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ABSTRACT 

Groundwater depletion, a subject of growing concern for a significant portion of 

Arkansas, may lead to future economic challenges for the Arkansas Delta region. The 

Mississippi River Valley Alluvial Aquifer is the uppermost aquifer and features the largest 

groundwater capacity in the Mississippi Embayment Aquifer System. The Mississippi River 

Valley Alluvial Aquifer, commonly referred to as the “alluvial aquifer”, spans 53,000 km2 

underlying portions of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, Illinois, and 

Tennessee. As the alluvial aquifer trends southward for approximately 250 miles alongside the 

Mississippi River, its geographical extent ranges from 50 to 125 miles wide. There is a 

considerable correlation associated with groundwater withdrawals level declines and the 

expansion of rice production, which was introduced to the Arkansas Grand Prairie in 1896 when 

W.H. Fuller returned from a hunting trip in Louisiana with rice seed. By 1916, the rate at which 

groundwater was being withdrawn already exceeded the natural recharge rate on the Grand 

Prairie. Mainstream GIS software provides a means for the modeling of groundwater levels 

through various spatial interpolation methods. Interpolation is the process of estimating unknown 

values in the form of a continuous surface, which utilizes observed values with known locations. 

With the growing concern of groundwater depletion in Arkansas, determining what is the most 

appropriate spatial interpolation method for producing accurate and reliable modeling of 

groundwater levels is essential. In addition, increased scrutiny on water resources is inevitable, 

and determining what is the most appropriate spatial interpolation method for producing accurate 

and reliable modeling of groundwater levels is essential. Based upon the results of two types of 

cross-validation for five separate years, ordinary kriging is the most appropriate interpolation 

method for generating groundwater level estimations for this particular study area. Simple 



 

kriging and empirical Bayesian kriging also provide suitable methods for producing groundwater 

level estimations for the Mississippi River Valley Alluvial Aquifer. 
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1. INTRODUCTION AND BACKGROUND 

Groundwater depletion, a subject of growing concern for a significant portion of 

Arkansas, may lead to future economic challenges for the Arkansas Delta region. To a lesser 

degree, there is the potential that exhaustive groundwater withdrawals in the Gulf Coastal region 

could also result in regional water conservation issues. According to a United States Geological 

Survey (USGS) report regarding nationwide water usage in 2010, groundwater withdrawals in 

Arkansas accounted for over ten percent of the total groundwater withdrawals in the United 

States during that particular year (Maupin et al., 2014, p. 9). The exhaustive rate of withdrawals, 

resulting primarily from water-intensive agriculture irrigation practices, has led to the depletion 

of groundwater levels in the Mississippi Embayment Aquifer system to occur at rates that greatly 

exceed the rates of natural groundwater recharge. This study aims to determine which spatial 

interpolation method is the most appropriate for modeling groundwater levels in The Mississippi 

River Valley Alluvial Aquifer. 

1.1. MISSISSIPPI EMBAYMENT AQUIFER SYSTEM 

The Mississippi Embayment Aquifer System underlies eight southern states and 

encompasses an area of approximately 202,000 km2, while spanning from southern Illinois to 

the Gulf of Mexico (Konikow, 2013, p. 21). The aquifer system consists of six separate aquifers 

as well as three confining units (Konikow, 2013, p. 21). These aquifers are formed by extensive 

water-bearing assemblages of gravels and sands, separated by less permeable beds of clay 

(Konikow, 2013, p. 21). 

1.1.1. MISSISSIPPI RIVER VALLEY ALLUVIAL AQUIFER 

The Mississippi River Valley Alluvial Aquifer is the uppermost aquifer and features the 

largest groundwater capacity in the Mississippi Embayment Aquifer System (Czarnecki et al., 
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2002, p. 1). The Mississippi River Valley Alluvial Aquifer, commonly referred to as the “alluvial 

aquifer”, spans 53,000 km2 underlying portions of Arkansas, Kentucky, Louisiana, Mississippi, 

Missouri, Illinois, and Tennessee (Czarnecki et al., 2003, p. 2). As the alluvial aquifer trends 

southward for approximately 250 miles alongside the Mississippi River, its geographical extent 

ranges from 50 to 125 miles wide (Czarnecki et al., 2003, p. 2).  

While the alluvial aquifer underlies the vast majority of the Arkansas Delta region, 

Crowley’s Ridge is a noteworthy exception. Trending from the Arkansas-Missouri border 

southward to Phillips County, this elongated geological feature restricts the flow of groundwater 

between the eastern and western lowlands throughout the majority of its extent (Mahon and 

Ludwig, 1990, p. 3). The ridge averages around 10 miles in width; however, it serves as a 

significant obstruction to the flow of groundwater and groundwater levels vary greatly between 

sides (Mahon and Poytner, 1993, p.6). 

A confining unit composed of silt, clay, and fine sand, commonly referred to as the clay 

cap, overlays the alluvial aquifer. The clay cap, shown in Figure 1, generally extends from 20 to 

50 feet below the land surface; however, it reaches depths of 80 feet in the Grand Prairie 

(Czarnecki et al., 2003, p. 2) (Mahon and Poytner, 1993, p.6). The nature of the confining unit is 

an important variable to the natural rate of recharge to the aquifer.  
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Figure 1. The thickness of the alluvial aquifer’s overlying confining unit, also referred to as clay 

cap, represented in feet. The natural rate of recharge to the aquifer is directly related to the 

thickness of the confining unit. (USGS, “Ground Water Atlas of the United States”) 

The vertical thickness of an aquifer refers to depth of the extensive water-bearing 

assemblages, which forms the aquifer. In Arkansas, the vertical thickness of the alluvial aquifer 

varies from 15 and 195 feet. The vertical thickness of the alluvial aquifer north of the Arkansas 

River averages around 100 feet, while south of the Arkansas River, the average vertical thickness 

is around 85 feet. In turn, the alluvial aquifer serves a substantial source of groundwater (Mahon 

and Ludwig, 1990, p. 1). Additionally, the alluvial aquifer features hydraulic conductivity values 

that range from 120 to 390 feet per day (Mahon and Ludwig, 1990, p. 1). However, because of 

significant declines in water levels over the past decades, primarily resulting from rice irrigation 

practices, the general condition of the alluvial aquifer has deteriorated. 
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1.1.2. GROUNDWATER DEPLETION IN THE ALLUVIAL AQUIFER 

As agricultural practices developed on the Arkansas Grand Prairie during the late 

eighteenth century, the demand for reliable water sources also increased. In turn, farmers who 

lacked access to adequate surface water sources for irrigation began withdrawing groundwater 

from the alluvial aquifer for irrigation purposes. By the 1890s, the use of wind-powered 

irrigation wells was already a common practice throughout the Grand Prairie (Gates, 2005, p. 

399). The Grand Prairie experienced consecutive years of drought in 1893 and 1894, which 

stimulated additional farmer interest in groundwater retrieval from the alluvial aquifer. Shortly 

after, primitive forms of irrigation pumps powered by wood-fueled steam engines were 

introduced on the Grand Prairie. By 1908, these pumps had already improved enough in 

performance and efficiency to supply Grand Prairie farmers with yields higher than 1,500 gallons 

per minute (Gates, 2005, p. 400).  

By 1916, the rate at which groundwater was being withdrawn already exceeded the 

natural recharge rate on the Grand Prairie (Gates, 2005, p. 402). Over the next two decades, 

groundwater retrieval capabilities were further enhanced with the introduction of diesel and 

electric well pumps on the Grand Prairie, which led to the first documented groundwater level 

decline in the alluvial aquifer to occur in 1927 (Engler et al., 1945, p.  21). Only Grand Prairie 

farmers equipped with high yield wells were prepared for the drought of 1930 when Grand 

Prairie farmers still attained above average rice harvests despite the challenging conditions 

(Gates, 2005, p. 406). The extreme heat and the lack of precipitation resulted in heavy pumping 

on the Grand Prairie. Consequently, the USGS reported that well levels declined in 1930 by an 

average of 1.8 feet on the Grand Prairie (Gates, 2005, p. 406).  Contrastingly, the 1930 drought 
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resulted in a considerable portion of the crops produced in other regions of the Arkansas Delta to 

fail (Gates, 2005, p. 406). 

According to a 1970 Arkansas Geological Commission water usage report, groundwater 

withdrawals were already occurring at rates of 1,064 million gallons per day in Arkansas for 

irrigation purposes alone (Halberg, 1972, p.12). Arkansas County, located in the heart of the 

Grand Prairie, exhibited total water usage rates of 234 million gallons per day according to the 

report (Halberg, 1972, p. 2). By 2000, the water usage rate from the alluvial aquifer in Arkansas 

County consisted of approximately 475 million gallons of groundwater per day from wells. 

(Czarnecki et al., 2002, p. 1).  

 

Figure 2. Diptych map displaying acres of rice harvested and groundwater withdrawals for 

irrigation purposes in 2010. These maps demonstrate a strong correlation between rice 

production and groundwater withdrawals for irrigation purposes in east Arkansas. (NASS, “Data 

and Statistics”) (USGS, “USGS Water Use Data for Arkansas”) 
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1.2. RICE CULTIVATION 

There is a considerable correlation associated with groundwater withdrawals level 

declines and the expansion of rice production. Rice was introduced to the Arkansas Grand Prairie 

in 1896 when W.H. Fuller returned from a hunting trip in Louisiana with rice seed (Gates, 2005, 

p. 396). By 1904, the University of Arkansas agricultural experiment station located in Lonoke 

had already started rice research (Gates, 2005, p. 396). With much of the Arkansas Delta 

featuring a substantial groundwater supply, low topographic relief, and poorly drained soils, 

Arkansas rice production has experienced tremendous growth rates expanding into other regions 

of Arkansas Delta, particularly northeast Arkansas. Because of the expansion of rice throughout 

the Arkansas Delta, rice production is now deeply embedded in the economy of eastern Arkansas 

economy and Arkansas produces around half of the rice grown in the US annually. In 2010, 

Arkansas rice production experienced record highs when the rice harvest reached 1.785 million 

acres (Rice Production in Arkansas, n.d.). However, the expansion of rice production, which 

requires more water than any of the other crops commonly produced in Arkansas, has 

undoubtedly had a negative impact on Arkansas’ groundwater resources. According to a 2010 

USGS Arkansas water usage report, an average of 2.95 feet of water was applied per acre during 

rice production (Pugh and Holland, 2015, p. 20). For comparative purposes, the average 

irrigation rates for other major crop types include an average of 1.65 feet of water per acre of 

corn, 1.62 feet of water per acre soybeans, and 1.53 feet of water per acre of cotton (Pugh and 

Holland, 2015, p. 20). According to the University of Arkansas - Division of Agriculture, the 

average energy input cost associated with irrigating one acre of rice was $92.92 (Flanders, 2014, 

p. 2). Comparatively, cotton required the second highest average irrigation energy cost, with one 

acre of cotton averaging $38.14 of irrigation energy costs (Flanders, 2014, p. 2). The average 
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input cost associated with energy cost irrigation provides a valuable indication of irrigation rates 

for the various crops grown in Arkansas; however, this input cost average can also be influenced 

by variations in the efficiency and type of the irrigation pumps that are used for the irrigation of 

certain crop types.  

 

Figure 3. This map displays the distribution of rice production within the extent of the 

Mississippi River Valley Alluvial Aquifer in 2015. This map demonstrates the expansion of rice 

production from Grand Prairie to other regions of the Mississippi Alluvial Plain, particularly, the 

notable expansion into Northeast Arkansas as well as Southeast Missouri (NASS, “CropScape – 

Cropland Data Layer”) 
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1.3. GEOGRAPHIC INFORMATION SYSTEMS (GIS) 

 Geographic Information Systems (GIS) is a computer technology that provides a means 

of mapping, visualizing, managing, editing, querying, processing, modeling, and analyzing 

spatial datasets. The first documented use of Geographic Information Systems as a term occurred 

in 1968 when a research paper titled “A Geographic Information System for Regional Planning” 

was published by Dr. Roger Tomlinson (The 50th Anniversary of GIS, 2012). The progression of 

GIS software programs, methodologies, and technology through the years has led to the 

successful implementation of GIS in a growing number of fields, such as archeology, law 

enforcement, transportation, real estate, geology, environmental sciences, agriculture, local 

government, public services, in addition to countless other fields.  

1.3.1. GIS GROUNDWATER MODELING 

Increasingly, GIS applications have been utilized for purposes related to water resources 

and hydrology. GIS provides abundant applications within the groundwater field, due to the 

ability of GIS applications to display spatially various pertinent features as directed by the user, 

along with the ability to apply model components or processes from one study area to another. In 

addition to the advanced modeling capabilities associated with GIS software, they also provide 

an appropriate platform for managing hydrological databases. GIS software is also frequently 

utilized to monitor and manage groundwater resources. Monitoring and management practices 

often include hydrogeological modeling, modeling of spatial continuous groundwater data, 

calibrating of aquifer models, investigating groundwater storage capabilities, as well as 

establishing a network for groundwater data collection (Khazaz et al., 2015, p. 632).  
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1.3.2. SPATIAL INTERPOLATION  

 Mainstream GIS software provides a means for the modeling of groundwater levels 

through various spatial interpolation methods. Interpolation is the process of estimating unknown 

values in the form of a continuous surface, which utilizes observed values with known locations 

(Bohling, 2005, p. 2). With the growing concern of groundwater depletion in Arkansas, increased 

scrutiny on water resources is inevitable, and determining what is the most appropriate spatial 

interpolation method for producing accurate and reliable modeling of groundwater levels is 

essential. As demonstrated by numerous relevant case studies, which will be discussed in detail 

later on, there is not yet a consensus among scholars regarding which spatial interpolation tool is 

the most appropriate for modeling groundwater levels. Furthermore, variations in a datasets 

nature will also have a considerable impact on the reliability and performance of each particular 

interpolation method within a given case study.  

Spatial interpolation methods can be categorized as being either probabilistic or 

deterministic. In probabilistic spatial interpolation methods, the degree of similarity observed is 

taken into consideration while computing weight values (Khazaz et al., 2015, p. 635). In contrast, 

the influence of observed point data is directly related to the distance of the observed point data 

from the particular point being estimated during deterministic methods. However, all spatial 

interpolation methods assign weighted averages for observed values as well as utilize the same 

formula during estimation (Khazaz et al., 2015, p. 634). The primary difference between all 

spatial interpolation methods is the varying means for assigning weight values to point data 

within the study area. Weight values refer to the intensity of influence of the observed point 

values throughout estimation.  

The estimation formula utilized by spatial interpolation methods is listed as: 
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F(𝑋𝑝) = ∑ ⋏𝑖
𝑚
𝑖=1 𝐹(𝑋𝑖) 

1.3.2. 1. KRIGING INTERPOLATION METHODS  

Kriging, named after South African mining engineer D.G. Krige, is a spatial interpolation 

technique that utilizes geostatistical methods as a means of estimating a continuous surface of 

values. Krige as well as Georges Matheron, a French geomathematician, developed kriging 

methods for interpolation practices within the mining industry (Burrough and McDonnell, 1998, 

p.133). One way that kriging  (a probabilistic method) varies from the other spatial interpolation 

methods is that kriging methods take into consideration how similar estimated values are 

expected to be in relation to known values, whereas deterministic interpolation methods only 

perform calculations in regards to the spatial coverage of a dataset. During kriging calculations, 

weights are assigned utilizing data-driven weighting functions. Kriging techniques rely on 

covariance values amongst known points, along with covariance values between known points 

and the points to be estimated (Bailey and Gatrell, 1995, p. 183). Kriging methods employ the 

regionalized variable theory; therefore, notions of stochastic aspects of spatial variation are 

applied during the calculation of interpolation weights (Burrough and McDonnell, 1998, p. 303). 

Kriging interpolation techniques, frequently employed for modeling features in geosciences, 

prove to be optimal methods when a dataset features a spatially correlated or directional bias. 

One advantage associated with utilizing kriging methods are that derived estimations are 

provided along with an output variance of prediction raster, which exhibits the degree 

uncertainty during quantification (Jamil et al., 2011, p. 9). 

Before selecting a variation of kriging for the purpose of conducting spatial interpolation 

processes, one must be aware that kriging has several assumptions about a dataset. First, kriging 

techniques assume, likewise with all interpolation techniques, that the respective dataset is 
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spatially continuous (Childs, 2004). Spatially continuous can be described as the notion that 

every point within a specified area of interest contains a value. As previously stated, kriging also 

assumes that a dataset is spatially autocorrelated. This assumption is demonstrated by the notion 

that data located within closer proximities will yield more comparable values than would data 

located at greater distances. Another fundamental assumption of kriging is that data is stationary; 

therefore, the estimation of values will rely on distances between established values as opposed 

to their actual location. Additionally, kriging assumes a dataset as having an even distribution 

without profound clustering. However, it is possible to address this particular assumption 

through kriging’s declustering options (Childs, 2004). In general, kriging techniques estimate a 

constant value average across a surface; therefore, most kriging variations assume that global 

trends are not present within a dataset (Childs, 2004). 

There are numerous variations of kriging methods that can be utilized for generating a 

continuous surface of values. A widely used form of kriging is ordinary kriging, which employs 

the regionalized variable theory during estimation, while it assumes a constant yet unknown 

mean throughout the area of interest. (Burrough and McDonnell, 1998, p. 303). Simple kriging, 

another well-known form of kriging, can be easily distinguished from other kriging methods by 

its assumption that a sample’s mean is both constant and known (Olea, 2009, p. 133). Universal 

kriging is another form of kriging widely used in practice, where systematic variation modeled 

by a trend or drift surface is taken into consideration during calculations (Burrough and 

McDonnell, 1998, p.149). Stratified Kriging is a unique kriging method, with stratified kriging 

producing a surface of values that represent strata or divisions that form separate classes across a 

surface (Burrough and McDonnell, 1998, p. 147).  Block kriging is another distinctive form of 

kriging, which predicts a surface of values where estimated values are represented through 
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square block units (Burrough and McDonnell, 1998, p. 143). Co-kriging takes one or more 

additional variables into consideration when generating a continuous surface of values. This 

kriging method serves as a constructive alternative if there are any potential concerns associated 

with undersampling of the primary variable (Burrough and McDonnell, 1998, p. 147). Other 

methods of kriging include, but are not limited to multivariate kriging, probastic kriging, 

indicator kriging, and disjunctive kriging. Nonetheless, simple kriging, ordinary kriging, 

universal kriging, and empirical Bayesian kriging are the forms of kriging that will be addressed 

in this respective case study.  

 Simple kriging, which has roots that predate geostatistics, was the earliest form of kriging 

(Olea, 2009, p. 156). Burrough and McDonnell define simple kriging as “an interpolation 

technique in which the prediction of values is based on a generalized linear regression under the 

assumption of second order stationary and a known mean” (1998, p. 305).  Simple kriging may 

provide optimal results in the presence of a mean that is both known and constant; however, this 

particular kriging method is seldom utilized in practice (Bailey and Gatrell, 1995, p. 188). 

Burrough and McDonnell claim that the restrictive nature of simple kriging’s assumption of 

second order stationary could prove to be a potential shortcoming of a simple kriging method 

(1998, p. 144). Meanwhile, R.A. Olea states that simple kriging is also restricted by another 

assumption that is distinctive to simple kriging, which is the assumption that the mean is both 

known and constant (2009, p.133). Nevertheless, a relevant case study located in northwest 

China, which will be discussed in more detail in the next section, concluded that simple kriging 

served as the optimal interpolation method for estimating groundwater levels in that particular 

study area (Sun et al., 2009). 
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 Ordinary kriging was initially formulated for the purpose of improving upon simple 

kriging. The primary distinction between simple kriging and ordinary kriging methods is the 

assumption that the mean is constant; however, unknown over the complete area of interest 

(Bailey and Gatrell, 1995, p. 194). This assumption suggests that there are no major trends 

present within a dataset, which results in the estimator being unbiased (Olea, 2009, p. 156). An 

additional consequence of this no assumption is that ordinary kriging generates surface 

predictions utilizing localized means (Bailey and Gatrell, 1995, p. 196).  However, the 

assumption of a constant mean is a notion that has faced criticism from a variety of scientists. 

Ordinary kriging’s point estimation relies on the regionalized variable theory, and a fitted 

variogram model is utilized for calculating prediction weights (Burrough and McDonnell, 1998, 

p. 303).  

 Universal kriging can be described as kriging that features a built in trend (Burrough and 

McDonnell, 1998, p. 149). In this kriging method, a regression equation is incorporated into 

calculations in order to account for an external trend present within a dataset (Burrough and 

McDonnell, 1998, p. 149). Universal kriging, which assumes that that mean is neither known nor 

constant, is a very complex kriging method that should be used with caution (Olea, 2009, p. 

193). Universal kriging models errors for autocorrelation, instead of assuming that the resulting 

errors are independent (Bailey and Gatrell, 1995, p. 196). Universal kriging will produce optimal 

results when a dataset’s values exhibit clear and systematic variation (Olea, 2009, p. 193).  This 

particular technique is widely used in environmental science practices, where prominent spatial 

trends are generally present within datasets. 

 Empirical Bayesian kriging is a kriging method where the task of constructing a 

semivariogram that appropriately represents a dataset is automated. In contrast to other kriging 
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methods that utilize a single semivariogram during estimation, an empirical Bayesian kriging 

employs several semivariograms when generating a surface (Krivoruchko, 2012). The first step 

in empirical Bayesian kriging is estimating a single semivariogram model (Krivoruchko, 2012). 

During the following step, new values are estimated at input data locations. Afterwards, a new 

semivariogram model is generated employing the recently estimated values (Krivoruchko, 2012). 

Additionally, the second and third steps are repeated numerous times, which results in a 

spectrum of semivariograms (Krivoruchko, 2012). Another noteworthy feature of empirical 

Bayesian kriging is the data transformation option. 

1.3.2.2. INVERSE DISTANCE WEIGHTING (IDW)   

Inverse distance weighting or IDW is a local deterministic spatial interpolation method 

that estimates a continuous surface of values through the weighted averaging of values relevant 

to values at known positions. In this technique, sample points that are located within a close 

proximity will have a superior weight during averaging than will points that are located farther 

away from a particular position. IDW is categorized as being an exact interpolator; as a result, 

IDW’s estimated minimum and maximum values will occur at sample points. IDW has two 

assumptions that one must be mindful when selecting this technique, which are the assumptions 

of a dataset being autocorrelated and unclustered (Childs, 2004). Additionally, the presence of 

outliers in a dataset could create concerns for the performance of an IDW interpolation method. 

This respective study will employ an IDW interpolation method as well as an IDW with barriers 

interpolation method. The only notable difference between the two interpolation methods is the 

ability to input an absolute barrier, which could prove to be very valuable as Crowley’s Ridge 

can be accurately represented as a physical barrier that restricts the flow groundwater within the 

study area.  
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1.3.2.3. RADIAL BASIS FUNCTIONS 

 Radial Basis Functions (RBF) are a set of exact spatial interpolators, which vary from 

other types of interpolation because all forms of RBF interpolation methods will generate an 

estimated surface that intersects every known value in the study area (How Radial Basis 

Functions (RBF) work, 2007). Nonetheless, RBF interpolation methods will produce estimated 

surfaces that vary in appearance and estimation quality. This case study will address the 

performance of six RBF forms of interpolation, which are regularized spline, tension spline, thin 

plate spline, spline with barriers, multiquadric functions, and inverse multiquadratic functions. 

 A simple explanation of how spline interpolation works would be illustrated by the idea 

of stretching a flexible surface through all of the known values located within a particular study 

area (Childs, 2004). Utilizing slope calculations spline interpolation generates a smooth surface 

that represents spatial variation, therefore if spatial clustering or extreme outliers have a 

considerable presence within a dataset then a spline method would not serve as a reasonable 

interpolation method (Childs, 2004). Additionally, sudden changes in values, referred to as break 

points, will produce performance concerns for spline interpolation methods. However, being an 

exact interpolator, a spline method could prove to be a reasonable method if the priority is the 

accurate estimation of a surface’s high and low values.  

A regularized spline could be described as being elastic in nature and will generally 

generate a smoother surface where changes occur at a more gradual rate compared to the rate of 

changes in a surface produced with tension spline (Childs, 2004). A regularized spline could 

potentially predict unknown values that fall outside of the range of values established by the 

known values. In comparison, tension spline will generally produce a surface that is flatter and 

more rigid in nature (Childs, 2004). Additionally, the predicted values generated with tension 
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spline tend to exhibit a stronger correlation to the range of known values. Alternatively, thin 

plate spline uses localized smoothing averages to generate a spline surface without the 

excessively high and low values that commonly result from other spline methods (Burrough and 

McDonnell, 1998, p. 120). The spline with barriers interpolation method uses known values and 

absolute barriers to generate a minimum curvature surface by employing a one-directional 

multigrid technique (How Spline with Barriers works, 2011). 

Ronald Hardy, seeking to improve upon polynomial interpolation techniques, invented 

multiquadric interpolation in 1968 in order to generate topographic maps (Chenoweth, 2009, p. 

58). According to Chenoweth, Hardy named the interpolation method multiquadric after the 

‘quadric’ surface that was generated (2009, p. 60). Today multiquadric interpolation is still 

commonly used to produce topographic maps and has proven to succeed in circumstances where 

polynomial interpolation techniques have failed (Chenoweth, 2009, p. 58). Chenoweth goes on to 

claim that multiquadric interpolation can produce an accurate surface model with scattered 

known point values (2009, p. 59). Inverse multiquadric interpolation utilizes a smaller degree of 

freedom; therefore, this method is believed to be more efficient and generate more accurate 

estimation (Javaran and Khaji, 2012, p.1) 

1.3.2.4. POLYNOMIAL INTERPOLATION 

 Global polynomial interpolation, commonly referred to as trend surface analysis, is an 

interpolation method that addresses potential relationships between variables and the spatial 

locations of sample points (Burrough and McDonnell, 1998, p. 109). This method could prove to 

be valuable for modeling significant variations of the mean value in a spatially continuous 

dataset (Bailey and Gatrell, 1995, p. 168). Trend surface analysis relies on a polynomial function 

to produce a smooth surface model relative to the known values of the sample points. The 
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polynomial equation utilized during calculations is a two-dimensional polynomial equation of 

the first, second, or higher degree (Yao et al., 2013, p. 2). The general idea of a trend surface 

analysis can be explained as the idea of fitting a piece of paper through the observed data points. 

Burrough and McDonnell claim that one advantage of this interpolation method is the simplicity 

of calculations (1998, p. 109). However, it is also stated that a trend surface analysis is 

commonly utilized for locating areas within a study area that deviate from the general trend of a 

dataset (Burrough and McDonnell, 1998, p. 109). The resulting outcome could assist in 

preparing a dataset before utilizing another interpolation method through providing an effective 

means for identifying noise within a spatial dataset. Furthermore, trend surface’s polynomial 

functions can be employed for displaying any potential drifts exhibited by a spatial dataset 

(Khazaz et al., 2015, p. 636). For groundwater related purposes, drifts demonstrated by a trend 

surface analysis could provide potentially valuable insight into the various directions of 

groundwater flow within a particular study area (Khazaz et al., 2015, p. 636). 

The local polynomial interpolation (LPI) method features characteristics from both 

inverse distance weighting and global polynomial interpolation techniques. A surface generated 

using LPI will represent both localized behaviors and variations in the overall trend of a spatial 

dataset (Yao et al., 2013, p. 2). This method’s estimation relies solely on the sample points that 

fall within a specific neighborhood. However, there is some overlap between search 

neighborhoods and a specific search neighborhood’s estimated value is assigned to the center of 

that particular search neighborhood.  

In addition, the performance of kernel interpolation with barriers and diffusion 

interpolation with barriers will also be addressed in this case study.  Kernel interpolation with 

barriers is a first order polynomial variant of LPI that features an optional absolute barriers 
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parameter. A noteworthy difference between the methods is that kernel interpolation utilizes the 

shortest distance between points in order to improve estimation accuracy around any absolute 

barriers defined within an area of interest (Kernel Interpolation with Barriers, n.d.). Diffusion 

interpolation with barriers refers to kernel interpolation utilizing the Gaussian Kernel, which is 

also the fundamental solution of the heat equation (How Diffusion Interpolation with Barriers 

works, n.d.). 

1.3.2.5. TRIANGULAR IRREGULAR NETWORK (TIN) 

 Triangular Irregular Network (TIN) is a method for modeling spatial data that utilizes 

tessellated triangles for representation purposes. Numerous tessellation, or tiling, methods may 

be utilized in a TIN representation. The resulting ‘tiles’ are commonly referred to as Thiessen 

Polygons or Voronoi (Bailey and Gatrell, 1995, p. 156). Two of the most commonly utilized 

tessellation techniques are Dirichlet tessellation and Delaunay triangulation. A primary concern 

associated with this particular interpolation method would be its inability to estimate any values 

outside the spatial extent of known values.  

1.4. SPATIAL INTERPOLATION STATISTICAL ACCURACY ASSESSMENT 

1.4.1. CROSS-VALIDATION 

In this study, each method’s estimated surface will be assessed and compared utilizing 

cross-validation techniques. Cross-validation serves as an appropriate means for assessing an 

interpolated surface’s accountability through the calculation of statistical errors produced during 

estimation (Olea, 2009, p. 241). Additionally, cross-validation’s statistical analysis provides a 

way to comparatively analyze the performance of multiple spatial interpolation methods. 
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 During cross-validation, observations are partitioned into two separate subsets, which are 

referred to as the training set and the test set. The known training set is utilized by a model to 

generate estimations, while the unknown test set is withheld. Afterwards, the test set is employed 

for testing the performance of a model. Cross-validation methods can be categorized as being 

either exhaustive cross-validation or non-exhaustive cross validation. The means of partitioning 

observations is the distinguishing characteristic between the two categories of cross-validation. 

Exhaustive cross-validation methods address all possible partitions within a set of observations, 

whereas non-exhaustive cross-validation methods do not utilize these extensive partitioning 

techniques.  

1.4.1.1. K-FOLD CROSS-VALIDATION 

K-fold cross-validation, a widely used non-exhaustive cross validation method, partitions 

observations equally into k subsets, with k representing the number of partitioned subsets 

(Ounpraeuth et al., 2012, p.1). Estimations are performed k number of times with each subset 

serving as the test set one time; consequently, every observation is used once for validation 

purposes (Ounpraeuth et al., 2012, p.1). While the k parameter is defined by the user; however, 

ten fold cross-validation is commonly used in practice (Ounpraeuth et al., 2012, p.2).  

1.4.1.2. LEAVE-ONE-OUT CROSS-VALIDATION 

 Leave-one-out cross-validation is an exhaustive cross validation method where every 

observation is removed once for the purpose of validating a model (Burrough and McDonnell, 

1998, p. 300). In this method, estimations are generated for the dropped values utilizing a 

training set that is defined as n – 1, where n represents sample size and -1 represents the removed 

observation. The resulting statistics regarding the prediction errors observed during leave-one-

out cross-validation serves as an excellent way to evaluating an estimator’s accountability; 
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however, it must be noted that spatial clustering could result in unrepresentative prediction error 

(Olea, 2009, p. 244). This can be illustrated by the notion that dropped observations located 

within a cluster would be expected to exhibit prediction errors that are uncharacteristically low in 

comparison to the observations that are dispersed throughout a study area.  

1.5. STATEMENT OF THE PROBLEM   

 Historically, groundwater resources in Arkansas have been heavily relied on to supply the 

large volumes of water necessary for the water-intensive agricultural practices that are common 

in the Arkansas Delta region. The exhaustive demands for groundwater in Eastern Arkansas have 

resulted in the formation and expansion of two massive cones of depression in the potentiometric 

surface, which has reduced water quality and yields for wells completed in the affected areas 

(Czarnecki et al., 2003, p.1). Around the Arkansas Delta, a number of additional smaller cones of 

depressions are forming or have already formed regionally throughout the alluvial aquifer. 

Nonetheless, the 2010 USGS nationwide water usage report reveals that groundwater usage rates 

in Arkansas continue to rank amongst the highest in the nation (Maupin et al., 2014, p. 9). 

Disturbingly, the overwhelming majority of groundwater withdrawals in Arkansas are supplied 

by wells completed in the alluvial aquifer. In 2010, approximately 97 percent of the total amount 

of groundwater withdrawn in Arkansas was supplied by wells completed in the alluvial aquifer 

(Pugh and Holland, 2010, p. 27).    

 The alluvial aquifer has faced several long-term impacts, which are the consequences of 

several decades’ worth of excessive groundwater withdrawals. The long-term availability of the 

alluvial aquifer as a reliable groundwater source will require both groundwater and surface water 

resources to be managed in an extensive, sustainable, and efficient manner (Clark et al., 2013, p. 

1). The ability to effectively and reliably monitor groundwater levels will undoubtedly prove to 
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be essential in making effective and confident groundwater management decisions (Khazaz et 

al., 2015, p. 632). Generally, the spatial coverage of in situ groundwater measurements is 

limited, because of the considerable cost associated with conducting such measurements (Khazaz 

et al., 2015, p. 632). Spatial interpolation provides an effective means for employing the 

available network of spatially referenced of in situ groundwater measurements in order to 

estimate a continuous surface model of groundwater levels. A variety of spatial interpolation 

methods have been utilized for modeling groundwater depths and each method has a variety of 

assumptions related to the behavior of the data. Therefore, a considerable amount of the 

performance of a particular spatial interpolation method is directly related to the behavior of a 

dataset. Comparative research into the performance of various spatial interpolation methods 

within the respective study area has the potential to influence groundwater policies and 

management (Khazaz et al., 2015, p. 633). The primary purpose of this study is to conduct a 

comparative analysis on the statistical accuracy of the nine previously discussed spatial 

interpolation methods. The spatial interpolation methods will be subject to a comparative 

performance assessment based upon cross-validation and a variety of statistical accuracy 

indicators. 

 Subsequently, this study will concisely investigate any spatial and temporal trends in the 

fluctuations of the alluvial aquifer’s groundwater levels among five-year periods based on the 

groundwater level surfaces generated by the spatial interpolation method established as the 

optimal method for the study area. Additionally, this study seeks to employ any trends exhibited 

by the resulting surface models in order to generate a future groundwater surface model of 

forecasted values in relation to the ongoing trends and current rate of withdraw in the alluvial 
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aquifer. This model would serve as an effective tool for conveying the potential consequences if 

the rates of groundwater exploitation in the alluvial aquifer are sustained.  

 In addition, this study will assess the relation of the fluctuation in groundwater levels to 

the associated rate of groundwater withdrawals at the county level. The average groundwater 

level change over five years will be calculated for each county within the study area and 

compared to the respective rate of groundwater usage in the particular county. This study will 

seek to determine if the majority of the counties located within the study area exhibit a similar 

interaction between changes in groundwater level and the varying rates of groundwater 

withdrawals associated with particular counties. The study will also seek to determine if each 

county demonstrates a comparable correlation of the interaction between the two variables 

through a variety of five-year time periods. Furthermore, if the interaction between the two 

variables exhibits consistent correlations at the county level through the varying time periods, 

then sustainable rates for groundwater withdrawals at the county level could possibly be 

developed accordingly. Components from this segment of the study could potentially be 

modified and further developed in order to produce county specific groundwater policies.  

1.5.1. RESEARCH QUESTIONS AND HYPOTHESIS  

The primary research question under investigation in this study is establishing which 

spatial interpolation method serves as the optimal method for modeling groundwater levels in the 

alluvial aquifer. I hypothesize that the probabilistic spatial interpolation methods, ordinary 

kriging, simple kriging, and universal kriging, will produce superior groundwater surface 

estimations compared to surface estimations produced by deterministic methods.  

A secondary research question would be, have the fluctuations in the alluvial aquifer’s 

groundwater levels exhibited a noticeable general trend of decline in recent history?  I 
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hypothesize that while several of the measurements sites have actually experienced increased 

groundwater levels, the overwhelming trend of groundwater decline will be visibly obvious 

when displaying groundwater changes throughout each of the respective five year periods.  A 

recent ten year monitoring study of groundwater level changes in the alluvial aquifer was 

conducted by the USGS, Arkansas Natural Resources Commission (ANRC), or the Natural 

Resources Conservation Service (NRCS) and surprisingly the study concluded that around 23.7 

percent of groundwater measurement sites actually experienced an increased groundwater level 

in comparison to the groundwater levels recorded ten years earlier (Swaim, 2014).  

A third research question for this study would be do the majority of the study area’s 

counties exhibit a significantly similar interaction between groundwater level changes and the 

varying rates of groundwater withdrawals associated with particular counties. I hypothesize that 

there will be there will indeed be a general correlation in relationship between the interactions of 

the two variables; however, I anticipate that the degree of correlation in the relationship of the 

two variables in the various counties will exhibit moderate fluctuations.  
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2. LITERATURE REVIEW  

 Spatial interpolation techniques performed through various GIS platforms have provided 

a reliable and effective means for the spatial representation and monitoring of groundwater 

levels. However, as a number of relevant case studies demonstrate, there is not a general 

consensus regarding which spatial interpolation technique provides the most suitable for 

generating groundwater depth surface models. Additionally, there is also variation in the 

statistical methods employed for evaluating the accuracy of the resulting groundwater surface 

models.  

2.1. SPATIAL INTERPOLATION METHODS  

 A case study that conducted a comparative evaluation of spatial interpolation methods for 

modeling groundwater levels in the Wuwei oasis located in Northwest China concluded that 

ordinary kriging is most suitable interpolation method for interpolating groundwater surface 

models in the particular study area (Yao et al., 2013, p. 9). However, the article quickly 

acknowledges that there are a number of limitations associated with ordinary kriging that one 

must be mindful of (Yao et al., 2013, p. 9). The case study claims that the principle drawback of 

ordinary kriging is the smoothing effect, which is described in the article as being a “decreased 

variation of estimates” (Yao et al., 2013, p. 9). In the respective case study, the smoothing effect 

notion is demonstrated by the ordinary kriging derived surface model yielding a lower standard 

deviation than the standard deviation that was yielded by the sampling points measurements 

(Yao et al., 2013, p. 9). The presence of the smoothing effect is also revealed by a reduced range 

of values in the ordinary kriging derived surface model compared to the range of values that 

were observed at the actual sampling points (Yao et al., 2013, p. 9). The case study addressed the 

smoothing effect with the technique established in Yomamoto’s journal article “Correcting the 
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Smoothing Effect of Ordinary Kriging Estimates” (Yao et al., 2013, p. 9; Yomamoto, 2005).  

Yao et al. concluded that Yomamoto’s method productively corrected the smoothing effect 

associated with ordinary kriging (2013, p. 9).   

 Charoenpong et al.’s “Impacts of Interpolation Techniques on Groundwater Potential 

Modeling Using GIS in Phuket Province, Thailand” provides another relevant case study (2012). 

This particular case study concluded that IDW was the most appropriate interpolation method for 

modeling groundwater specific capacity in the Phuket Province of Thailand. Groundwater 

specific capacity (SC) is a measure of well performance which is reliant on the status of 

groundwater levels. Charoenpong et al. also acknowledges that the power parameter and search 

radius were both adjusted accordingly to improve the accuracy of the IDW estimates (2012). 

 Rabah et al.’s journal article “Effect of GIS Interpolation Techniques on the Accuracy of 

the Spatial Representation of Groundwater Monitoring Data in Gaza Strip” consisted of a 

comparative evaluation of IDW, ordinary kriging, and tension spline for producing groundwater 

level surface maps (2011). In this case study, validation as well as cross validation were 

employed as a means of evaluating the accuracy of each method (Rabah et al., 2011). This 

respective study concluded that ordinary kriging provided the most appropriate spatial 

interpolation method for generating groundwater surface maps in the Gaza Strip (Rabah et al., 

2011). This conclusion is a result of ordinary kriging yielding the highest correlation values and 

the lowest residual errors (Rabah et al., 2011).   

 An additional relevant case study is Kumar and Remadevi’s “Kriging of Groundwater 

Levels – A Case Study”, which is a comparative evaluation the performance of ordinary kriging 

estimates with spherical, exponential, and gaussian semivariogram models for groundwater 

levels in Rajasthan, India (2006). Both cross validation and jackknifing techniques were 
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employed as a means of evaluating the accuracy of each model (Kumar and Remadevi, 2006). 

Utilizing these techniques, Kumar and Remadevi’s case study concluded that ordinary kriging’s 

gaussian model served as the most appropriate semivariogram model for generating groundwater 

surface models in their respective study area (2006).  

 Salah’s “Geostatistical analysis of groundwater levels in the south Al Jabal Al Akhdar 

area using GIS” employed ordinary kriging with a spherical semivariogram model for generating 

groundwater surface models (2009). While this case study did not contain a comparative 

evaluation of the performance of multiple spatial interpolation methods, cross validation was 

used to assess the accuracy of the generated groundwater surface model (Salah, 2009). 

Additionally, Salah provides a detailed step by step workflow of his geostatistical analysis 

carried out in this case study (2009). 

 Kettle et al.’s case study “Groundwater Depletion and Agricultural Land Use Change in 

Wichita County, Kansas” employed universal kriging as the means of generating a groundwater 

surface model (2007). Kettle et al. claims universal kriging was employed in this respective case 

study because it utilizes weighted local averages in order to estimate unknown values (2007). 

Wichita County, Kansas server as the study area in Kettle et al.’s case study; however, well 

measurements within a five-mile buffer were also utilized during estimation in order to improve 

estimation near the study area boundary (Kettle et al., 2007).   

2.1.1. MISSISSIPPI RIVER VALLEY ALLUVIAL AQUIFER GROUNDWATER SURFACE MODELS  

 In 2008, the Arkansas Geological Survey (AGS) published a depth to groundwater map 

for the alluvial aquifer in Arkansas. IDW was the spatial interpolation method that was employed 

for generating the groundwater surface model relative to the respective map; however, the reason 

why this particular method was selected as the method for generating the groundwater surface 
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model was not specified. This particular map was produced through employing ESRI ArcGIS 

10.x software and the dataset utilized for generating the estimated surface consisted of 

groundwater measurements from 684 wells.  

The Arkansas Natural Resources Commission produced an alluvial aquifer depth to 

groundwater estimated surface utilizing nearest neighbor interpolation method. This map was 

generated utilized ArcGIS 10 and using 2011 data points (Swaim, 2014). 

2.2. THE EFFECT OF GROUNDWATER DEPLETION 

The alluvial aquifer has already faced with several long-term impacts that have resulted 

from the long history of excessive groundwater withdrawals throughout the Arkansas Delta. 

Before the exploitation, the alluvial aquifer demonstrated artesian conditions throughout much 

of the Grand Prairie, where groundwater levels elevated above the aquifer into the overlying 

clay cap (Gates, 2005, p. 395).  In Arkansas the alluvial aquifer discharged excessive 

groundwater into the rivers, supplying many of the rivers located on the Arkansas delta with a 

sizeable portion of their river flow (Czarnecki et al., 2002, p. 3). With critically depleted 

groundwater levels throughout much of the alluvial aquifer, rivers now serve as a vital recharge 

source for the aquifer (Czarnecki et al., 2002, p.4). With rivers being relied on more heavily as 

a primary recharge source for the aquifer, the rate of groundwater depletion is typically 

accelerated in areas that are located further away from a major river (Czarnecki et al., 2002, 

p.4). The imbalance of groundwater withdrawals has resulted in the formation and expansion 

of two extensive cones of depression in the potentiometric surface. These particular cones of 

depression exist west of Crowley’s Ridge around the Cache River bottoms and throughout 

much of the Grand Prairie. According to a USGS groundwater report published in 2000, 

smaller potentiometric surface depressions are currently forming in regions of the southern 
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Arkansas Delta as well (Schrader, 2001, p. 5). Monitoring the development of these 

potentiometric surface depressions has confirmed that expansion is occurring in both of a radial 

and vertical fashion (Schrader, 2001, p. 5). There are also growing localized concerns 

regarding declines in the aquifer’s saturated thickness, which refers to the vertical thickness of 

the zone of saturation within an aquifer, with several isolated areas sustaining saturated 

thicknesses values that have been reduced to levels below 20 feet (Reed, 2003, p. 2).  

Groundwater declines have also led to mounting concerns associated with the altered lateral 

flow of groundwater, reduced groundwater storage capacities, and decreased hydraulic 

pressure (Czarnecki et al., 2002, p. 3).  
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3. METHODS AND MATERIALS 

3.1. STUDY AREA 

 
 This study restricts its focus to groundwater depth measurement completed in the 

Mississippi Alluvial Aquifer. Although there are five other aquifers in the Mississippi 

Embayment Aquifer System, the Mississippi Alluvial Aquifer has the largest geographical extent 

and has experienced the highest levels of groundwater depletion within the aquifer system. 

Additionally, the Mississippi Alluvial Aquifer features the highest number of groundwater 

monitoring sites within the aquifer system. Within the study area, the presence of Crowley’s 

Ridge, an elevated topographic feature that rises above the Mississippi Alluvial Plain lowlands, 

provides an unusual factor that is necessary to address when conducting spatial interpolation. 

Trending from the Arkansas-Missouri border all the way to Phillips County, this elongated 

geological feature restricts the flow of groundwater between the eastern and western lowlands 

throughout the majority of its extent (Mahon and Ludwig, 1990, p. 3). Although there are a 

number of particular locations where groundwater is free to flow between the otherwise 

separated lowlands, this topographic boundary must be addressed appropriately prior to any 

spatial interpolation processes. 

 While the Mississippi Alluvial Aquifer spans across seven different states and political 

borders have no direct impact on groundwater levels, the quantity as well as spatial coverage of 

groundwater data for this respective aquifer in other states is relatively limited. Therefore, this 

study will focus on assessing the accuracy and reliability of various groundwater models within 

Arkansas. As a result of the considerable spatial coverage of groundwater measurements in 

Arkansas, further examination into a county level study area would be possible in the majority of 

the counties located within the study area. 
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Figure 4. This figure displays the study area relative to various reference points within the study 

area 

3.2. GROUNDWATER FIELD MEASUREMENTS  

 Groundwater depth field measurements were obtained through the USGS National Water 

Information System: online interface, which offers groundwater measurements at well sites that 
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are operated by either of the USGS, ANRC, or the NRCS. This data can be generated in either 

table or text format and provides data for a number of characteristics associated with each 

respective measurement site. Spatial Coordinates are represented NAD83 decimal degrees and 

altitude values are represented in regards to NGVD29. However, the majority of groundwater 

measurement sites do not record depth values on a daily basis, therefore in this study linear 

interpolation, with regards to the temporal coverage of known values, is employed as the means 

of producing groundwater depth values for specified dates. This technique is regularly utilized by 

USGS for producing groundwater depth plots that demonstrate fluctuations in groundwater 

levels through time. Data acquisition produced an average 616.2 groundwater measurements in 

Arkansas for each five-year period. Additionally, groundwater depth samples in neighboring 

states that are located within a 25-mile buffer of the study area will be utilized during spatial 

interpolation, however will not factor into the cross validation calculations as this particular case 

study seeks to determine which spatial interpolation method is the most appropriate for 

producing groundwater depth estimations in Arkansas. 

3.2.1. GROUNDWATER FIELD MEASUREMENTS SPATIAL STATISTICS  

The average nearest neighbor tool in the ArcDesktop Spatial Statistics toolbox was 

employed in this study to calculate spatial coverage statistics associated with the groundwater 

field measurement sites. The first nearest neighbor values obtained were: 4.105 km in 2015, 

3.712 in 2010, 3.975 km in 2005, 4.219 km in 2000 and 4.446 km in 1995. The expected value is 

relative to the amount of points in relation to the study area size, which grants vital insight into 

how well the dataset is distributed across the study area. The resulting difference in the expected 

and the observed nearest neighbor values is a result of clustering of groundwater measurement 

sites, which is partially caused by large variations from the spatial coverage provided by 
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measurement sites in Arkansas compared to the coverage in neighboring states. If the average 

distance is less than the expected average for a certain distribution, it can be concluded that the 

distribution tends to be clustered.  Whereas, if the average distance is greater than the expected 

average, it can be concluded that the distribution tends to be dispersed. The average nearest 

neighbor methodology was utilized to calculate the expected mean averages, which were 4.412 

km in 2015, 3.848 km in 2010, 3.909 km in 2005, 4 km in 2000, and 4.182 km in 1995. 

Consequently, it can be concluded that the distribution was considered dispersed in 2015 and 

2010, and clustered in 2005, 2000, and 1995. 

Table 1. This table displays the average nearest neighbor spatial statistics, which gives valuable 

insight into a dataset’s potential clustering tendencies 

Average Nearest Neighbor 

 Year 2015 2010 2005 2000 1995 

Observed Mean Distance 4.11 km 3.71 km 3.96 km 4.22 km 4.45 km 

Expected Mean Distance 4.41km 3.85 km 3.91 km 4 km 4.18 km 

Nearest Neighbor Ratio 0.93 0.97 0.99 1.05 1.06 

z-score -3.04 -1.77 -0.43 2.64 2.91 

p-value 0.0024 0.076 0.6666 0.0083 0.0036 

 

Table 2.  This table displays the average neighbor distance bands. For the distance band number 

4 the distance value show represents the average distance to the fourth closest neighbor.  This 

table also gives valuable insight into a dataset’s potential clustering tendencies 

Average neighbor distance band 

  2015 2010 2005 2000 1995 

Distance band 4 9.42 km 8.3 km 8.58 km 8.85 km 9.11 km 

Distance band 8 13.66 km 12.03 km 12.46 km 12.9 km 13.27 km 

Distance band 16 19.92 km 17.24 km 17.87 km 18.66 km 19.3 km 

 

Additionally, the Global Moran’s I Spatial Autocorrelation tool was utilized. Moran’s 

Index values can be interpreted as the following: values near positive 1 indicate that there is a 

strong spatial autocorrelation; whereas, values near negative 1 indicate strong negative 
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autocorrelation. Finally, values near 0 indicate a lack of spatial pattern (Rogerson, 2015). The 

observed Moran’s Index values were 0.823 in 2015, 1.053 in 2010, 0.902 in 2005, 0.799 in 2000 

and 0.845 in 1995. However, the only significant p-values associated with the Moran’s Index 

values can be found in years 2010 and 1995. 

 

Table 3. This table displays Global Moran's I Spatial Autocorrelation statistics. These statistics 

give valuable insight regarding a dataset’s spatial autocorrelation tendencies. 

Spatial Autocorrelation - Global Moran's I  

 Year 2015 2010 2005 2000 1995 

Moran's Index 0.8228 1.0529 0.9024 0.7991 0.8148 

Expected Index -0.0019 -0.0015 -0.0015 -0.0016 -0.0017 

Variance 0.3793 0.2442 0.3134 0.3809 0.0008 

z-score 1.339 2.1336 1.6145 1.2973 28.5697 

p-value 0.1806 0.0329 0.1064 0.1945 0 
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3.2.2. GROUNDWATER FIELD MEASUREMENTS DESCRIPTIVE STATISTICS  

 Table 4. This table displays a variety of spatial statistics related to the Arkansas Groundwater 

Measurements utilized in this study. 

Arkansas Groundwater Measurements 

Year 1995 2000 2005 2010 2015 

Number of samples 581 635 665 686 522 

Mean 36.49 40.7 43.06 46.29 49.99 

Standard deviation  28.36 28.88 31.6 34.18 35.32 

Variance 803.98 834.06 998.39 1168.04 1247.23 

Coefficient of variation 0.777 0.71 0.734 0.738 0.706 

Skewness 1.181 1.145 0.949 0.727 0.67 

Kurtosis 0.493 0.494 -0.015 -0.562 -0.666 

Q1 15.67 19.42 18.53 18.07 20.05 

Median 26.15 30.9 33.02 36.16 39.42 

Q3 52.29 57.34 63.35 72.86 77.45 

Minimum 2.12 1.93 2.49 0.64 0 

Maximum 124.1 138.54 144.99 142.89 148.1 

 

Rstudio was employed for calculating numerous descriptive statistics regarding the 

groundwater level dataset. The mean depth to the groundwater surface measurement value was 

calculated as being 36.4927 feet in 1995, while it was calculated as being 49.9915 feet in 2015. 

The calculated mean value demonstrated consistent increases from each five-year sampling 

period with an average increase of 3.3737 feet between five-year periods. Similarly, the median 

value, which was calculated as being 26.1448 in 1995 and 39.4217 in 2015, yielded an increase 

of 3.3192 feet between five-year periods. Likewise, the calculated standard deviation and 

variance values yielded steady increases between five-year periods. The coefficient of variation, 

which is the ratio of the standard deviation relative to the mean, ranged from .706 to .777 

between the five-year periods. 

The coefficient of skewness value can be described as the measure of the degree of 

symmetry present within a dataset (Rogerson, 2015, p. 35). The groundwater depth 
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measurements yielded a skewness value of 1.1806 in 1995 and 0.6697 in 2015, which 

demonstrates a trend from a positive of left skew towards a more balanced distrbution of 

groundwater depth measurements (see Figures 4-8). Kurtosis pertains to the shape of a dataset, 

which is a measure of the degree of tail weight and peak in the distribution of a dataset. The 

groundwater measurements yielded a kurtosis value of 0.4928 in 1995 to a value of -0.6657 in 

2015, which exhibits a trend towards the presence of several extreme values within the dataset.   

 

Figure 5. Histogram of 1995 groundwater measurements recorded in the alluvial aquifer in east 

Arkansas 
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Figure 6. Histogram of 2000 groundwater measurements recorded in the alluvial aquifer in east 

Arkansas 

 

 
Figure 7. Histogram of 2005 groundwater measurements recorded in the alluvial aquifer in east 

Arkansas 
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Figure 8. Histogram of 2010 groundwater measurements recorded in the alluvial aquifer in east 

Arkansas 

 
Figure 9. Histogram of 2015 groundwater measurements recorded in the alluvial aquifer in east 

Arkansas 

 

 



38 

3.3. SOFTWARE PROGRAMS 

3.3.1 ARCGIS DESKTOP 10.X  

 ArcGIS Desktop, a suite of GIS software developed by Esri, was frequently employed 

throughout this study. ArcGIS served as the platform where the numerous interpolation methods 

were carried out. Additionally, ArcGIS provided a valuable means for evaluating and visually 

exploring data, processing tables of data, and producing maps and figures. Esri’s Model Builder, 

a form of graphical block programming available through the ArcGIS Desktop interface, was 

employed to construct geoprocessing workflows. Employing ModelBuilder will permit other 

users to access, modify, or augment the processing workflow constructed in this study.   

3.3.2. RSTUDIO 

Rstudio refers to an open-source software package, where the R programming language 

is employed to perform a variety of statistical computations. JJ Allaire founded this statistical 

language software package in 2008 and it has been commonly employed in the fields of industry, 

science, and education (RStudio, “Why RStudio?”). Throughout this study, RStudio was 

employed repeatedly for various purposes related to statistical computation. It provided a 

constructive means for calculating numerous statistical indicators related to the groundwater 

measurement datasets as well as the statistical prediction errors related to each spatial 

interpolation methodology. 

3.3.3. MICROSOFT EXCEL 

Linear interpolation of Groundwater measurements were calculated using Microsoft 

Excel. In addition, the groundwater measurements were imported into ArcGIS ModelBuilder in 

an Excel 97-2003 workbook format. Also, the table to excel tool was utilized in ArcGIS 
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ModelBuilder to write excel files, which were generally exported into a .csv format to be 

processed using RStudio software.  

3.3.4. ADOBE ILLUSTRATOR 

Adobe Illustrator, a graphical design software, was frequently employed for editing the 

maps and figures produced using ArcGIS software. Adobe Illustrator also provided a 

constructive means of accessing USGS Aquifer figures and exporting them into a .dwg format to 

later be georeferenced in ArcGIS.  

3.4. STUDY DESIGN 

This study seeks to conduct a comparative analysis of the statistical accuracy of 

seventeen previously discussed spatial interpolation methods. Each method, with the exception 

of the natural neighbor interpolation method, have numerous adjustable variables that will 

influence how a particular method will perform estimations. Prior to comparison, these variables 

will be adjusted accordingly to optimize the statistical accuracy of each particular method. These 

results will represent the optimal models of each spatial interpolation method. After the optimal 

models are formulated, the spatial models will be subject to a comparative performance 

assessment based upon cross-validation and a variety of statistical accuracy indicators.  

3.4.1. MODEL PERFORMANCE ASSESSMENT 

 The statistical accuracy of each model will be assessed utilizing the root means square 

error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). RMSE is 

defined in the ESRI GIS dictionary as the difference between known locations and locations that 

have been digitized or interpolated. RMS error can be calculated by taking the square root of the 

differences among known and unknown points, obtaining the sum of these values, dividing it by 
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the total number of test points, and by taking the square root of that resulted value (RMS error, 

n.d.). The coefficient of determination, also known as R-squared, is defined by the ESRI GIS 

Dictionary as a statistic calculated by the regression equation to measure the performance of the 

model. The values of the coefficient of determination range from 0 to 100 percent.  (R-squared, 

n.d.). The mean absolute error is a standard metric utilized to measure the expected error of the 

system (Tamayo, 2012).  

3.4.2. GIGAWATT 

All ArcGIS ModelBuilder workflows in this particular case study were carried out 

utilizing a server-based GIS tool referred to as Gigawatt. According to Tullis’s unpublished 

manuscript, Gigawatt promotes a highly collaborative environment by allowing ModelBuilder 

workflows to be easily exchanged between a designated group of individuals. Additionally, by 

providing the ability to re-execute a workflow, Gigawatt allows for detailed and comprehensive 

provenance information. In this situation, provenance refers to a record of the specific 

geoprocesses from which any resulting geospatial datasets are derived (Tullis et al., 2015, p. 

402). 
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Figure 10. This figure demonstrates the general concept of the Gigawatt tool (Tullis, 

unpublished) Reprinted with permission. 
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4. RESULTS  

4.1. 1995 INTERPOLATED SURFACES 

Multiquadric spline produced the estimated surface with the highest statistical accuracy 

in 1995. The average prediction errors yielded were a RMSE of 8.9259 and MAE of 6.0115, 

while generating an average coefficient of determination value of 0.9008. Ordinary kriging 

produced the surface with the second highest statistical accuracy, yielding an average RMSE of 

9.0127, a MAE of 6.2209, and coefficient of determination value of 0.8989. Kernel interpolation 

with barriers produced the surface with the third highest statistical accuracy, yielding an average 

RMSE of 9.186, a MAE of 6.3058, and coefficient of determination value of 0.8959. 

 

Figure 11. This figure displays the estimated groundwater surfaces generated from multiquadric 

spline, ordinary kriging, and kernel interpolation with barriers interpolation methods in 1995 
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Figure 12. This figure displays the residuals spatially yielded by multiquadric spline, ordinary 

kriging, and kernel interpolation with barriers interpolation methods in 1995 
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Table 5. 1995 Leave-out One Cross Validation 

1995 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 8.8481 6.0597 0.9025 

Universal Kriging 9.7871 6.8271 0.8816 

Empirical Bayesian Kriging 9.1068 6.0331 0.8967 

Simple Kriging 9.4406 6.4895 0.8895 

IDW 9.5430 6.4564 0.8874 

Tension Spline 9.0383 6.0301 0.8984 

Regularized Spline 9.2495 6.2866 0.8952 

Local Polynomial Interpolation 9.1539 6.1694 0.8971 

Global Polynomial Interpolation 17.3981 11.7069 0.6380 

Diffusion Interpolation with Barriers 10.7890 7.6488 0.8616 

Kernel Interpolation with Barriers 9.0460 6.2120 0.8992 

Multiquadric Spline 8.7978 5.8675 0.9036 

Inverse Multiquadric Spline 9.9675 6.7572 0.8762 

Thin Plate Spline 9.4205 6.3593 0.8906 

 

 

Table 6. 1995 k-Fold Cross Validation 

1995 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 9.1772 6.3822 0.8953 

Universal Kriging 9.2627 6.5816 0.8938 

Empirical Bayesian Kriging 9.7451 6.5277 0.8820 

Simple Kriging 9.8026 6.8598 0.8811 

IDW 10.0595 6.9029 0.8748 

Tension Spline 9.3480 6.3516 0.8916 

Regularized Spline 9.6486 6.6474 0.8865 

Local Polynomial Interpolation 9.6109 6.5702 0.8860 

Global Polynomial Interpolation 18.4309 11.8181 0.6050 

Nearest Neighbor 9.5349 N/A 0.8884 

IDW with Barriers 9.8932 6.7065 0.8784 

Spline with Barriers 9.2872 6.2004 0.8935 

Diffusion Interpolation with Barriers 11.0902 7.8666 0.8529 

Kernel Interpolation with Barriers 9.3259 6.3996 0.8927 

Multiquadric Spline 9.0541 6.1555 0.8981 

Inverse Multiquadric Spline 10.2364 7.0021 0.8697 

Thin Plate Spline 9.9322 6.7312 0.8935 
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4.1.1. 1995 CROWLEY’S RIDGE BUFFER 

For the Crowley’s Ridge Scenario, the kernel interpolation with barriers produced the 

estimated surface with the highest statistical accuracy in 1995. The average prediction errors 

yielded were a RMSE of 8.074 and MAE of 5.358, while generating an average coefficient of 

determination value of 0.922. Spline with barriers produced the surface with the second highest 

statistical accuracy, yielding a k-Fold cross validation RMSE of 8.556, a MAE of 5.542, and 

coefficient of determination value of 0.9133. IDW with barriers produced the surface with the 

third highest statistical accuracy, yielding a k-Fold cross validation RMSE of 8.691, a MAE of 

5.898, and coefficient of determination value of 0.9101. 

 

 

Table 7. 1995 k-Fold Cross Validation Crowley’s Ridge 

1995 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 9.2612 6.3059 0.8977 

Universal Kriging 9.9553 6.9857 0.8815 

Empirical Bayesian Kriging 9.9825 6.5687 0.8809 

Simple Kriging 10.1613 6.8463 0.8777 

IDW 9.6156 6.4680 0.8897 

Tension Spline 9.2651 6.0270 0.8973 

Regularized Spline 9.3355 6.1482 0.8964 

Local Polynomial Interpolation 9.6615 6.3727 0.8893 

Global Polynomial Interpolation 14.7014 11.0877 0.7415 

Nearest Neighbor 9.6627 6.3929 0.8887 

IDW with Barriers 8.6913 5.8980 0.9101 

Spline with Barriers 8.5561 5.5419 0.9133 

Diffusion Interpolation with Barriers 9.4176 6.7852 0.8970 

Kernel Interpolation with Barriers 8.1290 5.4780 0.9210 

Multiquadric Spline 9.1771 6.0286 0.8993 

Inverse Multiquadric Spline 9.8811 6.4154 0.8836 

Thin Plate Spline 9.6413 6.4362 0.9133 
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Table 8. 1995 Leave-out One Cross Validation Crowley’s Ridge 

1995 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 9.0297 5.9922 0.9026 

Universal Kriging 9.9884 6.9451 0.8810 

Empirical Bayesian Kriging 9.5996 5.9434 0.8901 

Simple Kriging 9.8644 6.4464 0.8844 

IDW 9.2286 6.0566 0.8985 

Tension Spline 8.9795 5.6683 0.9036 

Regularized Spline 9.0407 5.7850 0.9026 

Local Polynomial Interpolation 9.4015 6.0297 0.8953 

Global Polynomial Interpolation 14.6574 11.0259 0.7431 

Diffusion Interpolation with Barriers 9.2722 6.5926 0.9005 

Kernel Interpolation with Barriers 8.0193 5.2377 0.9231 

Multiquadric Spline 8.8873 5.6359 0.9055 

Inverse Multiquadric Spline 9.6936 6.3263 0.8881 

Thin Plate Spline 9.1990 6.0124 0.8994 

 

 

4.2. 2000 INTERPOLATED SURFACES 

Ordinary kriging produced the estimated surface with the highest statistical accuracy in 

2000. The average prediction errors yielded were a RMSE of 9.3621 and MAE of 6.2611, while 

generating an average coefficient of determination value of 0.8949. Simple kriging produced the 

surface with the second highest statistical accuracy, yielding an average RMSE of 9.3752, a 

MAE of 6.244, and coefficient of determination value of 0.8946. Local polynomial interpolation 

produced the surface with the third highest statistical accuracy, yielding an average RMSE of 

9.4284, a MAE of 6.3292, and coefficient of determination value of 0.8932. 
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Figure 13. This figure displays the estimated groundwater surfaces generated from ordinary 

kriging, simple kriging, and local polynomial interpolation methods in 2000 

 



48 

 
Figure 14. This figure displays the residuals spatially yielded by ordinary kriging, simple kriging 

and local polynomial interpolation methods in 2000 

Table 9. 2000 Leave-out One Cross Validation 

2000 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 9.0834 6.1947 0.9010 

Universal Kriging 10.0958 6.8240 0.8782 

Empirical Bayesian Kriging 9.2834 6.1963 0.8967 

Simple Kriging 9.1055 6.1727 0.9005 

IDW 9.5093 6.4575 0.8933 

Tension Spline 9.5236 6.2459 0.8913 

Regularized Spline 9.8262 6.4548 0.8843 

Local Polynomial Interpolation 9.1212 6.2524 0.9001 

Global Polynomial Interpolation 16.2569 11.9239 0.6854 

Diffusion Interpolation with Barriers 10.0296 7.1156 0.8817 

Kernel Interpolation with Barriers 10.0117 7.1195 0.8875 

Multiquadric Spline 9.2434 6.0580 0.8977 

Inverse Multiquadric Spline 9.9725 6.5947 0.8813 

Thin Plate Spline 9.6720 6.3362 0.8882 
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Table 10. 2000 k-Fold Cross Validation 

2000 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 9.6407 6.3275 0.8888 

Universal Kriging 10.8247 7.0524 0.8609 

Empirical Bayesian Kriging 9.6470 6.3526 0.8884 

Simple Kriging 9.6449 6.3152 0.8886 

IDW 9.9640 6.6295 0.8820 

Tension Spline 9.9338 6.3837 0.8823 

Regularized Spline 9.9608 6.4527 0.8816 

Local Polynomial Interpolation 9.7356 6.4059 0.8863 

Global Polynomial Interpolation 16.5131 11.9959 0.6761 

Nearest Neighbor 9.8106 N/A 0.8848 

IDW with Barriers 10.1812 6.5962 0.8757 

Spline with Barriers 9.6391 6.1680 0.8898 

Diffusion Interpolation with Barriers 10.3144 7.0914 0.8739 

Kernel Interpolation with Barriers 9.6787 6.4552 0.8892 

Multiquadric Spline 9.6602 6.2261 0.8881 

Inverse Multiquadric Spline 10.0887 6.5730 0.8791 

Thin Plate Spline 10.2353 6.4957 0.8898 

 

4.2.1. 2000 CROWLEY’S RIDGE BUFFER 

For the Crowley’s Ridge Scenario, the spline with barriers interpolation method produced 

the estimated surface with the highest statistical accuracy in 2000. The average prediction errors 

yielded were a RMSE of 7.892 and MAE of 5.215, while generating an average coefficient of 

determination value of 0.925. IDW with barriers produced the surface with the second highest 

statistical accuracy, yielding a k-Fold cross validation RMSE of 8.018, a MAE of 5.53, and 

coefficient of determination value of 0.922. The kernel interpolation with barriers method 

produced the surface with the third highest statistical accuracy, yielding a k-Fold cross validation 

RMSE of 8.127, a MAE of 5.9, and coefficient of determination value of 0.921. 
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Table 11. 2000 Leave-out One Cross Validation Crowley’s Ridge 

2000 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 8.6628 6.1336 0.9082 

Universal Kriging 10.0872 6.7736 0.8756 

Empirical Bayesian Kriging 8.8508 5.6064 0.9043 

Simple Kriging 8.6328 6.0868 0.9090 

IDW 8.6629 5.9210 0.9107 

Tension Spline 8.3768 5.6298 0.9142 

Regularized Spline 8.5584 5.7928 0.9107 

Local Polynomial Interpolation 8.9148 6.3760 0.9031 

Global Polynomial Interpolation 15.0379 11.8071 0.7236 

Diffusion Interpolation with Barriers 9.0857 6.6887 0.9012 

Kernel Interpolation with Barriers 8.3987 6.1958 0.9164 

Multiquadric Spline 8.2974 5.4582 0.9166 

Inverse Multiquadric Spline 8.7184 5.9318 0.9077 

Thin Plate Spline 8.4944 5.7176 0.9118 

 

Table 12. 2000 k-Fold Cross Validation Crowley’s Ridge 

2000 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 8.8670 6.1686 0.9038 

Universal Kriging 10.6937 7.0923 0.8606 

Empirical Bayesian Kriging 9.0853 5.8213 0.8991 

Simple Kriging 8.8335 6.1624 0.9046 

IDW 8.7751 6.0344 0.9080 

Tension Spline 8.6433 5.7537 0.9086 

Regularized Spline 8.5015 5.7600 0.9116 

Local Polynomial Interpolation 9.0445 6.4161 0.9003 

Global Polynomial Interpolation 15.0389 11.7708 0.7235 

Nearest Neighbor 8.8922 5.9292 0.9043 

IDW with Barriers 8.0184 5.5300 0.9217 

Spline with Barriers 7.8923 5.2153 0.9252 

Diffusion Interpolation with Barriers 8.9097 6.6129 0.9047 

Kernel Interpolation with Barriers 7.8548 5.6045 0.9258 

Multiquadric Spline 8.6886 5.7522 0.9084 

Inverse Multiquadric Spline 8.5894 5.8245 0.9099 

Thin Plate Spline 8.7871 5.8127 0.9252 
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4.3. 2005 INTERPOLATED SURFACES 

Local polynomial interpolation produced the estimated surface with the highest statistical 

accuracy in 2005. The average prediction errors yielded were a RMSE of 10.2167 and MAE of 

6.8081, while generating an average coefficient of determination value of 0.8948. Empirical 

Bayesian kriging produced the surface with the second highest statistical accuracy, yielding an 

average RMSE of 10.2289, a MAE of 6.807, and coefficient of determination value of 0.8946. 

Ordinary kriging produced the surface with the third highest statistical accuracy, yielding an 

average RMSE of 10.26215, a MAE of 6.8589, and coefficient of determination value of 0.8939. 

 
Figure 15. This figure displays the estimated groundwater surfaces generated from local 

polynomial interpolation, empirical Bayesian kriging, and ordinary kriging interpolation methods 

in 2005 
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Figure 16. This figure displays the residuals spatially yielded by local polynomial interpolation, 

empirical Bayesian kriging and ordinary kriging interpolation methods in 2005 

 

Table 13. 2005 Leave-out One Cross Validation 

2005 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 10.1815 6.9123 0.8960 

Universal Kriging 11.2039 7.8171 0.8741 

Empirical Bayesian Kriging 10.1188 6.8148 0.8975 

Simple Kriging 10.2441 6.9260 0.8947 

IDW 10.6978 7.1188 0.8860 

Tension Spline 10.7535 6.9213 0.8840 

Regularized Spline 11.2657 7.2253 0.8732 

Local Polynomial Interpolation 10.2484 6.8819 0.8946 

Global Polynomial Interpolation 19.7721 13.1146 0.6232 

Diffusion Interpolation with Barriers 11.3896 7.8381 0.8725 

Kernel Interpolation with Barriers 10.3472 7.0499 0.8944 

Multiquadric Spline 10.5593 6.9130 0.8882 

Inverse Multiquadric Spline 11.1745 7.0857 0.8754 

Thin Plate Spline 11.1961 7.0845 0.8757 



53 

Table 14. 2005 k-Fold Cross Validation 

2005 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 10.3428 6.8055 0.8917 

Universal Kriging 11.6030 7.9494 0.8639 

Empirical Bayesian Kriging 10.3390 6.7993 0.8917 

Simple Kriging 10.4177 6.8479 0.8900 

IDW 10.5280 6.8204 0.8882 

Tension Spline 10.2662 6.5592 0.8934 

Regularized Spline 10.6696 6.6636 0.8848 

Local Polynomial Interpolation 10.1850 6.7343 0.8949 

Global Polynomial Interpolation 20.3110 13.0694 0.6057 

Nearest Neighbor 10.7238 N/A 0.8835 

IDW with Barriers 10.6711 6.9557 0.8847 

Spline with Barriers 10.4159 6.5312 0.8908 

Diffusion Interpolation with Barriers 11.5263 7.8572 0.8676 

Kernel Interpolation with Barriers 10.5187 6.9918 0.8888 

Multiquadric Spline 10.4004 6.6768 0.8905 

Inverse Multiquadric Spline 10.6870 6.6339 0.8849 

Thin Plate Spline 10.3983 6.6913 0.8908 

 

4.3.1 2005 CROWLEY’S RIDGE BUFFER 

For the Crowley’s Ridge Scenario, the spline with barriers interpolation method produced 

the estimated surface with the highest statistical accuracy in 2005. The k-Fold prediction errors 

yielded were a RMSE of 7.98 and MAE of 5.468, while generating an average coefficient of 

determination value of 0.934. The multiquadric spline method produced the surface with the 

second highest statistical accuracy, yielding a k-Fold cross validation RMSE of 8.28, a MAE of 

5.753 and coefficient of determination value of 0.929. The thin plate spline method produced the 

surface with the third highest statistical accuracy, yielding an average RMSE of 8.499, a MAE of 

5.756, and coefficient of determination value of 0.929. 
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Table 15. 2005 k-Fold Cross Validation Crowley’s Ridge 

2005 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 9.2696 6.4286 0.9113 

Universal Kriging 11.7194 8.3439 0.8590 

Empirical Bayesian Kriging 8.7220 6.1728 0.9214 

Simple Kriging 9.3188 6.5432 0.9107 

IDW 9.3036 6.4583 0.9123 

Tension Spline 8.5132 5.9498 0.9251 

Regularized Spline 8.6221 6.0358 0.9232 

Local Polynomial Interpolation 8.8267 6.3618 0.9196 

Global Polynomial Interpolation 15.5889 11.8735 0.7488 

Nearest Neighbor 8.6056 6.1530 0.9247 

IDW with Barriers 8.6663 6.1059 0.9225 

Spline with Barriers 7.9802 5.4683 0.9343 

Diffusion Interpolation with Barriers 9.4520 6.7674 0.9090 

Kernel Interpolation with Barriers 8.3443 5.9648 0.9282 

Multiquadric Spline 8.5804 6.0369 0.9247 

Inverse Multiquadric Spline 8.5428 5.9460 0.9246 

Thin Plate Spline 8.6543 6.2198 0.9343 

 

Table 16. 2005 Leave-out One Cross Validation Crowley’s Ridge 

2005 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 9.26955 6.42858 0.91132 

Universal Kriging 11.7194 8.34386 0.85898 

Empirical Bayesian Kriging 8.72203 6.17281 0.92144 

Simple Kriging 9.31878 6.54318 0.91071 

IDW 9.30364 6.45828 0.91229 

Tension Spline 8.51324 5.94976 0.92512 

Regularized Spline 8.6221 6.03577 0.92319 

Local Polynomial Interpolation 8.82668 6.36185 0.91958 

Global Polynomial Interpolation 15.5889 11.8735 0.74881 

Diffusion Interpolation with Barriers 9.45204 6.7674 0.90899 

Kernel Interpolation with Barriers 8.34433 5.96477 0.92817 

Multiquadric Spline 8.58039 6.03688 0.92468 

Inverse Multiquadric Spline 8.54285 5.94604 0.9246 

Thin Plate Spline 8.65431 6.21981 0.923 
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4.4. 2010 INTERPOLATED SURFACES 

Empirical Bayesian kriging produced the estimated surface with the highest statistical 

accuracy in 2010. The average prediction errors yielded were a RMSE of 10.9125 and MAE of 

7.1533, while generating an average coefficient of determination value of 0.8978. Kernel 

interpolation with barriers produced the surface with the second highest statistical accuracy, 

yielding an average RMSE of 11.1554, a MAE of 7.6045, and coefficient of determination value 

of 0.8952. Multiquadric spline produced the surface with the third highest statistical accuracy, 

yielding an average RMSE of 11.2378, a MAE of 7.1523, and coefficient of determination value 

of 0.8917. 

 

 
Figure 17. This figure displays the estimated groundwater surfaces generated from empirical 

Bayesian kriging, kernel interpolation with barriers, and multiquadric spline interpolation 

methods in 2010 
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Figure 18. This figure displays the residuals spatially yielded by empirical Bayesian kriging, 

kernel interpolation with barriers, and multiquadric spline interpolation methods in 2010 

 

Table 17. 2010 Leave-out One Cross Validation 

2010 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 10.9814 7.5408 0.8966 

Universal Kriging 11.4772 7.9320 0.8870 

Empirical Bayesian Kriging 10.5432 6.8975 0.9047 

Simple Kriging 11.1170 7.5727 0.8941 

IDW 11.1813 7.3238 0.8934 

Tension Spline 11.3335 7.2022 0.8901 

Regularized Spline 11.4713 7.3553 0.8873 

Local Polynomial Interpolation 11.0592 7.5386 0.8955 

Global Polynomial Interpolation 18.2769 13.6618 0.7157 

Diffusion Interpolation with Barriers 12.3577 8.5214 0.8711 

Kernel Interpolation with Barriers 10.8637 7.4967 0.9011 

Multiquadric Spline 11.0245 7.0516 0.8957 

Inverse Multiquadric Spline 11.6790 7.4263 0.8837 

Thin Plate Spline 11.5376 7.4325 0.8869 
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Table 18. 2010 k-Fold Cross Validation 

2010 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 11.9066 7.9952 0.8785 

Universal Kriging 12.7874 8.3998 0.8603 

Empirical Bayesian Kriging 11.2818 7.4090 0.8909 

Simple Kriging 12.1189 8.1176 0.8742 

IDW 11.6618 7.6614 0.8841 

Tension Spline 11.6546 7.3748 0.8839 

Regularized Spline 16.2548 8.0607 0.7951 

Local Polynomial Interpolation 11.4691 7.6481 0.8873 

Global Polynomial Interpolation 20.2943 14.0820 0.6582 

Nearest Neighbor 11.6378 7.3770 0.8840 

IDW with Barriers 12.0499 7.7722 0.8758 

Spline with Barriers 11.9300 7.5104 0.8794 

Diffusion Interpolation with Barriers 12.7512 8.6594 0.8624 

Kernel Interpolation with Barriers 11.4471 7.7122 0.8893 

Multiquadric Spline 11.4510 7.2530 0.8876 

Inverse Multiquadric Spline 11.7264 7.4884 0.8823 

Thin Plate Spline 12.5815 7.6943 0.8794 

 

 

4.4.1. 2010 CROWLEY’S RIDGE BUFFER 

For the Crowley’s Ridge Scenario, the spline with barriers method produced the 

estimated surface with the highest statistical accuracy in 2010. The average prediction errors 

yielded were a RMSE of 9.0574, and MAE of 5.911, while generating an average coefficient of 

determination value of 0.934. The kernel interpolation with barriers produced the surface with 

the second highest statistical accuracy, yielding an average RMSE of 8.683, a MAE of 5.942, 

and coefficient of determination value of 0.939. The empirical Bayesian kriging method 

produced the surface with the third highest statistical accuracy, yielding an average RMSE of 

9.525, a MAE of 6.153, and coefficient of determination value of 0.926. 
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Table 19. 2010 Leave-out One Cross Validation Crowley’s Ridge 

2010 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 10.3482 7.2254 0.9129 

Universal Kriging 11.1248 7.8882 0.8993 

Empirical Bayesian Kriging 9.3500 5.9661 0.9287 

Simple Kriging 10.2083 6.9056 0.9153 

IDW 9.3085 6.1820 0.9297 

Tension Spline 9.7582 6.2745 0.9226 

Regularized Spline 9.8910 6.4394 0.9206 

Local Polynomial Interpolation 10.4172 7.1225 0.9122 

Global Polynomial Interpolation 15.7265 11.8848 0.7988 

Diffusion Interpolation with Barriers 9.8512 6.7495 0.9212 

Kernel Interpolation with Barriers 8.6529 5.9299 0.9390 

Multiquadric Spline 9.5011 6.1658 0.9264 

Inverse Multiquadric Spline 10.1191 6.5878 0.9176 

Thin Plate Spline 10.0626 6.6195 0.9180 

 

Table 20. 2010 k-Fold Cross Validation Crowley’s Ridge 

2010 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 10.5217 7.5298 0.9101 

Universal Kriging 11.4601 8.1226 0.8931 

Empirical Bayesian Kriging 9.7002 6.3399 0.9235 

Simple Kriging 10.6325 7.4203 0.9084 

IDW 9.6197 6.4505 0.9249 

Tension Spline 9.6958 6.2414 0.9235 

Regularized Spline 9.8730 6.3791 0.9208 

Local Polynomial Interpolation 10.2378 7.0916 0.9147 

Global Polynomial Interpolation 15.7284 11.9151 0.7986 

Nearest Neighbor 9.5911 6.2192 0.9251 

IDW with Barriers 9.6243 6.3767 0.9246 

Spline with Barriers 9.0574 5.9116 0.9345 

Diffusion Interpolation with Barriers 9.8947 6.7947 0.9204 

Kernel Interpolation with Barriers 8.7128 5.9534 0.9382 

Multiquadric Spline 9.5839 6.2270 0.9251 

Inverse Multiquadric Spline 9.6910 6.1975 0.9235 

Thin Plate Spline 10.1628 6.5350 0.9345 
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4.5. 2015 INTERPOLATED SURFACES  

Simple kriging produced the estimated surface with the highest statistical accuracy in 

2015. The average prediction errors yielded were a RMSE of 12.4984 and MAE of 7.9941, while 

generating an average coefficient of determination value of 0.8751. Ordinary kriging produced 

the surface with the second highest statistical accuracy, yielding an average RMSE of 12.5098, a 

MAE of 8.1027, and coefficient of determination value of 0.8749. Local polynomial 

interpolation produced the surface with the third highest statistical accuracy, yielding an average 

RMSE of 12.6368, a MAE of 8.1779, and coefficient of determination value of 0.8722. 

 

Figure 19. This figure displays the estimated groundwater surfaces generated from simple 

kriging, ordinary kriging, and local polynomial interpolation methods in 2015 
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Figure 20. This figure displays the residuals spatially yielded by simple kriging, ordinary kriging, 

and local polynomial interpolation methods in 2015 

Table 21. 2015 Leave-out One Cross Validation 

2015 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 12.189 7.9512 0.8806 

Universal Kriging 13.767 9.047 0.8477 

Empirical Bayesian Kriging 12.3048 8.0067 0.8782 

Simple Kriging 12.1559 7.8235 0.8812 

IDW 12.7973 7.9462 0.8681 

Tension Spline 12.9461 8.0754 0.8662 

Regularized Spline 13.222 8.3663 0.8608 

Local Polynomial Interpolation 12.293 7.9894 0.8784 

Global Polynomial Interpolation 23.5869 14.7855 0.5991 

Diffusion Interpolation with Barriers 13.6257 8.9896 0.8523 

Kernel Interpolation with Barriers 12.1771 8.094 0.8824 

Multiquadric Spline 12.6111 7.7713 0.8719 

Inverse Multiquadric Spline 13.2089 8.3559 0.8613 

Thin Plate Spline 13.0472 8.119 0.8649 
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Table 22. 2015 k-Fold Cross Validation 
 

2015 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 12.8306 8.2542 0.8692 

Universal Kriging 14.5064 9.5255 0.8334 

Empirical Bayesian Kriging 13.1879 8.2724 0.8620 

Simple Kriging 12.8408 8.1646 0.8690 

IDW 13.5710 8.3687 0.8535 

Tension Spline 13.8500 8.5495 0.8494 

Regularized Spline 14.1467 8.7830 0.8436 

Local Polynomial Interpolation 12.9806 8.3664 0.8660 

Global Polynomial Interpolation 21.9578 14.2423 0.6356 

Nearest Neighbor 13.2216 N/A 0.8612 

IDW with Barriers 14.0266 8.3843 0.8443 

Spline with Barriers 13.6648 8.3290 0.8543 

Diffusion Interpolation with Barriers 13.9416 9.1828 0.8470 

Kernel Interpolation with Barriers 12.7310 8.3946 0.8733 

Multiquadric Spline 13.3338 8.2544 0.8586 

Inverse Multiquadric Spline 14.1921 8.8104 0.8429 

Thin Plate Spline 14.0678 8.6837 0.8543 

 

4.5.1. 2015 CROWLEY’S RIDGE BUFFER 

For the Crowley’s Ridge Scenario, spline with barriers interpolation method produced the 

estimated surface with the highest statistical accuracy in 2015. The k-Fold prediction errors 

yielded were a RMSE of 10.396 and MAE of 7.108, while generating an average coefficient of 

determination value of 0.923. IDW with barriers produced the surface with the second highest 

statistical accuracy, yielding a k-Fold RMSE of 10.562, a MAE of 6.854, and coefficient of 

determination value of 0.919. The kernel interpolation with barriers method produced the surface 

with the third highest statistical accuracy, yielding a k-Fold cross validation RMSE of 10.418, a 

MAE of 6.79, and coefficient of determination value of 0.922. 
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Table 23. 2015 Leave-out One Cross Validation Crowley's Ridge 

2015 Leave-out One Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 11.9782 8.1275 0.8957 

Universal Kriging 13.6157 9.1656 0.8653 

Empirical Bayesian Kriging 11.4116 7.5823 0.9053 

Simple Kriging 11.8928 7.9348 0.8972 

IDW 11.1929 7.4895 0.9092 

Tension Spline 11.4257 7.4712 0.9055 

Regularized Spline 11.6464 7.6411 0.9019 

Local Polynomial Interpolation 11.7642 7.8781 0.8994 

Global Polynomial Interpolation 16.7274 12.3407 0.7967 

Diffusion Interpolation with Barriers 10.9352 7.3607 0.9138 

Kernel Interpolation with Barriers 10.2759 6.7277 0.9235 

Multiquadric Spline 11.5466 7.4257 0.9031 

Inverse Multiquadric Spline 11.6007 7.6261 0.9028 

Thin Plate Spline 11.4431 7.5207 0.9053 

 

 

Table 24. 2015 k-Fold Cross Validation Crowley's Ridge 

2015 k-Fold Cross Validation 

Spatial Interpolation Model RMSE MAE R2 

Ordinary Kriging 11.9496 8.3646 0.8973 

Universal Kriging 13.6841 9.3744 0.8661 

Empirical Bayesian Kriging 11.6234 7.8142 0.9033 

Simple Kriging 11.9036 7.9914 0.8981 

IDW 11.2690 7.6673 0.9094 

Tension Spline 11.3898 7.7523 0.9065 

Regularized Spline 11.6558 7.9577 0.9023 

Local Polynomial Interpolation 12.0081 8.0877 0.8967 

Global Polynomial Interpolation 16.6080 12.1848 0.8021 

Nearest Neighbor 11.7574 7.9614 0.9011 

IDW with Barriers 10.5616 6.8542 0.9199 

Spline with Barriers 10.3959 7.1078 0.9230 

Diffusion Interpolation with Barriers 10.9134 7.4368 0.9159 

Kernel Interpolation with Barriers 9.9582 6.7957 0.9296 

Multiquadric Spline 11.5381 7.7506 0.9046 

Inverse Multiquadric Spline 11.6321 7.9469 0.9027 

Thin Plate Spline 11.4377 7.7844 0.9230 
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4.6. FURTHER ANALYSIS 

 The estimated mean groundwater level in twenty-five out of twenty-nine counties yield 

declines from 1995 to 2015. In addition, Cleveland, Cross, Poinsett, St. Francis, Desha, Greene, 

Prairie, Craighead counties all experienced estimated mean groundwater level declines in excess 

of 8.4 feet.  A Pearson’s correlation test was conducted on the county estimated mean 

groundwater level change occurring from 1995 to 2015 and the mean groundwater usage rate 

1995 to 2010.  The correlation test generated a p-value of 0.0354, which leads to the rejection of 

the null hypothesis that the two variables are uncorrelated.  

  

 

Figure 21. This figure displays 1995 and 2015 estimated groundwater surfaces generated from 

ordinary kriging. The 2015 surface demonstrates a significant increase in groundwater depth. 
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Figure 22. This figure shows the estimated mean groundwater level changes occurring from 1995 

to 2015 
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5. DISCUSSION AND CONCLUSION 

5.1. SUMMARY OF RESEARCH QUESTIONS 

 The primary research question of this study was to determine which spatial interpolation 

method serves as the optimal method for modeling groundwater levels in the Mississippi River 

Valley Alluvial Aquifer. Based upon the results of two types of cross-validation for five separate 

years, ordinary kriging is the most appropriate interpolation method for generating groundwater 

level estimations for this particular study area. Simple kriging and empirical Bayesian kriging 

also provide suitable methods for producing groundwater level estimations for the Mississippi 

River Valley Alluvial Aquifer.   

 Ordinary kriging produced estimated surfaces with the highest statistical accuracy 

throughout the study. The average prediction errors yielded were a RMSE of 10.518 and MAE of 

7.042, while generating an average coefficient of determination value of 0.89. Within the 

Crowley’s Ridge study area, ordinary kriging produced the surfaces with an average RMSE of 

9.156, a MAE of 6.87, and coefficient of determination value of 0.905. 

Simple kriging produced estimated surfaces with the second highest statistical accuracy 

throughout the study. The average prediction errors yielded were a RMSE of 10.689 and MAE of 

7.129, while generating an average coefficient of determination value of 0.886. Within the 

Crowley’s Ridge study area, simple kriging produced the surfaces with an average RMSE of 

10.077, a MAE of 6.888, and coefficient of determination value of 0.902.  The RMSE value 

yielded by simple kriging within the Crowley’s ridge study area was significantly higher than the 

RMSE value yielded by ordinary kriging. 

Empirical Bayesian kriging produced estimated surfaces with the third highest statistical 

accuracy throughout the study. The average prediction errors yielded were a RMSE of 10.556 
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and MAE of 6.931, while generating an average coefficient of determination value of 0.889. 

Within the Crowley’s Ridge study area, empirical Bayesian kriging produced the surfaces with 

an average RMSE of 9.705, a MAE of 6.399, and coefficient of determination value of 0.908. 

These results demonstrated a significant amount of more accuracy within the Crowley’s Ridge 

study area than both ordinary and simple kriging. 

However, spline with barriers was the interpolation method that produced the highest 

accuracy within the Crowley’s Ridge study area. The average prediction errors yielded were a 

RMSE of 8.776 and MAE of 5.849, while generating an average coefficient of determination 

value of 0.926. Throughout the complete study area the average prediction errors yielded by 

spline with barriers were a RMSE of 10.987 and MAE of 6.947, while generating an average 

coefficient of determination value of 0.882. These prediction errors are comparable to those 

yielded by empirical Bayesian kriging.  

Additionally, the number of trials is a critical factor in determining the significance of the 

differences in RMSE values. If there had only been one trial, the differences in RMSE values 

would have been insignificant. However, the difference was indeed significant as the RMSE 

values were averaged over five separate years. Overall, there are a total of four to five 

interpolation methods which performed successfully in a consistent manner, hence it is 

appropriate to consider them suitable. Contrastingly, there were three to four interpolation 

methods that consistently performed poorly.  

An intriguing trend in this study’s results was a general trend towards lower statistical 

accuracy in the interpolation surfaces as the years went and I believe this is a direct result of 

increased variation in groundwater depth measurements. As a result, determining which 

interpolation method is the most appropriate going forward is essential.  In addition, IDW and 
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Natural Neighbor, the methods employed by the Arkansas Geological Survey and the Arkansas 

Natural Resource Commission did not factor in the factor into the most accurate methods and 

actually were some of the interpolation methods yielding some of the lowest statistical accuracy 

in this case study.  

The second research question was have the fluctuations in the alluvial aquifer’s 

groundwater levels exhibited a noticeable general trend of decline in recent history?  A general 

trend of groundwater depletion is confirmed by twenty-five out of twenty-nine counties yielding 

declines in their estimated mean groundwater level from 1995 to 2015 and eight counties 

experiencing mean groundwater level declines in excess of 8.4 feet. The third research question 

for this study was does the majority of the study area’s counties exhibit a significantly similar 

interaction between groundwater level changes and the varying rates of groundwater withdrawals 

associated with particular counties? This notion was confirmed by a Pearson’s correlation test 

generating a p-value of 0.0354 leading to the rejection of the null hypothesis that the two 

variables are uncorrelated. 

5.2. LIMITATIONS AND AREAS FOR FUTURE STUDY  

 The primary limitation of this case study was the general lack of groundwater 

measurements in neighboring states in close proximity to the Arkansas border. Mississippi 

provided significant amounts groundwater measurements from 1995 to 2010; however, in 2015 

the spatial coverage of groundwater measurements in Mississippi fell below ten measurements. 

The remaining neighboring states produced unsatisfactory amounts of groundwater 

measurements throughout the case study.  

 A future area of study would be to generate a predictive model to groundwater levels in 

the study area. This model could potentially take numerous variables that affect groundwater 
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levels into consideration. Examples of the potential variables include, confining unit thickness, 

aquifer thickness, proximity to major rivers, precipitation averages, soil properties, elevation, 

groundwater flow patterns, trends in groundwater levels and water usage.  

Another, potential area of future study would be the creation of a tool that would employ 

the same notions utilized in this respective case study that would automate a large portion of the 

work involved.  This tool could prove to be very useful in groundwater monitoring in the near 

future. Based up on the current availability of groundwater depth measurements, I believe that 

this tool could potentially create a new groundwater level surface every six months for 

monitoring purposes. 
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APPENDIX A – MODELBUILDER MODELS 

 As described in section 3.3.1, the majority of the data preprocessing accomplished via 

ModelBuilder Models. These particular models are utilized to employ 10 fold cross validation.  

A.1. MODEL 1, PART 1 

 

This portion of the model consists of merging and joining several excel files, which are 

later projected relative to their latitude and longitude values. These files represent groundwater 

values in neighboring states. Utilizing the clipping tool values that fall outside of 25 mile buffer 

of Arkansas are removed.  
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A.2. MODEL 1, PART 2 

 
 

 

 Similar to part one, this portion of the model consists of merging and joining two excel 

files, which are then projected relative to their latitude and longitude values. These excel 

spreadsheets contain groundwater depth values, all of which are utilized in this study. 
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A.3. MODEL 1,  PART 3
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 The third portion of the first model demonstrates the partitioning of the groundwater 

depth values into ten different subsets to later be utilized in k-fold cross-validation. 
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A.4. MODEL 2 
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The second model is the process of iterating and generating interpolated surfaces utilizing 

the ten previously established subsets. 
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A.5. MODEL 3, PART 1 

 
 

 This portion of the third model shows the sampling of estimated values relative to the 

subset withheld during estimation.  
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A.6. MODEL 3, PART 2 

 
 

The second portion of the third model demonstrates the ten withheld subset samples 

being merged and joined together. These tables are then exported into an excel spreadsheet 

format. 
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APPENDIX B – RSTUDIO CROSS-VALIDATION SCRIPT  

As stated in section 3.3.2., RStudio was employed repeatedly for various purposes related 

to statistical computation. The following script was employed for conduction cross-validation 

statistics, which were utilized for to conduct a comparative analysis of the accuracy of surface 

estimations. 

B.1. CROSS-VALIDATION R SCRIPT 

GW10ARkfCVtable <- read.csv("W:/jolilly/aqufr/10GWtables/GW10ARkfCVtable.csv") 

attach(GW10ARkfCVtable) 

 

 

#test dataset 

obs <- lev_va #Observed Values 

 

 

#Interpolated Values 

RS <- RS 

LPI <- LPI 

IDW <- IDW 

IDWB <- IDWB 

TS <- TS 

OK <- OK 

NN <- NN 

UV <- UK 

EK <- EBK 

SK <- SK 

SB <- SB 

DI <- DI 

KI <- KI 

MQS <- MQS 

GPI <- GPI 

IMF <- IMF 

MQS <- MQS 

TPS <- TPS 

 

 

 

# Function that returns Root Mean Squared Error 

rmse <- function(error) 

{ 

  sqrt(mean((error)^2, na.rm =TRUE)) 



84 

} 

 

 

# Function that returns Mean Absolute Error 

mae <- function(error) 

{ 

  mean(abs(error)) 

} 

 

 

 

#Caculate Error 

#error <- Simulated - Observed 

RS.er <- RS - obs 

LPI.er <-  LPI - obs 

IDW.er <- IDW - obs 

TS.er <- TS - obs 

GPI.er <-  GPI - obs 

OK.er <-  OK - obs 

NN.er <-  NN - obs 

UV.er <-  UV - obs 

EK.er <-  EK - obs 

SK.er <- SK - obs 

IDWB.er <- IDWB - obs 

SB.er <- SB - obs 

DI.er <- DI - obs 

KI.er <- KI - obs 

IMF.er <- IMF - obs 

MQS.er <- MQS - obs 

TPS.er <- TPS - obs 

 

#RMSE Calculations 

OK.rmse <- rmse(OK.er) 

UV.rmse <- rmse(UV.er) 

EK.rmse <- rmse(EK.er) 

IDW.rmse <- rmse(IDW.er) 

RS.rmse <- rmse(RS.er) 

TS.rmse <- rmse(TS.er) 

LPI.rmse <- rmse(LPI.er) 

GPI.rmse <- rmse(GPI.er) 

NN.rmse <- rmse(NN.er) 

SK.rmse <- rmse(SK.er) 

IDWB.rmse <- rmse(IDWB.er) 

SB.rmse <- rmse(SB.er) 

DI.rmse <- rmse(DI.er) 

KI.rmse <- rmse(KI.er) 
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IMF.rmse <- rmse(IMF.er) 

MQS.rmse <- rmse(MQS.er) 

TPS.rmse <- rmse(TPS.er) 

 

 

#MAE Calculations 

OK.mae <- mae(OK.er) 

UV.mae <- mae(UV.er) 

EK.mae <- mae(EK.er) 

IDW.mae <- mae(IDW.er) 

RS.mae <- mae(RS.er) 

TS.mae <- mae(TS.er) 

LPI.mae <- mae(LPI.er) 

GPI.mae <- mae(GPI.er) 

NN.mae <- mae(NN.er) 

SK.mae <- mae(SK.er) 

MQS.mae <- mae(MQS.er) 

SB.mae <- mae(SB.er) 

DI.mae <- mae(DI.er) 

KI.mae <- mae(KI.er) 

IMF.mae <- mae(IMF.er) 

MQS.mae <- mae(MQS.er) 

TPS.mae <- mae(TPS.er) 

IDWB.mae <- mae(IDWB.er) 

 

#Coefficient of Determination r^2 

OK.lm <- lm(obs ~ OK) 

UV.lm <- lm(obs ~ UV) 

EK.lm <- lm(obs ~ EK) 

IDW.lm <- lm(obs ~ IDW) 

TS.lm <- lm(obs ~ TS) 

RS.lm <- lm(obs ~ RS) 

LPI.lm <- lm(obs ~ LPI) 

GPI.lm <- lm(obs ~ GPI) 

NN.lm <- lm(obs ~ NN) 

SK.lm <- lm(obs ~ SK) 

IDWB.lm <- lm(obs ~ IDWB) 

SB.lm <- lm(obs ~ SB) 

DI.lm <- lm(obs ~ DI) 

KI.lm <- lm(obs ~ KI) 

IMF.lm <- lm(obs ~ IMF) 

MQS.lm <- lm(obs ~ MQS)  

TPS.lm <- lm(obs ~ SB)  

 

OK.r2 <- summary(OK.lm)$r.squared 

UV.r2 <- summary(UV.lm)$r.squared 
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EK.r2 <- summary(EK.lm)$r.squared 

IDW.r2 <- summary(IDW.lm)$r.squared 

TS.r2 <- summary(TS.lm)$r.squared 

RS.r2 <- summary(RS.lm)$r.squared 

LPI.r2 <- summary(LPI.lm)$r.squared 

GPI.r2 <- summary(GPI.lm)$r.squared 

NN.r2 <- summary(NN.lm)$r.squared 

SK.r2 <- summary(SK.lm)$r.squared 

IDWB.r2 <- summary(IDWB.lm)$r.squared 

SB.r2 <- summary(SB.lm)$r.squared 

DI.r2 <- summary(DI.lm)$r.squared 

KI.r2 <- summary(KI.lm)$r.squared 

IMF.r2 <- summary(IMF.lm)$r.squared 

MQS.r2 <- summary(MQS.lm)$r.squared 

TPS.r2 <- summary(TPS.lm)$r.squared  

 

 

 

IntModel <- c("Ordinary Kriging", "Universal Kriging", "Empirical Bayesian Kriging", "Simple 

Kriging", "IDW","Tension Spline", "Regularized Spline", "Local Polynomial Interpolation", 

"Global Polynomial Interpolation", "Nearest Neighbor", "IDW with Barriers", "Spline with 

Barriers", "Diffusion Interpolation with Barriers", "Kernel Interpolation with 

Barriers","Multiquadric Spline", "Inverse Multiquadric Spline", "Thin Plate Spline") 

Interpolation.RMSE <- c(OK.rmse, UV.rmse, EK.rmse, SK.rmse, IDW.rmse, TS.rmse, RS.rmse, 

LPI.rmse, GPI.rmse, NN.rmse, IDWB.rmse, SB.rmse, DI.rmse, KI.rmse, MQS.rmse, IMF.rmse, 

TPS.rmse) 

Interpolation.mae <- c(OK.mae, UV.mae, EK.mae, SK.mae, IDW.mae,TS.mae, RS.mae, 

LPI.mae, GPI.mae, NN.mae, IDWB.mae, SB.mae, DI.mae, KI.mae, MQS.mae, IMF.mae, 

TPS.mae) 

Interpolation.r2 <- c(OK.r2, UV.r2, EK.r2, SK.r2, IDW.r2, TS.r2, RS.r2, LPI.r2, GPI.r2, NN.r2, 

IDWB.r2, SB.r2, DI.r2, KI.r2, MQS.r2, IMF.r2, TPS.r2) 

 

ARGW10_kfoldCV <- data.frame(SpatialInterpolationModel = IntModel, RMSE = 

Interpolation.RMSE, MAE =Interpolation.mae, r2= Interpolation.r2) 

print(ARGW10_kfoldCV) 

 

 

write.csv(ARGW10_kfoldCV , file = "W:/jolilly/aqufr/10GWtables/ARGW10_kfoldCV.csv") 


	A GIS Approach to Modeling Groundwater Levels in the Mississippi River Valley Alluvial Aquifer
	Citation

	tmp.1494336247.pdf.Jo75T

