
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

12-2016 

Influence of pH and Acidic Side Chain Charges on the Behavior of Influence of pH and Acidic Side Chain Charges on the Behavior of 

Designed Model Peptides in Lipid Bilayer Membranes Designed Model Peptides in Lipid Bilayer Membranes 

Venkatesan Rajagopalan 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Biochemistry Commons, Biophysics Commons, and the Cell Biology Commons 

Citation Citation 
Rajagopalan, V. (2016). Influence of pH and Acidic Side Chain Charges on the Behavior of Designed Model 
Peptides in Lipid Bilayer Membranes. Graduate Theses and Dissertations Retrieved from 
https://scholarworks.uark.edu/etd/1791 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact uarepos@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/2?utm_source=scholarworks.uark.edu%2Fetd%2F1791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/4?utm_source=scholarworks.uark.edu%2Fetd%2F1791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/10?utm_source=scholarworks.uark.edu%2Fetd%2F1791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/1791?utm_source=scholarworks.uark.edu%2Fetd%2F1791&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu


Influence of pH and Acidic Side Chain Charges on the Behavior of Designed Model Peptides in 
Lipid Bilayer Membranes 

 

 
A dissertation submitted in partial fulfillment  

of the requirements for the degree of  
Doctor of Philosophy in Cell and Molecular Biology 

 
 

by 
 
 

Venkatesan Rajagopalan 
University of Mumbai 

Bachelor of Science in Microbiology, 2006 
Padmashree Dr. D.Y. Patil University 

Master of Technology in Biotechnology, 2009 
 
 

December 2016 
University of Arkansas 

 
 
 

This dissertation is approved for recommendation to the Graduate Council.  

 

______________________________________                 
Dr. Roger E. Koeppe II     
Dissertation Director 
 
           
__________________  ___________________       ______________________________ 
Dr. Suresh Kumar Thallapuranam        Dr. Ralph L. Henry 
Committee Member      Committee Member 
 

______________________________________  ______________________________ 
Dr. David S. McNabb      Dr. Dan Davis 
Committee Member      Committee Member 



Abstract 

The molecular properties of transmembrane proteins and their interactions with lipids regulate 

biological function. Of particular interest are interfacial aromatic residues and charged residues 

in the core helix whose functions range from stabilizing the native structure to regulating ion 

channels. This dissertation addresses the pH dependence and influence of potentially negatively 

charged tyrosine, glutamic acid or aspartic acid side chains.  We have employed GWALP23 

(acetyl-GGALW5LALALALALALALW19LAGA-amide) as favorable host peptide framework. 

We have substituted W5 with Tyr (Y5GWALP23) and Leu residues with Glu (L12E, L14E or 

L16E) or Asp (L14D or L16D), and have incorporated specific 2H-labeled alanine residues 

within the core helix or near the ends of the sequence. Solid-state 2H-NMR spectra reveal a pKa 

of about 10.5 for bilayer incorporated Y5GWALP23.   

Solid-state 2H-NMR spectra of GWALP23-E12, –E14 and –E16 with core labels reveal little 

change to the orientation of the transmembrane helix over a pH range of 4 to 12.5 but modest 

changes in quadrupolar splitting magnitudes above pH 12.5 in DLPC bilayer membranes, with 

E12 peptides showing no change even at pH 13. The E12, E14 and E16 peptides display broad 

2H NMR spectra in aligned DOPC bilayers, with individual resonances not being observed for 

the core labels. Labeling the ends of the helix at A3 and A21 provided insights into the pH-

dependent unwinding of the E14 and E16 peptide helices in both lipid systems. 

An aspartic acid residue at position 14 shows contrasting behavior to that of its Glu counterpart.  

The 2H-NMR spectra for core 2H-alanines of GWALP23-D14 show a preference for a well 

oriented conformation in DOPC bilayers in comparison to DLPC lipids. While the core helix 

does not respond to pH, the helix terminals show changes in unwinding between pH 6 and 13 

suggesting a possible pKa around 13. The polar but uncharged Gln residue at position 14 behaves 



similarly to Glu in DLPC and DOPC lipid bilayers. The Q14 peptide, however, does not titrate in 

either lipid and displays well-resolved sharper 2H-NMR resonances in DLPC bilayers.  The 

combined results illustrate complex behavior for carboxyl and carboxamide side chains in bilayer 

membranes. 
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CHAPTER 1: Introduction 

The biological membrane is heterogeneous, crowded by a variety of lipids of different lengths 

and by a variety of proteins. This brings in a lot of complexity for experiments to examine and 

understand the membrane proteins in detail. The lipid bilayer has been shown to alter protein 

shape and function in a various fashion.  For example, rhodopsin’s photochemical functions as 

well as the enzymatic activity of cytochrome oxidase c are affected by bilayer curvature, 

thickness and elasticity (1,2), and glucose transport activity in red blood cells has been shown to 

have a dependence on lipid composition (3). Conversely, membrane proteins too have significant 

effects on the lipid bilayer itself (4,5).  

Dynamic transmembrane helix motions are crucial for the functions of the membrane proteins 

and subtle molecular interactions can govern the stability of the native states and biological 

activation of membrane proteins. An example of this is the helix motions in voltage-gated 

channel proteins. Voltage gated Na+, K+ and Ca+2 channels play crucial roles in excitable cells. 

Each of these channels contains voltage sensors and a selective ion-conduction pore, with the 

general structure comprised either of four independent protein subunits or one long polypeptide 

containing four homologous domains. Each domain contains six transmembrane segments (S1-

S6) and a pore loop between segments S5 and S6. Segments S1-S4 form the voltage sensor. Of 

key importance is the S4 helix segment which was recognized as a voltage sensing unit owing to 

the presence of basic residues (Arg or Lys) at every third position (6). This segment along with 

the S2 helix, rich in intracellular acidic residue are involved in gating. Despite the energetic cost 

for inserting positive charges into a hydrophobic environment could be significant as shown by 

the surface bound configuration of the synthetic S4 analog in model membranes (7,8). In some 



2 
 

instances, (eg. KvAP channels) (9) the surrounding lipid matrix is known to strongly influence 

channel activation by rearrangement of the head groups when the membrane potential is shifted. 

The seven transmembrane helix polypeptide of visual rhodopsin form a tightly packed 

cylindrical conformation with TM1 and TM3 forming the stable core. Activation of the protein 

results in large conformational changes in TM5, TM6 and TM7 helix. The retinal chromophore 

sits in a tight binding site at the core of the protein and is attached via a protonated Schiff base 

linkage with Lys296 on TM7. The counter-ion, Glu113 onTM3, stabilizes the inactive form of 

the protein (10). Upon light activated isomerization of the retinal from 11-cis to all-trans 

configuration there is a concerted local conformational change in the TM5 and TM6 helices 

which are mainly governed by the aromatic residues Phe261, Trp265 and Tyr268 on the 

extracellular end of TM6 (11). These collective motions serve towards the functional activation. 

Charged residues have also been implicated in aiding fold-switching of metamorphic 

transmembrane proteins like the chloride ion channel CLIC1 (12). The CLIC1 intracellular 

chloride channels exists in both a soluble conformation in the cytoplasm as well as a membrane 

bound conformation. The conformation is dictated by the pH sensitivity that is governed by 

specific residues functioning as pH sensors. The monomeric soluble protein has an N-domain 

comprising of helices α1 and α3 and a beta strand β2. The α1 helix and β2 strand form the 

transmembrane domain. The conformational switch results when the N-domain detaches itself 

from the C-domain and restructures itself for insertion into the membrane (13). In the cytoplasm 

at a pH around 7, Glu81 on α3 is charged and forms a salt-bridge with Arg29 on α1 which 

stabilizes the native conformation. As CLIC1 nears the low pH membrane surface, Glu81 loses 

its charge causing a break in the salt bridge. This allows the detachment and insertion of the N-

domain into the membrane.  
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Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic 

transitions from surface bound to tilted-transmembrane orientations, sometimes accompanied by 

changes in the molecularity, formation of a pore or, more generally, the activation of biological 

function (14,15). The large number of parameters governing the protein-lipid interaction 

therefore necessitates the use of less complex model systems to systematically evaluate the 

various interactions involved. To observe the lipid bilayer contributions more accurately, studies 

using synthetic lipids with unique head groups, chain length and degree of unsaturation can be 

employed to examine the effect of varying the lipid environment. Membrane proteins typically 

consists of multiple spans through the bilayer that lead to protein-protein interactions and forces 

that create more factors complicating pure protein-lipid interaction studies. To simplify this 

problem, small α-helical peptides with a single membrane span may be used. 

The WALP model peptides of the form acetyl- GWWA(LA)nLWWA-amide were an early model 

peptide system used for studying the peptide-lipid interactions and the general rules that govern 

them, such as hydrophobic mismatch (16,17). The WALP framework consists of a hydrophobic 

core helix composed of leucines and alanines flanked by two amphipathic Trp residues on each 

end. Further development of this system yielded GWALP23, acetyl- GGALW (LA)6LWLAGA-

amide, that features only one single Trp residue on each end, with glycine replacing the other Trp 

residues (18). The new model has the same benefits of the WALP model but with two less 

anchoring residues it shows greater sensitivity to changes in the lipid environment. GWALP23 

also shows less dynamic averaging of NMR observables including the 2H quadrupolar splitting 

and the 15N-1H dipolar coupling (19). This peptide allows for the examination of the Trp side-

chain radial position as compared to an inserted polar residue side-chain since the Trp residues 
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can be moved throughout the helix sequence. Further modification to the GWALP23 peptide 

may include substitution of the W5 with a tyrosine residue (Y5GWALP23).  

The presence of a single Trp residue improves the sensitivity to fluorescence spectroscopy. 

Throughout the entirety of this dissertation, the model peptide GWALP23 serves as the 

framework for which further peptide-lipid interactions have been studied. WALP peptide 

systems have relied heavily on the excellent anchoring capabilities of the amphipathic aromatic 

tryptophan residues.  While there is a known enrichment of tryptophan at the lipid interfacial 

regions of single-span transmembrane proteins (20), it is also true for tyrosine, though to a 

smaller extent on the N-terminal of transmembrane helices. Side chain dihedral angles in an 

alpha-helix do not project perpendicularly from the peptide backbone or the helix axis.  Instead 

the Cα-Cβ bonds project toward the N-terminus (17).  This feature leads to asymmetric 

positioning of the anchoring indole rings in GWALP23 and it has been shown that they adopt 

differing arrangements, in which the C-terminal Trp indole ring rotates to point its polar nitrogen 

moiety toward the aqueous phase (21).   

Indeed, while it has also been observed that Trp is heavily populated at both interfaces of single-

span alpha-helices, tyrosine is to some extent less populated at the C-terminus (20).  The tyrosine 

phenol group can get hydrated by hydrogen bonding with the waters and lipid head groups. We 

will show results for the titration of Tyr residues at position 5 in the GWALP23 peptide helix 

and discuss how the Tyr titration affects the study of Y5GWALP23 peptides incorporated with 

Glu residues. 

Solid state 2H NMR spectroscopy with deuterium labeled alanines on a transmembrane peptide 

helix in macroscopically aligned lipid bilayers is a useful technique to analyze the extent of helix 

formation, helix tilt, and azimuthal rotation about the helix axis. Oriented glass plate samples 
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provide a common method for bilayer alignment that can be achieved by means of macroscopic 

insertion of a sealed, hydrated sample of parallel plates into the NMR probe. The technique 

utilizes hydrated and sealed oriented plate samples that mechanically align the lipid bilayer with 

the magnetic field. These samples can be placed in a probe with the lipid bilayer normal either 

parallel (β = 0°) or perpendicular (β = 90°) to the external magnetic field. For a peptide with fast 

averaging around the lipid bilayer normal (but not the peptide axis), the 2H quadrupolar splittings 

(Δνq) observed at β = 90° have absolute magnitude of one-half those at β = 0°. The peptide tilt is 

sensitive to the thickness of the bilayer and the length of the peptide. Solid state NMR is very 

sensitive to changes in the peptide tilt and rotation and hence is a useful tool in the analysis of 

peptide-lipid interactions. 

While GWALP-like peptides have allowed for valuable insight into the properties of helix-

anchoring residues, the peptide family was then used for the study of polar, charged residues 

within the non-polar bilayer interior.  Ionizable residues found incorporated within the 

transmembrane segments of membrane proteins have gained recent interest, particularly in terms 

of quantifying the energetic cost of potentially burying them (22,23). Crystal structure data from 

an array of membrane proteins reveal the side chains of polar residues in the lipid bilayers to be 

directed away from the membrane core, extending toward the head-group region (24,25), a result 

also found in experiments (17). Simulation studies also show charged amino acids form 

hydrogen bonds with the lipid head groups and bind water molecules (26,27), and additionally 

found the hydrogen-bonding abilities of these polar residues to be crucial for membrane helix di- 

and trimerization (28). The energetic penalty of burying charged residue in bilayer membranes 

are evident in case of voltage sensor domain of voltage-gated potassium channels which 

possesses several arginine residue and reorients with a change in membrane potential to mediate 
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channel gating. One can observe discrepancy between theoretical and experimental estimates of 

the cost of forcing Arg into the center of the bilayer (which is estimated to range from 5-25 

kcal/mol) (29,30). Similarly, a highly conserved buried lysine critical for integrin proteins is 

thought to snorkel towards the interfacial region and impart a helix tilt that is needed for binding 

subunit proteins (31).   

The GWALP23 system is a constructive model for investigating the effects of placing polar 

residues in the bilayer. Previous work using the GWALP23 and Y5GWALP23 host peptides 

entailed studying the effects of inserting Arg, Lys or His into DLPC or DOPC bilayers (32-34). 

Positioning the Arg slightly off center (GWALP23-R14, ~ 3 Å from helix midpoint) changed the 

helix tilt by 10° but had a larger effect on azimuthal rotation. When positioned at the center of 

the helix (GWALP23-R12), the peptide produced multiple low-intensity 2H NMR signals 

indicative of multi-state behavior, including a surface-bound population. Much like R12 peptide, 

K12 appears unoriented in the thicker DOPC bilayers. But in contrast to -R12, -K12 titrates at 

higher pH to adopt a defined orientation similar to the host GWALP23. Lysine at position 14 

also titrates at high pH and adopts a tilt of 9° while maintaining its rotation of 244°. The titration 

revealed a two-state equilibrium in fast-exchange on NMR time scale with a pKa of 6.2 under 

experimental conditions. GWALP23 peptides incorporated with His at position 12 in DOPC 

bilayers have comparable results to both –K12 and –R12 peptides. The neutral H12 peptide 

remains in a tilted orientation identical to the parent GWALP23 but the charged H+12 peptide, at 

pH 2.3, abandons the transmembrane orientation, exiting the membrane surface very similar to 

the orientations observed for the charged –R12 peptide. GWALP23-H014 peptide adopts a tilted 

membrane orientation distinct from GWALP23, just like Y5GWALP23-K014.  
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In comparison to the positively charged polar amino acids, Glu residues show distinct behavior 

with respect to their titration and peptide dynamics in the lipid bilayer. Both GWALP23-E14 and 

–E16 peptide consistently titrate at a high pKa over 12 in DLPC bilayers. The neutral –E014 

peptide has a distinct orientation from GWALP23 and shows a consistent change in azimuthal 

rotation of about 50°, very similar to –K014 and –H014 peptides. The charged –E-14 peptide does 

not alter its orientation by much from the neutral state but shows a change in the unwinding of 

the helix terminal. The neutral –E016 peptide also displays a slightly straight orientation in 

comparison to GWALP23, with the charged –E-16 straightening further to a helix tilt of 10.7°. 

The charged –E16 peptide displays significant helix fraying, possibly to allow access for Glu to 

hydrogen bond with the waters. In the DOPC bilayers however, the Glu incorporated peptides 

display low intensity poorly resolved spectra independent of its position at 12, 14 or 16.  

We have also incorporated Asp residues at positions 14 and 16. GWALP23-D14 surprisingly 

behaves in contrast to –E14 peptide in both DLPC and DOPC ether linked bilayers. The 

incorporation of aspartic acid at position 14 revealed quite unique characteristics. Solid-state 2H 

NMR spectra of GWALP23-D14 alanine methyl group show moderately resolved low intensity 

peaks in DLPC ether-linked bilayers indicative of possible multiple conformations in slow 

exchange. In contrast, we observe well-defined spectra for –D14 alanine methyl groups in DOPC 

ether bilayers with sharp resonances which improved for deuterated alanine near the C-terminal. 

The results in DOPC ether bilayers is indicative of a possible single conformation. However, we 

observe no pH dependent change in the alanine methyl quadrupolar splittings for –D14 peptide 

in either DLPC or DOPC ether bilayers. Tilt analysis for –D14 peptide in DOPC ether bilayers 

indeed suggests a much tilted conformation compared to parent GWALP23.  
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Membrane proteins are complex due to the heterogeneous lipid bilayer in which they reside and 

this often presents a challenge in their examination. Throughout this dissertation we attempt to 

demonstrate the unique ability of synthetic membrane peptides, biophysical measurements and 

quantitative analysis to illuminate some of the important fundamental interactions that arise 

between membrane proteins and the lipid bilayer. While some of the forces can be masked by the 

entirety of a larger membrane protein system, when isolated from other factors, the individual 

contributions to the collective whole can be investigated. 
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CHAPTER 2: Ionization of Interfacial Tyr Residues 

2.1 Abstract 

Model peptides have proven useful for examining fundamental peptide-lipid interactions.  A 

frequently employed peptide design consists of a hydrophobic core of Leu-Ala residues with 

polar or aromatic amino acids flanking each side at the interfacial positions, which serve to 

“anchor” a specific transmembrane orientation. We have recently modified the design of WALP 

peptides (acetyl-GWW(LA)nLWWA-[ethanol]amide) by reducing the number of Trp anchors to 

only one near each end of the peptide or further modifying the sequence to incorporate a single 

tyrosine (Y5) at one end. The resulting GWALP23 (acetyl-GGALW5(LA)6LW19LAGA-

[ethanol]amide) and its sister peptide Y5GWALP23 display reduced dynamics and greater 

sensitivity to lipid-peptide hydrophobic mismatch than the traditional WALP peptides. The 

Y5GWALP23, with a single Trp residue is more informative when subjected to fluorescence 

experiments. By incorporating specific 2H labels in the core of the Y5GWALP23 we were able to 

use solid-state NMR spectroscopy to examine the titration of the Tyr residue at the membrane 

water interface. We observe the bilayer incorporated Y5GWALP23 to titrate at a pH of about 

10.5. Control experiments with GWALP23 show no titration throughout the pH range due to a 

lack of titrable group. This work corroborates the more recent calculations on anionic Tyr 

residues along the membrane normal and sheds importance on properly modeling the protonation 

equilibrium in peptides interacting with membranes using MD simulations.  
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2.2 Introduction 

Membrane proteins are complex, creating difficulties for implementing experimental techniques 

for characterization of their structural and functional properties. Synthetic model peptides have 

proved to be invaluable tools for examining the fundamental principles that modulate protein-

lipid interactions. The peptide model systems allow for examining direct lipid interactions by 

placing limits upon external factors such as multiple transmembrane helices or large steric 

hindrances in oligomers.  

A study of type I single-span membrane proteins revealed a conserved distribution of the 

aromatic Trp, Tyr and Phe residues (1). The aromatic residues are typically located near the 

membrane-water interface where they may act as anchors to help position the transmembrane 

helix within the bilayer (2).  In some cases a short tryptophan-rich peptide may promote lipid HII 

phase formation (3). WALP peptides (acetyl-GWWA(LA)nLWWA-[ethanol]amide) with 

multiple Trp anchors and a helical core of Leu-Ala repeats also may induce lipid phase changes 

much like gramicidin A (4). The four Trp residues were further mutated to incorporate various 

other aromatic or charged residues (Tyr, Phe, Lys, Arg, or His) to monitor the importance of the 

anchor’s physiochemical properties (5,6). A modification of the WALP peptides by reducing the 

number of Trp to one on each side in GWALP23 (acetyl-GGALW5(LA)6LW19LAGA-

[ethanol]amide) has made the transmembrane helix more responsive to the lipid bilayer 

thickness. A further modification to GWALP23 was replacing a tryptophan with a different 

anchoring residue which opens up avenues for fluorescence experiments involving a single Trp 

residue. To this end, we modified the GWALP23 by replacing Trp at position 5 with a Tyr (7). 

The Y5GWALP23 confers a stable transmembrane orientation with low dynamic averaging of 

the NMR resonances similar to the GWALP23 peptide. These model systems have proven to be 
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good hosts for studying incorporation of potentially charged polar residues at the core of the 

helix (8-10). In particular, the Y5GWALP23 peptide served as the host for introducing lysine 

residues at position 12 or 14 to study its titration and ionization properties in DOPC lipid bilayer 

membranes. Both Y5GWALP23-K12 and Y5GWALP23-K14 peptides are observed to titrate at a 

low pKa close to 6 when examined by experiments over a pH range of 4.0-9.0. On the same note 

we have also studied bilayer incorporated Y5GWALP23-E14 in DLPC and DOPC bilayers where 

we find the Glu to be charged up to a pH of 12.5. We however observe a titration of the Tyr 

residue at pH 10.5. Here we show and confirm the titration of the Tyr residue in Y5GWALP23.  

 

2.3 Materials and Methods 

Solid Phase Synthesis of 2H-Labeled Peptides 

Commercial L-alanine-d4 from Cambridge Isotope Laboratories (Andover, MA) was modified 

with an Fmoc group, as described previously (11), and recrystallized from ethyl acetate:hexane, 

80:20.  NMR spectra (1H) were used to confirm successful Fmoc-Ala-d4 synthesis.  Other 

protected amino acids and acid-labile “Rink” amide resin were purchased from NovaBiochem 

(San Diego, CA).  All peptides were synthesized on a 0.1 mmol scale using “FastMoc™” 

methods and a model 433A synthesizer from Applied Biosystems by Life Technologies (Foster 

City, CA).  Typically, two deuterated alanines of differing isotope abundances were incorporated 

into each synthesized peptide.  Selected precursors for deuterated residues therefore contained 

either 100% Fmoc-L-Ala-d4 or 50% Fmoc-L-Ala-d4 with 50% non-deuterated Fmoc-L-Ala.  The 

final residue on each peptide was acetyl-Gly to yield a blocked, neutral N-terminal. 

A peptide cleavage solution was prepared containing 85% trifluoroacetic acid (TFA) and 5% 

each (v/v or w/v) of triisopropylsilane, water, and phenol.  TFA cleavage from “Rink” resin in 2 

mL volume (2-3 hrs at 22 °C) leads to a neutral, amidated C-terminal.  Peptides were precipitated 
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by adding the TFA solution to 25 volumes of cold 50/50 MtBE/hexane.  Peptides were collected 

by centrifugation, washed multiple times with MtBE/hexane and lyophilized from (1:1) 

acetonitrile/water.  After lyophilization, crude peptide dissolved in TFE was purified via HPLC 

on a Zorbax Rx-C8 9.4 mm x 25 cm column packed with 5 µm octyl-silica (Agilent 

Technologies, Santa Clara, CA) with a typical gradient of 92-96% methanol/water (0.1% TFA) 

and a 1.7 mL/min. flow rate.  Collected product is lyophilized multiple times to remove residual 

TFA.  MALDI-TOF mass spectrometry was used to confirm peptide identity by molecular mass 

(Figure S1).  Peptide purity was examined by reversed-phase HPLC (Figure S2) with 280 nm 

detection, using a 4.6 x 50 mm Zorbax SB-C8 column packed with 3.5 µm octyl-silica (Agilent 

Technologies, Santa Clara, CA), operated at 1 mL/min using a methanol/water gradient from 

85% to 99% methanol (with 0.1% TFA) over five min.  Peptide quantity was calculated by 

means of UV absorbance at 280 nm, using molar extinction coefficients of 5,600 M-1 cm-1 for 

each Trp and 1,490 M-1 cm-1 for each Tyr residue in the peptide (12).  

2H NMR Spectroscopy using Oriented Bilayer samples 

Mechanically aligned samples for solid-state NMR spectroscopy (1/40, peptide/lipid) were 

prepared using DOPC or DLPC lipids from Avanti Polar Lipids (Alabaster, AL), and deuterium-

depleted water (Cambridge; 45% w/w hydration), as described previously (17).  Bilayer 

alignment within each sample was confirmed using 31P NMR at 50 ˚C on a Bruker Avance 300 

spectrometer (Billerica, MA) at both β = 0˚ (bilayer normal parallel to magnetic field) and β = 

90˚ macroscopic sample orientations (Figure S3).  Deuterium NMR spectra were recorded at 

both sample orientations on a Bruker Avance 300 spectrometer, utilizing a quadrupolar echo 

pulse sequence (18) with 90 ms recycle delay, 3.2 µs pulse length and 115 µs echo delay.  

Between 0.5 and 1.5 million scans were accumulated during each 2H NMR experiment.  An 
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exponential weighting function with 100 Hz line broadening was applied prior to Fourier 

transformation. 

Buffers for oriented samples were prepared at room temperature using vacuum-dried reagents 

and prepared in deuterium-depleted water. Buffers include: pH 4 Acetate buffer 50 mM (sodium 

acetate and acetic acid, Sigma, St. Louis, MO); pH 6 Citrate buffers 10 mM (EMD, Gibbstown, 

NJ); pH 8.5, and 9 Tris buffers 50 mM (Trizma® hydrochloride and Trizma® base, St. Louis, 

MO), pH 11.5 and 12 CABS buffer (Sigma Aldrich, St. Louis, MO), and pH 13 Phosphate 

buffers (Sigma Aldrich, St. Louis, MO).   

CD Spectroscopy 

Small lipid vesicles incorporating 125 nM peptide and 7.5 μM lipid (1/60) were prepared by 

sonication in unbuffered water.  An average of ten scans was recorded on a JASCO (Easton, 

MD) J710 CD spectropolarimeter, using a 1 mm cell path length, 1.0 nm bandwidth, 0.1 nm slit 

and a scan speed of 20 nm/min.  

 

2.4 Results 

To investigate the titration of a Tyr phenol side chain positioned on a transmembrane helix near 

the membrane/water interface, we used the model Y5GWALP23 peptide in DLPC bilayers. 

Circular dichroism (CD) spectra indicate that the peptides retain their alpha-helical secondary 

structure even upon introduction of glutamic acid within the central core helix (Figure S4). 

Characteristic CD spectra for alpha-helices were observed for E14-containing samples of 

Y5GWALP23 and GWALP23 peptides in lipid vesicles of DLPC.  
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Titration of Tyrosine 

We prepared oriented samples of Y5GWALP23-E14 in DLPC bilayers and experimented under 

pH conditions ranging from pH 6 to 13. The alanine methyl quadrupolar splittings remained 

universally unchanged for the –E14 peptide up to pH 9.5 (Figure 1). However, we do observe 

changes in the quadrupolar splittings at pH 11.5 followed by more change in quadrupolar 

splittings at pH 13.  

To verify the titration of both Glu and Tyr residues we then used oriented samples of 

Y5GWALP23 and GWALP23 peptides as control experiments in DLPC bilayers under neutral to 

basic conditions. The alanine 2H quadrupolar splittings for GWALP23 remain largely unchanged 

between pH 6 to 13 due to the lack of any possible titrable side-chain (Figure 2A). Y5GWALP23 

peptide, conversely, does not show any change in its methyl 2H quadrupolar splittings between 

pH 6 to 9.5 but shows a change at pH 11.5 (Figure 2B) suggesting that the phenolic hydroxyl 

group of the tyrosine at the membrane water interface has a pKa of 10.5. The combined results of 

alanine quadrupolar splittings for the neutral Y5GWALP23 (Figure 3, Table 1) reveal a single 

well defined state which upon titration at high pH produces a minimal change in tilt (Δτ) of 

about 3.6° and a change in rotation (Δρ) of 6° (Figure 4, Table 2).  The results indicate that the 

Y5GWALP23 helix orientation shows a minimal but measurable change upon titration of the Tyr 

residue.  

 

2.5 Discussion 

 To determine the titration behavior of a polar aromatic tyrosine residue at the 

membrane/water interface, α-helical Y5GWALP23 was used as the transmembrane host model 

system. We observe the tyrosine side chain to titrate and deprotonate between pH 10 and 11.5 

suggesting a pKa of ~10.5. We used the GWALP23 parent peptide as a pH-independent control 
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to confirm the titration of tyrosine in Y5GWALP23. GWALP23 is has its core helix flanked by a 

Trp residue at each end thus rendering the peptide devoid of any titrable group. The 

Y5GWALP23 peptide was previously used as a host for studying the titration behavior and 

dynamics of lysine residues (13). Experiments with introduction of lysine in Y5GWALP23 were 

carried out below pH 9 and hence did not involve the deprotonation of tyrosine.  

The dynamics and average orientation of Y5GWALP23 and GWALP23 in DLPC are found to be 

very similar (7) with the Gaussian and semi-static fits for dynamics based on the six 2H 

quadrupolar splittings yielding similar tilt (τ0) values of about 21°. Our results with titration of 

Tyr indicates that the helix orientation of Y5GWALP23 is not much affected by the charge status 

of the Tyr residue. A possible explanation for the minimal response at high pH change could be 

the location of the Tyr residue near the membrane-water interface where the hydroxyl side chain 

remains fully hydrated. The observed pKa value of 10.5 also is reasonable for a phenolic group in 

aqueous solution. We conclude that the Y5 side chain is not buried in DLPC bilayers but rather is 

exposed to the aqueous buffer.   

Aromatic residues such as Tyr and Trp are found in the interfacial layer of transmembrane 

proteins. They may function as anchoring residues by “locking” the protein into its correct 

orientation within the membrane by forming interactions with the lipid head groups and water 

molecules in the interfacial region (14). Simulation studies with OmpA and KcsA proteins along 

with experimental literature on interactions of aromatic residue containing transmembrane 

proteins with lipid bilayers (14,15) are in agreement with the concept. The aromatic residues are 

positioned in the interfacial region with their polar moieties (ring nitrogen of Trp; hydroxyl 

group of Tyr) facing the aqueous solution. This arrangement makes the amphipathic rings perfect 

for the role of anchoring membrane proteins.  
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2.8 Tables 

 Table 1. Observed Ala-methyl 2H quadrupolar splitting magnitudes (|∆νq|) a for GWALP23 and 
Y5GWALP23 in DLPC ether lipid bilayers. 

 

 

 

 

 

 
 

a Quadrupolar splittings are reported in kHz for the β = 0° sample orientation for GWALP23 and 
Y5GWALP23 at pH 6 and 13. Each value is an average of (the magnitude observed when β = 0°) 
and (twice the magnitude observed when β = 90°). 
b Values have been reported from Ref 7.  
 

 

 

 

 

 

 

 

 

 

 

 Quadrupolar Splittings (kHz) 
 GWALP23b Y5GWALP23 

Ala-d4 position Neutral pH 6b pH 11.5 
7 26.4 29.3 28.4 
9 25.5 24.0 27.4 
11 26.9 26.4 26.6 
13 14.6 10.5 15.6 
15 20.7 19.5 20.6 
17 3.4 8.1 5.2 
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Table 2. Calculated Orientation and Dynamics of GWALP23 and Y5GWALP23 peptide in DLPC 
Lipid a. 

 

 

 

 

 

 

 

 

 
a The parent GWALP23 sequence is acetyl-GGALWLALALAL12AL14AL16ALWLAGA-amide. 

  

Peptide pH 

GALA Fit Results 

Reference 

τ0 ρ0 Szz RMSD (kHz) 

GWALP23 - 21° 305° 0.71 0.7 (7) and (16) 

Y5GWALP23 6 18.7° 296° 0.79 0.74 (7) 

Y5GWALP23 11.5 22.3° 302° 0.71 0.57 This work 
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2.9 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 2H-NMR spectra of Y5GWALP23-E14 peptide with deuterium labeled alanines at 
position 11 and 13 incorporated in DLPC ether bilayers hydrated with 10 mM buffer at indicated 
pH. The difference in spectra in DLPC ether bilayers between pH 6 to 13 indicates possible 
titration of both Tyr and Glu residues at pH 11.5 and 13. Spectra was recorded at β = 90° sample 
orientation at 50°C. 
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Figure 2: 2H-NMR spectra of GWALP23 (A) and Y5GWALP23 (B) peptides with deuterium 
labeled alanines at position 7, 9 (GWALP23) and 11, 13 (Y5GWALP23) incorporated in DLPC 
ether bilayers hydrated with 10 mM buffer at indicated pH. 2H NMR spectra of GWALP23 
shows no response to pH change. The difference in spectra for Y5GWALP23 between pH 6 and 
11.5 indicates titration of Tyr. Spectra was recorded at β = 90° sample orientation at 50°C. 
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Figure 3: Selected deuterium NMR spectra of Y5GWALP23 peptide with deuterium labeled 
alanines at position 7, 9,11,13,15 and 17 incorporated in DLPC ether bilayers hydrated with 10 
mM buffer at pH 11.5. The well-resolved signals in DLPC ether for all six 2H-labeled alanines 
indicate a well-defined tilted transmembrane orientation in the lipid bilayer at high pH. Spectra 
was recorded at β = 90° sample orientation at 50°C. 
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Figure 4: GALA quadrupolar wave plots of tilted membrane peptides in DLPC ether bilayers. 
Y5GWALP23 (blue; tilt τ = 18.7°, rotation ρ = 296°, pH 6) has a distinct tilt and rotation which 
shows no significant change from the charged Y5GWALP23 (red; tilt τ = 22.3°, rotation ρ = 
302°, pH 11.5).  
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2.10 Supporting Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: MALDI mass spectrum of synthesized peptides GWALP23 (top) and Y5GWALP23 
(bottom) with labeled 2H-Ala residues. The expected monoisotopic mass for GWALP23 is 
2288.83 Daltons; adding 39 for K+ and one 13C atom is 2332 with 4 deuterons or 2336 with 8 
deuterons present. The expected monoisotopic mass for Y5GWALP23 is 2237.73 Daltons; 
adding 23 for Na+ and one 13C atom is 2264 with 4 deuterons or 2268 with 8 deuterons present. 
Successive m/z peaks differ by ± one 13C atom (present at ~1.1% abundance). 
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Figure S2: Analytical HPLC chromatogram of purified Y5GWALP23 (left) and GWALP23 
(right). 
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Figure S3: Examples of 31P NMR spectra for oriented bilayers of DLPC ether containing 
Y5GWALP23-E14, Y5GWALP23, and GWALP23. Samples were hydrated with 10 mM buffer 
at pH 6 and recorded with orientations parallel (β = 0°, red) or perpendicular (β = 90°, black) to 
the magnetic field. 
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Figure S4: Circular Dichroism of GWALP23 (top) and Y5GWALP23 (bottom) in DLPC 
vesicles. Peptide to lipid ratio is 1:60. 
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CHAPTER 3: Influence of Glutamic Acid Residues and pH on the Properties of 
Transmembrane Helices 

3.1 Abstract 

Negatively charged side chains are important for the function of particular ion channels and 

certain other membrane proteins. To investigate the influence of single glutamic acid side chains 

on helices that span lipid-bilayer membranes, we have employed GWALP23 (acetyl-

GGALW5LALALALALALALW19LAGA-amide) as a favorable host peptide framework. We 

substituted individual Leu residues with Glu residues (L12E or L14E or L16E) and incorporated 

specific 2H-labeled alanine residues within the core helical region or near the ends of the 

sequence. Solid-state 2H-NMR spectra reveal little change for the core labels in GWALP23-E12, 

–E14 and –E16 over a pH range of 4 to 12.5, with the spectra being broader for samples in 

DOPC compared to DLPC bilayers. The spectra for samples with deuterium labels near the helix 

ends on alanines 3 and 21 show pH-dependent changes in the unwinding of the helix terminals in 

both DLPC and DOPC bilayers. The combined results suggest that Glu residues E14 and E16 

titrate with pKa values near 12.5 in DLPC and DOPC lipid bilayer membranes, with the central 

and most buried residue E12 showing no pH dependence.  Interestingly, the titration of E16 

causes significant local unwinding of the core helix.  Our results are consistent with the 

expectation that buried carboxyl groups aggressively hold their protons and/or waters of 

hydration. 
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3.2 Introduction 

Membrane proteins are involved in multitudinous biological processes and form about 30% of 

the proteins in the cell (1,2). The cell membrane acts as a barrier, prohibiting the unchecked 

transfer of ions or other polar molecules between the cell and the environment using a low 

dielectric inner hydrophobic core sandwiched on both sides by the high dielectric media of the 

inside and outside of the cell (3). The transmembrane protein segments are typically composed 

of a hydrophobic core with their sequences determining their function (4,5). Despite the 

predominantly hydrophobic core, potentially charged residues are also observed somewhat often 

within the core segments of a transmembrane protein and are believed to be important in the 

functioning of many proteins. These titratable protein side chains, notably those of Asp, Glu, 

His, Lys and Arg, encounter an environment-dependent energy barrier that governs their ability 

to pick up or lose a proton in transitioning between charged and neutral states. Changes in the 

microenvironments of these buried residues, such as the bilayer thickness (6), lipid phosphate 

head group identity, or presence of water molecules, therefore, have significant influence on the 

charge status.  

The charge status in turn will influence the helix orientations and geometry in lipid bilayer 

membranes (7-9). Key glutamic acid and arginine residues in the core of a membrane protein, 

therefore, may be critical for stabilizing the native structure and function (10-12).  Ionizable 

residues moreover may engage in proton transfer reactions at the active sites of transmembrane 

enzymes (13) and in voltage sensing functions (14). 

An avenue for measuring side-chain pKa in an actual membrane lipid bilayer environment is 

offered by designed model peptide helices that have well defined properties. One such example 

is the helix of GWALP23 (acetyl-GGALW(LA)6LWLAGA-[ethanol]amide) (15,16).  The 
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particular GWALP23 transmembrane model helix features two interfacial Trp residues that 

contribute to a preferred and well-defined tilted transmembrane helix orientation with low 

dynamic averaging (17-19).  The framework of GWALP23 (and its closely related cousin having 

Y5 instead of W5) has been employed to determine a pKa value of 6.5 at 37 °C for a lipid-facing 

lysine side chain located close to the center of the DOPC bilayer membrane (20). Notably, this 

pKa value is about four pH units lower than the standard value for lysine in aqueous solution. 

Further titration experiments with GWALP23-R14 reveal that bilayer-incorporated arginine does 

not titrate below pH 9, with Arg essentially preferring to exit the lipid bilayer rather than to lose 

a proton. (8,20) It is interesting to note that the bilayer environment, in comparison to a bulk 

water environment, influences the pKa of lysine more than that of arginine.  

In this paper we focus on examining the pKa values for the neutral to negative charge transitions 

of Glu side chains at three specific positions in bilayer membranes with varying lipid thickness, 

namely DLPC and DOPC. We find that the lipid-bilayer environment tends to favor a neutral 

protonated state of Glu even more strongly than for His and Lys side chains. We further report 

that Glu appears not to titrate below pH 12.5, suggesting a shift in pKa of about eight pH units 

from the aqueous value. Molecular dynamics simulations (21) indicate increased water 

penetration near buried negative carboxylates in fold proteins than near buried positive Lys side 

chains (21). Our results, with similar trends for Glu 12, 14 and 16 in the GWALP23 helix, in 

each case disfavoring negative glutamate in the bilayer, are in agreement with the relative 

hydration tendencies.  We also will examine the possibilities for helix fraying and for the onset 

of multistate behavior as a single Glu residue on a transmembrane helix becomes more buried in 

a lipid bilayer.  
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3.3 Materials and Methods 

Solid Phase Synthesis of 2H-Labeled Peptides 

Solid-phase peptide synthesis was carried out on a 0.1 mmol scale using an Applied Biosystems 

433A synthesizer from Life Technologies (Foster City, CA). N-Fmoc amino acids with 

additional side chain protections were purchased from NovaBiochem (San Diego, CA). Glutamic 

acid with t-butyl ester and tryptophan with t-butoxycarbonyl protecting groups were used. 

Cleavage of peptides from the Rink amide resin (NovaBiochem) was achieved using 

trifluoroacetic acid to yield an amidated C-terminal. Two deuterated alanine residues from 

Cambridge Isotope Labs (Tewksbury, MA) with differing isotopic abundances were incorporated 

in each peptide, according to previous methods (22). The peptides were purified using reversed-

phase HPLC on an octyl-silica column (Zorbax Rx-C8, 9.4 x 250 mm, 5 μm particle size; 

Agilent Technologies, Santa Clara, CA) using a gradient of 94-98% methanol, with 0.1% 

trifluroacetic acid over 22 min. Analytical HPLC and MALDI-TOF analysis to confirm peptide 

identity and purity are provided in Figure S1 of the Supporting Information. 

CD Spectroscopy 

Samples for circular dichroism (CD) spectroscopy were prepared by using a mixture of 62.5 nM 

peptide and 3.75 µM lipid (1/60), sonicated in unbuffered water to create small lipid vesicles 

incorporating the peptides. An average of 10 scans was recorded with a Jasco (Easton, MD) J-

1500 CD/fluorescence spectropolarimeter, using a 1 mm cell path length, 1.0 nm bandwidth, 0.1 

nm slit, and a scan speed of 20 nm/min. 

2H NMR Spectroscopy using Oriented Bilayer samples 

Aligned samples with a 1:60 peptide:lipid ratio, for solid-state 2H NMR experiments, were 

prepared using DOPC or DLPC bilayer membranes.  For experiments at high pH or low pH, 
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DLPC ether (1,2-di-0-dodecyl-sn-glycero-3-phosphocholine) or DOPC ether (1,2-di-O-(9Z-

octadecenyl)-sn-glycero-3-phosphocholine) lipids from Avanti Polar Lipids (Alabaster, AL) 

were used.  Peptide:lipid films were deposited from 95% methanol, dried under vacuum (10-4 

Torr for 48 h) and hydrated (45% w/w) with 10 mM acetate, glycine, citrate, 4-

(cyclohexylamino)-1-butanesulfonate or phosphate buffer in deuterium-depleted water at pH 

values between 4 and 13. The bilayer alignment of a sample was assessed by means of 31P NMR 

spectra recorded using a Bruker (Billerica, MA) Avance 300 MHz spectrometer (see Figure S2 

of the Supporting Information). Deuterium NMR spectra were recorded on a Bruker Avance 300 

MHz spectrometer at 50 °C with β = 90° and β = 0° macroscopic sample orientations using a 

quadrupolar echo pulse sequence (23) with a 90 ms recycle delay, 3.2 μs pulse length, and 115 

μs echo delay. About 0.6 to 1 million free induction decays were recorded for each 2H 

experiment. Fourier transformation was accomplished using an exponential weighting function 

with 150 Hz line broadening. Helix orientations were analyzed using semi-static “GALA” 

method, taking the average tilt τ of the helix axis, the azimuthal rotation ρ about the helix axis, 

and the principal order parameter Szz as variables (24). Helix dynamics were further analyzed 

using a three-parameter modified Gaussian method (18,25), with the mean helix tilt τo, mean 

azimuthal rotation ρo and rotational distribution σρ as variables.  

 

3.4 Results 

To investigate the ionization behavior and influence of a Glu carboxyl side chain on a 

transmembrane helix in lipid bilayers, single Glu residues were introduced into the GWALP23 

peptide sequence at position 14, located on the opposite helix face from the Trp residues; 

position 16, located right below the W19 indole ring and close to the interfacial layer; or at 
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position 12, located directly between the two anchoring Trp residues spaced evenly on the same 

helix face (Figure 1). The GWALP23 core sequence features a central (Leu-Ala)6 repeat that 

should favor peptide folding into α-helical secondary structure within the hydrophobic region of 

a lipid bilayer. Circular dichroism (CD) spectra largely confirm the retention of α-helical 

secondary structure with the introduction of each single Glu residue, although the 2H NMR 

results indicated that A15 and especially A17 of the core domain may deviate from helical 

geometry in some samples under some conditions. Nevertheless, CD spectra for bilayer-

incorporated GWALP23-E14, GWALP23-E16 and GWALP23-E12 (Figure S3 of the Supporting 

Information) all show pronounced double minima near 208 nm and 222 nm, indicative of 

principally α-helical secondary structure. 

Helix integrity and helical orientations were assessed by means of 2H-NMR spectra of deuterated 

alanine residues in GWALP23-E14, -E16 and -E12 peptides in aligned bilayers of DLPC, DOPC 

or their ether-linked alternatives. The samples were hydrated with 10 mM buffer at a variety of 

pH conditions.  We will present results in turn for each particular location of the Glu substitution 

in the GWALP23 sequence.   

GWALP23-E14.   

The 2H NMR spectra for the aligned samples reveal well-defined signals for the 2H-Ala methyl 

groups of GWALP23-E14 in DLPC and its ether-linked lipid bilayers. The spectra from samples 

hydrated with pH 6 buffer exhibit distinct resonances for the CD3 methyl side chains of each of 

the six core Ala residues, although the peaks are notably broader than observed with GWALP23-

R14 (7).  In spite of the broader peaks, the varying quadrupolar splittings for the alanine CD3 

groups suggest a relatively well-defined tilted transmembrane orientation in DLPC and ether-

linked DLPC bilayer membranes (Figure 2A).  When comparing the spectra for GWALP23-E14 
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at pH 6 in the ether- versus ester-linked DLPC, we observed small yet measurable changes in the 

quadrupolar splittings for alanine CD3 groups (Figure S4 of the Supporting Information). As a 

consequence, we decided to persist with only the ether-linked DLPC lipid bilayers at all of the 

experimental pH values, to avoid the possibility of ambiguity while investigating spectral 

changes due to Glu titration when the pH is changed. 

The 2H NMR spectra for aligned samples of GWALP23-E14 in DOPC bilayers exhibit multiple 

weak resonances and low signal-to-noise for each labeled alanine residue, suggesting multiple 

slowly exchanging states for the peptide population in the bilayers (Figure 2B). Because of the 

spectral difficulties exhibited by the DOPC samples (Figure S5 of the Supporting Information), 

we persevered mainly with the study of Glu residues in DLPC bilayers.  

Focusing on the DLPC-ether bilayers, the GWALP23–E14 helix indicates remarkably little 

change in the NMR observables between pH 6.0-12.5, but shows changes between pH 12.5-13 

(Figure 3A). Based on the pH dependence of the quadrupolar splittings, one can deduce the pKa 

of E14 substituted in GWALP23 to be around 12.5 in DLPC-ether bilayers.  The spectra in 

DOPC-ether bilayers indicate that a broad distribution of closely related states persists for 

GWALP23-E14 over the pH range of 6-13 (Figure 3B).  

The rather small changes in the 2H NMR signals from the core helix, even at pH 13 (Figure 3A), 

suggested that perhaps the ends of the GWALP23-E14 helix might respond to pH in DLPC 

bilayers.  To examine the possibility of changes in the helix fraying (19), we labeled alanines 3 

and 21 of GWALP23-E14 with deuterium. Indeed, the 2H spectra for A3 and A21 suggest a 

change in the unwinding of the C-terminal of GWALP23-E14 between pH 6 and 13 (Figure 3C). 

The 2H quadrupolar splitting for the A3 methyl group remains fixed in place between pH 6 and 

13 in DLPC, while that for A21 shows significant change (Figure 3C). The end labels 
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furthermore show somewhat better resolved spectra in DOPC as compared to the core labels, and 

suggest small changes with pH (Figure 3D).  

The combined results for the observed quadrupolar splittings (Table 1) from core and juxta-

terminal Ala 2H-methyl groups in DLPC-ether bilayers serve to define the helix orientation and 

integrity at pH 6 and pH 13.  Both the semi-static GALA (24,26) and modified Gaussian 

dynamic (18,25) methods of analysis reveal an intact core helix between residues 7-15 at pH 6 

that is nevertheless, surprisingly, interrupted or “unwound” at A17 (Figure 4).  Indeed, the 2H 

quadrupolar splitting magnitudes |∆νq| of not only the outer alanines 3 and 21 but also A17 

(considered within the “core” domain) deviate and fail to fit the helix backbone geometry (Figure 

4).  This situation is unique for glutamic acid, as deviations from the core helix geometry have 

not been observed for R14 (7) or K14 (20) or H14 (27).  The observed deviations from the 

quadrupolar wave that corresponds to the backbone of the core helix (Figure 4) are 2 kHz for A3, 

5 kHz for A17 and 10 kHz for A21 (in the context of an experimental uncertainty of 1 kHz).  We 

note that the helix is interrupted at residue A17 even though residue E14 is neutral and polar, but 

not charged, as E14 titrates only at much higher pH (see below).   

The slightly truncated core helix of GWALP23-E14 exhibits a single major transmembrane 

orientation at pH 6.  The transition from pH 6 to pH 13 involves deprotonation of E14 to produce 

the carboxylate side chain.  The titration of E14 changes the observed quadrupolar wave (Figure 

4) yet involves mainly an alteration of the helix dynamics with only minor effects on the mean 

helix tilt, unwinding or azimuthal rotation.  One notes that the spectral resonances become 

sharper at high pH (Figure 3), suggesting altered dynamics.  Furthermore, both methods of 

analysis (Table 2) suggest a smaller spread, or perhaps a faster averaging, about sharper mean 

values.  In the GALA method Szz is seen to increase at high pH, while in the modified Gaussian 
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method, σρ is seen to decrease at high pH (Table 2), both indicating a lower extent of motional 

averaging of the 2H quadrupolar splittings.  Interestingly, the amplitude of the quadrupolar wave 

increases somewhat at high pH (Figure 4), due to the reduced dynamic averaging, even though 

the mean helix tilt becomes smaller at high pH.  The modified Gaussian analysis shows a small 

reduction in tilt from 22° to 20° at pH 13.  The GALA method, which underestimates the 

influence of the dynamics (25), returns for the helix tilt estimates of 25° at pH 6 and 17° at pH 13 

(Table 2) again, notably in spite of the larger amplitude of the quadrupolar wave at high pH.  At 

pH 13, the 2H resonances from the methyl groups of A3, A17 and A21 remain off of the 

quadrupolar wave defined by the core helix (Figure 4), but the large deviation for A21 is 

somewhat reduced, being about 7 kHz at pH 13 instead of 10 kHz at pH 6.  The (unchanging) 

|∆νq| magnitude for the A3 methyl is seen to be above the curve at pH 6 but below the curve at 

pH 13 (Figure 4).   

Because the 2H NMR spectral changes when E14 titrates can be attributed largely to changes in 

helix dynamics, the modifications to the orientation of the GWALP23-E14 helix are notably less 

than when K14 or H14 titrates (see Discussion).  The adaptation is a consequence of E14 being 

deprotonated at high pH (E-) in contrast to the neutral state for E14 (E0) observed at lower pH 

(Figure 4).  The tilted transmembrane orientation shows a significant change in helix azimuthal 

rotation Δρ of about 50° when L14 is replaced with the polar (but neutral) E140 (Figure 4; Table 

2).  Upon titration of E140 to E14-, nevertheless, the further changes to the core helix orientation 

(∆ρ = 5°; ∆τ = only 2° when the modified Gaussian dynamics are considered), are small (Table 

2).  There is nevertheless a change (decrease) in the unwinding of the helix C-terminal, as the 

quadrupolar splitting for the A21 CD3 group changes significantly for E14- in comparison to 
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E140 (Figure 4).  Interestingly, the quadrupolar splitting for A3 does not change during the 

titration (Figure 4), but the core helix may move in relation to A3. 

GWALP23-E16.   

This peptide displays similar properties to its –E14 counterpart, but we observe distinct 

differences in the extent of helix unwinding near the guest Glu residue between pH 6 and pH 13.  

The 2H NMR spectra for samples in DLPC bilayers display well-defined resonances for all of the 

core alanine methyl groups (Figure S6 of the Supporting Information). Again, GWALP23–E16 

remains neutral and does show spectral changes over the pH range of 6 to 12.4 (Figure 5A), with 

the pattern of 2H quadrupolar splittings suggesting an intact core helix and a single orientation 

throughout the pH range. Only at high pH, between pH 12.4 and pH 13, is a second 

transmembrane helix orientation observed, albeit with substantial unwinding near residue E16.  

Provisionally, we assign this orientation for the deprotonated E16- carboxylate, as indicated by 

changes in the 2H quadrupolar splittings between pH 12.4 and 13. Again, based on the pH 

dependent changes in the quadrupolar splittings near pH 13, it appears that the pKa for E16 is 

about 12.5, a value which may seem surprisingly high given the side chain location within the 

moderately thin DLPC bilayer environment (see Discussion).     

Notably, although residue A17 is unwound from the core helix of GWALP23-E14 (see above; 

Figure 4), residue A17 remains part of the core helix in GWALP23-E16 between pH 6 and pH 

12.  Above pH 12, however, both of the core residues A15 and A17 that surround E16 become 

unwound at high pH.  The amount of sequence that is unwound at high pH is therefore larger for 

GWALP23-E16 than for GWALP23-E14.  In other words, the 2H quadrupolar splitting 

magnitudes for the methyl groups of A15 and A17 move off of the curve defined by the rest of 

the core helix when E16 titrates at high pH (Figure 6). 
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Deuterium labels on A3 and A21 suggest, once again, differences in the extent of unwinding of 

the helix terminals of GWALP23-E16 at high pH (Figure 5B). A tilt analysis, based on either the 

semi-static GALA or a modified Gaussian dynamic analysis (Table 2), can serve to clarify both 

the helix tilt and the extent of unwinding at neutral and high pH (Figure 6).  Comparing the 

results for E160 with those for the parent L16 helix of GWALP23 in DLPC (Figure 6) reveals 

changes in helix tilt Δτ and azimuthal rotation Δρ of about 7° and 54°, respectively, when L16 is 

replaced with the polar (but neutral) E160 (Figure 6; Table 2).  When E16 titrates in DLPC, the 

major changes are helix unwinding near E16 together with a decreased tilt of the remaining, 

shortened, core helix.  The modified Gaussian analysis (Table 2) shows a general agreement with 

the semi-static GALA method and furthermore indicates a much lower σρ, consistent also with 

the spectral sharpening at high pH (Figure 5).  The |∆νq| value for A3 is found to be off the core 

helix curve at both low and high pH (Figure 6).  The assignments at high pH were confirmed 

using a peptide with only A3 labeled (Figure S7 of the Supplementary Material).  Altogether, the 

extended C-terminal (residues 15-23) becomes substantially less helical at high pH, perhaps 

influenced by the proximity of the titrating Glu residue to W19 (see Discussion).  Regarding 

A21, even though the CD3 |∆νq| value happens to fall near the helical wave at high pH, we think 

that this is a fortuitous coincidence, not reflecting helicity near A21, because of the dramatic 

unwinding at A17 and A15 (Figure 6).  It is possible that an upward movement together with 

substantial unwinding could enable access of the negatively charged E16 carboxylate to the 

interfacial layer (see Discussion). 

GWALP23-E12.   

For the case of GWALP23-E12, the peptide in DLPC shows well defined 2H NMR spectra albeit 

with low intensity signals for all of the core alanine methyl groups (Figure S8 of the Supporting 
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Information).  The situation contrasts with that of GWALP23-R12 in DOPC, for which multi-

state behavior is observed (8).  The key difference could be the identity of residue 12 or the 

identity of the lipid (DLPC as opposed to DOPC).  When the pH is raised from 6 to 13 in DLPC-

ether bilayers, there are no observed changes in |Δνq| values for the CD3 groups of the core 

alanines (Table 1, Figure 7A). This is a distinct contrast to the results for the E14 and E16 

peptides, yet indicates striking agreement with results for GWALP23-H12 in DLPC (27).  

Indeed, when the central residue 12 is modified, the 2H NMR spectra for both GWALP23-E12 

and GWALP23-H12 in DLPC bilayers appear to be independent of pH.  To pursue the issue 

further, the possibility of helix unwinding was again investigated by observing 2H labels on 

alanine residues A3 and A21.  Actually, GWALP23-E12 in DLPC does exhibit unwinding of the 

helix ends, but no change is observed in the fraying between pH 6 and pH 12.5 (Figure 7B). The 

collective |Δνq| magnitudes (Table 1) reveal a well-defined transmembrane orientation, with 

minor fraying near residues 3 and 21, for GWALP23-E12 in DLPC (Figure 8).  Comparing the 

results for E120 with GWALP23-H120 (27) reveals only small differences in helix tilt ∆τ and 

azimuthal rotation Δρ (about 0.3° and 3°, respectively), when His at position 12 is replaced with 

E120. The substituted helices, with a neutral polar residue at position 12, furthermore have the 

same helix tilt and rotation as the parent L12 helix of GWALP23 (Table 2). Analysis using the 

modified Gaussian method (Table 2) showed a general agreement with the semi-static method 

for the GWALP23-E12 peptide. The transmembrane orientation of GWALP23–E120 is therefore 

found to be very similar to those for the neutral GWALP23 (Figure 8) and GWALP23-H12 

helices. It is of further interest that the terminal unwinding of the –E12 peptide in DLPC, while 

present, shows no inclination to change with pH, unlike the changes observed with E14 and E16 

that seem to alter the interfacial layer access for the Glu residue. Rather, GWALP23-E12 seems 
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to exist in the DLPC bilayer in the same single orientation throughout the pH range, similar to 

observations with GWALP23-H12 (27). 

 

3.5 Discussion   

We have investigated the ionization properties of lipid-facing Glu residues incorporated into 

transmembrane helices at three positions, as well as the influence of these buried Glu residues on 

the peptide orientation, dynamics and helix integrity.  The primary findings include rather broad 

2H NMR resonances when even a neutral buried Glu residue is present, very high pKa values for 

Glu residues in lipid bilayers, and in some cases local helix unwinding.  We will discuss the 

influence of Glu residue position and protonation state on the orientation of the host GWALP23 

transmembrane helix, the titration behavior of E12, E14 and E16 in DLPC and DOPC bilayers, 

and a potential role of helix-terminal unwinding in stabilizing the transmembrane state upon Glu 

ionization in GWALP23-E16. We will address the lack of response of the buried central E12 

residue in DLPC bilayers and will compare experimental results with predicted differences in 

titration behavior when Glu is incorporated into a lipid-bilayer membrane. 

Major parts of our experiments were conducted using ether-linked DLPC and DOPC lipids, 

which are more stable than natural ester lipids under alkaline conditions. One notes that small but 

measurable changes are observed in some of the 2H-Ala methyl quadrupolar splittings when 

comparing the ether and ester DLPC bilayers (e.g., Figure S4).  The 2H NMR quadrupolar 

splittings are very sensitive. Notably, therefore, for the results discussed here, we used the same 

ether lipid bilayers over the full range of pH.   

With bilayer-incorporated GWALP23-E14, we have consistently observed broad alanine 2H-

methyl NMR signals for the E014 peptide at neutral pH.  The signal broadening suggests that the 

neutral peptide may have intermediate motion.  The neutral E14 peptide adopts a tilted 



44 
 

conformation in DLPC distinct from that of the host peptide, attributable to the presence of a 

polar residue at position 14 and similar to the observations with neutral Y5GWALP23-K014 in 

DOPC bilayers (20) and GWALP23-H014 in DLPC or DOPC bilayers (27). The incorporation of 

a neutral polar residue at position 14, be it His, Lys or Glu, interestingly results in a 40°-50° 

change in rotation about the helix axis (Table 2 and (20,27)). The results confirm that a polar 

residue at position 14 modulates the orientation of the helix.   

At higher pH, the 2H-Ala resonances from labeled GWALP23-E14 in aligned bilayers become 

sharper, although only above pH 12.5 when there are also changes in the 2H quadrupolar 

splittings.  The GWALP23-E14 helix orientation shows slightly smaller tilt but conspicuously 

less rotational averaging following the transition from a neutral to a charged state, between pH 

12 and 13 (Table 2).  Notably, the adjustments are qualitatively different from those observed 

when K14 or H14 titrates (20,27).  The responses to the E14 titration may therefore involve other 

factors.  

The respective peptide terminals respond differently during the E14 titration.  While the A3 2H 

quadrupolar splitting magnitude remains unchanged with pH (Figure 4), there are changes in the 

2H |∆νq| magnitudes for the methyl groups of not only A21 but also A17 between pH 6 and 13 

(Figure 4 and Table 2). This suggests that the tilt of the N-terminal portion of the core helix and 

extent of unwinding near A3 do not change even as E14 titrates. A21 and A17, meanwhile, 

exhibit changes in their local orientations (with respect to the external magnetic field), 

suggesting changes in not only the orientation but also the extent of unwinding of the C-terminal 

between pH 6 and 13.  

Residue E16 in GWALP23-E16, surprisingly, appears also to have a pKa near 12.5 in DLPC 

bilayers, despite being located closer than E14 to the interfacial layer. The neutral GWALP23-
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E016 helix adopts a tilted conformation in DLPC, with a change in azimuthal rotation about the 

helix axis by about 50° and a change in tilt of about 5° in comparison to GWALP23.  These 

results are similar to observations with the neutral E014 and K014 residues.  Surprisingly, 

nevertheless, when charged, residue E-16 causes significant local unwinding, as the values for 

both A15 and A17 move away from the helical quadrupolar wave (Figure 6).  The remaining, 

shortened core helix of GWALP23-E-16 is tilted by ~5.3°.  At the same time, A3 also remains 

off of the core helix. Remarkably, the C-terminal unwinds up to residue 15 in the presence of the 

charged residue E-16.  The combined results suggest shortening of the core helix to about three 

helical turns.  A possible though not yet proven helix translocation could bury the N-terminal 

more deeply in the bilayer while exposing the E-16 side chain at the other interface.  

The results for GWALP23-E16 largely agree with solvation structure studies using molecular 

dynamics (MD) simulations on single transmembrane peptides with Asp or Glu at various offset 

positions from the helix center (28). The significant unwinding observed for GWALP23-E-16 

could be due to the propensity of Glu residues to form hydrogen bonds with water or choline of 

the lipid head groups.  This can lead to significant distortion of the peptide, either by bending the 

helix backbone or unwinding the helix secondary structure, to expose peptide bonds to water as 

is observed in the MD simulations. We do not observe such exaggerated unwinding for the 

charged –E-14 helix, possibly because the E14 Glu residue is more buried and may not be able to 

reach up to the interface. The E14 hydration, nevertheless, could potentially be satisfied by water 

defects in the bilayer, as observed for GWALP23-R14 (8).  

The GWALP23-E12 properties are independent of pH, and the helix adopts a transmembrane 

orientation very similar to that of the parent GWALP23 in DLPC bilayers. This behavior is 

comparable to the observations for GWALP23-H12 (27) in DLPC bilayers.  Both the E12 and 
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H12 peptides display helix orientations that are independent of pH in DLPC, with differences in 

helix tilt and rotation of only about 0.3° and 3°, respectively between the E14 and H14 

transmembrane peptides.   

We also observed no changes in the unwinding of the terminals of GWALP23-E12 over a pH 

range of 4-13.  We consider two possible explanations for the absence of response from 

GWALP23-E12: either the pKa of the central buried Glu residue is possibly higher than 13, or 

the Glu side chain is possibly charged in some samples but the peptide helix does not respond to 

the changes in pH. Being present at the center of the peptide, and dependent on water to satisfy 

its hydration, the E12 side chain might not be able to snorkel up to the interface.  On the other 

hand, the thinner DLPC bilayers may permit Glu to pull in water more easily and satisfy its 

charge without altering the helix orientation.  It nevertheless remains puzzling why the 

GWALP23-E14 and -E16 helices respond to pH but GWALP23-E12 does not.   

The local unwinding of A15 and A17 when E16 titrates is a new finding for the core region 

(residues 6-18) of any GWALP23 family peptide. The unwinding could be driven in part by the 

solvation structure of glutamic acid. The carboxylate side chain charge is delocalized over a 

large volume, which in turn affects the hydration free energy of the charged moiety and its 

ability to polarize its microenvironment. The Glu side chain also has a higher hydrogen bonding 

potential and in general is better hydrated than an amino group, even in internal locations 

secluded from bulk water (29-31). The preference for forming hydrogen bonds with water may 

lead E16 to snorkel aggressively and cause helix unwinding.  

The labeled Glu-containing GWALP23 peptides exhibit broad 2H NMR spectra which may 

indicate multiple closely related states in the longer chain DOPC lipid bilayers, where the spectra 

furthermore remain unchanged throughout the pH range of 4-13.  The contrast between Glu and 
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Arg is striking.  Unlike GWALP23-R14 which exhibits a highly defined tilted orientation in 

DOPC bilayers (8), the –E14 peptide exhibits very low intensity poorly resolved 2H NMR peaks. 

With the Arg remaining charged throughout the pH range, the long side chain allows the Arg 

guanidinium group to snorkel up to the interface while maintaining a stable preferred 

transmembrane orientation for the helix.  E14 has a shorter side chain and thus may struggle 

more than R14 to reach up to the interface, resulting in a less well defined helix orientation. 

GWALP23-E16 also exhibits a less well defined orientation in DOPC bilayers despite the closer 

location of E16 to the interface. GWALP23-E12 exhibits multi-state behavior which is 

comparable to that of GWALP23-R12 in DOPC bilayers (8).  

We also compare our results with recent simulations which make use of constant pH molecular 

dynamics (32). The computational predictions suggest high pKa values of 9.8 ± 0.1 for E12 and 

9.7 ± 0.1 for E14 in DLPC bilayers but are about 3 units shy of the observed experimental values 

(pKa ~12.5 for each Glu residue). The simulations account for the improved charge solvation 

shells for the charged side chain provided by changing the helix tilt, but the juxta-terminal 

unwinding is likely outside of the timescale of the simulations.  

In soluble proteins such as staphylococcal nuclease, depending on the position and the depth of 

burial, the pKa values of Glu residues have been observed to range from 4.5-9.4 (33). The 

nuclease appears to be stable at pH 9.5 where the Glu with highest pKa was recorded. This is 

consistent with the idea that the relatively hydrophobic and dehydrated interior of the protein 

behaves as a material with high dielectric constant. There is also a complex interplay among the 

local polarity of the charged group, Coulomb interactions and structural reorganization, which 

together determine the pKa values of internal charges in the protein.  The complexity is 

confirmed by the perturbation of pKa’s for Glu and Asp residues at position 38 in nuclease in 
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comparison to Lys at the same position which titrates at normal pKa (34). The K38 pKa of 10.4 

(35) is governed mainly by structural organization and water penetration upon Lys ionization. 

The carboxyl group of E38 on the other hand has a shifted pKa of 7.0. The Glu side-chain of E38 

experiences Coulomb interactions with multiple neighboring groups, has difficulty reaching the 

bulk water and hence experiences only weak interactions with bulk water.  

In membrane proteins, the pKa values for Glu are observed over a large range in transmembrane 

domains. Glu242, at the CuB catalytic site of bovine cytochrome c oxidase (CcO), functions in 

proton translocation through CcO, as a donor of all 4 pumped protons and 2-3 chemical protons 

(36). Calculations suggest that in a low uniform dielectric of ε=4, the glutamate has a pKa of 14.5 

and prefers to be protonated, but with dielectric inhomogeneities consistent with CcO, the pKa 

drops to 12.0 (37). The calculated pKa values of Glu242 therefore range between 9.4 and 14.5 

depending on the redox state of heme a. These calculations are consistent with our measured 

results for Glu held in the bilayer in our model system.  

Glutamic acid residues are highly conserved and critical not only for soluble protein function but 

also membrane protein function. We have aimed to elucidate further the Glu carboxyl side chain 

ionization properties in lipid bilayer membranes. The GWALP23 transmembrane helix with a 

specific Glu residue buried in DLPC bilayer membranes displays position-specific Glu titration 

behavior, which in turn affects the peptide helix integrity, orientation and dynamics within the 

membrane. When located at the center of the helix sequence, E12 does not respond to pH (up to 

pH 13). The slightly off-center E14 and the four-residue offset E16 display pKa values around 

12.5 in DLPC bilayer membranes. These results are consistent with calculations on these model 

peptides and membrane proteins such a CcO.  The transmembrane orientation of each peptide 

helix is governed in part by changes in the fraying of helix ends upon Glu ionization. Our results, 
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in agreement with the solvation structure predicted for Glu using MD simulations (28), shed light 

on the aggressive nature of Glu in holding the waters of hydration. One is beginning also to 

compare the ionization behavior and respective influence on helix properties of Glu, His, Lys 

and Arg side chains in DLPC bilayer membranes. These results are of interest and importance for 

further experimental as well as calculation based studies that address the properties of membrane 

proteins. 
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3.8 Tables 

Table 1. Observed Ala-methyl 2H quadrupolar splitting magnitudes (|∆νq|) a for GWALP23-E12, 
-E14 and –E16 in DLPC ether lipid bilayers 

a Quadrupolar splittings are reported in kHz for the β = 0° sample orientation for GWALP23-
E12, -E14 and -E16 at pH 6 and 13. Each value is an average of (the magnitude observed when β 
= 0°) and (twice the magnitude observed when β = 90°). 

  

 Quadrupolar Splittings (kHz) 
 E12 E14 E16 
Ala-d4 position pH 6 pH 13 pH 6 pH 13 pH 6 pH 13 

7 26.4 26.0 27.2 30.2 13 11.6 
9 29.0 28.2 17.4 13.2 5.0 2.8 
11 28.2 28.0 22.0 21.6 19.2 14.0 
13 16.0 16.2 6.0 10.0 13.4 8.2 
15 23.0 23.2 4.2 4.0 21.4 24.2 
17 3.4 3.4 17.6 30.4 14.2 16.0 
       
3 9.2 8.2 29.4 29.2 10.8 8.4 
21 25.4 26.0 17.2 25.0 10.8 4.6 
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Table 2. Calculated Orientations and Dynamics of Related GWALP23 Peptides in DLPC Lipid 
Bilayersa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aThe parent GWALP23 sequence is acetyl-GGALWLALALAL12AL14AL16ALWLAGA-amide. 
In the noted examples, either residue L12, L14 or L16 (but not all three) was changed to E, H or 
R, as indicated, and the other residue remained a leucine.   
bThe modified Gaussian analysis followed Sparks et al. [18], with στ assigned a fixed finite value 
of 10°.  
cIn DLPC, the results with H12 and H14 do not depend on pH.  
dThe results with R14+ do not depend on pH [7, 8]. 
 

Peptide pH GALA Fit Results Modified Gaussian Resultsb Reference 

  τ0 ρ0 Szz RMSD 
(kHz) τ0 ρ0 σρ 

RMSD 
(kHz)  

E140 6 25.3° 262° 0.68 0.13 22° 262° 27° 1.3 This work 

E14- 13 17.3° 258° 0.91 0.78 20° 257° 6° 0.75 This work 

H14+/0 2.0-
8.2c 26.7° 254° 0.79 0.75 29° 253° 24° 0.62 [27] 

R14+ --d 30° 259° 0.83 1.58 26° 260° 0° 1.65 [7][27] 

E120 6 23.3° 305° 0.7 1.15 19° 305° 3° 1.6 This work 

E12- 13 23.0° 305° 0.7 1.09 19° 306° 6° 1.5 This work 

H12+/0 2.0-
8.2c 23.3° 308° 0.70 0.66 18° 305° 15° 1.34 [27] 

E160 6 16° 359° 0.63 0.85 23° 360° 60° 1.9 This work 

E16- 13 10.7° 343° 0.56 0.85 8° 360° 4° 1.9 This work 

L12,14,
16 -- 21.0° 305° 0.71 0.7 23° 304° 33° 0.7 [18] 
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3.9 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Models for GWALP23-E14 at pH 6 (a), GWALP23-E14 at pH 13 (b), GWALP23-E16 
at pH 6 (c), GWALP23-E16 at pH 13 (d), GWALP23-E12 at pH 6 (e) and GWALP23-E12 at pH 
13 (f) showing the observed tilted core helix orientations in DLPC ether bilayer, as well as 
schematic representations of the unwinding of the helix terminals for the peptides. The locations 
of W5, W19 and residues E14 and E16 are illustrated on a ribbon helix, drawn using PyMOL. 
The six deuterated alanine methyl groups that underlie the tilt analysis are shown as space filling. 
The depicted side chain orientations are arbitrary. 
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Figure 2: Selected deuterium NMR spectra of GWALP23 E14 peptide with deuterium labeled 
alanines at position 7,9,11,13,15 and 17 incorporated in DLPC (A) and DOPC (B) ether bilayers 
hydrated with 10 mM buffer at the pH 6. The well-resolved albeit slightly broad signals in DLPC 
ether for all six 2H-labeled alanines indicate a well-defined tilted transmembrane orientation in 
the lipid bilayer. The peptide exhibits multiple weak resonances and low signal-to-noise for each 
labeled alanine residue in the DOPC ether-linked bilayers indicative of multiple slow exchanging 
states. Spectra were recorded at β = 90° sample orientation, 50°C. 
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Figure 3: Selected 2H-NMR spectra for two labeled alanines (7 and 9) in GWALP23-E14 in 
DLPC (A) and DOPC (B).  Titration of GWALP23-E14 peptide labeled at Ala-7 and 9 in DLPC 
ether (A) and DOPC ether (B) bilayers and that for labeled Ala3 and Ala21 in GWALP23-E14 
again in DLPC ether (C) and DOPC ether (D) bilayers. The peptide/lipid mixtures were hydrated 
with 10 mM buffer at the indicated pH. The difference in spectra in DLPC ether bilayers 
between pH 6 and 13 indicates that E14 residue is charged only at strongly alkaline conditions.  
No signal change is observed in DOPC bilayers. Spectra were recorded at β = 90° sample 
orientation, 50°C. 
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Figure 4: GALA quadrupolar wave plots of tilted membrane peptides in DLPC ether bilayers. 
GWALP23-E14 (blue; tilt τ = 25.3, rotation ρ = 262, pH 6) has a distinct tilt and rotation from 
GWALP23 (black dash; tilt τ = 21, rotation ρ = 305, pH independent) [18]. The charged 
GWALP23-E-14 (red; tilt τ = 17.3, rotation ρ = 258, pH 13) shows a decrease in tilt and rotation 
from the neutral GWALP23-E14. The labels on A3 and A21 shows the change in unwinding 
between pH 6 and 13.  
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Figure 5: Selected 2H-NMR spectra for two core labeled alanines 7 and 9 (A) and end labeled 
alanines 3 and 21 (B) in GWALP23-E16 in DLPC ether bilayers and hydrated with 10mM 
buffers at the indicated pH. Both core and end labeled alanines NMR spectra show a change in 
quadrupolar splittings between pH 6 and 13 which suggests that E16 residue titrates at higher pH 
and is accompanied by a change in un-winding. The peaks assignments for A3 and A21 at pH 13 
are based on spectra from a sample in which only A3 is deuterated (Figure S7 of the Supporting 
Information).  Spectra were recorded at β = 90° sample orientation; 50 °C. 
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Figure 6: Quadrupolar wave analysis of tilted membrane peptides in DLPC ether bilayers. 
Neutral GWALP23-E16 (blue; tilt τ = 16, rotation ρ = 359, pH 6) show major changes in tilt 
compared to the parent GWALP23 (black dash; tilt τ = 21, rotation ρ = 305, pH independent). 
The charged GWALP23-E16 (red; tilt τ = 10.7, rotation ρ = 343, pH 13) has a decreased tilt and 
shows major changes in unwinding of the core labeled alanines 15 and 17 compared to the 
neutral E16. The labels on A3 and A21 shows the change in unwinding between pH 6 and 13. 
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Figure 7: 2H-NMR spectra for core labeled alanines 7 and 9 (A), or end labeled alanines 3 and 21 
(B) in GWALP23-E12, in DLPC ether or ester (*) bilayers hydrated with 10 mM buffer at the 
indicated pH. The spectra indicate a lack of response to pH by GWALP23-E12.  Spectra were 
recorded at β = 90° orientation, 50 °C, with the ester bilayers indicated by *. 
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Figure 8: Quadrupolar wave analysis of tilted membrane peptides in DLPC ether bilayers. 
GWALP23-E12 peptide appears to show no change in orientation or unwinding between pH 6 
(blue; tilt τ = 23.3, rotation ρ = 305, pH 6) and pH 13 (red; tilt τ = 23, rotation ρ = 305, pH 13) 
and appears to adopt a similar conformation to the neutral GWALP23 (black dash; tilt τ = 21, 
rotation ρ = 305, pH independent). The labels on A3 and A21 shows the change in unwinding 
between pH 6 and 13. 
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3.10 Supporting Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Analytical HPLC chromatogram (left) and MALDI (right) mass spectrum of purified 
synthesized peptides of GWALP23-E12, GWALP23-E14 and GWALP23-E16. The expected 
monoisotopic mass for each peptide is 2276.8 Daltons; adding 23 for Na+ and one 13C atoms is 
2305 with four deuterons or 2309 with eight deuterons present. Successive m/z peaks differ by ± 
one 13C atom (present at ~1.1% natural abundance). 
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Figure S2. Examples of 31P NMR spectra for oriented bilayers of DLPC and DOPC containing 
GWALP23, GWALP23-E12, GWALP23-E14 or GWALP23-E16.  Samples were hydrated with 
10 mM buffer at pH 6 and recorded with orientations parallel (β = 0°, left) or perpendicular 
(β = 90°, right) to the magnetic field. 
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Figure S3. Circular Dichroism of GWALP23-E12 (green), GWALP23-E14 (blue) and 
GWALP23-E16 (red) in DLPC vesicles. Peptide to lipid ratio is 1:60. 
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Figure S4. Deuterium NMR spectra for labeled alanines 11 and 13 in GWALP23-E14 in DLPC 
and DLPC ether bilayers, hydrated with 10 mM buffer at pH 6.0, in β = 90° sample orientation. 
The peptide/lipid ratio is 1:60 at a temperature of 50 °C. 
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Figure S5. Selected deuterium NMR spectra for labeled alanine residues in GWALP23-E14 in A. 
DOPC ether bilayers and B. DLPC ether bilayers. Samples are hydrated with 10 mM buffer at 
indicated pH. The peptide/lipid ratio is 1:60 at a temperature of 50 °C; β = 90° sample 
orientation. 
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Figure S6. Deuterium NMR spectra for labeled alanine residues in GWALP23-E16 in DLPC 
ether bilayers, hydrated with 10 mM buffer at pH 6 (upper) or pH 13 (lower), showing 
β = 90° sample orientation. The peptide:lipid ratio is 1:60 at a temperature of 50 °C. 
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Figure S7.  Assignment of resonances for deuterated methyl groups of A3 and A21 of 
GWALP23-E16 using a singly labeled peptide.  At pH 6, the resonances of A3 and A21 overlap.  
At pH 13, the 2H quadrupolar splitting magnitude is smaller for A21 than for A3. The 
peptide/lipid ratio is 1:60 at a temperature of 50 °C; β = 90° sample orientation. 
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Figure S8. Deuterium NMR spectra for six labeled alanine residues in GWALP23-E12 in DLPC 
ether bilayers, hydrated with 10 mM buffer at indicated pH, showing β=90° sample orientation. 
The peptide/lipid ratio is 1:60 at a temperature of 50 °C. 

 

  



71 
 

CHAPTER 4: Ionization Properties of Buried Aspartic Acid Residues in the Lipid Bilayer 
Environment, with Glutamine as a Control 

4.1 Abstract 

I address the ionization properties of aspartic acid side chains of membrane proteins, and 

compare with results for glutamic acid side chains (Chapter 3), when the side chains are exposed 

directly to lipid acyl chains within lipid bilayer membranes. To investigate the pH dependence, 

ionization behavior, and orientational constraints when potentially negatively charged aspartic 

acid side chains are present in lipid bilayer membranes, I have employed GWALP23 (acetyl-

GGALW5LALALALALALALW19LAGA-amide) as favorable host peptide framework. I have 

substituted an Asp residue for a Leu residue at position 14 (L14D) and have incorporated 

specific 2H-labeled alanine residues within the core helical sequence or outside of the core 

region, near the ends of the sequence. As a control, I also use the GWALP23 framework to 

incorporate the neutral yet polar carboxamide side chain of glutamine at position 14. Solid-state 

2H-NMR spectra of labeled core alanine residues in GWALP23-D14 reveal little change to the 

orientation of the transmembrane helix over a pH range of 4 to 13 in DOPC bilayer membranes, 

quite in contrast to its Glu counterpart. The D14 peptides display surprisingly smeared and 

indistinct 2H NMR spectra in aligned DLPC bilayers, with individual resonances being obscured 

for the core labels. The behavior is in stark contrast to that of many other related peptides in 

DLPC including those having Lys/His incorporated into GWALP23 peptides at positon 14. The 

rather modest shifts in the core alanine 2H quadrupolar splitting magnitudes suggest that the 

orientation of the GWALP23-D14 transmembrane helix actually may change rather little at high 

pH. The spectra for samples with deuterium labels near the helix ends on alanines 3 and 21 show 

modest pH-dependent changes in the unwinding of the helix terminals in both DLPC and DOPC 
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bilayers. The difference in the unwinding and core labels may suggest a possible titration of the 

D14 Asp residue, but the results are as yet inconclusive.  

 

4.2 Introduction 

The most commonly found structural elements in membrane proteins are hydrophobic α-helices. 

The core amino acid sequence of the helix determines its insertion, position and also its function 

(1,2). But despite the propensity to have a hydrophobic core, polar and ionizable residues also 

may be found in core helices and are believed to be important in the functioning of many 

proteins. In a lot of instances, these ionizable residues in the hydrophobic core of a protein are 

accompanied by pKa shifts that allow the side chain to be neutral (3,4). Similarly, burying a polar 

residue in a hydrophobic interior of a lipid membrane can be somewhat unfavorable.  It is 

important to compare neutral polar side chains with the titrable side chains of Asp, Glu, Arg, 

Lys, and His, which may encounter an environment dependent energy barrier that modulates 

their ability to pick up or lose a proton. In case of RXFP3 relaxin receptor, substitution of 

charged Asp128, that plays a critical role in binding and activation of the receptor, with the 

neutral Asn considerably affects the receptor function (5).   

In this chapter I will examine the titration and ionization properties of Asp and Gln residues 

within lipid bilayer membranes. Following through on the previous chapter we use the 

GWALP23 host system for our study. The GWALP23 model system has been a successful host 

for measuring the side-chain pKa in actual bilayer membranes. We focus on examining the pKa 

values transitioning between neutral to negative charge of Asp side chain at position 14 in 

bilayer membranes with varying thickness, namely DLPC and DOPC. We find that the 

hydrophobic membrane environment favors a neutral protonated state for Asp. We also report a 

unique trend for Asp distinct to the behavior of Glu residues in DLPC and DOPC ether bilayers. 
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While GWALP23-D14 does not appear to titrate throughout the pH range as high as pH 13, we 

observe low intensity poorly resolved alanine methyl NMR spectra. In the DOPC ether bilayers, 

GWALP23-D14 shows well characterized tilted peptide orientation with well-defined alanine 

methyl quadrupolar splittings quite distinct to the case when Glu is positioned at a similar 

position (see Chapter 3).  

Results with the neutral GWALP23-Q14, lacking the carboxyl side-chain in DLPC ether bilayers 

display sharp well resolved 2H-Ala methyl NMR resonances that do not respond to pH, in 

agreement with expectations. However, despite the neutral amide on the side-chain, the Q14 

peptide displays a surprisingly broad smear of NMR signals in DOPC ether bilayers.  The 

behavior of neutral polar residues at position 14 in GWALP23 remains puzzling.  

Understanding the ionization properties of polar residues like Glu or Asp is significant for 

discerning their role in structural and functional properties of membrane proteins. A comparison 

between Asp and Glu, with Gln as a control residue, would also shed light on the propensity for 

either negatively charged residue to be conserved within membrane proteins.  

 

4.3 Materials and Methods 

Solid Phase Synthesis of 2H-Labeled Peptides 

Commercial L-alanine-d4 from Cambridge Isotope Laboratories (Andover, MA) was modified 

with an Fmoc group, as described previously (14), and recrystallized from ethyl acetate:hexane, 

80:20.  NMR spectra (1H) were used to confirm successful Fmoc-Ala-d4 synthesis.  Other 

protected amino acids and acid-labile “Rink” amide resin were purchased from NovaBiochem 

(San Diego, CA).  All peptides were synthesized on a 0.1 mmol scale using “FastMoc™” 

methods and a model 433A synthesizer from Applied Biosystems by Life Technologies (Foster 
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City, CA).  Typically, two deuterated alanines of differing isotope abundances were incorporated 

into each synthesized peptide.  Selected precursors for deuterated residues therefore contained 

either 100% Fmoc-L-Ala-d4 or 50% Fmoc-L-Ala-d4 with 50% non-deuterated Fmoc-L-Ala.  The 

final residue on each peptide was acetyl-Gly to yield a blocked, neutral N-terminal. 

A peptide cleavage solution was prepared containing 85% trifluoroacetic acid (TFA) and 5% 

each (v/v or w/v) of triisopropylsilane, water, and phenol.  TFA cleavage from “Rink” resin in 2 

mL volume (2-3 h at 22 °C) leads to a neutral, amidated C-terminal.  Peptides were precipitated 

by adding the TFA solution to 25 volumes of cold 50/50 MtBE/hexane.  Peptides were collected 

by centrifugation, washed multiple times with MtBE/hexane and lyophilized from (1:1) 

acetonitrile/water.  After lyophilization, crude peptide dissolved in TFE was purified via HPLC 

on a Zorbax Rx-C8 9.4 mm x 25 cm column packed with 5 µm octyl-silica (Agilent 

Technologies, Santa Clara, CA) with a typical gradient of 92-96% methanol/water (0.1% TFA) 

and a 1.7 mL/min. flow rate.  Collected product is lyophilized multiple times to remove residual 

TFA.  MALDI-TOF mass spectrometry was used to confirm peptide identity by molecular mass 

(Figure S1 in Supporting Information).  Peptide purity was examined by reversed-phase HPLC 

(Figure S2) with 280 nm detection, using a 4.6 x 50 mm Zorbax SB-C8 column packed with 3.5 

µm octyl-silica (Agilent Technologies, Santa Clara, CA), operated at 1 mL/min using a 

methanol/water gradient from 85% to 99% methanol (with 0.1% TFA) over five min.  Peptide 

quantity was calculated by means of UV absorbance at 280 nm, using molar extinction 

coefficients of 5,600 M-1 cm-1 for each Trp and 1,490 M-1 cm-1 for each Tyr residue in the 

peptide (15).  
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2H NMR Spectroscopy using Oriented Bilayer samples 

Mechanically aligned samples for solid-state NMR spectroscopy (1/60, peptide/lipid) were 

prepared using DOPC or DLPC lipids from Avanti Polar Lipids (Alabaster, AL), and deuterium-

depleted water (Cambridge; 45% w/w hydration), as described previously (Thomas et al. 2009).  

Bilayer alignment within each sample was confirmed using 31P NMR at 50 ˚C on a Bruker Avance 

300 spectrometer (Billerica, MA) at both β = 0˚ (bilayer normal parallel to magnetic field) and β 

= 90˚ macroscopic sample orientations (Figure S3).  Deuterium NMR spectra were recorded at 

both sample orientations on a Bruker Avance 300 spectrometer, utilizing a quadrupolar echo pulse 

sequence (16) with 90 ms recycle delay, 3.2 µs pulse length and 115 µs echo delay.  Between 0.5 

and 1.5 million scans were accumulated during each 2H NMR experiment.  An exponential 

weighting function with 100 Hz line broadening was applied prior to Fourier transformation. 

Buffers for oriented samples were prepared at room temperature using vacuum-dried reagents 

and prepared in deuterium-depleted water. Buffers include: pH 4 Acetate buffer 50 mM (sodium 

acetate and acetic acid, Sigma, St. Louis, MO); pH 6 Citrate buffers 10 mM (EMD, Gibbstown, 

NJ); pH 8.5, and 9 Tris buffers 50 mM (Trizma® hydrochloride and Trizma® base, St. Louis, 

MO), pH 11.5 and 12 CABS buffer (Sigma Aldrich, St. Louis, MO), and pH 13 Phosphate 

buffers (Sigma Aldrich, St. Louis, MO).   

CD Spectroscopy 

Small lipid vesicles incorporating 125 nM peptide and 7.5 μM lipid (1/60) were prepared by 

sonication in unbuffered water.  An average of ten scans was recorded on a Jasco (Easton, MD) 

J710 CD spectropolarimeter, using a 1 mm cell path length, 1.0 nm bandwidth, 0.1 nm slit and a 

scan speed of 20 nm/min.  
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4.4 Results 

We investigate the ionization properties and influence of Asp carboxyl side chain on 

transmembrane peptide in lipid bilayers by incorporating single Asp residues into GWALP23 

model peptide sequence at position 14. Based on previous results with Glu, we decided to pursue 

Asp, with a more polar but shorter side chain to determine how it would influence the 

membrane-peptide interaction. GWALP23 is an ideal model system for studying the ionization 

properties of charged residues as have been carried out in recent years with Arg, Lys, His and 

Glu residues (6-8) (Chapter 3). CD spectroscopy helped to confirm the retention of α-helical 

secondary structure with the introduction of the single Asp residue (Figure S4 of supporting 

information) showing pronounced double minima near 208 nm and 222 nm which is indicative 

of α-helical secondary structure.  

We examined the helix orientation and dynamics with the help of 2H-NMR spectra of deuterated 

alanine residues included in the core sequence as well as ends of GWALP23-D14 and 

GWALP23-Q14 peptides in aligned DLPC and DOPC ether linked bilayers. The samples were 

hydrated with 10 mM buffer at a variety of pH conditions. 

GWALP23-D14.  

The 2H NMR spectra for aligned samples of GWALP23-D14 reveal poorly resolved low 

intensity signals for the 2H-Ala methyl groups in DLPC ether bilayers (Figure 1). When hydrated 

with pH 6 buffer, the spectra exhibit low intensity poor resolution multiple peaks for each of the 

six core alanine residues. These are suggestive of multiple states in slow exchange on the NMR 

timescale. We find a progressive decline in the 2H-Ala methyl NMR signals as for the labeled 

alanines from the N- to the C-terminal (Figure 1). This behavior of –D14 peptide is quite distinct 

in comparison to GWALP23-E14 which responded with well-defined spectra in DLPC ether 

bilayers. The GWALP23-D14 exhibits remarkably no change in the NMR observables at higher 
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pH with no observable changes between pH 6.0-13.0 (Figure 2). Based on the lack of response to 

the high pH we can deduce a pKa possibly higher than 13.  

To examine the possibility of change in helix fraying (9), we labeled alanines 3 and 21 of 

GWALP23-D14 with deuterium. Despite the lack of change in NMR signal for the core labels, 

surprisingly, the 2H spectra for A3 and A21 suggest a change in unwinding of the C-terminal of 

GWALP23-D14 between pH 6 and 13 in DLPC ether bilayers (Figure 3). The end labels 

furthermore show somewhat better resolved spectra in DLPC as compared to the core labels. The 

deuterium quadrupolar splitting for A3 remains fixed in position between pH 6 and 13, while 

A21 shows significant changes.  

Due to the large degree of uncertainty in measuring quadrupolar splittings for GWALP23-D14 

2H-Ala labels in DLPC ether bilayers we were not able to determine helix integrity and 

dynamics. We however were able to assign tentative quadrupolar splittings (Table 1) for the core 

and helix terminal Ala 2H-methyl groups in DLPC ether bilayers.  

In the DOPC ether bilayers, GWALP23-D14 exhibits remarkably well defined spectra for 2H-

Ala methyl groups quite distinct in behavior to GWALP23-E14 which behaves very poorly in 

DOPC bilayers irrespective of pH. At a near-neutral pH of 6.0, the spectra exhibit well-defined 

2H-NMR signals for each of the six alanines indicative of a tilted conformation (Figure 4). In 

comparison to –D14 peptide in DLPC ether bilayers, we see a steady improvement in the 

resolution of the spectra for labels from the N- to the C-terminal.  

The helix of GWALP23-D14 however does not respond to high pH even as high as pH 13 as 

observed by the lack of change in the NMR observables (Figure 5A). The indifferent response of 

the 2H-Ala methyl quadrupolar splittings suggests the pKa to be higher than 13.  
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We examined the possibility of helix fraying (9) by labeling alanines 3 and 21 of GWALP23-

D14 with deuterium. The 2H spectra for A3 and A21 although does exhibit unwinding of the 

helix ends, no change is observed in the fraying between pH 6 to pH 13 (Figure 5B).  

The combined quadrupolar splittings (Table 1) reveal a well-defined transmembrane orientation 

with fraying near residues 3 and 21 in DOPC ether bilayers (Figure 6).  The neutral -D14, in 

comparison to GWALP23-H014, reveals distinct changes in the helix tilt ∆τ and azimuthal 

rotation ∆ρ (Τable 2) (about 4.3°and 85°) when Asp is replaced with His at position 14 (8). We 

observe similar differences in helix orientation when we compare –D14 to GWALP23-K014 

(∆τ = 6° and ∆ρ = 91°) (7) and the parent L14 helix of GWALP23 ((∆τ = 9° and ∆ρ = 12°) (13). 

It is of further interest that the terminal unwinding of the –D14 peptide in DOPC, while present, 

shows no inclination to change with pH much like the case of –E14 in DOPC ether bilayers 

(Chapter 3).  

GWALP23-Q14.   

The incorporation of the neutral Gln residue in GWALP23-Q14 leads to sharp, well defined 

alanine methyl 2H-quadrupolar splittings for samples in DLPC ether bilayers, indicative of a 

tilted transmembrane helix orientation (Figure 7A). We observe well defined, sharp 2H-Ala 

methyl signals for GWALP23-Q14 indicative of a well-defined orientation. The NMR signals 

are more defined than for GWALP23-E14 or GWALP23-D14, suggesting that the neutral 

functional group behaves better in the hydrophobic lipid bilayer environment.  Due to the 

absence of a titrable side chain group, the GWALP23-Q14 peptide does not show any changes in 

the quadrupolar splittings over the pH range of 6-13 (Figure 7A). Surprisingly, despite the 

neutral side chain chemistry, we still observe broad, poorly resolved alanine methyl 2H 

quadrupolar splittings in DOPC ether bilayers (Figure 7B).  
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4.5 Discussion 

We have investigated the ionization properties of lipid-facing Asp residues in a model 

transmembrane helix at position 14 and the influence on peptide orientation, dynamics and helix 

integrity. Our findings in DLPC ether bilayers include rather poorly resolved low intensity multi-

state 2H-NMR resonances for the buried Asp with very high pKa values in lipids including some 

local helix-end unwinding. We will discuss the distinct behavior of D14 in DOPC bilayers and 

the lack of response of the buried D14 residue in both DLPC and DOPC bilayers. We will also 

be comparing the experimental results of D14 with predicted differences in titration behavior 

when Asp is incorporated in lipid-bilayer membrane. 

We have consistently observed smeared, low intensity, poorly resolved alanine 2H-methyl NMR 

signals for the GWALP23-D014 in DLPC bilayers. This is indicative of slow motion or perhaps 

multi-state like behavior which is distinct from the behavior of -E014 peptide in DLPC bilayers 

(Chapter 3) and GWALP23-H014 in DLPC bilayers (8). The 2H-alanine methyl NMR resonances 

for –D14 are however independent of pH, even at high pH up to 13. Despite the multi-state NMR 

spectra, we find a small population to adopt a tilted conformation for the neutral polar –D014 

which caused a change in rotation by about 160°. This is a very distinct behavior for a polar 

residue at position 14 as seen in previous studies with His (8), Lys (7), and Glu (Chapter 3) all of 

which effects a 40-50° change in rotation.  

We also observe no changes in the unwinding of the helix terminals over the pH range of 6-13. 

One of the possibilities that the Asp remains neutral even at high pH could be that the short side 

chain being buried in the bilayer is not able to snorkel up to the interface to satisfy its hydration. 

We are however still puzzled as to why the GWALP23-E14 helices respond to pH but 

GWALP23-D14 does not.  
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The Asp incorporated GWALP23 peptides exhibit surprisingly well defined alanine 2H-methyl 

NMR spectra indicative of tilted conformation in DOPC bilayers. This is in stark contrast to the 

behavior of GWALP23-E14 in DOPC bilayers which exhibit smeared, low intensity multi-state 

like behavior (Chapter 3). The GWALP23-D14 behavior is independent of pH between pH 6-13, 

similar to its behavior in DLPC bilayer.  

The incorporation of Gln residue allowed us to have a control with a neutral, yet polar side chain 

instead of a potentially charged polar Glu side chain. Indeed, GWALP23-Q14 peptide behaved 

much better in ether linked DLPC bilayers compared to -E14 peptides. This suggests that the 

polar but uncharged carboxamide behaves much better in the hydrophobic lipid environment 

than the carboxyl group. However, we observe poorly resolved deuterated Ala-methyl NMR 

observables in the ether linked DOPC bilayers despite having a neutral functional group. This 

suggests that the polar side chain has a big influence on the behavior of the peptide in the lipid 

bilayer.  

Similar experiments with model proteins containing Asp residues near the center to assess the 

topography of the peptides upon ionization of Asp (10). Under neutral conditions where the Asp 

residue is protonated, the peptides were observed to predominantly form normal transmembrane 

helix. At their ionization pKa around 8.7, the topography results in the formation of truncated or 

shifted non-transmembrane structure. The formation of a truncated transmembrane structure 

depends on the position of Asp such that there is a residual segment of 12 or longer consecutive 

hydrophobic residues which would aid in forming a transmembrane segment. Despite the lower 

pKa observed for the aspartic acid in these peptides, the drastic changes observed upon ionization 

of Asp suggests that the bilayer system would elevate the pKa to keep it protonated. 
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The charge dependence of ionizable residues upon their depth in the bilayer has implications in 

the study of membrane electrostatics. The pKa values for Asp are observed over a large range in 

transmembrane domains. Asp85 serves as a receptor for the Schiff base proton in the M-

photolysis induced product of bacteriorhodopsin (11). Recent experiments with infrared 

measurements suggests a large increase in the pKa of Asp85 receptor to above 11 units. The 

vibrational frequency of the Asp85 carboxyl group indicates a transient drop in the effective 

dielectric constant around the aspartate to ~2 which corresponds to the increased pKa.  

Aspartic acid residues are highly conserved and critical for membrane protein function. We have 

aimed to elucidate further the Asp carboxyl side chain ionization properties in lipid bilayer 

membranes. The GWALP23 transmembrane helix with a specific Asp residue buried in DOPC 

bilayer membranes exhibits a stark contrast in its behavior to its Glu counterpart. When 

positioned slightly off center, D14 does not respond to pH (up to pH 13) but we observe changes 

in unwinding with pH which suggest that Asp might be titrating close to pH 13 but the core helix 

does not respond to the titration. These results are of interest and importance for further 

experimental as well as calculation based studies that address the properties of membrane 

proteins. 
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4.8 Tables 

Table 1. Observed Ala-methyl 2H quadrupolar splitting magnitudes (|∆νq|) a for GWALP23-D14 
in DLPC and DOPC ether lipid bilayers. 

 

 

 

 

 

 

 

 
 
 
 
 
 

a Quadrupolar splittings are reported in kHz for the β = 0° sample orientation for at pH 6 and 13. 
Each value is an average of (the magnitude observed when β = 0°) and (twice the magnitude 
observed when β = 90°). 
  

 
Quadrupolar Splittings (kHz) 

GWALP23-D14 
Lipid Bilayer DLPC Ether DOPC Ether 

Ala-d4 position pH 6 pH 13 pH 6 pH 13 
Core helix     

7 28.4 24.8 22.0 19.4 
9 31.2 31.6 14.4 12.2 
11 22.6 27.2 27.2 27.4 
13 27.6 18.0 18.0 18.2 
15 4.0 6.4 27.2 20.7 
17 2.0 2.2 8.0 8.0 

Terminals     
3 30.6 30.4 24.1 25.0 
21 30.6 23.2 39.0 20.0 
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Table 2. Calculated Orientation and Dynamics of peptides in DOPC Lipid a. 

a The parent GWALP23 sequence is acetyl-GGALWLALALAL12AL14AL16ALWLAGA-amide. 

b The modified Gaussian analysis followed Sparks et al. (13), with στ assigned a fixed finite 
value of 10°. 
  

Peptide pH 

GALA Fit Results Modified Gaussian Results Reference 

τ0 ρ0 Szz 
RMSD 

(kHz) 
τ0 ρ0 σρ 

RMSD 

(kHz) 
 

GWALP23-

D14 
6.0 15° 335° 0.85 0.52 17° 334° 30° 0.59 This work 

GWALP23-

D14 
13.0 14.7° 339° 0.83 0.83 20° 337° 45° 0.91 This work 

GWALP23-

H014 
6.0 10.3° 250° 0.83 0.82 11° 249° 18° 0.67 (8) 

GWALP23-

H+14 
2.0 16.7° 248° 0.83 1.14 19° 247° 24° 1.28 (8) 

GWALP23-

K014 
8.2 9.0° 244° 0.86 0.31 10° 243° 18° 0.36 (7) 

GWALP23-

K+14 
5.2 15.3° 228° 0.88 1.20 17° 227° 21° 1.28 (7) 

GWALP23 - 21° 305° 0.71 0..7 9° 321° 48° 0.7 (12,13) 
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4.9 Figures 

 
 
 
 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 2H-NMR spectra of GWALP23-D14 with deuterium labeled alanines at positions 7, 9, 
11, 13, 15 and 17, incorporated in DLPC ether bilayers hydrated with 10 mM buffer at pH 6. The 
poorly resolved spectra are suggestive of multi-state behavior and makes it difficult to assign the 
appropriate alanine labels. Spectra were recorded at β = 90° sample orientation at 50°C 
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Figure 2: 2H-NMR spectra of GWALP23-D14 peptide with deuterium labeled alanines at 
position 7 and 9 incorporated in DLPC ether bilayers hydrated with 10 mM buffer at indicated 
pH. The negligible difference in spectra in DLPC ether bilayers between pH 4 to 13 indicates 
that Asp residues does not respond to change in pH. Spectra was recorded at β = 90° sample 
orientation. * - indicates samples incorporated in DLPC ester linked lipid bilayers. 
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Figure 3: 2H-NMR spectra of GWALP23-D14 peptide with deuterium labeled alanines at 
position 3 and 21 incorporated in DLPC ether bilayers hydrated with 10 mM buffer at indicated 
pH. The difference in spectra in DLPC ether bilayers between pH 6 to 13 indicates that the helix 
terminals respond to a change in pH and a possible titration of the Asp 14 residue. Spectra were 
recorded at β = 90° sample orientation at 50°C. 

  



89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: 2H-NMR spectra of GWALP23-D14 with deuterium labeled alanines at positions 7, 9, 
11, 13, 15 and 17, incorporated in DOPC ether bilayers hydrated with 10 mM buffer at the 
indicated pH. The resolved deuterium NMR signals indicate a single well defined orientation of 
the peptide in DOPC ether bilayers. Spectra were recorded at β = 90° sample orientation at 50°C. 
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Figure 5: 2H-NMR spectra of GWALP23-D14 peptides with deuterium labeled alanines at 
position 15, 17 (A) and 3, 21 (B) incorporated in DOPC ether bilayers hydrated with 10 mM 
buffer at indicated pH. The spectra show changes with pH for both set of labels, particularly for 
labels 15 and 21 suggesting a pKa between 12.5-13. Spectra were recorded at β = 90° sample 
orientation at 50°C. 

  



91 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: GALA quadrupolar wave plots of tilted membrane peptides in DOPC ether bilayers. 
GWALP23-D14 (blue; tilt τ = 15°, rotation ρ = 335°, pH 6) has a distinct tilt and rotation which 
shows no significant change from the potentially charged GWALP23-D14 (red; tilt τ = 14.7°, 
rotation ρ = 339°, pH 13). The wave plot for the parent GWALP23 is shown as black dash. 
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Figure 7: 2H-NMR spectra of GWALP23-Q14 peptides with deuterium labeled alanines at 
position 7 and 9 incorporated in DLPC (A) and (B) DOPC ether bilayers hydrated with 10 mM 
buffer at indicated pH. As expected, the spectra show no response to changes with pH. Spectra 
were recorded at β = 90° sample orientation at 50°C. 
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4.10 Supporting Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: MALDI mass spectrum of synthesized peptides GWALP23-D14 (top) and 
GWALP23-Q14 (bottom) with labeled 2H-Ala residues. The expected monoisotopic mass for 
GWALP23-D14 is 2262.69 Daltons; adding 23 for Na+ and one 13C atom is 2290 with 4 
deuterons or 2294 with 8 deuterons present. The expected monoisotopic mass for GWALP23-
Q14 is 2275.75 Daltons; adding 23 for Na+ and one 13C atom is 2303 with 4 deuterons or 2307 
with 8 deuterons present. Successive m/z peaks differ by ± one 13C atom (present at ~1.1% 
natural abundance).  
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Figure S2: Analytical HPLC chromatogram of purified GWALP23-D14 (left) and GWALP23-
Q14 (right). 

 

 

 

Figure S3: Examples of 31P NMR spectra for oriented bilayers of DLPC and DOPC ether 
containing GWALP23-D14 and GWALP23-Q14. Samples were hydrated with 10 mM buffer at 
pH 6 and recorded with orientations parallel (β = 0°, red) or perpendicular (β = 90°, black) to the 
magnetic field. 
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Figure S4: Circular dichroism spectra of GWALP23-D14 in DLPC (top) and DOPC (bottom) 
vesicles. Peptide to lipid ratio is 1:60.  
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CHAPTER 5: Conclusion 

This dissertation addressed the key questions of how pH and side chain charges influence the 

behavior of model peptides in lipid bilayer. 

The use of model peptides has proven to be useful in seeking experimental validation of 

fundamental principles that undergird lipid-protein interactions. We have employed the peptide 

framework of GWALP23 (acetyl-GGALW(LA)6LWLAGA-amide) to investigate molecular 

orientation, conformation stability and dynamics, and charged residue interactions with lipids. 

The Y5GWALP23 peptide, a modification of the GWALP23 that incorporates a single tyrosine 

(Y5) at one end, displays reduced dynamics and greater sensitivity to lipid-peptide hydrophobic 

mismatch than the traditional WALP peptides. We observe the tyrosine residue in Y5GWALP23 

to titrate with a pKa of about 10.5 in lipid bilayers membranes. (The peptide contains no other 

candidate groups that titrate.) The titration of Y5, however, affects only slightly the peptide helix 

integrity, orientation or dynamics within the membrane. These results corroborate with more 

recent calculations of Tyr residues along the membrane normal (Granseth, E. et.al. 2005; 

Teixeira, V.H., et.al. 2016) and emphasizes on the importance of properly modeling the 

protonation equilibrium in peptides interacting with membranes using MD simulations.  

Negatively charged residues like glutamic acid and aspartic acid in the core of transmembrane 

proteins are highly conserved and play an important role in the stability and functioning of 

membrane proteins. This work has focused on elucidating the Glu and Asp carboxyl side chain 

ionization properties in lipid bilayer membranes. The GWALP23 transmembrane helix with a 

Glu side chain exhibits a position specific titration behavior in DLPC lipid bilayer membranes. 

When located at the center of the helix sequence, E12 does not respond to pH (up to pH 13). The 

slightly off-center E14 and the four-residue offset E16 display pKa values around 12.5 in DLPC 
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bilayer membranes. The results are consistent with the high pKa values calculated for model 

peptides and membrane proteins such as cytochrome c oxidase. We also observe the changes in 

helix fraying upon Glu titration to govern the transmembrane orientation. The results are also 

consistent with solvation structure predicted for Glu residues using MD simulations that strongly 

suggest that Glu aggressively holds on to the waters of hydration.  The labeled Glu-containing 

GWALP23 peptides display broad 2H NMR spectra in DOPC, suggesting slower helix dynamics 

and possibly indication peptide association or aggregation.  

The model GWALP23 transmembrane helix with Asp residues incorporated in DOPC bilayer 

membranes exhibits a stark contrast in behavior to its Glu counterpart. The D14 peptide, 

positioned slightly off center, displays sharp NMR resonances for oriented samples in aligned 

DOPC bilayers.  The spectra do not respond to pH (up to pH 13) but show minor changes in 

unwinding with pH, which suggest that the Asp residue might be titrating close to pH 13, but the 

core D14 helix does not respond to the titration.  

Our results shed light on the influence of ionization behavior of charged residues on fundamental 

principles of lipid-protein interactions. These experiments are of interest and importance for 

further experimental studies to produce results that could improve the methods for computational 

prediction of structure and dynamics of key membrane proteins.  
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