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Abstract 

It is necessary to better serve justice to understand the mechanisms behind eyewitness 

identification and reports of confidence.  The material contained within attempt to fit eyewitness 

identification to a diffusion model of processing, RTCON (Ratcliff & Starns, 2009).  Participants 

saw eight mock crime videos and were then tasked with using eight showups or eight lineups to 

identify the suspects within the video. Half of the presentations were target present and half were 

target absent. Additionally, participants were either presented with biased or unbiased 

instructions. Strangely, unbiased lineups led to higher hit rates which is contrary to most findings 

in the field. The key elements were comparing the ROC curves of the collected data with the 

ROC curves of simulated data from the RTCON model. The variables manipulated in the model 

included mu, a variable of memory strength; confidence criteria, a variable of response bias; and 

decision criteria, a second variable of response bias. The ROC curves derived from the simulated 

data were poor matches to the collected data. This finding leads to questions on the applicability 

of this model of diffusion processing to eyewitness research. 
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Introduction 

More and more convictions are being overturned due to exoneration through DNA 

testing.  A large number of these false convictions have one thing in common, an eyewitness 

misidentification; the Innocence Project has the percentage of these false convictions is currently 

reported at 72% (“Eyewitness Misidentification,” n.d.).  This circumstance has been replicated in 

the lab with a study done by Loftus (1974) among others.  In this study she asked participants to 

make judgments of guilt for an armed robbery that resulted in two deaths.  Participants either got 

a small amount of incriminating evidence and no statement of witness identification, a report that 

a clerk identified the suspect, or a report that the clerk identified the suspect but had poor vision.  

In the first condition, 18% convicted the defendant; the other two conditions had significantly 

higher rates (72% and 68%, respectively.  As such it is important to understand the possible 

mechanisms underlying these identifications and what makes them so convincing to a jury. 

 Before getting into some of the more technical aspects of witness identification, I would 

like to identify a few cases that underline the possible miscarriages of justice due to faulty 

identification.  One of the most well known is likely that of Ronald Cotton.  Cotton was initially 

accused of raping one woman, Jennifer Thompson, and eventually a second woman.  He was 

identified in open court by Thompson.  He was later exonerated through DNA evidence after 

serving 10.5 years (“Ronald Cotton,” n.d.). 

 Another incident is that of Willie Williams.  He was tried and convicted of raping a 

woman in Georgia.  When she identified Williams in court, she was asked on a scale of 1-100 

how sure she was that he was the perpetrator.  She responded, “One hundred and twenty” 

(Rankin, 2008).  Based on this identification, Williams served 21 years in prison before being 

exonerated through DNA evidence. 
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In both cases the witnesses were highly confident when they identified the supposed 

perpetrator.  Confidence in a selection can be highly persuasive to a jury, even though this 

confidence is not always justified.  The instructions given for identification can also influence 

not only accuracy, but also the confidence in that choice. 

Lineups vs Showups 

Lineups are one of the most well-known identification procedures to the public.  When a 

crime show depicts a witness identifying a suspect, it typically occurs in a police station with 

either a live simultaneous lineup or a six-person picture lineup.  This is not how identifications 

are always made though.  Showups include a single suspect that the witness is asked if they 

recognize (Smith, Bertrand, Lindsay, Kalmet, Grossman, & Provenzano, 2014).  A survey of 

police officers from Canada and America found that over a third of officers had used a showup 

in the past year for identification (Smith et al., 2014).  Smith et al. also examined how often 

people will say yes to an initial show up.  Ninety-three percent of people correctly identified a 

suspect from an initial showup.  Fifty-five percent of people incorrectly identified a foil as the 

suspect from an initial showup (Smith et al.).  This would be equivalent to an officer finding an 

innocent person in the area who matched a witness’s description, showing the witness the 

innocent person, and having the witness say “yes, that’s the person who committed the crime.” 

Since there are no foils in a showup, a witness cannot choose a known innocent foil.  Several 

courts have acknowledged this limitation and define showups as inherently biasing (Bradley v.  

State, 1980; Stovall v.  Denno, 1967).   

One of the differences between lineups and showups that may cause issues is the 

similarity of foils or innocent suspects to the offender (Levi, 1995).  The similarity of foils to a 

target face can change the choosing criterion level (Flowe & Ebbeson, 2007) and can induce 
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distinctiveness for the target face (Wolgalter, Marwitz, & Leonard, 1992).  Additionally, 

selecting the suspect based on an initial description, but selecting foils by any different method 

(whether similarity to suspect or similarity to description of the suspect), leads to a bias against 

the suspect (Navon, 1992).  This can be a critical difference as a showup can only use an 

absolute method of decision making, comparing the presented option to the suspect from 

memory.  Simultaneous lineups, however, allow for a relative process, comparing each lineup 

option to the rest and choosing the best match to the suspect from memory (Lindsay & Wells, 

1985).  The mere selection of foils, which would occur in both simultaneous and sequential 

lineups, causes the lineups to differ from showups.  Simultaneous lineups also force a choice 

between >1 choice, by definition.  Whether this choice is identification of a suspect or rejection 

of a lineup, having to make multiple choices changes behavior (Lindsay et al., 2013).  Since both 

lineups and showups are used in actual police investigations, it is important to understand how 

they are similar and different to each other and possibly expose any issues 

Very little research directly compares simultaneous lineups to showups.  Instead, the 

largest area of research has been comparing simultaneous to sequential (e.g., Carlson, 2011; 

Mickes, Flowe, & Wixted, 2012; Wells, Steblay, & Dysart, 2014).  This displays an obvious hole 

in the current research.  It would be easy to dismiss showups as simplified versions of a 

sequential lineup, but given the environment that showups occur in this would be a mistake.  As 

we are conducting this study in a lab setting, it is not as possible to induce those circumstances.  

Through instructions, however, we attempted to create an environment distinct from the lineup 

condition.  A meta-analysis compiled data from eight papers (seven published) that compared 

showups to either a sequential or simultaneous lineup and found that showups had higher 

accuracy rates than the lineups (69% compared to 51%).  This may be due to a significantly 
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smaller choosing rate in showups compared to lineups (46% compared to 71%) (Steblay, Dysart, 

Fulero, & Lindsay, 2003).  These differences suggest there may be something wrong with how 

lineups are being conducted as well.   

Instructions for Choice 

Ideally, everyone in the world would get essentially the same instructions when asked to 

identify a suspect from a lineup or a showup, but that just does not happen in actuality.  

Instructions vary greatly between states and can vary between departments within a state 

(National Institute of Justice, 2013).  In showups, it can be even worse since they typically 

happen in the field. A biased lineup is typically one where the participant or witness is not 

reminded that the suspect may not be in the array they are choosing from. An unbiased lineup is 

one where the participant or witness is explicitly reminded that the suspect may not be in the 

array and that it is just as important to exonerate an innocent suspect as it is to identify a guilty 

one. 

One study found that participants were 3.2 times more likely to choose an innocent 

suspect with biased instructions compared to unbiased instructions (Quinlivan et al., 2012).  

Examining instruction bias in a cue-belief model allows one to better understand some of the 

effects on confidence and accuracy.  Specifically biased lineup instructions can represent an 

incongruent cue, which can inflate confidence while deflating accuracy (Leippe, Eisenstadt, & 

Rauch, 2009).  Part of this decrease in accuracy is due to lower rejection rates.  Biased 

instructions have been found to lower lineup rejection rates for both a suspect lineup and a 

witness lineup (Brewer & Wells, 2006).  A meta-analysis of experimental lineup procedures 

found a significant decrease in accuracy for target-absent lineups when biased instructions were 

used, but inconsistent results for target present lineups (Clark, 2005).  The big difference here is 
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that biased lineup instructions lead to higher false positives compared to unbiased lineup 

instructions (Clark, 2005; Steblay, 1997).  This has been found for both child witness and adult 

witnesses (Pozzulo & Dempsey, 2006).  This choice bias remained true regardless of the 

potential consequences of their identification, although this was moderated by sex of the 

participant (Foster, Libkuman, Schooler, & Loftus, 1994). 

There does appear to be an asymmetry regarding biased instructions.  The increase in 

false positives has been repeatedly demonstrated to either only exist or be much stronger in 

target-absent lineups compared to target-present (Paley & Geiselman, 1989; Malpass & Devine, 

1981).  Problematically, attorneys did not find biased lineup instructions to be significantly less 

fair than unbiased lineup instructions (Stinson, Devenport, Cutler, & Kravitz, 1996).  If the 

above issues hold true, attorneys should be the first to notice the unfairness of lineup 

instructions.  If they cannot see the issues behind biased lineup instructions, how are juries 

supposed to understand the effects that instructions for choice can have?  

Confidence 

Accuracy is often the only dependent measure in eyewitness identification or at least 

treated as the most important one; however, there are other measures that can inform both the 

process of identification and accuracy for identification.  One of these measures is confidence.  

In a survey of jury-eligible adults, over half thought that confidence was positively correlated 

with eyewitness accuracy (Brigham & Bothwell, 1983).  Similarly, in a mock jury situation, the 

confidence of a witness significantly correlated with juror-rated believability, but was not 

significantly correlated with accuracy (Wells, Lindsay, & Ferguson, 1979).  After three months, 

memory for an armed robbery was tested and confidence was only moderately correlated with 

accuracy (.38).  The researchers actually found that emotional impact was more highly correlated 
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with accuracy and post-event thinking was highly correlated with confidence (Odinot, Wolters, 

& van Koppen, 2009).  Confidence is also used to differentiate truthful statements from 

deceptive statements.  Even when warned not to use confidence as a way to differentiate, 

participants rated confident false statements as more believable than nonconfident true 

statements (Tetterton & Warren, 2005).   

In addition to the scientific research, confidence has an informing role in evidence 

inclusion in courts.  In Neil v.  Biggers (1972), the factors to consider for witness inclusion were 

stated to include the certainty of the witness.  Manson v.  Braithwaite (1977) upheld certainty as 

a measure for inclusion of witness testimony.  There is sometimes explicit confirming feedback 

in a lineup identification (e.g., the investigator says “you got the guy”), but when a crime goes to 

trial there is implicit confirmation because the suspect chosen is the one under arrest and being 

tried.  The issue here is that confirming feedback inflates confidence, which as mentioned above 

can be very persuasive to a jury (Semmler, Brewer, & Wells, 2004).  Even when presented 

evidence that a witness had inflated confidence, there was only a significant difference in juror-

believability if the initial confidence statement was video-taped.  If the change in confidence was 

read or asked at trial, the mock jurors did not change their opinions of guilt, sentencing, or 

credibility between confidence consistent witnesses and confidence inflated witnesses (Douglass 

& Jones, 2013).  This behavior, however, does not appear to be tied to jurors.  Law enforcement 

viewed a video of a witness recounting a robbery.  The officers rated confident witnesses as 

more accurate and more reliable than unconfident witnesses (McClure, Myers, & Keefauver, 

2013).  Seventy-five percent of prosecutors also think confident witnesses are more accurate.  In 

the same study, only forty percent of defense attorneys think confident witnesses are more 

accurate (Brigham & Wolfskiel, 1983).  A separate study found sixty-four percent of lawyers 
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think more confidence leads to more accuracy (Rahaim & Brodsky, 1982).  Even if there is the 

moderate correlation between accuracy and confidence, as found in Odinot et al.’s study (2009), 

there seems to be a widespread overreliance on confidence in determining accuracy or 

truthfulness, regardless of the judging source. 

Reaction Time 

A third measure that should be examined when eyewitness identification is examined is 

reaction time.  There can be important information offered by the speed at which a witness 

chooses.  For instance, it has been demonstrated that accurate nonchoosers (8.3 seconds) are 

significantly faster in their nonchoosing than inaccurate nonchoosers (11.1 seconds) (Sauerland, 

Sagana, & Sporer, 2012).  Similarly, choosers’ accuracy is negatively correlated with decision 

time, meaning the faster they chose the more likely they were accurate (Smith, Lindsay, Pryke, 

& Dysart, 2001).  Furthermore, when responses were split into less than 15 seconds and greater 

than 15 seconds, there was a significant difference in accuracy rates, 63% and 35% respectively.  

This stayed true regardless of whether the suspect was from the choosers’ own race or opposite 

race.  This same pattern was seen in a similar study that split decision making times into 1-15, 

16-30, and >30 seconds.  The shortest decision time was the more accurate than either of the 

other two; the middle time segment was more accurate than the longest time segment (Smith, 

Lindsay, & Pryke, 2000).  These studies suggest a fairly strong association between decision 

time and accuracy; however, there has been evidence that shows this negative relationship only 

holds true for choosers.  One experiment found that for choosers there was a significant negative 

correlation between accuracy and decision time, but for nonchoosers there was a nonsignificant 

positive correlation between accuracy and decision time (Sporer, 1993). 
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Diffusion Model 

Additionally, we will attempt to fit eyewitness identifications to a diffusion model of 

processing using Ratcliff and Starns (2009) RTCON model.  There are specific assumptions for 

this model including: the information available for comparison is not a single score, but a normal 

distribution of evidence; the distribution is divided into confidence intervals or accumulators; 

each accumulator has its own boundary; as one accumulator is increased, others decrease to an 

equal amount; and the evidence cannot fall below zero.  At every point in the decision making 

process (Δt), an accumulator is randomly chosen and receives a change (Δx(t)) determined by the 

evidence available in that region or the drift rate (v) plus an amount of noise, which represents 

the variability necessary in processing.  Abiding by the previous assumption, for each change, an 

equal change in the other accumulators occurs. 

There are several particular parameters necessary for the model.  The first is a scaling 

parameter, which applies to the drift rate.  This initial parameter can be thought of as analogous 

to the general speed through which evidence accumulates.  It affects another parameter, the drift 

rate.  The drift rate is in relation to the match between memory and stimulus and so can be 

thought of as an element of memory strength. The shorter the drift rate, the stronger the memory.  

A second parameter, mu, is another parameter relating to memory strength.  Specifically, a high 

mu means a strong across trial memory match.  The third is time taken up with other processes.  

The fourth is variability in nondecision time.  The fifth is a standard deviation in evidence 

accumulation.  The sixth required parameter is a within-trial variability in the process.  The total 

number of confidence divisions is equal to a number of additional confidence criterion 

parameters.  The decision criteria make up the remaining parameters with each confidence 



9 

criteria existing in both the confirming and disconfirming decision aspect.  These final two types 

of parameters are analogous to response bias. 

This model and its initial form has been mostly used for basic perceptual and cognitive 

tasks (Ratcliff & Starns, 2009; Ratcliff, McKoon, & Tindall, 1994) and to our knowledge has not 

been applied to something as intricate or with as many real world implications as eyewitness 

identification. 

Hypotheses 

For this study, participants participated in either eight lineups or eight showups, half of 

which were target present and the other half were target absent.  Additionally participants were 

either presented with biased instructions or unbiased instructions.  In addition to measures of 

accuracy, measurements of response times were also collected. 

We expect for showups to have higher false alarm rates than lineups, and as a result, be 

less accurate.  We also expect for biased instructions to have higher false alarm rates than 

unbiased instructions and be less accurate.  We also expect for biased instructions to result in  

significantly higher reported confidence levels.  Finally, we have no idea if the research will 

conform to Ratcliff and Starns (2009) RTCON model.  If eyewitness identification fits the 

model, showups would decrease drift rate as there is less information to sift through in order to 

make a decision.  It is also likely that showups would change the confidence parameters.  Since 

there are no foils, there is no interference that can make one doubt.  In the real world, the 

environment that showups take place in can have influence in reporting confidence.  Specifically, 

showups typically happen in a geographic area very close to the scene of a crime and temporally 

very close to the time of the crime.  This is because showups typically occur when the police find 

someone in the area who seems to match the description of a suspect and bring them for 
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identification to the witness.  This environment almost certainly has some sort of influence on 

choosing behavior and confidence reports, but since this study is conducted in the lab, it is 

premature to make judgments based on this external environment.  Biased instructions will 

increase the confidence parameters at the higher ratings of confidence as participants should 

assume that the suspect is in the lineup regardless as to whether they actually are.  Target-absent 

lineups should increase the drift rate as the presented face(s) will necessarily not match the 

memory of the crime.  A target-absent lineup would have the highest drift rate according to this 

model. 

Method 

Participants 

 518 participants (320 identified as female) were drawn from the University of Arkansas 

undergraduate general psychology population.  Average age was 20.0 (SD = 5.33) and 79.6% 

identified as Caucasian, 6.7% identified as Hispanic or Latino, 5.9% identified as Black or 

African-American, 3.4% identified as Asian, 1.5% identified as American Indian or Alaska 

Native, 1.3% identified as other, 1.1% declined to respond, and 0.4% identified as Native 

Hawaiian or Other Pacific Islander. 

Materials 

 All experiments were run using Superlab.  For the exposure to the crime, eight scenarios 

were recorded from 10’ away using an iPhone5 camera.  Each video lasted approximately 20 

seconds and the face of the suspect is directly to camera for eight seconds.  The eight scenarios 

included a lab room theft, a laptop theft, a bike theft, a textbook theft, a backpack theft, mail 

theft, breaking into a car, and breaking into a house.  Half the scenarios took place outside.  Half 
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the scenarios have male suspects.  Six person lineups were constructed using description 

matched foils which were normed for similarity to the description. 

Procedure 

 Participants came in to the lab five at a time.  After filling out the informed consent, 

participants were asked to keep their hand poised over the number key pad throughout the 

experiment.  Each participant saw all eight scenarios.  Following each scenario a manipulation 

check was done to make sure that the participant was attending to the video.  Following the 

manipulation check, participants were immediately presented with either the lineup or the 

showup for that video.  Half of the participants received the six person lineups and half of the 

participants received show ups.  Additionally, half of the participants received biased lineup 

instructions (not mentioning the possibility of the suspect not being displayed) and half of the 

participants received unbiased lineup instructions (specifically mentioning the possibility that the 

suspect may not be displayed) on a slide separate from the suspect slide.  Half of the scenarios 

were target-present lineups/showups and half were target-absent lineups/showups.  In the lineup 

condition, the six photos were randomly assigned to different positions using the randomizer on 

superlab.  The participants made their choice by pushing the number associated with the picture 

they believed to be the suspect or the seven for “not here.” In the showup, target-absent 

condition, one photo from the lineup foils was randomly selected and displayed for the 

participant.  The participants pushed one for yes and two for no.  Reaction time data was 

collected for suspect choice.  After making a choice, the participants were asked to rate their 

confidence in their choice on a 0-9 scale (0-10%, 11-20%, 21-30%, etc.).  Reaction time data 

was also collected for confidence rating.   
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 Following the final confidence rating, participants completed a manipulation check to 

ensure that they read and understood the lineup/showup instructions.  They were asked to write 

down, word for word to the best of their ability, what the instructions were.  This was to ensure 

that the participants read the biased instructions differently from the unbiased. 

Data Simulation 

 The initial plan was to use a collaborator’s expertise to train me in data simulation for this 

type of scenario.  Due to unfortunate circumstances, this was not feasible.  Instead, with the help 

of my advisor and a web simulation Ratcliff built and published, we attempted to simulate how 

the RTCON model could apply to a six-person lineup with the option to reject.  I created an 

Excel spreadsheet with a random number between 0-1 was chosen for 10,000 simulated subjects.  

In the case of showups, only one random number was generated.  For lineups, six random 

numbers were generated with the first belonging to a simulated suspect. 

The Ratcliff website calculates proportions for the different confidence categories 

ranging from 1 (very sure new) to 6 (very sure old) for both target and foil scenarios.  The 

cumulative proportions were used as headers in the Excel file to determine the simulated 

decision and confidence response.  For showups, these proportions were each listed once to 

simulated 10,000 target-present showups and 10,000 target-absent showups.  The random 

number generated would fall between one of the six decision criteria.  If it was the first, second, 

or third criteria, it was coded as a rejection of the show up.  If the number fell between the 

fourth, fifth, or sixth criteria, it was coded as an acceptance of the lineup.  Categories 1 and 6 

were the strongest levels of confidence.  Categories 2 and 5 were mid-levels of confidence.  

Categories 3 and 4 were low levels of confidence.   
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For lineups, the simulation was a bit more complicated.  To simulate a target-present 

lineup, the target proportions were copied once and the simulated suspect’s random number was 

compared to the cumulative proportions to get a decision and confidence in that decision.  The 

foil cumulative proportions were then copied five times with the respective random numbers 

compared to those proportions.  This led to six different decision/confidence combinations.  The 

final choice for that simulated participant was chosen by the strongest simulated confidence 

level.  If there was a tie, excel randomly chose a winner from those that were tied.  If neither the 

target, nor any of the foils landed in the fourth, fifth, or sixth decision criteria, it was considered 

a rejection.  A similar procedure was used to simulate target-absent lineups.  Specifically, rather 

than having the target proportions copied once and five copies of the foil proportions, there were 

six copies of the foil proportions, and none of the six random numbers generated acted as a stand 

in for a simulated suspect.  The rest of the procedure was identical to the target-present 

simulation.  Unfortunately, we were unable to come up with a system to model response times, 

so they are not included in any descriptions of the simulated data. 

To examine the parameters that the RTCON model suggests, we systematically changed 

some of the variables using the website built by Ratcliff.  For each parameter, I brought each 

statistic to the reported base from Ratcliff and Starns (2009) before changing three different 

parameters based on the restrictions of the specific parameter.  The first variable was mu, the 

variable that related to memory strength.  According to the model, it cannot go below zero and it 

began at 0 in the original article.  I manipulated the variable by changing it to .5, .75, 1, 1.25, and 

1.5, which would be analogous to steadily increasing match between stimulus and memory, or a 

steady increase in memory strength.   
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The second set of variables manipulated were those relating to the confidence parameters.  

The RTCON website uses five confidence parameters.  An increase in the confidence parameters 

shifts the divisions along the x-axis.  Because it is assumed that the information is normally 

distributed, an increase in the confidence parameters also signifies a stronger likelihood for a 

high level of confidence to be reported.  A decrease in confidence would lead to the opposite 

effects.  I manipulated the variables by adding and subtracting .25, .5, .75, and 1 to the values 

reported by Ratcliff and Starns (2009) across all confidence parameters, leading to eight 

simulations for the confidence parameters. 

The third and final set of variables manipulated were those relating to the decision 

parameters.  The RTCON website uses six decision parameters.  One of the assumptions of the 

model says that an increase in one decision parameter must cause an equal decrease in the other 

parameters.  In order to abide by this parameter as I increased the yes decision parameters, I 

decreased the no parameters in equal measure.  This would represent requiring more evidence to 

say yes and less evidence to say no, or creating a more conservative response bias.  I 

manipulated the variables by adding .25, .5, .75, and 1 to the values reported by Ratcliff and 

Starns (2009) to the yes parameter (and subtracting them from the no parameter) and then 

subtracting .25, .5, .75, and 1 from the values reported by Ratcliff and Starns (2009) to the yes 

parameter (and adding them to the no parameter). 

Results 

Behavioral Results 

 I first analyzed the effects of instruction (Biased vs. Unbiased) and presentation type 

(Lineup vs Showup) on the hit rate, false alarm rate, d’, and beta.  I also calculated diagnosticity 

for each of the four conditions.  Diagnosticity refers to the odds of guilt given that a suspect has 
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been identified assuming a prior probability of guilt of 50%.  Descriptive statistics for these 

measures are presented in Table 1. 

Table 1 
Means for Variables Collapsed Across Trials 

 Hit 
Rate 

False 
Alarm 
Rate 

d’ Beta 

.71 (.24) .11 (.05) .04 (.81) 1.27 (.61)  
Lineups 
 

Unbiased 
 
Biased .66 (.25) .09 (.05) .30 (.81) 1.43 (.58) 

.84 (.19) .16 (.22) 1.65 (.69) 1.05 (.55)  
Show up 
 

Unbiased 
 
Biased .83 (.21) .14 (.18) 1.65 (.67) 1.03 (.51) 

Note.  Standard deviations in parentheses.  False alarm rate was divided by six in order to 
simulate an innocent suspect choice for lineups. 
To examine the results of manipulating presentation type and instruction bias on 

participant accuracy, a MANOVA was conducted using instruction bias and presentation type as 

independent variables and collapsing the eight trials each participant completed to use signal 

detection measures as dependent variables, as follows, hit rate, false alarm rates, d’, and beta.   

There was a significant main effect of presentation on hit rate, F(1, 504) = 44.87, p<.001, 

false alarm rate, F(1, 504) = 6.91, p=.009, d’, F(1, 504) = 538.63, p<.001, beta, F(1, 504) = 

40.02, p<.001.  Showup presentation had higher hit rates, false alarm rates, and d’.  Lineup 

presentation had higher betas.  Instruction manipulation approached significance for hit rates, 

F(1, 504) = 3.29, p = .070.  Bias in instruction had no other significant main effects, p’s>.119.  

Biased instructions had higher hit rates.  There was a significant interaction effect between 

lineup presentation and instruction manipulation for d’, F(1, 504) = 4.45, p =.035, and beta 

approached significance, F(1, 504) = 2.72, p = .099.  There was a crossover interaction effect for 

d’ with unbiased lineup instructions having a higher d’ average than biased lineup instructions 
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and unbiased showup instruction having a lower d’ average than biased showup instructions.  

There were no other significant interaction effects, ps>.401. 

Diagnosticity ratios give an idea of how accurate a variable is.  It is calculated as the odds 

ratio of the proportion of guilty suspects identified divided by the proportion of innocent suspects 

identified. 

 

D = p(Suspect ID|Suspect Guilty)/p(Suspect ID|Suspect Innocent) 

   

For a show up, all mistaken identifications are identifications of an innocent suspect.   

For a lineup, not all mistaken identifications are identifications of innocent suspects, some are 

mistaken identification of fillers.   For this reason, when calculating diagnosticity for lineups, a 

common practice is to divide the total proportion of mistaken identifications in target absent 

lineups by the total number of pictures in the lineup (in the present case six) in order to obtain an 

estimate of p(Suspect ID|Suspect Innocent). 

In this case the diagnosticity ratio for lineups is 6.90 and showups is 5.53.1 This suggests 

that if a suspect is identified by a witness the suspect is more likely to be guilty if the witness 

saw a lineup than if the witness saw a showup.  Biased instructions have a ratio of 6.31 and 

unbiased instructions is 6.90.  This suggests that if a witness identifies a suspect, the suspect is 

more likely to be guilty if the lineup instructions were unbiased than if they were biased. 

Response Time and Confidence 

Additional behavioral measures included confidence and reaction time for choice and 

reaction time for confidence.  These were collapsed across participants and are shown in Table 2.   

                                                
1 Diagnosticity was calculated using the raw data which does not have equal unbiased/biased 
cases.  This means the numbers reported differ slightly from using the averages in table 1. 
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Table 2 
Means for Additional Behavioral Measures 

 Confidence Response Time for 
Confidence 

Response Time for 
Choice 

.6.39 (2.15) 2987.14 (2314.95) 8843.81 (5317.99)  
Lineups 
 

Unbiased 
 
Biased 6.33 (2.21) 2952.40 (2347.89) 8897.33 (5056.65) 

7.36 (1.82) 3050.07 (2389.71) 3410.23 (2766.95)  
Show up 
 

Unbiased 
 
Biased 7.53 (1.72) 3181.00 (2770.47) 3338.28 (2612.85) 

Note.  Standard deviations in parentheses.   
A second MANOVA was used with confidence selection, response time for choice, and response 

time for confidence selection as dependent variables (means and standard deviations can be 

found in Table 1.).  There were some multivariate outliers and 2.18% trials were removed from 

this analysis using Mahalanobis Distance.  Additionally, each dependent variable was a non-

normal distribution and was transformed.  Confidence selection and response time for choice 

underwent a square root transformation.  Response time for confidence underwent log 

transformation.  No other assumptions were violated. 

 There was a significant main effect of presentation on confidence selection, F(1, 3994) = 

276.39, p<.001, and response time for choice, F(1, 3994) = 2776.13, p<.001, but no significant 

effect on response time for confidence, F(1,3994) = .059, p =.809.  Showup presentations had 

higher confidence selections and shorter response time for choice.  There was no main effect of 

bias in instruction on any dependent variable, p>.4.  There was a significant interaction between 

presentation and bias in instruction for confidence, F(1, 3994) = 5.42, p =.02.  There was a 

crossover interaction effect with lineup presentations increasing in confidence from biased 

instructions (6.37) to unbiased (6.47) and showup presentations decreasing in confidence from 
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biased instructions (7.58) to unbiased (7.38).  There was no significant interaction for either 

response time variable, p’s>.2.   

ROC Analyses 

Empirical ROC results.  I next turn to the analysis of ROC results.   ROC curves plot 

cumulative hits against cumulative false alarms at different levels of confidence.  A strength of 

using ROC analyses is that it allows two or more conditions to be compared by looking at the hit 

rate while equating those conditions on false alarm rate.   Recently, it has been argued that ROC 

curves provide the best analytical methodology for comparing lineup procedures in terms of their 

practical utility (Wixted & Mickes, 2015).  However, critics argue that ROC curves are either ill 

suited for analyzing eyewitness data or that the advantages of the ROC approach for lineup 

research have been overstated (Wells, Smith, & Smalarz, 2015). 

 Although I will touch on this controversy later, the purpose of my research is not to use 

ROC analyses to sort good procedures from poor procedures, but rather to evaluate underlying 

theories of the memory and decision processes that might be involved in making lineup/showup 

decisions.   Specifically, the purpose of the present thesis is to examine the ability of the RTCON 

model (Ratcliff & Starns, 2009) to account for performance in lineup and showup tasks.  The 

model has two specific parameters that represent a change in response bias and one parameter 

that represents memory strength.  The empirical data collected included a manipulation known to 

change response bias (biased or unbiased instruction), but does not affect memory strength.  

Figure 1 shows the ROC curves for each of the four cells created by factorially crossing 

instruction type (biased vs. unbiased) and presentation type (lineup vs. showup). 
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Figure 1.  ROC Curves by Condition 

 Before moving to comparing the empirical ROC results to the simulated ones, there are a 

couple of noteworthy findings.  First, the unbiased showup ROC curve is above (i.e., dominates) 

the unbiased lineup ROC curve suggesting better performance in showups than in lineups.   This 

finding runs counter to recent findings comparing lineups to show ups using ROC analyses.  

Gronlund et al. (2012) found drastically different shapes for the ROC compared to this data, and 

found lineups to have a larger partial area under the curve (pAUC2).  Wetmore et al. (2015) 

found a similar trend.   Second, showup ROC curves are shifted to the right relative to lineup 

ROC curves, suggesting that showups resulted in greater overall rates of choosing the suspect, 

whether guilty or not.   This has sometimes been referred to as a difference in response bias, but 

as Lampinen (2016) pointed out, calling this difference response bias is a somewhat loaded term.  

                                                
2 pAUC refers to the space under a ROC curve whose area is positively related to memory 
strength and discrimination. 
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One reason that the showup ROC curve may be shifted to the right relative to lineup ROC curves 

is simply that when one makes a mistake in a target absent lineup, at least some of the time one 

will select a filler rather than the innocent suspect.  Wells, Smalarz, and Smith (2015) called this 

filler siphoning.  Additionally, the biased lineup and biased showup are dominated by the 

unbiased versions but do not dominate each other.  Rather, the biased showup is merely shifted 

to the right somewhat relative to the biased lineup. 

One of the possible reasons for the difference from previous studies is that the 

participants in this study seemed to have better overall memory.  Gronlund et al. (2012) had a 

false alarm rate for showups of .24 and Wetmore et al. (2015) had a showup false alarm rate or 

.49 or .40 depending on condition.  Both of these results are much larger than those found in the 

current study.  There may also be something of a practice effect showing here.  The previously 

cited studies had each participant only go through one trial. In this experiment, each participant 

underwent eight randomized trials.   

Simulated Model Results 

 To examine how this data compares to predictions of the RTCON model, I conducted 

simulations of the RTCON model corresponding to the factors manipulated in my experiment.  

Each went through a lineup simulation, a showup simulation, and parameter changes meant to 

mimic the effect of the instruction manipulation. 

Changes in memory strength.  In the original RTCON model, the memory strength 

parameter is mu.  Higher mus mean a stronger match between study and test items.  To examine 

the influence of changes in memory strength on the respective dependent variables, I used the 

parameter estimate for mu obtained by Ratcliff and Starns (2009) in their experiment, and then 
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systematically added to it in increments of .25.  This value of change was selected so as to cover 

a reasonable expanse of the parameter space.   

Lineup.  To model lineups using RTCON, I used the approached used by Lampinen 

(2016) and Wixted, Mickes, Dunn, Clark, and Wells (2016) in simulating signal detection 

models of lineups.  The model assumed that memory strength is stronger for guilty suspects than 

for innocent suspects or fillers.  It then assumes that each member of the lineup is evaluated 

against a criterion.  If none of the items exceeds the criterion, the lineup is rejected.  If one or 

more items exceeds the minimum threshold, then the item that would produce the highest 

confidence is chosen.  If confidence is equal for two or more items, the winner is chosen 

randomly.  Confidence is assumed to be based on the confidence level assigned to whichever 

item is selected.  These simulated data can then be used to generate hypothetical ROC curves. 

The model simulation ROC results can only be looked at qualitatively, but even a 

qualitative examination of the results seems to lead to a specific conclusion.  Hit rates move 

consistently up with large increases in memory strength, without false alarm moving much at all.  

This increase in hit rates without a corresponding increase in false alarms does lead to better d’s.  

Beta changes in a small, nonlinear way.  Memory strength lines do not differ much in curve, and 

only have large movement up the y-axis.  This is in line with the current thinking of ROCs (see 

Figure 2). 
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Figure 2.  ROC Curves of Simulated Lineup Data with Memory Strength Manipulation 

Showup.  For the showup data, the model simulation changed in similar patterns to the 

lineup condition.  When manipulating the memory strength parameter, hit rates move 

consistently up with increases in memory strength, without false alarm moving much at all.  This 

increase in hit rates without a corresponding increase in false alarms does lead to slightly better 

d’s.  Beta generally decreases, but not in a particularly large way with increases in memory 

strength.  The simulated ROC lines do not differ much in curve, and only have large movement 

up the y-axis (see Figure 3).  Again, this is consistent with the current thinking of ROCs. 
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Figure 3.  ROC Curves of Simulated Showup Data with Memory Strength Manipulation 

When manipulating the memory strength parameter which theoretically should not act 

differently for biased or unbiased instructions, hit rates move consistently up with increases in 

memory strength, without false alarm moving much at all.  This increase in hit rates without a 

corresponding increase in false alarms does lead to slightly better d’s.  Beta shows almost no 

movement.  Memory strength ROC lines do not differ much in curve, with the peculiar exception 

of mu = .75 (see Figure 3).  Disregarding that anomaly, there is a consistent movement up the y-

axis with no change across the x-axis. 

Changes in confidence criterion.  There are two different parameters in the RTCON 

model that simulate response criterion.  The first is confidence criterion.  The basic premise of 

this parameter is that a normal distribution is divided into different segments of confidence.  By 
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adding to those parameters, those segments shift right, making it easier for higher levels of 

confidence to be selected (see Figure 4). 

 

 

Figure 4.  Example of a Shift in Confidence Criterion 

As a reminder, the confidence criteria were manipulated by adding or subtracting across all 

criteria levels.  Changes were made in .25 increments up to 1.   

Lineup.  Increasing the confidence criteria parameters led to lower choosing rates, with 

lower hits, lower false alarms, little change in d’, and smaller betas, as seen in Table 3.   
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Table 3.   
Signal Detection Variables for Simulated and Real Lineup Data Sets 
 Hit Rate False Alarm Rate d’ Beta 

Collected Data .69 .10 .15 1.18 

Ratcliff & Starns (2009) .42 .16 -1.73 3.13 

+.25 to confidence .37 .15 -1.76 2.59 

+.5 to confidence .31 .15 -1.83 2.17 

+.75 to confidence .27 .15 -1.88 1.86 

+1 to confidence .22 .15 -2.02 1.58 

+.25 to decision .30 .15 -1.79 1.95 

+.5 to decision .17 .15 -2.11 1.27 

+.75 to decision .09 .15 -2.48 0.76 

+1 to decision .04 .15 -2.86 0.42 

-.25 to confidence .45 .16 -1.78 3.86 

-.5 to confidence .50 .16 -1.78 4.83 

-.75 to confidence .53 .16 -1.87 6.65 

-1 to confidence .57 .16 -1.98 10.14 

-.25 to decision .46 .16 -2.01 6.24 

-.5 to decision .47 .17 -2.56 21.49 

-.75 to decision .46 .17 -2.42 15.04 

-1 to decision .46 .17 -3.83 1002.12 

Note.  “to confidence” refers to a change in the confidence parameters in the model.  “to 
decision” refers to a change in the decision parameter, with a – referring to a decrease in the yes 
decision bins and an increase in the no decision bins and vice versa. 
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The ROC curve for the confidence criterion changes slightly altered the shape of the line 

from the lowest requirement for confidence to the highest, but the primary change was the line 

moving up the y-axis.  This leads to larger pAUC (see Figure 5).   

 

Figure 5.  ROC Curves of Simulated Lineup Data with Confidence Criterion Manipulation  

This flies in the face of what is typically thought regarding ROC curves according to standard 

signal detection theory.  Theoretically only aspects that manipulate memory strength should 

change the pAUC.  The confidence parameters in this model are not a change in memory 

strength, but rather in response bias.   

Showup.  Increasing the confidence criteria parameters led to lower choosing rates, with 

lower hits, lower false alarms, and little change in d’ as seen in Table 4.   
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Table 4.   
Signal Detection Variables for Simulated and Real Showup Data Sets 
 Hit Rate False Alarm Rate d’ Beta 

Collected Data .83 .15 1.62 1.18 

Ratcliff & Starns (2009) .64 .31 0.85 1.06 

+.25 to confidence .57 .24 0.88 1.26 

+.5 to confidence .50 .18 0.89 1.51 

+.75 to confidence .43 .13 0.92 1.82 

+1 to confidence .35 .10 0.88 2.06 

+.25 to decision .42 .13 0.92 1.84 

+.5 to decision .23 .05 0.88 3.11 

+.75 to decision .11 .02 0.88 4.38 

+1 to decision .05 .02 0.53 2.72 

-.25 to confidence .69 .39 0.77 0.92 

-.5 to confidence .75 .48 0.73 0.80 

-.75 to confidence .80 .56 0.68 0.71 

-1 to confidence .84 .65 0.61 0.66 

-.25 to decision .80 .55 0.73 0.70 

-.5 to decision .91 .77 0.59 0.54 

-.75 to decision .89 .73 0.56 0.61 

-1 to decision .98 .96 0.36 0.49 

Note.  Confidence refers to a change in the confidence parameters in the model.  Decision refers 
to a change in the decision parameter, with a – referring to a decrease in the yes decision bins 
and an increase in the no decision bins and vice versa. 
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Unlike the lineup simulation, the showup simulation showed higher betas.  Again different from 

the lineup simulation, the showup simulation acted in a way more similar to the current 

understanding of ROC curves according to standard signal detection theory (see Figure 6).   

 

Figure 6.  ROC Curves of Simulated Showup Data with Confidence Criterion Manipulation 

The line shapes change little and there is a more even progression across the x and y axes.  This 

even movement does not change the pAUC, which is expected by a change in response bias.  

There is very little change in the shape to the curves, but there is movement up the y-axis with 

slight movements across the x-axis. 

Changes in decision criteria.  There are two different parameters in the RTCON model 

that simulate response criterion.  The second is decision criterion.  The basic premise of this 

parameter is that there is a zero sum game for the decision areas.  As you increase one area (or 
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require more information to say yes), you must decrease evenly across the other areas (see Figure 

7). 

 

 

 

 

Figure 7.  Showing an Increase in the Fourth Decision Parameter 

As a reminder, the decision criteria were manipulated by adding across the yes criteria 

and subtracting across the no criteria or vise versa.  Changes were made in .25 increments up to 

1.   



30 

Lineup.  Decreasing the decision criteria (requiring less information to say yes) causes 

very little change to the hit or false alarm rates, which in turn causes little change to d’, although 

there is a large change in d’ from the .75 decrease to the 1 decrease.  The biggest change in 

decreasing the decision criteria is a dramatic increase in beta.  Increasing the decision criteria 

(requiring more information to say yes) causes a sharp decrease in hit rates but a comparatively 

small decrease in false alarms.  D’ changes consistently, but not overly largely.  Beta moves very 

little.  The ROC curve does undergo extreme changes as the parameters are manipulated (see 

Figure 8).   

 

Figure 8.  ROC Curves for Simulated Lineup with Decision Criteria Manipulation 

When the most information is required to say yes, the curve is almost flat.  As less and less 

information is needed, the line takes on a stronger curve and moves up the y-axis.  Again this 
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increase in the pAUC as the decision criteria changes (by definition a change in response bias), is 

against what is theoretically proposed with ROCs. 

Showup.  Decreasing the decision criteria (requiring less information to say yes) causes 

little change to the hit rate (although this may be due to a slight ceiling effect).  The false alarm 

rate does show marked increases as the decision criteria decreases.  This inflation of false alarm 

does lead to some somewhat large decreases in d’.  Beta moves around a good bit.  Increasing the 

decision criteria (requiring more information to say yes) moves in the opposite way.  Hit rates 

decrease dramatically.  False alarm rates decrease somewhat (although this may be due to a floor 

effect).  Beta moves around a bit in an inconsistent pattern.  D’ moves little between the first 

three increases of the decision criteria but drops dramatically from the third to the fourth change.  

The ROC curves change quite a bit through the manipulations of the decision criteria parameters 

(see Figure 9).   
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Figure 9.  ROC Curves for Simulated Showup with Decision Criteria Manipulation 

As you add the amount of information required to say yes, the line shrinks with slight movement 

across the axes.  The bigger change is when the decision criteria is decreased.  Two of the lines 

(d-.5 & d-.75) are virtually on top of each other, but the other decreases to decision criteria are 

very separate from those lines and there is a change in the pAUC.  Again since decision criteria 

is not a memory strength parameter, but a response bias parameter, there should be no change in 

the pAUC. 

Overall Comparisons Between Empirical and Simulated Data 

Again only qualitative comparisons can be made due to the restrictions of the project, but 

it is important for a preliminary comparison of the collected data and the simulated data to 

discuss the differences in ROC performance. 
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Lineup.  This simulation of lineup data was woefully unable to simulate the pattern of hit 

rate, false alarm rate, d’, or beta that the collected data demonstrated.  A specific difference from 

the model to the actual results was an extremely high false alarm rate that likely had a ceiling 

effect across the criteria manipulations.  The false alarm rate was always several tenths higher 

than the hit rate, resulting in very low d’s and betas.  None of the ROC curves are similar to the 

curves derived from the actual data either.  The partial area under the curve (pAUC) for the 

actual data is much larger than that for the simulated data.   

Showup.  For the showup data, the model works a little bit better for the signal detection 

theory calculations, but is still lacking.  False alarm rates do not ever have higher values than hit 

values.  Because of this trend, d’s and betas are closer to the actual data as well.  The actual 

participants still outperform the simulated participants pretty strongly with over twice the d’ of 

the simulated participants at the hit rate level seen in the actual data.  The ROC curve also shows 

a similar pattern to the lineup data with the pAUC being much greater in the real data, than can 

be seen with any simulated data.   

General Discussion 

Behavioral Data 

 In many ways the data for this project is similar to previous research.  Lineups are more 

diagnostic than showups, which means it is better to be an innocent suspect in a lineup than a 

showup.  This also means that lineups have stronger investigative evidentiary value than 

showups do.  Showups do have more hits, but also more false alarms and a lower beta.  One 

reason suggested for this is filler siphoning (Wells et al., 2015).  Because lineups have fillers that 

siphon evidence, lineups are at an advantage over showups for lower false alarms.  This 

hypothesis may be backed up by the significant difference in response time between presentation 



34 

types.  People who were shown a showup responded faster than participants who were shown a 

lineup.  Because the fillers are siphoning some of the possible choices during identification, it 

would take longer for any choice to reach a decision threshold.   

 One surprise from the behavioral data was that instruction bias and presentation type 

interacted causing an increase in confidence choice for lineups going from biased to unbiased 

instructions.  Typically, unbiased instructions make participants less sure in their choice, 

possibly because it is highlighting potential reasonable doubt.  Showups do adhere to the typical 

confidence pattern.  It is possible that because the participants were given an admonishment it 

forced them to have a higher threshold for decision, which made them more confident in their 

choice as more evidence was collected under any choice made.   

ROC Debate 

There has been recent controversy in the cognitive sphere over the use of ROC curves to 

examine confidence and accuracy (e.g.  Gronlund, Wixted, & Mickes, 2014; Lampinen, 2016, 

Wells et al., 2015).  Proponents say that ROC curves provide a better measure of lineup 

performance because ROC curves provide an indication of memory strength that is independent 

of response bias.  According to the standard account, the shape of the ROC – i.e., the degree to 

which it is bowed upwards towards the top left corner – provides an indication of memory 

strength, whereas the location of an individual response along the X-Axis provides an 

independent measure of response bias.  This interpretation makes sense in terms of standard 

unequal variance signal detection models, but falls apart under stochastic models such as Ratcliff 

and Starns (2009) RTCON and Van Zandt, Colonius, and Proctor’s (2000) Poisson counter 

confidence model. 
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The current findings also call into question recent interpretations of the practical utility of 

ROC analyses.  For instance, Wixted et al. (under review) have argued that when one partial 

ROC curve dominates another partial ROC curve, even if the two curves are truncated at 

different points along the X-Axis, that it should always be possible to equate the two conditions 

in terms of false alarm rates by simply manipulating response criteria via instruction.  The 

presented data shows that this is simply not the case.  Manipulating response criteria via 

instruction appears not only to change the false alarm rate but can also impact the hit rate, 

changing the shape of the ROC curve.  The instruction bias manipulation is looked at in the 

literature as a response bias change.  Using the ROC curves in Figure 1, the unbiased ROC 

curves dominate the biased ROC curves for both lineups and showups.  This would mean in the 

traditional interpretation, that instruction bias is somehow affecting memory strength.  The 

theoretical basis for instruction bias completely refutes this interpretation.  This means that in the 

collected data, our actual participants were answering in ways that are completely contrary to 

how ROC curves are being used in the eyewitness literature today. 

The simulated data presented here also speak to how appropriate it is to use ROC curves 

for this type of data.  In some instances, there is a confirmation of the typical use and in some 

instances a refutation of these beliefs.  Specifically, the ROC curve of the simulated data for 

showups largely validate the current interpretation of ROC curves.  The manipulation of mu 

shows an increase in memory strength causing a shift up the y-axis (see Figure 3).  The 

manipulation of the confidence parameter (something that would mimic a change in response 

bias) shows a clear shift along the x-axis and no significant change in the shape of the curve (see 

Figure 6).   
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For lineup data there is a very different pattern shown.  Both the memory strength 

manipulation and the confidence manipulation cause a shift along the y-axis (see Figure 2 and 5, 

respectively).  While the memory strength manipulation is in line with current thinking of ROC 

behavior, the pattern in the confidence manipulation directly contradicts current thinking with a 

migration along the y-axis but no movement along the x.  If anything, the ROC curves for 

confidence criterion, show a more clear migration up the y-axis than the memory strength 

manipulation.  The ROC curves for the decision criteria manipulations also contradict current 

thinking.  The lineup simulations show a pattern that replicates the migration along the y-axis 

that was seen with the confidence manipulation, but also include changes in the shapes of the 

ROC curves, another element that should be restricted to memory strength manipulations (see 

Figure 8).  The showup data also somewhat refutes this thinking.  While there is movement along 

the x-axis in the showup decision criteria simulations, there are also changes to the shape of the 

curves and movement along the y-axis (see Figure 9). 

The decision criterion and the confidence criterion, theoretically, can only be changes in 

response bias.  As such the simulations provided here show a clear refutation to the common 

thinking of ROC curves.  It also provides clear evidence that they may not be the appropriate tool 

in every circumstance to differentiate between methods in the eyewitness literature. 

RTCON Simulations 

 The RTCON model may be applicable for some stimuli, but seems woefully inept for the 

stimuli used in this study.  None of the simulated data approached the collected data with regards 

to accuracy.  Even at the most liberal criterion shifts for lineups, the average hit rate of the 

collected data is higher (.69) than that of the simulated data (.57 at -1 to the confidence criterion).  

The simulated data fares a little better in the showup situation.  While there are instances where 
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the hit rates outperform the collected data, they are accompanied by such high false alarm rates 

that they are diagnostically useless.  In both showup and lineup instances, d’ is much higher for 

the collected data than the simulated data.   

 These results suggest that there is something fundamentally different in the current 

experiment compared to the experiment used by Ratcliff and Starns (2009).  This experiment 

exposed participants to the face they would have to identify for eight seconds (a time span used 

in other eyewitness literature) in a video.  The experiment Ratcliff and Starns used word pair 

stimuli that were presented for 1.8 seconds.  The current experiment also tested memory 

immediately following the video.  The RTCON experiment went through the entire study phase 

(36 word pairs) before beginning the test phase.  These differences were largely due to 

applications of the current research.  As it was the intention to apply the RTCON model to 

eyewitness literature, it was more important to be as ecologically valid as possible, rather than 

attempting a direct replication.   

 One aspect that has not been fully discussed is the role that the instruction manipulation 

had in relation to the RTCON model.  There is not a fundamental difference in simulating biased 

compared to unbiased data as there was for the lineups compared to showups.  Rather to examine 

the effectiveness of using the RTCON model on this manipulation, it is better to look at the 

individual cells of the collected data compared to liberal or conservative criteria.  This would 

mean examining biased instruction data in relation to liberal criteria (shifting the confidence 

criterion distribution to the right or decreasing the level of evidence needed to say “yes” in the 

decision criterion distribution) and unbiased instruction data in relation to conservative criteria 

(shifting the confidence criterion distribution to the left or decreasing the level of evidence 

needed to say “no” in the decision criterion distribution). 
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 Admittedly when examining these statistics, it is important to again note the strange 

behavior of the participants with regard to the instruction manipulation.  Although biased 

instructions typically yield higher hit rates and higher false alarms, this is not what is found in 

this data.  A better d’ does occur for unbiased lineup presentations compared to biased lineup 

presentations, which does fit with the typical data.  Biased showup presentations had a better d’ 

than unbiased showup presentations.  Although the raw numbers for lineup simulations are not 

on par with the actual data, a similar trend to the d’s when moving from conservative to liberal 

response bias is shown.  Or in other words, d’ increases as response bias becomes more 

conservative (regardless of which criterion was manipulated).  The showup data did not agree 

though.  Again d’ increases as response bias becomes more conservative.  This finding though is 

in contrast to what was found in the actual data. 

 These comparisons in general suggest that the RTCON model is not necessarily relevant 

to eyewitness identifications.  The simulated raw measures were not close to those found in the 

actual data.  Additionally, the pattern of movement in the measures sometimes differed from the 

collected data.  When one aspect matched the collected data (a similar hit rate), it would 

drastically differ in another (completely different false alarm rate).  This might suggest that any 

similarities observed could be due to chance as there does not seem to be a strong theoretical 

background to explain these differences. 

Other Confidence Theories 

 So if RTCON is not acceptable for eyewitness identification, what are some of the other 

possibilities to explain the complex process of choice and confidence when choosing someone as 

a suspect? There currently does not seem to be a theory that is consistently accepted among 

researchers in this area.  Instead there are a few different theories that have been debated. 
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 The first is based on signal detection theory.  It says that confidence is matched with the 

level of memory strength for the target (Wixted & Mickes, 2014).  If it is a strong match, a high 

level of confidence will be chosen.  If it is a weak match, a low level of confidence will be 

chosen.  While this works in dichotomous, yes/no scenarios, it is less useful in a lineup situation.  

If a witness used this method of confidence choice, they are ignoring the foils in a lineup 

situation.  This is largely against the believed cognitive processes that go into identifying a 

suspect and many researchers disagree with it is applicability to a lineup procedure. 

 A slightly more nuanced theory does take into account possible alternatives.  Recently, 

Horry and Brewer (2016) applied sequential sampling model elements to confidence choices 

following decisions.  Specifically, they said that confidence choice is based on the relative 

success of the decision over the alternatives.  In other words, if the choice you make has a lot of 

evidence accumulated for it compared to the alternatives, it is going to be a high confidence 

choice.  If the choice you make crosses the decision boundary threshold, but another choice is 

close to the boundary, it is going to be a low confidence choice.  This theory better represents the 

complex cognitive processes that goes into a multiple choice decision rather than treating each 

choice individually like in the signal detection theory discussed above. 

Conclusions 

 Due to unforeseen circumstances, the data simulation originally proposed for this project 

had to be worked around.  This leaves the data simulation discussed here in a bit of limbo.  It is 

possible that with a different method of simulation, a different pattern of results may emerge.  

Given the simulations that were done, however, it seems like RTCON is not appropriate for an 

eyewitness paradigm.  Instead, it would serve researchers to examine different theories of 

decision and confidence to try and achieve a better understanding of the underlying mechanisms 
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that affect both.  Ideally, a theory seeking to explain these aspects should not only work in a two 

choice showup situation, but should be just as applicable in a multiple choice lineup situation.  

The cognitive processes are slightly different as showups require an absolute judgment of 

recognition or one that relies solely on the match between stimulus and memory strength, but 

lineups can use a combination of both absolute and relative judgments when making a choice.  

As such it is important to have some understanding of the underlying mechanisms for both 

procedures, especially because sometimes a witness may participate in both with the same 

suspect during the course of an investigation. 

The behavioral data also showed that the participants in this study did better than most 

participants do on eyewitness tasks.  A possible suggestion for this is that the participants in this 

study completed eight trials each.  Most eyewitness research uses one single crime with a single 

perpetrator and a single choice is asked for.  It is possible that participants learned the format of 

the crimes shown and the presentation of the suspect.  This could give them a memory advantage 

or at least inform the participants of a possible strategy for the later trials.  The number of trials 

was required in order to examine the model in question, but it is important to note this possible 

confound in the behavioral data. 

 Another key, though unexpected, finding from this research directly contradicts the signal 

detection theories that underlie ROC curves.  Specifically, the data simulation was able to 

demonstrate that ROC curves can be more subject to changes in response bias than previously 

believed.  Rather than just a change along the false alarm or x-axis, changes in the confidence 

criterion for lineups showed a direct change along the hit or y-axis.  According to signal 

detection theory, this should only be possible if the confidence criterion affected memory 
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strength, something that is impossible in the RTCON model.  This contributes to the literature 

suggesting that ROC curves may not be as useful in the eyewitness realm as previously believed.   

 While this research did not end in the place expected at the beginning of the process, it 

has contributed some interesting and important findings to the overall literature.  It also keeps the 

door open for another theory of eyewitness decision and confidence relationships.  The only way 

to interpret the data in this study, though, is that the collected data and simulated data exist in 

theoretically separate environments. 
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