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Abstract 

 

Saline soils are common worldwide and limit the yield potential of many crops. Plants 

respond in a variety of ways to the stress imposed by saline soils. Plants under salt stress must 

first sense their surroundings and transmit a signal alerting the rest of the plant to the saline 

conditions. Salt tolerance in soybeans is typically defined by exclusion of chloride ions from 

foliar tissues. Though differences in ion uptake among soybean genotypes is well documented, 

the key mechanisms employed by tolerant cultivars to cope with salt stress on the whole-plant 

level are still largely unknown. Objectives of the current research focus on characterization of 

the differential physiological responses to salt stress between salt-sensitive and salt-tolerant 

soybean lines and detecting genetic differences which contribute to the ion exclusion 

mechanisms employed by salt-tolerant lines.  

We assessed phytohormone content of two soybean lines following salt stress and found 

a salt-induced accumulation of abscisic acid suggesting the involvement of this phytohormone in 

plant abiotic stress responses. The genotype for a newly characterized salt-tolerance gene, 

GmCHX1, was assessed in three salt-sensitive and three salt-tolerant soybean lines. In salt-

sensitive soybeans, this cation/H+ antiporter-encoding gene is reported to contain a copia 

retrotransposon within its coding sequence. We detected the presence of this transposable 

element (TE) within three salt-sensitive lines from the U.S. soybean germplasm while this TE 

was not detected in the three salt-tolerant lines tested  

The ability of salt-tolerant soybeans to maintain chlorophyll content, stomatal 

conductance, and ion exclusion under salt stress demonstrates the wide variety of physiological 

responses involved in combating this abiotic stress. Determining the key genetic regulators of 



each of these responses will enable breeders to enhance the salt tolerance of soybeans and will 

likely contribute to overall tolerance to abiotic stresses. We show that disruption of the GmCHX1 

coding sequence contributes to the ion inclusion that results in salt-sensitivity in three soybean 

cultivars from the United States. The functional GmCHX1 allele is a promising target for 

selection by breeders looking to protect the yield of future cultivars and elite lines which will 

probably be cultivated on salt-affected lands.  
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Introduction 

Causes of Saline Soils 

Salt-affected soils are found on every continent and are more common in arid or semiarid 

regions where annual rainfall is low such as the western United States, north Africa, southeast 

Asia, and Australia. Data from the Food and Agriculture Organization’s World soil database 

suggests that between 6 and 8% of all land meets the threshold of salinity, equivalent to between 

800 million and one billion hectares (FAO, 2008; Tanji, 2002). Saline soils are caused by a high 

concentration of soluble salt ions in the soil with sodium and chloride being the most soluble and 

most damaging to plants (Munns and Tester, 2008). Soil salinity is most commonly assessed by 

measuring soil electrical conductance. Electrical conductance (EC) refers to the ability of a 

substance to carry an electrical current and increases with ion content of the soil. The SI unit for 

electrical conductance is Siemens (S) per meter and any soil with an EC level of greater than 4 

dS/m is considered saline. This level of soil EC is approximately equivalent to a 40 mM NaCl 

solution (Tanji, 2002). Deposition of soluble salts onto the soil occurs naturally over time 

through rainwater, sea spray or in sediment. Certain soil types, especially those high in 

exchangeable sodium, are prone to release salts via soil degradation.  Likewise, poorly drained 

soils readily accumulate salts. Salts present in precipitation are left behind as water is removed 

from soils by evapotranspiration. 

 Although salinization of soils occurs naturally, the process can also be exacerbated by 

human influences such as irrigation with saline groundwater (Slinger and Tenison, 2007; FAO, 

2008). Saline groundwater is present in nearly every state in the United States. However, the 

depth to saline groundwater is much shallower in some areas compared to others as shown by the 

map in Figure 1, making these areas more susceptible to salinization (Alley, 2003). Over the past 
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century, groundwater withdrawals for crop irrigation in Arkansas have continued to increase. 

Schrader reported in 2001 that groundwater withdrawals for agriculture over the past 40 years 

have resulted in a 12-meter decline of alluvial aquifer water levels in Arkansas (Schrader, 2001). 

Recent reports by the USGS of well water-quality from 2003-2007 in Southern Arkansas and 

Northern Louisiana indicate no major changes in the specific conductance or chloride 

concentration (Alley, 2003). However, the continued use of saline groundwater in irrigation will 

result in residual salts that may accumulate to levels inhibitory to crop growth. Major crops 

grown in Arkansas can be negatively impacted by salt-affected soils making soil salinity a 

legitimate concern for farmers across the state.  For instance, high levels of salt can inhibit 

germination of rice seeds and soybeans exposed to salt are often stunted.  Soils with elevated 

sodium levels have been identified in several agricultural areas throughout the state of Arkansas 

including the Stuttgart area where a large percentage of the state’s soybeans are produced 

(Chapman, 1995). 

 

Figure 1. Depth to saline ground water varies across the continental United States (Alley, 2003). 

 

Three types of salt-affected soils exist each with distinct chemical and physical properties 

which require unique corrective measures. Routine soil testing can be used to establish the type 
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and extent of salinity. Saline soils are characterized by high levels of soluble salts, which limit 

available H2O to plants, and a white or light brown surface crust (Provin and Pitt, 2001). Soils of 

this type typically contain calcium and magnesium at concentrations which are sufficient to 

counter the negative effects of the high sodium levels present. Saline-sodic soils are very similar 

to saline soils with the exception that saline-sodic soils contain a higher ratio of sodium to 

calcium and magnesium salts (above 15% sodium content) which results in a lower electrical 

conductance in this soil type compared to saline soils (Chapman, 1995; Provin and Pitt, 2001). 

Like saline-sodic soils, sodic soils have high concentrations of sodium but are rather low in other 

soluble salts. Sodic soils also often have a high pH of between 8.5-12.0, which can have a 

significant negative impact on soil nutrient accessibility and therefore plant growth (Chapman, 

1995; Provin and Pitt, 2001). The penetrability of air, rain and irrigation water is often limited in 

sodic soils with high clay content, making this soil type more susceptible to drying and crusting 

(Provin and Pitt, 2001).   

Unfortunately, few effective options exist for farmers who are faced with reclaiming salt-

affected soils for improved agricultural productivity. After determination of soil salinity by a soil 

test, irrigation water quality should also be assessed and alternative irrigation sources may need 

to be identified.  Improving drainage of soil through deep tillage can increase the movement of 

water through the soil which may help carry salts past the root zone. Salt leaching is reportedly 

the most effective method for the removal of salts from the soil’s root zone and is particularly 

effective on soils with good drainage (Qadir et al,2000; Provin and Pitt, 2001). This procedure 

requires pooling of fresh (salt-free) water on top of the soil and the presence of effective 

subsurface drains to remove salt-containing water as it infiltrates the soil (FAO, 2008; Provin 

and Pitt, 2001). The amount of water required to leach a particular soil can be determined by soil 
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testing. Other methods such as physical scraping of accumulated salts from the soil surface have 

resulted in limited success (FAO, 2008). Reliable protection of crop yield from the negative 

effects of soil salinity requires utilization of one or more of these management practices in 

combination with the use of salt tolerant varieties, if available. 

  In addition to degradation of farmlands due to agricultural intensification, more land is 

being urbanized forcing agricultural production to be carried out on marginal lands. Not only do 

farmers need to produce higher yields than ever due to a growing population, but they must do so 

under extreme environmental constraints. Increasing salinity tolerance through genetic 

improvement of crops could provide an economical way for farmers to achieve high yields even 

when growing on marginal land. Breeding efforts will require a thorough understanding of the 

tolerance mechanisms utilized by the crop of interest and, more specifically, of the roles of the 

genes and regulatory elements controlling these mechanisms.  

 

Mechanisms of Salinity Tolerance in Plants 

In general, high levels of salts can affect crop growth because they alter microbiological 

activity in soils and they directly impair the growth and health of plants. Because of the negative 

impact of saline soils on crop yields, a great deal of research has been done to understand how 

plants react to this abiotic stress. This body of research has led to the characterization of the salt 

stress response in plants into two phases: the osmotic phase and the ionic phase. The osmotic 

phase begins upon root exposure to saline soil with the low osmotic potential of the soil favoring 

water loss from the plant. These conditions directly inhibit water uptake and also have a major 

effect on nutrient uptake. From the plant’s perspective, this osmotic stress elicits many similar 

responses as would drought conditions, including a reduction in stomatal conductance. 
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Reductions in several growth parameters including the rate of new leaf emergence, rate of 

growth of leaves, and the number of branches is often associated with the osmotic phase of salt 

stress (Munns and Tester, 2008).  

The ionic phase of salt stress is caused by the translocation of ions from the roots to the 

shoots of the plant leading to accumulation of ions in the foliar tissues after extended exposure to 

saline conditions. The presence of ions is critical for the functioning of all living cells, but a 

delicate balance in their concentrations must be maintained. Homeostasis of ions is critical 

because very high or very low concentrations of ions can inhibit enzyme activities and thus a 

wide range of cellular processes. Most enzymes can be inhibited by Na+ concentrations starting 

at 100 mM (Munns and Tester, 2008; Greenway et al, 1972). As a result of reduced enzyme 

activity, plants experiencing the ionic phase of salt stress often display an increased rate of 

senescence in mature leaves along with a decrease in chlorophyll content and photosynthetic 

activity of these tissues (Munns and Tester, 2008). Likewise, salt ions can also inhibit essential 

physiological activities of plants. For example, ion accumulation in chloroplasts leads to 

significant reduction of photosynthesis (Wang et al, 2007).  

One way in which plants avoid the negative consequences of growth under saline 

conditions is by restricting the entry of ions at the root level. Citrus and grapevines, for example, 

are able to keep Na+ in the roots and stems and avoid sodium toxicity in their shoots (Flowers, 

1988). This method of salinity tolerance is also referred to as ion exclusion and is dependent 

upon the dynamics of ion exchange at the root-soil interface. Upon crossing the epidermis of the 

roots, ions may efflux back into the soil or be transported across the endodermis to the xylem 

(Munns and Tester, 2008). Sodium ions can enter the roots via voltage-independent cation 

channels or may be exported back into the soil via Na+/H+ antiporters (Amtmann and Sanders, 
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1999; Tester and Davenport, 2003).  Once across the endodermal root layer, ions may be loaded 

into the xylem and carried to the aerial parts of the plant which are often more sensitive to Na+ 

and Cl- toxicity than the roots (Tester and Davenport, 2003).  

To regulate xylem Na+ concentrations, plants have evolved a number of transport 

proteins including a family of high-affinity potassium transporters (HKT). AtHKT1-1 has been 

shown to control movement of sodium out of the xylem in Arabidopsis thaliana and preliminary 

work in wheat suggests that HKT1;4-A2 may confer sodium exclusion from leaves (Schachtman 

and Schroeder, 1994). Overexpression of the plasma membrane Na+/H+ antiporter SOS1, which 

is implicated in retrieving Na+ from the xylem, in A. thaliana resulted in improved growth and 

seed set, reduced Na+ content and less dramatic decreases in chlorophyll content relative to 

control plants when under salt stress (Shi et al, 2002). Chloride is able to cross the tonoplast both 

actively by Cl- transporters and passively via the apoplast. Which pathway is used is dependent 

upon the direction of Cl- movement relative to the Cl- electrochemical gradient within the plant 

(White and Broadley, 2001). Voltage-dependent CLCs (passive chloride channels) have been 

identified in a number of plant species including Arabidopsis, rice, corn, and soybean (Zhang et 

al., 2011). Once ions have entered cells, other membrane transporters are active in regulating 

localized concentrations.  For example, the Na+ levels in chloroplasts appears to be regulated by 

a membrane-bound Na+/H+ antiporter (Müller et al, 2014).   

Plants may close their stomata upon sensing saline or drought conditions by sending an 

abscisic acid-mediated signal from the roots to the shoots (Munns and Tester, 2008; Davies et al, 

2005). Reducing stomatal conductance prevents water loss but also reduces gas exchange and 

overall transpiration. Via reduced CO2 uptake, stomatal closure can limit photosynthetic activity 

and encourage the formation of oxygen radicals (1O2) which can be converted into other 
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damaging reactive oxygen species (ROS) and can impose an oxidative stress on plant cells 

(Sharma et al, 2012). At low concentrations, ROS serve as important signaling molecules. Once 

the equilibrium between cellular ROS species and their associated scavenging enzymes is 

disrupted though, ROS can begin to oxidize lipids (Munns and Tester, 2008). For this reason, 

lipid peroxidation levels have served as a useful gauge of ROS damage in plants grown under 

stressful abiotic conditions (Tanou et al, 2009; Sharma and Dubey, 2005). In rice, lipid 

peroxidation levels have been shown to increase with NaCl concentration but salt tolerant rice 

plants suffer lower levels of lipid peroxidation under salt stress compared to their salt sensitive 

counterparts (Vaidyanathan et al 2003). ROS-scavenging enzymes include superoxide dismutase 

(SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) among others (Gill and 

Tuteja, 2010). By increasing the production of such enzymes under salt stress, plants can 

modulate ROS concentrations to a level suitable for signaling purposes. Salt tolerant wheat 

genotypes, for example, respond to salt stress with a greater increase in SOD, APX, and GR 

activity compared to salt sensitive wheat genotypes (Sairam et al, 2005). In one study on citrus 

callus, results suggested that increases in APX activity is key in determining salt tolerance while 

the activity of other ROS scavenging enzymes is similar between tolerant and sensitive callus 

(Gueta-Dahan, et al, 1997).  The observed variance in the relative importance of each ROS 

scavenging enzyme among different crop species demonstrates the variety of responses different 

plants may rely on to adapt to the same stress.  

Plants that are able to prevent initial water loss through reduction in stomatal 

conductance while upregulating ROS scavenging mechanisms to prevent oxidative stress should 

perform better under salt stress. Transgenic plants overexpressing one or more ROS scavenging 

enzymes have been created with some success in improving abiotic stress tolerance. For 
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example, when SOD from Oryza sativa was overexpressed in Nicotiana tabacum, transgenic 

plants showed improved tolerance to salt, water, and PEG stresses relative to the wild type 

(Badawi et al, 2004). Conversely, Arabidopsis mutants with reduced APX levels actually showed 

greater salt tolerance, demonstrating the flexibility and probable redundancy in plant redox 

balancing pathways (Miller et al, 2007). Understanding the consequences of manipulating 

expression of any proposed salt tolerance genes on seed quality and the difficulties of 

marketability of transgenic crops remain major hurdles in bringing these types of salt-tolerant 

lines into production. 

Tissue tolerance refers to a plant’s ability to maintain adequate functions even with high 

concentrations of ions within plant tissues. A common mechanism of tissue tolerance to salt 

among plants is the removal of excess ions from the cell cytoplasm into the vacuole by an active 

process known as vacuolar sequestration. Much like in the roots, tonoplast-located energy-

dependent ion transporters are able to move Na+ and Cl- across the vacuole as needed to achieve 

optimal cellular ion concentrations. Several such transporters have been described, including a 

tonoplast-located Na+/K+ antiporter encoded by GmNHX1 that is induced in soybean leaves by 

NaCl treatment (Li et al, 2006). In transgenic yeast, cells expressing the protein encoded by 

GmNHX1 showed enhanced tolerance to NaCl and increased vacuolar sequestration of Na+ (Li et 

al, 2006; Sun et al. 2006). GmCLC1 encodes a tonoplast-located Cl- channel in soybean whose 

expression has been found to be significantly induced in leaves by NaCl treatment. Similar to 

GmNHX1, expression of GmCLC1 in transgenic yeast resulted in improved salt tolerance which 

authors attributed to increased sequestration of Cl- into vacuoles (Li et al. 2006; Phang et al., 

2008).  
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Another mechanism used by plants and other organisms that can combat the damaging 

effects of high cellular ion concentrations is the stress-induced synthesis of compatible osmolytes 

including glycine betaine, proline, sorbitol, and mannitol that do not impede normal metabolic 

reactions within the cell (Munns and Tester, 2008; Hasegawa et al. 2000). Accumulation of these 

metabolites results in a decrease in the osmotic potential of the cell cytoplasm relative to the 

vacuole, aiding in the reestablishment of cellular ionic and osmotic homeostasis. Evaluation of 

plant metabolomes and transcriptomes under salt stress combined with transgenic studies have 

demonstrated the important role of these osmolytes in combating the negative effects of osmotic 

stress (Chen and Murata, 2002; Hare and Xu, 1998). Many crop plants increase production of 

protective osmolytes under a variety of abiotic stresses. For instance, researchers were able to 

improve the NaCl tolerance of tobacco by introducing a bacterial mannitol synthesis gene 

(mt1D) (Tarczynski et al, 1993).  Engineering of the bacterial glycine betaine synthesis gene 

codA allowed glycine betaine synthesis and thereby improved salt tolerance in Brassica juncea, a 

plant species that does not naturally produce glycine betaine (Prasa et al, 2000).  

Plants can be categorized according to the ion concentrations of their preferred growth 

conditions. Halophytes are broadly defined as plants that are able to grow and complete their life 

cycle under conditions that are considered saline, although a wide range of optimal Na+ and Cl- 

concentrations for different halophytes has been reported (Flowers, 1988; Flowers 1986, Glenn 

1999). Glycophytes, on the other hand, have evolved to thrive with comparatively much lower 

Cl- concentrations and therefore, rely more heavily on other mechanisms of osmoregulation. 

Among glycophytes, exclusion of Na+ or Cl- does not guarantee physiological tolerance to saline 

soils (Tester and Davenport, 2003). For instance, a salt-tolerant wild relative of tomato, 

Lycopersicon peruvianum, accumulates higher concentrations of Na+ than its salt-sensitive 
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domesticated relative, L. esculentum (Tal, 1971; Santa-Cruz et al, 1999). Interestingly, salt-

sensitive Arabidopsis thaliana mutant sos1 actually had lower shoot Na+ content than wild-type 

plants under salt stress (Ding and Zhu, 1997). Because levels of salt tolerance and mechanisms 

of tolerance vary greatly among plant species, it is important to remember that a gene or 

mechanism conferring salinity tolerance in one crop might not necessarily confer the same 

effects in another crop species.  

Most major row crops are considered glycophytes and possess limited salt tolerance 

leading to a decrease in yield when grown under saline conditions. For example, barley and 

wheat have soil EC threshold of 6 and 8 dS/m, respectively. With every increase in soil EC unit 

above the threshold, barley suffers a 5% yield loss and wheat suffers a 7% yield loss on average. 

Cotton has a threshold and percent yield decrease very similar to both cereals while soybean has 

a lower threshold at 5 dS/m (Ashraf, 1994). Of the major row crops mentioned, soybean suffers 

the greatest yield loss with increasing soil salinity (Abel, 1964; Maas and Hoffman 1977).  

 

Importance of Soybean Crop 

Soybean [Glycine max (L.) Merrill] is a globally important crop that provides protein and 

oil for a wide array of products. By weight, soybean seed is made up of roughly 40% protein, 

20% oil, 35% carbohydrate and 5% ash (Soares et al, 2008). Most soybeans are processed for oil 

and protein meal with most of the oil destined for use in cooking, biofuels, or manufacturing and 

most of the protein meal is used as an additive in livestock feed. In fact, only 6% of the world’s 

soybean crop is used directly for human consumption. Traditional soy products may either be 

fermented or unfermented. Products like natto, soy sauce, miso and tempeh are examples of 

fermented soy food products. Edamame, tofu, and soy milk represent unfermented soy food 
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products. Thankfully for soybean farmers, demand for nearly every category of soy foods in the 

United States is increasing as evidenced by growth of the U.S. retail soy food industry from $1 

billion to $4.5 billion over the last 17 years (http://www.soyfoods.org/soy-products/sales-and-

trends). Salinity is an ever increasing problem in agriculture, and the ability to maintain or even 

improve soybean production levels under this constraint will require a better understanding of 

the genetic components responsible for salt tolerance in the soybean crop.  

 

Effects of Salinity on Soybean Crop and Seed Quality 

When grown in 14-15 dS/m soil, twenty soybean cultivars tested gave a yield that was 

47.5% of plants grown under non-saline conditions (Chang et al, 1994). Whereas some soybean 

varieties exhibit higher tolerance than others, there is also variability in the degree of salt 

tolerance according to the developmental stage of the plant. Saline conditions delay or inhibit 

germination with these effects being more prominent in salt-sensitive germplasm (Abel, 1969; 

Phang et al., 2008). The germination stage of soybean is thought to be much more tolerant to salt 

stress than later stages, although a high degree of tolerance in the germination stage does not 

necessarily imply the same degree of tolerance in the seedling or adult stage (Phang et al., 2008). 

Studies of soybean have shown that high salinity may cause reductions in plant height, leaf size, 

biomass, number of branches, number of pods and weight of seeds (Abel and MacKenzie, 1964; 

Chang et al, 1994). A major reduction in any one of these categories can severely limit yield 

potential of the soybean crop and have catastrophic effects on the farmer’s financial return.  

Not only does salt stress negatively impact germination and growth of soybean plants, but 

this abiotic stress can also cause a reduction in the agronomic quality of beans harvested from 

salt-stressed soybean plants. Protein content of soybean seeds is reduced under salt stress 

http://www.soyfoods.org/soy-products/sales-and-trends
http://www.soyfoods.org/soy-products/sales-and-trends
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although effects on oil content are inconclusive (Chang et al, 1994). In addition to decreases in 

the overall productivity of soybean under salt stress, researchers have found that salt stress 

decreases the number and biomass of root nodules and the efficiency of nitrogen fixation 

(Singleton and Bohlool, 1984; Delgado et al, 1994). This reduced nodulation of soybeans under 

salt stress may require farmers who depend on the nitrogen-fixing capabilities of soybean in their 

crop rotations to find other alternatives for management of soil nitrogen content when growing 

on salt-affected soils.  

 

Existing Salinity Tolerance in Soybean 

Variation in levels of salt tolerance exist in soybean with tolerant and sensitive genotypes 

being distinguished by ability, or lack thereof, to exclude Cl- ions from foliar tissues. Sensitivity 

to Cl- is greater in cultivated soybean G. max compared to its wild relative G. soja (Luo et al, 

2005a; Zhang et al, 2011). Indeed, it is common for plant species to lose many kinds of biotic 

and abiotic stress resistance through the process of domestication. Although a negative 

correlation between leaf chloride content and dry matter production has been reported, a 

threshold for genotypic classification as sensitive or tolerant has not been officially established 

(Valencia et al, 2008). Varieties are currently classified as salt sensitive or salt tolerant according 

to visual ratings of symptoms and by assessment of chloride concentrations in foliar tissues 

(Valencia et al, 2008; Lee et al, 2008).  Much work has been done to determine the genetic basis 

of salt tolerance in soybean, yet the precise physiological mechanisms controlling this tolerance 

and the genes controlling those mechanisms are still very poorly understood.  

In the late 1960s, experiments in soybean by Abel and colleagues demonstrated a 

correlation between leaf Cl- content and leaf chlorosis, suggesting that in soybean chloride may 
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be more the more toxic component of NaCl stress. (Abel and MacKenzie, 1964). The 3:1 salt-

tolerant:salt-sensitive segregation ratio of F2 progeny from parents with different levels of 

chloride uptake led Abel to propose that a dominant locus, Ncl, was responsible for the leaf 

chloride exclusion exhibited by soybeans with a tolerant phenotype under salt stress (Abel, 

1969). More recent studies have shown that both Na+ and Cl- leaf content exhibit a positive 

correlation with leaf scorch and chlorosis and suggest that the role of both ions in NaCl stress 

should be explored more fully (Essa 2002, Li et al 2006, Korth lab, unpublished).  

Through genetic mapping studies on segregating populations derived from crosses 

between a salt-sensitive and salt-tolerant parent, a major quantitative trait loci (QTL) has been 

identified on linkage group N (chromosome 3) in soybean. The alleles associated with markers 

Sat_091 and Satt237 on chromosome three were found to confer salt tolerance (Valencia et al, 

2008). This QTL, often referred to as the S-100 QTL, has been validated through a number of 

mapping studies and has been found to account for up to 70% of observed variability in salt 

tolerance in soybean (Valencia et al, 2008; Lee et al, 2004). Recently, a single, dominant gene 

for salt tolerance was fine-mapped in G. max variety Tiefeng 8 to the same region as the 

previously described S-100 QTL (Guan et al, 2014a). Assessment of allelic variation at this locus 

within additional Chinese soybean germplasm revealed that in salt-sensitive plants, a 

retrotransposon insertion was present within the coding sequence of the Glyma03g32900 locus 

resulting in a premature stop codon and a truncated transcript in salt-sensitive plants (Guan et al, 

2014b). The copia retrotransposon-containing allele was designated GmSalt3 and the salt tolerant 

allele GmSALT3.  The functional GmSALT3 gene is predicted to encode an endoplasmic 

reticulum localized cation/H+ antiporter (Guan et al, 2014b). Presence of the tolerant allele was 

spatially correlated with geographic regions of salinity within China while the salt-sensitive 
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allele was more prevalent in non-saline areas. These findings suggest that the allele associated 

with salinity tolerance has been maintained by positive selection and loss of this allele among the 

tested Chinese germplasm may be due to associated fitness costs under non-saline conditions.  

Resequencing of a recombinant inbred line population led Qi et al to the identification of 

the same locus associated with salt tolerance (Glyma03g32900), which they named GmCHX1 

(Qi et al, 2014). We will utilize the GmCHX1 name in reference to the Glyma03g32900 locus for 

the remainder of this report. A second group of researchers utilized whole genome resequencing 

on a diverse group of U.S soybean germplasm including several ancestral lines and were able to 

identify dependable molecular markers associated with the sensitive and tolerant alleles of the 

GmCHX1 gene (Patil et al, 2016). The high levels of accuracy (>90%) afforded by these markers 

in identifying salt-tolerant and salt-sensitive CHX1 alleles provide a promising tool for the 

development of soybean lines with improved tolerance to saline conditions.  

Salt tolerant soybean rootstock plays a major positive role in ion exclusion and 

physiological salt tolerance (Ren et al, 2012). However, the mechanisms responsible for stress 

signaling between the roots and shoots of soybeans under saline conditions is still largely 

unknown. Unfortunately, physiological adjustments made by tolerant soybean lines both 

immediately and after extended exposure to saline conditions has not been widely reported. 

Soybean research has suggested a number of genes whose expression are induced or suppressed 

in salt tolerant lines under saline conditions and thereby may be involved in the plant’s response 

and adaptation to salt stress (Umezawa et al, 2002; Ren et al, 2012; Hettenhausen et al, 2016; 

Fan et al, 2013). Validation of these gene expression studies is needed along with further 

characterization of the genes’ roles in salt stress through overexpression and knockout studies of 

model plants before this information can be utilized in breeding salt-tolerant soybean lines.   
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Fortunately, likely roles of many putative soybean ion transporter genes, including the 

previously mentioned GmNHX1 and GmCLC1 genes, have been shown through transgenic 

studies in vivo and in vitro (Li et al, 2006; Sun et al, 2006; Phang et al, 2008). GmCAX1, a 

plasma membrane localized cation/H+ antiporter in soybean, was reported to be induced in 

soybean by treatment with Na+ and other osmoticum such as PEG.  When GmCAX 1 was 

expressed in A. thaliana, Na+ accumulation was reduced and tolerance to Na+ during germination 

was improved (Luo et al, 2005b). Several calcium dependent protein kinases (CDPK), which 

possess both kinase and calcium sensor domains, in soybean were recently reported to be 

upregulated in response to ABA and drought treatments (Hettenhausen et al, 2016). CDPK 

knockout studies in other plants have suggested a positive role for CDPKs in ABA-regulated 

signaling, making this gene family a worthy target for further exploration of its possible role in 

root-to-shoot stress signaling in soybean (Mori et al, 2006).  

There is some evidence to suggest that soybean may increase ROS scavenging activities 

under salt stress as a means of restoring oxidative balance. When measured in the leaves and 

roots of salt stressed soybeans, activity levels of the ROS-scavenging enzymes superoxide 

dismutase (SOD) and ascorbate peroxidase (APX) were increased in tolerant soybean (Yu and 

Liu, 2003). The increased SOD and APX activity in tolerant soybean was also correlated with a 

decrease in oxidative damage as indicated by O2- content. A putative purple acid phosphatase 

gene in soybean, GmPAP3, has also been shown to be induced by salinity, osmotic and oxidative 

stresses (Liao et al, 2003). Improved growth and reduced lipid peroxidation of transgenic A. 

thaliana expressing GmPAP3 under saline conditions suggest that this soybean gene could play 

an important role in redox balancing in soybean.  
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Objectives 

The objectives of the current study are aimed at evaluating differential physiological 

responses to salt stress between salt-tolerant and salt-sensitive soybean lines and assessing 

methods of identifying salt tolerant soybean lines for breeder use. By monitoring differences in 

plant growth, chloride uptake, phytohormone and oxidative stress response between salt-tolerant 

and salt-sensitive soybean lines, potential biological markers of salt tolerance may be identified. 

Additionally, the results of this work will contribute to the limited knowledge of the 

physiological mechanisms that dominate the tolerant response to salt stress in soybean. Infrared 

thermography will be tested as a new, non-destructive screening method for salt tolerance in 

soybean. We will also evaluate the GmCHX1 locus for differences among the soybean lines 

tested.  

 

Objective 1: Determine differences in physiological responses between salt-

sensitive and salt-tolerant soybean lines subjected to salt stress. 

Objective 2: Determine the usefulness of infrared thermography as a salt 

tolerance screening method in soybean.  

Objective 3: Evaluate differences in genotype at the GmCHX1 locus among salt-

sensitive and salt-tolerant soybean lines.  
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Materials and Methods 

Plant Growth and Maintenance 

Seed from soybean cultivars Clark, Glenn (salt-sensitive), Manokin and Osage (salt-tolerant) 

were planted into a 10.2- by 10.2- by 8.9-cm square plastic pot containing pasteurized river sand 

at a density of 3 seeds per pot. Seedlings were germinated and emerged in a greenhouse under 16 

hour days with supplemental lights as needed. The average daytime temperature in the 

greenhouse was between 22-26 °C and average night temperatures between 18-20 °C. Plants 

were fertilized once prior to the treatment period using 0.5x MiracleGro® All Purpose Fertilizer 

(24N-8P-16K, with urea as nitrogen source) and every other day throughout the duration of the 

treatment period.  

 

Salt Treatment 

Plants were treated when the first trifoliate was fully emerged, which is defined as the V1 growth 

stage in the soybean developmental cycle. Treatment consisted of partial flooding with 100mM 

NaCl of dH20 for two hours daily. Treatment solutions were supplemented with 0.5x 

MiracleGro® All Purpose Fertilizer (24N-8P-16K, with urea as nitrogen source) every other day. 

Each experiment consisted of at least three plants per cultivar per treatment arranged as a 

completely randomized factorial design and each experiment was repeated at least twice.  

 

Reciprocal Grafting 

Reciprocal grafting of soybean seedlings was carried out using the “straw-band” technique 

reported for use in soybean in 1972 (Bezdicek et al, 1972). Using a razorblade, the upper portion 

of the rootstock source (two-week old plants) was removed below the cotyledons and a vertical 
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slice was made into the top of the stem about 1-2cm deep. The hypocotyl of the scion source 

(one-week old plants) was cut above the cotyledons and the end was cut to form a wedge. 

Seedlings were spritzed with H2O to prevent desiccation and the scion was gently inserted into 

the split rootstock. Grafts were secured with segments of plastic drinking straws and plastic 

tubing as described in Bezdicek et al, 1972. Each genotype was reciprocally grafted to the other 

and grafts between scion and rootstock of the same genotype were also made to serve as a 

control for the grafting procedure. Plastic domes were placed over grafted plants and plants were 

sprayed with H2O frequently to prevent desiccation until healing of the graft union. 

 

Phytohormone Analysis 

For sample collection, 100 mg of tissue from one leaflet of the first trifoliate was placed into a 2 

mL tube (Eppendorf) and immediately frozen in liquid nitrogen. Samples were sent to the 

Donald Danforth Plant Science Center Proteomics and Mass Spectrometry Facility in St. Louis, 

Missouri for analysis. Hormone extractions were analyzed at the Danforth Center by LC-MS/MS 

to detect concentrations of the following phytohormones: abscisic acid (ABA), jasmonic acid 

(JA), 12-oxo-phytodienoic acid (OPDA), jasmonate isoleucine (JA-Ile) and salicylic acid (SA). 

The data was normalized based on the internal standards D6ABA, D2JA, and D4SA and 

hormone concentrations were reported in ng/g fresh weight. Means of each treatment (H2O and 

NaCl) within a cultivar were compared by a Student’s t-test using a p-value of 0.05.   

 

Mineral Analysis 

For ion content analysis, a single axial leaflet was collected from each plant from the first-

formed trifoliate and placed into a coin envelope. Envelopes containing leaf tissue were 
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incubated at 31°C for 72 hours to allow complete desiccation of the tissues. Dried tissue was 

roughly ground using a benchtop coffee grinder and 100 mg of tissue was placed into a 1.5mL 

Eppendorf microcentrifuge tube. Samples were shipped at room temperature to Arkansas State 

University for chloride analysis using a Haake Buchler Digital Chloridometer. An additional 10 

milligrams of dried tissue from each sample was placed into a labeled ELISA bag for sodium 

content measurements along with 500 µl of diH2O. The tissue was macerated by scraping a 

plastic pestle over the outside of the ELISA bag. The leaf extract was transferred to labeled 1.5 

mL Eppendorf tubes and 200 µl of extract was pipetted onto the sensor of a Horiba Na+ meter 

(B-722 LAQUAtwin).  

 

Oxidative Stress Assay 

The OxiSelect™ TBARS Assay Kit (STA-330, Cell Biolabs, Inc., San Diego, CA) was used to 

quantify lipid peroxidation via measurement of malondialdehyde (MDA) in plant tissue samples. 

MDA is a natural by-product of lipid peroxidation and is widely accepted as a marker of 

oxidative stress in biology. This assay is based on the knowledge that MDA forms a 1:2 product 

with thiobarbaturic acid (TBA). The following protocol was employed in setting up the assay:  

an aliquot of 2X TBA diluent was diluted to 1X by addition of diH2O (250 µl 1X TBA diluent 

needed per sample). The appropriate volume of TBA powder (1.3 mg per sample) was added to 

the 1X TBA diluent to create the TBA reagent. Sodium hydroxide was added to the TBA reagent 

to adjust pH to 3.5 and the solution was mixed to dissolve. Sample buffer was prepared by 

combining 10 µl butylated hydroxytoluene (BHT) and 990 µl 1X phosphate buffered saline 

(PBS) per sample. SDS lysis solution was warmed in a 37 °C incubator to thaw and allow 

resuspension of precipitation.   
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A standard curve was created by assaying a dilution series of the MDA standard provided in the 

kit. The standard dilution series was prepared according to the volumes in the table on the 

following page. 

 

 

Table 1. Standard curve set up for OxiSelect ™ TBARS assay. 

Standard Tubes MDA Standard (µL) Water (µL) MDA Standard (µM) 

1 125 µL 875 µL 125 

2 250 µL of Tube #1 250 µL 62.5 

3 250 µL of Tube #2 250 µL 31.25 

4 250 µL of Tube #3 250 µL 15.63 

5 250 µL of Tube #4 250 µL 7.81 

6 250 µL of Tube #5 250 µL 3.91 

7 250 µL of Tube #6 250 µL 1.95 

8 250 µL of Tube #7 250 µL 0.98 

9 0 µL 250 µL 0.0 

 

Immediately upon collection, one hundred milligrams of fresh tissue was ground in 1 mL PBS + 

BHT using a plastic pestle. Samples were spun at 10,000 x g for five minutes to pellet cellular 

debris. One hundred microliters of each sample and each standard was transferred to a new 1.5 

mL microcentrifuge tube (Eppendorf, Hamburg, Germany). Standards were assayed in duplicate. 

One hundred microliters of SDS lysis solution was added to each sample and mixed by pipetting. 

Samples were incubated for five minutes at room temperature. Two hundred fifty microliters of 

TBA reagent was added to each sample and standard and tubes were inverted to mix. Samples 

were incubated at 95 °C for 45-60 minutes followed by cooling in an ice bath for 5 minutes. 

Samples were then spun at 3000 rpm for 15 minutes. One-hundred fifty microliters of each 
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standard and sample was assayed in a black 96-well fluorescence microplate with optical bottom 

(265301; Nalge Nunc International, Rochester, NY). The plate was read using a Biotek Synergy 

HT fluorescence microplate reader at 540 nm excitation and 590 nm emission and data was 

collected using the associated KC4 analysis software (BioTek® Instruments, Inc., Winooski, 

Vermont). Replicates from each biological group were averaged and means of each treatment 

within a cultivar were compared by Student’s t-test with a significance level of p < 0.05. 

 

Infrared Thermography 

All plants were planted and treated as previously described. Plants were grown in a Conviron® 

walk-in growth chamber under a 12-hour light period (light intensity of 4) at 25 °C (Controlled 

Environments, Ltd., Winnipeg, Canada). Single dH20-treated plants and NaCl-treated plants 

were imaged side by side immediately following the two-hour treatment period each day. Plants 

were imaged inside of a studio light box (Cowboy Studio, Allen, Texas) to diffuse incoming 

light. Two sheets of amber-colored plexiglass were placed inside the box as a background as 

mentioned by Sirault et al. (2009). Emissivity of this material is different than that of green 

plants resulting in an apparent temperature of about two degrees warmer than the air 

temperature, which provides a homogeneous background and enables rapid separation of 

seedling images from their background.  

All infrared images were captured using the FLIR T420 infrared camera under default imaging 

settings.  Images were analyzed using the FLIR software which allows the average temperature 

of any given area within an IR image file to be calculated to within + 0.1°C. The average 

temperature was captured for each of the three leaflets of the first (oldest) trifoliate from which 

the average temperature for each plant was calculated. Seven Clark plants and seven Manokin 
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plants were imaged and analyzed for both the H2O and NaCl treatment. The temperature 

response to salt treatment was calculated by subtracting the average temperature of H2O-treated 

plants from the average temperature of NaCl-treated plants of the same cultivar. Temperature 

response of both cultivars was recorded for six days. Average temperature differences between 

the cultivars were compared by student’s t-test at p < 0.05.  

 

Chlorophyll Content Measurements 

Following fourteen days of treatment, ten Clark plants and ten Manokin plants from both H2O 

and NaCl treatments were assessed for chlorophyll content using a SPAD-502 Chlorophyll Meter 

(Konica Minolta; Tokyo, Japan). This instrument detects the absorbance of chlorophyll in both 

the red and near-infrared regions from which the meter calculates a SPAD value which is 

proportional to the amount of chlorophyll present in the leaf. One leaf of each plant was assessed 

for chlorophyll content by placing the leaf inside the measuring head of the meter while avoiding 

the thick mid-vein. The measuring head was closed and the SPAD value was recorded.  

 

DNA Extraction 

The entire axillary leaflet (~500mg) of the first-formed trifoliate was collected in 1.5 mL Safe-

Lock Tubes (Eppendorf) and immediately frozen in liquid nitrogen. Samples were stored in -80 

°C freezer until time of extraction. Five hundred microliters of CTAB buffer was added to each 

tube and tissue was pulverized using a plastic pestle and power drill for approximately one 

minute each or until tissue was completely ground. Samples were incubated in a 65 °C water 

bath for 45 minutes followed by a brief cooling on ice. Five hundred microliters of chloroform 

were added to each tube and samples were inverted 6-8 times to ensure adequate mixing. 
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Samples were spun at 5000 rpm for 15 minutes and the aqueous phase (top, clear phase) was 

transferred to a new 1.5 mL tube. DNA was precipitated by the addition of 500 µl of 100% 

isopropanol followed by incubated on ice for 15 minutes. DNA was pelleted by centrifugation at 

5000 rpm for 10 minutes. Isopropanol was removed and the pellet was washed with 500 µl of 

70% ethanol and spun at 13000 rpm for 10 minutes. The ethanol was removed and the pellets 

were allowed to air dry for 10-15 minutes or until residual ethanol evaporated. Pellets were 

dissolved in 50 µl of TE buffer and incubated at 37 °C for 15 minutes followed by vortexing to 

resuspend the DNA pellet. DNA samples were quantitated using a Bio-Spec Nano 

spectrophotometer (Shimadzu, Kyoto, Japan) and diluted to 40 ng/µl. 

 

PCR and Gel Electrophoresis 

PCR reactions were set up as follows (per reaction): 2.5 µl 10X Genscript Buffer, 0.5 µl dNTPS 

(10mM each), 0.5 µl Taq polymerase, 1.0 µl forward primer, 1.0 µl reverse primer, 13.5 µl 

dH2O and 1.0 µl DNA template (40 ng/µl). Reactions were placed in a thermocycler under the 

following cycling conditions: 1) 94°C for 5 minutes 2) 94°C for 30 seconds 3)60°C for 30 

seconds 4)72°C for 30 seconds 5) Repeat steps 2-4 x35 6)72°C for five minutes 7) 4°C for ∞. A 

combination of 5 µl of PCR product and 2 µl of 6X loading dye were loaded into the wells of a 

0.8% TAE agarose gel stained with GelGreen™ nucleic acid gel stain and run at 100V for one 

hour to visualize PCR results.  

 

Data Analysis 

JMP ® Version 13 Basic Analysis developed by SAS was utilized for statistical analyses. The 

Student’s t-test was employed for direct comparison of two means. For comparison of multiple 
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means and for determining the effect of each factor, data were analyzed using analysis of 

variance (ANOVA) under a full factorial model  

 

Results and Discussion 

Physiological Response of Soybean to Salt Stress 

Relatively little is known about the specific mechanisms controlling salt tolerance in 

soybean.  Although great strides have been made over the past few decades in the general 

understanding of ion transport and stress signaling among plants, additional work cataloging the 

unique responses by different crop plants as well as varieties within a crop are required. We 

exploited the differential tolerance to salt stress among four soybean lines in order to survey the 

physiological responses and genetic components associated with tolerance to this abiotic stress. 

We also evaluated a potential new salt tolerance screening method for use in soybean.  

Two soybean varieties were chosen for the initial survey: salt-sensitive Clark and salt-

tolerant Manokin. Plants were treated with 100 mM NaCl or dH2O for 14 days, after which 

chlorophyll content was measured using a chlorophyll meter (SPAD-502; Konica Minolta; 

Tokyo, Japan). The mean of chlorophyll measurements from ten dH2O- and NaCl-treated plants 

of each cultivar were compared using a One-way ANOVA and a significance levels of p < 0.05. 

NaCl-treated Clark plants showed a significant reduction in chlorophyll content relative to dH2O-

treated Clark plants (Figure 2). The chlorophyll content of the salt-tolerant Manokin plants did 

not differ significantly between treatments (Figure 2). Under the salt treatment, chlorophyll 

content of salt-sensitive Clark was significantly reduced compared to chlorophyll content of salt-

tolerant Manokin (Figure 2). Similarly, salt-sensitive Union soybeans experienced more severe 

reductions in chlorophyll content relative to salt-tolerant WF-7 soybeans under salt stress (Ren et 
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al., 2012). More specifically, NaCl-treated Clark plants suffered a 38.6% reduction in 

chlorophyll content relative to H2O-treated Clark plants while NaCl-treated Manokin plants only 

suffered a 0.35% reduction in chlorophyll content relative to H2O-treated Manokin plants.  
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Figure 2. The average chlorophyll content (in SPAD units) was significantly reduced in NaCl-

sensitive cv. Clark following 14 days of 100 mM NaCl treatment while chlorophyll content of 

Manokin was unaffected by the NaCl treatment. Bars that share a letter are not significantly 

different from on another according to oneway ANOVA; n = 10; p < 0.05; +SEM 
 

 

The fresh weight, plant height, and root dry weight of these plants were also measured to 

assess any impacts of NaCl treatment on plant growth (Figure 3). Both soybean lines showed 

significant reductions in fresh weight (Fig. 3A) and plant height (Fig. 3B) due to NaCl treatment, 

although in both instances the reduction in Manokin plants was less severe. Under NaCl stress, 

the fresh weight of salt-sensitive Clark plants was significantly less than that of salt-tolerant 

Manokin plants (Figure 3A). Clark plants showed a 66% reduction in fresh weight due to NaCl 

treatment while Manokin plants only showed a 34.7% reduction in fresh weight due to NaCl 

treatment. NaCl treatment caused a 23% reduction in plant height in Clark plants and a 16.4% 

reduction in plant height in Manokin plants. Both cultivars also showed a small and insignificant 

decrease in root dry weight under NaCl treatment relative to H2O treatment (Figure 3C). When 
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directly comparing NaCl-treated plants, Manokin plants show significantly higher root dry 

weights than Clark plants. NaCl treatment caused a 49% reduction in root dry weight in Clark 

plants while Manokin plants only suffered a 22.8% decrease in root dry weight under NaCl 

treatment. 

The SPAD results show that after two weeks of consistent NaCl stress, salt-tolerant 

Manokin plants are superior at maintaining chlorophyll content relative to salt-sensitive Clark 

plants. Salt stress has been shown to reduce chlorophyll content and/or photosynthetic rate in a 

number of plant species including cucumber (Cucumis sativus L.), chickpea (Cicer arietinum L.), 

cotton (Gossypium hirsutum L.) and wild and cultivated soybeans (Yildirim et al., 2006; Soussi 

et al., 1998; Brugnoli and Lauteri, 1991; Kao et al., 2003; Lu et al., 2009). Lenis et al. even 

reported an increase in chlorophyll content under salt stress in some salt-tolerant Glycine 

accessions (2011).  

 Clear differences in biomass production between the cultivars, as measured by fresh 

weight and root dry weight, indicate that the salt-tolerant Manokin plants are able to continue 

active photosynthesis at higher levels than salt-sensitive Clark plants under NaCl stress, which 

would presumably translate to higher yields. Although we did not directly compare chlorophyll 

content and photosynthetic rate, these results support previous reports that established a close 

relationship between chlorophyll levels and photosynthetic rates in soybeans (Buttery and 

Buzzell, 1977). Farmers dealing with saline soils may take simple chlorophyll measurements to 

assess the level of salt stress being experienced by their crop in the fields, which could inform 

irrigation and other management decisions. Breeders could utilize fresh and dry weight data to 

determine if a correlation between harvest yield and early-season biomass accumulation of 
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soybeans under salt stress exists. If a strong correlation was found between these factors, 

breeders could select for higher yields under salt stress much earlier in the breeding process.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Two soybean cultivars were treated with 100 mM NaCl or dH2O for 14 days. A) The 

average fresh weights of both cultivars were significantly reduced in NaCl-treated plants relative 

to H2O-treated plants. B) The average height of both cultivars was significantly reduced in NaCl-

treated plants relative to H2O-treated plants. C) Average root dry weight was not significantly 

impacted by treatment with NaCl. Bars that share a letter are not significantly different from on 

another according to oneway ANOVA; n = 10; p < 0.05; +SEM 
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Reciprocal Grafting of Soybeans 

To determine if the physiological and molecular functions of the roots and/or foliar 

tissues play a significant role in tolerance and ion exclusion, we performed a reciprocal grafting 

experiment using two salt-sensitive (Clark and Glenn) and two salt-tolerant (Manokin and 

Osage) soybean lines. Upon healing of the graft union, grafted plants and ungrafted controls 

were subjected to 14 days of treatment with 100mM NaCl or dH2O. Overall, NaCl-treated plants 

possessing rootstock from salt-sensitive Glenn and Clark lines showed the wilting and chlorotic 

phenotype associated with chloride uptake and its resulting toxicity (Figure 4A). On the other 

hand, NaCl-treated plants possessing rootstock derived from salt-tolerant Osage and Manokin 

lines showed no signs of wilting or leaf scorch following the same treatment (Figure 4B).  
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Figure 4. Soybean plants were reciprocally grafted and treated daily with 100mM NaCl or dH2O 

for 14 days. Images are representative of the observed phenotype of each grafting combination 

and ungrafted controls following treatment; lettering combinations indication scion cultivar (top) 

and roostock cultivar (bottom). A) Plants with chloride sensitive rootstock (Glenn (G) and Clark 

(C)) showed wilting, yellowing, and in some cases chlorosis. B) Plants with chloride tolerant 

rootstock (Osage (O) and Manokin (M)) appeared green and unwilted and looked very similar to 

water-treated control plants of their respective cultivars 

 

Chloride Sensitive Rootstock A 

B Chloride Tolerant Rootstock 
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A quantitative assessment of leaf scorch was conducted using a scale based on estimated 

percent leaf chlorosis (Figure 5, Ledesma et al., 2016).  H2O-treated plants showed no visible 

symptoms of chlorosis and thus, only NaCl-treated plants were rated. The average leaf scorch 

score ranged between 5 and 9 among the plants possessing sensitive rootstock (Figure 6). Leaf 

scorch scores of plants grafted with tolerant rootstock were significantly lower with an average 

score of 2. These phenotypic data suggest that soybean rootstock plays a major role in the 

physiological response to salt stress. Furthermore, this experiment demonstrates the potential for 

salt-sensitive soybean lines to be rescued from this sensitivity via grafting onto tolerant soybean 

rootstock.  

 

Figure 5. Leaf scorch score rating scale for evaluating soybean salt tolerance (Ledesma et al, 

2016). 1 = healthy green leaf from a soybean plant not subjected to salt stress; 2 = dark-green 

leaf that is stunted due to salt treatment; 3-6 = slight to severe chlorosis; 7 = severe chlorosis and 

minor necrosis; 8 = minor chlorosis and severe necrosis. 9 = complete necrosis of the soybean 

leaf due to salt treatment. 
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Figure 6. Salt sensitive rootstock led to greater leaf scorch damage following 14 days of 100 mM 

NaCl treatment. Analyzed by oneway-ANOVA; bars that share a letter are not significantly 

different from one another; p < 0.05; 2 < n >4 

 

Decreases in chlorophyll content and greater leaf scorch damage among salt-sensitive 

soybeans under salt stress suggest that toxic levels of salt ions are able to accumulate in the foliar 

tissues of these salt-sensitive lines. The differential uptake of chloride by soybeans under salt 

stress is well-known and has been used as a benchmark for establishing salt sensitivity and 

tolerance within the soybean crop (Valencia et al, 2008; Lee et al, 2008). It is generally believed 

that the rootstock plays a dominant role in ion uptake and exclusion given that these tissues are 

the first exposed to saline soil conditions and also due to the fact that nutrient and water uptake 

occurs predominantly within the roots whether actively or passively. To test this hypothesis, we 

analyzed the chloride content of foliar tissue from each grafting combination. Across all 

combinations, NaCl-treated plants showed increases in mean chloride content relative to H2O-

treated plants, as expected. However, those plants possessing salt sensitive rootstock (Figure 7A) 

accumulated chloride to nearly three times the level of plants possessing salt tolerant rootstock 
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(Figure 7B). Chloride exclusion has also been reported as the source of salt tolerance in the 

soybean cultivar Dare (An et al., 2002). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Salt-tolerant rootstock plays a major role in chloride exclusion from the foliar tissues. 

X-axis labels are written as fractions with genotype of the hypocotyl source represented by the 

letter in the numerator and genotype of the rootstock source represented by the letter in the 

denominator: C = Clark, G = Glenn, M = Manokin, O = Osage. A) Plants possessing salt-tolerant 

rootstock showed uptake of chloride under the salt treatment. B) Plants possessing salt sensitive 

rootstock also showed uptake of chloride under salt treatment but to a much higher level 

compared to the plants from (A). Asterisks indicate significant difference between the means of 

H2O- and NaCl-treated plants within a cultivar according to Student’s t-test. ** p = 0.05; * p = 

0.1; 3 < n > 4 
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Fresh weight of the grafted plants was acquired by cutting plants off at the soil line but no 

significant differences were observed among the grafting combinations (Figure 8). After 

measuring fresh weight, the same plants were dried and dry weight was recorded following 

complete desiccation of the tissues. No significant differences in dry weight were seen among 

the grafting combinations tested (Figure 9). Although no differences in biomass accumulation 

were observed in the grafting experiment, the clear differences in chloride content and leaf 

scorch score demonstrate the importance of root tissues in ion exclusion and physiological salt 

tolerance.   
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Figure 8. Rootstock source did not have a significant impact on hypocotyl fresh weight following 

14 days of NaCl treatment although differences in leaf chloride content were observed at this 

time. Data represented here reflects the mean fresh weight of NaCl-treated plants only. Analysis 

by oneway -ANOVA; p = 0.05; 2 < n >4  
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Figure 10. Plants with Glenn rootstock show significantly higher uptake of sodium into foliar 

tissues following 14 days of 100 mM NaCl treatment. Analysis by one-way-ANOVA; asterisks 

indicate significant difference between H2O and NaCl treatment within a genotype; 7 > n < 12. 
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To determine if the pattern of sodium uptake follows chloride uptake, the grafting experiment 

was repeated using salt-sensitive Glenn and salt-tolerant Osage. Plants were analyzed for sodium 

and chloride content following 14 days of H2O or 100 mM NaCl treatment. Because sodium and 

chloride data did not fit a Normal distribution, the data was transformed to a Log Normal 

distribution. ANOVA and the least-squares means regression analysis was utilized to determine 

effects of genoptype and treatment on sodium and chloride uptake by grafted plants. According 

to the least squares means test, the H2O treatment did not have a significant effect on sodium 

content among the six genotypes tested (p = 0.8888). Conversely, the NaCl treatment showed a 

significant effect on the level of sodium uptake (p < 0.0001) with the extent of the uptake being 

modulated by genotype. For this reason, visual presentation of sodium data is organized 

according to genotype (Figure 10). When analyzing the treatment effect within each genotype, 

all genotypes with Glenn (G/G, O/G, Glenn) as the rootstock source showed a significant 

increase in sodium content under NaCl treatment (p < 0.0001). Additionally, the genotype 

combination O/O also showed a less significant increase in sodium uptake due to NaCl treatment 

(p = 0.0005). The grafting combinations Osage and G/O did not show a significant change in 

sodium content due to NaCl treatment. In fact, ungrafted Osage and grafted plants with salt 

tolerant Osage rootstock showed foliar sodium levels 30-50% of NaCl-treated plants with 

sensitive rootstock (Figure 13).These results suggest that the cultivar Osage, which is classified 

as salt tolerant, contributes to sodium exclusion under NaCl treatments to a greater extent than 

the cultivar Glenn, which is classified as salt sensitive. 
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Figure 11. Plants with Glenn rootstock show significantly higher uptake of chloride into foliar 

tissues following 14 days of 100 mM NaCl treatment. Analysis by oneway-ANOVA; asterisks 

indicate significant difference between H2O and NaCl treatment within a genotype; 7 > n < 12 

  

According to the least-squares model and lognormal transformed chloride data, both the 

NaCl (p = 0.0002) and H2O (p < 0.0001) treatments had a significant effect on chloride uptake in 

the grafted plants. When analyzing the treatment effect by genotype, all genotype combinations 

showed a significant increase in chloride content under NaCl treatment compared to H2O 

treatment (p < 0.0001; Figure 14).  However, increases in chloride levels due to NaCl treatment 

were much larger in magnitude in plants possessing Glenn rootstock (G/G, O/G/ Glenn) 

compared to plants possessing Osage rootstock (Osage, G/O, O/O) with chloride levels of Glenn 

rootstock plants around 30% of the chloride levels observed in Osage rootstock plants (Figure 

11). As observed with sodium uptake, salt sensitive Glenn soybean appears to be superior at 

chloride exclusion under NaCl treatment.  

Because the same general trend was observed between sodium and chloride uptake 

among the different genotypes, a direct comparison was made to determine if the uptake of one 

ion may be correlated to the other. However, no significant correlation was detected between 

* 

* * * 



37 
 

sodium and chloride uptake when compared by genotype or by treatment. The high degree of 

variance observed across the datasets as well as a few extreme outliers likely contribute to this 

lack of correlation. Repeated experiments with additional biological replicates may reveal a 

closer relationship between the uptake of these two ions under salt-treated conditions.  

Previous reports using grafting in soybean have provided conflicting results as to which 

tissues are responsible for ion exclusion in this plant. Abd-Alla et al. (1998) contributed salt 

tolerance to improved photosynthetic activity of the foliar tissues from salt-tolerant soybean 

plants. Conversely, Grattan and Maas reported the control of foliar chloride content by soybean 

roots and attribute salt tolerance to the root tissues (1985). Taken together, our leaf scorch scores 

and sodium and chloride data of grafted soybeans demonstrate the significant impact that 

rootstock has on physiological salt tolerance and ion uptake under salt stress. Interestingly, the 

final chloride levels of some salt-tolerant scion/salt-sensitive rootstock grafting combinations 

(i.e. O/C, O/G, and M/G) were similar to chloride levels of a few sensitive scion/tolerant 

rootstock grafting combinations (i.e. C/M) suggesting that the scion genotype may also play a 

role in systemic uptake of ions, although the significance of that role has not been clearly 

demonstrated as a salt-sensitive scion did not always result in increased ion uptake relative to 

salt-tolerant scions. 

As indicated by ion analysis results, even salt-tolerant soybean plants begin to 

accumulate sodium and chloride under salt stress. However, the level of foliar ions is not enough 

to cause scorch in these plants. This is an especially important finding for farmers who may not 

see visible symptoms in their fields yet suffer yield loss due to the stress imposed by saline soil. 

Routine soil testing can inform farmers if their fields are salt-affected prior to planting, which is 

essential in choosing the best variety to plant. The results of these experiments could be validated 
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and given further relevance by expanding the number of cultivars used. It is likely that several 

salt tolerance mechanisms are at work among the salt tolerant lines. By working with near 

isogenic lines possessing known differences in genetic salt tolerance (i.e. salt-tolerance 

associated quantitative trait loci) it may be possible to identify which regions of the soybean 

genome direct each of these mechanisms within domesticated soybean plants. Furthermore, this 

type of research may also shed light on if and how regions of the genome interact to make a 

soybean plant more or less susceptible to growth in saline conditions.  

 

Phytohormone Signaling of Soybean under Salt Stress 

Phytohormones are thought to be important components of both biotic and abiotic stress 

signaling in plants. Recent evidence suggests that complex crosstalk, mediated by transcription 

factors and MAP kinases, may occur between the jasmonic acid (JA), salicylic acid (SA), 

abscisic acid (ABA) and ethylene (ET) mediated pathways (Fujita et al, 2006). The role of these 

phytohormones in the soybean response to salt stress was explored by measuring their content in 

H2O-treated and NaCl-treated soybeans following 144 hours (6 days) of treatment. At 144 hours, 

both salt-sensitive Clark and salt-tolerant Manokin plants showed a significant increase in ABA 

content under the NaCl treatment (Figure 12), indicating that ABA is salt-induced but this 

induction does not differ significantly between the two soybean lines tested. Induction of ABA 

by salt or drought stress has been documented in many plant species and ABA is thought to be 

the primary component of abiotic stress signaling in plants, although the specific downstream 

effects of ABA induction differ between species (Zhu, 2002; Hoad, 1975; Finkelstein and Rock, 

2002; Zeevaart and Creelman, 1988). Arabidopsis mutants with reduced ABA content 

germinated better under salt stress than wild-type plants (Koornneef et al., 1984). In Brassica 
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napus, higher salt salt tolerance was associated with lower ABA concentration under salt stress 

(He and Cramer, 1996).  

 ABA is induced under drought conditions in Arabidopsis thaliana and has been shown to 

inhibit lateral root growth in this plant species under stress conditions (De Smet et al., 2006). 

Conversely, exogenous applications of ABA stimulated lateral root formation in rice (Oryza 

sativa) (Chen et al., 2006). These discordant results between different crops and the many 

secondary messengers of ABA signaling that have been identified suggest the plasticity of this 

signaling pathway and the broad range of environmental responses in which this phytohormone 

may play a role (Cutler et al., 2010).  
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Figure 12. The average abscisic acid content of both soybean cultivars Clark and Manokin was 

significantly increased following 6 days of 100 mM NaCl treatment. Tissue was analyzed by 

LC/MS-MS. Data was analyzed by one-way ANOVA; error bars indicate SEM; N= 5; p < 0.05. 

Bars that share a letter are not significantly different from one another. 

 

In addition to JA, content of the JA precursor oxophytodienoic acid (12-OPDA) and of 

the downstream product jasmonyl isoleucine (JA-Ile) were also measured. Neither 12-OPDA 

content (Figure 13A) nor JA content (Figure 13B) were significantly affected by NaCl treatment 

in either of the lines tested. JA-Ile content was not significantly different between treatments for 
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Clark or Manokin (Figure 13C). Salicylic acid content of Clark plants was significantly reduced 

under NaCl treatment while SA content was unchanged in Manokin plants (Figure 14).  

With very few significant differences between Clark and Manokin plants under NaCl 

stress, no clear trends emerged to allow association of phytohormone content and salt tolerance. 

Field and lab studies have demonstrated a close correlation between ABA content and stomatal 

aperture in a number of plants (Khalil and Grace, 1993; Tardieu et al, 1992, Wartinger et al, 

1990; Zhang and Davies, 1990). The induction of ABA in both lines under salt stress is therefore 

not surprising given the essential role this hormone plays in regulating stomatal conductance and 

thus water loss from the plant. The JA-Ile content of the two lines did differ significantly from 

each other under the H2O treatment suggesting that these lines may maintain different basal 

levels of this phytohormone which could impact the speed with which soybean plants from each 

line are able to respond to stress. The reduction of SA in Clark plants under NaCl stress may 

suggest that the induction of ABA observed from the same plants has a negative effect on the 

production of SA. Evaluation of phytohormone content over an extended timeline using 

additional soybean varieties might reveal a clearer pattern of induction and suppression of these 

hormones in soybeans under salt stress.  
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Figure 13. Foliar levels of OPDA, JA, and JA-Ile were not significantly affected following 6 

days of 100 mM NaCl treatment. A) The average OPDA content of both Clark and Manokin 

plants was unaffected by NaCl treatment. B) The average JA content of both Clark and 

Manokin plants was unaffected by NaCl treatment. C) Ja-Ile content of Clark and Manokin 

plants was not significantly affected by NaCl treatment. Analyzed by oneway ANOVA; error 

bars indicate SEM; N= 5; p = 0.0; bars that share a letter are not significantly different from 

one another. 
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Figure 14. Salicylic acid content is significantly reduced in salt sensitive cv. Clark following 6 

days of 100 mM NaCl treatment. SA content is unaffected in salt tolerant cv. Manokin following 

the same NaCl treatment.  

 

Oxidative Stress Signaling of Soybean under Salt Stress 

In addition to signaling mediated by phytohormones, signals associated with reactive 

oxygen species are also thought to play an important role in abiotic stress response in plants. 

Depending on their cellular concentrations, reactive oxygen species may serve as a signaling 

molecule or as a catalyst of lipid peroxidation, thus measurements of lipid peroxidation have 

proven to be useful indicators of oxidative stress in some plants (Tanou et al, 2009; Sharma and 

Dubey, 2005). Malondialdehyde (MDA), a by-product of lipid peroxidation, has been used to 

measure lipid peroxidation levels of plants under salt stress and the change in MDA content 

under salt stress has been shown to be a helpful marker for salt tolerance in some plants 

(Vaidyanathan et al 2003, Sharma et al., 2012). We assessed MDA content of four soybean lines 

following 48 hours and 144 hours of NaCl or H2O treatment. After 48 hours of treatment, only 

salt-tolerant Osage plants showed a significantly higher MDA content in NaCl-treated plants 

relative to H2O-treated plants (Figure 15A). NaCl-treated Manokin plants showed a statistically 
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insignificant increase relative to H2O-treated plants at this time point. After 144 hours of NaCl 

treatment, both salt-tolerant varieties showed significantly higher MDA under NaCl treatment 

(Figure 15B). Salt-sensitive varieties showed no significant differences due to treatment at either 

time point. 

Interestingly, these data show that the two salt-tolerant varieties suffered greater lipid 

peroxidation under salt stress than the two salt-sensitive varieties tested. These results are in 

contrast to previous reports in wheat and soybean that suggest a correlation between salt 

sensitivity and lipid peroxidation under salt stress (Sairam et al., 2005; Khan et al, 2009). For 

example, the salt-tolerant soybean BB52 showed decreasing levels of MDA with increasing 

levels of NaCl whereas salt-sensitive Lee68 and N23232 showed increases in MDA levels under 

increasing salt concentrations (Phang et al, 2008). Salt-sensitive rice seedlings accumulated 

higher levels of MDA under salt stress compared to salt-tolerant seedlings (Mishra et al., 2013). 

ROS are known to be very damaging to chloroplasts, however, a reduction in photosynthesis was 

not observed in salt-tolerant Manokin plants in previous experiments where chlorophyll content 

was assessed (Figure 2). These experiments should be repeated with additional soybean lines at 

additional time points, however results suggest that MDA content under salt stress may not be a 

dependable marker of salt tolerance across all soybean varieties. Lipid peroxidation indicates an 

overwhelming of the ROS scavenging capacity of a plant. Thus, monitoring of ROS scavenging 

enzyme levels in these same soybean varieties may reveal variable induction of the enzymes 

primarily responsible for redox balance in these plants. Furthermore, knock-outs and 

overexpression of the genes encoding these enzymes in soybean could reveal necessity and 

sufficiency of any one of these enzymes to improve salinity tolerance.  
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Figure 15. Salt-tolerant plants showed increases in MDA content following NaCl treatment. A) 

Following 48 hours of treatment with 100 mM NaCl, MDA content of salt-tolerant Osage plants 

was significantly increased. B) Following 144 hours of treatment with 100 mM NaCl, MDA 

content of both salt-tolerant varieties was significantly increased. * p < 0.05 ** p < 0.1 
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Screening Salt Tolerance in Soybean by Infrared Thermography 

As previously mentioned, screening for salt tolerance in soybean is typically 

accomplished through the analysis of leaf chloride content and/or the assignment of leaf scorch 

scores. Analysis of foliar chloride is a destructive method that requires removal of the tissues to 

be tested. Both chloride content and leaf scorch methods require that plants be treated with salt 

for an extended period to allow adequate uptake of salts for accurate detection of differences 

between lines. Infrared thermography is a commonly used method of assessing crop and plant 

health and relies on the relationship between plant transpiration and leaf temperature (Sirault et 

al., 2008. By acquiring infrared thermographs of salt-treated soybeans that differ in their salt 

tolerance, we hoped to establish a relationship between the level of salt tolerance and leaf 

temperature under salt stress. This method would allow for fast, affordable, and non-destructive 

salt tolerance screening of soybean germplasm. IR thermography was previously used to 

establish a correlation stomatal closure and high plant temperature (Jones, 1999). This screening 

method has been used to identify stomatal control mutants in Arabidopsis and barley and has 

been reported as a screening method for salt tolerance in wheat (Sirault et al., 2009). 

Following each day of treatment, infrared thermographs were captured of seven plants of 

each cultivar from each treatment. The average leaf surface temperature of each cultivar from 

each treatment was calculated and the average difference between water- and NaCl-treated plants 

was used to determine the effect of salt treatment on leaf temperature. Throughout the treatment 

period, NaCl-treated Manokin plants showed a temperature difference of 0.5 °C or less compared 

to water-treated plants, indicating that salt tolerant Manokin plants responded to NaCl treatment 

with a small increase in temperature (Figure 16). The temperature difference for Clark plants 

ranged from about 0.2 to 1.2°C between treatments, and was significantly higher than the 
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temperature difference for Manokin plants on day 3 of the treatment (Figure 16). This data also 

shows that the salt-sensitive line suffered from larger leaf temperature increases earlier in the 

treatment period. Notably, the average temperature of water-treated plants was significantly 

different between the two cultivars with higher basal temperatures in the salt-tolerant Manokin 

plants. The insignificant and delayed increase in leaf temperature seen in salt-tolerant Manokin 

plants indicates that these plants are able to maintain relatively normal transpiration levels under 

stress. Comparatively, salt-sensitive Clark plants experienced larger increases in temperature 

under salt stress, which could reflect a decrease in transpiration rate although transpiration rate 

was not measured directly. 
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Figure 16. Infrared thermographs of soybean plants over the course of 6 days indicate that 

NaCl-treated plants are generally warmer than H2O-treated plants of the same variety. A) 

IR thermographs of Clark and Manokin plants following the first three days of treatment. 

On day 3, NaCl-treated Clark plants appear much warmer than H2O-treated Clark plants. 

B) IR thermographs of Clark and Manokin plants following days 4-6 of treatment. Both 

lines show an increase in temperature for NaCl-treated plants. Circles within each image 

represent the area of pixels for which temperature data was acquired. 

B 
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Figure 17. The temperature difference between NaCl- and H2O-treated plants is significantly 

different between salt-sensitive Clark and salt-tolerant Manokin following 3 days of 100 mM 

NaCl treatment. Over the course of six days of treatment, Clark plants show larger differences in 

temperature between treatments for the first five days. This increase in temperature due to NaCl 

treatment is only significantly different from Manokin on day 3 of the treatment according to 

student’s t-test; n = 7; error bars indicate + SEM; p = 0.05. 

 

Stomatal conductance is one of the major sources of resistance to transpiration and 

measurements of stomatal conductance can serve as an indicator of transpiration potential. To 

determine whether the observed temperature differences could be due to a difference in stomatal 

conductance, and hence transpiration, we measured stomatal conductance of the same plants 

used in the IR experiment.  For fourteen days, stomatal conductance values were recorded using 

a leaf porometer following NaCl or H2O treatment each day. The ratio of the average stomatal 

conductance of NaCl-treated to H2O-treated plants was used as a metric to assess the effect of 

NaCl treatment on transpiration rate in Clark and Manokin soybeans. The conductance ratios for 

both soybean lines showed a general downward trend throughout the treatment period (Figure 

17). The average conductance ratio of Clark plants was consistently lower than that of Manokin 
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plants, which could help explain the observed temperature differences of these plants. Epidermal 

leaf peels were made from Clark, Glenn, Manokin and Osage plants to determine whether 

differences in stomatal density could explain observed differences in stomatal conductance. 

However, no clear differences in stomatal density between salt sensitive and salt tolerant lines 

were detected (Appendix, Figure 21).  

 

 

Figure 18. The ratio of stomatal conductance between NaCl- and H2O-treated Clark plants was 

consistently lower than in Manokin plants over the course of the treatment. A general decline in 

stomatal conductance ratios of both soybean lines was observed throughout the 14 days of 

treatment.  

 

Because significant temperature differences were observed on only one day of treatment 

throughout the IR thermography experiment, the usefulness of IR thermography as a salt 

tolerance screening method cannot yet be concluded. To further assess the suitability of IR 

thermography for use by soybean breeders as a salt tolerance screening method, this experiment 

would need to be repeated with more replications and additional soybean lines. Testing a number 
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of salt concentrations would also be useful in optimizing this screening method.  Practical 

considerations and plant-to-plant variation in leaf temperature may make this method more 

useful for comparing genetic materials in a field setting where temperature of whole canopies 

can be compared. 

 

Assessment of GmCHX1 Genotype in Soybean 

GmCHX1 is a locus associated with salt tolerance in soybean located within a previously 

reported salt tolerance quantitative trait loci. Guan et al. assessed allelic variation of this locus 

within Chinese soybean germplasm and reported an allele containing a 3.78 kb retrotransposon 

insertion which disrupts the production of functional transcripts from this locus (Guan et al., 

2014b). The transponson-containing allele was strongly associated with salt sensitivity in the 

lines they tested. To assess whether this same transposon was present at the GmCHX1 locus in 

our salt sensitive soybean lines, we designed two PCR primer sets to amplify the genomic 

sequence within the GmCHX1 locus. The first set of primers was designed to amplify within 

exon 3 of the locus (Figure 19, orange arrows) and served as a positive control which should 

produce a PCR product of 322 bp from both alleles at the GmCHX1 locus. The second set of 

primers was designed to amplify within the transposon and should only produce a product from 

DNA samples containing this transposon (Figure 19, red arrows). DNA from six soybean lines 

(three salt-sensitive and three salt-tolerant) was tested with both primer sets to determine the 

genotype of each line at the GmCHX1 locus. 
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Figure 19. PCR primers were designed to amplify the genomic sequence within exon 3 of the 

GmCHX1 locus. The orange primer set should produce a product of 322 bp while the red primer 

set should produce a product of 565 bp, allowing side by side analysis of the presence of both 

fragments. 
 

 

All of the samples produced a 322 bp band corresponding to the 5’ region of exon 3 

(Figure 20). The salt-sensitive lines (Clark, Glenn, Williams 82) also produced a 565 bp band 

corresponding to the retrotransposon insert sequence (Figure 20 B, C, D, respectively). This 

product was absent from the three salt-tolerant samples tested (Osage, Lee68, Manokin), 

indicating absence of the retrotransposon (Figure 20, E, F, G, respectively). These results suggest 

that the GmCHX1 locus may be a helpful DNA marker for predicting phenotype under salt stress. 

At least ten individuals from each cultivar were tested for both PCR products. Surprisingly, four 

out of the total 18 individuals from cv. Glenn tested negative for the insert sequence (data not 

shown) suggesting that there may be ongoing segregation of this locus in this population of 

Glenn plants. As salinization of soils and degradation of land quality continues, use of molecular 

breeding tools will prove essential in meeting grower demands for high-yielding varieties with 

tolerance to a variety of stresses.  Incorporation of markers specific to the salt-tolerant GmCHX1 

allele into routine molecular marker analysis of soybean breeding programs could greatly 

improve the efficiency with which salt tolerant soybean lines are selected and bred and could 

eliminate the need for costly phenotypic screening. 
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Figure 20. All salt sensitive soybean lines tested possess DNA sequences of a retrotransposon 

insert within the GmCHX1 coding sequence. A) 1kb molecular marker. The 565 bp PCR product 

derived from genomic DNA from salt sensitive cv. Clark (lane B), cv. Glenn (lane C), and cv. 

Williams 82 (lane D) indicates that the retrotransposon insert is present. Absence of the 565 bp 

PCR product from the salt tolerant cultivars Osage (lane E), Lee68 (lane F), and Manokin (lane 

G) indicates that the transposon insertion is absent in the plant tested. Amplification of the 322 

bp fragment in each sample served as a positive control to demonstrate quality and amplication 

of DNA template.  
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Conclusion 

The physiological and molecular mechanisms responsible for salinity tolerance in plants 

has been well studied over the past three to four decades and several informative reviews have 

been published that summarize the key mechanisms employed by plants under salt stress and, 

when known, the genetic components that control and modulate these mechanisms (Hasegawa et 

al., 2000; Zhu et al., 2001; Munns and Tester, 2008; Blumwald, 2000; Roy et al., 2014). A great 

deal is known about the general response of plants to salt stress, however, the relative importance 

of each of these mechanisms differs from one crop species to the next. Our results indicate that 

ion exclusion is the primary determinant of salt tolerance in soybean and that this exclusion 

ability is largely dependent upon the root tissues. Furthermore, we confirmed that a functional 

GmCHX1 gene corresponds to salt tolerance in several U.S. soybean varieties and, in agreement 

with previous reports, is likely the genetic source of ion exclusion in these lines (Guan et al, 

2014a, 2014b, Qi et al, 2014). Through a survey of physiological responses to salt stress, we 

determined that salt-tolerant soybeans are able to perform very similarly under both water and 

salt treatments. Salt-sensitive soybeans, on the other hand, suffered in chlorophyll levels, fresh 

weights and root dry weights, and stomatal conductance under salt stress.  Additionally, we 

established a salt-induced increase in abscisic acid content among all soybean lines tested, which 

suggests that phytohormone signaling may play a prominent role in the salt stress response of 

soybean. We propose that ion exclusion is the primary mechanism determining salt sensitivity of 

soybean but that additional mechanisms are responsible for modulating the degree of sensitivity 

or tolerance observed among different soybean lines. 
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Figure 21. Stomatal density of four soybean cultivars. Analyzed by ANOVA, +SEM; n=3; p < 

0.05  
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