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Abstract 

Previous research has demonstrated the extensive impacts of various environmental and 

processing conditions on rice milling and processing characteristics. Nevertheless, little is known 

about the influences of these conditions on cooking and sensory qualities of rice. The present 

study aimed to determine the impact of cultivating location, harvest moisture content (HMC), 

and thickness fractionation on the physicochemical properties, and cooking and sensory 

characteristics of long-grain rice.  Four long-grain rice cultivars (purelines: Cheniere and V3501, 

and hybrids: XP760 and XL753) were cultivated at Harrisburg, AR and Alvin, TX, and 

harvested at three HMC. Rough rice lots were conditioned and a portion was fractionated 

according to thickness into thin (<1.9 mm) and thick (≥1.9 mm) fractions. Unfractioned rice and 

thick kernels were used for further comparison. Overall, rice samples cultivated in TX showed 

higher amount of broken kernels, chalkiness as well as lower amylose contents compared to 

those cultivated in AR regardless of the cultivar, possibly due to the greater nighttime air 

temperatures reported in Alvin, TX.  Additionally, textural characteristics and flavor attributes 

were affected by the cultivating location. Increases in broken kernels, lipid content, and protein 

content were observed with increasing of HMC. However, cooking qualities were mostly 

unaffected by HMC. Finally, the addition of thickness fractionation in the process stream showed 

to improve rice physical quality. However, fractioned rice showed longer cooking duration and a 

greater width kernel expansion than did unfractioned rice. This study demonstrated that 

cultivating location and HMC affect rice final attributes and that thickness fractionation may 

have impacts on cooking and textural characteristics of long-grain rice. 
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Chapter 1. 

General Introduction 
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Rice (Oryza sativa L.) is the second most economically important cereal in the world 

after wheat. This cereal is the predominant staple food for 34 countries in Asia, Latin America, 

and Africa, and it is the main source of calorie for about two-thirds of the world population 

(FAO, 2014). Even though it has a relatively low protein content (7-9 % weight on average) 

compared to other cereals, rice is the biggest source of protein in the rice-consuming countries 

contributing up to 60 % of the total protein in the Asian diet (Shih, 2013). Moreover, rice 

provides a great source of calories due to its high content of carbohydrates in form of starch and 

offers a number of benefits, such as higher yields per cultivated hectare, to the agriculture over 

other cereals (Pathak, 1979). 

In recent years, worldwide concerns about the assurance of food security policies and the 

initiative to promote the generation of employment and incomes in the rural sector have raised 

serious questions about the long-term sustainability of modern agricultural production systems in 

the rice sector (FAO, 2004). Therefore, the development of new rice varieties with improved 

nutritional characteristics and the initiative to plant more hybrid cultivars has emerged as a viable 

option as they can offer higher yields, increase disease resistance, provide better grain quality, 

and increase production (Deliberto and Salassi, 2011). Rice varieties are usually characterized 

according to their grain features and physicochemical traits that impact the eating quality of the 

cooked rice. However, in the United States rice is classified for marketing purposes only 

according to the length-width ratio of the grain into three main categories: short-, medium-, and 

long-grain. Depending on this classification rice, cooking behavior and overall quality of the 

cooked rice may vary. Short- and medium-grain varieties typically cook moist, chewy, and 

clingy and are preferred for such products as dry breakfast cereals and baby foods, and for 

brewing uses. On the other hand, long-grain rice varieties cook dry, fluffy, and remain separate 
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when cooked and are preferred for use in such prepared products as parboiled rice, quick-

cooking rice, canned rice, canned soups, dry soup mixes, frozen dishes, and other convenience-

type rice-containing foods (Lee, 1987).  

Some other classifications of rice are made based on rice’s milling, processing, and 

physicochemical characteristics. Currently, due to the increment of rice consumption in the 

world, cooking quality has become a key factor for rice producers and consumers. Cooking 

quality of rice is mostly influenced by its predominant constituent starch, which accounts for 

about 90% of the dry weight of milled rice. Therefore, it is not surprising that the estimation of 

starch two main fractions, amylose and amylopectin, constitutes the major quality indicator. 

Amylopectin is the highly branched component of starch and it has been reported that cooked 

rice hardness is positively correlated with the amount of long-B chains in the exterior region of 

amylopectin (Radhika-Reddy et al., 1993). Additionally, since insoluble amylose reflects the 

amount of long-B chains in the starch structure, its estimation has been set as a sensitive 

indicator of rice quality. To a lesser extent, components such as protein and lipids also influence 

the cooking properties of rice. Martin and Fitzgerald (2002) reported that protein affected 

textural characteristics of cooked rice by competing with starch for water and the formation of 

disulfide bonds, and lipid restrains the moisture uptake of rice during cooking through amylose-

lipid complexes, impeding the leaching of amylose and swelling of starch.  

Rice quality traits are influenced by numerous elements that include pre-harvest and post-

harvest drying and storage treatments (Lanning and Siebenmorgen, 2011). Pre-harvest factors 

depend almost exclusively on rice farmer and allow expressing the potential of the rice grain 

delivered to the mill. However, the influence of other environmental factors that can be hardly 

controlled during the pre-harvest stage, have also been demonstrated. The effect of air 
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temperature during the grain development stages on cooking and milling quality is perhaps the 

most studied issue on rice. Higher night air temperature during grain development has a 

significant impact on starch accumulation, more specifically a decrease in total starch amylose 

content which, in turn, will have an influence on cooked rice texture. Cultivar selection is 

another factor of great importance on the cooking and processing behavior of rice. Genotypic 

interactions on amylose content and cooking quality of different cultivars have been previously 

demonstrated. Bao et al. (2004) reported that amylose content, breakdown viscosity, setback 

viscosity, and gel hardness were primarily affected by genotype of rice cultivar. Furthermore, 

other pre-harvest factors that influence rice quality include time of planting, planting location, 

irrigation and nitrogen rates, panicle characteristics and kernel maturation, and harvest moisture 

content (Siebenmorgen, 2013). Siebenmorgen et al. (2013) found that the growing location and 

HMC affect kernel thickness distributions, green kernel content, fissured kernel content, and 

head rice yield (HRY). Environmental conditions across different locations, such as different 

temperatures and soil compositions may explain these results.  

Unlike other cereal crops, which are milled into flours, rice is mostly cooked and 

consumed as an intact grain form (Crowhurst and Creed, 2001). Del Mundo (1979) reported that 

characteristics such as grain size, color, brittleness, and wholeness of the grain are the most 

relevant aspects in consumers buying criteria. Likewise, post-harvest processing conditions such 

as degree of milling can affect rice appearance-related characteristics, thereby influencing 

consumers’ willingness to purchase (Rodriguez-Arzuaga et al., 2015). The rice industry is 

constantly seeking for new methods that help to improve the quality of rice after harvesting. 

Among these innovative approaches, many studies have shown that thickness grading on rice 

may signify an important step in the right direction of enhancing rice overall quality.  Building 
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on previous research, this thesis aims to determine whether thickness fractionation, harvest 

moisture content and cultivating location can affect physical properties, chemical composition, 

and sensory and cooking qualities of rice. 
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1.1 Rice History 

Rice (Oryza sativa, L.) is the most widely consumed cereal in the world and its 

importance is growing every day due to industrialization and increasing world population. The 

origins of rice domestication have long been debated on the literature. Currently the varieties 

grown in most countries belong to the Oryza sativa species, commonly known as Asian rice, 

which in turn contains two major subspecies, indica and japonica. The vast majority of the 

varieties grown belong to these species, which are characterized by their plasticity and their taste 

quality (Nayar, 2014). 

Genetic evidence shows that all forms of Asian rice, both indica and japonica, spring 

from a single domestication that occurred 8,200–13,500 years ago in the Yangtze Valley of 

China (Molina et al., 2011) and then spread gradually both northwards and southwards 

(Bellwood and Glover, 2004). This practice spread to the Huai River by 6,000-5,000 years BP, 

and over the next millennium, its cultivation also spread to both south and west china (Tang and 

Xuan, 2010). Moreover, further evidence showed that the oldest evidence of rice cultivation in 

India date to 2500 BC, in Thailand to 3500 BCE, in the Philippines to 1400 BCE, in Pakistan to 

2500 BCE, and in Japan between 1000 to 3000 BCE (Chang, 2000). 

It is believed that rice came into the America continent through the “Grand Exchange”, a 

widespread transfer of animals, plants technology and ideas between the American and Afro-

Eurasian hemispheres. The “Black Rice Theory”, proposed by Carney (2001), assumes that rice 

and the technology for growing it were first brought to the Americas by West African slaves. In 

the 1670’s, South Carolina became the first state in the United States that was able to grow rice 

after several fail attempts in other regions such as Florida and Virginia. However, these first 

crops were only grown for personal use and not for marketing. It was not until the early 18th 
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century that rice cultivation, production and merchandizing became established as a commercial 

activity in the U.S. (Coclanis, 2011). In the 19th century, after the end of the American civil war, 

several changes occurred in rice production in the U.S. A reduction of rice production on the 

Atlantic coast and an increment of cultivation in the southern states such as Louisiana, Texas, 

and Arkansas began to take place. Rice cultivation in the south became increasingly mechanized 

with the implementation of irrigation and culture technologies that were commonly used on 

wheat fields and it is estimated that currently six states account for over 99% of all rice grown in 

the United States, with the state of Arkansas on the top of this list (Nayar, 2014).  

 

  1.2 Nutritional importance of rice 

Rice is the predominant staple food for 17 countries in Asia and the Pacific, 9 countries 

in North and South America, and 8 countries in Africa. This cereal provides 20% of dietary 

energy supply in the world, while wheat supplies 19% and maize 5% (FAO, 2004). Rice is 

comprised of 77 to 89% of carbohydrate (milled rice at 14% moisture) (Juliano, 1985), which is 

the major source of energy of the human body. Like other cereals, the carbohydrate in rice is 

mainly in the form of starch – a complex carbohydrate that exists as either amylose or 

amylopectin and comprises units of glucose (a simple sugar) linked together in very large 

numbers. Additionally, rice is a nutritionally important cereal because it has the highest 

digestibility, biological value, and protein efficiency ratio (PER) among all the cereals (Kaul, 

1973). Even though this cereal contains a relative small proportion of protein as compared to 

other cereals, rice contains more lysine than do wheat, corn and sorghum. Likewise, rice usually 

provides less dietary fiber than other cereals and thus is more digestible.  
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  1.3. Rice production and consumption  

Rice is cultivated in more than 100 countries around the world and is a primary food for 

about a half of the world’s population. The global production of rice reached more than 715 

million tons of paddy rice (480 million tons of milled rice) in 2015 (USDA, 2016). Asian 

countries account for the 90% of the world’s total rice production where China and India alone 

account for around 50% of the rice grown (USDA, 2016). Other major non-Asian rice producing 

countries include Brazil, the United States, Egypt, Madagascar, and Nigeria, which together 

account for 5% of the rice produced globally (USDA, 2016). In the U.S., specifically, rice 

production has been mainly concentrated in the states of Arkansas, California, Louisiana, 

Mississippi, Missouri, and Texas, using different cultural production practices (Snyder and 

Slaton, 2001). 

Current global milled rice consumption is at 480 million metric tons (MMT) yearly 

(USDA, 2016), with over 85% (408 MMT) for human consumption (Muthayya et al., 2014). 

Since China and India which are the two major rice producers also account for ~50% of the 

world’s rice consumption, the rice global trade market reports only 7% over the total production 

(Muthayya et al., 2014). This export market is, in fact, concentrated in mainly 12 countries, 

namely, Thailand, Vietnam, Pakistan, the U.S., India, Italy, Uruguay, China, the United Arab 

Emirates, Benin, Argentina, and Brazil, which explains for more than 90% of the global rice 

traded (FAO, 2014). By world standards, per capita rice consumption in the U.S. is not large, 

although it has increased during the past several decades, reaching a level of 30.0 lb per capita 

annually today (FAO, 2014). 
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  1.4. Rice grain morphology 

Rice grain freshly harvested, commonly known as “paddy” or “rough rice”, consists of an 

outer protective cover, the hull and caryopsis (Figure 1). Integral or brown rice consists of the 

outer layers of pericarp, seed coat and nucellus, the germ or embryo, and the endosperm (Juliano 

and Betchel, 1985). The composition and properties of the rice grain and its fractions depend on 

the genotype, the environment, and the type of processing to which rice is subjected. 

 

 

Figure 1. Cross-section of a rice kernel (Juliano and Betchel, 1985) 

 

  1.5. Classification of rice grain 

Since rice paddy has a husked caryopsis, most rough rice is dry-milled into white 

polished rice (also named “milled” rice) for further human consumption. USDA (2009) defines 

milled rice as “Intact or broken kernels of rice (Oryza sativa L.) from which the hulls and at 

least the outer bran layers have been removed and which contain no more than 10.0 percent of 
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seeds, paddy kernels, or foreign material, either singly or combined”. In the U.S., milled rice is 

marketed according to size, form, and condition. These properties are directly related to milling 

performance, cooking quality, and organoleptic properties of the cooked rice (USDA, 2009). 

According to the length-width ratio of the kernel rice is generally classified into short, 

medium, and long-grain (Table 1) (USDA, 2009). Furthermore, other classifications are based on 

the physicochemical characteristics of rice such as the amylose content and gelatinization 

temperature. According to the amylose content rice varieties can be classified into waxy (0-2%), 

very low (2- 9%), low (10-20%), intermediate (20-25%), and high (25 or greater) (Juliano, 

1979). Waxy or glutinous rice which lacks in amylose, has a glossy appearance, slightly expands 

or absorbs water during cooking and remains wet and sticky after cooking. On the other hand, 

rice with high amylose content cooks dry and fluffy, whereas rice with intermediate or low 

amylose content cooks moist, softer, and stickier (Luh and Mickus, 1991).  

 

Table 1. Grain type classification according to the dimensions of the rice kernel for each rice      

form.  

 

 Length/width ratio (mm) 

Rice form Long-grain Medium-grain Short-grain 

Paddy or rough rice ≥ 3.4 to 1 ≥ 2.3 to 1 ≥ 2.2 to 1 

Brown rice ≥ 3.1 to 1 ≥ 2.1 to 1 ≥ 2.0 to 1 

Milled rice ≥ 3.0 to 1 ≥ 2.0 to 1 ≥ 1.9 to 1 

Source: United States Standards for Rice (USDA, 2009) 

 

1.6. Pure-line and hybrid rice varieties 

Prior success with the genetic improvements of other cereals such as maize, sorghum and 

cotton based on the exploitation of the heterosis phenomenon, encouraged researchers to explore 

these procedures on rice. The term “heterosis” in rice usually refers to the phenomenon whereby 
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a population (hybrid) obtained by crossing two genetically different parents-mind shows 

superiority to them in growth vigor, vitality, reproductive ability, stress resistance, adaptability , 

yield, quality of grain and other features (Deliberto and Salassi, 2011). The development of 

hybrid crops is considered as an important achievement in crop breeding, since compared to 

other cultivars hybrids usually show superiority in terms of yield (15% to 30% over other 

cultivars) and disease resistance (Virmani, 1994). 

Pureline and hybrid cultivars have also shown differences in their physical and milling 

characteristics. The degree of milling (DOM), defined as the extent of bran removal from brown 

rice, is usually an established quality parameter on rice (Puri et al., 2014;  Siebenmorgen and 

Lanning, 2014) since it influences rice characteristics such as color and cooking behavior. Total 

lipid content (TLC) and surface lipid content (SLC) are commonly used methods employed to 

estimate the DOM on rice since bran is approximately 20% lipids, hence the surface lipid content 

of milled rice is directly related to the amount of bran remaining on milled kernels 

(Siebenmorgen, 2013). Siebenmorgen et al. (2006) demonstrated that hybrid (XL7 and XL8) and 

pure-line cultivars (Cocodrie, Cypress, and Lemont) differed in their total lipid content and in 

their surface lipid content; in particular, the SLC levels of hybrids were lower than those of 

pureline cultivars, suggesting that different cultivars have unique physical or chemical properties 

that affect their milling characteristics. Moreover, Lanning and Siebenmorgen (2011) evaluated 

the differences on milling characteristics between two long-grain pure-line cultivars (Wells and 

Francis) and four long-grain hybrid cultivars (XL723, XL729, CL XL730, and CL). Results 

showed that hybrids generally reached the target surface lipid content in a shorter duration than 

did purelines, which is evidenced in shorter milling durations to achieve the same degree of 

milling (Siebenmorgen and Grigg, 2013a). 
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2. Rice quality 

The concept of rice quality varies from region to region depending on local preferences 

and requirements set by the international market. The quality of the rice demanded by a 

particular community may be completely unacceptable. Similarly, within each sector that is part 

of the rice industry, the term “quality” may have different connotations. For instance, the farmer 

or producer correlates the term quality with good germination and vigor in the field that 

guarantees a good yield. On the other hand, from a consumer standpoint quality is determined by 

rice external appearance when purchased, and/or flavor and texture of the rice after cooked. 

However, the definition of quality in rice should be defined as the integration and fulfillment of 

the vast majority of these requirements that each sector demands as separately. 

  2.1 Rice physical qualities 

    2.1.1 Milling and head rice yields  

From strictly a milling quality perspective, the primary indices used to assess rice quality 

are milled-rice yield (MRY) and head-rice yield (HRY). Milling is an important processing step 

of rough rice which is usually done to produce white and polished grain. A commercial rice 

milling system is a multi-stages process where the rough rice is first subjected to de-husking and 

then to the removal of brownish outer bran layer, known as whitening. Finally, polishing is 

carried out to remove the bran particles and provide surface gloss to the edible white 

portion. Milled-rice yield constitutes the mass fraction of unprocessed, rough rice that remains as 

milled rice, including both head rice and broken kernels. On the other hand, head rice yield refers 

the mass fraction of rough rice that remains as head rice, synonymous with “intact kernels” and 

defined as well-milled rice kernels three-fourths or more of the original kernel length 

(Siebenmorgen, 2013). 
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Milling and head rice yields can be highly affected by environmental and processing 

conditions. Head rice yield typically varies with the moisture content (MC) at which rice is 

harvested. The harvest MC at which HRY is maximum, under Arkansas weather conditions, is 

approximately 19% to 21% for long-grain cultivars and 22% to 24% for medium-grains 

(Siebenmorgen et al., 2007).  Fan et al. (2000) also reported significant differences on the HRY 

of rough rice are subjected to heated-air drying under the variation of several conditions such as 

variety, harvest moisture content, drying condition and drying duration. Additionally, nighttime 

air temperature (NTAT) was found to influence the HRY of five cultivars (Cypress, LaGrue, 

XP710, XL8, M204, and Bengal). As nighttime temperature increased, head rice yields 

significantly decreased for all cultivars except Cypress and Bengal, for which HRY did not vary 

among nighttime temperature treatments (Cooper et al., 2008). 

 

    2.1.2 Chalkiness 

Chalky rice is characterized by a brittle texture due to loose packing of starch granules in 

the grain, resulting in weaker grain that is more susceptible to breaking (Lanning et al., 2011). 

Evidently, this characteristic is undesirable in almost every market since it will directly affect the 

appearance of rice and diminish the rice grade and consumer acceptance. Depending on the 

localization of the chalky area on or in the endosperm, chalky rice can be classified into four 

types:  white center (core), white belly, milky white, and opaque (Figure 2). White centers are 

characterized by chalky spots in the center of grain, while white belly refers to chalkiness on the 

dorsal side of the grain (Suzuki et al., 1979). Furthermore, milky white grains have a chalky 

texture except in the peripheral part of the grain and opaque or dead grains have an overall 

chalky texture caused by the interruption of final filling of the grain (Ikehashi and Khush, 1979).  
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Figure 2. Types of chalkiness in rice grain (Suzuki et al., 1979) 

 

Air temperature is considered as the major environmental factor that directly causes 

chalkiness in rice (Lanning et al., 2011). Lisle et al. (2000) reported significant differences 

among three cultivars that were grown in a glasshouse at either 38/21°C or 26/15°C (day/night 

temperatures). Rice grown at the higher temperature contained more chalky kernels. Similarly, 

Fitzgerald and Resurreccion (2009) found similar results on two indica varieties of rice. The 

authors suggested that the formation of chalky kernels is presumably explained due to the 

decreased substrate supply in high temperatures during critical developmental stages of rice 

growth. Ambardekar et al. (2011) showed that elevated nighttime air temperatures may 

contribute to increased chalk and reduced milling quality. However, they suggested that the 

relationship between temperature and chalkiness was not strictly lineal but rather a quadratic 

association in which elevated chalk levels were observed at NTATs below and above 18 ºC.  

Ambardekar et al. (2011) explained this behavior as the possibility of optimum temperature for 

enzyme activities responsible for packing of starch granules in the endosperm during the grain-

filling stages of different rice cultivars.  

White belly White core or 

white center 

Milky white Opaque grain 



 

18 
 

Along with the environmental conditions such as air temperature, previous studies have 

found that genetic traits also play an important role in determining the amount of chalkiness in 

rice. Fitzgerald (2012) identified important genetic information on what makes rice chalky. The 

discovery of these genetic regions together with well controlled crop conditions could lead to the 

development of higher quality, chalk-free rice varieties.  

 

    2.1.3 Grain fissures 

Fissures are cracks in the rice kernel. During milling, kernels with fissures tend to break, 

causing lower head rice yields, reducing the economic value down to a half (Kunze, 1985). The 

rice grain is highly hygroscopic, which may make it very susceptible to moisture and 

temperature changes in the environment (Lan and Kunze, 1996a). Thus, rice is subject to 

fissuring as it dries below a critical moisture level, either in the field or after harvest 

(Buggenhout et al., 2013). Mukhopadhyay and Siebenmorgen (2013) observed that fissuring on 

rice kernels is induced when low moisture content kernels are exposed to rapid moisture-

adsorption environments or high moisture content kernels are exposed to rapid moisture-

desorption environments. When head rice kernels are exposed to different conditions of air 

temperatures (10 °C and 30 °C), relative humidity (10%, 20%, 50%, 80%, and 90%), and 

exposing duration (4, 8, 16, 32, 60, and 120 min), fissured kernel percentages were found to be 

greater at an air temperature of 30 °C and at extreme relative humidity (10%, 20%, or 90%). 

Moreover, the authors observed that the pattern of the fissures differed among the different 

environmental exposures, causing “zig-zag/jagged” surface fissures when the rice was exposed 

to a rapid-moisture desorption and “cross-wise” fissures when exposed to a rapid-moisture 

adsorption (Figure 3).  
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Rice varieties have also shown some differences in their genetic resistance to fissuring. 

Lan and Kunze (1996b) evaluated these genetic differences among fourteen varieties of rice and 

encountered that medium grain varieties fissured between 91.6 and 100%, while only 28.6 to 

91% of the grains fissured in the long-grain varieties after a controlled environmental condition 

(30 h at 24 °C  and 100% RH). Siebenmorgen (2013) also reported significant differences 

between a medium grain cultivar and two long-grain varieties (one hybrid and one pure line); 

more specifically, the medium-grain cultivar group was fissured less than either of the pureline 

or hybrid long-grain groups. 

 

Figure 3. a) Fissured head rice after expose to a rapid moisture-desorption environment (10% 

RH) and b) to a rapid moisture-adsorption environment (90% RH). Both images were 

taken after the head rice was exposed to air at 30 °C for 90 min (Source: 

Mukhopadhyay and Siebenmorgen, 2013). 

 

    2.1.4 Rice size grading 

Rough rice comprises kernels of various sizes. Many studies have shown the importance 

of size grading on rice in order to enhance milling operations and to reduce kernel breakage 

during milling of rough rice. Matthews and Spadaro (1976) demonstrated the variability of size 
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of rice kernels within lots after classifying six lots of rough rice into four fractions according to 

the thickness of the kernels. They found that the distribution of rice among the four thickness 

fractions differed considerably in the various lots of rice and further reported that breakage in the 

milled rice was greater for the thinner fractions (0.064 to 0.070 inches). Moreover, Jindal and 

Siebenmorgen (1994) showed that thicker kernels of rice produced dramatically greater HRY 

when compared to thinner kernels due to a higher susceptibility of moisture absorption. This 

behavior was also observed by Chen et al. (1998) where the thinnest fractions of the rice kernel 

(<1.49 mm) showed a higher SLC than the other kernel fractions. These results implied that 

during the milling procedure the pressure or duration causes the thinnest kernel fraction to be 

milled at a greater bran removal rate than the other kernel fractions. Thinner kernels would thus 

possibly require a shorter milling duration, which will result in a reduction of breakage and an 

increased milling yield, if milled as a separate process stream. 

Physicochemical differences have also been found to be linked with different kernel size 

fractions. Thinner kernel fractions are associated with higher contents of protein and lipid 

compared to thick kernels (Mathews et al., 1982; Chen et al., 1998). Siebenmorgen and Grigg 

(2013b) claimed that the high values of protein are likely to be due to an incompletely filled thin 

kernel, explained under the light that the development of the bran layer (major protein source in 

the grain) occurs prior to the endosperm formation during the kernel development. Matthews and 

Spadaro (1976) showed that bran milled from the thickest (2.0-2.4 mm) fraction was 11% of 

brown rice mass on average, while bran milled from the thinnest (1.6-1.8 mm) fraction was 

greater, an average of 17.8% of brown rice mass, considering that the composition of the bran 

indicates a higher proportion of protein and lipid.  



 

21 
 

Since size-grading rice would imply an extra process in the rice industry, Siebenmorgen 

and Grigg (2013a) proposed to split bulk rice into only two thickness fractions, “Thick” (>2 mm) 

and “Thin” (<2 mm) in order to increase MRY and HRY and decrease variability among lots.   

 

  2.2. Cooking quality of rice 

    2.2.1. Definition of cooking quality in rice 

Cooking and processing characteristics of rice are elements of major relevance in 

countries where rice is a staple food. These characteristics are the fundamental components that 

determine and establish the economic value of the rice grain. Cooking quality in rice refers to the 

behavior of milled rice during cooking that involves rice grain volume expansion, water 

absorption, solids in cooking water, and sensory characteristics including appearance, whiteness, 

hardness, stickiness, aroma, and taste (Juliano, 1982). These characteristics are mostly influenced 

by the main constituent of rice, starch. Thus, the measurements of the physicochemical 

properties of rice starch and its components are set as the major quality standard on cooking 

quality.  

 

   2.3 Physicochemical properties of rice 

      2.3.1 Amylose content  

Starch is formed mainly by two fractions called amylose and amylopectin. The 

relationship between these two fractions is considered to be one of the most important 

constitutional indices of rice cooking and processing behavior since it determines a great 

proportion of the final characteristics of cooked rice (Lee, 1987). Chinnaswamy and 

Bhattacharya (1986) suggested that the proportion of long-B chains in the amylopectin fraction 
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was a major determinant of rice texture due to an intermolecular association that strengthened the 

starch molecule conferring to the rice a firm texture. Furthermore, it has been shown that the 

amount of insoluble amylose in the starch molecule is directly proportional to the presence of 

long-B chains of amylopectin (Radhika-Reddy, 1993). Thus, the determination of insoluble 

amylose was proposed as a successful indicator of rice quality.  

Varietal selection and differences in processing methods are two of the most important 

factors that influence amylose content of rice and rice products. Overall, long-grain varieties 

generally have higher amylose content than short grain varieties (Williams et al., 1958; 

Hettiarachchy et al., 1997). However, differences on the amylose content have been observed 

within the same rice varieties, which indicates that environmental factors are highly influential in 

composition and, consequently, cooking characteristics of rice. For instance, one of the primary 

environmental factors that can directly affect the amylose content of the rice starch is the 

ambient temperature during grain development (Juliano, 1985). Elevated temperatures generally 

cause the amylose content of the rice endosperm to decrease. Ahmed et al. (2014) evaluated the 

effect of high temperature (32 °C) during the grain filling period on the amylose content of 

Basmati rice. Higher temperature caused a reduction in total starch (3.1%) and amylose content 

(22%). They suggested that these changes in amylose/amylopectin ratio observed in plants 

grown at high temperatures were attributable to a reduction in activity of GBSS, the sole enzyme 

responsible for amylose biosynthesis. The temperature impact is greater in low-amylose cultivars 

and lesser in intermediate- and high-amylose cultivars (Cameron et al., 2005). 

The traditional method for quantitation of amylose in rice is based on the starch-iodine-

blue value protocol of Williams et al. (1958) amylose complexes with iodine produce a brilliant 

blue color. Thus, this characteristic has been used as an analytical tool for measuring amylose 
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content based on the absorbance of the blue color measured with a spectrophotometer. 

Additionally, other studies have suggested the use of other technologies such as Near-Infrared 

Reflectance Spectrophotometry to measure the apparent amylose content of milled rice, in order 

to overcome some of the issues that chemical methods could offer (Delwiche et al., 1995; 

Meullenet et al., 2002; Ibrahim and Rahim, 2012). 

 

      2.3.2. Gelatinization temperature 

Starch granules in their native form are insoluble in water but can reversibly absorb water 

and swell slightly. However, at higher temperatures, starch molecules vibrate more energetically, 

provoking the breakage of intermolecular bonds and allowing the penetration of water, which 

subsequently induces an irreversible swelling and a significantly altered structure of the grain. 

This process is called gelatinization and the temperature at which it occurs is called 

gelatinization temperature (GT) (Lee, 1987). Gelatinization temperature  of rice starch varies 

widely among rice varieties and is classified as low (58°- 69.5°C), intermediate (70°-74°C), and 

high (74.5°-79°C) (Juliano, 1979). 

Although rice lines with higher gelatinization temperature have been found to contain 

lower amylose content (Juliano, 1985), gelatinization temperature is not directly related with the 

texture of cooked rice. Gelatinization temperature is positively correlated with cooking duration; 

rice with higher GT needs more water and a longer cooking duration than rice with low or 

intermediate GT. Temperature during grain ripening has been shown to affect gelatinization 

temperature of rice starch. Villareal et al. (1976) demonstrated that a high ambient temperature 

results in higher gelatinization temperature of the rice starch. Similarly, studies have found that 

starch in the different portions of the rice grain is affected at different moments when rice is 

treated at higher temperatures in different stages of the grain ripening phase. Generally, starch in 
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the inner portions of the rice grain was more affected by the temperature in the early ripening 

stage, whereas in the outer layer it was more affected in the late ripening stage (He et al., 1990). 

There are several methods that are currently used to estimate gelatinization temperature 

of milled rice. The alkali spreading value (ASV) is one of these approaches and it is based on the 

extent of grain dispersion when soaked in potassium hydroxide solution (Little et al., 1958).  The 

ASV is inversely related to the gelatinization temperature; thus rice with low GT disintegrates 

completely, whereas rice with intermediate GT shows only partial disintegration. Rice with high 

GT, on the other hand, remains largely unaffected in the alkali solution. Additionally, 

gelatinization properties can be assessed by differential scanning calorimetry (DSC) as well. 

DSC is a thermal analysis technique to measure the temperature and heat flows associated with 

phase transitions in materials as a function of time and temperature. Such measurements can 

provide both quantitative and qualitative information concerning physical and chemical changes 

that involve endothermic (energy consuming) and exothermic (energy producing) processes, or 

changes in heat capacity (Roos, 1995).  

 

3. Sensory aspects of rice 

  3.1. Sensory aspects of raw rice 

  Sensory qualities of food are widely considered as the main factors in food choice and 

food consumption (Clark, 1998; Meiselman and MacFie, 1996). Regarding rice consumption, the 

appearance of the rice grain is the principal attribute that is established by the consumer as 

determinant in their selection standards. More specifically, appearance-related characteristics 

such as grain size, color, brittleness, and wholeness of the grain are highly relevant in 

consumers’ buying criteria (Del Mundo, 1979). However, consumer preferences for grain size 
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and shape vary from one group of consumers to the other. Short grain rice, which has a nearly 

spherical shape, is preferred by people in the countries like Japan, China, and Korea. Medium 

grain rice is the most used in the Spanish cuisine and is widely used in Latin America where the 

largest producers and consumers are Brazil, Colombia, Peru, Ecuador, Argentina, Chile, Cuba, 

Puerto Rico, and Dominican Republic. Moreover, lon- grain rice is widely used in the Chinese 

and Indian cuisine and is the most sold popular in the United States (FAOSTAT, 2014). 

Grain appearance is also largely determined by endosperm opacity, the amount of 

chalkiness, and the condition of the eye (pit left by the embryo). In some varieties the grain tends 

to be broken more frequently at the eye when it is milled (Khush et al., 1979). Rice samples with 

damaged eyes have poor appearance and low market value. Similarly, as rice has greater 

chalkiness, its market acceptability decreases. The starch granules in the chalky areas are less 

densely packed when compared to translucent areas. Therefore, the chalky areas are not as hard 

as the translucent areas and the grains with chalkiness are more prone to breakage during milling 

(DeLa Cruz and Khush, 2000). Additionally, surface color is an important measure of the quality 

of rice grains, which directly reflects the preservation phase, maturity degree, grade, and growth 

defect of rice grains, so that it can show the quality of rice grains (Liu, 2010).  

Aroma in rice is an issue of particular importance as it is not only a factor determining 

market price, but also a trait with clear local and national identity.  There are some specific 

varieties that are characterized by their strong aroma and commonly named aromatic rices. Some 

examples of aromatic rice varieties are Basmati, Jasmine, Texmati, Tulaipanji, Wehani, and Wild 

Pecan. Typically, varieties of Jasmine rice are consumed in countries of South East of Asia and 

many Basmati styles of rice are consumed in countries of South and Central Asia (Fitzgerald, 
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2004). However, for consumers in Europe, a trace of aroma in rice is an unpleasant trait because 

for them any scents in rice signal spoilage and contamination (Efferson, 1985).  

Processing and environmental conditions such as degree of milling and amylose content 

have shown to affect the appearance and aroma of uncooked rice. Rodríguez-Arzuaga et al. 

(2015) demonstrated that sensory impacts of DOM on raw rice were present between brown rice 

and milled rice samples, but not among the milled rice samples varying in SLC level from 0.64% 

to 0.25%. These results indicated that consumers may not detect appearance- or aroma-related 

differences among raw rice samples ranging in SLC from 0.64% to 0.25% which could be used 

as a nutritional benefit in the market without affecting the sensory quality. Moreover, amylose 

content has been negatively correlated with the whiteness of rice and positively correlated with 

the aroma (Juliano, 1979).  

 

  3.2. Sensory aspects of cooked rice 

Sensory characteristics of the cooked rice include appearance, as well as flavor, taste, 

aroma, mouth-feel, and textural features (Juliano et al., 1981; Meullenet et al., 2001; Yau and 

Huang, 1996). Texture is perhaps the most studied parameter of rice sensory quality. Szczesniak 

(2002) defined texture as “the sensory and functional manifestation of the structural, mechanical 

and surface properties of foods detected through the senses of vision, hearing, touch and 

kinesthetic”. Rice texture has been found to be affected by several factors such as rice variety, 

amylose content, and processing conditions (Meullenet et al., 1998). The amylose content was 

found to show a positive correlation with the sensory hardness and stickiness of the cooked rice 

(Champagne et al., 1999; Lu et al., 2013). Mohapatra and Bal (2007) reported that amylose 

content had a negative impact on the adhesiveness of the rice and a positive impact on the 

cohesiveness and hardness. Moreover, Mestres et al. (2011) reported that the protein content of 
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rice was negatively correlated with the adhesion of the grains, defined as the degree to which the 

grains stick together in a mass. These results were supported by previous studies that suggested 

that protein affects the amount of water that the rice absorbs through an interaction of a protein 

network linked by disulfide bonds. Thus, higher protein content and higher disulfide bonds limit 

starch/water interaction and consequently adhesion (Martin and Fitzgerald, 2002), 

Instrumental analysis for assessing rice texture has been widely used in order to 

overcome some of the drawbacks, such as the impracticality and the high costs, of the descriptive 

sensory analysis. Lyon et al. (1999) showed instrumental texture profile of cooked rice on 1 g 

aliquots using a texture analyzer. They found that the texture profile analysis (TPA) was 

sufficiently sensitive to find distinct differences in textural characteristics among the rice 

samples. However, the sensitivity of the descriptive panel was higher and the correlation 

between the instrumental analysis and the sensory attributes was weak. Furthermore, Meullenet 

et al. (1999) predicted the sensory textural characteristics of rice using a miniature extrusion cell. 

They found that this method had a high correlation with sensory textural characteristics and was 

less demanding of sample quantities than other methods such as the Ottawa cell.  

Aroma and flavor of rice have been regarded as one of the main buying criteria for 

consumers (Del Mundo and Juliano 1981). Instrumental analyses (gas chromatography or mass 

spectrometer) have found over 200 volatile compounds present in rice. However, only a few 

compounds have shown to affect aroma and flavor of rice. Overall, there is a general agreement 

on the influence of 2-acetyl-1-pyrroline (2-AP) (popcorn aroma) as the main influencer on rice 

flavor (Champagne, 2008). Additionally, many researchers have attempted to link other volatiles 

with specific rice descriptors (Jezussek et al., 2002; Lam and Proctor 2003). Lam and Proctor 

(2003), determined that lipid oxidation products are the most likely contributors to rice off 
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flavors. They concluded that hexanal (grassy flavor) and 2-pentylfuran (beany) probably 

contributed more to flavor change in milled rice early in storage rather than later. 2- Nonenal 

(rancid flavor) and octanal (fatty flavor) contributed more to the overall flavor of milled rice 

during long-term storage. These results could indicate that perceived aroma of rice may result 

from interactions of several volatiles.  

Different techniques of descriptive analysis have been used to determine cooked rice 

aroma, flavor, and texture attributes. Yau and Hang (1996) evaluated the sensory characteristics 

of four rice varieties (TNu 67, TNu 70, TC 189, and TC Sen 10) using a modified quantitative 

descriptive analysis with 20 trained assessors. They identified 13 attributes that described cooked 

rice appearance, texture, aroma, and flavor characteristics. The study was based on some 

lexicons for cooked rice texture (Lyon et al., 1999; Stikalin and Meullenet, 2000) and flavor 

attributes (Meilgaard et al., 2007) previously developed. Meullenet et al. (2000) evaluated the 

effect of post-harvest conditions (rough rice moisture content, storage temperature, and storage 

duration) on sensory quality of one long-grain rice cultivar grown in Arkansas (Cypress) using 

nine professional descriptive panel according to a Spectrum methodology (Sensory Spectrum, 

Chatham, NJ). The Spectrum methodology is a sensory profiling method designed to provide 

universal sensory intensities, especially adequate to provide reliable results for shelf life studies. 

The method relies on common commercial food references used as anchors for each of the 

specific sensory attributes studied and provides absolute sensory intensities that can be compared 

even if testing dates are spread throughout long periods of time. Temperature at which the 

samples are evaluated on either instrumental or descriptive analysis highly affects cooked rice 

attributes (Okabe, 1979). Yau and Hang (1996) evaluated the effects of two temperatures (18-60 

°C) on the descriptive sensory analysis of four rice cultivars. Their results showed that the 
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samples served at either 18 °C or 60 °C significantly differed with respect to nine attributes. It 

was found that the rice served at 60 °C were rated higher in looseness, hot-rice aroma, brown-

rice aroma, and sweetness, but it was rated lower in cold-rice aroma, hardness, cohesiveness, 

chewiness and roughness when compared to the rice served at 18 °C. Meullenet et al. (1998) 

stated that repeatability of instrumental measurements was poor when conducted on warm rice. 

Due to that point, they proposed that rice samples should be sifted immediately after cooking and 

rinsed for 5 min. under cold water. Then, spread on plastic trays covered with aluminum foil and 

stored at 4 °C until testing (2–3 hr). Before the instrumental analysis, rice samples may be 

allowed to equilibrate to room temperature for 30 min. For descriptive analysis, on the other 

hand, samples were served at 71 ± 1 °C. Panelists were asked to monitor the temperature during 

the test and to complete the evaluation before the temperature of the reached 60 ± 2 °C. 
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Chapter 3.  

Evaluation of thickness fractionation as a process to potentially impact cooking qualities 

and sensory characteristics of long-grain rice (Oryza sativa L.) 
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Abstract 

Thickness fractionation has been proposed as a method to improve kernel uniformity and 

increase milling yields in the rice industry. This process consists in the exclusion of thinner 

kernels that have shown to decrease rice milling and physical properties. However, little is 

known about how this process can impact cooking and sensory qualities of rice. This study 

aimed to determine whether physicochemical properties, cooking qualities, and sensory 

characteristics can vary by the application of thickness fractionation in the rice process stream. 

Two long-grain pureline cultivars (Cheniere and V3501) and two hybrid cultivars (XL753 and 

XP760) were used in this study. After conditioning, rough rice lots were thickness-graded into 

two fractions: thin (<1.9 mm) and thick (≥1.9 mm) kernels. Thin kernels were discarded and 

physicochemical properties in addition to cooking and sensory qualities of unfractionated and 

fractionated (thick fraction) rice were determined. Overall, removal of thin kernels decreased the 

percentage of broken and chalky kernels as well as increased head rice yield (HRY). Thickness-

graded rice exhibited higher amylose content, crude protein content, and peak viscosities than 

non-fractioned rice, but lower gelatinization temperatures. Similarly, cooking qualities such as a 

longer cooking duration and greater width kernel expansion were shown by rice samples after 

thickness fractionation. However, there were little impacts of the thickness grading on sensory 

and textural characteristics of long-grain rice. This study provides an overview about how the 

implementation of an extra step such as thickness fraction in the process flow may affect 

qualities of uncooked and cooked long-grain rice. The findings may be useful for rice processors 

to better understand the impacts of thickness fractionation on rice qualities.  
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1. Introduction 

Previous studies have demonstrated the importance of thickness grading on rice as a 

process to improve milling operation and to reduce kernel breakage during milling of rough rice 

(Siebenmorgen et al., 2006). Thickness grading or fractionation of rice refers to the process in 

which rough rice is first screened according to size into different thickness fractions and then the 

thinner kernels are removed for other applications such as flour or parboiling (Mathews, 1982).  

Jindal and Siebenmorgen (1994) showed that thicker kernels of rice produced dramatically 

greater head rice yield (HRY) when compared to thinner kernels due to a higher susceptibility of 

moisture absorption of thinner kernels that consequently increase the breakage rate during 

milling. Additionally, Chen et al. (1998) observed that thinnest fraction (<1.49 mm) of the rice 

kernel showed a higher surface lipid content than the other kernel fractions after milling under 

the same condition. These results proved that the pressure to which rice is subjected during 

milling or the duration of the milling procedure causes the thinnest kernel fraction to be milled at 

a greater bran removal rate than the other kernel fractions. Thus, since thinner kernels will 

require a shorter milling duration, if these are milled in a separate process breakage could be 

reduced and higher milling yields be obtain.   

Physicochemical properties of rice have been found to vary depending on the kernel 

thickness (Mathews et al., 1982; Chen et al., 1998). Thinner kernel fraction shows greater 

amounts of crude protein and lipid and lower amount of starch than thick kernel fraction 

(Mathews et al., 1982; Chen et al., 1998). Such differences in physicochemical properties can be 

linked to cooking and sensory qualities of rice (Singh et al., 2005). Rice with a high amylose 

content (25-30%) tends to cook firm and non-sticky, while rice with an intermediate amylose 

content (20-25%) tends to be softer and stickier and rice with a low amylose content (<20%) is 
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generally quite soft and sticky (Bhattacharya, 2011). To a lesser extent, components such as 

protein and lipid also influence cooking properties of rice (Martin and Fitzgerald, 2002). More 

specifically, protein content of rice was found to affect textural characteristics of cooked rice by 

competing with starch for water and the formation of disulfide bonds, and lipid restrains the 

moisture uptake of rice during cooking through amylose-lipid complexes, impeding the leaching 

of amylose and swelling of starch (Martin and Fitzgerald, 2002). 

Since rice is usually consumed as a intact grain, rice industries determine the economic 

value of rice depending on its cooking and eating qualities, which can be measured in terms of 

water uptake ratio, kernel elongation during cooking, solids in cooking water, cooking duration, 

and sensory aspects. In addition, the steady increment of rice consumption is accompanied by 

more strict consumers who demand rice products with premium qualities. Appearance of the 

grain, with respect to shape, size, or color, is considered as the major attribute that determines 

quality of rice by consumers. For example, rice products including many broken and /or chalky 

kernels (opaque regions of the grain) are considered as a low grade quality, which may in turn 

decrease overall market value (Juliano, 1990; Wrigley and Batey, 2010). Color of polished grain 

is another perceptible quality that influences consumers’ purchase decision. After milling, color 

of rice varies from white to yellow based on variety, pre-processing, and storage conditions. 

Overall, consumers are more likely to favour white uncooked rice than yellowish rice 

(Bhattacharya, 2011). Furthermore, for cooked rice, appearance, aroma, flavor, and texture are 

all sensory characteristics that play a crucial role in consumer acceptance (Champagne, 2004; 

Suwannaporn and Linnemann, 2008). Meullenet et al. (2001) indicated that the most important 

sensory characteristics influencing Asian consumers’ acceptance were appearance (degree of 

whiteness and visual stickiness) and aroma/flavor (starchy, cooked grain, nutty, sulfur, heated 
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oil, and metallic). High cohesiveness, high softness, and low stickiness were found to be textural 

characteristics that Asian consumers preferred. However, non-sensory characteristics such as 

price, location where the rice was grown, and nutritional value are also considered as factors that 

influence consumers’ preference and purchase decision (Meullenet et al., 2001). 

Even though the benefits of including thickness fraction process in milling quality of rice 

has been widely explored, little attention has been paid to the influences of thickness fraction 

process on cooking and sensory qualities of rice. Therefore, the objectives of this study were to 

determine whether cooking qualities and sensory characteristics, in addition to the 

physicochemical properties, can vary with the implementation of the thickness fraction step in 

the rice processing flow.  

 

2. Materials and Methods 

2.1 Rice samples conditioning 

Two long-grain pureline cultivars (Cheniere and V3501) and two hybrid cultivars 

(XL753 and XP760) grown in Harrisburg, AR were used in this study. Each cultivar was 

harvested at a moisture content level (18.5-20.5%, wet basis) in fall 2015. Rough rice samples 

were cleaned using a dockage tester (XT4, Carter-Day, Minneapolis, MN, U.S.A.). The cleaned 

lots were then conditioned to12.0 ± 0.5% (wet basis) moisture content using a climate controlled 

chamber (26°C and 56% relative humidity), regulated by a stand-alone conditioner (Model 

5580A, Parameter Generation & Control, Black Mountain, N.C.). 

A preliminary study was conducted with the purpose of determining if consumers were 

able to discriminate the appearance of milled rice that was included in the thickness grading 

process (thickness-graded rice) compared to when it was not applied (unfractioned rice). Two 
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long-grain rice cultivars (pureline: V3501 and hybrid:  XL753) were thickness-graded into four 

thickness fractions: 1.6 mm, 1.7 mm, 1.80 mm 1.9 mm and 2.0 mm. Participants were asked to 

compare the difference of the four thickness fractions with a control (unfractioned rice) on a 10- 

point scale (0= no difference, 10 = Extreme difference) for both cultivars. The study was 

conducted across three different cultural backgrounds (Asian, Hispanic, and Caucasian) in order 

to assess the influence of cultural background on the appearance discrimination of the various 

thickness fractions. Based on the result of the preliminary study, the cutoff level of thickness 

grading would be determined for the rest of this study. However, as shown in Table 1 consumers 

were not able to detect any significant differences among any of the thickness fractions in the 

two cultivars, regardless of the cultural background (P > 0.05 for all). Thus, a standard thickness 

cutoff of 1.9 mm was chosen based on previous research and  realistic occurrence in rice industry 

(Siebenmorgen et al., 2016).  

 

2.2 Thickness fractionation of rough rice and milling properties 

 In addition to bulk, unfractioned rice, a portion of each bulk rice lot was thickness graded 

at a 12.0 ± 0.5% (wet basis) moisture content using a precision sizer (Model ABF2, Carter-Day, 

Minneapolis, MN) equipped with rotary screens (30-cm diameter). Bulk rice was screened only 

once, and split into two thickness fractions, thin (<1.9 mm) and thick (≥1.9 mm), in order to 

mimic what could occur in a realistic setting in rice industry. For the purposes of this study, the 

thin fraction was discarded, and the thick (fractioned) and the unfractioned rice portions were 

used for further analysis.  

Rough rice of each cultivar was dehulled using a dehusker (THU-35, Satake, Hiroshima, 

Japan), and the resultant brown rice was milled using a laboratory miller (McGill number 2, 
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RAPSCO, Brookshire, TX, U.S.A.). Rice was milled for durations of 10, 20, 30 and 40 in order 

to develop relationships between degree of milling (DOM) and milling duration; allowing 

determination of the milling duration required to achieve the desired DOM for each lot and 

fraction, as indicated by 0.4 ± 0.05% surface lipid content (SLC). Each rice sample was stored in 

a sealed container at 4 °C. The containers were placed at room temperature (22 °C) for 24 h prior 

to sample preparation and further analysis. Head rice yield was determined, with head rice being 

separated from broken kernels using a sizing device (Model 61, Grain Machinery Manuf. Corp., 

Miami, FL) and maintained for determination of quality properties. 

 

2.3 Physical properties 

To determine the effects of thickness fractionation on physical properties of rice, 

approximately 100 kernels of head rice were weighted and placed in a 32 mm-thick tray (152 

mm x 100 mm x 20 mm); in a manner that no two kernels were in contact with each other. 

Physical properties, i.e., kernel dimensions, broken kernels, chalky kernels, and discoloration of 

head rice samples, were measured using an image analysis system (SeedCount SC 5000, Next 

Instruments, Condell Park, Australia). From a preload profile, discoloration of kernels were 

defined as the discolored area percentage with yellow, red, brown, black, green, and light pink 

shades. Chalky area of milled rice (100 kernels of each cultivar/fraction/replicate) was 

determined by the procedure of Ambardekar et al. (2011). Upon scanning the kernels, the 

software determined number of color pixels associated with both non-chalky and chalky tissue, 

as previously identified through a calibration procedure, and calculated the percentage of the 

total-kernel area that was chalky. The measurements were done by triplicate and averaged.  
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 Furthermore, degree of whiteness (L*) was determined by scanning approximately 60-g 

of head-rice kernels using near-infrared reflectance (NIR) spectroscopy (NIR-DA 7200, Perten 

Instruments, Huddinge, Sweden). All the analyses were evaluated in triplicate.  

 

2.4 Chemical composition 

A 60-g portion from one head rice sub-sample was ground into flour with a cyclone mill 

(3010-30, UDY, Fort Collins, CO, U.S.A.) with a 0.5 mm screen to determine the effects of 

thickness fractionation on moisture content, amylose content, pasting property, thermal property, 

and crude protein content of rice samples.  

The moisture content of the rice flour was measured according to AACCI method (44 

15.02), i.e., by drying a 2.5-g portion at 130°C oven for 2 h. Amylose content was determined by 

the simplified iodine assay method (Juliano, 1971). Approximately 100 mg of rice flour were 

transferred into a 50 ml test tube where 1 ml of 95% ethanol and 9 ml of 1 N NaOH were added. 

The sample was then heated for 20 minutes in boiling water bath. After cooling, the content was 

transferred into a 100 mL col flask and the volume made up to 100 mL. A 5 mL aliquot was 

pipetted from the 100 mL solution into a disposable test tube, and 0.1 mL of 1 N acetic acid and 

0.25 mL of iodine solution were added. The mixture was stirred and allowed to incubate for 30 

minutes and the absorbance was read at 620 nm. Amylose content of the sample was determined 

in reference to a standard curve and expressed on percent basis. 

Pasting properties of the rice samples were determined with a Rapid Visco Analyser 

(RVA Super 4, Newport Scientific, Warriewood, Australia). Approximately 3 g of flour were 

combined with 25 mL of deionized water in an aluminum cylinder. The exact quantities of rice 

flour were adjusted according to samples MC at a 12% moisture basis. The flour and water were 
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mixed briefly with a plastic paddle, forming slurry, before the sample cylinder and paddle were 

inserted into the viscometer. The slurry was first heated to 50 °C and held at that temperature for 

1.5 min, before heating at a rate of 12°C/min to 95 °C, holding for 2.5 min, then cooling to 50 °C 

at a rate of 12 °C/min, while stirring and measuring viscosity continuously. A thermogram was 

produced by the viscometer software showing change in viscosity over the cycle duration, as 

well as summary statistics of peak viscosity, trough viscosity, breakdown (peak-trough 

viscosity), final viscosity, setback (final-peak viscosity), peak time, and pasting temperature. 

Thermal properties, such as onset, peak, and conclusion gelatinization temperatures (GT), 

of rice samples were measured using a differential scanning calorimeter in modulating mode 

(DSC-Q100, TA Instruments, New Castle, DE, U.S.A.). Approximately, 4 mg of rice flour were 

placed into an aluminum DSC pan with 8 μl of distilled water added via a micro syringe. After 

sealing, pan was equilibrated at room temperature for 1 h prior to heating from 25 °C to 120 °C 

at 10 °C/min.  

Finally, crude protein content of milled-rice samples was determined by scanning 

approximately 60 g of head-rice kernels using NIR spectroscopy (NIR-DA 7200, Perten 

Instruments, Huddinge, Sweden). All the analyses were evaluated in triplicate.  

 

2.5 Cooking qualities 

Optimum cooking duration (OCD) was measured by Ranghino test for milled rice 

(Juliano and Bechtel, 1985). In a 250 mL beaker, about 100 ml distilled water was boiled (98 ± 1 

°C) and 5 g of head rice samples were placed into the boiling water. Measurement of cooking 

duration was started immediately. After 10 min and every minute thereafter, 10 grains of rice 

were removed and pressed between two clean glass plates. The first time was determined when 
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at least 90% of the grains no longer had opaque core or uncooked centers. Afterwards, the rice 

was then allowed to simmer for additional 2 min to ensure that rice was completely cooked. 

OCD included the additional 2 min of simmer. The measurement was done by triplicate and 

averaged among the three replications.  

Length expansion ratio was calculated as a ratio of the length of cooked grain to that of 

the raw grain. In a similar way, width expansion ratio was calculated as the ratio of the width of 

the cooked rice to the initial width of the raw rice (Juliano and Bechtel, 1985). Length and width 

dimensions of 100-kernel (approximately 1 g) sample were measured. Subsequently rice was 

cooked until optimum cooking duration and both dimensions were measured after cooking. This 

procedure was done by triplicate.  

 

2.6 Descriptive sensory analysis 

Descriptive sensory analysis of cooked rice was conducted at the University of Arkansas 

Sensory Service Center (Fayetteville, AR, U.S.A.). Nine professionally trained panelists, each 

with an average experience of greater than 1,000 hours in evaluating a variety of food products, 

including rice, participated in the descriptive analysis. Prior to the assessment of the samples, 

orientation/training sessions (for 6 hours) conforming to the Spectrum method (Sensory 

Spectrum Inc., Chatham, NJ, U.S.A.) were conducted. Table 2 lists the definitions and reference 

intensities of individual flavor and texture attributes that were evaluated. 

Each rice subsample (300 g) was cooked in an electric rice cooker (RC3314W rice 

cooker, Black & Decker, Beachwood, OH, U.S.A.) with a 1:1.8 rice-to-water mass ratio. After 

being cooked, the rice was allowed to set for five minutes. Cooked rice samples were mixed and 

fluffed in the rice cooker using a plastic fork to ensure homogeneity, and then dipped using a 
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plastic spoon and presented to the panelists. Each of the cooked-rice subsamples was presented 

at 71 ± 1 °C in a glass bowl and covered with a watch glass. Each subsample was randomly 

presented to the panelists, one after another. Intensities of the sensory attributes were evaluated 

on a 15-point scale basis. A 10 min break was allowed between sample presentations. The entire 

test was repeated, on a different day, to provide two replicate sensory analyses of the cooked rice 

samples. 

 

2.7 Texture profile analysis 

Cooked rice of each subsample was collected during sensory analysis, and the texture 

profile analysis (TPA) was performed on the same day. TPA was conducted using a texture 

analyzer (TA-XT2i, Stable Micro Systems, Ltd., Godalming, Surrey, U.K.) with a 5-kg load cell 

and a cylinder probe of 20-mm in diameter. The data were acquired using Texture Exponent 32 

(Stable Micro Systems, Ltd.).  

A two-cycle compression was set on three intact rice kernels that were placed on a clean 

flat aluminum base. The compression probe traveled for a distance defined to compress the 

kernels to 70% of their original height. The crosshead pretest, test, and post-test speeds were 0.5 

mm/s, 3.0 mm/s, and 0.5 mm/s, respectively. The rice samples were analyzed for four TPA 

parameters: hardness (N), adhesiveness (N × s), cohesiveness, and chewiness (Saleh and 

Meullenet, 2007). Measurements were repeated five times for each rice subsample. 

 

2.8 Statistical analysis 

Statistical analyses were performed using JMP Pro (version 12.0, SAS Institute Inc., 

Cary, NC, U.S.A.). two-way analyses of variance (ANOVA) were used to determine the effects 
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of thickness grading and cultivar on physicochemical properties and cooking qualities. If a 

significant difference in means was indicated by the ANOVA, post hoc comparisons between 

variables were performed using a Tukey’s honest significant difference (HSD) test. Sensory data 

were analyzed using a two-way ANOVA treating fraction and cultivar as fixed effects. A 

statistically significant difference was defined as P < 0.05. 

 

3. Results and Discussion 

3.1 Effect of thickness grading on milling yields and physical characteristics 

 Thickness grading of rough rice resulted in thick fractions ranging from 34% to 78% of 

the bulk rice on a mass basis (Figure 1). Hybrid cultivars XP760 and XL753 showed the lowest 

percentage of thin kernels with 22% and 24% of thin mass fractions respectively. Pureline 

cultivar V3501 showed a thin mass fraction of ~39%, which is nearly two times higher compared 

to the two hybrid cultivars. In contrast, in cultivar Cheniere, the percentage of thin kernel 

fraction (66%) was higher than that of thick kernel fractions (34%). Such a low percentage of 

thick kernels found in Cheniere showed a non-favorable scenario in a realistic setting if thickness 

grading was applied. Matsue et al. (2001) showed a narrower proportion, 85% to 97%, of thick 

kernels (≥1.9 mm) in three rice cultivars. More recently, Siebenmorgen and Grigg (2013) 

reported that thickness grading returned thick kernels (>2.0 mm) between 67% and 90% for four 

long-grain cultivars. They suggested that even though genetic differences among cultivars 

explain some of the variation on kernel thickness distribution, for different lots of the same 

cultivar the variation is even larger due to environmental conditions such as soil composition and 

fertilization management which may have a greater impact on kernel thickness distribution than 

the cultivars effect. 
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Figure 2 shows the effect of thickness grading on HRY for the four long-grain cultivars.  

Rice graded by thickness showed a significantly higher HRY compared to the unfractioned rice 

portion in all of the evaluated cultivars [F(3, 16) = 21.75, P < 0.001]. These results are in 

accordance with the findings of Siebenmorgen and Grigg (2013) where thicker kernels produced 

dramatically greater HRYs when compared to unfractioned rice. Similarly, for broken kernels, a 

significant interaction between cultivars and thickness grading was found [F(3, 16) = 10.32, P < 

0.001] (Figure 3). For pureline cultivars V3501 and Cheniere, the percentage of broken kernels 

was significantly higher in the unfractioned rice, compared to in the fractioned rice. Hybrid 

cultivars XP760 and XL753 showed the same numerical trend, but the trend was not statistically 

significant probably due to the lower mass percentage of thin kernels compared to Cheniere and 

V3501. Previous research has shown than thin kernels reach a target SLC during milling in a 

shorter time compared to thick kernels (Jindal and Siebenmorgen, 1994; Chen et al., 1998). Since 

unfractioned bulk rice was milled for the same duration, without any distinction on kernel 

thickness, the thin kernels were more likely overmilled, which in turn caused a higher 

susceptibility for breakage and further reduction of rice yields.  

Chalkiness of rice was also affected by thickness grading [F(1, 16) = 15.49, P = 0.001]. 

The unfractioned portion showed a higher amount (up to 32%) of chalky kernels than the 

fractioned portion regardless of the cultivar (Figure 4).  Previous research demonstrated 

association between thin kernels and chalkiness in rice since these are commonly immature 

incomplete-filled kernels and chalkiness is associated to the process of starch accumulation 

during ripening (Wardsworth et al., 1979). Thus, the presence of immature thin kernels in the 

unfractioned portion increased the proportion of grains with the undesirable characteristic. The 

larger amount of chalky kernels may also explain the previous finding of a lower HRY in the 



 

50 
 

unfractioned portion since earlier evidence has shown that chalky kernels are more prone to 

fissures and breakage during milling (Siebenmorgen et al., 2006).  

As shown in Table 3, degree of whiteness and discoloration of seeds showed no 

significant differences between unfractioned and fractioned rice (P > 0.05 for all). Mathews et al. 

(1982) reported that thinner fractions of rice were perceptively darker than the thicker fractions 

across six different lots of long-grain rice. Consequently, since unfractioned rice included thinner 

kernels it was expected to observe a higher amount of discoloration in the unfractioned rice. 

However, in the present study rice color showed to be unaffected by the presence or absence of 

thinner kernels.  

 

3.2 Effects of thickness grading on chemical properties 

 The two-way ANOVA showed no significant interactions between cultivar and thickness 

grading on amylose content and crude protein content (P > 0.05 for both cases). Insoluble 

amylose content ranged from 18 % to 25 % across all the cultivars, which fit under the category 

of intermediate amylose-content according to the rice classification indicated by Juliano (1979). 

Overall, unfractioned rice showed a significantly higher content of insoluble amylose compared 

to fractioned rice [F(1, 16) = 27.27, P < 0.001]. Matsue et al. (2001) and Siebenmorgen et al. 

(2006) reported differences of the amylose content as a function of rice thickness fraction. More 

specifically, amylose-amylopectin ratio of rice was found to increase with an increment of 

thickness. Since amylose content is positively correlated with intrapanicle rice kernel weight, 

immature-thin kernels would have lower amylose content than completely mature thick kernels 

(Siebenmorgen et al., 2006). In the present study, since unfractioned rice contained both thick 

and thin kernels, the results were probably the consequences of an additive effect of all kernel 
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thickness compared to the fractioned portion which was only composed of thick kernels. 

Similarly, unfractioned rice exhibited higher protein contents than fractioned rice [F(1, 16) = 

5.40, P < 0.001]. Overall, protein contents were in the range of 7.63% and 8.37% across all the 

rice samples. Mathews et al. (1981) found that contrary to the relationship with amylose content, 

thinner kernels show higher protein contents than thicker kernels. Siebenmorgen et al. (2006) 

showed a positive correlation between protein content and α-amylase activity (a starch-

hydrolyzing enzyme); the activity is greater when rice kernel is immature (Del Rosario et al., 

1968). Additionally, cultivar differences were found in insoluble amylose [F(1, 16) = 26.09, P < 

0.001] and protein contents [F(3, 16) = 15.17, P < 0.001].  As shown in Table 4, Cheniere and 

V3501 showed a higher amylose content compared to hybrid cultivars XP760 and XL753, and 

XP760 showed a significantly lower protein content than XL753 and V3501.  

Figure 5 shows the pasting profiles of the unfractioned and the thickness-fractioned 

portions for the four long-grain cultivars evaluated. A significant interaction between cultivar 

and thickness grading was found in peak viscosity [F(3, 16) = 14.6, P < 0.001]. Hybrids XP760 

and XL753 showed a significant reduction of approximately 6% and 15%, respectively in their 

peak viscosities when thickness grading was applied. However, purelines Cheniere and V3501 

seemed to be unaffected after the thickness fractionation condition (P > 0.05). Matsue et al. 

(2001) reported differences on peak viscosities among different thickness levels of rice kernels. 

As a consequence of having higher starch contents, thicker kernels also showed greater peak 

viscosities compared to thinner kernels. Wardsworth et al. (1979) reaffirmed these results and 

also reported higher peak viscosities in the unfractioned portion compared to the thickness-

graded rice. Interestingly, final viscosities did not seem to display this trend. The two-way 

ANOVA revealed an interaction between cultivar and thickness grading in the final viscosity [F 
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(3, 16) = 22.37, P < 0.001]. For the pureline Cheniere the final viscosity was significantly higher 

in the fractioned portion compared to the unfractioned portion of the same cultivar. However, an 

opposite trend was observed for cultivars XP760 and XL753, where the final viscosities showed 

a significant decrement after thickness fraction. 

 Onset gelatinization temperature of hybrids XP760 and XL753 was significantly 

influenced by the fractionation process [F(3, 16) =7.52, P = 0.002]. The onset gelatinization 

temperatures varied from 70 to 73 °C in the evaluated samples, which are typical values of long-

grain varieties in an intermediate gelatinization temperature range (Juliano, 1979). As shown in 

Figure 6, onset gelatinization temperature increased up to 1.36 % for XP760 and up to 1.26 % for 

XL753 when the rice samples were fractioned. However, the increment-trend in onset 

gelatinization temperatures for Cheniere and V3501 cultivars were not statistically significant (P 

> 0.05). Correspondingly, peak gelatinization temperatures were also significantly higher for the 

fractioned rice compared to the unfractioned rice, regardless of the cultivar [F(1, 16) = 4.98, P = 

0.04]. Siebenmorgen et al. (2006) and Wardstworth (1979) found that thickness grading has little 

effect on gelatinization temperatures. However this study contradicts these results, and shows a 

potential inverse relationship between amylose content and gelatinization temperatures. Flipese 

et al. (1996) reported that since amylopectin plays a major role in starch granule crystallinity, the 

presence of amylose decreases the melting temperature of crystalline regions and the energy for 

starting gelatinization. More energy is needed to initiate melting in the absence of amylose-rich 

amorphous regions (Krueger et al., 1987). This correlation indicates that starch with higher 

amylose content has more amorphous region and less crystalline, lowering gelatinization 

temperature and endothermic enthalpy (Sasaki et al., 1999). 
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No significant differences in terms of end gelatinization temperatures and gelatinization 

enthalpies were found between the unfractioned and fractioned portions for any of the cultivars 

(P > 0.05 for all). Overall, hybrid XL753 showed a significantly higher end temperature, 

compared to purelines Cheniere and V3501 (P = 0.001) and Cheniere displayed a lower enthalpy 

compared to XP760 and XL753 (P < 0.001).  

 

3.3 Effects of thickness grading on cooking qualities 

 The rice cooking qualities were evaluated in terms of OCD and grain elongation during 

cooking.  As shown in Figure 7, OCD seemed to be significantly different between unfractioned 

and fractioned rice samples in hybrids XP760 and XL753. For XP760 the OCD increased from 

~21 to 24 minutes and for XL753 from ~22 to 23 minutes when rice was fractioned. Even though 

such trends were observed in purelines Cheniere and V3501, the differences were not statistically 

significant. Bhattacharya and Snowbhagya (1971) and Oko et al. (2012) demonstrated a positive 

correlation between gelatinization temperature and OCD. Thus, since thickness-fractioned rice 

showed higher onset and peak gelatinization temperature values than the unfractioned rice, this 

was reflected on longer cooking durations. In addition, thickness of the grain has shown to have 

a significant effect on the cooking duration of rice (Mohapatra and Bal, 2006) due to quicker 

diffusion of moisture in thinner grains that were present exclusively in the unfractioned portion.  

Length elongation is often used as a good quality indicator in rice, which was 

significantly dependent on the cultivar but not on the fractionation process [F(3, 16) = 4.91, P = 

0.003]. Cultivar Cheniere demonstrated less length elongation in comparison to hybrids XL753 

and XP760. Conversely, width expansion was significantly dependent on the fractionation 

process regardless of the cultivar. Fractioned rice showed a higher elongation with respect to 
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girth than that of the unfractioned portion [F(1, 16) = 5.45, P = 0.022]. This characteristic is not 

desirable on rice quality since it is associated with rice bursts during cooking, a non-appealing 

defect for consumers. Bhattacharya (2011) reported that a good quality indicator is a rice that 

expands on length but not so much in girth.  

 

3.4 Descriptive sensory analysis and texture profile analysis 

There was neither significant interaction nor significant main effects between thickness 

grading and cultivar in all sensory attributes evaluated (P > 0.05 for all) (Table 6). These results 

indicate that untrained consumers may not be able to detect differences in appearance, flavor or 

textural attributes of milled-rice samples if thickness grading was applied. 

Table 7 shows mean scores of each TPA parameter as a function of cultivar and thickness 

grading. The extra process step did not seem to have any impact on the hardness, cohesiveness 

and chewiness parameters of the rice samples (P > 0.05 for all). The results were similar to those 

reported by Siebenmorgen et al. (2006) where any significant differences were found in hardness 

among different rice kernel thickness. On the other hand, thickness fractionation decreased 

stickiness of rice samples for all cultivars [F(1, 16) = 4.35, P = 0.04]. Greater stickiness values 

are correlated with lower amylose and protein contents. However, the results obtained in this 

study contradict the expectation of this inverse relationship since fractioned rice showed lower 

protein and amylose content compared to unfractioned rice. Siebenmorgent et al. (2006) reported 

that the higher water uptake ratio the greater stickiness in rice, which may support the results of 

this study.  

There were cultivar differences with respect to hardness, stickiness, and cohesiveness of 

the four rice samples. The varieties Cheniere and XP760 showed higher values of hardness [F(3, 
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16) = 6.75, P < 0.001], but lower values of cohesiveness [F(3, 16) = 5.04, P = 0.003] compared 

to their counterpart cultivars XL753 and V3501. In addition, hybrids XL753 and XP760 showed 

a higher stickiness than purelines Cheniere and V3501 [F(3, 16) = 4.14, P = 0.009].   

 

4. Conclusions 

The present study demonstrated the effects of thickness grading on the physicochemical 

properties, cooking qualities, and sensory aspects in the four long-grain rice cultivars. Thickness 

fraction of rice resulted in significantly greater HRY when compared to unfractioned rice. 

Additionally, physical characteristics such as broken kernels and chalkiness of kernels were 

significantly benefited by the thickness grading process. However, not so positive impacts were 

also obtained from the thickness grading procedure. More specifically, a reduction in protein 

content in fractioned rice may impose a dilemma in how rice nutritional value might seem to be 

affected by this process. Additionally, cooking qualities of rice were also adversely impacted by 

thickness grading (i.e., longer cooking-duration and greater width-expansion). These 

characteristics are usually not very appealing for the consumer, which may decrease the 

economic value of rice.  
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Table 1. Discrimination of various rice kernel thickness as a function of cultural 

background and cultivar  

 
 Cultural Background 

Cultivar Thickness Fraction Asians Caucasians Hispanics 

V3501 1.60 mm 1.14 (± 0.96) 1.74 (± 2.24) 1.50 (± 2.01) 

 1.70 mm 1.19 (± 1.33) 1.41 (± 2.02) 1.40 (± 1.90) 

 1.80 mm 1.62 (± 1.07) 1.76 (± 2.17) 2.30 (± 2.54) 

 1.90 mm 1.14 (± 1.42) 1.85 (± 2.44) 1.90 (± 2.13) 

 2.00 mm 1.24 (± 1.04) 1.74 (± 2.43) 1.90 (± 2.33) 

 Unfractioned 1.10 (± 1.09) 1.52 (± 1.88) 1.50 (± 1.78) 

XL753 1.60 mm 1.67 (± 2.15) 2.11 (± 2.32) 0.90 (± 0.88) 

 1.70 mm 1.14 (± 1.90) 1.70 (± 2.25) 1.30 (± 1.57) 

 1.80 mm 1.24 (± 1.76) 1.93 (± 2.36) 1.00 (± 1.15) 

 1.90 mm 1.52 (± 1.78) 1.39 (± 1.76) 1.00 (± 1.15) 

 2.00 mm 1.81 (± 2.46) 1.78 (± 2.45) 1.20 (± 1.23) 

 Unfractioned 1.29 (± 2.28) 1.72 (± 2.32) 1.40 (± 1.51) 
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Table 2. Lexicon of appearance, aromatic, and texture attributes developed for cooked rice 

 

 

Term Definition References 
a
 

Appearance 

Degree of whiteness The degree to which the sample is pure white. Reference E         13.0 

Reference D           6.0 

(Yellow to White) 

Grain size The overall dimensions of the rice kernels in 

terms of width and length 

Reference E           7.5 

 

Texture 

Manual stickiness The force required to separate the fingers after 

compressing the sample between the thumb 

and forefinger.  

Rice A                   5.0 

(None to much) 

Initial cohesion The degree to which the un-chewed sample 

sticks together. 

Rice C                  1.0 

Rice A                  3.0 

Rice E                 11.0 

(Loose to tight) 

Hardness The force required to compress the sample. 

 

Rice E                  1.0  

Rice A                  4.0 

Rice C                  5.0 

Rice D                10.0 

(Soft to hard) 

Crunchy cores The amount of crunchy centers perceived in the 

sample while chewing the sample 4-5 chews 

Rice A                  5.0 

Rice D                12.0 

Tooth pull The force required to separate the teeth during 

mastication. 

Rice C                 2.0 

Rice A                 4.0                   

(None to much) 

Aroma/ Aromatics 

Starchy The aromatic associated with the starch of a 

particular grain source. 

UAS 
b
 

Grainy A general term used to describe the aromatics 

of raw or cooked grains, which cannot be tied 

to a specific grain type. 

UAS 

Cardboard / papery The aromatic associated with early stages of 

oxidation. 

UAS 

Sweet aromatic The aromatic associated with materials that 

also have a sweet taste, such as molasses, 

caramelized sugars, cotton candy, maple syrup, 

maltol. 

UAS 
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 (Continued) 

 

 
a
 Reference A: 30 g Riceland Extra Long-Grain Brown Rice (Riceland Foods, Stuttgart, AR); 

Reference C: 30 g Uncle Ben’s Converted Brown Rice (Mars Food, McLean, VA ); Reference 

D: 30 g Riceland Extra Long-Grain Brown Rice (Riceland Foods, Stuttgart, AR) Reference E: 30 

g Riceland Extra Lon- Grain Rice (Riceland Foods, Stuttgart, AR).  
b
 UAS: aroma intensities were rated based on the universal aromatic scale, with a modification: 

soda note in Nabisco Premium Original Saltine Crackers (Mondelez Global LLC, East Hanover, 

NJ, USA) =3.0; cooked-apple aroma in Mott’s Natural Applesauce Mott’s LLP, Plano, TX, 

USA) =7.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Term Definition References 
a
 

Metallic The aromatic associated with metals, tinny or 

irony. 

UAS 

Burlap The aromatic associated with burlap. UAS 

Floral / minty 

 

The aromatic associated with a non-specific 

floral note and sometimes described as minty. 

UAS 
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 Table 3. Physical properties as a function of cultivar and fractionation process
a
 

a
 Values represent the mean (± standard deviation) of three replications. 

 

 

 

 

 

 

 

 

 

XP760 XL753 V3501 Cheniere 

  
Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned 

Chalky area 

(%) 

2.6 (± 0.1) 2.1 (± 0.3) 1.2 (± 0.2) 0.8 (± 0.3) 0.5 (± 0.4) 0.2 (± 0.1) 0.8 (± 0.2) 0.3 (± 0.3) 

 

Discolored area 

(%) 

3.3 (± 5.8) 3.3 (± 5.8) 6.3 (± 6.5) 13.3 (± 1.5) 20.0 (± 3.0) 14.3 (± 3.5) 12.3 (± 2.9) 15.3 (± 4.5) 

 

Broken Kernels 

(%) 

8.0 (± 1.5) 6.2 (± 0.4) 5.8 (± 0.2) 4.8 (± 0.3) 15.1 (± 0.7) 12.0 (± 0.5) 7.5 (± 0.6) 3.4 (± 0.2) 

Whiteness (L*) 
71.9 (± 0.5) 71.6 (± 0.3) 70.6 (± 0.5) 70.4 (± 0.4) 69.9 (± 0.1) 70.0 (± 0.4) 70.9 (± 0.2) 70.5 (± 0.4) 

 

6
1
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Table 4. Chemical composition as a function of cultivar and fractionation process
a
 

a
 Values represent the mean (± standard deviation) of three replications.  

GT: gelatinization temperature 

 

 

 

 

 

 

 

 XP760 XL753 V3501 Cheniere 

 
Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned 

Apparent 

Amylose 

(%) 

20.9 (± 0.3) 19.6 (± 0.3) 19.8 (± 0.3) 18.2 (± 0.2) 22.5 (± 0.5) 20.7 (± 0.9) 24.0 (±1.7) 21.8 (±1.0) 

Crude 

Protein (%) 

7.7 (± 0.1) 7.8 (± 0.0) 8.3 (± 0.0) 8.1 (± 0.1) 8.2 (± 0.2) 7.9 (± 0.2) 8.0 (± 0.1) 7.9 (± 0.2) 

Onset GT     

(◦ C) 

71.2 (± 0.1) 72.2 (± 0.1) 72.0 (± 0.4) 72.9 (± 0.2) 70.3 (± 0.2) 70.4 (± 0.2) 70.7 (± 0.2) 70.9 (± 0.2) 

Peak GT      

(◦ C)  

76.7 (± 0.1) 76.9 (± 0.1) 77.4 (± 0.2) 77.9 (± 0.2) 75.5 (± 0.3) 75.4 (± 0.0) 75.4 (± 0.2) 75.5 (± 0.1) 

End GT       

(◦ C) 

84.1 (± 0.8) 81.6 (± 3.5) 84.9 (± 0.3) 84.2 (± 0.2) 81.5 (± 0.6) 81.4 (± 0.0) 81.0 (± 0.4) 81.0 (± 0.2) 

Enthalpy 

(J/g) 

10.4 (± 1.5) 9.4 (± 0.6) 11.5 (± 0.9) 10.1 (± 1.2) 8.7 (± 1.4) 9.3 (± 0.3) 7.4 (± 1.8) 7.1 (± 1.2) 

6
2
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Table 5. Cooking quality characteristics as a function of cultivar and fractionation process
a
 

a
 Values represent the mean (± standard deviation) of three replications.  

OCD: optimum cooking duration; LER: length expansion ratio; WER: width expansion ratio 

 

 

 

 

 

 

 

 

 

 

 

 
XP760 XL753 V3501 Cheniere 

  
Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned 

OCD (min) 21.0 (± 0.0) 23.7 (± 0.6) 21.7 (± 0.6) 23.3 (± 0.6) 19.7 (± 0.6) 20.7 (± 0.6) 22.0 (± 0.0) 22.3 (± 0.6) 

LER 2.3 (± 1.0) 1.3 (± 1.1) 2.1 (± 0.8) 1.8 (± 0.9) 2.2 (± 0.6) 1.9 (± 0.6) 0.9 (± 0.3) 1.3 (± 1.1) 

WER 0.8 (± 0.2) 1.2 (± 0.4)_ 1.0 (± 0.3) 1.0 (± 0.3) 0.9 (± 0.3) 1.3 (± 0.7) 1.1 (± 0.2) 1.0 (± 0.3) 

6
3
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Table 6. Sensory attributes as a function of cultivar and fractionation process
a
  

  XP760 XL753 V3501 Cheniere 

  Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned 

Appearance 
        

Whiteness 12.3 (± 0.6) 12.4 (± 0.6) 12.4 (± 0.7) 12.6 (± 0.6) 12.5 (± 0.5) 12.4 (± 0.7) 12.6 (± 0.5) 12.6 (± 0.7) 

 Grain size 6.7 (± 0.6) 6.9 (± 0.6) 6.7 (± 0.7) 6.6 (± 0.8 6.5 (± 0.6) 6.7 (± 0.7) 6.9 (± 0.6) 6.8 (± 0.8) 

Aromatics         

Starchy 5.5 (± 0.6) 5.4 (± 0.8) 5.4 (± 0.7) 5.3 (± 0.8) 5.3 (± 0.8) 5.3 (± 0.8) 5.2 (± 0.9) 5.2 (± 0.9) 

Grainy 4.0 (± 0.6) 3.7 (± 1.1) 3.9 (± 0.6) 3.7 (± 1.1) 3.7 (± 1.1) 3.7 (± 1.1) 3.7 (± 1.1) 3.8 (± 0.7) 

Cardboard 2.3 (± 1.6) 2.4 (± 1.5) 2.4 (±1.4) 2.4 (± 1.5) 2.6 (± 1.3) 2.2 (± 1.6) 2.4 (± 1.5) 2.2 (± 1.6) 

Sweet 

Aromatic 

0.2 (± 0.8) 0.0 (± 0.0) 0.2 (± 0.8) 0.0 (± 0.0) 0.0 (± 0.0) 0.0 (± 0.0) 0.2 (± 0.8) 0.0 (± 0.0) 

Metallic 0.9 (± 1.6) 1.0 (± 1.6) 0.9 (± 1.6) 1.1 (± 1.7) 1.0 (± 1.6) 0.9 (± 1.6) 1.1 (± 1.6) 1.0 (± 1.6) 

Burlap 1.2 (± 1.6) 1.4 (± 1.7) 1.5 (± 1.6) 1.3 (± 1.7) 1.3 (± 1.6) 1.3 (± 1.7) 1.1 (± 1.7) 1.5 (± 1.7) 

Floral 0.7 (± 1.4) 0.4 (± 1.0) 0.7 (± 1.4) 0.7 (± 1.4) 0.7 (± 1.4) 0.5 (± 1.3) 0.9 (± 1.5) 0.7 (± 1.4) 

Texture         

Manual 

Stickiness 

6.3 (± 0.7) 6.2 (± 1.1) 6.4 (± 1.1) 6.0 (± 0.8) 6.1 (± 1.4) 6.0 (± 1.2) 6.3 (± 0.9) 6.4 (± 1.2) 

Initial Cohesion 10.1 (± 1.8) 9.4 (± 2.3) 9.1 (± 2.3) 9.4 (± 2.2) 8.9 (± 2.9) 9.3 (± 2.2) 9.1 (± 2.4) 9.0 (± 2.1) 

Hardness 1.8 (± 0.5) 1.9 (± 0.7) 2.1 (± 0.8) 1.9 (± 0.6) 2.1 (± 0.8) 1.8 (± 0.6) 2.2 (± 1.0) 2.2 (± 0.9) 

Crunchy Cores 1.3 (± 1.0) 1.3 (± 1.3) 1.5 (± 1.3) 1.4 (± 1.3) 1.3 (± 1.2) 1.1 (± 1.2) 1.6 (± 1.2) 1.4 (± 1.1) 

Tooth Pull 3.4 (± 0.9) 3.7 (± 0.8) 3.5 (± 0.9) 3.5 (± 1.0) 3.4 (± 0.9) 3.6 (± 1.0) 3.7 (± 0.8) 3.7 (± 0.9) 

a
 Values represent the mean (± standard deviation) of two replications 

6
4
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Table 7. Texture Profile Analysis parameters as a function of cultivar and fractionation process
a
 

  XP760 XL753 V3501 Cheniere 

 Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned Unfractioned Fractioned 

Hardness (N) 14.6 (± 2.1) 13.2 (± 1.7) 15.2 (± 1.7) 15.7 (± 2.5) 13.6 (± 1.6) 13.4 (± 1.4) 15.6 (± 1.8) 15.5 (± 1.2) 

Stickiness  

(N x sec) 
0.6 (± 0.2) 0.6 (± 0.2) 0.7 (± 0.3) 0.6 (± 0.2) 0.5 (± 0.2) 0.4 (± 0.2) 0.6 (± 0.2) 0.3 (± 0.2) 

Cohesiveness 0.4 (± 0.0) 0.4 (± 0.0) 0.4 (± 0.0) 0.4 (± 0.0) 0.4 (± 0.0) 0.4 (± 0.0) 0.4 (± 0.0) 0.4 (± 0.0) 

Chewiness 0.7 (± 0.7) 0.7 (± 0.9) 0.7(± 0.7) 0.7 (± 1.5) 0.8 (± 1.1) 0.7 (± 0.7) 0.7 (± 1.0) 0.7 (± 0.6) 

a
 Values represent the mean (± standard deviation) of ten replications . 
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Figure 1. Mass fractions of thin and thick kernels resulting after thickness fractionation for 

each long-grain cultivar.  
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Figure 2. Head rice yield (HRY) in response to thickness grading of rough rice of four long-

grain cultivars. ** and *** represent a significant difference at P < 0.01 and at P < 

0.001, respectively. Error bars represent standard error of the means. 
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Figure 3. Mean broken kernels as a function of cultivar and fractionation process. ** 

represent a significant difference at P < 0.01. N.S. represents no significant difference at 

P < 0.05. Error bars represent standard error of the means. 
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Figure 4. Mean chalky area percentage as a function of cultivar and fractionation process.  

** represent a significant difference at P < 0.01. Error bars represent standard error of 

the means. 
 

 

 

 

 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Unfractioned Fractioned

C
h

a
lk

y
 a

re
a
 (

%
 )

 

Fractionation 

** 



 

70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pasting profiles of the evaluated long-grain rice cultivars as a function of the   

fractionation process. 
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Figure 6. Mean onset gelatinization temperatures as a function of cultivar and fractionation 

process. ** represent a significant difference at P < 0.01. N.S. represents no significant 

difference at P < 0.05. Error bars represent standard error of the means. 
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Figure 7. Mean optimum cooking durations as a function of cultivar and fractionation 

process. * and *** represent a significant difference at P < 0.05 and at P < 0.001, 

respectively. N.S. represents no significant difference at P < 0.05. Error bars represent 

standard error of the means. 
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Chapter 4. 

Effects of harvest moisture content on physicochemical properties and cooking qualities  

of long-grain rice (Oryza sativa L.) 
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Abstract 

The objective of this study was to investigate the effect of harvest moisture content 

(HMC) on the physicochemical properties and cooking qualities of long-grain rice. Two long-

grain pureline rice cultivars (Cheniere and V3501) and two hybrid rice cultivars (XL753 and 

XP760) were grown and harvested in Harrisburg, AR. Samples of each cultivar were harvested at 

three different levels of HMC, high (>22.0% on a wet basis), medium (18.0-22.0%), and low 

HMC levels (<18 %). Milling qualities, physicochemical properties, and cooking qualities of rice 

samples were evaluated. A quadratic relationship was found between head rice yields (HYC) and 

HMC. Overall, rice harvested at medium moisture contents showed the highest HYC and less 

broken kernels. Additionally, chalkiness of rice decreased as HMC decreased, and medium HMC 

showed lower whiteness values across all the cultivars. Insoluble amylose content and peak 

viscosity seemed uninfluenced by HMC. However, crude protein content and gelatinization 

temperatures increased as HMC decreased. HMC was found to have no significant influence on 

cooking qualities of long-grain rice samples. The present study demonstrates the importance of 

determining the best date for harvesting or the optimum HMC, in order to maximize the 

economic returns through greater HRYs and better physicochemical qualities.  
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1. Introduction 

Rice qualities, with respect to physicochemical properties, cooking qualities, and sensory 

aspects, play an important role in determining rice economic value as well as consumer 

acceptance. Such rice qualities have been found to be affected by many aspects including 

cultivar (genetic difference), pre-harvest factors, and post-harvest factors. Pre-harvest factor 

refers to the group of environmental conditions in which rice has been cultivated and harvested, 

which includes time of planting and irrigation, nitrogen rates, panicle characteristics, kernel 

maturation, growing location, and harvest moisture content (Siebenmorgen, 2013).  

Harvest moisture content (HMC) of rice decreases as rice becomes mature in the field. 

Previous research has shown that harvesting rice while the kernels are immature (high moisture 

contents) decreases total and head rice yields. As the rice continues to be mature (i.e., decreasing 

moisture content), the head rice yield (HYC) reaches a maximum and then decreases.  

Siebenmorgen et al. (2007) suggested that the general ranges of optimal HMCs were 19% to 

22% for long-grain rice cultivars.  

Similarly, moisture content at harvest has been found to affect metabolic processes, 

starch composition and structure, and protein content (Champagne et al., 2005). More 

specifically, Champagne et al. (2005) showed that even though harvest date had little to non-

effect on amylose content, it did influence rice protein content, showing a decline of protein 

content with earlier harvest dates. Additionally, pasting and textural characteristics of rice were 

found to be affected by HMC (Wang et al., 2004; Champagne et al., 2005). Harvesting at the 

earliest date resulted in rice with higher setback and lower breakdown than at the latter dates and, 

subsequently, the early harvested rice, when cooked, was harder, more cohesive, and absorbed 

less saliva in the mouth (Saleh and Meullenet, 2007; Champagne et al., 2005). However, the 
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differences that were found in textural characteristics by trained panel were allegedly too small 

to detect them by untrained consumers. 

Cooking qualities of milled rice include grain volume expansion, water absorption, solids 

in cooking water, and cooking duration (Juliano, 1982), which have been found to be associated 

with physicochemical properties of rice. For example, rice samples with amylose content of 

more than 25% were found to absorb more water and have a fluffy texture upon cooking (Perez 

et al., 1987). The physicochemical changes may be easily induced by processing or 

environmental factors such as moisture content (MC) at harvest. However, little attention has 

been focused onto the effects of HMC on cooking qualities of long-grain rice. Therefore, the 

objective of this study was to investigate the effect of HMC on physicochemical properties and 

cooking qualities of long-grain rice samples. 

 

2. Materials and Methods 

2.1 Rice samples conditioning and milling properties 

Two long-grain pureline rice cultivars (Cheniere and V3501) and two hybrid rice 

cultivars (XL753 and XP760) cultivated in Harrisburg, AR in 2015 were used in this study. As 

shown in Table 1, samples of each cultivar were hand-harvested at various MCs (14.6 to 25.0% 

on a wet basis) to determine the effects of HMC on physicochemical properties and cooking 

qualities of long-grain rice. For further analyses, rice samples were classified into three groups: 

High HMC (>22.0% w.b.), medium HMC (18.0-22.0% w.b.), and low HMC (<18 % w.b.). 

Rough rice samples were cleaned using a dockage tester (XT4, Carter-Day, Minneapolis, MN, 

U.S.A.). The cleaned lots were then conditioned to12.0 ± 0.5% (wet basis) moisture content 

using a climate controlled chamber (26 °C and 56% relative humidity), regulated by a stand-
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alone conditioner (Model 5580A, Parameter Generation & Control, Black Mountain, NC, 

U.S.A.). Rough rice of each cultivar was dehulled using a dehusker (THU-35, Satake, 

Hiroshima, Japan), and the resultant brown rice was milled using a laboratory miller (McGill 

number 2, RAPSCO, Brookshire, TX, U.S.A.). Based on a preliminary test, milling duration of 

each cultivar was determined based on the surface lipid content (mean ± standard deviation = 

0.40 ± 0.05%) of head rice. Each rice sample was stored in a sealed container at 4 °C. The 

containers were placed at room temperature (22 °C) for 24 h prior to sample preparation and 

further analysis. Head rice yield was determined, with head rice being separated from broken 

kernels using a sizing device (Model 61, Grain Machinery Manuf. Corp., Miami, FL) and 

maintained for determination of quality properties. 

 

2.2 Physical properties 

Physical properties, i.e., kernel dimensions, broken kernels, chalky kernels, and 

discoloration of head rice samples were measured using an image analysis system (SeedCount 

SC 5000, Next Instruments, Condell Park, Australia) as described in Chapter 3. In addition, 

degree of whiteness (L*) was determined using near-infrared reflectance (NIR) spectroscopy 

(NIR-DA 7200, Perten Instruments, Huddinge, Sweden). All the analyses were evaluated in 

triplicate.  

 

2.3 Chemical composition 

A 60-g portion from one head rice sub-sample was ground into flour with a cyclone mill 

(3010-30, UDY, Fort Collins, CO, U.S.A.) with a 0.5 mm screen to determine the effects of 
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growing location on moisture content, amylose content, pasting property, thermal property, and 

crude protein content of rice samples. 

The moisture content of the rice flour was measured according to AACCI method (44 

15.02). Amylose content was determined by the simplified iodine assay method (Juliano, 1971) 

as described in Chapter 3. Pasting properties of rice samples were determined using a Rapid 

Visco Analyser (RVA Super 4, Newport Scientific, Warriewood, Australia). A thermogram was 

produced by the viscometer software showing changes in viscosity over the cycle duration, as 

well as summary statistics of peak viscosity, trough viscosity, breakdown (peak-trough 

viscosity), final viscosity, setback (final-peak viscosity), peak time, and pasting temperature. 

Moreover, thermal properties, such as onset, peak, and conclusion gelatinization temperatures 

(GT), of rice samples were measured using a differential scanning calorimeter in modulating 

mode (DSC-Q100, TA Instruments, New Castle, DE, U.S.A.). Finally, crude protein content was 

determined by using NIR spectroscopy (NIR-DA 7200, Perten Instruments, Huddinge, Sweden). 

All the analyses were evaluated by triplicate. 

 

2.4 Cooking qualities 

Optimum cooking duration (OCD) was assessed by Ranghino test for milled rice (Juliano 

and Bechtel, 1985).  Length expansion ratio and width expansion ratio were determined 

according to the methods by Juliano and Bechtel (1985).  

 

2.5 Statistical analysis 

Statistical analyses were performed using JMP Pro (version 12.0, SAS Institute Inc., 

Cary, NC, U.S.A.). To determine the effects of cultivar and HMC on physicochemical properties 
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and cooking qualities, two-way analyses of variance (ANOVA) were used. If a significant 

difference in means was indicated by the ANOVA, post hoc comparisons between variables were 

performed using a Tukey’s honest significant difference (HSD) test. A statistically significant 

difference was defined as P < 0.05. 

 

3. Results and Discussion 

3.1 Effect of HMC on physical properties 

Overall, HRYs were in the range of 51.91% to 67.44% across all the cultivars and HMC 

levels. A significant interaction was found between cultivar and HMC for HRY [F(6,24) = 5.51, 

P = 0.001). More specifically, while cultivar XP760 showed no significant differences among the 

three levels of HMC, cultivars XL753, V3501, and Cheniere showed higher HRYs when they 

were harvested at a medium HMC compared to when harvested at a high HMC. Figure 1 shows 

the relationship between HRY and HMC for all the cultivars described using a quadratic 

equation as defined by Siebenmorgen et al. (2007). The quadratic equations significantly 

described the HRY trends with R
2
 values greater than 0.79 with the exception of cultivar V3501 

whose R
2
 value was 0.58. The results from this study are in line with the findings of 

Siebenmorgen et al. (1992) and Jodari and Linscombe (1996) where it was reported that there is 

a HMC value to which HRY is optimum for each variety, and above or below this HMC the 

HRY tend to decrease. For example, at extremely high HMCs the percentage of immature 

kernels is too high, which can cause an increase of breakage during milling. On the other hand, at 

low HMCs the percentage of kernels that could fissure due to rapid moisture adsorption 

increases, ultimately resulting in lower HRYs. This susceptibility to breakage at high and low 

HMCs, due to immature and fissured kernels respectively, was evidenced in the amount of 
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broken kernels as shown in Figure 2. Overall, the medium MC at harvest showed the less 

percentage of broken kernels compared to the broken kernels percentage at high and low HMC 

[F(2, 24) = 15.48, P < 0.001]. Siebenmorgen et al. (2007) found that the general range of optimal 

HMCs was between 19 to 22% for seven long-grain cultivars grown in Arkansas, whereas the 

optimum range of HMCs for medium grain, Bengal, was between 21.5 to 24.0%. 

Table 2 shows mean scores of physical properties of rice samples as a function of cultivar 

and HMC. There were no significant interactions between cultivar and HMC in any of the 

physical properties of rice samples (P > 0.05 for all). However, differences across cultivars and 

the HMC levels were found for some attributes. Specifically, the whiteness of the rice samples 

ranged from 69.73 to 72.54. As shown in Figure 3, L* values of the rice were significantly 

affected by HMC [F(2, 24) = 9.53, P < 0.001]. Overall, rice harvested at a medium level of 

HMC showed the lowest degree of whiteness as compared to high and low HMCs. Kester et al. 

(1963) found similar results in the three cultivars where rice harvested at mid-season reached the 

lowest lightness and whiteness values compared to rice harvested in earlier and later dates. A 

possible explanation to this trend is sustained by the changes in the chlorophyll content in the 

rice grain during maturation and the chalkiness in the grain. As shown in Figure 4, chalkiness in 

rice kernels decrease as the HMC decreased [F(2, 24) = 29.86, P < 0.001]. Previous research 

demonstrated that chalkiness, a white opaque region in the kernel, has an effect on rice color 

(Kester et al., 1963; Lanning et al., 2011). For immature kernels, at a higher HMC the chalkiness 

of rice is higher and the reflection of light from this increases the whiteness values. Kester et al. 

(1963) indicated that as the rice matures in the field the chlorophyll content (green pigment) and 

chalkiness decreases which in turn decreases the whiteness values. This trend continues into 

some point, where at later harvest dates the rice becomes progressively whiter and lighter than 
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those at mid harvest points (Kester et al., 1963).  

Kernel discoloration was influenced by the cultivar, but not by the HMC [F(3, 24) = 

592.08, P < 0.001]. Pureline cultivar V3501 showed the highest discoloration percentage 

compared to the cultivars Cheniere, XP760, and XL753. Belefant-Miller (2007) reported that 

some cultivars are more prone to discoloration than others because of genetic differences. 

However, the mechanisms and reasons why this occurs are still unknown.  

 

3.2 Effect of HMC on Chemical properties 

 No interaction was found between cultivar and HMC for insoluble amylose content (P > 

0.05). Insoluble amylose content ranged from 19.5 to 25.9 across all the cultivars and HMC 

levels. Overall, purelines Cheniere and V3501 showed higher contents of amylose than did 

hybrids XP760 and XL753 [F(3, 24) = 52.57, P < 0.001]. However, HMC did not have any 

significant influence on amylose content. Similarly, Champagne et al. (2005) and Chrastil (1993) 

reported no significant differences in amylose content from earlier to later harvest dates. Other 

authors had reported increases in amylose content as HMC decreases (Siebenmorgen et al., 

2006). They sustained that this was due to the fact that enzymatic activities from α-amylase are 

higher in the earlier dates, reflecting lower contents of amylose. Then, as the rice matures and the 

moisture content decreases this enzymatic activity is reduced and the amylose content increases. 

However, this study did not observe this tendency and found that amylose content was not 

influenced by HMC.  

Figure 5 shows the influence of HMC on the crude protein content of the four long-grain 

cultivars evaluated. Overall, protein content and HMC seemed to have an inversely proportional 

relationship; lower HMCs showed higher protein contents. This tendency was observed for all 
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the cultivars except V3501 where the protein content between High and Low HMCs was not 

significantly different. Contrastingly, Saleh and Meullenet (2007) found a direct relationship 

between protein content and HMC. They reported that at higher HMC protein content in long –

grain cultivars was slightly higher than corresponding low harvest MC samples due to a greater 

percentage of immature kernels which are known to be richer in protein. On the other hand, 

Chrastil (1993) reported higher protein contents in low HMCs since the number of rice protein 

disulfide bonds increased slightly as the kernel matured.  

The pasting profiles of the varieties as a function of the MC at which they were harvested 

are shown in Figure 6. Even though differences among varieties were observed, the majority of 

the viscosity parameters seemed to be unaffected by HMC (peak, through, breakdown and/or 

setback) (P > 0.05 for all). Wang et al. (2004) reported that peak viscosity of rice flour increased 

as the rice harvest moisture content decreased. These variations were supported due to changes 

in amylase activity, and enzymes related with starch synthesis, which activity is maximized at 

earlier harvest dates and then decreases gradually causing an increase in peak viscosities (Baun 

et al., 1970). However, the results from the present study did not show this trend. On the other 

hand, final viscosity showed a significant interaction between cultivar and HMC [F(6, 24) = 

4.28, P = 0.005]. Final viscosity values of pureline cultivars Cheniere and V3501, were 

unaffected by the different HMC’s. However, higher final viscosities were observed in the lower 

levels of HMCs for hybrids XP760 and XL753, where viscosities increased up to ~3-4 % when 

the HMC lowered down (Figure 5). A significantly negative correlation was found between final 

viscosities and amylose content (r = -0.86, P < 0.001) (Table 5). Asano et al. (2000) reported that 

a decrease in amylose content may occur as rice matures in the field, to which finally may 

originate a decrease in the final viscosity. Onset gelatinization temperatures varied from 70.15 to 
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72.45 °C across the evaluated cultivars, these values are typical of long-grain varieties with 

intermediates gelatinization temperatures, according to the classification made by Juliano, 1979. 

Onset [F(6, 24) = 11.48, P < 0.001] and peak gelatinization [F(6, 24) = 6.48, P < 0.001] 

temperatures showed an interaction between cultivar and HMC. Figure 6 shows that onset 

gelatinization temperature was unaffected by HMC for the three out of the four cultivars 

evaluated, except V3501. Hybrid V3501 harvested at a medium level of MC showed lower onset 

and peak gelatinization temperatures compared to that harvested at high or low MC.  As shown 

in Table 5, a significative negative correlation was observed between amylose content and onset 

gelatinization temperatures (r = -0.68, P = 0.016). Similar correlation was also observed in the 

study by Sasaki et al. (1999) and indicates that starch with higher amylose content has more 

amorphous region and less crystalline, lowering gelatinization temperature and endothermic 

enthalpy. Finally, end gelatinization temperatures and enthalpy were not different for any of the 

cultivars, at any HMCs (P > 0.05).  

 

3.3 Effect of HMC on cooking qualities 

 The two-way ANOVA revealed no significant interactions between cultivar and HMC in 

the cooking qualities of rice, including optimum cooking duration (OCD) and kernel expansion 

(P > 0.05 for all) (Table 4). Additionally, HMC did not have any significant effect on any of the 

rice cooking qualities that were evaluated. 

Overall, only cultivar-related differences were observed in OCD [F(3, 24) = 14.54, P < 

0.001] and length expansion [F(3, 24) = 8.15, P < 0.001]. Cultivars XL753, XP760 and 

Cheniere showed a significantly longer OCD compared to cultivar V3501, and pureline 

Cheniere expanded less in terms of length compared to the other three cultivars. Pureline 
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cultivars showed the highest amylose content and a significantly negative correlation was found 

between length expansion and amylose content (r = -0.59, P = 0.035). Overall, these differences 

between rice cultivars may be due to genetic differences and in their amylose contents and 

granular structures. The long amylopectin chains may crystallize with an amylose molecule, 

which might extend through adjacent ‘clusters’, thereby contributing to double helices in 

several crystallites, which could result in a lower degree of swelling (Singh et al., 2004). 

 

4. Conclusions 

This study demonstrates the influences of harvest moisture content on rice 

physicochemical properties and cooking qualities. Overall, the harvest date was found to show 

little effect on rice cooking qualities. However, it was confirmed the importance of 

acknowledging what is the most adequate HMC level at which rice physical characteristics can 

be optimize and yield returns can be maximized.  
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    Table 1. Harvest dates, and harvest moisture contents (HMCs) of the rough rice used in 

the tests 

  

 

HMC Level 
Harvest Dates 

(DD-MM-YY) 

Cultivar HMC (% w.b) 

High 09-15-2015 XP760 25.0 

  XL753 25.0 

  V3501 22.0 

  Cheniere 25.0 

Medium 09-21-2015 XP760 19.2 

  XL753 18.5 

  Cheniere 20.3 

 09-24-2015 V3501 20.5 

Low 10-02-2015 XP760 14.9 

  XL753 14.6 

  V3501 15.2 

  Cheniere 14.8 
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Table 2. Physical properties as a function of cultivar and harvest moisture content (HMC)
a
 

a
 Values represent the mean (± standard deviation) of three replications 

 

 

 

 

 

HMC 

Level 
Cultivar 

Chalky area  

(%) 

Discolored area 

(%) 

Broken Kernels 

(% By Mass) 

Whiteness 

(L*) 

High XP760 3.6 (± 0.3) 9.7 (± 2.5) 9.2 (± 0.9) 72.3 (± 0.3) 

 XL753 1.6 (± 0.1) 8.7 (± 3.5) 7.4 (± 0.8) 71.1 (± 0.3) 

 V3501 0.8 (±0.3) 16.3 (± 5.5) 18.8 (± 2.0) 70.4 (± 0.4) 

 Cheniere 1.0 (± 0.2) 8.7 (± 4.5) 10.7 (± 1.6) 71.3 (± 0.2) 

Medium XP760 2.6 (± 0.1) 3.3 (± 5.8) 8.0 (± 1.5) 71.9 (± 0.5) 

 XL753 1.2 (± 0.2) 6.3 (± 6.5) 5.8 (± 0.2) 70.6 (± 0.5) 

 V3501 0.5 (± 0.4) 20.0 (± 3.0) 15.1 (± 0.7) 69.9 (± 0.1) 

 Cheniere 0.8 (± 0.2) 12.3 (± 2.9) 7.5 (± 0.6) 70.9 (± 0.2) 

Low XP760 2.4 (± 0.2) 10.3 (± 2.1) 9.0 (± 0.3) 72.2 (± 0.2) 

 XL753 0.9 (± 0.3) 14.7 (± 2.1) 7.6 (± 0.6) 71.2 (± 0.6) 

 V3501 0.3 (± 0.2) 19.3 (± 4.0) 17.6 (± 0.9) 71.1 (± 0.4) 

 Cheniere 0.5 (± 0.3) 12.7 (± 0.6) 7.4 (± 1.0) 71.1 (± 0.3) 
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Table 3. Chemical composition as a function of cultivar and harvest moisture content (HMC)
a
 

a
 Values represent the mean (± standard deviation) of three replications 

HMC Level Cultivar 
Apparent 

Amylose (%) 

Crude 

Protein (%) 

Gelatinization Temperature (°C) Enthalpy 

(J/g) Onset  Peak  End  

High XP760 
20.9 (± 0.2) 7.1 (± 0.1) 71.7 (± 0.1) 76.7 (± 0.1) 84.5 (± 1.3) 12.0 (± 2.8) 

 XL753 
20.4 (± 0.3) 7.7 (± 0.1) 71.8 (± 0.1) 77.4 (± 0.1) 84.4 (± 0.7) 10.8 (± 1.3) 

 V3501 
22.4 (± 1.8) 8.9 (± 0.2) 71.3 (± 0.2) 76.7 (± 0.1) 82.0 (± 0.1) 7.1 (± 0.6) 

 Cheniere 
25.3 (± 0.2) 7.3 (± 0.1) 70.9 (± 0.1) 75.5 (± 0.2) 80.8 (± 0.3) 6.6 (± 1.7) 

Medium XP760 
20.9 (± 0.3) 7.7 (± 0.1) 71.2 (± 0.1) 76.7 (± 0.1) 84.1 (± 0.8) 10.4 (± 1.5) 

 XL753 
19.8 (± 0.3) 8.3 (± 0.0) 72.0 (± 0.4) 77.4 (± 0.2) 84.9 (± 0.3) 11.5 (± 0.9) 

 V3501 
22.5 (± 0.5) 8.2 (± 0.2) 70.3 (± 0.2) 75.5 (± 0.3) 81.5 (± 0.6) 8.7 (± 1.4) 

 Cheniere 
24.0 (± 1.7) 8.0 (± 0.1) 70.7 (± 0.2) 75.4 (± 0.2) 81.0 (± 0.4) 7.4 (± 1.8) 

Low XP760 
21.3 (± 0.3) 8.0 (± 0.0) 71.3 (± 0.1) 76.6 (± 0.2) 84.0 (± 0.5) 10.6 (± 0.8) 

 XL753 
20.9 (± 0.8) 8.1 (± 0.3) 71.6 (± 0.1) 77.1 (± 0.1) 84.0 (± 0.3) 10.1 (± 1.4) 

 V3501 
20.4 (± 0.9) 8.9 (± 0.1) 70.9 (± 0.3) 76.6 (± 0.3) 82.7 (± 0.5) 9.9 (± 0.7) 

 Cheniere 
25.6 (± 0.5) 8.1 (± 0.2) 70.7 (± 0.1) 75.5 (± 0.2) 81.1 (± 0.2) 8.0 (± 0.1) 

8
9
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Table 4. Cooking quality parameters as a function of cultivar and harvest moisture content 

(HMC)
a
 

a
 Values represent the mean (± standard deviation) of three replications 

 

 

 

 

 

 

 

 

HMC 

Level 
Cultivar 

Optimum Cooking 

Duration (min) 

Length Expansion 

Ratio 

Width Expansion 

Ratio 

High XP760 
21.0 (± 0.0) 2.2 (± 0.6) 1.1 (± 0.3) 

 XL753 
22.3 (± 0.6) 2.2 (± 1.0) 0.8 (± 0.3) 

 V3501 
19.7 (± 1.2) 2.3 (± 0.6) 1.0 (± 0.3) 

 Cheniere 
21.3 (± 0.6) 1.8 (± 0.7) 1.1 (± 0.2) 

Medium XP760 
21.0 (± 0.0) 2.3 (± 1.0) 0.8 (± 0.2) 

 XL753 
21.7 (± 0.6) 2.1 (± 0.8) 1.0 (± 0.3) 

 V3501 
19.7 (± 0.6) 2.2 (± 0.6) 0.9 (± 0.3) 

 Cheniere 
22.0 (± 0.0) 0.9 (± 0.3) 1.1 (± 0.2) 

Low XP760 
21.3 (± 1.5) 1.8 (± 0.5) 1.2 (± 0.3) 

 XL753 
21.3 (± 1.2) 2.6 (± 0.9) 0.9 (± 0.4) 

 V3501 
19.7 (± 0.6) 2.1 (± 0.3) 0.9 (± 0.2) 

 Cheniere 
21.7 (± 0.6) 1.7 (± 0.7) 1.0 (± 0.3) 



 

91 
 

Table 5. Descriptive statistics and Pearson correlations among the various physico-chemical 

and cooking properties 

 

  Mean s.d (1) (2) (3) (4) (5) (6) 

(1)Amylose  22.03 1.96 
      

(2)Crude Protein 8.02 0.54 
-0.17 

     
(3)Onset GT 71.20 0.51 

-0.67
*
 -0.18 

    
(4)Final Viscosity 2745.16 568.79 

-0.86
**

 0.41 0.46 
   

(5)OCD 21.05 0.92 
0.11 -0.55 0.39 -0.44 

  
(6)LER 2.01 0.42 

-0.59
*
 0.11 0.45 0.77

**
 -0.40 

 
(7)WER 0.97 0.12 

0.28 -0.17 -0.07 -0.39 0.08 0.55 

GT: gelatinization temperature; OCD: optimum cooking duration; LER: length expansion ratio; 

WER: width expansion ratio 
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Figure 1. Head rice yields (HRYs) as a function of harvest moisture content for the 

indicated long-grain cultivars. ai, bi, and ci indicate the regression variables of fitting 

the quadratic equation: HRY % = ai HMC
2 

+ bi HMC + ci  (Siebenmorgen et al. 2007). 

The subscript i refers to each cultivar set.  
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Figure 2. Mean broken kernels as a function of cultivar and harvest moisture content 

(HMC). *** represent a significant difference at P < 0.001. Mean ratings with different 

letters are significantly different (P < 0.05). Error bars represent standard error of the 

means. 
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Figure 3. Mean whiteness values as a function of cultivar and harvest moisture content 

(HMC). *** represent a significant difference at P < 0.001. Mean ratings with different 

letters are significantly different (P < 0.05). Error bars represent standard error of the 

means. 

 

 

 

 

 

 

 

 

69.5

70.0

70.5

71.0

71.5

72.0

72.5

High HMC Medium HMC Low HMC

W
h

it
en

es
s 

(L
*
) 

a 
a 

b 

*** 



 

95 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mean chalky area percentage as a function of cultivar and harvest moisture 

content (HMC). *** represent a significant difference at P < 0.001. Mean ratings with 

different letters are significantly different (P < 0.05). Error bars represent standard error 

of the means. 
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Figure 5. Mean crude protein content as a function of cultivar and harvest moisture content 

(HMC). Mean ratings with different letters are significantly different (P < 0.05). Error 

bars represent standard error of the means. 
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Figure 6. Pasting profiles of the evaluated long-grain rice cultivars as a function of the 

harvest moisture content (HMC). 

 

 

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

V
is

co
si

ty
 (

cP
) 

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

0 5 10 15

V
is

co
si

ty
 (

cP
) 

Time (min) 

V3501 

0

20

40

60

80

100

0

500

1000

1500

2000

2500

3000

3500

T
em

p
er

a
tu

re
 (

°C
) 

 

0

20

40

60

80

100

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15
T

em
p

er
a
tu

re
 (

°C
) 

Time (min) 

Cheniere 

XP760 XL753 

High HMC Medium HMC Low HMC 



 

98 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mean onset gelatinization temperatures as a function of cultivar and harvest 

moisture content (HMC). Mean ratings with different letters are significantly different 

(P < 0.05). Error bars represent standard error of the means. 
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Chapter 5. 

 Effects of cultivating location on physicochemical properties and cooking qualities  

of long-grain rice (Oryza sativa L.) 
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Abstract 

Environmental variations across different cultivating locations have found to have a 

direct impact on milling yields and physicochemical properties of rice. However, little attention 

has been paid to the influence of cultivation location on cooking and sensory qualities of rice. 

This study aimed to determine whether cultivating location can affect physicochemical 

properties, cooking qualities, and sensory characteristics of long-grain rice. Four long-grain 

cultivars (XP760, XL753, V3501, and Cheniere) cultivated in Harrisburg (Arkansas) and Alvin 

(Texas) were harvest at a medium level of moisture content in fall 2015 and these were 

compared between the two cultivation locations with respect to physicochemical properties, 

cooking qualities, and sensory characteristics. Rice samples grown in Alvin had more broken, 

chalky, and discolored kernels than those grown in Harrisburg, reducing head rice yields. In 

addition, rice samples grown in Alvin showed lower amylose and protein contents, lower peak 

viscosities, and higher gelatinization temperatures than those grown in Harrisburg. Rice samples 

grown in Alvin showed undesirable cooking qualities such as longer cooking duration and 

greater width-expansion when compared to those grown in Harrisburg. When cooked, rice 

samples grown in Alvin showed greater intensities of starchy flavor and tooth-pull characteristics 

than did those grown in Harrisburg. The present study demonstrated that physicochemical 

properties, cooking qualities, and sensory characteristics of long-grain rice cultivars can be 

different between their grown locations.  
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1. Introduction 

Rice is grown in all five continents in the world and around 90 % of the world’s rice is 

cultivated in Asia. Inherently, genetic variations across the different geographical locations 

throughout the world could make rice quality as one of the most variable aspects in rice 

production.  In the same fashion, within the same country different growing locations have  

shown to express different milling and quality traits in rice. Siebenmorgen et al. (2006) found 

that rice growth location (Lodge Corner in AR versus Essex in MO) affects kernel thickness 

distributions, green kernel content, fissured kernel content, and head rice yield (HRY), which 

might be due to the differences in nighttime air temperatures (NTATs) during the kernel 

development stage and soil composition between the two different locations evaluated. For 

example, elevated NTATs during kernel development stage has been found to influence 

physicochemical properties (Aboubacar et al. 2006; Lanning et al, 2012, Patindol et al., 2014), 

and milling qualities of rice (Siebenmorgen et al., 1998; Peng et al., 2004). An increase on 

undesirable characteristics such as chalkiness and fissures in rice grain was found to be linked to 

elevated NTATs during kernel development stage (Siebenmorgen et al., 1998; Lanning and 

Siebenmorgen, 2013). Lisle et al. (2000) in a study performed in three long-grain cultivars, 

reported that when rice was grown at higher NTATs (day/nighttime air temperature: 38/21°C) in 

a glasshouse, the amount of chalky kernels was significantly greater than when grown at lower 

air temperatures (26/15°C). Similarly, Fitzgerald and Resurreccion (2009) reported that the 

formation of chalky rice is presumably explained due to a decreased in the substrate supply from 

the soil to the rice panicle and a reduction in enzymatic activity in high temperatures during 

critical developmental stages of rice growth. In addition, elevated NTATs has been found to 

influence starch accumulation, i.e., a decrease in total starch and amylose content in the 
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endosperm (Ahmed et al., 2014); however, other components such as protein and lipid and rice 

flour pasting properties seemed to be unaffected by NTATs (Cooper et al., 2008).  

Cooking qualities and sensory aspects of rice are major elements in rice producer 

countries or in countries where rice is a staple food. These aspects are directly influenced by rice 

physical properties and chemical composition such as amylose, amylopectin, and protein. Based 

on previous findings regarding the effects of different growing location on physicochemical 

properties and milling qualities, there is a question as to whether growing locations can also 

influence cooking qualities and sensory aspects of rice. Therefore, this study aims to determine 

whether cultivating location affects physicochemical properties, cooking qualities, and sensory 

characteristics of long-grain rice, with a case of study in the two locations: Alvin in Texas (TX) 

and Harrisburg in Arkansas (AR).  

 

2. Materials and Methods  

2.1 Rice samples conditioning and milling properties 

Two long-grain pureline cultivars (Cheniere and V3501) and two hybrid cultivars 

(XL753 and XP760) were used in this study. Each cultivar was cultivated in two different 

locations: Alvin, TX (Latitude 29° 25' 25.8492'' N; Longitude 95° 14' 38.7672'' W) and 

Harrisburg, AR (Latitude 35°33' 51.29" N; Longitude 90°43' 0.4" W). Rice samples were hand-

harvested at a medium level (18.5-20.3 % on a wet basis) of harvest moisture content (HMC).  

HMC of the first hand-stripping 200 kernels of rough rice from six randomly selected panicles 

were measured using a single-kernel moisture meter (CTR 800E, Shizuoka Seiki, Shizuoka, 

Japan). Rough rice samples were cleaned using a dockage tester (XT4, Carter-Day, Minneapolis, 

MN, U.S.A.). The cleaned lots were then conditioned to12.0 ± 0.5% (wet basis) moisture content 
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using a climate controlled chamber (26 °C and 56% relative humidity), regulated by a stand-

alone conditioner (Model 5580A, Parameter Generation & Control, Black Mountain, N.C.). 

Rough rice of each cultivar was dehulled using a dehusker (THU-35, Satake, Hiroshima, Japan), 

and the resultant brown rice was milled using a laboratory miller (McGill number 2, RAPSCO, 

Brookshire, TX, U.S.A.). Based on a preliminary test, milling duration of each cultivar was 

determined based on the surface lipid content (mean ± standard deviation = 0.40 ± 0.05%) of 

head rice. Each rice sample was stored in a sealed container at 4 °C. The containers were placed 

at room temperature (22 °C) for 24 h prior to sample preparation and further analysis. Head rice 

yield was determined, with head rice being separated from broken kernels using a sizing device 

(Model 61, Grain Machinery Manuf. Corp., Miami, FL) and maintained for determination of 

quality properties. 

 

2.2 Physical properties 

Physical properties, i.e., kernel dimensions, broken kernels, and chalkiness of head rice 

samples were measured using an image analysis system (SeedCount SC 5000, Next Instruments, 

Condell Park, Australia) as described in Chapter 3. In addition, degree of whiteness (L*) was 

determined using near-infrared reflectance (NIR) spectroscopy (NIR-DA 7200, Perten 

Instruments, Huddinge, Sweden). All the analyses were evaluated in triplicate.  

 

2.3 Chemical composition 

A 60-g portion from one head rice sub-sample was ground into flour with a cyclone mill 

(3010-30, UDY, Fort Collins, CO, U.S.A.) with a 0.5 mm screen to determine the effects of 
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growing location on moisture content, amylose content, pasting property, thermal property, and 

crude protein content of rice samples. 

The moisture content of the rice flour was measured according to AACCI method (44 

15.02). Amylose content was determined by the simplified iodine assay method (Juliano, 1971) 

as described in Chapter 3. Pasting properties of rice samples were determined using a Rapid 

Visco Analyser (RVA Super 4, Newport Scientific, Warriewood, Australia). A thermogram was 

produced by the viscometer software showing changes in viscosity over the cycle duration, as 

well as summary statistics of peak viscosity, trough viscosity, breakdown (peak-trough 

viscosity), final viscosity, setback (final-peak viscosity), peak time, and pasting temperature. 

Moreover, thermal properties, such as onset, peak, and conclusion gelatinization temperatures 

(GT), of rice samples were measured using a differential scanning calorimeter in modulating 

mode (DSC-Q100, TA Instruments, New Castle, DE, U.S.A.). Finally, crude protein content was 

determined by using NIR spectroscopy (NIR-DA 7200, Perten Instruments, Huddinge, Sweden). 

All the analyses were evaluated by triplicate. 

 

2.4 Cooking qualities 

Optimum cooking duration (OCD) was assessed by Ranghino test for milled rice (Juliano 

and Bechtel, 1985). Length expansion ratio, and width expansion ratio were determined 

according to the methods by Juliano and Bechtel (1985).  

 

2.5 Texture profile analysis of cooked rice  

Texture profile analysis (TPA) of rice samples was conducted as described in Chapter 3.  
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2.6 Descriptive sensory analysis of cooked rice 

Descriptive sensory analysis of rice samples was conducted according to the procedures 

described in Chapter 3 at the University of Arkansas Sensory Service Center (Fayetteville, AR, 

U.S.A.). Both fractioned and unfractioned rice samples of each cultivar were used, so there were 

a total of 16 sub-samples (i.e., 4 cultivars x 2 fractions x 2 cultivating locations). Nine 

descriptive panelists rated intensities of 19 sensory attributes (4 appearance-, 3 texture-, 4 taste-, 

7 flavor-, and 1 feeling factor-related attributes) on continuous numerical scales ranging from 0 

to 15 (Meilgaard et al., 2007) conforming to the Spectrum method (Sensory Spectrum Inc., 

Chatham, NJ, U.S.A.). To minimize sensory fatigue, a 5-min break was allowed between sample 

presentation. During the break, spring water (Clear Mountain Spring Water, taylor Distributing, 

Heber Springs, AR, U.S.A.) and unsalted crackers (Nabisco Premium Unsalted Tops Saltine 

Crackers, Mondelēz Global LLC, East Hanover, NJ, U.S.A.) were presented for palate cleansing. 

The entire analysis was repeated, on the different day, to provide two replicate sensory analyses 

of the cooked-rice samples. 

 

2.7 Statistical analysis 

Statistical analyses were performed using JMP Pro (version 12.0, SAS Institute Inc., 

Cary, NC, U.S.A.). To determine the effects of cultivar and cultivating location on 

physicochemical properties, cooking qualities, and textural characteristics, two-way analyses of 

variance (ANOVA) were used. If a significant difference in means was indicated by the 

ANOVA, post hoc comparisons between variables were performed using a Tukey’s honest 

significant difference (HSD) test. Sensory data were analyzed using a two-way ANOVA treating 
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cultivar and cultivating location as fixed effects. A statistically significant difference was defined 

as P < 0.05. 

 

3. Results and Discussion 

3.1 Effects of cultivating location on physical properties 

HRY significantly differed between the two locations across all the cultivars [F(3,16) = 

123.51; P < 0.001) . As shown in Figure 1, cultivars that were grown in Harrisburg, AR showed 

up to 28 % higher HRYs compared to the same cultivars cultivated in Alvin, TX. Based on the 

field temperatures recorded throughout the critical grain-filling stages (R6-R8) in the two 

evaluated locations (Table 1), daytime (7:00 am to 7:00 pm) and nighttime temperatures (8:00 

pm to 6:00 am) were on average 4°C greater in Alvin, TX than in Harrisburg, AR. Many studies 

have established the effect of elevated NTATs in contributing to a decrease on head rice yields 

(Peng et al., 2004; Sheehy et al., 2006; Huang et al., 2016). Perhaps, one of the most extensive 

research regarding the relationship between rice yield and temperature was done by Peng et al. 

(2004) using data from irrigated field experiments conducted during 1992 to 2003. The authors 

reported a reduction by as much as 10% for every 1 °C increase in night time minimum 

temperature. Additionally, Huang et al. (2016) reported in a comparison study between two 

locations in South of China, a decrease of 28 % of grain yield in the location with approximately 

5 °C higher NTATs. These results are often associated with a decrease on panicle mass (Ziska 

and Manalo, 1996) and kernel dimensions when rice is subjected to high NTATs. Siebenmorgen 

and Copper (2006) found that head rice yield is highly sensitive to the thickness distribution 

pattern of a population of rice kernels and, by altering the thickness distribution of kernels, an 

increase in nighttime temperature could reduce head rice yield. 
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Table 2 shows mean values of the physical properties of rice samples as a function of 

cultivar and cultivating location. There was a significant interaction between cultivar and 

cultivating location on the percentage of chalky kernels [F(3,16) = 42.27; P < 0.001]. For all the 

cultivars the numerical mean of chalky kernels was higher in Harrisburg than in Alvin. However, 

statistically significant differences were only reflected in cultivars XP760 and XL753. In 

accordance to the temperature data obtained from the two locations, the high NTATs recorded in 

Alvin could explain the increase in the amount of chalky kernels in this location. Similar results 

were reported by Lisle et al. (2000) where the amount of chalky kernels was significantly greater 

at higher NTATs (21 °C) than at lower NTATs (15 °C) in three long-grain cultivars. It has been 

proposed that the relationship between chalkiness and NTATs is not strictly linear, and it is 

highly dependent on the cultivar. For example, Yoshida and Hara (1977) found a quadratic 

relationship between chalkiness and NTATs in indica (IR20) and japonica (Fujisaka 5) rice 

cultivars, with an increase on chalkiness in temperatures above and below 18 °C. Ambardekar et 

al. (2011) also reported a second-order relationship between NTATs and chalkiness of four long- 

grain cultivars, suggesting the probability of a specific temperature where the enzymatic activity 

in charge of the packing of starch granules during the grain-filling stage is optimum.  

Degree of whiteness designated by L* values (greater values indicate a whiter rice) was 

found to be influenced by cultivating location [F(1, 16) = 59.63, P < 0.001]. For all the cultivars, 

rice grown in Alvin had greater L* values than those grown in Harrisburg. Since chalkiness is 

typically manifested as a white opaque region in the rice kernel, it is frequently shown a direct 

relationship between chalkiness and whiteness of rice (Lanning et al., 2011). Thus, since the high 

NTATs might cause a greater level of chalkiness in rice grown in Alvin, which in turn might 

result in higher L* values.  
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There was a significant interaction between cultivar and cultivating location on broken 

kernels [F(3, 16) = 59.62, P < 0.001] (Table 2). Hybrids XP760 and XL753 and pureline 

Cheniere grown in Alvin showed a significantly higher amount of broken kernels compared to 

those grown in Harrisburg. However, for cultivar V3501 the difference between the two 

locations was not statistically significant (P > 0.05). Siebenmorgen et al. (1998) reported that 

elevated air temperature levels produced higher amounts of fissured and broken kernels across a 

range of relative humidities due to an expansion on the outer portions of the kernel and a pulling 

apart force from the central region when the temperature increases causing the kernel to fissure. 

The greater presence of chalky kernels grown in Alvin might have influence the percentage of 

broken kernels and the posterior reduction of rice yields, since chalky kernels tend to be more 

susceptible to fissures and breakage during milling (Siebenmorgen et al., 2006).  

 

3.2 Effects of cultivating location on chemical properties 

 As shown in Figure 2, a significant interaction was found between cultivar and 

cultivating location on crude protein content [F(3, 16) = 9.690, P < 0.001]. The hybrid cultivars 

XP760 and XL753 grown in Alvin showed lower percentage of protein content compared to 

those grown in Harrisburg, but such a trend was not observed in the pureline cultivars. The 

greater percentage of protein content in the hybrid cultivars grown in Alvin might be associated 

with the higher NTATs of the cultivating location in comparison to the NTATs of Harrisburg. 

Laning et al. (2012) reported a negative correlation between crude protein content and NTATs, 

indicating that protein content decreased with elevated NTATs for all seven long-grain cultivars, 

which might be due to insufficient accumulation of starch during the filling stage. Yamakawa et 

al. (2007) also demonstrated that elevated temperatures during the ripening period might 



 

109 
 

suppress expression levels of various genes associated with seed-protein development. However, 

since contrasting results, i.e., an increase of protein content with an increase of air-temperatures 

in the field, have been also reported (Maeshige, 1981; Tamaki et al., 1989), further studies are 

needed in this regard. 

The insoluble amylose contents of cultivars XL753 and V3501 were found to be lower 

when grown in Alvin compared to when grown in Harriburg [F(3, 16) = 10.434, P < 0.001] as 

shown in Figure 3. The effect of NTATs on starch composition of rice has been widely studied 

(Aboubacar et al. 2006; Lanning et al., 2012; Patindol et al., 2014). Overall, elevated NTATs 

cause the amylose content in the endosperm to decrease (Resurreccion et al., 1977; Asaoka et al., 

1984; Asaoka et al., 1985). The decrease in amylose content is usually explained by the reduced 

activity of the key enzyme that catalyzes amylose biosynthesis, granule bound starch synthase or 

GBSS. However, these results are sometimes dependent on the cultivar and are more sensitive to 

cultivars in the presence of a single-nucleotide polymorphism of AGGTATA to AGTTATA, in 

the allele encoding for GBSS. Such polymorphism is sensitive to temperature and those cultivars 

with the AGTTATA allele result in fewer mature GBSS transcripts at high NTATs (Larkin and 

Park, 1999).  

Pasting profiles of the four cultivars evaluated as a function of the growing location are 

illustrated in Figure 4. The two- way ANOVA showed no significant interaction between cultivar 

and cultivating location for peak viscosity (P > 0.05). The growing location, on the other hand, 

significantly influenced peak viscosity in long-grain rice [F(1, 16) = 115.20, P < 0.001]. For all 

the cultivars that were grown in Alvin the peak viscosity increased up to 12 % compared to those 

grown in Harrisburg. In addition, breakdown [F(1, 16) =65.25, P < 0.001] and final viscosity 

[F(1, 16) = 125.68, P < 0.001] were significantly higher in the rice samples grown in Alvin than 
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those grown in Harrisburg. However, setback values were the other way around [F(1, 16) = 

76.80 P < 0.001].  In the two-year study comparing the NTAT effect on four long-grain rice 

cultivars, Patindol et al. (2014) showed that amylose content was negatively correlated with 

peak, final, and breakdown viscosities, whereas it was positively correlated with setback and 

total setback viscosity. Additionally, changes in amylopectin chains as affected by elevated air 

temperatures, i.e., a decrease in the percentage of amylopectin short chains (DP ≤ 18) and a 

corresponding increase in the percentage of long chains (DP ≥ 19), were also positively 

correlated with rice flour pasting properties.  

 Gelatinization temperatures significantly differed between the two cultivating locations. 

As shown in Figure 5, long-grain rice cultivars grown in Alvin had a significantly higher onset 

gelatinization temperature than those grown in Harrisburg [F(1, 16) = 509.24, P < 0.001].  

Similarly, rice samples grown in Alvin showed higher peak [F(1, 16) = 2158.71, P < 0.001] and 

end gelatinization temperatures [F(1, 16) = 150.04, P < 0.001]. Enthalpy values, on the other 

hand, were unaffected by the cultivation location (P > 0.05). Suzuki et al. (2003) reported a 

significantly decreased in onset, peak, and conclusion gelatinization temperatures, with lower 

environmental temperatures during seed development. In a similar vein, Lanning et al. (2012) 

showed positive correlations of gelatinization temperatures and NTATs.  

 

3.3 Effects of cultivating location on cooking qualities 

Table 4 shows the mean values of the cooking quality parameters as a function of cultivar 

and cultivating location. Optimum cooking duration, a parameter that is often measured in rice 

cooking quality, showed significant differences between the two locations [F(1, 16) = 36.00 P < 

0.001]. The long-grain rice samples grown in Alvin took a significantly longer cooking duration 



 

111 
 

than those grown in Harrisburg, which might due to the high gelatinization temperatures and the 

lower content of insoluble amylose reported in Alvin, since gelatinization temperature has been 

positively correlated with cooking duration of rice, and amylose content has shown a negative 

correlation (Bhattacharya and Snowbhagya, 1971; Singh et al., 2005). Additionally, according to 

Bhattacharya and Snowbhagya (1971), cooking duration is primarily related to the surface area 

of the milled rice which has also shown to be affected by NTATs (Siebenmorgen and Copper, 

2006). 

Long-grain rice samples grown in Alvin showed a greater width expansion compared to 

those grown in Harrisburg [F(1, 16) = 8.00, P = 0.006]. Length-wise expansion without a 

corresponding increase in girth is considered as a highly desirable trait of rice grain quality. This 

undesirable characteristic is often associated to lowest amylose content, as it was evidenced by 

the long-grain rice samples grown in Alvin (Singh et al., 2005). Furthermore, cultivating location 

was found to have no effects on length expansion for any of the cultivars evaluated (P > 0.05) 

(Table 4).  

 

3.4 Effects of cultivating location on sensory and textural characteristics of cooked rice 

A Two-way ANOVA was conducted to determine the effect of growing location and 

cultivar on the sensory characteristics of long-grain rice. There no significant interactions on any 

sensory characteristics (P > 0.05 for all) (Table 5). Cultivating location was found to have a 

significant effect on the starchy flavor [F(1, 136) = 9.30, P = 0.003] and tooth-pull textural 

characteristics [F(1, 136) = 6.16, P = 0.001]. As shown in Figures 6 and 7, rice samples grown in 

Alvin showed significantly higher intensity ratings on both attributes than those grown in 

Harrisburg.  
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Cultivating location affected a couple of texture profile analysis (TPA) parameters, 

hardness [F(1, 72) = 20.08, P = 0.037] and cohesiveness [F(1, 72) = 20.62, P < 0.001]. Rice 

samples grown in Harrisburg showed higher hardness and cohesiveness values compared to 

those grown in Alvin (Figures 8 and 9). Since starch is the main component of rice, changes in 

the starch component can influence textural characteristics of rice. For example, the result, i.e., 

the higher values of amylose content in the rice samples grown in Harrisburg than those grown in 

Alvin, could explain these differences since previous studies have shown a positive correlation 

between amylose and hardness of cooked rice samples (Sowbhagya et al., 1987; Singh et al., 

2005). Additionally, Singh et al. (2005) reported that cohesiveness was positively correlated with 

amylose content, but it was negatively correlated with cooking duration.  

 

4. Conclusions 

This study demonstrated the impacts of cultivating locations on cooking qualities and 

sensory characteristics of long-grain rice samples. Rice samples grown in Alvin had more 

broken, chalky, and discolored kernels than those grown in Harrisburg, reducing head rice yields. 

In addition, rice samples grown in Alvin showed lower amylose and protein contents, lower peak 

viscosities, and higher gelatinization temperatures than those grown in Harrisburg. Rice samples 

grown in Alvin showed longer cooking duration and greater width-expansion than those grown 

in Harrisburg. When cooked, rice samples grown in Alvin showed greater intensities of starchy 

flavor and tooth-pull characteristics than those grown in Harrisburg. The present study showed 

that physicochemical properties, cooking qualities, and sensory characters of long-grain rice 

cultivars can be different between their grown locations, which might be related to the elevated 

nighttime air temperatures.  
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Table 1. Maximum, minimum and average day and nighttime temperatures registered in 

the two evaluated locations during grain filling stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Daytime Temperatures (° C) Nighttime Temperatures (° C) 

 Maximum Minimum Mean Maximum Minimum Mean 

Harrisburg, AR 33.89 9.40 26.20 28.82 9.41 21.08 

Alvin, TX 35.37 23.10 30.76 28.98 23.33 25.88 
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Table 2. Physical properties as a function of cultivar and cultivating location 
a
 

a
 Values represent the mean (± standard deviation) of three replications 

  

 

Location Cultivar Chalky area (%) Broken kernels (%) Whiteness (L*) 

Harrisburg, AR XP760 2.6 (± 0.1) 8.0 (± 1.5) 71.9 (± 0.5) 

 
XL753 1.2 (± 0.2) 5.8 (± 0.2) 70.6 (± 0.5) 

 
V3501 0.5 (± 0.4) 15.1 (± 0.7) 69.9 (± 0.1) 

 
Cheniere 0.8 (± 0.2) 7.5 (± 0.6) 70.9 (± 0.2) 

Alvin, TX XP760 9.8 (± 1.4) 14.4 (± 1.2) 73.5 (± 0.7) 

 
XL753 7.0 (± 0.5) 19.6 (± 0.7) 72.3 (± 0.1) 

 
V3501 1.5 (± 0.6) 16.4 (± 0.6) 70.5 (± 0.4) 

 
Cheniere 2.0 (± 0.3) 12.0 (± 0.5) 72.0 (± 0.4) 
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Table 3. Chemical compositions as a function of cultivar and cultivating location 
a
 

Location Cultivar 
Apparent 

Amylose (%) 

Crude Protein 

(%) 

Gelatinization Temperature (° C) Enthalpy 

(J/g) Onset Peak End 

Harrisburg, AR XP760 20.9 (± 0.3) 7.7 (± 0.1) 71.2 (± 0.1) 76.7 (± 0.1) 84.1 (± 0.8) 10.4 (± 1.5) 

 XL753 19.8 (± 0.3) 8.3 (± 0.0) 72.0 (± 0.4) 77.4 (± 0.2) 84.9 (± 0.3) 11.5 (± 0.9) 

 V3501 22.5 (± 0.5) 8.2 (± 0.2) 70.3 (± 0.2) 75.5 (± 0.3) 81.5 (± 0.6) 8.7 (± 1.4) 

 Cheniere 24.0 (± 1.7) 8.0 (± 0.1) 70.7 (± 0.2) 75.4 (± 0.2) 81.0 (± 0.4) 7.4 (± 1.8) 

Alvin, TX XP760 18.9 (± 0.2) 7.1 (± 0.2) 75.2 (± 0.2) 80.1 (± 0.3) 86.2 (± 0.7) 11.0 (± 2.2) 

 XL753 17.4 (± 1.0) 7.4 (± 0.2) 76.0 (± 0.1) 80.9 (± 0.0) 86.4 (± 0.4) 9.5 (± 0.7) 

 V3501 20.2 (± 0.2) 8.0 (± 0.1) 75.4 (± 0.1) 79.9 (± 0.1) 85.2 (± 0.1) 10.9 (± 0.5) 

 Cheniere 25.9 (± 0.7) 7.7 (± 0.1) 74.6 (± 1.2) 78.4 (± 0.0) 83.8 (± 0.3) 8.6 (± 0.6) 
a
 Values represent the mean (± standard deviation) of three replications 
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Table 4. Cooking quality parameters as a function of cultivar and cultivating location 
a
 

 

Location Cultivar 

Optimum 

Cooking 

Duration (min) 

Length Expansion 

Ratio 

Width Expansion 

Ratio 

Harrisburg, AR XP760 21.0 (± 0.0) 2.3 (± 1.0) 0.8 (± 0.2) 

 XL753 21.7 (± 0.6) 2.1 (± 0.8) 1.0 (± 0.3) 

 V3501 19.7 (± 0.6) 2.2 (± 0.6) 0.9 (± 0.3) 

 Cheniere 22.0 (± 0.0) 0.9 (± 0.3) 1.1 (± 0.2) 

Alvin, TX XP760 24.0 (± 1.7) 1.9 (± 0.5) 1.0 (± 0.4) 

 XL753 25.7 (± 0.6) 1.8 (± 0.6) 1.1 (± 0.3) 

 V3501 20.7 (± 1.2) 2.1 (± 0.6) 1.2 (± 0.4) 

 Cheniere 22.0 (± 0.0) 1.3 (± 0.6) 1.3 (± 0.2) 
a
 Values represent the mean (± standard deviation) of three replications 
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Table 5. Sensory characteristics as a function of cultivar and cultivating location 
a
 

 Harrisburg, AR Alvin, TX 

 XP760 XL753 V3501 Cheniere XP760 XL753 V3501 Cheniere 

Appearance 
        

  Whiteness 12.3 (± 0.6) 12.4 (± 0.7) 12.5 (± 0.5) 12.6 (± 0.5) 12 (± 0.6) 12.5 (± 0.4) 12.3 (± 0.4) 11.9 (± 2.0) 

Flavor         

  Starchy 
5.5 (± 0.6) 5.4 (± 0.7) 5.3 (± 0.8) 5.2 (± 0.9) 5.7 (± 0.8) 5.8 (± 0.7) 5.7 (± 0.7) 5.7 (± 0.7) 

  Grainy 4.0 (± 0.6) 3.9 (± 0.6) 3.7 (± 1.1) 3.7 (± 1.1) 3.7 (± 1.2) 3.6 (± 1.5) 3.5 (± 1.5) 3.7 (± 1.1) 

  Cardboard 2.3 (± 1.6) 2.4 (± 1.4) 2.6 (± 1.3) 2.4 (± 1.5) 2.4 (± 1.6) 2.1 (± 1.7) 2.1 (± 1.7) 2.3 (± 1.6) 

  Sweet aromatic 0.2 (± 0.8) 0.2 (± 0.8) 0.0 (± 0.0) 0.2 (± 0.8) 0.3 (± 1.0) 0.4 (± 1.1) 0.4 (± 1.1) 0.3 (± 1.0) 

  Metallic 0.9 (± 1.6) 0.9 (± 1.6) 1.0 (± 1.6) 1.1 (± 1.6) 0.9 (± 1.4) 1.5 (± 1.6) 1.4 (± 1.7) 0.9 (± 1.5) 

  Burlap 1.2 (± 1.6) 1.5 (± 1.6) 1.3 (± 1.6) 1.1 (± 1.6) 1.6 (± 1.7) 1.5 (± 1.6) 1.5 (± 1.6) 1.4 (± 1.6) 

  Floral 0.7 (± 1.4) 0.7 (± 1.4) 0.7 (± 1.4) 0.9 (± 1.4) 1.0 (± 1.5) 0.7 (± 1.4) 0.7 (± 1.3) 0.7 (± 1.3) 

Texture         

  Manual Stickiness 10.1 (± 1.8) 9.1 (± 2.3) 8.9 (± 2.9) 9.1 (± 2.4) 9.8 (± 1.5) 9.5 (± 1.8) 9.4 (± 1.8) 7.9 (± 2.8) 

  Initial Cohesion 1.8 (± 0.5) 2.1 (± 0.8) 2.1 (± 0.8) 2.2 (± 1.0) 1.9 (± 0.9) 2.0 (± 1.0) 1.9 (± 0.8) 2.1 (± 0.9) 

  Hardness 1.3 (± 1.0) 1.5 (± 1.3) 1.3 (± 1.2) 1.6 (± 1.2) 1.7 (± 1.3) 1.4 (± 1.3) 1.1 (± 1.2) 1.3 (± 1.2) 

  Crunchy Cores 3.4 (± 0.9) 3.5 (± 0.9) 3.4 (± 0.9) 3.7 (± 0.8) 4.2 (± 1.6) 4.1 (± 1.6) 3.9 (± 1.4) 3.9 (± 1.5) 

  Tooth Pull 6.3 (± 0.7) 6.4 (± 1.1) 6.1 (± 1.4) 6.3 (± 0.9) 5.9 (± 1.5) 6.6 (± 1.2) 6.3 (± 1.1) 5.9 (± 1.0) 

a
 Values represent the mean (± standard deviation) of two replications 
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Table 6. Texture profile analysis (TPA) parameters as a function of cultivar and cultivating 

location 
a
 

 

Location Cultivar 
Hardness  

(N) 

Adhesiveness  

(N x sec) 
Cohesiveness Chewiness 

Harrisburg, AR XP760 14.6 (± 2.1) 0.6 (± 0.2) 0.4 (± 0.0) 4.6 (± 0.7) 

 XL753 15.2 (± 1.7) 0.7 (± 0.3) 0.4 (± 0.0) 4.2 (± 0.7) 

 V3501 13.6 (± 1.6) 0.5 (± 0.2) 0.4 (± 0.0) 4.3 (± 1.1) 

 Cheniere 15.6 (± 1.8) 0.6 (± 0.2) 0.4 (± 0.0) 4.3 (± 1.0) 

Alvin, TX XP760 15.5 (± 2.7) 0.8 (± 0.4) 0.4 (± 0.0) 4.9 (± 1.4) 

 XL753 13.7 (± 2.4) 0.9 (± 0.3) 0.4 (± 0.0) 3.5 (± 0.8) 

 V3501 11.0 (± 2.5) 0.7 (± 0.2) 0.4 (± 0.0) 3.2 (± 1.4) 

 Cheniere 14.8 (± 1.8) 0.4 (± 0.2) 0.4 (± 0.0) 4.4 (± 1.1) 
a
 Values represent the mean (± standard deviation) of ten replications 
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Figure 1. Mean head rice yield (HRY) as a function of cultivar and growing location. ** and 

*** represent a significant difference at P < 0.01 and at P < 0.001, respectively. Error 

bars represent standard error of the means. 
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Figure 2. Mean protein content as a function of cultivar and growing location. ***: denote a 

significant difference at P < 0.001; N.S. denotes no significant difference at P < 0.05. 

Error bars represent standard error of the means. 
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Figure 3. Mean apparent amylose content as a function of cultivar and growing location. * 

and ** represent a significant difference at P < 0.01, respectively; N.S. represents no 

significant difference at P < 0.05. Error bars represent standard error of the means. 
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Figure 4. Pasting profiles of the evaluated long-grain rice cultivars as a function of the 

cultivating location. 
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Figure 5. Mean onset gelatinization temperatures as a function of cultivating location. ***: 

represent a significant difference at P < 0.001. Error bars represent standard error of the 

means. 
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Figure 6. Mean comparison of starchy flavor intensity between the two cultivating locations. 

* represents a significant difference at P < 0.05. Error bars represent standard error of 

the means. 
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Figure 7. Mean comparison of tooth-pull intensity between the two cultivating locations. *: 

represents significant difference at P < 0.05. Error bars represent standard error of the 

means. 
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Figure 8. Mean comparison of the texture profile analysis (TPA) hardness between the two 

cultivating locations. * represents a significant difference at P < 0.05. Error bars 

represent standard error of the means. 
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Figure 9. Mean comparisons of the texture profile analysis (TPA) cohesiveness between the 

two cultivating locations. *** represent a significant difference at P < 0.001. Error bars 

represent standard error of the means. 

 

 

 

 

 

 

 

 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Arkansas Texas

C
o
h

es
iv

en
es

s 
 

Cultivating Location 

*** 



 

131 
 

 

 

 

 

 

 

 

 

 

Chapter 6. 

Overall conclusion 
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To summarize, this thesis demonstrates that cultivating location, harvest and processing 

conditions affect rice qualities in terms of physicochemical properties, cooking qualities, and 

sensory characteristics. The present findings can provide better understanding of the impacts of 

environmental (cultivating location and moisture content at harvest) and processing conditions 

(thickness grading) on rice qualities to rice farmers, processors, sensory professionals, marketers, 

and consumers.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

133 
 

 

 

 

 

Appendix 1. 
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