
Journal of the Arkansas Academy of Science Journal of the Arkansas Academy of Science 

Volume 73 Article 12 

2019 

Analyzing the Adoption Rate of Local Variable Type Inference in Analyzing the Adoption Rate of Local Variable Type Inference in 

Open-source Java 10 Projects Open-source Java 10 Projects 

Clayton Liddell 
Arkansas State University, cbwliddell@gmail.com 

Donghoon Kim 
Arkansas State University, dhkim@astate.edu 

Follow this and additional works at: https://scholarworks.uark.edu/jaas 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Liddell, Clayton and Kim, Donghoon (2019) "Analyzing the Adoption Rate of Local Variable Type Inference 
in Open-source Java 10 Projects," Journal of the Arkansas Academy of Science: Vol. 73, Article 12. 
DOI: 10.54119/jaas.2019.7311 
Available at: https://scholarworks.uark.edu/jaas/vol73/iss1/12 

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC 
BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or 
use them for any other lawful purpose, without asking prior permission from the publisher or the author. 
This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion 
in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu, uarepos@uark.edu. 

https://scholarworks.uark.edu/jaas
https://scholarworks.uark.edu/jaas/vol73
https://scholarworks.uark.edu/jaas/vol73/iss1/12
https://scholarworks.uark.edu/jaas?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol73%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol73%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/jaas/vol73/iss1/12?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol73%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu


Journal of the Arkansas Academy of Science, Vol. 73, 2019
51

Analyzing the Adoption Rate of Local Variable Type Inference in Open-source Java 10
Projects

C.B. Liddell and D. Kim*

Department of Computer Science, Arkansas State University, Jonesboro, AR, USA

*Correspondence: dhkim@astate.edu

Running Title: Analyzing the Adoption Rate of LVTI in Java 10 Projects

Abstract

Type Inference is used in programming languages
to improve writability. In this paper, we will be looking
more specifically at Local Variable Type Inference
(LVTI). For those unfamiliar with LVTI, we will also
give an in-depth explanation of what it is and how it
works. There is a lot of debate surrounding Type
Inference in modern day programming languages. More
specifically, whether the costs associated with LVTI
outweigh the benefits. It has found its way into many
higher-level languages including C#, C++, JavaScript,
Swift, Kotlin, Rust, Go, etc. In this paper, we will look
at the usefulness of LVTI and its popularity since the
release of Java 10. Our study will show that LVTI in
Java has not received widespread adoption. We will also
explain a possible reason for this, based on the
information we have gather from our empirical study
which involved statically analyzing 6 popular open
source Java 10 projects. We will also discuss different
scenarios in which Type Inference can obscure different
programming errors.

Introduction

Type Inference is a programming language feature
that allows for compilers to, based on the context of a
given procedure in a programming language, infer the
type of a l-value or a r-value (Agarwal and Stoller 2004).
Local Variable Type Inference (LVTI) is Type
Inference restricted to the local scope of a program and
only used for inferring the type of variables. In Java 10,
a new LVTI operator was introduced which is the var
operator. In order for it to be used, one simply uses the
keyword var in the place of where the type would be
specified. For an example of this, please refer to Figure
3. This allows for programmers to speed up their
development process by not memorizing complex
datatypes returned by different functions and operators
and instead just use the var keyword. It can even be
used in the place of basic datatypes such as int, char,

float, etc. This helps improve the writability of a
developer’s code while programming, and dramatically
increase the speed of the development process. There
are, however, some drawbacks that come with LVTI
that are most closely related to the readability of a
programmer’s code who uses LVTI. LVTI can lead to
errors that are very difficult to debug as shown in Figure
4, and code that is very difficult to read if not well
documented. One popular saying recalled by R. C.
Martin in his book A handbook of agile software
craftsmanship is “Code is read more than it is written”,
ergo a programs readability is far more important than
it’s writability in most cases (Danial 2018).

Though this debate has been around for as long as
Type Inference has been around, there has yet to be
studies performed on LVTI in the newly released Java
10. Additionally, due to Java’s Eclipse IDE (Integrated
Development Environment), programmers may find the
readability of code using the var keyword may differ
from most other static programming languages which
lack a native IDE.

In order to obtain a greater understanding of the true
popularity of Java 10’s new LVTI feature, we turn to the
true judge on the issue: the programming code of the
greater Java community. In this project we statically
analyzed the frequency of the LVTI feature in 6 popular
opensource Java 10 projects.

The results of our study showed that the frequency
of usage of Java 10’s LVTI is very low to non-existent
in most Java 10 projects. This may be due to just how
new Java 10 is. Additionally, most of the projects we
analyzed have been around for a few years at the least
and are currently working on ensuring their projects
compatibility with Java 10 before using some of its
newer features. It could also be related to developers not
wanting to use LVTI due to its drawbacks.

The following contributions will be made through
this paper: An empirical study of Java 10’s LVTI in real
world open source projects.
• A discussion of why Java 10’s LVTI has not

reached widespread adoption.

51

Journal of the Arkansas Academy of Science, Vol. 73 [2019], Art. 12

Published by Arkansas Academy of Science, 2019



C.B. Liddell and D. Kim

Journal of the Arkansas Academy of Science, Vol. 73, 2019
52

• A discussion of the benefits and hinderances
associated with LVTI in Java 10.

• An in depth look at different bugs and errors that
may be caused by Java’s LVTI.

Related Works

A number of articles have been written relating to
the adoption of a new programming language feature.
There are many static analysis tools for open source
projects (Beller et al. 2016; Hellström 2009). Kim et al.
conducted analyzing type inference in C# (Kim et al.
2013) with static analysis tool for open source projects.
They showed the usage of var type with the number of
developers in each open source project. Kim and Yi
conducted the acceptance of programming language
features commonly referred to as “syntactic sugars”
(Kim and Yi 2014). They examined the acceptance of
different features that had been around for quite some
time in both C# and Java. But they did not examine Type
Inference in particular within either of the languages.
Smith and Cartwright proposed type inference
algorithm that can calculate correct results because Java
5 algorithm fails (Smith and Cartwright 2008).

Background
There have been a few different versions of Type

Inference released in Java and changes that have been
made to each of these since Java 5. From the perspective
of an outsider who is un-familiar with Java or a new Java
10 developer without past experience using Java, LVTI
may not seem to be anything special. A feature common
to most statically typed programming languages to help
with especially complex data-types. However, to a
veteran Java developer, LVTI is a game changer. Unlike
previous versions of Type Inference features in Java, it
infers the entire type of a variable, not just parameter
types or generic types. To some developers, this seems
like a very nice feature to have and makes the
development process much faster and easier. However,
to others it may seem like a cause for poorly written,
hard to debug code. There is no performance difference
between explicit type declarations and implicit ones
because var keyword instructs the compiler to infer the
exact type from the right side of the initialization
statement at compile-time based on the type inference
algorithm (Kim et al. 2013; Agarwal and Stoller 2004).

Knowing the significant impact that LVTI would on
the Java ecosystem, we constructed 3 research questions
that we sought to answer:
• Is LVTI used widely in Java 10 projects? Why? Or

why not?

• Why was LVTI added to Java?
• Are LVTI related errors hard to debug? Why? Or

why not?

Implementation

We analyzed 6 open source projects to answer the
research questions we discussed within the background
section. We selected projects that were within the Java
10 category, according to Github.com. Table 1 displays
the name of each project, the lines of Java code within
the project, and the total lines of code in the project
measured by the opensource command line tool CLOC
(Pierce and Turner 2000).

We modified an existing open source programming
language analysis framework, written in Java, Python,
and MySQL (Parnin et al. 2011). The framework
statically analyzes code in the following steps:

1. Download the full history of each project from
a remote git repository using the git command line tool

2. Store the different file revisions in an
intermediate format

3. Transfer the information about each revision to
a table within a database

4. Extract occurrences of LVTI from each file
revision and store the occurrence in an intermediate
format.

5. Store the number of occurrences in the
database.

6. Generate graphs for each project analyzed using
Octave.

Evaluation

Research Question 1: Is LVTI used widely in Java 10
projects? Why? Or why not?

Our first research question is whether LVTI is used
frequently in opensource Java 10 projects. To answer

Table 1: The 6 open source Java projects under
investigation

Project
Name

Lines of Java
Code

Total Lines of
Code

d3x-
morpheus 65,854

92,104

PMD 116,597 271,882
Jenkins 154,660 250,658
Netty 259,740 270,643
Kafka 228,655 349,444
Elastic
Search 1,256,251

1,516,724

52

Journal of the Arkansas Academy of Science, Vol. 73 [2019], Art. 12

https://scholarworks.uark.edu/jaas/vol73/iss1/12
DOI: 10.54119/jaas.2019.7311



Analyzing the Adoption Rate of LVTI in Java 10 Projects

Journal of the Arkansas Academy of Science, Vol. 73, 2019
53

this we measured the number of occurrences of LVTI in
the opensource projects we downloaded. Figure 1 shows
a side-by-side comparison of the usage of LVTI in each
of the projects we analyzed. Only two out of the six
projects we analyzed had any occurrences of the var
keyword leaving four projects not using the newly
introduced feature at all. Figure 2 shows the number of
instances of var in each project over time. One of the
projects (d3x-morpheus) showed a complete conversion
of regular typing to the var keyword where possible in
the matter of a very short time as can be seen in Figure
2. This project turned out to have the greatest number of
occurrences with a staggering 142 instances of LVTI. It
can be noted that most of the Java 10 projects analyzed
have yet to use LVTI at all.

Figure 1: The occurrences of LVTI in the Java projects we
analyzed.

Figure 2: The occurrences of var in the two Java projects which
used LVTI.

Research Question 2: Why was LVTI added to Java?
LVTI was added to Java in order to increase its

writability as a programming language. It supports
implicit typing of local variables, which offers succinct
syntax, compared with explicitly typed variables (Goetz
B. 2018; Marks S. 2018). In C#, the usage of implicit
generics declaration (i.e., var) is relatively low and a
small number of developers use var. However,

developers would be more likely to use var when
creating a long variable name with several parameters
(Kim et al. 2013). It allows developers to not worry
about keeping track of the types returned by different
functions and dramatically speeds up the development
process. It also helps decrease the redundancy of some
code, such as when you create an object of a certain type
and then have to re-specify the type for the l-value. This
can be seen in Figure 3.

FileWriter writer = new FileWriter(file);
//becomes
var writer = new FileWriter(file);

Figure 3: Example usage of LVTI in Java 10.

Research Question 3: Are LVTI related errors hard to
debug? Why? Or why not?

Using Type Inference can make code more concise.
But, in some case, use of Type Inference can
harm the readability of the program. Because the lack of
a type being explicitly declared may make the code
harder to read. An example of this can be seen in Figure
4.

// What does abd() return?
var x = abc();

// The type returned from abc() is String!
String x = abc()

Figure 4: The return type of abc() is unclear and so the type of x
is also unclear.

As you can see in Figure 4, the use of explicit typing
makes the code much easier to understand for someone
new to a project. If it were not for explicit typing, a
person new to the project may have to track down where
the function abc() is declared just to determine its
type.

This may not actually be a problem for someone
who uses the Java Eclipse IDE though, since upon
hovering over a function, the return type of that function
is revealed to the user. So, in this case, the answer is both
yes and no. Type Inference can make type related errors
harder to debug, however the likelihood of type related
errors due to LVTI is mitigated by a feature of the Java
Eclipse IDE.

There is another case of an error being caused by
Java’s LVTI in conjunction with Polymorphism. This
issue is addressed in Pierce and Turner’s Local Type

53

Journal of the Arkansas Academy of Science, Vol. 73 [2019], Art. 12

Published by Arkansas Academy of Science, 2019



C.B. Liddell and D. Kim

Journal of the Arkansas Academy of Science, Vol. 73, 2019
54

Inference, however they never arrived at a solution to
the issue. The issue is as follows: Imagine you have a
parent class Vehicle created alongside child classes Bike
and Car. If a variable is initialized with one of the child
classes Bike or Car using Type Inference, it cannot be
change to the other. Of course, this is an issue that arises
in Polymorphism alone even without Type Inference
and is often labeled as a feature rather than an issue.
However, not being able to assign a variable to a child
class of the same parent as the type the variable was first
initialized with can be very confusing for an amateur
programmer just starting out. And, the var operator
only adds to the confusion if the programmer is
mistaken on what type the variable was first initialized
with. This can lead to a very difficult to debug error. For
an example of this, see Figure 5.

class Vehicle {}
class Bike extends Vehicle {}
class Car extends Vehicle {}

var v = Bike();
//several lines of code later
v = Car();

Figure 5: Will result in an error due to incompatible types.

So, while LVTI in Java can make some errors hard
to debug it’s only in some uncommon cases.

Conclusion

We analyzed the usage of LVTI in 6 open source
Java 10 projects and found that LVTI in Java 10 has yet
to reach widespread adoption. It is a very handy feature
that improves Java’s writability with some drawbacks
and seems to be a nice addition to Java 10. However, it
is still too soon to tell whether it will become widely
accepted within the Java community. Some reasons
behind why it has yet to reach widespread adoption
include: (1) LVTI is so new, that people have not had
time to start using it. And, open source developers are
still working to make sure their projects are Java 10
compatible, and (2) Java developers may be dissuaded
from using LVTI due to the drawbacks we discussed.

We also discussed some Type Inference related
errors and how LVTI can harm Java’s readability and
can also result in errors relating to incompatible typing
in Java being more difficult to identify.

Future work may be needed at a later date in order
to determine whether Java 10’s LVTI becomes widely
adopted given time.

Literature Cited

Agarwal R and SD Stoller. 2004, January. Type
inference for parameterized race-free Java.
International Workshop on Verification, Model
Checking, and Abstract Interpretation (Springer,
Berlin, Heidelberg). p 149-60.

Beller M, R Bholanath, S McIntosh, and A Zaidman.
2016. Analyzing the state of static analysis: A large-
scale evaluation in open source software. 2016
IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER)
1:470-481.

Danial A. 2018. AlDanial/cloc. (October 2018).
Retrieved November 02, 2018 from
https://github.com/AlDanial/cloc

Goetz B. 2018. JEP 286: Local-Variable Type
Inference. <https://openjdk.java.net/jeps/286>
Accessed on Aug. 27 2019

Hellström P. 2009. Tools for static code analysis: A
survey [(MS thesis]. Linkopings, Sweden
Linkopings Universitat. 118 p. Available at diva-
portal.org.

Kim D and G Yi. 2014. Measuring Syntactic Sugar
Usage in Programming Languages: An Empirical
Study of C# and Java Projects. In: Jeong H., M.
Obaidat, N. Yen, J. Park, editors. Advances in
Computer Science and its Applications. Lecture
Notes in Electrical Engineering, vol 279. Springer
(Berlin, Heidelberg), p279–284.

Kim D, ER Murphy-Hill, C Parnin, C Bird, and R
Garcia. 2013. The Reaction of Open-Source
Projects to New Language Features: An Empirical
Study of C# Generics. Journal of Object
Technology 12(4): 1-1.

Marks S. 2018. Style Guidelines for Local Variable
Type Inference in Java, <
https://openjdk.java.net/projects/amber/LVTIstyle.
html> Accessed on Aug. 27 2019.

Martin RC. 2009. Clean code: a handbook of agile
software craftsmanship. Prentice Hall (U.S.A). 464
p.

Parnin C, C Bird, and E Murphy-Hill. 2011. Java
generics adoption. Proceeding of the 8th working
conference on Mining software repositories. MSR
11: 3-12.

Pierce BC and DN Turner. 2000. Local type inference.
ACM Transactions on Programming Languages and
Systems 22(1): 1–44.

Smith D and R Cartwright. 2008. Java type inference
is broken: can we fix it? ACM Sigplan Notices
43(10): 505-524.

54

Journal of the Arkansas Academy of Science, Vol. 73 [2019], Art. 12

https://scholarworks.uark.edu/jaas/vol73/iss1/12
DOI: 10.54119/jaas.2019.7311


	Analyzing the Adoption Rate of Local Variable Type Inference in Open-source Java 10 Projects
	Recommended Citation

	MS3346

