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Abstract

Sensor networks equipped with energy harvesting (EH) devices have attracted great

attentions recently. Compared with conventional sensor networks powered by batteries, the

energy harvesting abilities of the sensor nodes make sustainable and environment-friendly

sensor networks possible. However, the random, scarce and non-uniform energy supply

features also necessitate a completely different approach to energy management.

A typical EH wireless sensor node consists of an EH module that converts ambient

energy to electrical energy, which is stored in a rechargeable battery, and will be used to

power the sensing and transmission operations of the sensor. Therefore, both sensing and

transmission are subject to the stochastic energy constraint imposed by the EH process. In

this dissertation, we investigate optimal sensing and transmission policies for EH sensor

networks under such constraints.

For EH sensing, our objective is to understand how the temporal and spatial

variabilities of the EH processes would affect the sensing performance of the network, and

how sensor nodes should coordinate their data collection procedures with each other to

cope with the random and non-uniform energy supply and provide reliable sensing

performance with analytically provable guarantees. Specifically, we investigate optimal

sensing policies for a single sensor node with infinite and finite battery sizes in Chapter 2,

status updating/transmission strategy of an EH Source in Chapter 3, and a collaborative

sensing policy for a multi-node EH sensor network in Chapter 4.



For EH communication, our objective is to evaluate the impacts of stochastic

variability of the EH process and practical battery usage constraint on the EH systems,

and develop optimal transmission policies by taking such impacts into consideration.

Specifically, we consider throughput optimization in an EH system under battery usage

constraint in Chapter 5.
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Chapter 1: Introduction

Sensor networks equipped with energy harvesting devices have attracted great attentions

recently. Compared with conventional sensor networks powered by batteries, the energy

harvesting abilities of the sensor nodes make sustainable and environment-friendly sensor

networks possible. However, the random, scarce and non-uniform energy supply features

also necessitate a completely different approach to energy management.

A typical EH wireless sensor node consists of an EH module that converts ambient

energy to electrical energy, which is stored in a rechargeable battery, and will be used to

power the sensing and transmission operations of the sensor. Therefore, both sensing and

transmission are subject to the stochastic energy constraint imposed by the EH process.

EH wireless communications have attracted great attentions in academia recently.

Throughput maximizing transmission policies are characterized for point-to-point channels

in [1–9], for broadcast channels in [1, 10–12], for multi-access channels in [13], for

interference channels in [14], for two-hop relay channels in [15–18], for systems with battery

imperfections or processing costs in [16,19–23]. Asymptotic analysis of throughput in

large-scale EH communication networks is studied in [24,25]. The optimal transmission

policy for outage probability minimization in fading channels is studied in [26]. The delay

minimization problem with a given energy and data arrival profile is studied in [27]. Under

the assumption that a single-antenna receiver can only decode information or harvest

energy from ambient radio signal at any time due to practical circuit limitations, optimal

transmission and receiving policies and various trade-offs between wireless information

transfer and power transfer have been characterized in different communication

systems [28–43]. From an information theoretic perspective, the impact of the stochastic

energy supply on channel capacity is characterized for an additive white Gaussian noise

(AWGN) channel in [44–47], and a multiple-access channel in [48]. [49] describes the

capacity of an EH discrete memoryless channel with finite battery using the Verdu-Han
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general framework [50], and [51] discusses the capacity of a noiseless binary channel with

binary energy arrivals and unit-capacity battery. From the network perspective, researchers

focus on routing and resource allocation problems in EH networks [52–56]. The commonly

used tools include the standard dual decomposition and the subgradient methods [57], and

the Lyapunov optimization technique developed in [58] and [59].

Another branch of work focuses on the sensing aspect, i.e., data collection, in EH

sensor networks, and investigates energy management policies to optimize sensing and

inference performance metrics, such as estimation MSE, detection delay, etc. Under an EH

setting, [60,61] propose energy-aware random sampling schemes for the recovery of sparse

sensing signals using compressive sensing. [62] discusses the optimal energy allocation

scheme for the “quickest detection” of change point for EH sensors. Generally speaking,

the study on energy management policies for the optimization of sensing and inference

performances has been limited.

In general, all of the energy management policies in EH sensor networks can be

categorized as offline polices and online policies. In the offline optimization framework, it is

assumed that the EH profile is predictable and known in advance for the whole duration of

operation. With such assumptions, energy has been managed to optimize communication

performances [1–4,10–18,26,27], schedule sensing tasks [63], etc.

In contrast, in the online optimization framework, it is assumed that the system knows

the past realizations of the EH process, but has only statistical knowledge of their future

evolution. Besides some heuristic online algorithms [17,18,20,21,26,64], the major

approach is to formulate the optimal energy management problem as a stochastic control

problem, with the objective to determine the optimal decision rules so that the expected

reward of the decisions is maximized. The reward could be data throughput [5–9], channel

coding rate [45,49], sensing utility [65], etc. With this approach, the EH process and/or

the data arrival process are usually modeled as Markov processes, and the online problem

can be cast under the powerful framework of Markov decision processes (MDPs), which is
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often analytically intractable and can only be solved numerically with standard dynamic

programming tools [66].

In the offline approach, non-causal knowledge of the energy and data arrival processes

allows solving for the optimal policy through a one-shot optimization problem. However, in

most practical scenarios, complete predictability of the EH processes is an over-simplified

and optimistic assumption. On the other hand, most of the online approaches are either

heuristic or numerical approaches with formidable implementation complexity and lack

analytical insight.

In this dissertation, we aim to obtain optimal energy management policies to balance

energy consumption and harvesting at sensor nodes, with limited EH statistics and energy

state information at their disposal. We focus on both sensing and transmission aspects.

For EH sensing, our objective is to understand how the temporal and spatial

variabilities of the EH processes would affect the sensing performance of the network, and

how sensor nodes should coordinate their data collection procedures with each other to

cope with the random and non-uniform energy supply and provide reliable sensing

performance with analytically provable guarantees. Specifically, we investigate optimal

sensing policies for a single sensor node with infinite and finite battery sizes in Chapter 2,

status updating/transmission strategy of an EH Source in Chapter 3, and a collaborative

sensing policy for a multi-node EH sensor network in Chapter 4.

In Chapter 2, we study the optimal sensing scheduling problem for an energy

harvesting sensor. The objective is to strategically select the sensing time such that the

long-term time average sensing performance is optimized. In the sensing system, it is

assumed that the sensing performance depends on the time durations between two

consecutive sensing epochs. Example applications include reconstructing a wide-sense

stationary random process by using discrete-time samples collected by a sensor. We

consider both scenarios where the battery size is infinite and finite, assuming the energy

harvesting process is a Poisson random process. We first study the infinite battery case and

3



identify a performance limit on the long-term time average sensing performance of the

system. Motivated by the structure of the performance limit, we propose a best-effort

uniform sensing policy, and prove that it achieves the limit asymptotically, thus it is

optimal. We then study the finite battery case, and propose an energy-aware adaptive

sensing scheduling policy. The policy dynamically chooses the next sensing epoch based on

the battery level at the current sensing epoch. We show that as the battery size increases,

the sensing performance under the adaptive sensing policy asymptotically converges to the

limit achievable by the system with infinite battery, thus it is asymptotically optimal. The

convergence rate is also analytically characterized.

In Chapter 3, we consider a scenario where an energy harvesting sensor continuously

monitors a system and sends time-stamped status updates to a destination. The

destination keeps track the system status through the received updates. We use the metric

Age of Information (AoI), the time elapsed since the last received update was generated, to

measure the “freshness” of the status information available at the destination. We assume

energy arrives randomly at the sensor according to a Poisson process, and each status

update consumes one unit of energy. Our objective is to design optimal online status

update policies to minimize the long-term time average AoI, subject to the energy causality

constraint at the sensor. We consider three scenarios, i.e., the battery size is infinite, finite,

and one unit only, respectively. For the infinite battery scenario, we adopt a best-effort

uniform status update policy and show that it minimizes the long-term time average AoI.

For the finite battery scenario, we adopt an energy-aware adaptive status update policy,

and prove that it is asymptotically optimal when the battery size goes to infinity. For the

last scenario where the battery size is one, we propose a threshold based status update

policy. We analytically characterize the time average AoI under this policy, and show that

it outperforms any other online policy in this extreme scenario, thus it is optimal.

Simulation results corroborate the theoretical bounds.

In Chapter 4, we consider a collaborative sensing scenario where sensing nodes are
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powered by energy harvested from ambient environment. In each time slot, an active

sensor consumes one unit amount of energy to take an observation and transmit it back to

a fusion center (FC). After receiving observations from all of the active sensors in a time

slot, the FC aims to extract information from them. We assume that the sensing utility

generated by the observations is a concave function of the number of the active sensing

nodes in that slot. Our objective is to develop a sensing scheduling policy so that the time

average utility generated by the sensors is maximized. We first consider an offline setting,

where the energy harvesting profile over duration [0, T − 1] for each sensor is known

beforehand. Assuming infinite battery capacity at sensors, we show that the optimal

scheduling structure has a “majorization” property, and propose a procedure to construct a

collaborative sensing policy with the identified structure explicitly. We then consider an

online setting, under which the energy harvesting profile is available causally. Assuming

the energy harvesting processes at individual sensors are independent but not necessarily

identical Bernoulli processes, we show that the expected long-term time average sensing

utility has an upper bound under any feasible scheduling policy satisfying the energy

causality constraints. We then propose a randomized myopic policy, which aims to select a

number of sensors with the highest energy levels to perform the sensing task in each slot.

We show that the time average utility generated under the proposed policy converges to

the upper bound almost surely as time T approaches infinity, thus it is optimal. The

corresponding convergence rate is also explicitly characterized.

For EH communication, our objective is to evaluate the impacts of stochastic

variability of the EH process and practical battery usage constraint on the EH systems,

and develop optimal transmission policies by taking such impacts into consideration.

Specifically, we consider throughput optimization in an EH system under battery usage

constraint in Chapter 5.

In Chapter 5, we take the impact of charging and discharging operations on battery

degradation into consideration, and studies the optimal energy management policy for an

5



energy harvesting communication system under a battery usage constraint. Specifically, in

each time slot, we assume the harvested energy can be used to power the transmitter

immediately without entering into the battery, or stored into the battery for now and

retrieved later for transmission. Whenever the battery is charged or discharged, a cost will

be incurred to account for its impact on battery degradation. We impose an long-term

average cost constraint on the battery, which is translated to the average number of

charge/discharge operations per unit time. The objective is to develop an online policy to

maximize the long-term average throughput of the transmitter under energy causality

constraint and the battery usage constraint. We first relax the energy causality constraint

on the system, and impose an energy flow conservation constraint instead. We show that

the optimal energy management policy has a double-threshold structure: if the amount of

energy arrives in each time slot lies in between the two thresholds, it will be used

immediately without involving the battery; otherwise, the battery will be charged or

discharged accordingly to maintain a constant transmit power. We then modify the

double-threshold policy slightly to accommodate the energy causality constraint, and

analyze its long-term performance. We show that the system achieves the same long-term

average performance, thus it is optimal.
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Chapter 2: Energy-aware Adaptive Sensing for EH Sensors

2.1 Introduction

In this chapter, we investigate the optimal online sensing scheduling of an energy harvesting

sensor. Energy arrives at the sensor according to a Poisson process, and a unit amount of

energy is consumed by the sensor to collect one measurement. A sensor cannot take any

measurement if it does not have sufficient energy in its battery, i.e., sensing operations must

satisfy the energy causality constraint. We consider an application scenario where a sensor

collects measurements at discrete time epochs to estimate a time evolving physical quantity

(temperature, humidity, etc). Modeling the monitored quantity as a random process, we

assume that the sensing performance is a function of the discrete sensing epochs. Then, the

question we aim to answer is: Given the statistics of the energy harvesting process, how

would the system strategically select the sensing epochs to optimize the long-term expected

sensing performance, subject to the energy causality constraint at the sensor? Ideally, the

sensing policy should be online, lightweight, and require minimum knowledge of the energy

harvesting process and/or the underlying monitored random process.

There are three dimensions of difficulty in designing such a sensing policy. First, the

scarce energy supply imposes a stringent constraint on the number of measurements the

sensor can take. In order to make each sample count, the sensing policy need to exploit the

structural properties of the underlying monitored random process. Second, the energy

harvesting process is stochastic in nature. The sensing policy should be able to cope with

the fluctuations in energy supply and maintain a reliable sensing performance for almost all

possible energy harvesting profiles. Third, in most practical scenario, a sensor is equipped

with a finite battery, and energy overflow may happen if it is not spent in time. The sensor

thus faces a dilemma of spending energy to collect less informative samples, or of saving

energy for more advantageous time epochs, a step which may lead to energy loss.

7



In this chapter, we consider a special sensing performance function which corresponds

to a random process with power-law decaying covariance [67]. We exploit the properties of

the sensing performance function to devise our online sensing scheduling policy. We

investigate both cases when the battery size is infinite and finite. When the battery size is

infinite, we first identify a performance limit on the long-term time average sensing

performance of the system. Motivated by the structure of the performance limit, we

propose a best-effort uniform sensing policy, and prove that it achieves the limit

asymptotically, thus it is optimal. When the battery size is finite, we aim to investigate the

impact of finite battery size on the sensing performance, and bring the sensing performance

as close to that of the system with infinite battery as possible. We propose an

energy-aware adaptive sensing scheduling policy, which dynamically chooses the next

sensing epoch based on the battery level at the current sensing epoch, and show that it is

asymptotically optimal as the battery size increases. The convergence rate is also explicitly

characterized. Some of the results in this chapter have been published in [68].

2.1.1 Main Contribution

The main contributions of this chapter are threefold:

1. First, we study an application oriented sensing scheduling for energy harvesting

sensors. Different from most existing energy management schemes where the

optimization objective function depends on the instantaneous power allocated to the

sensor, in our formulation, the sensing performance depends on the durations

between consecutive sensing epochs. Thus, instead of deciding the instantaneous

power consumption over the whole operation duration, in this chapter, the objective

is to decide the discrete sensing epochs for the sensor under the energy constraints.

Such formulation is fundamentally different from existing works. It requires a new set

of analytical tools, and results in a different type of energy management policies.

2. Second, we investigate both the infinite battery case and the finite battery case, and
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propose two intuitive yet practical online sensing scheduling policies with provable

performance guarantees. The proposed scheduling policies only require the

instantaneous battery level to decide the sensing epochs. Thus, the sensor can be

turned off between two scheduled sensing epochs to save energy. This is extremely

helpful for sensors operating under stringent energy constraint. For the finite battery

case, we explicitly identify the convergence rate of the proposed policy as a function

of the battery size, which provides theoretical guidelines on system designs of the

energy harvesting sensing system.

3. Finally, we introduce Martingale process, renewal process, and a novel virtual energy

harvesting sensing system to analyze the battery level evolution under the proposed

policies. Such mathematical tools are new to the area of energy harvesting

communications and networks, and might be useful for related problems, especially

for the construction and analysis of online scheduling policies.

2.1.2 Related Work

A large number of energy management schemes have been proposed to cope with the

random nature of energy harvesting sensors from different perspectives. Under the infinite

battery assumption, energy management schemes have been developed to optimize

communication related metrics, such as channel capacity, transmission delay or network

throughput [27,44,64], and signal processing related performance metrics, such as

estimation mean squared error (MSE), detection delay, false alarm probability [60,62].

When finite battery assumption is imposed, it changes the problem dramatically, and

makes the corresponding optimal energy management much more complicated. One

approach is to formulate the energy management problem as a one-shot offline

optimization problem, under the assumption that the energy harvesting profile is known in

advance. Examples include the throughput maximization problems studied in [1, 4, 10],

where the the optimal policies are significantly different from their counterparts in an
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infinite battery setting [11,27,64]. Another approach is to formulate the optimal energy

management problem as an online stochastic control problem, assuming that only the

statistics and the history of the energy harvesting process are available at the controller.

Modeling the energy replenishing process as a Markov process, [5] aims to maximize the

time average reward by making decisions regarding whether to transmit or discard a packet

based on the current energy level. The optimal policy is shown to have a threshold

structure. [8] studies the performance limits of a sensing system where the battery size and

the data buffer are finite and proposes an asymptotically optimal energy management

scheme. The dynamic activation of sensors with unit battery in order to maximize the

sensing utility is studied in [65]. In general, online optimal energy management policies

under a finite battery constraint are often very difficult to characterize. Explicit solutions

only exist for certain special scenarios.

The finite battery case studied in this chapter is significantly different from that

in [8]. [8] considers a time-slotted system, and the objective is to adaptively vary the

amount of energy spent in each time slot to optimize the system performance. However, we

consider a continuous-time system in this chapter, and the proposed asymptotically

optimal design varies the durations between two consecutive sensing epochs according to

the instantaneous battery level. This makes the analysis of the system performance under

the proposed policy much more challenging.

2.1.3 Chapter Outline

This chapter is organized as follows. Section 2.2 states the system model and problem

formulation. Section 2.3 provides the sensing scheduling policy for the infinite battery case

and proves its optimality. Section 2.4 describes an adaptive sensing scheduling policy for

the finite battery case, and analytically characterizes its performance. Simulation results

are provided in Section 2.5. and Section 2.6 concludes the chapter. Proofs of the main

theorems are presented by the Appendix in Section 2.7.
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2.2 System Model and Problem Formulation

2.2.1 Energy Harvesting Model

Consider a sensor node powered by energy harvested from the ambient environment. It is

assumed that the sensor node has an energy queue, such as a rechargeable battery or a

super capacitor, to store the harvested energy. The energy queue is replenished randomly

and consumed by taking observations. It is assumed that a unit amount of energy is

required for one sensing operation. Without loss of generality, we assume the sensor is

equipped with a battery with capacity B, B ≥ 1. When B =∞, it corresponds to the

infinite battery case.

The energy arrival follows a Poisson process with parameter 1. Hence, energy arrivals

occur in discrete time instants. Specifically, we use t1, t2, . . . , tn, . . . to represent the energy

arrival epochs. Then, the energy inter-arrival times ti − ti−1 are exponentially distributed

with mean λ. We assume λ = 1 throughout this chapter for ease of exposition. If λ 6= 1, we

can always normalize the time axis to make the energy arrival rate equal to one unit per

unit time, and the algorithms and theoretical results presented in this chapter will still be

valid on the normalized time scale. Without loss of generality, it is assumed that the

system starts with an empty energy queue at time 0.

A sampling policy or sensing scheduling policy is denoted as {ln}∞n=1, where ln is the

n-th sensing time instant. Let l0 = 0, and dn := ln − ln−1, for n = 1, 2, . . .. Define A(dn) as

the total amount of energy harvested in [ln−1, ln), and E(l−n ) as the energy level of the

sensor right before the scheduled sensing epoch ln. Then, under any feasible sensing

scheduling policy, the energy queue evolves as follows

E(l−n+1) = min{E(l−n )− 1 + A(dn+1), B} (2.1)

E(l−n ) ≥ 1 (2.2)

11



for n = 1, 2, . . .. Eqn. (2.2) corresponds to the energy causality constraint in the system.

Based on the Poisson arrival process assumption, A(dn+1) is an independent Poisson

random variable with parameters dn+1.

2.2.2 Sensing Performance Metric

We assume the sensing performance depends on how the sensing epochs are placed in time.

Given that the durations between two sensing epochs are dn, n = 1, 2, . . ., the sensing

performance over the sensing period is measured by
∑

n f(dn). In addition, we make the

following assumptions.

Assumptions 1 The sensing performance function f(d), d ∈ (0,∞), has the following

properties:

1) f(d) is convex and monotonically increasing in d.

2) f(d)/d is increasing in d.

3) f(d) ≤ Cd, where C is a positive constant.

One example application that fits this model is to use samples collected at discrete

time instants to estimate a time evolving physical quantity (temperature, humidity, etc),

which is modeled as a random processes with power-law decaying covariance. It is shown

that the linear minimum MSE (MMSE) estimation for any point on the random process

only requires the two adjacent discrete-time samples bounding the point [67]. In this case,

f(d) can be interpreted as the total MSE over a length-d interval bounded by two

consecutive sensing epochs. Optimizing the overall sensing performance is equivalent to

minimizing the total MSE of the linear MMSE over the whole sensing period.

Such assumptions enable us to bound the long-term average sensing performance and

motivate the design of the optimal sensing policies. We point out that in this work, we

require d to be strictly greater than zero, i.e., we do not consider the scenario where
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multiple samples are collected at the same time point. This is because if multiple samples

are collected at a time, in general, the long-term sensing performance will depends on the

number of samples collected at individual sensing epochs, as well as the durations between

them. Therefore, it may not be reasonable to assume that the sensing performance over the

sensing period can be decomposed into the form of
∑

n f(dn). We will examine specific

forms of sensing performance functions to accommodate such sensing operations, and

explore the optimal sampling policy in this scenario in the future.

For a clear exposition of the result, we assume that two samples at time 0 and time T

are available at the sensor for free, i.e., no energy is used for collecting those two samples.

Denote these two sampling epochs as l0 = 0, lNT+1 = T . Besides, there are NT sensing

epochs placed over (0, T ). The overall sensing performance over the duration [0, T ] is then

a summation of f(dn), n = 1, 2, . . . , NT + 1.

2.2.3 Problem Formulation

Our objective is to optimize the long-term average sensing performance by strategically

selecting the sensing epochs {ln}∞n=1. We restrict to online policies, i.e., whenever the

system decides a sensing epoch, its decision only depends on the energy harvesting profile

up to that time, as well as previous sensing decisions. The optimization problem is

formulated as

min .
{ln}∞n=1

lim sup
T→+∞

E

[
1

T

NT+1∑
n=1

f(dn)

]
(2.3)

s.t. (2.1)− (2.2)

where the expectation in the objective function is taken over all possible energy harvesting

sample paths.

This is essentially a stochastic control problem. In contrast to other discrete-time

stochastic control problems where decisions need to be made at every time slot (e.g.,
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Markov Decision Process (MDP)), in this work, we consider a continuous time setting, and

decisions can be made at arbitrary time points. Actually, as we will see in Sec. 2.4,

selecting the decision points could be a task for the scheduler as well. Therefore, this

problem does not admit a MDP formulation in general, and it is extremely challenging to

explicitly identify the optimal solution.

2.3 Sensing Scheduling with Infinite Battery

In this section, we will study the optimal sensing scheduling for the infinite battery case.

We will show that the sensing performance (i.e., time-average MSE) in this scenario has a

lower bound, which can be achieved almost surely by a best-effort uniform sensing

scheduling policy. The performance limit provided in this section, and the best-effort

uniform sensing algorithm will serve as a baseline for the finite battery case discussed in

Section 2.4.

Lemma 1 Under every feasible scheduling policy, we have

lim sup
T→+∞

NT

T
≤ 1, a.s. ∀i (2.4)

where NT =
∑∞

n=1 1ln≤T is the total number of samples taken in [0, T ].

Proof: Due to the energy causality constraint (2.2), we always have NT ≤
∑∞

n=1 1tn≤T ,

therefore

lim sup
T→+∞

NT

T
≤ lim sup

T→+∞

∑∞
n=1 1tn≤T
T

= 1 a.s.

where the last equality follows from the strong law of large numbers. �
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Lemma 2 The objective function in (2.3) is lower bounded as

lim sup
T→+∞

E

[
1

T

NT+1∑
n=1

f(dn)

]
≥ f (1) (2.5)

Proof:

lim sup
T→+∞

E

[
1

T

NT+1∑
n=1

f(dn)

]

≥ lim inf
T→+∞

E

[
1

T

NT+1∑
n=1

f(dn)

]

≥ E

[
lim inf
T→+∞

1

T

NT+1∑
n=1

f(dn)

]
(2.6)

≥ E

[
lim inf
T→+∞

NT + 1

T
f

(∑NT+1
n=1 dn
NT + 1

)]
(2.7)

= E
[
lim inf
T→+∞

NT + 1

T
f

(
T

NT + 1

)]
≥ f(1) (2.8)

where (2.6) follows from Fatou’s Lemma, (2.7) follows from the convexity of f . The last

inequality in (2.8) follows from Lemma 1 and the assumption that f(d)/d is an increasing

function in d. �

Definition 1 (Best-effort Uniform Sensing Scheduling) The sensor is scheduled to

perform the sensing task at sn = n, n = 1, 2, . . .. The sensor performs the sensing task at

sn if E(s−n ) ≥ 1; Otherwise, the sensor keeps silent until the next scheduled sensing epoch.

Here we use sn to denote the n-th scheduled sensing epoch, which is in general different

from the n-th actual sensing epoch ln since some of the scheduled sensing epochs may be

infeasible.

Theorem 1 Under the best-effort uniform sensing scheduling policy, we have

lim
T→+∞

NT

T
= 1 a.s.
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The proof of Theorem 1 is provided in Appendix 2.7.1. Theorem 1 indicates that the

best-effort uniform sensing scheduling policy is asymptotically equivalent to a uniform

sensing policy almost surely, i.e., the sensor has sufficient energy to perform the task for

almost every scheduled sensing epoch.

Theorem 2 The best-effort uniform sensing scheduling policy is optimal when the battery

size is infinite, i.e.,

lim sup
T→+∞

1

T

NT+1∑
n=1

f(dn) = f (1) a.s.

where dn is the duration between the actual sensing epochs ln and ln−1.

The proof of Theorem 2 is provided in Appendix 2.7.2. Theorem 2 indicates that for

almost every energy harvesting sample path, the best-effort uniform sensing policy

converges to the lower bound in Lemma 2 when the battery size is infinite. This is due to

the fact that when the battery size is infinite, the fluctuations of the energy arrivals can be

averaged out when time is sufficiently large, thus a uniform sensing scheme with sensing

rate equal to the energy harvesting rate can be achieved asymptotically as T is sufficiently

large. Thus, the proposed best-effort uniform sensing is optimal. However, with finite

battery, it may not be able to achieve the lower bound, since energy overflow is inevitable

in this situation, which in turn results in more frequent infeasible sensing epochs due to

battery outage.

2.4 Sensing Scheduling with Finite Battery

In order to optimize the sensing performance when the battery size is finite, intuitively, the

sensing policy should try to prevent any battery overflow, as wasted energy leads to

performance degradation. Meanwhile, the properties of the sensing performance function

requires the sensing epochs to be as uniform as possible. Those two objectives are not

aligned with each other, thus, the optimal scheduling policy should strike a balance
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between them.

In the following, we propose an energy-aware adaptive sensing scheme. Different from

the best-effort uniform sensing scheduling policy that schedules the sensing epochs

uniformly, the proposed sensing policy adaptively changes its sensing rate based on the

instantaneous battery level. Intuitively, when the battery level is high, the sensor should

sense more frequently in order to prevent battery overflow; When the battery level is low,

the sensor should sense less frequently to avoid infeasible sensing epochs. Meanwhile, the

sensing rate should not vary significantly so that a relatively uniform sensing scheduling

can be achieved.

Definition 2 (Energy-aware Adaptive Sensing Scheduling) The adaptive sensing

scheduling policy defines sensing epochs sn recursively as follows

sn = sn−1 +


1

1−β , E(s−n−1) < B
2

1, E(s−n−1) = B
2

1
1+β

, E(s−n−1) > B
2

(2.9)

where s0 = 0, E(s−0 ) = 1, and

β :=
k logB

B
(2.10)

with k being a positive number such that 0 < β < 1. The sensor performs the sensing task at

sn if E(s−n ) ≥ 1; Otherwise, the sensor keeps silent until the next scheduled sensing epoch.

Remark 1: The policy divides the battery state space into three different regimes. At

each scheduled sensing epoch, the sensor decides whether to sense according to its current

battery state, and adaptively selects the next sensing epoch depending on which regime the

current battery state falls in. When it is above B/2, the sensor senses every 1
1+β

units of

time, and when it is below B/2, it senses every 1
1−β units of time. The value of β controls

the deviation of the sensing rates. Intuitively, when the value of β increases, the
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probability that the battery overflows decreases, so does the probability that a scheduled

sensing epoch is infeasible. However, larger β may also lead to larger deviations of the

durations between sensing epochs, which results in sensing performance degradation.

Remark 2: We note that the scheduled sensing epochs are defined in a recursive

fashion. At each scheduled sensing epoch, the sensor only need to check its current battery

level and decide the next sensing epoch. Thus, the sensor can be turned off temporarily

until the next sensing epoch. This could save a significant amount of energy of the sensor

from staying awake and constantly monitoring the battery status.

Remark 3: As B →∞, we have β → 0 for any fixed k, i.e., the adaptive sensing

policy converges to the best-effort uniform sensing proposed in Section 2.3 as battery size

increases. Thus, it is reasonable to expect that the adaptive sensing policy is

asymptotically optimal as battery size approaches infinity.

In the following two theorems, we prove the asymptotical optimality of the adaptive

sensing policy, and characterize the speed of its convergence analytically.

Theorem 3 Over the sensing period (0, T ), we denote A(T ) as the total amount of

harvested energy, N ′T as the total number of scheduled sensing epochs, and NT as the total

number of actual sensing epochs as defined previously in Section 2.2. Then, under the

adaptive sensing scheduling policy, the ratio of infeasible sensing epochs, denoted as

limT→∞
N ′T−NT
N ′T

, scales in O
(

2k+1k(logB)2

Bk+1

)
, and the average amount of wasted energy per

unit time, denoted as limT→∞
A(T )−NT−E(T )

T
scales in O

(
2k+1k(logB)2

Bk+1

)
.

Theorem 3 indicates that when B is sufficiently large, both upper bounds of the battery

outage and overflow probabilities decrease monotonically as k increase. As the battery size

B increases, the upper bounds of those two probabilities decrease and eventually

approaches zero. Thus, the proposed policy is asymptotically equivalent to a uniform

sensing policy, similar to the best-effort uniform sensing policy for the infinite battery case.

Theorem 4 Under the adaptive sensing scheduling policy, the gap between the time
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average sensing performance, denoted as limT→∞
1
T

∑NT+1
n=1 f(dn), and the lower bound f(1)

scales in O
(

2k+1k(logB)2

Bk+1 +
(

logB
B

)2
)

.

Theorem 4 implies that as battery size B increases, the sensing performance under the

adaptive sensing scheduling policy approaches the lower bound achievable for the system

with infinite battery. Thus, it is asymptotically optimal. Compared to the bounds in

Theorem 3, the bound in Theorem 4 has an extra term
(

logB
B

)2
. For a sufficiently large B,

the bound is dominated by the first term when k is small, and it is dominated by the

second term when k is large. Thus, it may not monotonically decrease as k increase, which

is consistent with the fact that the sensing performance is not only related to the battery

outage and overflow probabilities, but also depends on the durations between consecutive

sensing epochs.

The proofs of Theorems 3 and 4 are provided in Appendices 2.7.4 and 2.7.5,

respectively. The sketch of the proof is as follows. The battery states at scheduled sensing

epochs form a discrete-time random process {E(s−n )}∞n=1. However, it differs from a

conventional discrete-time random process since the duration between two consecutive time

indices varies in time: it could be 1
1−β , 1

1+β
or 1, depending on the battery state. This

makes the analysis very complicated. To simplify the analysis, in Appendix 2.7.3, we

construct a “virtual” energy harvesting sensing system, whose battery state can be any

integer in (−∞,+∞). Assuming the virtual sensing system senses at a uniform rate, we

analytically characterize the expected duration between two consecutive events that the

virtual battery state hits a certain level. We then consider the portion of {E(s−n )}∞n=1 lying

in (0, B/2] and [B/2, B) separately. In Appendix 2.7.4, we show that the portion lying in

each region can be mapped to a virtual system, and exploit the analytical results in

Appendix 2.7.3 to prove Theorem 3. In Appendix 2.7.5, we use the results from

Appendix 2.7.4 and the properties of the sensing performance function f(d) to prove

Theorem 4.
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2.5 Simulation Results

The performance of the proposed sensing scheduling policies are evaluated in this section

through simulations. We adopt the MSE function for random process reconstruction in [67]

to measure the sensing performance under the proposed sensing scheme. Specifically, the

correlation between two samples spearated by a time duration d is ρd, and the average

reconstruction MSE of the random field between two d-spaced samples is

f(d) = d
1 + ρ2d

1− ρ2d
+

1

log ρ
(2.11)

The power-law parameter ρ is set to be 0.7 in the simulations.

First, we evaluate the uniform best-effort sensing policy for the infinite battery case.

We generate 1,000 energy harvesting profiles according to the Poisson random process with

λ = 1, and perform the best-effort uniform sensing for each energy harvesting profile. The

sensing rate, NT/T , for each energy harvesting profile is tracked and recorded. One sample

path and the sample average sensing rate for the 1,000 sample paths are plotted as a

function of T in Fig. 2.1. It is observed that the sensing rate approaches λ = 1

asymptotically as T increases, as predicted in Theorem 1. Thus the best-effort sampling

policy can almost surely approach the behavior of uniform sampling when T > 400.

The sensing performance under the best-effort uniform sensing policy is shown in Fig.

2.2. Again, we plot one sample path and the sample average over the 1, 000 sample paths

of the time average sensing performance as a function of T in the figure. We observe that

the sensing performance curves gradually approach the lower bound f(1) as T increases.

When T = 500, there is only a very small difference between the simulation results and the

analytical lower bound. The results indicate that the proposed best-effort uniform sensing

policy is asymptotically optimal.

Next, we evaluate the adaptive sensing scheduling policy for the finite battery case.

Fixing the energy harvesting rate to be λ = 1 per unit time, and T = 100, 000, we generate
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Figure 2.1: Sensing rate as a function of T .
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Figure 2.2: Sensing performance as a function of T .
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a sample path for the Poisson energy harvesting process, and perform the sensing

according to the policy. We keep track of the following quantities. First, we count the total

number of scheduled sensing epochs under the policy. Among those scheduled sensing

epochs, we count the total number of infeasible ones (i.e., the epoch sn when E(s−n ) < 1),

record the ratio of infeasible sensing epochs under the policy. We let k = 0, 1, 2,

respectively, and perform the adaptive sensing according to (2.9) with battery size B

varying from 2 to 100. The corresponding results are plotted in Fig. 2.3. We note that for

each fixed k, the ratio monotonically decreases as B increase, and each curve is roughly

convex in B. This is consistent with the theoretical bounds in Theorem 3. Meanwhile, for

each fixed battery size, the ratio decreases as k increases. This is due to the fact that the

adaptive sensing policy is more conservative for larger k when battery level is below B/2,

i.e., it senses at a slower rate for larger k, which makes the energy level drift away from

empty state with higher probability.
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Figure 2.3: The ratio of infeasible sensing epochs.

Next, we study battery overflow under the proposed policy. We count the total

number of time instants when the battery state exceeds B, and divide it by T . The average
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number of battery overflow events per unit time is plotted as a function of B in Fig. 2.4 for

k = 0, 1, 2, respectively. Again, we observe that for each fixed k, the curve is monotonically

decreasing and roughly convex in B, as predicted by the theoretical bounds in Theorem 3.

Meanwhile, for each fixed battery size, the battery overflow rate decreases as k increases.

This is due to the fact that the adaptive sensing policy is more aggressive for larger k when

battery level is above B/2, i.e., it senses at a faster rate for larger k. Thus, the energy level

drifts away from full state with higher probability.

At last, we study the sensing performance in terms of the time averaged MSE. We

calculate the MSE for each interval bounded by two consecutive sensing epochs as (2.11),

aggregate them and divide the sum by T . The time averaged MSE is plotted in Fig. 2.5.

We note that for each fixed k, the gap between the time averaged MSE and the lower

bound monotonically decreases as B increases, which is consistent with the theoretical

result in Theorem 4. However, when B is fixed, the best sensing performance is observed at

k = 1, which is different from the results in Figs. 2.3 and 2.4. Even though the battery

outage and overflow rates decrease in k, the average sensing performance does not exhibit

such monotonicity. This is because when k is large, the sensing rate varies dramatically in

time. Although this leads to lower outage and overflow probabilities, it compromises the

sensing performance as the sensing scheduling deviates from the desired uniform sensing

scheduling. Thus, there exists a tradeoff between reducing battery outage and overflow

probabilities, and equalizing the sensing rates. The optimal selection of k should jointly

consider those two conflicting objectives.

2.6 Conclusions

In this chapter, we considered the optimal online sensing scheduling policy for an energy

harvesting sensing system. We first provided a lower bound on the time averaged sensing

performance for the system with infinite battery, and showed that this lower bound can be

achieved by a best-effort uniform sensing policy. We then investigated the finite battery

23



0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Battery size B

A
v
e
re

g
e
 n

u
m

b
e
r 

o
f 
b
a
tt
e
ry

 o
v
e
rf

lo
w

 p
e
r 

u
n
it
 t
im

e

 

 

k=0

k=1

k=2

Figure 2.4: The average number of battery overflow per unit time.
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Figure 2.5: The time averaged sensing MSE.
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case and proposed an energy-aware adaptive sensing scheduling policy, which dynamically

varies the sensing frequency based on instantaneous energy level of the battery. We showed

that the battery outage and overflow probabilities under the proposed policy approach zero

as battery size goes to infinity, and the time averaged sensing performance converges to the

lower bound when the battery size increases. Thus the adaptive sensing scheduling policy

is asymptotically optimal. The convergence rates as a function of the battery size were also

explicitly characterized. Simulation results validated the theoretical bounds.

2.7 Appendix

2.7.1 Proof of Theorem 1

The uniform best-effort sensing policy partition the time axis into slots, each with length 1.

Consider the number of energy arrivals during a slot, denoted as A. Due to the Poisson

process assumption of the energy arrival process, we have

P [A = k] =
e−1

k!
, k = 0, 1, 2 . . .

Let E(n) be the energy level of the sensor right before the scheduled sensing epoch n.

Based on E(n), we can group the time slots into segments with lengths

u0, v1, u1, . . . , vk, uk, . . ., where uis correspond to the segments when E(n) = 0 and vis

correspond to the segments when E(n) > 0, as shown in Fig. 2.6. E(n) jumps from zero to

some positive value ei at the end of the segment corresponding to ui. Therefore, ui follows

an independent geometric distribution

P [ui = k] = e−(k−1)(1− e−1), k = 1, 2 . . .

and vi follows a “random walk” with increment A− 1 starting at some positive level ei

until it hits 0. Note that vi contains a random walk Γi which starts at ei and finishes at
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ei − 1 for the first time. Denote the duration of Γi as τi.

Let KT be the number of segments with E(n) = 0 during T . Note that

T = NT +
∑KT

i=0 ui. Therefore, to show NT/T → 1 almost surely, it suffices to show that

lim
T→∞

∑KT
i=0 ui
T

= 0, a.s.

T4 5 6 871

u2u0 v1 u1

E(t)

0

v2

2 3

Figure 2.6: An energy level evolution sample path. Crosses represent actual sensing epochs.

Note that

∑KT
i=0 ui
T

=

∑KT
i=0 ui
KT

KT

T
≤
∑KT

i=0 ui
KT

KT∑KT
i=1 τi

As we will show in the following, KT →∞ almost surely as T →∞. Then, by the strong

law of large numbers,

lim
T→∞

∑KT
i=0 ui
KT

=
1

1− e−1
, a.s.

Therefore, to prove Theorem 1, it suffices to show that

lim
T→∞

KT∑KT
i=1 τi

= 0, a.s. (2.12)

In the following, we will first prove that KT →∞ almost surely as T →∞, and then show

(2.12) holds.

Consider a “random walk” {Ωk}∞k=0, which starts with 1 and increments with A− 1.

Denote the first 0-hitting time for {Ωk}∞k=0 as κ. Then, Ω0 = 1,Ωκ = 0. Define a random
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process {exp(−αΩk− γ(α)k)}∞k=0 with α > 0 and γ(α) = (e−α− (1−α)) > 0. We note that

E{exp[−αΩk − γ(α)k]| exp(−αΩ0), . . . , exp[−αΩk−1 − γ(α)(k − 1)]}

= E{exp[−α(Ωk−1 + A− 1)− γ(α)(k − 1 + 1)]|

exp(−αΩ0), . . . , exp[−αΩk−1 − γ(α)(k − 1)]}

= exp[−αΩk−1 − γ(α)(k − 1)] exp[α− γ(α)]E{exp(−αA)|

exp(−αΩ0), . . . , exp[−αΩk−1 − γ(α)(k − 1)]}

= exp[−αΩk−1 − γ(α)(k − 1)]

where the last equality follows from the assumption that A is a Poisson random variable

with parameter 1 and is independent with thee random walk prior to time slot k. Thus, it

is a Martingale process. Based on the property of a Martingale, we have

E{exp[−αΩk − γ(α)k]}

= E{E{exp[−αΩk − γ(α)k]| exp(−αΩ0), . . . , exp[−αΩk−1 − γ(α)(k − 1)]}}

= E{exp[−αΩk−1 − γ(α)(k − 1)]}

Applying this equality recursively, we have

exp(−αΩ0) = E{exp[−αΩκ − γ(α)κ]} (2.13)

= E{(1κ<∞ + 1κ=∞) · exp[−αΩκ − γ(α)κ]}

= E [1κ<∞ · exp(−αΩκ − γ(α)κ)] (2.14)

where the equality in (2.14) holds due to the fact that exp[−γ(α) · ∞] = 0. Let α→ 0+,

then γ(α)→ 0+, and the equation becomes

1 = E [1κ<∞] = P [κ <∞] (2.15)
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i.e., the probability of hitting 0 in finite time is 1.

We point out that (2.14) holds for any initial state Ω0, so does (2.15). Thus, starting

with any ei > 0, the probability that the first 0-hitting time is finite equals 1, i.e.,

P[vi <∞] = 1. This implies that for arbitrary time t, the battery will become empty

within finite time after it with probability one. Thus, limT→∞ P[KT <∞] = 1, i.e.,

KT →∞ almost surely as T →∞.

Since Ωκ = 0, (2.13) is equivalent to

E [exp(−γ(α)κ)] = exp(−α).

We note that by shifting Γi to initial time index 1, it virtually follows the same random

walk {Ωk}k. For such KT i.i.d random walks with 0-hitting times τi, we have

E

[
exp

(
−γ(α)

(
KT∑
i=1

τi

))]
= exp(−KTα), (2.16)

Therefore,

P

[
KT∑KT
i=1 τi

> ε

]
= P

[
KT∑
i=1

τi <
KT

ε

]

= P

[
exp

(
−γ(α)

(
KT∑
i=1

τi

))
> exp

(
−γ(α)

KT

ε

)]
(2.17)

≤ exp(−KTα)

exp(−γ(α)KT
ε

)
= exp

(
−KT

(
α− γ(α)

ε

))
(2.18)

where (2.17) follows from the monotonicity of e−x and (2.18) follows from Markov’s

inequality and (2.16). Since γ(α) = O(α2), for any ε > 0, we can always find a α to have

α− γ(α)
ε
> 0, and then the probability decays exponentially in KT . This implies that

∞∑
KT=1

P

[
KT∑KT
i=1 τi

> ε

]
<∞.
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According to Borel-Cantelli lemma [69], if the sum of the probabilities of a sequence of

events is finite, then the probability that infinitely many of them occur is 0. Therefore,

P

(
lim sup
n→∞

KT∑KT
i=1 τi

> ε

)
= 0,

which implies (2.12). This completes the proof.

2.7.2 Proof of Theorem 2

To prove Theorem 2, it suffices to show that

lim sup
T→+∞

1

T

NT+1∑
n=1

f(dn) ≤ f (1) , a.s.

As illustrated in Fig. 2.6, there are vi equally spaced sensing epochs in the segment

corresponding to vi. Considering the duration bounded by the first and last sensing epochs

in the segment, the aggregated estimation MSE equals (vi − 1)f(1). The duration bounded

by the last sensing epoch in the segment associated with vi and the first sensing epoch in

the segment associated with vi+1 is f(ui + 1). Therefore,

lim sup
T→+∞

1

T

NT+1∑
n=1

f(dn)

= lim sup
T→+∞

f(u0) +
∑KT

i=1 [(vi − 1)f(1) + f(ui + 1)]

T

= lim sup
T→+∞

f(u0) +
∑KT

i=1 f(ui + 1)

T
+
T −

∑KT
i=0 ui −KT

T
f (1) (2.19)

≤ lim sup
T→+∞

f (1)−
∑KT

i=0 ui
T

f (1)− KT

T
f (1) +

∑KT
i=0Cui
T

+
KTC

T

= f (1) a.s. (2.20)

where (2.19) follows from the fact that u0 +
∑KT

i=1(vi + ui) = T , and (2.20) follows from

Assumptions 1-3) and the fact that KT/T → 0 and
∑KT

i=0 ui/T → 0 almost surely, as
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proved in the proof of Theorem 1.

Since

1

T

NT+1∑
n=1

f(dn) ≤ 1

T

(
NT+1∑
n=1

Cdn

)
= C,

it is uniformly bounded in T . By the Bounded Convergence Theorem [70], we have

lim sup
T→∞

E

(
1

T

NT+1∑
n=1

f(dn)

)
= E

(
lim sup
T→∞

1

T

NT+1∑
n=1

f(dn)

)
= f(1)

2.7.3 A virtual energy harvesting sensing system

Before we define the virtual sensing system in this section, we first introduce the following

Lemma 3, which will be used later to characterize the virtual battery evolution process.

Lemma 3 Consider a Poisson random variable A with parameter λ. Given A ≥ x for

some positive integer x, we have x < E[A|A ≥ x] < x+ λ.

Proof: Define B as a random variable with PMF

P[B = i] =
Pb[A = x+ i]

P[A ≥ x]
, i = 0, 1, 2, . . .

Then,

E[A|A ≥ x] =

∑∞
i=0 P[A = x+ i](x+ i)

P[A ≥ x]
(2.21)

=
∞∑
i=0

P[B = i](x+ i) = x+ E[B] (2.22)

= x+
∞∑
n=0

P[B > n] > x (2.23)

Thus, in order to prove the other inequality in Lemma 3, it suffices to prove that

P[B > n] < P[A > n] for n = 0, 1, 2, . . ., which is equivalent to P[B ≤ n] > P[A ≤ n] for
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n = 0, 1, 2, . . .. Based on the definition of A and B, it then suffices to show that

∑n
i=0 λ

x+i/(x+ i)!∑∞
j=0 λ

x+j/(x+ j)!
>

∑n
i=0 λ

i/i!∑∞
j=0 λ

j/j!
(2.24)

i.e.,

n∑
i=0

∞∑
j=0

λx+i+j

(x+ i)!j!
>

n∑
i=0

∞∑
j=0

λx+i+j

(x+ j)!i!
(2.25)

Since

n∑
i=0

n∑
j=0

λx+i+j

(x+ i)!j!
>

n∑
i=0

n∑
j=0

λx+i+j

(x+ j)!i!
, (2.26)

it then suffices to show that for i = 0, 1, . . . , n, j = n+ 1, n+ 2, . . ., 1
(x+i)!j!

> 1
(x+j)!i!

. This is

true since j > i, x > 0. �

Consider an energy harvesting sensing system with a virtual battery whose state can

be any integer in (−∞,+∞). It senses every 1
1−β units of time, even if the battery state is

zero or negative. The energy arrives at the virtual battery according to a Poisson process

with parameter 1. Each sensing operation consumes one unit of energy. We use Eβ(n) to

denote the battery state right before the n-th sensing epoch, i.e., at time n
1−β . Assume the

system starts with initial energy level x, then, the battery status evolves according to

Eβ(0) = x (2.27)

Eβ(n) = Eβ(n− 1) + A

(
1

1− β

)
− 1, n = 1, 2, . . . (2.28)

where A
(

1
1−β

)
is a Poisson random variable with parameter 1

1−β . Thus,

E[Eβ(n)] = x+
β

1− β
n (2.29)

Therefore, when 0 < β < 1, the energy level drifts up in expectation; Otherwise, when
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β < 0, it drifts down.

Define

Λβ(α) := logE
[
e−α(A( 1

1−β )−1)
]

=
e−α − 1

1− β
+ α (2.30)

We note that Λβ(α) is convex in α, Λβ(0) = 0, and Λ′β(α) = − e−α

1−β + 1. Thus, equation

Λβ(α) = 0 has another root besides 0, denoted as α0. We have

e−α0 − 1

1− β
+ α0 = 0, Λ′β(0) = − β

1− β
(2.31)

When α0 is sufficiently small, we have

β =
α0

2
+ o(α0) (2.32)

Assume x ∈ (0,M), where M is a positive integer. We are interested in the event that

the random process {Eβ(n)}∞n=0 hits or exceeds one of the two boundary levels 0 and M for

the first time. We have the following observations.

Lemma 4 Consider the random process {Eβ(n)}∞n=0 defined in (2.27)-(2.28). Let κ be the

smallest n such that Eβ(n) ≥M or Eβ(n) = 0, and τx := E[κ]. Define Px,M as the

probability that Eβ(κ) ≥M , and Px,0 as the probability that Eβ(κ) = 0. Then,

Px,M =
1− e−α0x

1− e−α0(M+θx)
(2.33)

Px,0 =
e−α0x − e−α0(M+θx)

1− e−α0(M+θx)
(2.34)

τx =
1− β
β

((M + φx)Px,M − x) (2.35)

where 0 ≤ θx ≤ 1
1−β , 0 ≤ φx ≤ 1

1−β .

Proof: Define Ωn := exp(−α(Eβ(n) + Λβ(α)n)). Then, {Ωn}∞n=0 is a martingale process
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with initial state Ω0 = exp{−αx}. Based on the definition, we have

E[Ωn] = E[E[Ωn|Ω0, . . . ,Ωn−1]] = E[Ωn−1] = . . . = E[Ω0] = exp(−αx) (2.36)

Taking derivative of both sides with respect to α, we have

E[(Eβ(n) + Λ′β(α)n)Ωn] = x exp(−αx) (2.37)

Letting α→ 0 in (2.36) for n = κ, we have

LHS = E[Ωκ]

= E[Ωκ|first hits M ]Px,M + E[Ωκ|first hits 0]Px,0

= Px,M + Px,0 = 1 = RHS (2.38)

Similarly, letting α→ α0 in (2.36) for n = κ, we have

LHS = E[Ωκ|first hits M ]Px,M + Px,0 = exp(−α0x) = RHS (2.39)

We note

E[Ωκ|first hits M ]

= E[exp(−α0(Eβ(κ) + Λβ(α0)κ))|Eβ(κ) ≥M ]

= E[exp(−α0Eβ(κ))|Eβ(κ) ≥M ]

≤ e−α0M (2.40)

On the other hand, we have

E[exp(−α0Eβ(κ))|Eβ(κ) ≥M ]

≥ exp(−α0E[Eβ(κ)|Eβ(κ) ≥M ]) (2.41)
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≥ e−α0(M+ 1
1−β ) (2.42)

where (2.41) follows from Jensen’s inequality, and (2.42) follows from Lemma 3.

Combining (2.39), (2.40) and (2.42), we have

Px,Me
−α0(M+θx) + Px,0 = e−α0x, (2.43)

where 0 ≤ θx ≤ 1
1−β .

Solving (2.38) and (2.43), we obtain (2.33)-(2.34).

Let α→ 0 in (2.37) for n = κ, we have

LHS = E[(Eβ(κ) + Λ′β(α)κ) exp(−α)]

= E
[
Eβ(κ)−

(
1

1− β
− 1

)
κ

]
= (M + φx)Px,M −

β

1− β
τx = x = RHS

where 0 ≤ φx ≤ 1
1−β . Thus, we have (2.35) established. �

Lemma 5 Consider the random process {Eβ(n)}∞n=0 defined in (2.27)-(2.28). Define S−x,M

as the expected time index n when {Eβ(n)}∞n=0 with α0 = −k logM
M

+ o
(

logM
M

)
< 0 hits

boundary level M for the first time, and S+
x,0 as the expected time index n when {Eβ(n)}∞n=0

with α0 = k logM
M

+ o
(

logM
M

)
> 0 hits boundary level 0 for the first time. Then,

S−M,M = Ω
(

Mk+1

k(logM)2

)
, S+

0,0 = Ω
(

Mk+1

k(logM)2

)
.

Proof: First, let us consider the case when α0 = −k logM
M

+ o
(

logM
M

)
< 0. We use

superscript − to indicate that α0 involved in the corresponding quantities is negative.

Applying Lemma 4 for x = 1 and x = M − 1, we have
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P−1,M =
1− e−α0

1− e−α0(M+θ−1 )
=

α0(1 +O(α0))

−Mk(1 +O(α0 +M−k)

=
α0

−Mk
(1 +O(α0 +M−k))

P−M−1,0 =
e−α0(M−1) − e−α0(M+θ−M−1)

1− e−α0(M+θ−M−1)
=

eα0 − e−α0θ
−
M−1

eα0M − e−α0θ
−
M−1

=
α0(1 + θ−M−1(1 +O(α0))

−1 +O(α0 +M−k)

= −α0(1 + θ−M−1)(1 +O(α0 +M−k))

For the corresponding expected first hitting time, we have

τ−1 =
1− β
β

((
M + φ−1

)
P−1,M − 1

)
=

1− β
β

(−1 + o(1))

= − 2

α0

(1 + o(1)) (2.44)

and

τ−M−1 =
1− β
β

((
M + φ−M−1

)
P−M−1,M − (M − 1)

)
=

1− β
β

[ (
M + φ+

M−1

)
(1−M−k2α0(1 + o(1))− (M − 1)

]
=

1− β
β

(φ−M−1 + 1)α0(1 + o(1))

= 2(M + φ−M−1)(1 + o(1)) (2.45)

We note that

S−M−1,M = τ−M−1 + P−M−1,0 · S
−
0,M (2.46)

S−0,M ≥
M∑
x=0

q0,x

(
τx + P−x,0S

−
0,M

)
(2.47)

where q0,x is the probability that given the random process {Eβ(n)}∞n=0 first hits boundary
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0, it re-enters the range [0,M ] with state x. Thus,

S−0,M ≥
∑M

x=0 q0,xτx

1−
∑M

x=0 q0,xP
−
x,0

=

∑M
x=0 q0,xτx∑M

x=0 q0,xP
−
x,M

(2.48)

According to (2.33), when α0x is sufficiently small, we have

P−x,M =
1− e−α0x

1− e−α0(M+θx)
=

xα0

−Mk
(1 +O(α0 +M−k)) (2.49)

Pick the smallest positive integer K such that 1
K!
< 1

Mk+2 . Hence K = O(logM) and

α0K = o(1). For sufficiently large M , P−x,M ≤ P−K,M . Thus, we have

M∑
x=0

q0,xP
−
x,M ≤

K∑
x=0

q0,xP
−
x,M +

M∑
x=K+1

q0,x

≤

(
K∑
x=0

q0,x

)
P−K,M +

M∑
x=K+1

q0,x

= (1− q)P−K,M + q

where q :=
∑M

x=K+1 q0,x. By induction, we can show that q = O
(

1
(K−1)!

)
. Therefore,

S−0,M ≥
q0,1τ

−
1

P−K,M(1 +O(α0 +M−k))
(2.50)

Plugging (2.50) in (2.46), we have

S−M−1,M ≥ τ−M−1 +
P−M−1,0q0,1τ

−
1

P−K,M(1 +O(α0 +M−k))
(2.51)

≥ 2M +
Mk

K
q0,1

2M

k logM
(1 +O(α0 +M−k)) (2.52)

∼ Ω

(
Mk+1

k(logM)2

)
(2.53)

Since S−M−1,M > (1 + S−M−1,M)P
[
A
(

1
1−β

)
= 0
]
, we have S−M,M = Ω

(
Mk+1

k(logM)2

)
.
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Next, let us consider the case when α0 = k logM
M

+ o
(

logM
M

)
> 0. In the following, we

use superscript + to indicate that α0 involved in the corresponding quantities is positive.

Applying Lemma 4 for x = 1 and x = M − 1, we have

P+
1,M =

1− e−α0

1− e−α0(M+θ+1 )
=
α0(1 +O(α0))

1 +O(M−k)

= α0(1 +O(α0 +M−k))

and

P+
M−1,0 =

e−α0(M−1) − e−α0(M+θ+M−1)

1− e−α0(M+θ+M−1)

=
e−α0M(eα0 − e−α0θ

+
M−1)

1− e−α0(M+θ+M−1)

=
M−kα0(1 + θ+

M−1 +O(α0))

1 +O(M−k)

≤M−k · 2α0(1 +O(α0 +M−k))

where the inequality follows from the fact that θ+
M−1 ≤ 1

1−β = 1 +O(α0). Thus,

P+
1,M

P+
M−1,0

≥ Mk

2
(1 +O(α0 +M−k)) (2.54)

For the corresponding expected first hitting time, we have

τ+
1 =

1− β
β

((
M + φ+

1

)
P+

1,M − 1
)

=
1− β
β

((
M + φ+

1

)
α0(1 + o(1))− 1

)
= 2

(
M + φ+

1

)
(1 + o(1)) (2.55)

and

τ+
M−1 =

1− β
β

((
M + φ+

M−1

)
P+
M−1,M − (M − 1)

)
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=
1− β
β

( (
M + φ+

M−1

)
(1−M−k2α0(1 + o(1))− (M − 1)

)
=

1− β
β

(φ+
M−1 + 1)(1 + o(1))

=
2(1 + φ+

M−1)

α0

(1 + o(1)) (2.56)

Following similar arguments as in (2.46)-(2.50), we have

S+
1,0 ≥ τ+

1 +
P+

1,M

P+
M−1,0

· τ+
M−1

≥ 2M +
Mk

2
(1 +O(α0 +M−k)) · 2M

k logM
(2.57)

∼ Mk+1

k logM
(2.58)

where (2.57) follows from (2.54), (2.55) and (2.56). �

2.7.4 Proof of Theorem 3

Now consider the energy state evolution process {E(s−n )}∞n=1 under the proposed adaptive

sensing scheduling policy. We focus on the portion of the random process lying in ranges

[0, B/2) and (B/2, B], respectively. Comparing the random process {E(s−n )}∞n=1 with the

virtual battery evolution process defined in (2.27)-(2.28), we note that each portion can be

treated as part of {Eβ(n)}∞n=0 lying in the corresponding range. Therefore, the

characterization of {Eβ(n)}∞n=0 in Lemma 4 and Lemma 5 can be slightly modified to

characterize {E(s−n )}∞n=1.

Specifically, for the portion lying in [0, B/2), we let M = B/2, β = k logB
B

> 0, then,

the expected number of epochs between two consecutive battery outage events, i.e.,

E(s−n ) = 0, can be bounded below by S+
0,0. Thus, based on law of large numbers, the

probability that a sensing epoch is infeasible is bounded above by 1/S+
0,0. Therefore, it

scales in O
(

2k+1k(logB)2

Bk+1

)
.

Similarly, for the portion lying in [B/2, B), we map B →M , B/2→ 0,
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β = −k logB
B

< 0, then, the expected number of epochs between two consecutive battery

overflow events, i.e., E(s−n ) = B, can be bounded below by S−M,M . Again, based on law of

large numbers, the rate of battery overflow scales in O
(

2k+1k(logB)2

Bk+1

)
. Due to the properties

of Poisson process, we can show that the amount of wasted energy per unit time is

bounded by twice of the battery overflow rate, thus it scales in the same order.

2.7.5 Proof of Theorem 4

Consider the first n scheduled sensing epochs under the proposed adaptive sensing

scheduling policy. Let n+ denote the number of intervals between two scheduled sensing

epochs with duration 1
1−β , n− be that with duration 1

1+β
, and n0 be that with duration 1.

Let n̄ be the number of sensing epochs the battery overflows, and n be the number of

infeasible sensing epochs. Then, the n-th scheduled sensing epoch happens at time

Tn := n+

1−β + n0 + n−
1+β

. Let A+
n be the total amount of energy wasted. Then,

E(S−n ) = (A(Tn)− A+
n )− (n− n) (2.59)

where A(Tn) is a Poisson random variable with parameter Tn. Dividing both sides by n

and taking the limit as n goes to +∞, we have

lim
n→∞

E(n)

n
= lim

n→∞

A(Tn)

Tn
· Tn
n
− lim

n→∞

A+
n

n
−
(

1− lim
n→∞

n

n

)

Therefore,

lim
n→∞

Tn
n

= 1 +O

(
2k+1k(logB)2

Bk+1

)
(2.60)

Based on Taylor expansion and (2.60), we have
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lim
n→∞

n+f
(

1
1−β

)
+ n0f(1) + n−f

(
1

1+β

)
Tn

= f(1) +O

(
2k+1k(logB)2

Bk+1
+

(
logB

B

)2
)

On the other hand, due to the existence of infeasible sensing epochs, we have

lim
n→∞

∑
n f(dn)−

[
n+f

(
1

1−β

)
+ n0f(1) + n−f

(
1

1+β

)]
Tn

≤ lim
n→∞

∑
dn:dn≥ 1

1−β
f(dn)

Tn
(2.61)

≤ lim
n→∞

∑
dn:dn≥ 1

1−β
Cdn

Tn
(2.62)

≤ lim
n→∞

2Cn

Tn
= O

(
2k+1k(logB)2

Bk+1

)
(2.63)

where (2.61) follows from the fact that the difference between the actual sensing

performance and scheduled sensing performance is due to the infeasible sensing epochs.

(2.62) follows from the property of f(d), and (2.63) follows from Theorem 3 and (2.60).

Thus,

lim
n→∞

∑
n f(dn)

Tn
= f(1) +O

(
2k+1k(logB)2

Bk+1
+

(
logB

B

)2
)
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Chapter 3: Optimal Status Updating to Minimize Age of Information with an

Energy Harvesting Source

3.1 Introduction

Enabled by the widespread wireless communications and the proliferation of ultra-low

power sensors, ubiquitous sensing has profoundly changed almost every aspect of our daily

lives. In many applications, such as environment monitoring [71], vechicle tracking [72],

sensors are deployed to monitor the status of sensing objects, and communicate the status

information to a fusion center (FC). To keep track of the status, the FC requires status

updates as timely as possible. However, this is often constrained by limited physical

resources, such as energy and bandwidth. In order to measure the timeliness of the status

updates at the FC, a metric called “Age of Information” (AoI) has been introduced in

recent literature [73]. Specifically, AoI is defined as the time elapsed since the last received

update was generated.

With this definition, AoI in various queueing systems has been analyzed, such as

single-source single-server queues [73], the M/M/1 Last-Come First-Served (LCFS) queue

with preemption in service [74], and the M/M/1 First-Come First-Served (FCFS) system

with multiple sources [75,76]. AoI with out-of-order packet delivery has been evaluated

in [77–79]. A related metric, Peak Age of Information (PAoI), is introduced in [80], and has

been studied in [81,82]. Most recently, optimality properties of a Last Generated First

Served (LGFS) service discipline when updates arrive out of order are identified in [83],

packet deadlines are found to improve AoI in [84], AoI in the presence of errors is evaluated

in [85], and LCFS with non-memoryless gamma-distributed service times is considered

in [86]. Optimal status update policy with knowledge of the server state has been studied

in [87]. Under an energy harvesting setting, [88,89] investigate various status update

polices assuming the battery equipped with the source is sufficiently large. It has been

41



shown in [88] that with knowledge of the system state, updates should be submitted only

when the server is free to avoid queueing delay. Moreover, a greedy policy that submits a

fresh update as the system becomes idle is shown to be inefficient; a lazy update policy

that introduces inter-update delays is better. The optimal update policy remains open in

this setting. In [89], under the assumption that a status update packet can be generated

and served (transmitted) instantly, the authors investigate optimal offline and online

policies. The optimal offline policy is to equalize the inter-update delays as much as

possible, subject to the energy constraint imposed by the energy harvesting source. The

online problem is cast as a Markov Decision Process in a discrete-time setting, and solved

through dynamic programming. Although it is analytically intractable, the optimal policy

is shown to have a threshold structure.

In this chapter, we investigate optimal online status update policies for an energy

harvesting source with various battery sizes. We consider a setting similar to [89], where a

status update packet can be generated by the source at any time and transmitted to a FC

instantly, given sufficient energy is available at the source. We assume that the energy unit

is normalized so that each status update requires one unit of energy. This energy unit

represents the cost of both measuring and transmitting a status packet. We assume energy

arrives at the sensor according to a Poisson process, and the sensor only has causal

information of the energy arrival profile. Our objective is then to determine the sequence of

update instants so that the time average AoI at the FC is minimized, subject to the energy

causality constraints at the source.

We first study the properties of AoI as a function of inter-update delays, and establish

a connection between this problem and the optimal sensing problem studied in Chapter 2.

This motivates us to adopt the (asymptotically) optimal sensing policies in Chapter 2 for

AoI minimization, namely, a best-effort uniform status update policy for the infinite

battery case, and an energy-aware adaptive status update policy for the finite battery case.

Since the AoI function does not have all the properties required to establish the optimality
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of those policies in Chapter 2, we revise the proofs accordingly to re-establish their

(asymptotic) optimality. We then study a special case where the battery size is one unit,

and propose a threshold based status update policy. We analytically characterize the time

average AoI under this policy, and show that it outperforms any other online policy in this

special scenario. This chapter has been submitted to IEEE International Conference on

Communications 2017 for possible publication.

3.2 System Model and Problem Formulation

Consider a scenario where an energy harvesting sensor continuously monitors a system and

sends time-stamped status updates to a destination. The destination keeps track the

system status through the received updates. We use the metric Age of Information (AoI)

to measure the “freshness” of the status information available at the destination.

We assume the time used to collect and transmit a status update is negligible

compared with the time scale of inter-update delays. Therefore, given sufficient energy is

available at the source, a status update can be generated by the source at any time and

transmitted to a FC instantly. In this case, a status update is transmitted immediately

after it is generated to avoid unnecessary queueing delay.

We assume that the energy unit is normalized so that each status update requires one

unit of energy. This energy unit represents the cost of both measuring and transmitting a

status update. Assuming energy arrives at the sensor according to a Poisson process with

parameter λ. Hence, energy arrivals occur in discrete time instants t1, t2, . . .. We assume

λ = 1 throughout this paper for ease of exposition. The sensor is equipped with a battery

with capacity B, B ≥ 1. When B =∞, it corresponds to the infinite battery case.

A status update policy is denoted as {ln}∞n=1, where ln is the n-th sampling instant.

Let l0 = 0, and dn := ln − ln−1, for n = 1, 2, . . .. Define A(dn) as the total amount of energy

harvested in [ln−1, ln), and E(l−n ) as the energy level of the sensor right before the

scheduled sensing epoch ln. Then, under any feasible status update policy, the energy
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queue evolves as follows

E(l−n+1) = min{E(l−n )− 1 + A(dn+1), B} (3.1)

E(l−n ) ≥ 1 (3.2)

for n = 1, 2, . . .. Eqn. (3.2) corresponds to the energy causality constraint in the system.

Based on the Poisson arrival process assumption, A(dn+1) is an independent Poisson

random variable with parameters dn+1.

Under any feasible status update policy, the AoI as a function of time is shown in

Figure 3.1. For a clear exposition of the results, we assume that two samples at time 0 and

time T are available at the sensor for free, i.e., no energy is used for collecting those two

samples. Denote these two sampling epochs as l0 = 0, lNT+1 = T . Besides, there are NT

sensing epochs placed over (0, T ). Then. the time average AoI over the duration [0, T ] can

be expressed as
∑NT+1

n=1 f(dn), where f(dn) = d2
n/2.

T0 l1 l2 l3

d2d1

AoI

Figure 3.1: AoI as a function of T . Circles represent status update instants.

With causal information of the energy arrival profile, our objective is to determine the

sequence of update instants l1, l2, . . ., so that the time average AoI at the FC is minimized,

subject to the energy causality constraint. The optimization problem can formulated as

min .
{ln}∞n=1

lim sup
T→+∞

E

[
1

T

NT+1∑
n=1

f(dn)

]
(3.3)

s.t. (3.1)− (3.2)
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where the expectation in the objective function is taken over all possible energy harvesting

sample paths. Under the continuous time setting, the sensor can sample the system status

at arbitrary time points. Therefore, this problem does not admit a MDP formulation in

general, and it is extremely challenging to explicitly identify the optimal solution.

3.3 Optimal Status Update Policies

In Chapter 2, we studied an optimal sensing scheduling problem. Our objective was to

strategically select the sensing epochs, so that the long-term sensing performance can be

optimized. We assumed that the sensing performance function can be decomposed as a

summation of f(dn), where dn is the n-th inter-sensing duration. The optimization problem

was in the same form of (3.3). Under the assumption that 1) f(d) is convex and

monotonically increasing in d; 2) f(d)/d is increasing in d; and 3) f(d)/d is upper bounded

by a positive constant, we proposed two sensing policies, for the infinite and finite battery

cases, respectively, and proved their (asymptotic) optimality.

We note that the AoI minimization problem can be treated as a particularized case of

the optimal sensing scheduling problem studied in Chapter 2, by replacing the general

sensing performance metric with AoI. The only challenge is that in this case, f(d) = d2/2.

While this satisfies the first two assumptions required for the optimality of the proposed

sensing scheduling policies, it does not satisfy the last one, since f(d)/d = d/2, and it is

unbounded. Therefore, the optimality of the policies need to be re-justified.

For the completeness of this Chapter, in this section, we adapt the major results and

policies in Chapter 2 for the AoI minimization setup. We leave out the proofs that are

unaffected by the third assumption, and provide necessary new proofs only.

3.3.1 Status Update with Infinite Battery

When the battery size is infinite, no energy overflow will happen. Thus, the maximum

achievable long time average status update rate is one update per unit time. If we drop the
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energy causality constraint, and replace it with this long-term average status update rate

constraint, we obtain a lower bound on the long-term average AoI as follows:

Lemma 6 The long-term average AoI is lower bounded by 1/2.

This lower bound corresponds to a uniform status update policy which updates once per

unit time. This motivates us to propose the following policy.

Definition 3 (Best-effort Uniform Status Update Policy) The sensor is scheduled

to update the status at sn = n, n = 1, 2, . . .. The sensor performs the task at sn if

E(s−n ) ≥ 1; Otherwise, the sensor keeps silent until the next scheduled status update epoch.

Here we use sn to denote the n-th scheduled status update epoch, which is in general

different from the n-th actual status update epoch ln since some of the scheduled status

update epochs may be infeasible.

Theorem 5 The best-effort uniform status update policy is optimal when the battery size

is infinite, i.e.,

lim sup
T→+∞

1

T

NT+1∑
n=1

f(dn) = 1/2 a.s.

The proof of Theorem 5 is provided in Appendix 3.6.1. Intuitively, when the battery

size is infinite, the fluctuations of the energy arrivals can be averaged out when T is

sufficiently large, thus the uniform status update policy can be achieved asymptotically.

3.3.2 Status Update with Finite Battery

In order to minimize long-term average AoI when the battery size is finite, intuitively, the

status update policy should try to prevent any battery overflow, as wasted energy leads to

performance degradation. Meanwhile, the properties of AoI function requires the status

update epochs to be as uniform as possible. Those two objectives are not aligned with each

other, thus, the optimal status update policy should strike a balance between them.
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In the following, we propose an energy-aware adaptive status update policy, which

adaptively changes its update rate based on the instantaneous battery level. When the

battery level is high, the sensor updates more frequently in order to prevent battery

overflow; When the battery level is low, the sensor updates less frequently to avoid

infeasible status update epochs. Meanwhile, the update rate does not vary significantly in

order to achieve a relatively uniform status update.

Definition 4 (Energy-aware Adaptive Status Update Policy) The adaptive status

update policy defines status update epochs sn recursively as follows

sn = sn−1 +



1
1−β , E(s−n−1) < B

2

1, E(s−n−1) = B
2

1
1+β

, E(s−n−1) > B
2

(3.4)

where s0 = 0, E(s−0 ) = 1, and β := k logB
B

, with k being a positive number such that

0 < β < 1. The sensor samples and updates the status at sn if E(s−n ) ≥ 1; Otherwise, the

sensor keeps silent until the next scheduled status update epoch.

As B →∞, we have β → 0 for any fixed k, i.e., the adaptive updating policy

converges to the best-effort uniform updating policy as battery size increases. Thus, it is

reasonable to expect that the adaptive status update policy is asymptotically optimal as

battery size approaches infinity.

Theorem 6 Under the adaptive status update policy, the gap between the long-term

average AoI and its lower bound 1/2 scales in O
(

2k+1k(logB)2

Bk+1 +
(

logB
B

)2
)

.

Theorem 6 implies that as battery size B increases, the long-term average AoI under the

adaptive status update policy approaches the lower bound achievable for the system with

infinite battery. Thus, it is asymptotically optimal. The proof of Theorem 6 is provided in

Appendix 3.6.2.
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3.4 A Special Case: B = 1

In the previous section, we investigate the optimal and asymptotically optimal status

update policies when battery size B is infinite, or finite but sufficiently large, respectively.

However, when the battery size is so small that the asymptotics cannot kick in, those

policies may not perform very well. That motivates us to investigate other status update

policies when battery size B is small. One extreme case for this scenario is when B = 1,

i.e., the battery can only store the energy for one status update operation. In this case, the

battery only has two states: empty, or full. When it is empty, obviously, any status update

should not be scheduled. When one unit amount of energy arrives, the battery jumps to

the other state, and it then need to decides when to spend the energy for status update.

Intuitively, it is still desirable to update as uniform as possible. Thus, we propose the

following policy.

Definition 5 (Threshold-based Status Update Policy) When an energy unit enters

an empty battery, the sensor performs a status update immediately if the AoI at the FC is

greater than a threshold τ ; Otherwise, it holds its operation until the AoI is exactly equal to

τ .

The long-term average AoI under this policy can be analytically characterized based

on the memoryless property of the exponentially distributed inter-arrival times of energy

units. We summarize the result in the following theorem.

Theorem 7 Under the threshold-based status update policy, the long-term average AoI is

h(τ) := 2τe−τ+2e−τ+τ2

2(e−τ+τ)
.

The proof of Theorem 7 is provided in Appendix 3.6.3. Moreover, we can show that h(τ) is

first decreasing, then increasing in τ . Therefore, the optimal τ corresponds to the point

where h′(τ) = 0. Solving the equation, we have τ ∗ = 0.901, and the corresponding

long-term average AoI is 0.9012.
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Theorem 8 When B = 1, the threshold-based status update policy achieves the minimum

long-term average AoI among all online policies, thus it is optimal.

The proof of Theorem 8 is sketched as follow. We model the the status update instants

under any online policy as a renewal process. Then, the long-term average AoI under the

policy is equal to the expected average AoI over one renewal interval. Next, we focus on

one renewal interval, and show that the optimal policy should depend on the first energy

arrival time in that interval. Through functional analysis, we show that the threshold

based policy always outperforms any other online policy.

3.5 Simulation Results

The performances of the proposed status update policies are evaluated in this section

through simulations.

First, we fix the battery size B =∞. We generate sample paths for the Poisson energy

harvesting process, and perform status updating according to the best-effort uniform status

update policy. The time average AoI as a function of T is shown in Fig. 3.2. We plot one

sample path and the sample average over 1, 000 sample paths in the figure. We observe

that the time average AoI curves gradually approach the lower bound 1/2 as T increases.

When T = 500, there is only a very small difference between the simulation results and the

analytical lower bound. The results indicate that the proposed best-effort uniform status

update policy is optimal.

Next, we study the time average AoI under the adaptive status update policy with

finite battery sizes. We fix T = 100, 000 and plot the average AoI over 1,000 sample paths

in Fig. 3.3. We note that for each fixed k, the gap between the time average AoI and the

lower bound 1/2 monotonically decreases as B increases, which is consistent with the

theoretical result in Theorem 6.

Last, we compare the performances of the three policies for B = 1. For a fair

comparison, we optimize the parameters for the best-effort uniform policy and adaptive
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Figure 3.2: Time average AoI under best-effort uniform status update policy.
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Figure 3.3: Time average AoI under adaptive status update policy.
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Figure 3.4: Performance comparison when B = 1.

state update policy numerically before we perform the comparison. We note that the

optimal update rate for the best-effort uniform policy is once every 0.43 unit of time. We

also modify the adaptive status update policy to make it applicable for the case B = 1.

Specifically, we schedule the next update 1
1+β

away if the battery level is full right before

the current update; otherwise, we schedule it in time 1
1−β . We numerically search for the

optimal value of β, and it turns out that when β = −0.145, the time average AoI is

minimized. This is opposite to the case when B is large but finite. Although it is a bit

counter intuitive, it is due to the fact that when B = 1, then sensor will become empty

immediately after it updates the status, and the AoI will linearly grow from zero; While for

the other case where the battery is empty at a scheduled update epoch, the AoI has a

positive value already, and will grow with the same rate. The memoryless property of the

inter-arrival time indicates that the expected waiting time for the next energy arrival

would be the same after the current scheduled update epoch. The convexity of the AoI

function f(d) = d2/2 implies that the system should be more aggressive to update if the

battery is empty for the current scheduled update in order to minimize the time average

51



AoI. We then generate a sample path and plot the time average AoI as a function of time

T under each policy, as shown in Fig. 3.4. As we expect, the threshold based updating

policy outperforms the other two, and approaches its limit as T gets sufficiently large.

3.6 Appendix

3.6.1 Proof of Theorem 5

To prove Theorem 5, it suffices to show that

lim sup
T→+∞

1

T

NT+1∑
n=1

f(dn) ≤ 1/2, a.s.

The uniform best-effort status update policy partition the time axis into slots, each

with length 1. Let E(n) be the energy level of the sensor right before the scheduled sensing

epoch n. Based on E(n), we can group the time slots into segments with lengths

u0, v1, u1, . . . , vk, uk, . . ., where uis correspond to the segments when E(n) = 0 and vis

correspond to the segments when E(n) > 0. We note that there are vi equally spaced

sensing epochs in the segment corresponding to vi. Besides, E(n) jumps from zero to some

positive value ei at the end of the segment corresponding to ui. Therefore, ui follows an

independent geometric distribution

P [ui = k] = e−(k−1)(1− e−1), k = 1, 2 . . . (3.5)

Considering the duration bounded by the first and last sensing epochs in the segment,

the aggregated AoI equals (vi − 1)f(1), where f(x) = x2/2. The duration bounded by the

last sensing epoch in the segment associated with vi and the first sensing epoch in the

segment associated with vi+1 is f(ui + 1). Let KT be the number of segments with
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E(n) = 0 over [0, T ]. Note that T = NT +
∑KT

i=0 ui. Therefore,

lim sup
T→+∞

1

T

NT+1∑
n=1

f(dn)

= lim sup
T→+∞

f(u0) +
∑KT

i=1 [(vi − 1)f(1) + f(ui + 1)]

T

= lim sup
T→+∞

f(u0) +
∑KT

i=1 f(ui + 1)

T
+
T −

∑KT
i=0 ui −KT

T
f (1) (3.6)

= lim sup
T→+∞

u2
0 +

∑KT
i=1(ui + 1)2

2T
+

1

2
−
∑KT

i=0 ui
2T

− KT

2T

= lim sup
T→+∞

u2
0

2T
+

(∑KT
i=1 u

2
i

2KT

+

∑KT
i=1 ui
KT

+ 1

)
KT

T
+

1

2
(3.7)

where (2.19) follows from the fact that u0 +
∑KT

i=1(vi + ui) = T , (3.7) follows from the fact

that f(x) = x2/2, and KT/T → 0 and
∑KT

i=0 ui/T → 0 almost surely, as proved in the proof

of Theorem 1 in [68]. Since ui’s are i.i.d. geometric random variables,
∑KT
i=1 ui
KT

and
∑KT
i=1 u

2
i

KT

converges to the first and second moments of the geometric distribution specified in (3.5),

which are finite constants. Therefore, we have (3.7) converges to 1/2 almost surely.

3.6.2 Proof of Theorem 6

Consider the first n scheduled status update epochs under the proposed adaptive status

update policy. Let n+ denote the number of intervals between two scheduled sensing

epochs with duration 1
1−β , n− be that with duration 1

1+β
, and n0 be that with duration 1.

Let n̄ be the number of sensing epochs the battery overflows, and n be the number of

infeasible status update epochs. Then, the n-th scheduled status update epoch happens at

time Tn := n+

1−β + n0 + n−
1+β

. Let A+
n be the total amount of energy wasted. Then,

E(S−n ) = (A(Tn)− A+
n )− (n− n) (3.8)
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where A(Tn) is a Poisson random variable with parameter Tn. Dividing both sides by n

and taking the limit as n goes to +∞, we have

lim
n→∞

E(n)

n
= lim

n→∞

A(Tn)

Tn
· Tn
n
− lim

n→∞

A+
n

n
−
(

1− lim
n→∞

n

n

)

Therefore,

lim
n→∞

Tn
n

= 1 +O

(
2k+1k(logB)2

Bk+1

)
(3.9)

Based on Taylor expansion and (3.9), we have

lim
n→∞

n+f
(

1
1−β

)
+ n0f(1) + n−f

(
1

1+β

)
Tn

= f(1) +O

(
2k+1k(logB)2

Bk+1
+

(
logB

B

)2
)

On the other hand, due to the existence of infeasible status update epochs, we have

lim
n→∞

∑
n f(dn)−

[
n+f

(
1

1−β

)
+ n0f(1) + n−f

(
1

1+β

)]
Tn

≤ lim
n→∞

∑
dn:dn>

1
1−β

f(dn)

Tn
(3.10)

= lim
n→∞

∑
dn:dn>

1
1−β

d2
n

2n′
n′

Tn
(3.11)

where n′ in (3.11) denote the number of dn’s with dn >
1

1−β . (3.10) follows from the fact

that the difference between the actual time average AoI and that with scheduled status

update epochs is due to the infeasible status update epochs. (3.11) follows from the fact

that f(x) = x2/2.

We note that for all dn ≥ 1
1−β , d′n := dn(1− β) follows a geometric distribution with
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parameter p = 1− e−
1

1−β , and its second moment is 2−p
p2

. Then,

lim
n→∞

∑
dn:dn>

1
1−β

d2
n

2n′
= lim

n→∞

∑
dn:dn>

1
1−β

(d′n)2

2(1− β)2n′
(3.12)

=
2− p

2p2(1− β)2
a.s. (3.13)

Meanwhile, we have limn→∞
n′

Tn
≤ n

Tn
. Thus, based on Theorem 3 in [68] and (3.9), we have

lim
n→∞

∑
n f(dn)

Tn
=

1

2
+O

(
2k+1k(logB)2

Bk+1
+

(
logB

B

)2
)

3.6.3 Proof of Theorem 7

Define Xn, n = 1, 2, . . . as the duration between the n-th and (n− 1)-th status update

instances under the threshold-based status update policy. Then, the status update instants

forms a renewal process, and Xns are i.i.d random variables. Denote the time difference

between the n-th status update instance ln and the first energy arrival time after ln as Yn.

Thus, Xn equals τ if Yn ≤ τ , and it equals Yn if Yn > τ . Based on the memoryless property

of the inter-arrival time for Poisson process, Yn is an exponential random variable with

parameter 1. Therefore,

E[Xn] = E[Xn|Yn > τ ]P[Yn > τ ] + E[Xn|Yn ≤ τ ]P[Yn ≤ τ ]

=

∫ +∞

τ

ye−ydy + τ(1− e−τ )

= (1 + τ)e−τ + τ(1− e−τ ) = e−τ + τ (3.14)

E[X2
n] = E[X2

n|Yn > τ ]P[Yn > τ ] + E[X2
n|Yn ≤ τ ]P[Yn ≤ τ ]

=

∫ +∞

τ

y2e−ydy + τ 2(1− e−τ )

= (τ 2 + 2τ + 2)e−τ + τ 2(1− e−τ ) (3.15)
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Thus, based on the property of renewal process [90], we have

lim
T→+∞

∑NT
n=1X

2
n

2
∑NT

n=1 Xn

=
E[X2

n]

2E[Xn]
=

(2τ + 2)e−τ + τ 2

2(e−τ + τ)
(3.16)
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Chapter 4: Collaborative Sensing in Energy Harvesting Sensor Networks

4.1 Introduction

Sensor networks equipped with energy harvesting devices have attracted great attentions

recently. Compared with conventional sensor networks powered by batteries, the energy

harvesting abilities of the sensor nodes make sustainable and environment-friendly sensor

networks possible. However, the random, scarce and non-uniform energy supply features

also necessitate a completely different approach to energy management.

Different energy management schemes have been proposed to cope with the random

nature of energy harvesting sensors from different perspectives. In general, they can be

categorized as offline polices and online policies. In the offline optimization framework, it is

assumed that the energy harvesting profile over the whole duration of operation is known

in advance at the sensor nodes. With such assumptions, energy has been managed to

optimize communication performances [1, 4, 27], schedule sensing tasks [63], etc. In

contrast, in the online optimization framework, the energy harvesting profile becomes

available at sensor nodes causally. Besides some heuristic online algorithms [17,18,20,64],

the major approach is to formulate the optimal energy management problem as a

stochastic control problem, with the objective to maximize the expected reward, such as

data throughput [5, 7, 8, 91–94], channel coding rate [45,49], sensing utility [65], etc.

In this chapter, we focus on the design of a collaborative sensing scheduling scheme in

an energy harvesting sensor network under both offline and online settings. Our motivation

is a collaborative sensing scenario where multiple sensors are deployed to monitor the

status of a phenomenon in a region. Our objective is to coordinate the sensing actions

among multiple sensor nodes in a way so that the time average sensing utility is optimized.

Our primary constraint is the energy causality constraint at each sensor. Specifically, we

assume that a sensor takes a unit of energy to sense the nature and send its observation to
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a fusion center (FC). A sensor cannot perform the sensing task when there is not sufficient

energy in its battery. The FC combines the observations collected from sensors and

extracts information from them. We assume that in each slot, the sensing utility generated

by those observations is a function of the set of active sensors in that slot. Our objective is

to select a subset of sensors to perform the sensing task in each time slot, such that the

time average sensing utility is optimized, while the energy constraint at each individual

sensor is satisfied at every time slot. The problem has a combinatorial nature and is hard

to solve in general. The randomness of the energy harvesting processes at sensors makes

the problem even more challenging. To make the problem tractable, as a first step, we

assume that the sensing utility function is symmetric with respect to sensors, i.e., it is a

concave function of the total number of active sensors in each slot. In addition, we assume

that the battery size at each sensor is infinite.

Under such assumptions, we first consider an offline setting, where the energy

harvesting profile over duration [0, T − 1] for each sensor is known beforehand. We show

that the optimal offline sensing scheduling has a “majorization” structure, i.e., the number

of active sensors in each slot should be as even as possible, subject to the energy causality

constraints at individual sensors. We propose an algorithm to identify the optimal number

of active sensors in each slot, and construct a sensing scheduling with the identified subset

sizes. With the insight gained from the offline setting, we then study the corresponding

online sensing scheduling where the energy harvesting profile is available causally. We first

show that the expected time average sensing utility has an upper bound under any feasible

sensing scheduling policy satisfying the energy causality constraint. We then propose a

myopic policy, which aims to select a fixed number of active sensors with the longest energy

queues in each slot to perform the sensing actions. Under the assumptions that the energy

harvesting process is Bernoulli and the battery capacity is infinite at each individual

sensor, we show the expected time average utility generated under the myopic policy

converges to the upper bound as time T approaches infinity, thus the myopic policy is
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optimal. Moreover, we explicitly characterize the convergence rates. The near exponential

convergence rate indicates that the time average sensing utility generated under the myopic

policy gets close to the upper bound within a short period of time. The myopic sensing

scheduling policy relies on the current energy queue lengths to make the sensing decisions,

and it resolves the computational complexity issue caused by the combinatorial

optimization. Besides, it does not require the parameters of the energy harvesting

processes at individual sensors to be the same. Therefore, it is extremely suitable for

large-scale energy harvesting sensor networks with non-uniform energy supplies at sensors.

Part of this work has been published in [95].

4.2 Related Work

For the offline sensing scheduling, a similar “majorization” scheduling structure has been

observed in throughput optimization problems with energy harvesting

transmitters [11,13,27]. In [27], the optimal transmission policy for a single transmitter

under the given energy causality constraint is to equalize the transmit power as much as

possible. The “majorization” structure of the solution is due to the concavity of the

function r = 1
2

log(1 + P ). However, there are fundamental differences between the problem

studied in this chapter and [27]. The optimization problem in this chapter is to select a

subset of sensors in each slot, and each selected sensor consumes a unit of energy for

sensing, while in [27], the objective is to vary the power to maximize the throughput. The

latter is formulated as a convex optimization problem, while the former has a

combinatorial nature, and in general cannot be solved through convex optimization.

For the online sensing scheduling, similar problems have been studied in [91–94] for

throughput maximization in energy harvesting communication networks. Without

knowledge of the instantaneous states of the nodes’ batteries, the access point needs to

allocate K orthogonal channels to K out of the N nodes in the network. The

corresponding throughput maximization problems are formulated with partially observable
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Markov decision processes (POMDP) and cast into a restless multi-armed bandit. [91]

and [92] show the optimality of a Round-Robin based myopic policy that schedules the K

nodes with the largest beliefs to maximize the immediate reward under different system

models. In [93,94], under the infinite battery assumption, a uniformizing random ordered

policy that selects the sensors based on a predefined random priority list and the outcome

of transmissions in the previous time slot is shown to be asymptotically optimal in infinite

horizon for a broad class of energy harvesting process. The proposed queue-length based

myopic policy is also very similar to the longest-connected-queue server allocation policy

studied in [96,97], etc. The problem studied in this chapter is different from these work

from the following aspects. First, we do not have restrictions on the number of active

sensors in each slot. Our myopic policy selects a fixed number of active sensors due to the

properties of the sensing utility function, rather than a hard constraint assumed in the

system model. Second, we assume that the statuses of batteries at sensor nodes are

available at the fusion center, thus the optimization problem is actually a Markov decision

process rather than a POMDP. Third, the optimality of the myopic policies

in [91,92,96,97] requires the energy harvesting processes to be uniform at sensors, while

such assumption is not required for the optimality of our policy. Fourth, utilizing large

deviation theory, we explicitly characterize the convergence rate of our policy. To the best

of our knowledge, such characterization is not available for similar scheduling policies

proposed in the literature.

4.3 System Model

In this chapter, we consider a sensor network consisting of N sensors (randomly)

distributed in an area. Each sensor node is powered by energy harvested from ambient

environment. We assume that each sensor node has a battery to store the harvested

energy, and it is replenished randomly and consumed by taking observations and

transmitting them to a fusion center (FC). We assume the battery size is infinite, and the
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instantaneous battery statuses at the sensors are available at the FC to make sensing

scheduling decisions. We consider a time-slotted system. In time slot t, a subset of sensors,

denoted as Ct, is selected to sense the environment, and transmit their observations to the

FC. We assume that a unit amount of energy is required for one sense-and-transmit

operation, and a sensor can make at most one sense-and-transmit operation in each slot.

Let Ei(t) denote the amount of energy remaining in the battery of node i at the

beginning of time slot t, Ai(t) be the amount of harvested energy at node i during slot t.

Assume the system starts with an empty state. Then, the energy queue evolves according

to

Ei(0) = 0,∀i

Ei(t+ 1) = Ei(t)− 1i∈Ct + Ai(t), t = 0, 1, 2, . . . ,∀i (4.1)

where 1x is an indicator function, i.e., it equals one if x is true, and it equals zero

otherwise. Since an observation cannot be made if Ei(t) < 1, we impose the following

energy constraint

Ei(t) ≥ 1i∈Ct , ∀i, t. (4.2)

In each time slot, the FC receives the measurements taken from the active sensors and

extracts the information from them. We assume the sensing utility generated by those

measurements is a function of Ct, denoted as f(Ct). The total sensing utility over duration

[1, T ] is simply the sum of the utilities generated in each slot in [1, T ]. We make the

following assumptions on the utility function f(Ct).

Assumption 1

(i) f(C) is a function of the size of C, i.e., f(C) = f(|C|).

(ii) f(x) is monotonically increasing in x ∈ Z+.
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(iii) f(x+ 1) + f(x− 1) < 2f(x) for x ∈ Z+.

Assumption 1-(i) implies that f(C) is symmetric with respect to sensor nodes. By imposing

this assumption, we essentially ignore the differences in contributions from different sensing

nodes, and focus on the impact of the total number of collected observations on the sensing

performance. Assumption 1-(ii) means that the utility function increases as more

observations are collected. Assumption 1-(iii) essentially means that f(x) is a concave

function defined over Z+. These assumptions are quite general and reasonable. Below we

give two examples where the assumptions are satisfied.

Example 1: Throughput maximization in a symmetric Gaussian multiple-access

channel. Consider a scenario where the sensing utility completely depends on the total

number of information bits extracted from the messages received at the fusion center.

Under the assumption that each sensor has a fixed transmit power P and the channel is a

symmetric Gaussian multiple-access channel, the maximum sum-rate in each slot equals

1
2

log(1 + xP ), where x is the number of sensors transmitting simultaneously. Apparently,

the sum-rate function satisfies Assumption 1.

Example 2: Variance minimization for maximum likelihood estimation (MLE).

Consider the case where the samples collected by sensors in each time slot are i.i.d. and

can be received perfectly at the fusion center. An MLE is then performed to estimate the

quantity of interest. Under mild regularity conditions, the MLE has an asymptotically

Gaussian distribution, whose mean equals the true value of the quantity, and variance

scales in 1
n
. In order to minimize the time average variance of the MLE, we can define

f(x) = − 1
x
, which satisfies the properties in Assumption 1.

Our objective in this chapter is to develop a sensing scheduling scheme, such that the

time average sensing utility under the scheduling is optimized, subject to the energy

causality constraints at individual sensors. We consider both offline and online settings,

and study them in Section 4.4 and Section 4.5, respectively.
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4.4 Optimal Offline Sensing Scheduling

We start with a finite-horizon offline formulation, where the energy harvesting profile up to

time slot T − 1, i.e., {Ai(t)}T−1
t=0 , ∀i, is known beforehand. Our objective is to select the

subset of sensors Ct to perform the sensing task in each time slot t, such that the time

average utility generated over [1, T ] is maximized. Such scheduling must satisfy the energy

constraint for each individual sensor at every time slot. Thus, the optimization problem is

formulated as

max
{Ct}

1

T

T∑
t=1

f(Ct) s.t. (4.1)− (4.2) (4.3)

The optimization problem in (4.3) has a combinatorial nature, and is in general hard

to solve. However, with Assumption 1, we show that the optimal solution has a

“majorization” structure, which can be exploited to obtain the optimal sensing scheduling

explicitly. In this section, we first describe a procedure to determine the structure of the

optimal scheduling, and then construct a scheduling policy explicitly with the obtained

structure.

4.4.1 Identify a Majorization Scheduling Structure

First, since each sense-and-transmit operation costs one unit of energy, the energy

harvesting profile {Ai(t)}T−1
t=0 for sensor i imposes constraints on the total number of time

slots that a sensor be active up to time slot t, for t = 1, 2, . . . , T . Let Bi(t) =
∑t−1

j=0Ai(j) be

the total amount of energy harvested up to the beginning of time slot t. Apparently, Bi(t)

is an upper bound on the total number of time slots that a sensor can be active up to time

slot t. However, since at most one unit of energy can be spent in each slot, Bi(t) might not

be tight. To provide a tighter upper bound on the total number of active times slots for
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sensors, we introduce another quantity Si(t), which is defined recursively as follows:

Si(0) = 0, ∀i (4.4)

Si(t) = min{Si(t− 1) + 1, Bi(t)}, ∀i, t (4.5)

Based on this definition, we have

t∑
j=1

1i∈Cj ≤ Si(t), ∀i (4.6)

Sum up the inequalities in (4.6) over i, we get

N∑
i=1

t∑
j=1

1i∈Cj ≤
N∑
i=1

Si(t) := S(t) (4.7)

which is equivalent to

t∑
j=1

|Cj| ≤ S(t), ∀t (4.8)

Eqn. (4.8) imposes a constraint on the cumulative number of observations the FC can

collect up to time slot t. Due to the concavity of the utility function f(Ct) in |Ct|,

intuitively, to maximize the objective function in (4.3), we should equalize {|Ct|}Tt=1 as

much as possible, under the constraints in (4.6) for each individual sensor. While handling

N individual constraints simultaneously is too complicated, in the following, we equalize

{|Ct|}Tt=1 under the sum constraint (4.8) only. In general, the solution obtained with such

relaxation may not be feasible when individual constraints are imposed. However, as we

will show in Sec. 4.4.2, the {|Ct|}Tt=1 obtained under constraint (4.8) is always feasible.

The procedure to obtain the optimal {|Ct|}Tt=1 is equivalent to identifying the time

slots in which the equality in (4.8) is met (denoted as t1, t2, . . .,etc). We summarize the

procedure in Algorithm 1. It works in a progressive fashion. Starting with t0 = 0,
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Eqn. (4.9) calculates the average number of active nodes in each slot over [1, t] assuming

t1 = t, i.e., constraint (4.8) is tight at t, for t = 1, 2, . . . , T . Then, t1 is identified as the time

slot t associated with the minimum average number of active nodes. The procedure then

proceeds with the new starting point t1 + 1 to identify t2. The procedure continues until the

right hand side of Eqn. (4.9) equals T . The way we obtain the sequence t1, t2, . . . implies

that the average number of active sensor nodes in each slot over [tn−1 + 1, tn] is S(tn)−S(tn−1)
tn−tn−1

.

Since this may be an non-integer, in order to obtain a valid scheduling, we determine |Ct|

according to (4.10)-(4.11). In this way, we keep the total number of observations collected

over [tn−1 + 1, tn] to be S(tn)− S(tn−1), and ensure that the number of active nodes in each

slot is an integer. Intuitively, this is the most equalized valid scheduling structure we can

have. The optimality of the scheduling structure will be proved later in Theorem 10.

Algorithm 1 An algorithm to equalize {|Ct|}Tt=1

1: Input: {S(t)}Tt=1.
2: Initialization: n = 0, t0 = 0.
3: while tn < T do
4: n = n+ 1;
5: Let

tn = arg min
tn−1<t≤T

{
S(t)− S(tn−1)

t− tn−1

}
(4.9)

r = S(tn)−S(tn−1)−(tn−tn−1)

⌊
S(tn)−S(tn−1)

tn − tn−1

⌋
(4.10)

ct =


⌊
S(tn)−S(tn−1)

tn−tn−1

⌋
, tn−1 < t ≤ tn−r⌈

S(tn)−S(tn−1)
tn−tn−1

⌉
, tn − r < t ≤ tn

(4.11)

6: end while
7: Output: {ct}Tt=1.

4.4.2 Construct a Sensing Scheduling with {ct}Tt=1

With the scheduling structure {ct}Tt=1 obtained in Algorithm 1, we aim to construct a

sensing policy, under which the number of active nodes in slot t equals ct exactly, and each
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individual energy constraint in (4.6) is satisfied.

The algorithm to construct the sensing scheduling is summarized in Algorithm 2. It

starts with an initial scheduling where each sensor perform sensing in a greedy fashion.

Specifically, we let each sensor node spend one unit of energy to take an observation

whenever it has sufficient energy. By designing the sensing policy in this way, sensor i

senses in time slot t whenever Si(t)− Si(t− 1) = 1. Thus, we have exact S(t)− S(t− 1)

active sensor nodes in slot t. We use S(t) to track the set of active nodes in slot t, and

define |S(t)| := st. Initially, S(t) includes all sensors with at least one unit of energy at the

beginning of slot t under the greedy sensing policy.

Then, Algorithm 2 adjusts the initial scheduling by letting a subset of sensors

postpone their sensing actions scheduled in certain time slots and sense with the saved

energy in some subsequent time slots. The rescheduling procedure is carried out iteratively.

In each iteration, we define t̂ as the first t such that st < ct, and t̄ as the first t such that

st > ct. As we will see in Lemma 9, we always have t̄ < t̂.

Algorithm 2 Sensing scheduling construction

1: Input: {Si(t)}Tt=1, ∀i; {ct}Tt=1.
2: Initialization: for t = 1, 2, . . . , T ,

S(t) = {i|Si(t)− Si(t− 1) = 1}, st = |S(t)|.

3: t̄ = t̂ = 1.
4: while t̄ ≤ T do
5: while st̂ ≥ ct̂ & t̂ < T do
6: t̂ = t̂+ 1;
7: end while
8: while st̄ ≤ ct̄ do
9: t̄ = t̄+ 1;

10: end while
11: δ = min(st̄ − ct̄, ct̂ − st̂);
12: Randomly remove δ sensors from S(t̄)\S(t̂) and add them to S(t̂);
13: Update S(t̄), S(t̂), st̄, st̂.
14: end while
15: Output: {S(t)}Tt=1.

Recall that we assume each sensor can take at most one observation in each slot. Let
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δ = min(st̄ − ct̄, ct̂ − st̂). We then randomly remove δ sensors from S(t̄)\S(t̂) and add them

to S(t̂). By doing this, we let the corresponding subset of sensors keep silent in time slot t̄

and be active in t̂. Since t̄ < t̂, this does not violate the individual energy causality

constraints in (4.6). After updating St̂, St̄ and st̂, st̄, the algorithm repeats the procedure

with another iteration. As we will prove in the proof of Lemma 9, the new t̂ and t̄ are

always greater than or equal to the t̂ and t̄ in the previous iteration, respectively. Thus,

when sweeping for the new t̂ and t̄ in each iteration, the procedure only needs to start with

the t̂ and t̄ in the previous iteration. The rescheduling process completes until all time slots

are swept. The rescheduling is coordinated in a way that exact ct sensors are scheduled for

sensing in time slot t.

In order to prove that Algorithm 2 returns with a sensing scheduling with the desired

sensing structure {ct}Tt=1, we introduce the following lemmas. The first two lemmas can be

easily proved based on Algorithm 1.

Lemma 7
∑t

j=1 cj ≤ S(t) for 1 ≤ t ≤ T . The equality holds if t ∈ {tn}, where tn is

defined in (4.9).

Lemma 8 If tn−1 < t1 < t2 ≤ tn, we must have either ct1 = ct2, or ct1 = ct2 − 1.

Lemma 9 In each iteration of Algorithm 2, we must have a) t̄ < t̂, and b)
∑τ

t=1 st = S(τ),

∀τ ≥ t̂ after rescheduling.

Proof: We prove the lemma through induction. First, we prove that it is true in the first

iteration with the initial scheduling. We then assume that it is true for the current

iteration, and prove that it still holds in the next iteration.

Part a) in the first iteration can be proved through contradiction. If t̄ > t̂, based on

the definition of t̄ and t̂, we have
∑t̂

t=1 st =
∑t̂−1

t=1 ct + st <
∑t̂

t=1 ct ≤ S(t̂) where the last

inequality follows from Lemma 7. This contradicts with the fact that
∑τ

t=1 st = S(τ), ∀τ in

the initial scheduling. Thus, we must have t̄ < t̂. Since the rescheduling only involves S(t̄)

and S(t̂), and t̄ < t̂, we have Part b) hold after the rescheduling in the first iteration.

67



We then assume the lemma is true for the current iteration. After rescheduling and

updating S(t̄) and S(t̂), we still have st ≥ ct for t < t̂. Therefore, the new t̂ in the next

iteration, denoted as t̂′, can only be greater than or equal to the current t̂. Based on Part

b), we have
∑t̂′

t=1 st = S(t̂′) prior to the rescheduling in the next iteration. Following

similar arguments as in the first iteration, we can prove that the new t̄ in the next iteration

must be smaller than t̂′, and
∑τ

t=1 st = S(τ), ∀τ ≥ t̂′ after the rescheduling. �

Theorem 9 Algorithm 2 always finishes with a valid sensing scheduling with scheduling

structure {ct}Tt=1.

Theorem 10 The obtained sensing scheduling with the structure {ct}Tt=1 determined by

Algorithm 1 maximizes the sensing utility generated over [0, T ] under Assumption 1.

The proofs of Theorem 9 and Theorem 10 are provided in Appendix 4.8.1 and

Appendix 4.8.2, respectively.

4.5 Optimal Online Sensing Scheduling

In this section, we consider an online setting, where energy arrives randomly at sensors in

each time slot. Assuming the statistics of the energy harvesting processes are known at the

FC, our objective is to design an online collaborative sensing scheduling {Ct}∞t=1, such that

the expected long-term time average sensing utility is maximized.

Specifically, for every sensor node i, we assume the energy arrival process is a

Bernoulli process with parameter λi, 0 ≤ λi ≤ 1, i.e., E[Ai(t)] = λi. The arrival processes

are independent and may not be identical across sensors. We consider a general case where∑N
i=1 λi is a non-integer. The online optimization problem is formulated as

max
{Ct}

lim inf
T→+∞

E

[
1

T

T∑
t=1

f(Ct)

]
(4.12)

s.t. (4.1)− (4.2)
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where the expectation in the objective function is taken with respect to all possible energy

harvesting sample paths. The optimization problem in (4.12) is stochastic and has a

combinatorial nature, thus it is in general hard to solve. However, with Assumption 1, we

first show that the optimal solution has an upper bound, which corresponds to a scheduling

policy with a fixed number of active sensors in every slot. Motivated by this observation,

we then propose a myopic policy, which greedily selects a subset of sensors with the longest

energy queues to perform the sensing task in each slot. We prove its optimality by showing

that the myopic policy asymptotically achieves the upper bound.

4.5.1 An upper bound

Definition 6 A sensing scheduling policy {Ct}∞t=1 is feasible if Ei(t) ≥ 1, for every i ∈ Ct,

∀t, i.e., the energy causality constraint (4.2) is always satisfied for every i, t.

Lemma 10 Under every feasible scheduling policy, we have

lim sup
T→+∞

1

T

T∑
t=1

1i∈Ct ≤ λi, a.s. ∀i (4.13)

Proof: Lemma 10 can be proved based on the energy queue evolution described in (4.1)

and the definition of feasible scheduling policy. Since Ei(t)− 1i∈Ct ≥ 0 for every t ≥ 1, we

have
∑T

t=1 1i∈Ct ≤
∑T−1

t=0 Ai(t). Therefore,

lim sup
T→+∞

1

T

T∑
t=1

1i∈Ct ≤ lim sup
T→+∞

1

T

T−1∑
t=0

Ai(t) = λi, a.s. (4.14)

where the last equality follows from the strong law of large numbers. �

Lemma 10 implies that for any feasible scheduling policy {Ct}∞t=1, the long-term

fraction of time slots that a sensor is active must be upper bounded by the energy arrival

rate at that sensor. This is an intuitive result due to the energy causality constraint.

Lemma 10 motivates us to obtain an upper bound on the objective function in (4.12) by
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removing the energy causality constraint in (4.2), and impose a relaxed energy constraint,

i.e., the average energy constraint in (4.13) instead.

Lemma 11 The objective function in (4.12) is upper bounded as

max
{Ct}

lim inf
T→+∞

E

[
1

T

T∑
t=1

f(Ct)

]
≤(1− q)f (bΛc) + qf (dΛe) , (4.15)

where Λ =
∑N

i=1 λi, q =
∑N

i=1 λi −
⌊∑N

i=1 λi

⌋
.

Proof: First, we extend the domain of f from Z+ to R+. Specifically, for x /∈ Z+, we let

f(x) , (1− q)f (bxc) + qf (dxe) (4.16)

where q = x− bxc. Be defining f(x) in this way, we extend f(x) from a discrete function to

a piecewise linear continuous function. It is straightforward to verify that f(x) is a

monotonically increasing and concave function over R+, based on which Lemma 11 can be

proved.

Specifically, we have

max
{Ct}

lim inf
T→+∞

E

[
1

T

T∑
t=1

f(Ct)

]

≤ max
{Ct}

lim sup
T→+∞

E

[
1

T

T∑
t=1

f(Ct)

]
(4.17)

≤ max
{Ct}

E

[
lim sup
T→+∞

1

T

T∑
t=1

f(Ct)

]
(4.18)

≤ max
{Ct}

E

[
f

(
lim sup
T→+∞

1

T

T∑
t=1

|Ct|

)]
(4.19)

≤ f

(
N∑
i=1

λi

)
(4.20)

, (1− q)f (bΛc) + qf (dΛe) (4.21)
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where (4.18) follows from Fatou’s Lemma, and (4.19) follows from the concavity and

monotonicity of function f , (4.20) follows from Lemma 10, and the last equality follows

from the extended definition of f(x) in (4.16). �

Extending the domain of f(x) from Z+ to R+ enables us to obtain the upper bound in

Lemma 11. However, the extension so far does not have any physical meaning. Observing

the upper bound in Lemma 11, we note that the upper bound obtained by the extension

actually implies the desired structure of the optimal scheduling policy. Specifically, in order

to maximize the long-term average utility, on average, we should have
⌈∑N

i=1 λi

⌉
active

sensors for q of the time slots, and
⌊∑N

i=1 λi

⌋
active sensors for 1− q of the time slots. The

selection should be coordinated in a way to ensure that, with high probability, there exists

sufficient sensor nodes with non-empty energy queues (i.e., Ei(t) ≥ 1) in every time slot.

The randomness of the energy arrival processes makes such coordination non-trivial.

Let us start with a special case when
∑N

i=1 λi is an integer. For this case, the upper

bound becomes f
(∑N

i=1 λi

)
. Thus, to achieve the upper bound, the scheduler should

select
∑N

i=1 λi sensor nodes to perform the sensing task for almost every time slot. For a

network with identical energy harvesting statistics for all sensors (i.e., λis are equal), the

optimal scheduling is quite intuitive: Sensor nodes with higher energy level should be

utilized in the current slot, since their probabilities to become empty in future slots are

relative low. Thus,
∑N

i=1 λi sensor nodes with the longest energy queues should be selected

in each slot. However, when λis are not equal, the optimal scheduling is not quite

straightforward. There are possibilities that sensors have larger λi may have shorter queue

lengths in certain time slots, due to fluctuations in the energy harvesting processes. For

this case, the probability that a sensor will become empty in the future does not only

depend on the current queue length, but the energy arrival rate as well. In general, the

sensor selection should jointly consider the current energy queue length information as well

as the energy arrival rate for each sensor, which makes the problem very complicated.

When
∑N

i=1 λi is not an integer, the situation becomes even more complicated. The
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form of the upper bound in Lemma 11 motivates us to propose a randomized myopic

policy, which selects a random number of active sensors in a greedy fashion at the

beginning of each slot. As we will show in the following section, the randomized myopic

policy asymptotically achieves the upper bound for a general setup, thus it is optimal.

When
∑N

i=1 λi is an integer, it reduces to a deterministic myopic policy which greedily

selects
∑N

i=1 λi sensor nodes with the longest energy queues in each slot.

4.5.2 A randomized myopic policy

Motivated by the upper bound in Lemma 11, and the intuition to balance the energy queue

lengths for the purpose of reducing the probability that energy queues become empty in

the future, we propose a randomized myopic policy as follows.

Let q =
∑N

i=1 λi − b
∑N

i=1 λic. Define mt to be an i.i.d random variable taking value

d
∑N

i=1 λie with probability q and b
∑N

i=1 λic with probability 1− q.

At the beginning of time slot t, the system first selects mt nodes with the longest

energy queues and form a candidate set of active sensors, denoted as C ′t. Then, the

scheduling policy {C∗t } is determined as

C∗t = {i|i ∈ C ′t, Ei(t) ≥ 1}. (4.22)

Such selection guarantees that the randomized myopic policy is always feasible.

Theorem 11 The randomized myopic policy {C∗t }∞t=1 achieves the upper bound on the

long-term average sensing utility, i.e.,

lim inf
T→+∞

E

[
1

T

T∑
t=1

f(C∗t )

]
= f

(
N∑
i=1

λi

)
(4.23)

Therefore, it is optimal.

Theorem 12 Under the randomized myopic scheduling policy, for any sufficiently large T ,
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we have

P

[
1

T

T∑
t=1

1|C∗t |6=mt ≥ ε

]
≤ (T + 1)2 exp

(
− Tε2

12(N + 1)Λ2

)
(4.24)

P

[∣∣∣∣∣ 1

T

T∑
t=1

f(C∗t )−f (Λ)

∣∣∣∣∣ ≥ ε

]
≤ 2T 2 exp

(
− Tε2

12(N + 1)2M2Λ2

)
. (4.25)

where Λ =
∑N

i=1 λi, M := f
(∑N

i=1 λi

)
− f(0).

The proofs of Theorem 11 and Theorem 12 are provided in Appendix 4.8.3 and

Appendix 4.8.4, respectively.

Theorem 11 indicates that the expected average utility generated under the myopic

policy converges to the upper bound, thus it is optimal. Theorem 12 implies that in almost

every time slot, we have |C∗t | = mt, and the time average utility generated under the

myopic policy converges to its upper bound almost surely. The corresponding convergence

rates are explicitly characterized.

We note that although the randomized myopic policy only relies on the current queue

lengths to make the sensing scheduling decisions, it is still optimal. This is true even for

the case where the energy harvesting processes at sensors are not uniform. Although this is

counterintuitive, it can be explained as follows: the randomized myopic policy achieves the

upper bound in Lemma 11 since limT→+∞
1
T

∑T
t=1 1|C∗t |6=mt = 0 almost surely. However, it

does not imply that P
[

1
T

∑T
t=1 1|C∗t |6=mt ≥ ε

]
is minimized under the myopic policy. There

may exist other policies that converge to the upper bound at a faster rate if the statistics of

the energy harvesting processes could be utilized to make the sensing scheduling decisions.

4.6 Numerical Results

In this section, we evaluate the performances of the proposed scheduling algorithms under

the offline and online settings through numerical examples.

73



4.6.1 Offline Results

In this section, we use a numerical example to illustrate our scheduling algorithm under an

offline setting. We consider a sensor network with 5 sensor nodes. The amount of energy

harvested at each sensor node in slot t− 1, t ∈ {1, 2, . . . , 10} is provided in the following

table.

t 1 2 3 4 5 6 7 8 9 10
Node 1 4 2 1
Node 2 5 2
Node 3 1 3 7
Node 4 1 5 2
Node 5 7
ct 2 2 3 3 4 3 4 4 4 4

Table 4.1: The energy harvesting profile for sensors over duration [1, 10]. The last line
represents the number of active sensors in each slot obtained by Algorithm 1.

We then illustrate the procedure to obtain a feasible scheduling with the given

scheduling structure {ct}10
t=1. The initial greedy scheduling is illustrated in Fig. 4.1(a),

where we use a dot and a circle to represent the active and idle status of a node in a given

time slot, respectively.

We then perform the rescheduling according to the procedure described in Algorithm

2, and obtain the final scheduling in Fig. 4.1(b). We note that a subset of sensor nodes

change their statuses from busy to idle in certain time slots, and the saved energy is used in

a time slot later. The final scheduling has exact ct active sensors in slot t. We point out

that the final scheduling is not unique in general. For example, at time t = 7, in order to

have c7 = 4, we can let node 1 keep silent in slot 6 and be active in slot 7, as indicated in

Fig 4.1(b). We could also let node 3 be active in slot 7 with the energy saved by keeping

silent in slot 6. The rescheduling in the remaining time slots will be adjusted accordingly

to obtain a feasible scheduling with the same structure {ct}10
t=1.
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Node 1

Node 2

Node 3

Node 4

Node 5

t 1 2 3 4 5 6 7 8 9 10

(a)

Node 1

Node 2

Node 3

Node 4

Node 5

t 1 2 3 4 5 6 7 8 9 10

(b)

Figure 4.1: Dots represent active sensors in each time slot under the initial scheduling and
final scheduling in Fig. 4.1(a) and Fig. 4.1(b), respectively. Arrows connecting a circle and
a dot in Fig. 4.1(b) indicates the scheduling adjustments upon the initialization.
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4.6.2 Online Results

In this section, we evaluate the performances of the proposed myopic scheduling policy

through simulations. In order to illustrate the performance of our policy, we assume the

utility function f(x) = log(1 + x) for x ∈ Z+, and for non-integer x ∈ R+, f(x) is defined

according to (4.16).

To illustrate the temporal evolution of the energy queue lengths and the scheduling

procedure under the randomized myopic policy, we first consider a small sensor network

consisting of 3 sensor nodes. The energy arrival rates for sensors are λ1 = 1/2, λ2 = 1/3,

λ3 = 1/4. The randomized myopic policy is thus to select one or two sensors with the

longest energy queue lengths to perform the sensing task in each time slot. Starting with

an empty initial state, one sample path of the energy queue evolution for those sensors is

plotted in Fig. 4.2(a). We observe that the energy queue lengths of those three sensor

nodes are closely coupled together. The differences in queue lengths are small for most of

the time slots, and the queue lengths fluctuate in the same manner in time. This coincides

with our objective to balance the queue lengths through the randomized myopic scheduling

policy. The fraction of time slots when a sensor is active is plotted as a function of T in

Fig. 4.2(b). We observe that the sample path-wise fraction of active time slots for sensor i

approaches its upper bound λi, i = 1, 2, 3 as T increases. The time average utility

generated under the randomized myopic policy is plotted as a function of T in Fig. 4.3.

Although this curve fluctuates significantly when T is small, it becomes smooth as T

increases, and gradually approaches f(13/12). This indicates that under the randomized

myopic scheduling policy, the sample path-wise time average utility asymptotically achieves

its upper bound as T increases, which validates its optimality. The result in Fig. 4.3

implies the effectiveness of balancing energy queues in maximizing the time-average utility

function.

Then, we fix the energy arrival rate at each sensor node to be 1/3, and vary the size of

the sensor networks to be N = 30, 60, 120. Under this setup, the randomized myopic policy
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Figure 4.2: A sensor network with N = 3, λ1 = 1/2, λ2 = 1/3, λ3 = 1/4. Fig. 4.2(a) plots
a sample path of the energy queue lengths. Fig. 4.2(b) shows the corresponding fraction of
active time slots for each sensor as a function of T .

77



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time slot T

T
im

e 
av

er
ag

e 
ut

ili
ty

Figure 4.3: A sample path of the time average utility generated under the randomized myopic
policy.

becomes a deterministic myopic policy, i.e., for any time slot t, mt = N/3. For a time slot

with |C∗t | 6= mt, we call it an unsaturated time slot; otherwise, we call it a saturated time

slot. We run 1000 samples paths for each setup, and plot the average fraction of saturated

time slots under the myopic policy in Fig. 4.4. We observe that among those three curves,

the curve corresponding to N = 120 is always at the bottom, while the curve corresponding

to N = 30 is always on the top. This is consistent with the theoretical results in

Theorem 12, i.e., for a fixed T , the fraction of unsaturated time slots increases in N .

The sample average of 1
T

∑T
t=1 f(|C∗t |) generated under the myopic policy is plotted in

Fig. 4.5 for each setup, where we use the vertical bars to represent the 95% confidence

intervals. The results indicate that for a majority of the 1000 sample paths, the time

average utility generated under the myopic policy converges to their corresponding upper

limits quickly.
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Figure 4.4: The sample average fraction of saturated time slots as a function of time index T .
The energy harvesting rate λi = 1/3,∀i, and the network sizes N = 30, 60, 120, respectively.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Time slot T

A
ve

ra
ge

 u
til

ity

 

 

N=30
N=60
N=120

Figure 4.5: The sample average of 1
T

∑T
t=1 f(|C∗t |) as a function of time index T . Vertical

bars represent 95% confidence intervals. Horizontal lines indicate f
(∑N

i=1 λi

)
. The energy

harvesting rates λi = 1/3,∀i, and the network sizes N = 30, 60, 120, respectively.
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4.7 Conclusions

In this chapter, we considered optimal collaborative sensing scheduling policies in a sensor

network powered by energy harvested from the nature. The objective is to maximize the

time average utility generated by the sensors under the energy causality constraints at

individual sensors, where the utility function is assumed to be concave and monotonically

increasing in the number of active sensors in each slot. We considered both offline and

online settings. Under the offline setting, we first noted that the optimal sensing policy has

a “majorization” structure, and then proposed an algorithm to identify the scheduling

policy satisfying the energy causality constraints at individual sensors and the structural

requirements of the optimal policy. Under the online setting, we first proved that the

long-term expected time average utility generated under any feasible policy has an upper

bound. Then, we proposed a randomized myopic policy, and showed that as T approaches

infinity, the expected time average utility generated under the policy converges to the

upper bound almost surely, thus it is optimal. The corresponding convergence rate was also

explicitly characterized.

4.8 Appendix

4.8.1 Proof of Theorem 9

The proof of the feasibility of the rescheduling procedure includes two parts: First, we

prove that in each iteration, we must have tn−1 < t̄ < t̂ ≤ tn for some n. Second, we prove

that with obtained t̄ and t̂ in each iteration, we can always find δ active sensors from

S(t̄)\S(t̂) for the rescheduling.

The first part can then be proved through contradiction. According to Lemma 9, we

always have t̄ < t̂. Assume t̄ ≤ tn−1 < t̂ ≤ tn for some n. Since st̄ > ct̄, we must have∑t̄
j=1 sj >

∑t̄
j=1 cj. Therefore,

∑tn−1

j=1 sj >
∑tn−1

j=1 cj = S(tn−1), where the last equality

follows from Lemma 7. This implies that the energy causality constraint (4.8) is violated at
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tn−1, which contradicts with the fact the energy causality constraint is always satisfied in

each iteration. Thus, we must have tn−1 < t̄ < t̂ ≤ tn.

To prove the second part, we note since st̄ > ct̄, st̂ < ct̂, and tn−1 < t̄ < t̂ ≤ tn,

applying Lemma 8, we have st̄ > st̂. Therefore,

|S(t̄)\S(t̂)| ≥ st̄ − st̂ ≥ ct̂ − st̂ (4.26)

which ensures that we can always select δ active sensors from S(t̄)\S(t̂).

Since both parts hold in every iteration of Algorithm 2, the rescheduling procedure

continues until st equals ct for all t. Thus, the algorithm returns a valid sensing scheduling

with scheduling structure {ct}Tt=1.

4.8.2 Proof of Theorem 10

First, based on the definition of Si(t) in (4.4)-(4.5), Si(t) is the maximum number of time

slots that sensor i can be active over [1, t], while S(t) is the maximum number of

observations that the FC can collect from active sensors over [1, t]. Algorithm 1 ensures

that at time T the total number of observations taken by sensors equals S(T ), which

implies that every sensor senses exactly Si(T ) times over [1, T ]. Any other policy that

collects less than S(T ) sensing measurements over [1, T ] can always be improved by letting

at least one of the sensors make one more observation in its idle slot during [1, T ] without

violating its energy causality constraint. Therefore, in the following, we focus on the set of

policies where each sensor i senses exactly Si(T ) out of T time slots. We prove that the

policy obtained by Algorithm 1 achieves the maximum sum utility among those policies.

We prove the optimality through contradiction. Let {ct}Tt=1 be the sizes of subsets

determined by Algorithm 1. Let {c′t}Tt=1 be the optimal set of subset sizes satisfying the

sum causality constraints:
t∑

j=1

c′j ≤ S(t), t = 1, 2, . . . , T − 1 (4.27)

81



T∑
j=1

c′j = S(T ) (4.28)

We assume {c′t}Tt=1 is strictly better than {ct}Tt=1.

Let i be the first time slot that ci 6= c′i. We assume that tn−1 < i ≤ tn. There are two

possible cases:

a) ci < c′i. According to Lemma 7, we must have another time slot j,

tn−1 < i ≤ j ≤ tn, such that cj > c′j.

If ci = cj, we have c′j < cj = ci < c′i. Due to Assumption 1-(iii),

f(c′i) + f(c′j) < f(c′i − 1) + f(c′j + 1). (4.29)

Therefore, without violating energy constraints (4.27)-(4.28), the scheduling with structure

{c′t}Tt=1 can always be improved by replacing c′i, c
′
j with c′i − 1 and c′j + 1, respectively.

Thus, {c′t}Tt=1 cannot be optimal.

If cj = ci + 1, c′i = cj, c
′
j = ci, then f(c′i) + f(c′j) = f(ci) + f(cj). If c′i ≥ cj > ci ≥ c′j,

let δ = min(c′i − ci, cj − c′j), we have

f(c′i) + f(c′j) < f(c′i − δ) + f(c′j + δ) (4.30)

based on Assumption 1-(iii). Therefore, {c′t}Tt=1 cannot be optimal.

b) ci > c′i. There must exist a time slot j > i with cj < c′j. Algorithm 1 implies that

ci ≤ cj or ci = cj + 1. For the former case, we let δ = min(ci − c′i, c′j − cj). Assumption

1-(iii) implies that

f(c′i) + f(c′j) < f(c′i + δ) + f(c′j − δ) (4.31)

Therefore, {c′t}Tt=1 cannot be optimal. For the latter case, if c′i = cj, c
′
j = ci, then both

policies give the same utility; otherwise, we can always let δ = min(ci − c′i, c′j − cj) and
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improve the policy by replacing c′i and c′j with c′i + δ and c′j − δ, respectively.

In summary, we cannot find a different policy that is strictly better than {ct}Tt=1.

Thus, {ct}Tt=1 is optimal.

4.8.3 Proof of Theorem 11

Before we proceed, we first introduce Hoeffding’s inequality, which will be used repeatedly

in the proof.

Theorem 13 (Hoeffding’s inequality [98]) Let X1, X2, . . . , Xn be independent

bounded random variables such that Xi ∈ [ai, bi] with probability 1. Let Sn =
∑n

i=1Xi.

Then for any ε > 0, we have

P (|Sn − E(Sn)| ≥ ε) ≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
.

By Fatou’s lemma, in order to prove Theorem 11, it suffices to prove that

E

[
lim inf
T→+∞

1

T

T∑
t=1

f(C∗t )

]
= f

(
N∑
i=1

λi

)
(4.32)

where f
(∑N

i=1 λi

)
is defined according to (4.16).

The definition of C∗t implies that C∗t ⊆ C ′t, |C∗t | ≤ |C ′t| = mt. Due to Assumption 1, when

|C∗t | = |C ′t|, f(C∗t ) = f (mt); when |C∗t | < |C ′t|, f(C∗t ) < f (mt). Thus, in order to prove (4.32),

it suffices to prove that

lim sup
T→+∞

1

T

T∑
t=1

1|C∗t |<mt = 0, a.s. (4.33)

At each time slot t, we reorder Ei(t), i = 1, 2, . . . , N according to their values, and

denote E(i)(t) as the i-th largest one among them. For a given T , we define T1 as the

largest time index t, t ≤ T , such that E(mt)(t) = 0, i.e., T1 is the last time slot prior to T
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such that the mt-th longest energy queue is zero. Thus for any t ∈ (T1, T ], we have

E(mt)(t) ≥ 1, which implies |C∗t | = mt. Assuming the system starts with empty energy

queues, T1 always exists.

When E(1)(T1) > 0, we define T0 as the smallest time index t such that

E(1)(t+ 1) = E(1)(T1), i.e., T0 is the time slot right before the longest energy queue reaches

E(1)(T1) for the first time. Thus, T0 < T1. For any energy queue, the Bernoulli arrival

assumption ensures that the queue length in a slot deviates at most by one from its

previous slot. This observation together with the empty initial state assumption implies

that E(1)(T0) = E(1)(T0 + 1)− 1. Then, at time T0, we must have

E(1)(T0) = . . . = E(mT0+1)(T0) = E(1)(T1)− 1 (4.34)

This is due to the fact that in order to have a jump for the longest queue length at time

T0 + 1, the associated sensor should have the same amount of energy as E(1)(T0) at time T0,

and does not sense in slot T0. At the same time, there must exist additional mT0 sensors

with the same energy level to sense in slot T0. Therefore, we have

N∑
i=1

Ei(T0) ≥ (mT0 + 1)[E(1)(T1)− 1]. (4.35)

On the other hand, based on the definition of T1, we have

N∑
i=1

Ei(T1) ≤ (mT1 − 1)E(1)(T1). (4.36)

Combining (4.35) and (4.36), we have

N∑
i=1

Ei(T1)−
N∑
i=1

Ei(T0)

≤ (−2 +mT1 −mT0)E(1)(T1) +mT0 + 1 (4.37)

≤ −E(1)(T1) +mT0 + 1 (4.38)
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where (4.38) is due to the fact that −1 ≤ mT1 −mT0 ≤ 1.

Based on the definition of Ei(t) in (4.1), we have

N∑
i=1

Ei(T1)−
N∑
i=1

Ei(T0)≥
T1−1∑
t=T0

(
N∑
i=1

Ai(t)−mt

)
(4.39)

N∑
i=1

Ei(T )−
N∑
i=1

Ei(T1)≤
T−1∑
t=T1

(
N∑
i=1

Ai(t)−mt

)
+mT1 (4.40)

To simplify the notation, we let A(t) :=
∑N

i=1 Ai(t), Λ =
∑N

i=1 λi, Λ̄ = dΛe.Then,

P

[
N∑
i=1

Ei(T ) > Tε

]

≤ P

[
N∑
i=1

Ei(T1)+
T−1∑
t=T1

(A(t)−mt)+mT1 > Tε

]
(4.41)

≤ P

[
mT1E(1)(T1)+

T−1∑
t=T1

(A(t)−mt)+mT1> Tε

]
(4.42)

≤ P

[
mT1E(1)(T1) +

T−1∑
t=T1

(A(t)−mt) > Tε−mT1 , E(1)(T1) ≤ Tε

2mT1

]

+ P
[
E(1)(T1) >

Tε

2mT1

]
(4.43)

≤ P

[
T−1∑
t=T1

(A(t)−mt) >
Tε

2
−mT1

]
+ P

[
E(1)(T1) >

Tε

2mT1

]
(4.44)

where (4.41) follows from (4.40), (4.42) follows from (4.36). Note

P

[
T−1∑
t=T1

(A(t)−mt) >
Tε

2
−mT1

]

=
T−1∑
t1=1

P

[
T−1∑
t=T1

(A(t)−mt) >
Tε

2
−mT1 , T1 = t1

]
(4.45)

≤
T−1∑
t1=1

P

[
T−1∑
t=t1

(A(t)−mt) >
Tε

2
−mt1

]
(4.46)
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≤
T−1∑
t1=1

2 exp

(
−

(
Tε− 2Λ̄

)2

2(T − t1 − 1)(N + 1)2

)
(4.47)

≤ 2(T − 1) exp

(
−
(
Tε− 2Λ̄

)2

2T (N + 1)2

)
(4.48)

where (4.47) follows from Hoeffding’s inequality [98], the i.i.d. assumption on A(t) and the

definition of mt. Besides,

P
[
E(1)(T1) >

Tε

2mT1

]
= P

[
−E(1)(T1) +mT0 + 1 < − Tε

2mT1

+mT0 + 1

]
(4.49)

≤ P

[
T1−1∑
t=T0

(A(t)−mt)<−
Tε

2mT1

+mT0 + 1

]
(4.50)

≤
T−1∑
t0=1

T−1∑
t1=t0+1

P

[
t1∑

t=t0+1

(A(t)−mt)<−
Tε

2mT1

+mT0+1

]
(4.51)

≤
T−1∑
t0=1

T−1∑
t1=t0+1

2 exp

(
− (Tε− 2Λ̄(Λ̄ + 1))2

2(t1 − t0)(N + 1)2Λ̄2

)
(4.52)

≤ (T − 1)(T − 2) exp

(
−(Tε− 2Λ̄(Λ̄ + 1))2

2T (N + 1)2Λ̄2

)
(4.53)

where (4.50) follows from (4.38) and (4.39), (4.52) follows from Hoeffding’s inequality.

When T is sufficiently large, we have

(4.48) ≤ 2(T − 1) exp

(
− Tε2

3(N + 1)2

)
(4.54)

(4.53) ≤ (T − 1)(T − 2) exp

(
− Tε2

3(N + 1)2Λ2

)
(4.55)

Combining (4.54) and (4.55), we have

P

[
N∑
i=1

Ei(T ) > Tε

]
≤ T (T − 1) exp

(
− Tε2

3(N + 1)2Λ2

)
(4.56)
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Since

∞∑
T=1

T (T − 1) exp

(
− Tε2

3(N + 1)2Λ2

)
<∞, (4.57)

according to Borel-Cantelli lemma [69], we have P
[
lim supT→+∞

∑N
i=1 Ei(T )/T > ε

]
= 0,

i.e.,

lim
T→+∞

1

T

N∑
i=1

Ei(T ) = 0, a.s. (4.58)

Based on (4.1), under the randomized myopic policy, we have

lim
T→+∞

1

T

T∑
t=1

|C∗t | = lim
T→+∞

1

T

T−1∑
t=0

N∑
i=1

Ai(t) (4.59)

On the other hand, the strong law of large numbers indicates that

lim
T→+∞

1

T

T∑
t=1

mt = lim
T→+∞

1

T

T−1∑
t=0

N∑
i=1

Ai(t) =
N∑
i=1

λi, a.s. (4.60)

Thus,

lim
T→+∞

1

T

T∑
t=1

|C∗t | = lim
T→+∞

1

T

T∑
t=1

mt, a.s. (4.61)

Therefore,

lim sup
T→+∞

1

T

T∑
t=1

1|C∗t |<mt ≤ lim
T→+∞

1

T

T∑
t=1

(mt − |C∗t |) = 0, a.s. (4.62)

which implies (4.33) and completes the proof.
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4.8.4 Proof of Theorem 12

Based on |C∗t |, we partition the set of time indices up to time T into two subsets, TT and

(TT )c, where

TT := {t : |C∗t | < mt, 1 ≤ t ≤ T} . (4.63)

Then,

P

[
1

T

T∑
t=1

1|C∗t |6=mt > ε

]

≤ P

[∣∣∣∣∣ 1

T

T∑
t=1

|C∗t | −mt

∣∣∣∣∣ > ε

]
(4.64)

= P

[∣∣∣∣∣ 1

T

T∑
t=0

(A(t)−mt)−
1

T

N∑
i=1

Ei(T + 1)

∣∣∣∣∣ > ε

]
(4.65)

≤ P

[∣∣∣∣∣ 1

T

T∑
t=0

(A(t)−mt)

∣∣∣∣∣ > ε

2

]
+ P

[∣∣∣∣∣ 1

T

N∑
i=1

Ei(T + 1)

∣∣∣∣∣ > ε

2

]
(4.66)

≤ 2 exp

(
− T 2ε2

2(T + 1)(N + 1)2

)
+ (T + 1)T exp

(
− Tε2

12(N + 1)2Λ2

)
(4.67)

≤ (T + 1)2 exp

(
− Tε2

12(N + 1)2Λ2

)
(4.68)

where (4.67) follows from (4.56) and Hoeffding’s inequality.

Let M := f
(⌈∑N

i=1 λi

⌉)
− f(0). Due to the monotonicity of f , we have

f

(⌈
N∑
i=1

λi

⌉)
− f(C∗t ) ≤M, ∀t (4.69)

We observe that

P

[∣∣∣∣∣ 1

T

T∑
t=1

f(C∗t )− f

(
N∑
i=1

λi

)∣∣∣∣∣ > ε

]

≤ P

[∣∣∣∣∣ 1

T

T∑
t=1

[f(C∗t )− f (mt)]

∣∣∣∣∣ > ε

2

]
+ P

[∣∣∣∣∣ 1

T

T∑
t=1

f(mt)− f

(
N∑
i=1

λi

)∣∣∣∣∣ > ε

2

]
(4.70)
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where

P

[∣∣∣∣∣ 1

T

T∑
t=1

[f(C∗t )− f (mt)]

∣∣∣∣∣ > ε

2

]

= P

[∣∣∣∣∣ 1

T

∑
t∈TT

[f(C∗t )− f(mt)]

∣∣∣∣∣ > ε

2

]
(4.71)

≤ P

[
1

T

T∑
t=1

1|C∗t |6=mt >
ε

2M

]
(4.72)

≤ (T + 1)2 exp

(
− Tε2

12(N + 1)2M2Λ2

)
(4.73)

and

P

[∣∣∣∣∣ 1

T

T∑
t=1

f(mt)− f

(
N∑
i=1

λi

)∣∣∣∣∣ > ε

2

]

= P

[∣∣∣∣∣f
(

1

T

T∑
t=1

mt

)
− f

(
N∑
i=1

λi

)∣∣∣∣∣ > ε

2

]
(4.74)

≤ P

[
[f(1)− f(0)]

∣∣∣∣∣ 1

T

T∑
t=1

mt −
N∑
i=1

λi

∣∣∣∣∣ > ε

2

]
(4.75)

≤ 2 exp

(
− Tε2

2M2

)
(4.76)

where (4.74) follows from the fact that mt = dΛe or bΛc and the definition of f(x) in (4.16)

for x ∈ R+, (4.75) follows from Hoeffding’s inequality. Therefore, when T is sufficiently

large, we have

P

[∣∣∣∣∣ 1

T

T∑
t=1

f(C∗t )−f (Λ)

∣∣∣∣∣ ≥ ε

]
≤ 2T 2 exp

(
− Tε2

12(N + 1)2M2Λ2

)
. (4.77)
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Chapter 5: Optimal Energy Management for Energy Harvesting Transmitters

under Battery Usage Constraint

5.1 Introduction

The random and intermittent nature of harvested energy imposes critical challenges on the

design of sustainable and reliable energy harvesting wireless sensor networks. Rechargeable

batteries are usually employed as an energy buffer to filter out the fluctuations in the

energy harvesting process and maintain a continuous and stable energy output. A large

number of energy management schemes have been proposed to optimize the performances

of such systems.

Modeling the battery as an ideal energy buffer for energy storage and retrieval,

researchers have developed various energy management schemes to optimize different

performance metrics under infinite battery setting [27,44,64] and finite battery

setting [1, 4, 5, 8, 10, 65]. The performance metrics include channel capacity [44],

transmission delay [27], throughput [1, 4, 10], etc.

However, modeling batteries as perfect energy buffers may not be realistic, since

battery operations involve very complicated mechanisms, which lead to inevitable energy

storage imperfections and battery degradation. In this context, some works aim to take

more practical battery characteristics into the optimization framework, and investigate

their impacts on the optimal energy management policies and system performances.

In [16], the authors consider battery storage imperfections where stored energy leaks in

time, and the battery degrades at the same time. An optimal throughput maximization

policy is proposed under an offline setting. Reference [99] proposes a battery health model

to capture the dependency of battery degradation on its discharge depth, and investigates

degradation-aware policy to improve the lifetime of the battery while guaranteeing the

minimum QoS requirement. The problem is casted into the framework of Markov Decision
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Processes, and solved independently for each health state by exploiting the timescale

separation between the communication time-slot and the battery degradation process. [100]

investigates the scenario where a portion of energy is lost instantaneously when it enters

the battery, and proposes optimal offline transmission policies under various settings. The

optimal policy has a double-threshold structure, where the battery charges/discharges

when the harvested energy is above/below the thresholds and transmits with the

corresponding threshold.

It has been shown that the battery lifetime is closely related to its charge/discharge

cycles. Frequent battery charge/discharge operations result in irreversible battery capacity

degradation and jeopardize its battery lifetime. In this chapter, we take the impact of

charge/discharge operations on battery lifetime into consideration, and study the optimal

energy management policy for an energy harvesting communication system under a battery

usage constraint. Specifically, in each time slot, we assume the harvested energy can be

used to power the transmitter immediately without entering into the battery, or stored into

the battery for now and retrieved later for transmission. Besides the energy causality

constraints, we impose a battery cost constraint, which is translated into the average

number of charge/discharge operations per unit time. The objective is to maximize the

long-term average throughput of the transmitter under energy causality constraint and the

battery usage constraint. We do not consider battery degradation explicitly in this setup,

as we assume that the aging process happens over a time scale that is much longer than

the communication period we consider about, and the battery storage capacity is always

sufficiently large to prevent any energy overflow in our setting.

We first relax the energy causality constraint on the system, and impose a long-term

energy flow conservation constraint instead. We show that the optimal energy management

policy has a double-threshold structure: if the amount of energy arrives in each time slot

lies in between the two thresholds, it will be used immediately without involving the

battery; otherwise, the battery will be charged or discharged accordingly to maintain a
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constant transmit power. We then modify the two-threshold policy slightly to

accommodate the energy causality constraint, and analyze its long-term performance. We

show that the system achieves the same long-term average performance, thus it is optimal.

We have presented part of this work in [101].

Despite a similar double-threshold structure, our policy is fundamentally different

from that studied in [100] due to different constraints we impose on the system.

Essentially, under the battery inefficiency assumption that a ratio of the saved energy will

be lost in [100], the amount of energy to be saved in the battery is the key factor, which

can be identified by solving the standard convex optimization problem. While under the

battery usage constraint, the number of charge/discharge operations matters. Thus, our

optimization problem has a combinatorial flavor, which cannot be solved straightforwardly

via convex optimization. As a result, under our policy, the transmitter always tries to

equalize the transmit power whenever it charges or discharges, while in [100], the

transmitter transmits with the corresponding thresholds.

5.2 System Model and Problem Formulation

Consider a time slotted energy harvesting communication system. Let At be the energy

harvested from the ambient environment in time slot t, t = 1, 2, . . . , T . Ats are i.i.d random

variables with known probability density function (pdf) pA(·). Energy can be used to

transmit data from a backlogged buffer, or stored in a battery for later use, as shown in

Fig. 5.1. Let Bt be the amount of energy that enters the battery in time t, and Ct be the

remaining amount from At. Then,

At = Bt + Ct (5.1)

Let Dt be the energy drawn from the battery in time t. The total amount of energy used

for transmission in time slot t is then equal to Pt := Dt + Ct. Then, the battery level
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evolves according to

Et+1 = Et −Dt +Bt, Dt ≤ Et (5.2)

with E0 = 0.

Assume the transmission rate is a concave function of Pt, denoted as R(Pt). Our

objective is to optimize the long-term average transmission rate under the energy causality

constraint and the battery usage constraint, which is denoted as the expected number of

charge/discharge operations per time slot. Then, the optimization problem is formulated as

max
{Ct,Dt}

lim
T→∞

1

T

T∑
t=1

E[R(Pt)] (5.3)

s.t. (5.1)− (5.2) (5.4)

lim
T→∞

1

T

T∑
t=1

E (1Dt + 1Bt) ≤ ρ (5.5)

The expectations in the objective function and the constraint are taken over all possible

energy harvesting sample paths. The optimization problem has a combinatorial flavor, as

we need to decide in which time slots the system should charge or discharge the battery.

Thus, to make the problem tractable, in the following, we will first relax the energy

causality constraint and study the problem with a relaxed long-term energy flow

conservation constraint for the battery. With the structured optimal energy management

policy obtained for this case, we will propose a best-effort transmission policy which obeys

the energy causality constraint and prove that it achieves the same performance as time T

goes to infinity. Therefore, it is optimal.

5.3 Optimal Policy Without Causality Constraints

In the following, we will first consider a relaxed optimization problem, where we replace the

energy causality constraint in (5.2) with the following long-term energy flow conservation
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At

Bt

Ct

Dt

Pt

Figure 5.1: System model

constraint for the battery:

lim
T→∞

1

T

T∑
t=1

Dt ≤ lim
T→∞

1

T

T∑
t=1

Bt (5.6)

Assume Q is the optimal policy satisfying the battery usage constraint in (5.5) and the

energy flow conservation constraint in (5.6). In general, under Q, the transmit power Pt

may depend on the current energy arrival At, as well as the energy arrival and departure

history up to t− 1, denoted as Ht−1. With a little abuse of notation, in this section, we use

Pt to denote the transmit power in time slot t under policy Q. We assume Pt is a

deterministic function of At and Ht−1, denoted as Pt = Q(At,Ht−1). In the following, we

will identify the structural properties of Q, and show that it can be explicitly obtained

using a simple approach. Our analysis can be directly extended to handle any randomized

policy as well.

Define At := {(At,Ht−1)|At 6= Q(At,Ht−1)}, t = 1, 2, . . ., i.e., the set of states in which

the battery charges or discharges in time slot t under Q. Define

P0 = lim
T→∞

1

T

T∑
t=1

E[At|(At,Ht−1) ∈ At], (5.7)

i.e., the average amount of energy harvested during the states included in ∪∞t=1At. We

assume the limit exists. Then, we have the following observations.

Lemma 12 Under the optimal policy Q, Bt and Dt cannot be positive in the same slot t.
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This is obvious due to the fact that if Bt and Dt are both positive, we can always adjust

the values of Bt and Dt to make one of them to be zero, and achieve the same transmit

power Pt with a reduced battery usage cost.

Lemma 13 Under the optimal policy Q, whenever the battery charges or discharges, the

transmit power Pt should be a constant and equal to P0.

Lemma 13 can be proved by Jensen’s inequality. Based on Lemmas 12 and 13, we have the

following theorem.

Theorem 14 The optimal policy under the relaxed long-term energy flow conservation

constraint depends on the instantaneous energy arrival only, and has a double-threshold

structure, i.e., if At < τ1, we must have Dt = P0 − At, Pt = P0; if At > τ2, we must have

Bt = At − P0, Pt = P0, where P0, τ1 and τ2 are the solution to the following optimization

problem

max
P0,τ1,τ2

R(P0)ρ+

∫ τ2

τ1

R(x)pA(x)dx (5.8)

s.t. P[At > τ2] + P[At < τ1] = ρ (5.9)

E[At−P0|At > τ2] = E[P0−At|At < τ1] (5.10)

τ1 ≤ P0 ≤ τ2 (5.11)

Theorem 14 can be proved through contradiction. Assume that Q does not have such

double-threshold structure. Then, we can always construct another policy to outperform it

without violating the constraints in (5.5) and (5.6). The detailed proof is provided in the

Appendix in Section 5.6.

Theorem 14 provides an upper bound on any energy management policy satisfying the

energy causality constraint and the battery usage constraint.

Theorem 15 The objective function (5.8) can be reduced to a function with a single

variable τ1. Moreover, it first increases then decrease in τ1, and the maximum point
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corresponds to the optimal solution satisfying (5.9)-(5.11).

Proof: Since

ρ =

∫ τ1

0

pA(x)dx+

∫ ∞
τ2

pA(x)dx (5.12)

P0 =
1

ρ

(∫ τ1

0

xpA(x)dx+

∫ ∞
τ2

xpA(x)dx

)
(5.13)

Both P0 and τ2 can be treated as functions of τ1. Taking derivative of (5.12) with respect

to τ1, we have

dτ2

dτ1

=
pA(τ1)

pA(τ2)
> 0 (5.14)

Taking derivative of (5.13), we have

dP0

dτ1

=
1

ρ

(
τ1pA(τ1)− τ2pA(τ2)

dτ2

dτ1

)
(5.15)

=
τ2 − τ1

ρ
pA(τ1) < 0 (5.16)

Therefore, τ2 is increasing in τ1 while P0 is decreasing in τ1.

The objective function is equivalent to

F (τ1) :=

∫ τ1

0

[R(P0)−R(x)]pA(x)dx+

∫ ∞
τ2

[R(P0)−R(x)]pA(x)dx (5.17)

Thus,

F ′(τ1) =
dF

dτ1

+
dF

dτ2

dτ2

dτ1

+
dF

dP0

dP0

dτ1

= (R(τ2)−R(τ1)) pA(τ1) +R′(P0)(τ1 − τ2)pA(τ1)

= (τ2 − τ1)pA(τ1)

(
R(τ2)−R(τ1)

τ2 − τ1

−R′(P0)

)
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Based on the property of concave functions, we can show that R(τ2)−R(τ1)
τ2−τ1 is decreasing in τ1

while R′(P0) is increasing in τ1. When τ1 = 0, P0 > τ2, thus, R′(P0) < R(τ2)−R(τ1)
τ2−τ1 , and

F ′(τ1) > 0; When τ1 is sufficiently large, τ2 =∞ and P0 < τ1, thus R′(P0) > R(τ2)−R(τ1)
τ2−τ1 and

F ′(τ1) < 0. Therefore, when we gradually increase τ1, F ′(τ1) is positive at first and then

become negative, which implies that F (τ1) is first increasing then decreasing in τ1. At the

maximum point, we have R(τ2)−R(τ1)
τ2−τ1 = R′(P0). Since R′(τ2) < R(τ2)−R(τ1)

τ2−τ1 < R′(τ1), we must

have P0 lying between τ1 and τ2. �

Theorem 15 suggest a computationally efficient way to solve the optimization problem

described in Theorem 14. Starting with τ1 = 0, we first solve (5.9)(5.10) to get τ2 and P0

and evaluate the objective function. We gradually increase τ1, repeat the process, and keep

track of the objective function value until we observe a decrease. The turning point

corresponds the optimal solution.

5.4 Optimal Policy under Causality Constraints

Let τ1, τ2, P0 be the optimal solution to the optimization problem described in Theorem 14.

Let B = [0, τ1] ∪ [τ2,∞]. Then, we define a best-effort transmission policy as follows.

Definition 7 (Best-effort transmission policy) In each time slot t, if At /∈ B, the

transmitter transmits with the harvested energy At. Otherwise, if At > τ2, the battery is

charged with amount At − P0, and transmitter transmits with P0; if At < τ1 and Et 6= 0, the

battery is discharged with amount min{Et, P0 − At}, and the transmitter transmits with

min{Et, P0 − At}+ At.

We note that the energy causality constraint is always satisfied under the proposed

best-effort transmission policy. Besides, the battery usage constraint is satisfied as well.

Due to the energy causality constraint, the transmitter may not be able to transmit with

power P0 if At < τ1 and Et is not sufficiently large. This may result in some performance

degradation. However, as we will show in the following theorem, the probability of such
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scenario will decrease exponentially fast as T increases. Thus, the long-term average

throughput will converge to that upper bound exponentially, which indicates the

optimality of the proposed best-effort policy.

Define the planned charge/discharge process as

A∗t =

 At − P0 At ∈ B

0 At /∈ B
(5.18)

Then, under the proposed best effort policy, we have Et+1 = max{Et + A∗t , 0}, and the

energy spent at t is

Pt = At + Et − Et+1 (5.19)

We define

Qt =

 P0 At ∈ B

At At /∈ B
(5.20)

Thus, Pt 6= Qt if and only if Et + At < P0, and Pt ≤ Qt, ∀t. Note that Qt is exactly the

optimal policy defined in Theorem 14.

Theorem 16 Assume |At| ≤M and R(·) is Lipschitz. Under the best-effort transmission

policy,

lim
T→+∞

1

T

T∑
t=1

(Qt − Pt) = 0, a.s. (5.21)

Proof: First, we note that

ET+1 =
T∑
t=1

At −
T∑
t=1

Pt =
T∑
t=1

(At −Qt) +
T∑
t=1

(Qt − Pt)

=
T∑
t=1

A∗t +
T∑
t=1

(Qt − Pt)
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Thus,

P

(
1

T

T∑
t=1

(Qt − Pt) ≥ ε

)

≤ P

(
T∑
t=1

(Qt − Pt) ≥ Tε, ET+1 ≥ Tε/2

)
+ P

(
T∑
t=1

(Qt − Pt) ≥ Tε, ET+1 < Tε/2

)

≤
T∑

T1=1

P

(
T∑

t=T1

A∗t ≥ Tε/2

)
+ P

(
T∑
t=1

A∗t < −Tε/2

)
(5.22)

≤ T exp

(
− Tε2

2M2

)
+ exp

(
− Tε2

2M2

)
(5.23)

= (T + 1) exp

(
− Tε2

2M2

)

where T1 in (5.22) is the largest time index such that (5.23) follows from Hoeffding’s

inequality [98]. �

Theorem 16 indicates that the best-effort transmission policy converges to the optimal

policy described in Theorem 14 almost surely. Therefore, we have the following observation.

Theorem 17 The best-effort transmission policy achieves the upper bound on the

long-term expected throughput characterized in Theorem 14 almost surely. Therefore, it is

optimal.

5.5 Numerical Results

In this section, we use numerical results to illustrate the proposed best-effort transmission

policy and evaluate its performance.

We assume the energy arrivals are i.i.d. random variables uniformly distributed over

[0, 6]. We let ρ = 0.3, i.e., the battery can only be charged or discharged for 30% of the

time, and the rate function R(x) = 1
2

log(1 + x). We first numerical solve the equations in

Theorem 14, and identify the corresponding thresholds τ1 = 1.0158, τ2 = 5.2158, and

P0 = 2.7298. The corresponding time-average transmission rate is 0.6761, which is the
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upper bound for any online policy.

We then plot one sample path of the energy arrivals for the first 20 time slots in

Fig. 5.2, and indicate the corresponding transmit power under the proposed policy. As

expected, the transmit power equals At if At falls between those two thresholds, and equals

P0 otherwise, except when t = 9, 14. In those time slots, the battery does not have

sufficient energy to meet the power demand P0, and the transmitter transmits with all the

power the system has at that time.

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

 

 

Energy arrival profile

Transmit power

P
0

Figure 5.2: A sample path of the energy arrivals and the transmit policy.

We then evaluate the time-average transmission rate and the average number of

battery charge/discharge operations per time slot. We plot a sample path in Fig. 5.3. We

observe that both curves fluctuate at the beginning, and become stable after about 250

time slots. This corroborates with our theoretical results that the performance of the

best-effort transmission policy converges to the upper bound almost surely. Finally, we run

the simulation 1000 times, and plot the sample average of 1
T

∑T
t=1R(Pt) as a function of T

in Fig. 5.4. The sample average of battery charge/discharge rate is also plotted in the same

figure. We observe that the sample average of 1
T

∑T
t=1R(Pt) converges to the upper bound

as expected. The sample average of battery charge/discharge rate is very close to the
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battery usage constraint after a short time period. This implies that the desired battery

usage constraint is satisfied under the proposed policy.

5.6 Appendix

Assume under the optimal policy Q, the transmit power does not obey the

double-threshold structure. Define

A−t = {(At,Ht−1)|(At,Ht−1) ∈ At, At < P0, }, t = 1, 2, . . .

A+
t = {(At,Ht−1)|(At,Ht−1) ∈ At, At ≥ P0, }, t = 1, 2, . . .

and

P[A−] = lim
T→∞

1

T

T∑
t=1

P[A−t ], P[A+] = lim
T→∞

1

T

T∑
t=1

P[A+
t ].

Then, we define

A−t = {(x,Ht−1)|P[0 ≤ At ≤ x] ≤ P[A−]}, t = 1, 2, . . .

Ā+
t = {(x,Ht−1)|P[At ≥ x] ≤ P[A+]}, t = 1, 2, . . .

Denote At = A−t ∪ A+
t , Āt = A−t ∪ Ā+

t . Define

P 0 := lim
T→∞

1

T

T∑
t=1

E[At|(At,Ht−1) ∈ At] (5.24)

P̄0 := lim
T→∞

1

T

T∑
t=1

E[At|(At,Ht−1) ∈ Āt] (5.25)

We define two policies Q and Q̄ under which in each time slot t, the transmitter power
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Figure 5.3: A sample path of the time-average transmit rate and the battery charge/discharge
rate.
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Figure 5.4: Sample path of the energy arrivals and the transmit policy.
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is defined as follows respectively.

P t =

 At, (At,Ht−1) /∈ At

P 0, (At,Ht−1) ∈ At
(5.26)

P̄t =

 At, (At,Ht−1) /∈ Āt

P̄0, (At,Ht−1) ∈ Āt
(5.27)

Denote

R(Q) := lim
T→∞

1

T

T∑
t=1

R(Pt)

R(Q) := lim
T→∞

1

T

T∑
t=1

R(P t)

R(Q̄) := lim
T→∞

1

T

T∑
t=1

R(P̄t).

We aim to show that

E[R(Q)] ≤ E[R(Q)], E[R(Q)] ≤ E[R(Q̄)],

based on which we can claim that a necessary condition for Q to be optimal is, in each

time slot t,

A−t = A−t , Ā+
t = A+

t ,

Pt = P0, ∀(At,Ht−1) ∈ At,

i.e., a double-threshold structure.

Definition 8 Let f , g be two increasing functions defined over Ic := [0, c]. We say f ≺ g if

1. ∀t ∈ Ic,
∫ t

0
f(s)ds ≥

∫ t
0
g(s)ds.
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2.
∫ c

0
f(s)ds =

∫ c
0
g(s)ds.

Lemma 14 If f ≺ g, then for any concave function r(·),

∫ c

0

r(f(s))ds ≥
∫ c

0

r(g(s))ds

Proof: Partition Ic to n equal length segment, and let x0 = 0, x1 = c
n
, . . ., xn−1 = n−1

n
c,

xn = c. Define a1 = f(x1), a2 = f(x2), . . ., an = f(xn), and b1 = g(x0), b2 = g(x1), . . .,

bn = g(xn−1). Then,

c

n
(a1 + a2 + . . .+ ak) (5.28)

=
c

n
(f(x1) + f(x2) + . . .+ f(xk)) (5.29)

≥
∫ kc/n

0

f(x)dx (5.30)

≥
∫ kc/n

0

f(x)dx (5.31)

≥ c

n
(g(x0) + g(x1) + . . .+ g(xk−1)) (5.32)

=
c

n
(b1 + b2 + . . .+ bk) (5.33)

for k = 1, 2, . . . , n.

Let b∗n =
∑n

i=1 ai −
∑n−1

i=1 bi. Note that b∗n ≥ bn. We have

{a1, a2, . . . , an} � {b1, b2, . . . , bn−1, b
∗
n}. Therefore,

c

n

n∑
i=1

r(ai) ≥
c

n

(
n∑
i=1

r(bi) + r(b∗n)− r(bn)

)
(5.34)

≥ c

n

n∑
i=1

r(bi) (5.35)

Let n→∞ on both sides of (5.35) , we have

lim
n→∞

c

n

n∑
i=1

r(ai) ≥ lim
n→∞

c

n

n∑
i=1

r(bi) (5.36)
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which is equivalent to

∫ c

0

r(f(x))dx ≥
∫ c

0

r(g(x))dx (5.37)

�

Given At, t = 1, 2, . . . define the sub-level function

φA(x) = lim
T→∞

1

T

T∑
t=1

P[At ≤ x, (At,Ht−1) ∈ At]

Take one of its quasi-inverse, denote as xA(φ). Note φA(xA(φA(x))) = φA(x). Assume both

are increasing. Then,

φA(∞) = lim
T→∞

1

T

T∑
t=1

P[At] := P[A]

We note that

φA(x) ≥ φA(x), if x ∈ [0, P0)

φA(x) = φA(x), if x ∈ [P0,∞)

Thus,

xA(φ) ≤ xA(φ), if φ ∈ [0, φA(P0))

xA(φ) = xA(φ), if φ ∈ [φA(P0), φA(∞))

Define

f(φ) =


xA(φ) φ ∈ [0, φA(P 0))

P 0 φ ∈ [φA(P 0), φA(P 0)+φA(∞)]

xA(φ− φA(∞)) φ ∈ (φA(P 0)+φA(∞), 2φA(∞)]
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g(φ) =


xA(φ) φ ∈ [0, φA(P0))

P0 φ ∈ [φA(P0), φA(P0) + φA(∞)]

xA(φ− φA(∞)) φ ∈ (φA(P0)+φA(∞), 2φA(∞)]

Then, we have the following Lemmas.

Lemma 15 f ≺ g on [0, 2φA(∞)].

Proof:

∫ 2φA(∞)

0

f(φ)dφ (5.38)

=

∫ φA(∞)

0

xA(φ)dφ+ P0φA(∞) (5.39)

=

∫ ∞
0

x1A(x)p(x)dx+ P0φA(∞) (5.40)

= E(x|A)P[A] + P0P[A] (5.41)

and

∫ 2φA(∞)

0

g(t)dt = E(x|A)P[A] + P 0P[A] (5.42)

and by definition

E(x|A) = P 0, E(x|A) = P0 (5.43)

Since f(φ) ≥ g(φ) for φ ∈ [0, φA(P 0)] and f(φ) ≤ g(φ) for φ ∈ [φA(P0), 2φA(∞)]. Thus,

∫ φ

0

f(s)ds ≥
∫ φ

0

g(s)ds (5.44)
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for the above φ. For φ ∈ [φA(P 0), φA(P0)], we want to show

∫ φ

0

xA(s)ds ≤
∫ φA(P 0)

0

xA(s)ds+ P 0(φ− φA(P 0)) (5.45)

which is equivalent to

∫ φ

0

xA(s)ds+

∫ φA(∞)

φA(P0)

xA(s)ds− P 0(φ− φA(P 0)) (5.46)

≤
∫ φA(P 0)

0

xA(s)ds+

∫ φA(∞)

φA(P0)

xA(s)ds (5.47)

We note that

LHS ≤ P 0 (φA(∞)− φA(P0) + φ)− P 0(φ− φA(P0)) (5.48)

= P 0 (φA(∞)− φA(P0) + φA(P 0)) (5.49)

since xA(φ) ≥ P0 for φ ∈ [tA(p0), tA(p0)] and E(x|A) = P 0.

Meanwhile,

RHS ≥ P 0
t (φA(∞)− φA(P0) + φA(P 0)) (5.50)

since xA(φ) ≤ P0 for φ ∈ [φA(P 0), φA(P0)] and E(x|A) = P 0. Therefore f ≺ g.

�

Lemma 16 Denote
∫
AR(·) = E[R(·)|A] · P[A]. We have

∫ 2φA(∞)

0

R(f(t))dt = lim
T→∞

1

T

T∑
t=1

(∫
At
R(P 0)+

∫
At
R(At)

)
∫ 2φA(∞)

0

R(g(t))dt = lim
T→∞

1

T

T∑
t=1

(∫
At
R(P0)+

∫
At
R(At)

)
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Proof: First, the integrals are

∫ 2φA(∞)

0

R(f(φ))dφ (5.51)

=

∫ φA(P0)

0

R(xA(φ))dφ+

∫ φA(P0)+φA(∞)

φA(P 0
t )

R(P0)dφ+

∫ 2φA(∞)

φA(P0)+φA(∞)

R(xA(φ− φA(∞)))dt

(5.52)

=

∫ φA(P0)

0

R(xA(φ))dφ+R(P0)φA(∞) +

∫ φA(∞)

φA(P 0
t )

R(xA(φ))dt (5.53)

=

∫ φA(∞)

0

R(xA(φ))dφ+R(P 0
t )φA(∞) (5.54)

=

∫ ∞
0

R(x)1A(x)pA(x)dx+

∫ ∞
0

R(P0)1A(x)p(x)dx (5.55)

where xA(φ) = xA(φ) when φ ≥ φA(P 0
t ).

Similarly,

∫ 2φA(∞)

0

R(g(φ))dφ =

∫ ∞
0

R(x)1A(x)pA(x)dx+

∫ ∞
0

R(P 0)1A(x)pA(x)dx (5.56)

�

In order to show E(R(Q)) ≤ E(R(Q)), it suffices to show that

E[R(Q)]− lim
T→∞

1

T

T∑
t=1

E[R(At)] ≤ E[R(Q)]− lim
T→∞

1

T

T∑
t=1

E[R(At)] (5.57)

We note that under Q, we have Pt = At if (At, H
t−1) /∈ At; Similarly, under Q, we have

P t = At if (At, H
t−1) /∈ At. Thus, (5.57) is equivalent to

lim
T→∞

1

T

T∑
t=1

∫
At
R(Pt)−R(At) ≤ lim

T→∞

1

T

T∑
t=1

∫
At
R(P t)−R(At)
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i.e.,

lim
T→∞

1

T

T∑
t=1

(∫
At
R(Pt) +

∫
At
R(At)

)
≤ lim

T→∞

1

T

T∑
t=1

(∫
At
R(P t) +

∫
At
R(At)

)

which is then true due to Lemma 13, the definition of P t, Lemma 15 and Lemma 16.

Similarly, we can show that E(R(Q)) ≤ E(R(Q̄)). Therefore, the optimal policy must

have the double-threshold structure specified in Theorem 14.
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Chapter 6: Conclusions

In this dissertation, we investigated optimal sensing and transmission policies for EH sensor

networks under stochastic energy constraints imposed by the EH processes at the sensors.

We first considered the optimal online sensing scheduling policy for an energy

harvesting sensing system. We first provided a lower bound on the time averaged sensing

performance for the system with infinite battery, and showed that this lower bound can be

achieved by a best-effort uniform sensing policy. We then investigated the finite battery

case and proposed an energy-aware adaptive sensing scheduling policy, which dynamically

varies the sensing frequency based on instantaneous energy level of the battery. We showed

that the battery outage and overflow probabilities under the proposed policy approach zero

as battery size goes to infinity, and the time averaged sensing performance converges to the

lower bound when the battery size increases. Thus the adaptive sensing scheduling policy

is asymptotically optimal. The convergence rates as a function of the battery size were also

explicitly characterized. Simulation results validated the theoretical bounds.

We then consider the optimal status updating to minimize age of information with an

energy harvesting source. The objective is to minimize the long-term time average AoI

within the energy causality constraint at the sensor. We considered sensor’s battery size

with three different scenarios. For the infinite battery, we showed a best-effort uniform

status update policy is optimal. For the finite battery, we proposed an energy-aware

adaptive state update policy, and we proved that it is asymptotically optimal. When the

battery size is one unit, we proposed a threshold-based status update policy. We derived

the analytic result for the time average AoI under this policy, and proved that it

outperforms any other online status update policy in this extreme scenario, thus it is

optimal.

Next, we considered optimal collaborative sensing scheduling policies in a sensor

network powered by energy harvested from the nature. The objective is to maximize the
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time average utility generated by the sensors under the energy causality constraints at

individual sensors, where the utility function is assumed to be concave and monotonically

increasing in the number of active sensors in each slot. We considered both offline and

online settings. Under the offline setting, we first noted that the optimal sensing policy has

a “majorization” structure, and then proposed an algorithm to identify the scheduling

policy satisfying the energy causality constraints at individual sensors and the structural

requirements of the optimal policy. Under the online setting, we first proved that the

long-term expected time average utility generated under any feasible policy has an upper

bound. Then, we proposed a randomized myopic policy, and showed that as T approaches

infinity, the expected time average utility generated under the policy converges to the

upper bound almost surely, thus it is optimal. The corresponding convergence rate was also

explicitly characterized.

Finally, we studied the optimal energy management policy for an EH communication

system under a battery usage constraint. We imposed an long-term average cost constraint

on the battery, which is translated to the average number of charge/discharge operations

per unit time. The objective was to develop an online policy to maximize the long-term

average throughput of the transmitter under energy causality constraint and the battery

usage constraint. We first relaxed the energy causality constraint on the system, and

imposed an energy flow conservation constraint instead. We showed that under the relaxed

setting, the optimal energy management policy has a double-threshold structure. We then

modified the double-threshold policy slightly to accommodate the energy causality

constraint, and analyzed its long-term performance. We showed that the system achieves

the same long-term average performance, thus it is optimal.
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