits،٬ vegetables 

and Legumes such as soybean hulls. Phenolics in plants are involved in immune protection and 
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defense against ultraviolet light (D'Archivio et al., 2007). Polyphenolics can be extracted from 

plant materials using different solvents such as ethanol, methanol, acetone, ethyl acetone or their 

combinations with different proportions of water. But for extracting phenolics from anthocyanin 

rich plant sources commonly acidified organic solvents such as ethanol or methanol is used (Dai 

& Mumper, 2010). Methanol can be used to extract free and simple phenolics for analytical 

purposes, but it is not acceptable as a food grade solvent since it is considered as an 

environmental hazard due to its toxicity (Shi et al., 2005). Extraction of phenolics using ethanol 

is generally recognized as safe (GRAS) for human consumption (Li et al., 2014). 

The total phenolics can be calculated by measuring the absorbance of the extract and 

comparing these with that of the standard curve of a phenolic compound. Kähkönen et al 

reported polyphenols in 26 different kinds of berries including biphenyls, flavonoids, phenolic 

acids, and other simple phenolics, such as caffeic, chlorogenic, ferulic, sinapic, and p- coumaric 

acids. The main constituents of phenolic composition found in the plants, are Flavonoids 

(flavonols, anthocyanins [ACY], proanthocyanins, and catechins) and phenolic acids. Malenčić 

et al (2012) indicated that varieties of soybean have different concentrations of polyphenols. 

They observed that yellow seed hull has the highest amount of total isoflavones, especially 

genistein, while black, brown, and other seed hulls contained more of anthocyanins. 

3.2 Materials and methods:  

Materials 

Soybean hulls with four different colors were used for the present study, which were 

yellow (R08- 4004), dark brown (R09- 349), brown (R07-589), and black (R07-1927). All the 

four types of soybeans with different seed hull colors were supplied by Dr. Pengyin Chen, 

Professor in the Department of Crop, Soil, and Environmental Sciences at the University of 
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Arkansas. Methanol, Folin–Ciocalteu reagent and sodium carbonate were purchased from VWR 

International, Inc (Suwanee, GA, USA) and Sigma-Aldrich, Inc.). Chlorogenic acid was 

purchased from Aldrich Chemical Co. (Milwaukee, Wis., U.S.A.). 

Preparation of uniform size fine particles from soybean hulls 

Soybean seeds from each variety were dehulled using a dehuller (Yamamoto FC2K 

instrument, Siba International Corp, Tokyo, Japan). The hulls were ground using a sample 

grinder (IKAWERKE grinder model M20, Ika Works, Inc., Wilmington, NC, U.S.A.), passed 

through an 80-mesh sieve (W.S. Tyler Inc., Mentor, OH, U.S.A.) to obtain uniform particles. The 

powder thus obtained from the four different colored soybean hulls were stored in air-tight 

plastic bags at 4°C before analysis. 

Extraction of Total Phenolics 

The phenolic compounds were extracted using aqueous methanol (v/ v), which had been 

proven to be the most efficient solvent for determine and quantify the total phenolics 

(Chidambara Murthy et al., 2002). However, methanol extraction was done only for 

quantification of the total phenolics in the hull extract, as methanol is considered to be toxic and 

thus an environmental hazard. For all other experiments ethanol was used to extract phenolics 

from soybean hull powder. The extraction of total phenolics from soybean seed hulls was done 

by following the method as described by Khanal et al., 2009, with some modifications. A 

mixture was prepared with 25 ml of 70% aqueous methanol/ ethanol and 5g of the seed hull 

powder, which was stirred for 10 min at ambient temperature and then sonicated for 10 min. The 

mixture was vacuum filtrated to separate the phenolic extract from residue. This extraction 

procedure was repeated twice to extract the residual phenolics. 
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Total phenolics determination: 

The total phenolic content of the soybean hull extracts obtained from the four different 

colored seed hulls using methanol was determined using the Folin–Ciocalteu method (Singleton 

& Rossi, 1965). Ten mg of each phenolic extract was weighed into test tube and vortexed with 

50 mL deionized (DI) water. One mL of the mixture thus obtained was taken in another test tube 

to which 7 mL of DI water, 1 mL of 0.25N Folin–Ciocalteu reagent, and 1mL of 1N sodium 

carbonate were added. The test tubes were then vortexed, covered by aluminum foil and 

incubated for 2 hours at ambient temperature. The A spectrophotometer (Shimadzu Model UV-

1601, Kyoto, Japan) at 726nm was used to measure the absorption of the solutions. The 

milligrams of chlorogenic acid equivalent (CAE) per gram dry weight (DW) of soybean seed 

hulls (mg CAE/g DW) was calculated using the following formula: Total phenolics (mg CAE/g 

DW) = (101.8 x A – 15.1) x 5; where A is the absorbance at 726 nm. The experiment was 

replicated three times and the total phenolic content was calculated using a standard curve 

obtained with the chlorogenic acid standard. 

Statistical analysis 

All values are reported as means of triplicate samples from each variety of soybean hulls 

to compare the amount of total phenolic. The JMP 10.0 software (SAS Institute, Cary, NC) was 

used to for one-way analysis of variance to determine the highest amount of the total phenolics. 

Analysis of variance (ANOVA) was performed and significant difference was determined at P < 

0.0001. 
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3.3 Result and discussion:  

Total phenolic contents of soybean hulls:  

Total phenolic contents determined using Folin–Ciocalteu method and expressed as 

milligrams of chlorogenic acid equivalent (CAE) per gram dry weight (DW) of soybean seed 

hulls (mg CAE/g DW) for the four different colored soybean hulls are given in Table 1.  The 

phenolic contents of the four different colored (black, brown, dark brown and yellow) soybean 

hulls ranged from 1.63 to 4.29 mg of CAE/g DW, with the yellow soybean hull having the 

lowest concentration of phenolics. The highest total phenolic content (4.29 mg CAE/g DW) was 

obtained for the hull extract of the soybean variety R07-1927 (black), which is the darkest 

colored soybean, which was not significantly different (P = 0.0099) from the phenolic content of 

the dark brown soybean hull (3.85 mg CAE/g DW). The total phenolic contents of the black and 

dark brown varieties were found to be significantly different (P < 0.05) from the brown and 

yellow colored seed coats which had phenolic concentrations of 3.31 mg CAE/g DW and 1.63 

mg CAE/g DW respectively. 

The differences in the total phenolic content of the four varieties of soybean hulls used in 

the present study points out that the color of soybean hulls has an influence on the total phenolics 

and perhaps of the individual phenolics extracted. Highest concentrations of phenolics was 

obtained for the hull extracts from black and brown soybeans which are dark colored. Our results 

are in concurrence with the results of the study by Malenčić et al., 2012, which showed that the 

black and brown colored seeds had highest concentrations of polyphenols. The presence of high 

concentrations of phenolics, such as anthocyanins and proanthocyanidins, in the seed coats of 

black soybean, are major determinants for the color (Todd & Vodkin, 1993; Astadi et al., 2009). 

We also observed that the lowest concentration of phenolics among the varieties of soybeans 
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tested was obtained for the yellow colored hull. Hence it might be inferred that the darker colors 

of soybean coats are due to the presence of higher concentrations and types of phenolics. 

3.4 Conclusion 

The present study showed differences in total phenolic contents of soybean varieties with 

different colored seed coats such as yellow (R08- 4004), dark brown (R09-349) brown (R07-

589) and black (R07-1927). The highest total phenolic content (4.29 mg CAE/g DW) was 

obtained for the hull extract of the soybean variety R07-1927 (black) while the lowest total 

phenolic content (1.63 mg CAE/g DW) was obtained for the conventional soybean varieties R08-

4004 (yellow). This observation can be due to differences in varieties. 
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Table 1. Total phenolic contents in seed coat powder from four different verities of soybean 

Soybean variety	
   Hull color 
**Total 
phenolics (mg 
CAE/g DW) 

R07-1927	
   Black	
   4.29±0.12a	
  

R09-349	
   Dark brown	
   3.85±0.50a	
  

R07-589	
   Brown	
   3.31±0.16b	
  

R08-4004*	
   Yellow	
   1.63±0.05c	
  

* Conventional soybean variety 
Values are means ± standard deviation of three determinations.   
**Values in the same column with the same letter are not significantly different (P <.0001). 
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Figure 4. Chlorogenic Acid standard curve for the determination of phenolic acids 
concentration in the samples 
 

 
Y= 0.1081x -0.0151 
Y= phenolic acid concentration in mg CA equivalents/ g DW 
X= absorption readings 
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Chapter 4: Determination of the minimum inhibitory effects of the extracts on S. 

Typhimurium, E coli 0157:H7, and Campylobacter jejuni in broth cultures 

4.1 Introduction 

Foodborne illness or foodborne infection is a common yet serious public health problem 

all over the world. Bacteria such as Salmonella, Campylobacter, E coli, Listeria, Clostridium and 

Staphylococcus are some of the most common causes of foodborne infections. Despite methods 

to reduce or eliminate bacterial foodborne pathogens, foodborne illnesses still continue to pose a 

major threat to public health (CDC, 2016). The control of pathogens may safely decrease the 

foodborne disease outbreaks (Kiran et al., 2008). There are more than 80,000 chemical 

preservatives that are used to inhibit the growth of pathogenic bacteria and some of them are 

used to protect the quality of chicken meet. Natural antimicrobials have started slowly replacing 

addition of traditional antimicrobials such as different antibiotics to food and food products due 

to increasing consumer awareness (Cetin-Karaca & Newman, 2015). So there is a need to 

determine the minimum inhibitory concentrations (MIC) of new and novel plant derived 

phenolics (Phanthong et al., 2013). In recent years, phenolic compounds have received attention 

because of their significant functions as antioxidant and antimicrobial (Liu, 2003). Because of 

their antibacterial, antifungal and antiviral activity, and antioxidant properties, phenolic 

compounds have been researched for many years (Hulin et al., 1998; Suppakul and others 2003; 

Lai and Roy 2004; Cushnie and Lamb 2005; Fattouch et al., 2007; Szabo and et al., 2010). 

Phenolic extracts and individual phenolics separated from plants have been used as 

antimicrobials to inhibit Salmonella, E coli, and Campylobacter (USDA, 2011). They are 

compounds possessing one or more hydroxyl groups attached to one or more aromatic 

hydrocarbon groups and form the most abundant antioxidants in human diet (Tapiero et al., 
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2002). Phenolics in plants are involved in providing immunity against ultraviolet radiation, 

different plant pathogens and parasites (Pandey and Rizvi, 2009). The objective for the present 

study was to determine the inhibitory effect of total phenolic extracts from hulls of selected 

colored soybean varieties on the inhibition of the pathogens such as Salmonella Typhimurium, E 

coli, and Campylobacter jejuni in cultures.  

4.2 Materials and methods:  

Materials 

Soybean hulls with four different colors were used for the present study, which were: 

yellow (R08- 4004), dark brown (R09- 349), brown (R07-589), and black (R07-1927). All the 

four types of soybeans with different seed coat colors were supplied by Dr. Pengyin Chen, 

Professor in the Department of Crop, Soil, and Environmental Sciences at the University of 

Arkansas. Agar slant cultures of E. coli O157:H7 (GFP-labeled ED 14) and Salmonella 

Typhimurium (ATCC 14028) were provided by the Center for Food Safety Research Laboratory, 

University of Arkansas. Campylobacter jejuni NCTC 11168 was provided by Dr. Kwon, 

Department of Poultry Science, University of Arkansas. Agar media for the determination of 

minimum inhibitory effects were purchased from Difco™ (a division of Becton, Dickinson and 

Co., USA). All the other chemicals used were reagent grade and purchased from VWR 

International, Inc. (Suwanee, GA, USA), Sigma-Aldrich, Inc, USA and Aldrich Chemical Co. 

(Milwaukee, WI, USA). 

Extraction of Phenolics: 

The phenolic compounds were extracted using aqueous ethanol as described in chapter 3.  
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Preparation of the Cultures: 

 Ten µl of frozen stock cultures of Salmonella Typhimurium, Escherichia coli O157:H7 

and Campylobacter jejuni were used to inoculate in 10 mL of brain heart infusion homogenate 

(BHI) broth for Salmonella Typhimurium, Escherichia coli, and Mueller Hinton broth (MH) for 

Campylobacter jejuni at 200 rpm agitating incubator (Edison NJ, U.S.A.) Cultures of Salmonella 

and E coli were incubated at 37°C for 24 h, while C. jejuni cultures were incubated for 48 h in a 

micro-aerobic atmosphere consisting of 85% nitrogen, 10% carbon dioxide, and 5% oxygen 

because it killed by oxygen, so it needs less oxygen than the amount in the atmosphere. After 

completion of incubation, the cultures (10 µl) from the first passage were passed into 10 mL of 

fresh respective broth. The cultures were incubated under conditions similar to the first passage 

to make sure that the culture of the bacterial was in the exponential growth phase. Cultures from 

second day were used for all experiments for (109 log CFU/mL) which is the high level that can 

offer a noticeable decline in the status of inhibitory action. (109 log CFU/mL) was diluted to (104 

log CFU/mL) which is the same range of bacteria in the food.  

Determination of inhibitory effects of Soybean hull extracts on bacteria in cultures: 

Frozen strains of Salmonella Typhimurium, Escherichia coli, and Campylobacter jejuni 

stored at -70°C were passed twice in respective broth media to revive the bacteria. For each 

passage, Brain Heart Infusion (BHI) broth was used to culture S. Typhimurium and E. coli 

O157:H7 and the cultures were incubated for 24 h to obtain good growth.     C. jejuni was 

cultured in Mueller Hinton (MH) broth and incubated for 48 h in a micro-aerobic atmosphere 

consisting of 85% nitrogen, 10% carbon dioxide, and 5% oxygen. Cultures after the second 

passage were used at a concentration of 104 and 109 CFU / ml for the experiments. 100µL of 

phenolic extracts from the soybean hulls in different concentrations (0.5%, 1%, 2%, 6%, and 
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10%) was added to 100µL of bacterial culture (S. Typhimurium, E. coli and C. jejuni) in screw 

capped vials and incubated for 3 different time periods (1day, 3days and 6days).  From the 

incubated mixtures 20µL was added to 180µL of sterilized phosphate buffer saline (PBS, 20 

mM) in a 96-well microtiter plate, serially diluted and plated on to selective agar plates 

(XLT4 agar for S. Typhimurium; MacConkey-Sorbitol agar for E. coli and Mueller Hinton agar 

for C. jejuni) in triplicate. All the plates for enumeration of S. Typhimurium and E. coli were 

incubated at 37°C for 24h (Edison, N.J., U.S.A.), while the plates for C. jejuni were incubated at 

42°C for 48h.  

Statistical analysis  

All the experiments were replicated three times and the values were calculated as means 

of the three determinations.  JMP 10.0 software (SAS Institute, Cary, NC) was used to perform 

one way analysis of variance on the data. Analysis of variance (ANOVA) was used to determine 

the minimum inhibitory concentrations of the soybean hull extracts in cultures and significant 

difference was determined at P < 0.05. 

4.3 Results and Discussion  

The antimicrobial activity of the ethanolic total phenolic extracts from four different 

colored soybean seed hulls (R08-4004, R09-349, R07-589 and R07-1927) were investigated on 

foodborne pathogens such as Salmonella Typhimurium, Escherichia coli, and Campylobacter 

jejuni in broth cultures. The antimicrobial activity of total phenolic extracts from each variety of 

soybean hull was studied at five different concentrations of 0.5%, 1%, 2%, 6%, and 10% on two 

levels of each type of bacterial cultures (a high level of 109 CFU/ ml and low level of 104 CFU/ 

ml).  All the cultures were incubated for three different time periods of 1, 3 and 6 days and their 

antimicrobial effects are shown in Tables 2- 17.   



	
   	
  

 
	
   	
  

32 

Table 2 shows the log reductions of Salmonella Typhimurium incubated with phenolic 

extracts of soybean hulls for 1 day from an initial level of 109 CFU/mL.  Overall, the highest log 

reduction of 0.80 was observed for the R07-1927 (black soybean hull) with a 10% concentration 

of the extract from bacterial levels of 109 CFU/mL compared to other varieties. The same 

concentration of yellow soybean variety, R08-4004 produced only limited inhibitory action with 

0.37 log reduction after incubation for 1 day. But the log reductions with the dark brown and 

brown colored hull extracts at 10 % concentration were almost the same. All the four hull 

extracts at concentrations of 0.5%, 1% and 2% did not show any significant differences in log 

reductions of S. Typhimurium. Table 3 shows the log reduction of Salmonella Typhimurium 

incubated with phenolic extract for one day with a low level of bacteria at 104 CFU/mL.  When 

bacterial levels became low, higher log reductions were observed, with the R07-1927 extract 

producing the highest log reduction of 0.97 after day 1. In higher bacterial concentrations, the 

concentration of autoinducers produced due to quorum sensing, might be reaching levels at 

which the bacteria are able to defend the actions of the phenolic extracts (Deep et al., 2011).  

Here also we observed similar trend of log reductions for the other soybean hulls with the yellow 

variety producing the lowest log reduction of 0.67.  No significant difference was observed 

between the different concentrations of 0.5%, 1% and 2% for all the extracts.    

Bacterial counts were also determined after longer incubation time of 3 and 6 days. On 

incubating for 3 days with the extract of R07-1927 S. Typhimurium counts were found to be 

lowered by 0.93 and 1.20 logs from initial bacterial levels of 109 and 104 CFU/mL respectively. 

The lowest log reductions were still seen with the yellow variety extract with 0.67 and 0.77 logs 

for bacterial levels of 109 and 104 CFU/mL respectively (Table 4 & 5). Incubating bacterial 

cultures with the phenolic extracts for a longer period of 6 days also produced similar results as 
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with incubating for 3 days (Tables 6 & 7). The maximum log reduction of 2.0 logs was observed 

when Salmonella Typhimurium was incubated for 6 days with the most effective extract from the 

hull of R07-1927.  

The phenolic extracts of the 4 different soybean hulls showed a similar type of response 

with E coli O157:H7 as with S. Typhimurium when incubated for 1 day (Tables 8 & 9), 3 days 

(Tables 10 & 11) and 6 days (Table 12 & 13). The 10% concentration of the black variety (R07-

1927) produced the maximum log reductions of 0.90, 1.97 and 2.67 for days 1, 3 and 6 

respectively, from an initial bacterial level of 109 CFU/mL. Similarly from a bacterial level of 

104 CFU/mL log reductions of 1.20, 2.20 and 3.30 were observed after incubation for 1,3, and 6 

days for the above extract. Here also the yellow soybean hull extract was found to have the least 

inhibitory effects on E coli O157:H7 in cultures.  

With Campylobacter jejuni the soybean hull phenolic extracts produced similar pattern of 

reductions with incubation periods of 1 day (Tables 14 & 15) and 3 days (Tables 16 & 17). One 

log reductions were observed after day 1, with the 10% concentration of R07-1927 extract for 

both the initial bacterial levels of 109 and 104 CFU/mL. Upon incubating the bacterial cultures 

with the extracts for 3 days, 2 log reductions were observed for both bacterial levels. The 

phenolic extract of yellow soybean produced 0.60 - 0.93 and 1.13-1.37 log reductions for days 1 

and 3 with the two different levels of bacteria.  No colonies of C. jejuni could be detected even in 

the controls after 6 days incubation, as this bacterium is very sensitive to environmental 

conditions (Park, 2002). Another study reported that Campylobacter jejuni survived for only a 

few days during incubation and does not have the ability to survive environmental stress 

(Buswell et al., 1998). Campylobacter jejuni has poor ability of storing energy to assist growth 
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due to the fact that Campylobacter jejuni does not have 6-phosphofructokinase which is special 

enzyme for energy metabolism (Velayudhan & Kelly 2002; Stahl et al., 2012).  

The log reductions for all the phenolic extracts were found to be higher with the initial 

bacterial concentration of 104 CFU / ml than for 109 CFU / ml.  Our results show a significant 

difference in the inhibitory actions of the black and yellow colored varieties with all the three 

bacterial species, but not much difference was observed between the black, dark brown and 

brown varieties. Colored soybean seed coats have been shown to possess phenolic acid 

compounds such as anthocyanins and proanthocyanidins in abundance, but these are not found in 

the yellow variety (Todd & Vodkin, 1993).  The yellow variety however, has more of 

isoflavones such as genistein and daidzein (Zilic at al., 2013).  The difference in the log 

reductions between the colored soybean hulls and the yellow variety could be due to the 

difference in the composition of individual phenolic compounds present in the hull extracts. 

Research on the inhibition of pathogens by extracts from soybean hulls is limited. 

Phenolic compounds have been found to have an adverse effect on bacterial growth by inhibiting 

their metabolic functions (Cushnie & Lamb, 2005). The results of the present study revealed that 

even though soybean extracts were able to reduce bacterial growth, the antimicrobial activities of 

these extracts. Study by Park et al., (2011) found variations in the sensitivity of Salmonella and 

Listeria when treated with blueberry and muscadine total phenolic extracts. This difference in 

reaction between the bacteria to the total phenolic extracts might be due to the difference in their 

cell structures and characteristics (Puupponen Pimiä et al., 2001; Park et al., 2011).  Research on 

inhibition of different foodborne pathogens tested by phenolic extracts from defatted soybean 

flour, found that gram-positive bacteria showed more sensitivity to the extracts than the gram 

negative (Villalobos et al., 2015). Gram negative bacteria are more resistant to different types of 
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antibacterials due to the presence of an outer membrane with lipopolysaccharides which is absent 

in gram positve bacteria.  Even though all the three bacteria in this study are gram negative, their 

cell walls differ due to the difference in outer membrane proteins and enzymes which lead to 

difference in permeability to the soybean hull extracts (Winfield and Groisman, 2004, Hobb et 

al., 2009, Silhavy et al., 2010). It is also possible that there might be some compounds in the 

total phenolic extracts, which may be interfering with the action of the phenolic compounds.  

Plant derived individual phenolic compounds were found to inhibit various species of Bacillus, 

Listeria and Clostridium at concentrations of 5-20 ppm (Cetin-Karaca & Newman, 2015). Total 

phenolic extracts from different plant sources could have different types of influence on the 

growth of the same bacteria. Phenolic extracts from berries such as cloudberry, raspberry and 

strawberry were found to strongly inhibit Salmonella, while the extracts from Sea buckthorn 

berry and blackcurrant were found to have the least effect against Salmonella and E. coli 

(Puupponen Pimiä et al., 2001). Very limited information is available on the inhibitory activity 

of different colored soybean hull phenolic extracts against different foodborne pathogens in the 

literature.  

4.4 Conclusion 

The present study showed differences in inhibitory effects of the phenolic extracts 

obtained from hulls of soybean with different colored seed coats such as yellow (R08- 4004), 

dark brown (R09-349) brown (R07-589) and black (R07-1927).  The phenolic extracts at 

different concentrations were found to inhibit bacteria in cultures producing 1-3 log reductions 

which was found to vary with the type of bacteria. Maximum log reductions were observed when 

bacteria in cultures were incubated for longer time periods of 3 and 6 days. 
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Table 2. The log reductions of S. Typhimurium (from109 log) when incubated with phenolic 
extract for 1 day  

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.47±0.05cA  0.33±0.05cB 0.33±0.05cB 0.03±0.05bC <0.0001 

1 0.47±0.09cA  0.43±0.09bcA 0.43±0.09bcA 0.07±0.05bB <0.0045 

2 0.53±0.05bcA  0.43±0.12bA 0.47±0.05bA 0.10±0.08bB <0.0003 

6 0.63±0.05bA  0.53±0.05  abA  0.53±0.05bA 0.27±0.05aB <0.0003 

10 0.80±0.00aA  0.63±0.05aB 0.67±0.05aB 0.37±0.05aC <0.0001 

P value 0.0006  0.0057 0.0028 0.0005  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   	
  

 
	
   	
  

37 

 

 

 

Table 3. The log reductions of S. Typhimurium (from104 log) when incubated with phenolic 
extract for 1 day  

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.67±0.05cA  0.60±0.00cA 0.53±0.09bA 0.07±0.09cB <0.0001 

1 0.67±0.05cA  0.63±0.00cA 0.60±1.14bA 0.23±1.17bcB 0.0114 

2 0.70±0.00cA  0.70±0.05bcA 0.67±0.05abA 0.37±0.05abB <0.0001 

6 0.83±0.05bA  0.77±0.09abA 0.70±0.00abA 0.53±0.09aB 0.0146 

10 0.97±0.05aA  0.83±0.05aB 0.83±0.05aB 0.67±0.05aC 0.0017 

P value <0.0001  0.0064 0.0386 0.0034  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 4. The log reductions of S. Typhimurium (from109 log) when incubated with phenolic 
extract for 3 days  

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.63±0.05cA  0.57±0.12cA 0.53±0.05cA 0.13±0.05bB <0.0006 

1 0.67±0.05cA  0.65±0.08cA 0.57±0.12cA 0.13±0.12bB 0.0027 

2 0.67±0.07cA  0.70±0.08bcA 0.60±0.08bcA 0.23±0.12bB <0.0001 

6 0.80±0.00bA  0.80±0.00abA 0.77±0.05abA 0.57±0.05aB 0.0003 

10 0.93±0.05aA  0.93±0.05aA 0.87±0.05aA 0.67±0.05aB 0.0013 

P value 0.0002  0.0052 0.0056 0.0002  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 5. The log reductions of S. Typhimurium (from104 log) when incubated with phenolic 
extract for 3 days  

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.70±0.08dA  0.67±0.12cA 0.66±0.12bA 0.30±0.08bB 0.0156 

1 0.77±0.09cdA  0.73±0.12bcA 0.73±0.12bA 0.30±0.08bB 0.0072 

2 0.90±0.00bcA  0.73±0.07bcAB 0.77±0.05bB 0.47±0.12bC 0.0018 

6 0.97±0.05bA  0.93±0.05abA 0.83±0.05bA 0.73±0.05aB <0.0001 

10 1.20±0.08aA  1.10±0.08aA 1.03±0.07aA 0.77±0.12aB 0.0167 

P value 0.0002  0.0044 0.0100 0.0011  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 6. The log reductions of S. Typhimurium (from109 log) when incubated with 
phenolic extract for 6 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 1.20±0.14bA  1.13±0.19bA 0.90±0.08cAB 0.70±0.08bB 0.0186 

1 1.73±0.05aA  1.37±0.17bB 0.93±0.05cC 0.80±0.08bC <0.0001 

2 1.73±0.05aA  1.37±0.24bB 1.00±0.00cC 0.83±0.05bC 0.0004 

6 1.87±0.05aA  1.77±0.05aAB 1.67±0.05bB 1.37±0.12aC 0.0008 

10 1.87±0.05aA  1.80±0.00aA 1.87±0.05aA 1.47±0.12aB 0.0013 

P value <0.0001  0.0067 <0.0001 <0.0001  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 7. The log reductions of S. Typhimurium (from104 log) when incubated with phenolic 
extract for 6 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 1.50±0.08cA  1.67±0.05cAB 1.37±0.09cB 1.40±0.08cB 0.0197 

1 1.77±0.05bA  1.73±0.05bcA 1.50±0.00cB 1.40±0.08bB 0.0003 

2 1.80±0.08bA  1.73±0.09bcA 1.50±0.00cB 1.67±0.05bA 0.0105 

6 1.83±0.05bA  1.87±0.05abA 1.80±0.14bA 1.77±0.05abA 0.6588 

10 2.03±0.05aA  2.00±0.08aA 2.07±0.05aA 1.80±0.00aB 0.0040 

P value <0.0001  0.0037 <0.0001 <0.0001  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 8.  The log reductions of E. coli O157:H7 (from109 log) when incubated with phenolic 
extract for 1 day 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.60±0.08cA  0.50±0.08cA 0.47±0.05cA 0.07±0.09bB 0.0006 

1 0.67±0.12bcA  0.57±0.12bcA 0.60±0.08bcA 0.40±0.43abA 0.7186 

2 0.67±0.05bcA  0.63±0.09bcAB 0.60±0.14bcAB 0.43±0.09abB 0.1723 

6 0.77±0.05abA  0.73±0.05abA 0.67±0.05bA 0.50±0.08abB 0.0073 

10 0.90±0.00aA  0.83±0.05aA 0.73±0.05aB 0.53±0.05aC <0.0001 

P value 0.0165  0.0185 0.0763 <0.0001  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 9. The log reductions of E. coli O157:H7 (from104 log) when incubated with phenolic 
extract for 1 day 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.80±0.00dA  0.77±0.05cA 0.70±0.08cA 0.67±0.09aA 0.2503 

1 0.93±0.05cA  0.87±0.09bcAB 0.73±0.09cAB 0.67±0.12aB 0.0770 

2 0.93±0.05cA  0.90±0.00bA 0.77±0.05cB 0.77±0.05aB 0.0056 

6 1.07±0.05bA  1.03±0.05aA 1.03±0.05bA 0.77±0.12aB 0.0970 

10 1.20±0.08aA  1.13±0.05aA 1.20±0.08aA 0.83±0.05aB 0.0016 

P value 0.0002  0.0005 <0.0001 0.3786  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 10. The log reductions of E. coli O157:H7 (from109 log) when incubated with phenolic extract 
for 3 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.70±0.00cA  0.67±0.05cA 0.67±0.05cA 0.53±0.09cB 0.0797 

1 0.80±0.08cA  0.70±0.00cB 0.70±0.00cB 0.57±0.05bcC 0.0071 

2 0.80±0.00cA  0.73±0.05cAB 0.70±0.00cBC 0.63±0.05bcC 0.0068 

6 1.20±0.14bA  1.10±0.08bA 1.07±0.05bA 0.73±0.09bB 0.0067 

10 1.97±0.05aA  1.93±0.09aA 1.63±0.09aB 0.93±0.09aC <0.0001 

P value <0.0001  <0.0001 <0.0001 0.0032  

Values are means ± standard deviation of three determinations; mean values with different lowercase 
letters in the same column and different uppercase letters in the same row are significantly different (P < 
0.05). 
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Table 11. The log reductions of E. coli O157:H7 (from104 log) when incubated with 
phenolic extract for 3 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 1.03±0.05cA  0.90±0.08bA 0.93±0.09aA 0.53±0.05dB 0.0005 

1 1.03±0.05cA  0.93±0.09bA 0.97±0.12aA 0.63±0.12cdB 0.0015 

2 1.17±0.17cA  1.03±0.05bA 1.03±0.21aA 0.70±0.00bcB 0.0434 

6 1.90±0.08bA  1.10±0.08bB 1.23±0.12aB 0.80±0.00abC <0.0001 

10 2.20±0.08aA  2.00±0.16aA 1.33±0.47aB 0.90±0.08aB 0.0033 

P value <0.0001  <0.0001 0.4499 0.0032  

Values are means ± standard deviation of three determinations; mean values with different lowercase 
letters in the same column and different uppercase letters in the same row are significantly different (P < 
0.05). 
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Table 12. The log reductions of E. coli O157:H7 (from109 log) when incubated with 
phenolic extract for 6 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 1.77±0.05cA  1.70±0.08cA 1.73±0.09bA 0.87±0.05dB <0.0001 

1 1.87±0.05cA  1.80±0.00bcA 1.77±0.05bA 1.03±0.05cdB <0.0001 

2 1.90±0.00cA  1.87±0.05bAB 1.77±0.12bB 1.10±0.08cC 0.0007 

6 2.10±0.08bA  1.93±0.05bB 1.80±0.00bB 1.30±0.08bC <0.0001 

10 2.67±0.12aA  2.23±0.09aB 2.03±0.05aB 1.77±0.12aC <0.0001 

P value <0.0001  <0.0001 0.0166 <0.0001  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 13. The log reductions of E. coli O157:H7 (from104 log) when incubated with 
phenolic extract for 6 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 1.97±0.05dA  2.03±0.05dA 2.03±0.09cA 1.53±0.12cB 0.0009 

1 2.43±0.09cA  2.40±0.08cA 2.03±0.05cB 1.90±0.08cB 0.0003 

2 2.53±0.05cA  2.43±0.05cA 2.13±0.05cB 1.90±0.08bcC <0.0001 

6 3.00±0.00bA  2.73±0.05bB 2.30±0.00bC 2.10±0.00abD <0.0001 

10 3.30±0.08aA  3.13±0.05aB 3.00±0.08aB 2.17±0.05aC <0.0001 

P value <0.0001  <0.0001 <0.0001 0.0080  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 14. The log reductions of C. jejuni (from109 log) when incubated with phenolic 
extract for 1 day 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.73±0.09cA  0.63±0.09cA 0.60±0.08bA 0.07±0.05cB 0.0002 

1 0.80±0.00bcA  0.67±0.05cA 0.70±0.00bA 0.07±0.05cB 0.3452 

2 0.83±0.00bcA  0.80±0.05cA 0.70±0.00bB 0.33±0.05bC <0.0001 

6 0.90±0.00bA  0.80±0.00bA 0.87±0.05aA 0.47±0.09bB <0.0001 

10 1.03±0.05aA  0.97±0.05aA 0.97±0.05aA 0.60±0.00aB <0.0001 

P value 0.0007  0.0007 <0.0001 <0.0001  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 15. The log reductions of C. jejuni (from104 log) when incubated with phenolic 
extract for 1 day 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.80±0.08dA  0.83±0.09bA 0.83±0.09bA 0.27±0.09bB 0.0006 

1 0.87±0.05cdA  0.83±0.09bA 0.90±0.00bA 0.33±0.12bB 0.0003 

2 0.97±0.05cA  0.83±0.09bAB 0.90±0.00bAB 0.77±0.12aB 0.1631 

6 1.10±0.00bA  1.07±0.05aA 1.03±0.05aA 0.87±0.12aB 0.0440 

10 1.23±0.05aA  1.20±0.00aA 1.13±0.05aA 0.93±0.09aB 0.0034 

P value <0.0001  0.0015 <0.0001 0.0003  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 16. The log reductions of C. jejuni (from109 log) when incubated with phenolic 
extract for 3 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 0.87±0.05eA  0.93±0.09dA 1.00±0.00cA 0.37±0.17cB 0.0008 

1 1.03±0.05dA  0.97±0.05cdA 1.00±0.08cA 0.50±0.08cB <0.0001 

2 1.30±0.08cA  1.10±0.00cAB 1.03±0.12bcB 0.77±0.09bC 0.0022 

6 1.83±0.05bA  1.30±0.08bB 1.23±0.12bB 0.97±0.09abC <0.0001 

10 2.07±0.05aA  1.83±0.05aB 1.77±0.09aB 1.13±0.09aC <0.0001 

P value <0.0001  <0.0001 <0.0001 0.0002  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 17. The log reductions of C. jejuni (from104 log) when incubated with phenolic 
extract for 3 days 

Soybean varieties 

Extract 
concentration 
(%) 

R07-1927 
 

R09-349 R07-589 R08-4004 P value 

0.5 1.00±0.08dA  1.00±0.00cA 0.97±0.05cAB 0.87±0.05cB 0.0452 

1 1.23±0.05cA  1.13±0.00cB 1.03±0.12bcC 0.97±0.05bC 0.0006 

2 1.37±0.05cAB  1.50±0.16bA 1.20±0.14bBC 1.03±0.05bC 0.0160 

6 1.93±0.05bA  2.03±0.05bA 2.03±0.05aA 1.30±0.00aB <0.0001 

10 2.10±0.08aA  2.07±0.09aA 2.17±0.12aA 1.37±0.05aB <0.0001 

P value <0.0001  <0.0001 <0.0001 <0.0001  

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Chapter 5: Evaluation of soybean hull phenolic extracts on Salmonella Typhimurium, E 

coli, and Campylobacter jejuni attached to chicken skin.  

5.1 Introduction 

Chicken is a very popular food commodity, which has a high range of consumption in 

almost all countries. People prefer to eat chicken for its good taste, low cost, low fat content, and 

high nutritional value (Mataragas et al., 2008). However, food from animal sources such as 

chicken have the highest percentage of cause for foodborne diseases (Todd, 1996; Petersen& 

James, 1998). The raw chicken skin can be contaminated by pathogens during production, 

processing, distribution, retail marketing, handling and preparation (Zhao et al., 2001). A wide 

variety of microorganisms are present on the skin of chilled poultry as it provides optimal 

conditions for growth and survival.  But the presence of any kind of bacteria in or on the surface 

of any kind of meat is not desirable with the exception of fermented meat products (ICMSF – 

International Commission on Microbiological Specification for Foods, 2005). 

Consumption of poultry meat has been on the rise in recent years, which might have led 

poultry to be implicated in about 17-18 % of foodborne illnesses (Painter et al., 2013). Raw 

poultry meat is often contaminated with bacteria such as Salmonella, E coli, Campylobacter, 

Arcobacter, Listeria, Staphylococcus and Clostridium (Doležalová et al., 2010).  Some of these 

bacteria such as Salmonella and Campylobacter are able to survive in the feather follicles or on 

the skin of poultry even after the different treatments during processing (Todd, 1996; Zhang et 

al., 2013; Chaine et al., 2013). Research around the world indicate that Campylobacter, 

Salmonella, and E coli are present in fresh meat and poultry (Todd, 1996). Scallan et al (2011) 

reported that each year about 850,000 people are infected by Campylobacter jejuni, 1.03 million 
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infections by different species of Salmonella including S. Typhimurium, and 206,000 by 

different kinds of pathogenic Escherichia coli, including E. coli O157:H7.  

Despite methods to reduce or eliminate bacterial foodborne pathogens, foodborne 

illnesses still continue to pose a major threat to public health (CDC, 2016).  Considering the fact 

that chicken belongs to the group of perishable foods, this problem pushes the researcher to find 

solutions to increase the shelf-life extension of chicken products (Leistner, 1995; Chouliara et 

al., 2006). Natural antimicrobials have started slowly replacing addition of traditional 

antimicrobials such as different antibiotics to food and food products due to increasing consumer 

awareness (Cetin-Karaca & Newman, 2015). So there is an increasing demand, to determine the 

minimum inhibitory concentrations (MIC) of plant derived phenolics (Phanthong et al., 2013).  

Phenolic extracts, which are natural antimicrobials, have the ability to inhibit the human 

pathogen (Cetin-Karaca, 2011). Oliveira et al (2008) indicated that phenolic extracts from the 

walnut (Juglans regia L.) green husks have high antimicrobial activity against several types of 

bacteria. Additionally, researchers showed that phenolic fractions of gelam and coconut honeys 

have potent antimicrobial activities (Aljadi & Yusoff., 2003). Studies have shown that the 

extracts of blueberry as well as muscadine were able to inhibit pathogens like Listeria 

monocytogenes and Salmonella Enteritidis (Park et al., 2011).  

The objective of this study was to evaluate the inhibitory effects of soybean hull phenolic 

extracts on Salmonella Typhimurium, E coli, and Campylobacter jejuni attached to chicken skin. 

5.2 Materials and methods: 

Materials 

Agar slant cultures of E coli O157:H7 (GFP-labeled ED 14) Salmonella Typhimurium 

(ATCC 14028) was provided by Dr. Johnson, Center for Food Safety Research Laboratory, 
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University of Arkansas. Campylobacter jejuni NCTC 11168 was provided by Dr. Kwon, 

Department of Poultry Science, University of Arkansas. XLT4 Salmonella selective agar, 

MacConkey-Sorbitol agar, and Mueller Hinton agar media were purchased from Difco™ (a 

division of Becton, Dickinson and Co., USA). Nalidixic acid was purchased from VWR 

International, Inc (Suwanee, GA, USA). Fresh chickens were obtained from Tyson Foods Inc. 

The phenolic extract from the hull of the black soybean (R07-1927) was used because it 

produced the maximum inhibitory. 

Preparation of culture: 

Ten µl of frozen stock cultures of Salmonella Typhimurium, Escherichia coli O157:H7 

and Campylobacter jejuni were used to inoculate in 10 mL of brain heart infusion homogenate 

(BHI) broth for Salmonella Typhimurium, Escherichia coli, and Mueller Hinton broth (MH) for 

Campylobacter jejuni at 200 rpm agitating incubator (Edison NJ, U.S.A.) Cultures of Salmonella 

and E coli were incubated at 37 °C for 24 h, while C. jejuni cultures were incubated for 48 h in a 

micro-aerobic atmosphere consisting of 85% nitrogen, 10% carbon dioxide, and 5% oxygen. 

After completion of incubation, the cultures (10 µl) from the first passage were passed into 10 

mL of fresh respective broth. The cultures were incubated under conditions similar to the first 

passage to make sure that the culture of the bacterial was in the exponential growth phase. 

Cultures from second passage were used to inoculate agar plates with 100 ng/ml nalidixic acid 

for S. Typhimurium and E. coli while for C. jejuni agar plates without nalidixic acid was used. 

From the agar plates colonies were again passed twice in broth cultures as described above, to 

obtain a high and stable concentration of bacteria.  

Extraction of Phenolics: 

The extraction of total phenolic compounds using ethanol is described in chapter 3.  
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Investigation of antimicrobial activity of the phenolic extracts on chicken skin 

The total phenolic was found to be the highest for the black colored variety (4.29 mg of 

CAE/g DW) out of the 4 different colored soybean hulls tested.  Hence only this extract was used 

at two different concentrations for the chicken skin studies: a lowest concentration of 0.5 % and 

a higher concentration of 2%, which did not produce any color, changes on the meat. Skin from a 

fresh chicken was cut into 54 pieces of approximately 2 g size with a sterile knife.  Altogether 

skin pieces from three chickens were used for the experiment as the effect of extract for 3 time 

periods of storage (1, 3 and 6 days) was tested. Individual chicken skin pieces in duplicate were 

inoculated with the bacterial cultures (100µl/ piece) having two concentrations (109 and 104 

cfu/mL) and were kept in the refrigerator at 4°C for 15 min to promote bacterial attachment. The 

samples were then dipped in 100 µl of the black soybean hull extract (0.5 % and 2%) for 15 min 

at 4°C and then placed in stomacher bags and stored at 4°C for 1, 3 and 6 days. After storage for 

each time period, the stomacher bags with individual chicken skin pieces were taken out, 10 ml 

of PBS added and stomached for 10 min at 8 strokes/sec. Stomached samples were serially 

diluted using PBS and plated on to differential agar plates for the different bacteria which were 

as follows: (1) XLT-4 (Xylos Lysine Tergitol 4) agar plates with 25ng/ ml nalidixic acid for S. 

Typhimurium (2) SMAC (Sorbitol MacConkey) agar plates with 25ng/ ml nalidixic acid for E. 

coli and (3) Mueller Hinton (MH) agar plates for C. jejuni. All the agar plates for enumeration of 

S. Typhimurium and E. coli were incubated at 37°C for 24h (Edison, N.J., U.S.A.), while the 

plates for C. jejuni were incubated at 42°C for 48h microaerobically and colonies were counted 

to determine the bacterial log reductions. 
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Statistical analysis  

Three repetitions of the experiment were done with triplicate samples. The data was 

analyzed by one-way analysis of variance to determine the analysis of variance ((ANOVA)) 

using the JMP (John’s Macintosh Product) 7.0 software (SAS Inst. Inc., Cary, NC, U.S.A.). The 

significant difference between results were estimated at p <0.0001 

5.3 Results and Discussion  

Many studies reported that natural alternatives such as plant derived antimicrobials have 

the ability to reduce bacterial loads on chicken skin (Lowenthal et al., 1999; Guo et al., 2004; 

Doležalová et al., 2009; Yang & Choct, 2009; Piskernik et al., 2011). In this study, phenolic 

extracts from the hulls of black soybean (R07-1927) was investigated as a natural plant derived 

antimicrobial against Salmonella Typhimurium, E coli, and Campylobacter jejuni attached to 

chicken skin. From the experiments for determining the inhibitory effects of soybean hull 

phenolic extracts in bacterial cultures, we found that the black soybean (R07-1927) hull extract 

produced the maximum inhibitory effects. We used 5 different concentrations (0.5, 1, 2, 6 and 

10%) for determining inhibitory effects of the extracts towards bacteria in cultures and found that 

the maximum reductions were produced by the 10% concentration of the extract.  However with 

preliminary studies we found that the two higher concentrations of 6 % and 10 % produced color 

changes on chicken skin. So for determining the inhibitory effect of extracts on bacteria attached 

to chicken skin we used the low concentration of 0.5% and 2% which did not produce any color 

changes on the meat. Also since we could not detect any growth of C. jejuni after 6 days even in 

cultures without treatment, this bacteria was not included for the chicken skin study.  

The effects of the two different concentrations of R07-1927 hull extract for 1, 3, and 6 

days of storage on S. Typhimurium and E coli attached to chicken skin, are shown in Tables 18 - 
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19. The extract at 2% concentration was able to produce around 1.18 and 1.39 log reductions for 

Salmonella on days 3 and 6 respectively, whereas for E coli the log reductions were 1.09 and 

1.24. We also found that the 2% phenolic extract was more effective than the 0.5 % 

concentration for Salmonella Typhimurium (P = 0.0102, 0.0072 and 0.0158) after incubation for 

all the 3 time periods of storage (1, 3 and 6 days). However no significant differences between 

the two concentrations was seen on E coli log counts (P = 0.05, 0.2291 and 0.1402) at any time 

points tested.  Similar to the effects produced by the extracts on bacteria in cultures, here also we 

found that the two bacteria reacted differently to the same extract, which might be due to the 

differences in their cell structures. Previous studies also have observed differences in inhibitory 

actions even between strains of bacteria within the same family when treated with plant derived 

phenolic compounds (Cetin-Karaca & Newman, 2015). Also the total phenolic extracts might be 

containing some compounds, which may be interfering with the action of the phenolic 

compounds. Hence separation of individual constituents from the total phenolic extracts and their 

antimicrobial effects warrants further studies.   

5.4 Conclusion 

The present study showed differences in the inhibitory effects of the phenolic extract 

from the black soybean hull on bacteria attached to chicken skin. The highest log reduction was 

observed after incubation for 6 days with 2% concentration of the phenolic extract, with log 

reductions of 1.39 for Salmonella and 1.24 for E coli.  Many types of hurdle techniques are being 

employed in poultry processing to reduce/ eliminate foodborne bacteria. Yet, chicken skin still 

harbors different pathogenic species of bacteria known to produce foodborne diseases in humans. 

Due to increasing awareness among consumers, natural antimicrobials have started replacing 
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traditional antimicrobials in food and food products. In this present scenario, natural 

antimicrobials such as soybean hull extracts could be made use of to reduce bacteria in foods.  
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Table 18.  Effect of R07-1927 (black) soybean hull phenolic extract on S. Typhimurium 
attached to chicken skin 

Phenolic 
extract 
concentration 
(%) 

 

 

Day 1  

Log Reduction 

 

Day3 

 

 

Day 6 

 

 

P value 

0.5 0.32±0.02bC 1.00±0.03bB 1.18±0.05bA <0.0001 

2 0.43±0.06aB 1.18±0.05aA 1.39±0.03aA <0.0001 

P value 0.0102 0.0072 0.0158  

*Strains of Salmonella 

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Table 19. Effect of R07-1927 (black) soybean hull phenolic extract on E. coli attached to 
chicken skin 

Phenolic extract 
concentration 
(%) 

 

 

Day 1  

Log Reduction 

 

Day3 

 

 

Day 6 

 

 

P value 

0.5 0.39±0.12bB 0.99±0.03aA 1.13±0.02aA <0.0001 

2 0.52±0.02aC 1.09±0.02aB 1.24±0.06aA <0.0001 

P value 0.0500 0.2291 0.1402  

*Strains of E coli 

Values are means ± standard deviation of three determinations; mean values with different 
lowercase letters in the same column and different uppercase letters in the same row are 
significantly different (P < 0.05). 
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Chapter 6: A preliminary study on the Investigation of the ACE-I inhibitory activity of the 

phenolic extracts from hulls of four different colored soybean varieties (R07-1927, R07-589, 

R09-349, and R08- 4004) 

 6.1 Introduction 

Soybean seed hulls contain several compounds such as protein, fiber, iron, lignin, trypsin 

and phenolics, which are found to have a variety of health benefits (Alvarez et al., 1997; Sessa 

and Wolfe, 2001; Murray-Kolb et al., 2003; Xu and Chang 2008). Phenolics have the ability to 

serve as Anti Angiotensin-I Converting Enzyme (ACE-I) inhibitory activities. (Ranilla et al., 

2010) ACE-I inhibitions play a significant role in controlling high blood pressure by the renin-

angiotensin system (Mullally et al., 1996). According to the American Heart Association and the 

Center for Disease Control and Prevention, 610,000 people die of heart-related diseases in the 

U.S each year (Mozaffarian et al., 2016). Hypertension is a major risk factor for causing heart 

disease. It is known that antihypertensive activity is related to the inhibition of Angiotensin-I 

converting-enzyme (ACE-I) catalytic activity (Lee et al., 2010). ACE-I is known to be 

responsible for vascular constriction, thereby causing hypertension (Liesmaa, 2010). Renin-

angiotensin system (RAS) from the liver transforms the angiotensinogen to angiotensin I 

(histidyl-leucine dipeptide), which in turn is transported to the lungs. ACE-I changes the inactive 

form into angiotensin-II (potent vasoconstrictor octapeptide) and activates the vasodilator 

bradykinin (Skeggs et al., 1956; Mallikarjun Gouda et al., 2006; Hong et al., 2008). 

Additionally, angiotensin II catalyzes the synthesis and release of aldosterone, which causes 

hypertension by promoting sodium retention in the distal tubules (Lieberman, 1975). Inhibition 

of the ACE activity is the best method that used in treatment of increasing the blood pressure 

(Erdös& Skidgel., 1987). 
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Drugs such as captopril and enalapril, are administered as antihypertensive agents, which 

inhibit the angiotensin I-converting enzyme (ACE) and leading to a decrease in blood pressure 

and reduce the risk of hypertension complications. However, those synthetic treatments have side 

effects, including dry cough, skin rashes, and allergic reactions (Choi et al., 2001; Hong et al., 

2008; García et al., 2013). Of these side affects, reaserches have been prompted to find ACE 

inhibitors from natural sources. Many studies indicate that there are numbers of compounds in 

plants such as phenolic compounds, peptides, oligosaccharides and amino acid analogues have 

been shown the inhibitor of ACE activity (Liu et al., 2004; Actis-Goretta et al., 2006; Je et al., 

2006). 

Researchers have shown many different ACE-I inhibiting compounds from soybean 

sources (Chiang et al., 2005; Yang et al., 2011; Lassissi et al., 2014). However, no literature 

infomation is available in investigating the effect of various soyben colored hull phnolic extracts 

in the inhibition of ACE -1. Hence, the objective of this study was to investigate the ACE-I 

inhibitory activity of the extracts.  

6.2 Materials and methods 

Materials 

Monosodium phosphate monohydrate, disodium phosphate heptahydrate, sodium 

chloride, hydrochloric acid and acetic acid were purchased from VWR International, Inc. 

(Suwanee, GA, USA). ACE stock solution, hippuryl-L-histidyl-L-leucine (HHL) and captopril 

were purchased from Sigma-Aldrich, Inc. 

Determination of Angiotensin-converting-enzyme inhibitor (ACE inhibitory) activity: 

Two types of solvents were prepared for the experiment, Solvent A and Solvent B.  

Solvent A was used to prepare the extract sample, ACE and Solvent B.  Solvent B was used to 
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prepare hippuryl-L-histidyl-L-leucine (HHL).  Solvent A (1L of 0.1 M phosphate buffer (PB) of 

pH 8.3) was prepared by adding 0.489 g of monosodium phosphate monohydrate (MPB) and 

25.851 g disodium phosphate, heptahydrate in 1 L DI water and pH was adjusted to 8.3 using 

sodium hydroxide. Solvent B (100ml of 0.5M NaCl in 0.1 M PB of pH 8.3) was prepared by 

adding 2.925 g NaCL to 100 mL of Solvent A. One ml of 125 mU / mL of ACE was prepared by 

mixing 125 uL of ACE stock solution (1U/Ml) and 875 uL of Solvent A. Five ml of 12.5 mM 

hippuryl-L-histidyl-L-leucine (HHL) was prepared by mixing 0.0268g of HHL to 5 mL of 

Solvent B. 

One 1 mL of the extract solution was prepared by adding 0.01 g of extract/ Captopril to 

1mL of Solvent A. The samples were prepared by taking 50 uL of the extract solution in a screw 

cap vial to which 50 uL of ACE solution and 150 uL of HHL solution was added, vortexed and 

incubated at 37oC in a water bath for 1 h. The samples were done in triplicates. 250 uL of 1N 

HCl was added to stop the reaction, then 1.0 mL of ethyl acetate was added to extract the 

hippuric acid liberated from HHL by ACE activity. The tubes were centrifuged (centrifuge 

model J2-21, Beckman, Fullerton, Calif., U.S.A.) at 15,000 rpm for 5 min. The supernatant of 

ethyl acetate extract (0.75 mL) was evaporated to dryness in a water bath at 90 oC, and the 

liberated hippuric acid from the extract was dissolved in 1.0 mL of DI water. A blank was 

prepared similarly using PB pH 8.3 except that the HCl was added to the mixture before the 

addition of the enzyme. The amount of hippuric acid liberated was measured 

spectrophotometrically at 228 nm. Inhibition was calculated as follows: inhibition (%) = [1 – 

(absorbance in the presence of hydrolysate)/(absorbance in the absence of hydrolysate)] x 100 
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Statistical analysis 

The experiments were conducted with triplicates samples. The data was analyzed by one-

way analysis of variance to determine the analysis of variance ((ANOVA)) using the JMP 

(John’s Macintosh Product) 7.0 software (SAS Inst. Inc., Cary, NC, U.S.A.). The significant 

difference between results were estimated at p <0.0001. 

6.3 Results and Discussion 

For the ACE inhibitory activity, hippuryl-L-histidyl-L-leucine (HHL) is used as the 

substrate for ACE, as it stimulates the conversion of HHL to hippuric acid and the dipeptide, 

histidyl-leucine. Thus, there is a relationship between ACE inhibitory activity and the extent of 

hippuric acid release. If the amounts of hippuric acid decrease, the inhibitory activities of ACE 

increase (Abdullah et al., 2011). Angiotensin I converting enzyme (ACE) produces angiotensin 

II which is a powerful vasoconstrictor and leading to hypertension (Hansen et al., 1996; Oboh et 

al., 2014). The research on ACE inhibitors to inhibit the angiotensin II became widely popular 

since the discovery of ACE inhibitors in snake venom (Villar et al., 1986). The ACE inhibitory 

activity of phenolic extracts from plants have been reported in previous studies (Lee et al., 2004; 

Hagiwara et al., 2005; Abdullah et al., 2011; Oboh et al., 2013). 

The results of the inhibition of angiotensin 1 converting enzyme (ACE) activity of 

phenolic extracts from four different varieties of soybean seed hulls are presented in Figure 5.  

The ACE-I inhibitory activities ranged from 21% to 52%. The highest ACE-I inhibitory activity 

among these varieties was for the extract from R07-1927 (52%) while lower ACE-I inhibitory 

activities was for the R08- 4004 extract (21%). No significant difference (P = 0.0011) between 

R07-589 (37%) and R09-349 (34%) was found in our study. The significant increase in ACE-I 

inhibitory activity of R07-1927 (black) might be due to its highest amount of phenolics. 
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Phommalath et al., 2014 reported that black soybeans hulls have traditional medicinal value as it 

contains natural phenolic compounds such as proanthocyanidins and anthocyanins. The effect of 

the phenolic extracts from the soybean hulls on ACE activity was directly proportional to the 

amount of total phenolics in each type of hull extract. Research has shown that phenolics can 

modify the structure of ACE enzyme and reduce its activity by interacting with the disulphide 

bridges present on the surface of the enzyme (John & Schmieder, 2003). Therefore, inhibition of 

ACE by phenolics of the soybean hulls can be considered as a useful treatment in inhibition of 

hypertension. The results of our study with phenolic extracts of selected soybean hulls are in 

agreement with earlier reports on inhibition of ACE by phenolic extracts of bitter leaf (Saliu et 

al., 2012) soybean (Ademiluyi& Oboh, 2013) and Allium sativum from garlic (Oboh et al., 

2013).   

The phenolic extracts of the four different soybean hulls exhibited ACE-I inhibitory 

activity at a significantly lower level in comparison to the activity of Captopril (P < 0.0001). The 

effectiveness at varying amounts of the extracts needs further investigation. The phenolic 

extracts from soybean hulls has the potential to be used as an alternative choice in the treatment 

and inhibition of hypertension with lower cost and without / minimal side effects.  

6.4 Conclusion 

This preliminary study demonstrated that phenolic extracts from soybean hulls can inhibit 

angiotensin 1 converting enzyme (ACE). However the study was done with the total phenolics 

extracted from the soybean hulls, which might be containing some compounds which may be 

interfering with the action of the phenolic compounds in inhibiting ACE-I. So further studies 

with individual phenolic compounds separated from the total phenolics may give enhanced 

inhibitory activity of ACE-I. In this study, the highest ACE-I inhibitory activities were shown by 
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R07-1927 (black) extract while the lowest was for the R08- 4004 (yellow) extract. The 

significant increase in ACE-I inhibitory activity of R07-1927 (black) might be due to its higher 

content of total phenolics.  
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Figure 5. ACE-I inhibitory activities of phenolic extract from four varieties of soybean 
hulls 

                      

 * Conventional soybean variety 
**Values are means ± standard deviation of three replicate determinations; Values with the same 
letter are not significantly different (P > 0.05). 
***Captopril (0.01g/ml) was used as positive control inhibitor sample.  
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