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Abstract 

 

Generation of broadband terahertz (THz) pulses from ultrafast photoconductive antennas 

(PCAs) is an attractive method for THz spectroscopy and imaging. This provides a wide 

frequency bandwidth (0.1-4 THz) as well as the straightforward recovery of both the magnitude 

and phase of the transmitted and/or reflected signals. The achieved output THz power is low, 

approximately a few microwatts. This is due to the poor conversion of the femtosecond laser 

used as the optical pump to useable current inside the antenna semiconducting material. The 

majority of THz power comes from the photocarriers generated within ~ 100 nm distance from 

the antenna electrodes. However, the optical beam covers larger spot size, therefore much of the 

absorbed optical photons do not contribute to the THz power. 

 The goal of this work is to advance the design, fabrication, and measurement of THz-

PCAs to generate significantly improved output power. This work proposed a plasmonic 

enhanced thin-film photoconductive antenna to enhance optical carrier generation in the PCA. 

The electromagnetic wave equations were solved in order to compute the enhanced plasmonic 

field in the semiconductor.  The Poisson’s and the drift-diffusion equations were solved in order 

to compute the carrier dynamics inside of the semiconductor. A parametric optimization was 

implemented in order to design the plasmonic nanodisks and the thickness of the ultrathin 

photoconductive layer. These solutions and optimizations were achieved using the commercial 

package COMSOL® Multiphysics model. The PCAs’ fabrication was accomplished using the 

electron beam lithography for patterning the plasmonic nanostructures, the molecular beam 

epitaxy for the sample growth, the lapping/selective etching for the epitaxial liftoff, and standard 

microfabrication practices for patterning the antenna and device packaging. The PCA was 

characterized utilizing a tunable pulsed laser system with a 100 fs pulse width for the optical 



 

excitation and a Gentec-EO pyroelectric power detector for measurement of the output THz 

power. Also, the spectral characterization of the PCA was conducted, in collaboration with 

Teraview LTD in their site at UK, using a THz time-domain spectroscopy experimental set-up. 

The results demonstrate the enhancement in the output THz power of the plasmonic thin-film 

PCAs in comparison with conventional THz-PCAs. 
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Chapter 1. Introduction  

1.1. Introduction to THz Photoconductive Antennas 

 

Terahertz (THz) is the name given to the region of the electromagnetic spectrum lying 

between the microwave band (<100 GHz) and the far infrared band (>10 THz) [1]. This region is 

often referred to as “the last frontier” for electromagnetic waves, since historically there has been 

comparatively little work to observe the science and develop the applications of THz waves. The 

reason for this is simple; efficient generation and detection of THz is an exceedingly non-trivial 

problem. As shown in Figure 1.1.1, THz lies in the transitional region of the electromagnetic 

spectrum, between the classically described electronics region (radio, microwaves and millimeter 

waves) and the photonic region (infrared, visible, UV and x-ray) where the quantum nature of 

light becomes dominant.  

 

Figure 1.1.1: The electromagnetic spectrum. 

 

Approaching the THz regime from either of these regions comes with unique challenges, as 

illustrated in Figure 1.1.2. Here, the output power as a function of frequency is plotted for 

100 GHz to 10 THz 
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various THz source technologies [2]. Increasing the operating frequency of microwave devices is 

limited by the carrier mobility of the oscillating semiconductor [3]. On the other hand, reducing 

the energy of emitted photons generated by electron transitions in a semiconductor is inhibited 

by the fact that the energy of THz photons is less than the thermal energy at room temperature 

[4]. Other methods have been utilized which combine aspects of both photonics and electronics 

[5], [6], though these come with their own list of challenges.   

 

Figure 1.1.2: Output power versus frequency for various THz source technologies [2]. 

 

However, the challenges facing the various methods of THz generation and detection have 

not stopped the development of this technology. This dissertation is organized as follows. In this 

chapter, a brief overview of the applications of THz imaging and spectroscopy technology will 

be given, along with the working mechanisms of THz photoconductive antennas (PCAs). 
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Following this will be an in-depth review of the current literature focused mostly on the various 

key aspects of THz photoconductive antenna (PCA) technology, while selected other 

technologies such as photomixers, unbiased surface emission, and optical rectification will be 

discussed briefly. In Chapter 2, the proposed plasmonic thin-film THz PCA device will be 

presented, including a conceptual overview of the device working mechanisms. The theory and 

validation of a computational model developed using COMSOL® Multiphysics will be 

discussed, along with numerical comparison of the proposed plasmonic thin-film device with 

other proposed devices from the literature. Chapter 3 will present details of the plasmonic thin-

film THz PCA fabrication process. That chapter will be divided into fabrication process for the 

first round of devices, failure mode analysis of the first round devices, and modified fabrication 

process for the second round of devices. The experimental results will be summarized in Chapter 

4, including THz power measurements and spectral characterization of three variations of the 

device design. Chapter 5 will summarize and conclude the work, as well as discuss avenues for 

future research in this area.  

1.1.1. Applications of THz Imaging and Spectroscopy 

 

Although THz technology is not nearly as mature as the technology of other regions of the 

electromagnetic spectrum, many practical applications have been proposed and are currently 

under development. One of the earliest commercial applications of THz imaging and 

spectroscopy is nondestructive screening of pharmaceuticals. Changes in solid state crystal form 

[6] and spectral fingerprinting of chemical compounds have been demonstrated [7], [8]. Spectral 

fingerprinting has been proposed for security applications as well, since the nondestructive 

nature of THz waves could allow penetration into materials to detect hidden narcotics and 

explosives [9]–[11]. Many works have studied the potential use of THz imaging and time-
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domain reflectometry as a quality control tool in electronics fabrication and packaging [12]–[20]. 

Biomedical imaging using THz radiation has been proposed and studied for the purpose of 

cancer imaging [21]–[27] and burn wound assessment [28]–[30]. Several in-depth reviews are 

available for the wide range of applications of THz imaging and spectroscopy technology [9], 

[10], [23], [31]–[37].    

1.1.2. Theory of Terahertz Photoconductive Antennas (PCAs) 

 

Emission and detection of pulsed broadband THz radiation from optically pumped PCAs 

were first accomplished in the late 1980’s by the research groups of THz pioneers David Auston 

[38]–[41] and Daniel Grischkowsky [1], [42], [43]. The concept of generation of pulsed THz 

radiation from a PCA is illustrated in Figure 1.1.2.1(a). Here, an example of a femtosecond 

optical pulse with a pulse duration of less than 1 ps is incident on a PCA. The PCA consists of a 

DC biased metal dipole antenna patterned on a photoconductive substrate. The optical pulse is 

incident on the antenna gap, propagates into the photoconductor, and begins to generate 

photocarriers inside the photoconductor as it is absorbed. The generated photocarriers are 

accelerated in the DC bias field, producing a transient photocurrent which drives the dipole 

antenna and ultimately re-emits as a THz frequency pulse [38]–[41], [44], [45]. The transient 

response of the PCA is illustrated in Figure 1.1.2.1(b-e). As the optical pulse is absorbed in the 

photoconductor, carriers are generated at a rate proportional to optical pulse (red trace). The 

photocarriers respond by accelerating along the DC bias field, thus generating a transient 

photocurrent with a rise time approximately proportional to the incident optical pulse rise time 

(gray trace). After the photocurrent peaks, as shown in Figure 1.1.2.1(d), the decay time is then 
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dictated by the electrical properties of the photoconductor, rather than the temporal profile of the 

optical pulse [44].  

 

Figure 1.1.2.1: Illustrative example of pulsed THz generation in a PCA. (top) Femtosecond 

optical pulse propagates into the photoconductor, generates a transient photocurrent which 

drives the antenna and is reemitted as a broadband THz pulse. (bottom) Time profile of the 

carrier generation (red trace) and photocurrent in the antenna gap for photoconductive 

material with (gray trace) short carrier lifetime and (blue trace) long carrier lifetime. 
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As shown in Figure 1.1.2.1(e), if the photoconductor has a short carrier lifetime (gray trace) 

the photocarriers generated by the optical pulse will begin to recombine immediately after the 

optical pulse is fully absorbed [44]–[46]. In contrast, if the photoconductor has a long carrier 

lifetime (blue trace) the generated photocarriers will continue to contribute to the photocurrent 

after the optical pulse is fully absorbed. This has the effect of broadening the photocurrent pulse, 

which would in turn broaden the output pulse and reduce the overall THz frequency bandwidth. 

To prevent this, photoconductors with sub-picosecond carrier lifetime are often utilized, with low 

temperature grown gallium arsenide (LT-GaAs) being the most common [47]–[60]. 

Detection of the emitted THz pulses is often accomplished either through the use of 

calibrated THz power detectors such as bolometers [31], [51], [61]–[64] and pyroelectric 

detectors [10], [65]–[69], or more completely by electro-optic sampling of the THz pulse in a 

time-domain spectroscopy (TDS) configuration [8], [39], [40], [44], [67], [70]. The later method 

allows extraction of the temporal profile of the THz field. The schematic of a THz time-domain 

system is shown in Figure 1.1.2.2. THz is generated through the previously described conversion 

of a femtosecond optical pulse to broadband THz pulse at the emitter [38]–[41], [44], [45]. The 

emitter is biased with a DC voltage and often the time-averaged photocurrent will be measured 

as well. In general, the power of the emitted THz pulse is proportional to the measured 

photocurrent across the dipole antenna [44], [46], [71], [72].  
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Figure 1.1.2.2: Schematic diagram of the typical configuration of electro-optic sampling of 

THz pulses in a time-domain spectroscopy system. 

 

In order to measure the emitted THz pulse, another PCA is utilized as the receiver. Unlike the 

emitter, the receiver PCA does not have an external DC bias. Instead, the emitted THz beam is 

focused on the dipole antenna such that the beam polarization is aligned across the antenna gap 

[1], [44], [73]. As the THz pulse propagates into the antenna, it induces a transient bias voltage 

across the gap. To measure this transient voltage, a portion of the femtosecond optical pulse is 

split from the source beam, propagated through an adjustable optical delay line and focused in 

the gap of the receiver PCA. This provides a narrow impulse of photocarriers at a time which can 

be controlled by the optical delay line. When the photocarrier impulse and THz field induced 

transient voltage overlap in time, a measurable photocurrent proportional to the instantaneous 

antenna voltage will be induced across the antenna. By sweeping the optical delay line, the 
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photocarrier impulse signal is convoluted with the THz field induced transient voltage signal. 

Collecting and correlating both the optical delay position and induced photocurrent data allows 

the temporal profile of the THz pulse to be measured. The coherent nature of this detection 

method provides a high signal-to-noise ratio, since it greatly reduces the effects of blackbody 

radiation and other sources of THz radiation on the receiver [73].   

Although the exact nature of THz generation in PCAs is not universally agreed upon, 

currently there are three main modalities in which THz generation in a PCA can be explained; 

the transient acceleration of carriers in the bulk semiconductor [52], [62], [72], [74], the 

instantaneous drop in dipole gap resistivity after optical pulse absorption [46], [75], and direct 

collection of photocarriers by the antenna electrodes [67], [71], [76], [77]. When a femtosecond 

optical pulse is incident in the gap of a THz PCA, electron-hole pairs are generated everywhere 

in the gap, proportional to the local intensity of the incident optical pulse [44], [46], [72]. The 

photocarriers are accelerated along the DC bias field and recombined a short distance later. This 

induces time-varying surface currents on the device structure, which in turn produces a 

propagating THz pulse, ETHz, described by [72], 

ETHz(r, t) =  −
1

4πϵ0c2

∂

∂t
∫

Js (r′, t −
|r − r′|

c )

|r − r′|
ds′. (Equation 1.1.2. 1)

 

Here, Js is the spatially and temporally dependent surface current on the emitter surface, r is 

the spatial vector of the location of the THz field, r′ is spatial vector of the location of the 

surface current which is integrated across the emitter surface ds′, c is the speed of light in 

vacuum and ϵ0 is the permittivity of free space. From Equation 1.1.2.1 it can be seen that the 

radiated THz field will be dependent on the net surface currents in a PCA emitter. By 
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considering the various sources of surface currents it is possible to describe the different 

mechanisms of THz emission [44], [46], [72].   

The first cause of THz generation arises directly from the generation and acceleration of 

charge in the photoconductor, known as the current surge model [68]. Electron-hole pairs 

generated in the gap will be separated, accelerate along the bias electric field, and be recombined 

a short time later [52], [68], [74], [78]. For the second cause of THz generation, consider the 

state of the PCA device prior to optical excitation. Due to the parallel-line nature of the device, 

there is a capacitive energy stored across the gap in the form of positive and negative charge 

accumulation at the anode and cathode, respectively [75]. The magnitude of this charge is 

dependent on the device geometry, bias voltage, and gap resistivity [75], [79]. The gap 

resistivity, which also determines the bias electric field distribution in the photoconductor, is 

dependent on the carrier concentration inside the photoconductor. Exciting the gap with an 

optical pulse causes sharp rise in the carrier concentration and, consequently, a drop in 

resistivity. This causes a THz frequency oscillation in the antenna metallization as the bias field 

responds [44], [72], [75]. The third cause of THz generation comes from optical injection of 

current directly into the antenna electrodes [72], [75], [80]. Any photocarriers generated in 

sufficient proximity to the antenna electrodes will be collected by the antenna before they 

recombine. This acts as a driving current that, provided the induced current pulse is sufficiently 

short, also induces THz oscillations in the antenna [72], [75], [80].  

1.2. Photoconductive Material Development 

1.2.1. Challenges 

 

Since the first demonstrations of early photoconductive switches, the main factor enabling 

their effective performance has been the selection of specific photoconductive materials with 
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necessary electro-optic characteristics [39], [47], [48], [81]. The common perception is that for a 

PCA emitter or detector to have broadband performance, the photoconductive material must 

have a sub-picosecond carrier lifetime. However, this is only one of several factors which must 

be balanced in order to optimize the PCA performance. In addition to a low carrier lifetime, 

maintenance of relatively high carrier mobility, appropriate bandgap, high breakdown voltage, 

suppression of zero bias photocurrent, and maximizing the material dark resistivity all play a role 

in a complex relationship which influences a PCA’s output power, maximum optical pump 

power and bias voltage, bandwidth, and signal-to-noise ratio (SNR) [53], [75], [82]–[84].  

Thus far, the most studied and promising materials for THz PCAs have included bulk 

gallium arsenide (GaAs) [47]–[60], bulk indium gallium arsenide (InGaAs) [64], [85]–[92], 

alternating nano-scale multi-layers of InGaAs and indium aluminum arsenide (InAlAs) [93]–

[100], and select other group III-VI semiconductors [82], [101]–[104]. The following sections 

will individually address each material system, reviewing key works and summarizing their 

unique contributions and applications to the development of THz PCA technology.  

1.2.2. Gallium Arsenide (GaAs) 

 

Although the earliest demonstrations of PCA technology utilized argon ion (Ar3+) irradiated 

crystalline silicon epitaxially grown on sapphire (SOS) [39], [81], GaAs has long been the 

preferred material for PCAs. GaAs has a room temperature bandgap of 1.424 eV (871 nm) [105], 

making it compatible with the titanium-doped sapphire (Ti3+:sapphire) femtosecond-pulsed laser 

sources commonly used to excite PCAs. GaAs is normally utilized in one of three forms; semi-

insulating GaAs (SI-GaAs), low-temperature grown GaAs (LT-GaAs), and ion-implanted GaAs, 

such as nitrogen (GaAs:N3-).  
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 Early works by Warren et al. [47], Gupta et al. [48] and Harmon et al. [49] studied the 

effects of GaAs growth temperature on the carrier lifetime and THz PCA performance. Warren 

et al. utilized LT-GaAs (250 °C growth temperature), SI-GaAs, and SOS based PCAs in a THz 

TDS setup to compare effectiveness of each as both transmitters and receivers [47]. Under 70 fs 

optical pulse excitation, identical performance was found in the SI-GaAs and LT-GaAs samples 

acting as emitters, with both the LT-GaAs and SOS acting as receivers. This indicated similar 

quality in the crystal structure of the GaAs samples. Comparing the configuration using GaAs 

samples as both emitter and receiver with the configuration using only SOS samples 

demonstrated 5 times higher peak in the detected THz signal and a 0.71 ps pulse width [47]. 

Gupta et al. compared PCA performance in a TDS configuration using LT-GaAs and chromium-

doped GaAs (GaAs:Cr3+) [48]. For the LT-GaAs samples, the LT-GaAs was grown by molecular 

beam epitaxy (MBE) at temperatures between 200-250 °C. GaAs growth in this temperature 

range leads to two benefits; high level of crystallinity, which in turn leads to higher carrier 

mobility, and excess As3+ within the crystal structure manifesting as point defects. These point 

defects act as recombination centers, drastically reducing the carrier lifetime. Gupta et al. showed 

that LT-GaAs samples grown at 190 °C and 200 °C yielded a carrier lifetime below 400 fs. By 

comparison, the GaAs:Cr3+ samples grown at temperatures above 250 °C yielded carrier 

lifetimes greater than 50 ps.[48] The work of Harmon et al. further explained the nature of 

growth temperature and post growth annealing on GaAs carrier lifetime [49]. Here, GaAs thin-

films were epitaxially grown on top of a sacrificial lift-off layer to allow removal and differential 

transmission measurements to be performed. Differential transmission measurements allowed the 

carrier lifetime to be derived. By combining this with transmission electron microscope (TEM) 
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imaging, it was found that the carrier lifetime is directly related to the spacing of the excess As3+ 

clusters [48].  

Tani et al. studied LT-GaAs growth temperature and anneal time effects [50] along with their 

performance characteristics when implemented in THz PCA emitters [51]. LT-GaAs grown at 

250 °C and annealed post-growth at 600 °C for five min was found to yield a 0.3 ps carrier 

lifetime [50]. PCA dipoles with different electrode shapes were fabricated and compared with SI-

GaAs with a ~100 ps carrier lifetime [51]. As with the results of Gupta et. al. [48], the emitted 

pulse shapes of both emitters was comparable, with the amplitude of the SI-GaAs based emitter 

being over 5 times higher than the LT-GaAs emitter [51]. However, this was observed at 

relatively low optical pump power (15 mW) and low DC bias (30 V). Analysis of the dark I-V 

and output THz power vs. input optical power characteristics showed the LT-GaAs based 

emitters to have higher saturation thresholds as compared to the SI-GaAs. At biases above 5 V, 

the LT-GaAs emitter showed a linear I-V relationship for bias fields as high as 200 kV/cm, with 

a drastically higher dark resistance compared to the SI-GaAs emitter.  Higher dark resistance 

indicated a higher breakdown voltage, and was demonstrated by showing breakdown in a 5 µm 

gap dipole at biases of 160 V for the LT-GaAs, as compared to 50-70 V for the SI-GaAs [51]. 

Similar work by Stone et al. compared SI and LT-GaAs PCAs with various large electrode 

dipole geometries [52]. Triangular, circular, and square dipoles where characterized using a 

Golay cell detector to measure their power emission spectrum, with the frequency domain peak 

frequency location and FWHM bandwidth being the comparing factors [52]. In all geometries, 

the LT-GaAs based emitters had higher peak frequency and higher bandwidth, with the largest 

bandwidth of 0.9 THz being observed in the LT-GaAs based circular dipole [52]. Additionally, it 

was observed that for conditions yielding similar output THz power, the LT-GaAs based emitters 
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produced lower photocurrent than their SI-GaAs based counterparts [52]. With lower 

photocurrent, thermal effects arising from high optical pump power and bias voltages were 

reduced [52]. Later work by Moon et al. demonstrated that post-growth annealing of LT-GaAs 

allowed the sheet resistance and carrier lifetime to be manipulated [53]. Annealing causes the 

excess As3+ precipitates to form clusters within the crystal structure, the size and spacing of 

which are controlled by growth temperature and post-growth anneal temperature. Removing the 

As3+ precipitates from their uniform distribution as antisites in the crystal structure had the 

positive effect of increasing the material resistance, as well as the negative effect of increasing 

the carrier lifetime [53]. TEM imaging of the post-growth annealed LT-GaAs as well as the 

relationship between sheet conductance and cluster diameter with anneal temperature are shown 

in Figure 1.2.2.1 (Figure 2(a) and Figure 3(a) in [53]). It was shown that for a given growth 

temperature, the post-grown anneal temperature can be tuned to yield an optimum THz emission 

performance. It was found that in the range of 500 °C to 620 °C, the maximum peak-to-peak 

THz pulse intensity was observed for post-growth anneal temperatures between 540 °C and 580 

°C, for growth temperatures of 200 °C and 230 °C [53]. 

 

Figure 1.2.2.1: (Left) TEM photograph of annealed LT-GaAs layer and (right) sheet 

conductance and cluster diameter as functions of annealing temperature. Reproduced from 

[53] with permission from the Electronics and Telecommunications Research Institute. 
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In addition to low-temperature growth, several groups have investigated the use of ion-

implanted GaAs for THz [54]–[60]. Liu et al. characterized the effect of As3+ ion implantation of 

SI-GaAs acting as both PCA emitters [54] and receivers [55]. Similar to low-temperature growth 

of GaAs, ion implantation of As3+ in SI-GaAs introduces excess As3+ impurities within the 

crystal structure. However, GaAs:As3+ was claimed to have a benefit of improved controllability 

of the excess As3+ concentration and uniformity as compared to LT-GaAs. Although 

performance of the two materials is comparable at low bias voltage, the GaAs:As3+ PCA  

exhibited a higher bias voltage breakdown threshold above 60 kV/cm as well as a higher optical 

pump saturation point [54]. The broadband THz performance of GaAs:As3+ was characterized as 

a detector in a TDS configuration, where a 15 fs optical pump was used to excited a ZnTe crystal 

emitter and generate broadband (47 THz) pulses, as well as gate the GaAs based detectors [55]. 

Comparing GaAs:As3+, SI-GaAs, and LT-GaAs it was found that SNR and bandwidth was 

greatest for the LT-GaAs detector (>40 THz bandwidth) due to the comparably short carrier 

lifetime, while the GaAs:As3+ and SI-GaAs had lower bandwidths of 32 and 24 THz, 

respectively [55]. The noise was attributed to thermal noise in the photoconductor, arising from 

residual photocurrents. Therefore, Liu et al. proposed that the noise in the GaAs:As3+ emitter 

could be reduced by increasing the ion-implantation depth, as this would effectively increase the 

effective carrier mobility while retaining a short carrier lifetime [55].  

Salem et al. compared THz PCAs based on arsenic [56], [57], hydrogen (GaAs:H+) [56], 

[58], oxygen (GaAs:O2-) [56], [57], and nitrogen (GaAs:N3-) [56] ion implantation. Lowest THz 

pulse intensity was observed in the GaAs:N3- PCA, while the GaAs:H+, GaAs:As3+ and GaAs:O2- 

all demonstrated comparable output THz intensities when operated in the saturation regime of 

the optical pump power (90 mW) [56]. Use of GaAs:H+ as both the emitter and receiver was 
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demonstrated in a TDS configuration to provide a SNR nearing 104 from 0.1 to 1 THz [58]. 

Although the work by Salem et al. [56] indicated poor relative performance in GaAs:N3-, this 

material was shown by Winnerl et al. [59] to have 40 times better SNR than SI-GaAs based 

detectors, and nearly the same SNR of LT-GaAs. Additionally, GaAs:N3- PCAs operating in a 

photomixing configuration have been shown to have a higher, bias independent cutoff frequency 

as compared to LT-GaAs, which exhibited decreasing cutoff frequency with increasing bias 

voltage [60]. 

1.2.3. InGaAs (InGaAs) 

 

In more recent years, the group III-VI ternary compound indium gallium arsenide       

(InxGax-1As) has been investigated as a potential candidate for THz PCA photoconductive 

material [64], [85]–[92]. The benefit of this material is its potential to achieve 0.8 eV room 

temperature bandgaps, which allows for 1.55 µm optical excitation. This is an advantage when 

considering practical implementation of THz PCA based systems as 1.55 µm wavelength pulsed 

laser systems can be fully fiber based without consideration of dispersion effects. Although 

generation and detection of THz pulses in LT-GaAs PCAs has been demonstrated using 1.55 µm 

optical pulses [106], significant reduction in performance has been observed as compared to 800 

nm excitation. This is mainly due to the lower absorption efficiency of LT-GaAs at 1.55 µm, 

since absorption at this sub-bandgap wavelength requires interband transitions in order to excite 

carriers to the conduction band [106]. Therefore, materials with bandgaps at or below 0.8 eV 

have been sought out for use with 1.55 µm fiber laser systems.  

As previously discussed, short carrier lifetime photoconductors are needed in order to have 

the sub-picosecond response necessary for THz generation and detection. For InGaAs, iron 
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doping (InGaAs:Fe2+) has been shown to provide the effective recombination sites needed for a 

sup-picosecond carrier lifetime [64], [85], [86], [90]. Suzuki and Tonouchi demonstrated 

reduction of the emitted THz pulse from 0.68 to 0.57 ps in InGaAs PCA emitters due to Fe2+ 

implantation under identical operating conditions [85]. Additionally, InGaAs:Fe2+ demonstrated 

higher optical pump saturation power as well as higher breakdown voltage, indicating further 

improvement in performance at higher operating conditions [85]. Utilized as a detector, 

annealing at 580 °C was shown to improve the detection SNR from 50 to 133 [86]. Metalorganic 

chemical vapor deposition (MOCVD) grown InGaAs:Fe2+ was investigated across 830 nm to 

1.55 µm optical excitation as an emitter by Wood et al. [64], and later as a detector by Hatem et 

al. [90] As emitters, the highest THz power of 9 µW was observed around 1.2 µm excitation 

wavelength [64]. As detectors, peak SNR of 125 was observed at 5 mW optical excitation with 

bandwidth limited by the excitation pulse width [90]. MBE grown nanoparticle embedded 

InGaAs was studied by Salas et al. [91] and Murakumo et al. [92] InGaAs based nanocomposites 

containing rare-earth arsenide nanospheres were proposed as a possible material for THz PCAs 

[91]. Of the four materials studied, LaAs had over an order of magnitude higher dark resistivity 

and three times lower mobility as compared to erbium arsenide (ErAs), lutetium arsenide (LuAs) 

and gadolinium arsenide (GdAs) under similar growth conditions [91]. Use of InAs:Er3+ 

quantum dot embedded InGaAs has been shown to provide higher optical saturation intensity, an 

attractive property for high power THz emitters [92]. 

1.2.4. Indium Gallium Arsenide/Indium Aluminum Arsenide (InGa(Al)As) Heterostructures  

 

InGa(Al)As multi-quantum wells (MQWs) and superlattices have been proposed as potential 

materials for THz PCAs [93]–[100]. Similar to bulk InGaAs, InGa(Al)As can achieve strong 
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optical absorption under 1.55 µm wavelength excitation, due to its tunable bandwidth. However, 

unlike bulk InGaAs, the highly tunable electro-optic properties of InGa(As)As have been 

proposed as an avenue to achieve equivalent (or better) THz PCA performance at 1.55 nm that 

LT-GaAs achieves at 800 nm [107]. Although earlier works proposed InGa(Al)As based 

materials for THz PCAs [93], [108], the first InGa(Al)As based THz PCA operating at 1.5 µm 

was demonstrated in 2008 by Sartorius et al. [107]. Alternating layers of 12 nm InGaAs:Be2+ and 

8 nm InAlAs were grown on InP wafers to form the PCA substrate. An illustration of this 

configuration, showing the separate embedded photoconductor, electron trapping layer and 

combined multilayer structure is shown in Figure 1.2.4.1 (Figure 4 in [107]). The InGaAs:Be2+ 

acted as the photoconducting region and was grown using standard low temperature methods for 

bulk InGaAs, however, incorporation of Be2+ during growth allowed the material dark resistivity 

to be increased by balancing against the As3+ antisites [107]. To further increase the net dark 

resistivity and decrease carrier lifetime, the InAlAs layers were included. This material had a 

higher dark resistivity than the InGaAs:Be2+ and acted as a deep level trapping site for electrons 

[107]. Conventional THz PCA electrodes were fabricated on these materials to form both 

emitters and detectors, which were then incorporated into an all fiber THz TDS experimental 

setup. Sub-1 ps THz pulses with bandwidth extending above 2 THz were reported along with a 

SNR of nearly three orders of magnitude [107].  

Other works have elaborated on this concept to further study this material’s potential for all 

fiber THz TDS systems [94]–[100]. Roehle et al. utilized InGa(Al)As multilayers and employed 

a mesa-etching process to effectively increase the generated photocurrent while decreasing dark 

current [95]. This lead to a 27.5x increase in detected THz amplitude as compared to a non-mesa 

PCA [95]. Other demonstrations of InGa(Al)As multilayer based THz PCAs have attempted to 
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further optimize growth conditions, which are critical for maximum THz performance [96], 

[98]–[100]. Using a mesa style emitter with 2 nm indium aluminum arsenide (InAlAs) barriers, 

400°C InGaAs growth temperature with no doping, high THz output powers of 64 µW were 

achieved at 32 mW optical excitation [100]. Additionally, erbium arsenide (ErAs) quantum dot 

incorporation into the InAlAs trapping layers has been studied and shown to provide up to 1 

V/cm amplitude THz pulses at 100 mW excitation wavelength [97]. Most recent work by Dietz 

et al. has shown optimal growth conditions for 1060 nm excitation [109] along with a further 

study of optimized Be2+ doping for 1.55 µm excitation detectors [110]. Over 6 THz detection 

bandwidth and 90 dB dynamic range was reported for detectors fabricated on InGa(Al)As 

multilayers with Be2+ doping concentrations of 4x1018 cm-3 [110]. 

 

Figure 1.2.4.1: (a) Embedded photoconductor; (b) electron trapping; (c) multilayer 

structure. Reprinted from [107] with permission from OSA Publishing. 
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1.2.5. Other Group III-V Materials 

 

Although GaAs and InGa(Al)As are the most widely studied material systems for THz PCA 

development, several other group III-V materials have been investigated as well [61], [101]–

[104], [111], [112]. THz emission in antimony (Sb) based materials such as InSb [101], GaAsSb 

[102], GaSb [111] and GaInSb [112] has been studied by several groups, although only the work 

of Sigmund et al. fabricated and characterized THz PCAs on the material [102]. 1 THz 

bandwidths were observed in a THz TDS system utilizing GaAsSb material in the PCA emitter 

and detector, although more studies of the growth conditions were needed to fully evaluate the 

potential of this material for THz PCAs [102]. GaBiAs was grown at two different temperatures 

and used for THz PCA fabrication by Bertulis et al. [103] Four times higher THz field 

amplitudes were observed in a 330 °C grown sample as compared to a 280 °C growth [103]. 

GaAs embedded superlattices of rare-earth arsenides of ErAs and LuAs were used in CW 

photomixing in plasmonic PCAs [61]. In all cases, the rare-earth arsenide based photomixers 

outperformed LT-GaAs photomixers at operation frequencies below 1 THz, though output power 

was higher in LT-GaAs for higher frequencies [61]. Collier et al. fabricated THz PCAs on InP to 

study the effects of surface roughening on the THz emission [104]. Although surface roughening 

showed no effect on the amplitude and bandwidth of THz emission, around one order of 

magnitude suppression of the photocurrent was observed [104]. This indicated that such emitters 

could have higher operation thresholds as compared to non-textured materials, allowing for 

enhanced THz performance [104].   
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1.2.6. Summary and Outlook 

 

The advantages, disadvantages, and key performance milestones for each of the material 

systems discussed are summarized in Table 1.2.6.1. Although LT-GaAs remains the standard for 

THz PCAs, the potential for all fiber based TDS systems remains an attractive motivator for 

investigating and developing other photoconductive materials systems. Remaining challenges for 

lower bandgap THz PCA materials include reaching comparable (or better) carrier lifetime, 

mobility, breakdown threshold, quantum efficiency, and reproducibility to that of standard LT-

GaAs devices.  

Table 1.2.6.1: Summary of photoconductive material development for THz PCAs. 

 
Advantages Disadvantages 

Key Reported 

Performance Milestones 

GaAs 

Most efficient material 

for 800 nm excitation 

Well understood growth 

and optimization 

Poor absorption at 1.55 

µm 

104 SNR [58] 

60 kV/cm Breakdown Threshold 

[54] 

InGaAs 1.55 µm excitation 
Decreased gap dark 

resistivity 

4 µW Output THz Power [64] 

125 SNR [90] 

InGa(Al)As 

Heterostructures 

1.55 µm excitation 

comparable dark 

resistivity to LT-GaAs 

Complex material 

growth 

103 SNR [107] 

6 THz Bandwidth [110] 

1 V/cm THz Amplitude [97] 

Other Group III-V 
Potential 1.55 µm 

excitation 

New materials with 

limited understanding 

1 THz Bandwidth, 102 SNR 

(GaAsSb) [102] 

 

1.3. Large Area Emitters 

1.3.1. Challenges  

 

One of the major limiting factors of THz PCA technology is saturation at high optical pump 

powers [51], [72], [78], [113], [114]. Under no optical illumination, the photoconductor has a 

fixed carrier concentration ND or NA, where ND is the donor carrier concentration and NA is the 

acceptor carrier concentration [105]. Illuminating the photoconductor induces an optical carrier 

concentration, Nopt, which induces an increase in the total carrier concentration of Ntot = ND,A + 
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Nopt. Changes in the material carrier concentration translates to a proportional change in 

electronic properties, namely the imaginary part of the permittivity. For optical pump powers 

where Nopt ≥ ND,A the imaginary part of the permittivity will begin to increase, causing nonlinear 

increase in the surface reflectivity of the air-photoconductor interface [114]. Therefore, during 

operation of high optical pump power beyond the Nopt = ND,A region the output THz power will 

experience a nonlinear increase, eventually reaching a saturation point where increase optical 

pump power produces little to no increase in output THz power [114]. This effect is exaggerated 

as the optical pump is focused to a smaller spot size [78], [113]. 

1.3.2. Large Aperture Dipoles 

 

Overcoming the saturation limits of PCAs has been demonstrated through the 

implementation of large device apertures. This was first observed in the early 1990s by the 

research efforts of THz pioneer David Auston [74], [78], [113], [115], [116]. These PCAs 

consisted of parallel microstrip line dipole antennas with gaps ranging from 130 µm to 4 mm. 

Various materials, including SOS [74], [78], [115], InP [74], [78], [113], and GaAs [74], [78], 

[113], [116] have been considered for use in these devices.  Although initial work utilized large 

aperture PCAs to demonstrate THz beam steering [74], [115], it was noted that these devices 

have the added benefit of improved power scaling due to reduction of the saturation effect [113], 

[115]. Extensive theoretical and experimental work was later performed to fully understand the 

saturation characteristics [78]. The emitted THz pulses were measured in a TDS configuration to 

obtain the relationship between emitted pulse amplitude and incident optical fluence. InP and 

GaAs based emitters were found to have similar THz amplitudes, around twice that of SOS 
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emitters. In all cases, the large aperture emitters were shown to generate emitted THz pulses with 

peak amplitude electric field values within 90% of the DC bias field value [78].  

Later works have further studied the properties of large aperture THz PCAs [52], [62], [72]. 

Benicewicz, Roberts and Taylor fabricated 500 µm gap microstrip dipoles on InP:Fe2+ and SI-

GaAs and studied their saturation properties in a THz TDS experimental configuration [72]. A 

comparison of the radiated electric field for devices fabricated along different crystallographic 

axes showed only slight variation. This variation was unable to be described by the theoretical 

model and was attributed to variation in the material properties across the wafer, not the specific 

crystal orientation [72]. The radiated THz power as a function of optical fluence and bias voltage 

was measured, with excellent agreement being observed with the proposed theoretical model 

[72]. Budiarto et al. studied the effects of AC biasing of a GaAs based THz PCA with 3 cm 

electrode gaps [62]. The emitted THz pulse intensity was measured as a function of optical 

fluence for two different emitter AC bias frequencies, 0.1 and 1 KHz and four different bias 

voltage amplitudes. In all instances, the 1 KHz bias frequency increased the intensity of the 

emitted THz in the saturation regime [62]. At the highest observed bias field of 6 kV/cm no 

saturation was observed for optical fluence up to 90 µJ/cm2 [62]. Large aperture emitters were 

studied as well by Stone et al., although the laser utilized in this study was not powerful enough 

to provide the high optical fluence necessary to observe saturation effects [52]. 

1.3.3. Interdigitated Electrodes 

 

Similar to large aperture dipoles, attempts to overcome the saturation limits of conventional 

THz PCAs have investigated increasing the device active area by implementing interdigitated 

electrodes [59], [66], [75], [79], [99], [117]–[127]. This configuration consists of a single anode 
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and cathode, each connected to a number of open ended parallel microstrips. The anode and 

cathode microstrips were interwoven such that the space between two adjacent anode microstrips 

was occupied by a cathode microstrip, and vice versa, with a fixed gap distance between the two 

electrodes. An illustration and device photograph of this configuration is shown by the work of 

Awad et al. in Figure 1.3.3.1 (Figure 1 in [123]). By this method, active areas of a few hundred 

µm2 have been produced, allowing the optical power to be spread over a larger area to reduce the 

saturation effect [120]. Unlike large aperture PCAs, interdigitated PCAs have the added benefit 

of enhancing the near anode effect [119]. By reducing the saturation effects, these electrode 

configurations have shown promise for providing high optical to THz conversion efficiency even 

at high optical pump powers.  

 

Figure 1.3.3.1: (a) Micrograph of terahertz array antenna device. (b) Cross-sectional view 

of terahertz antenna array. Reprinted from [123], with permission of AIP Publishing. 
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Interdigitated electrodes for improved performance in THz PCA photomixers were proposed 

by several groups in the early 1990s [117]–[119]. The first truly broadband photomixer 

implementing interdigitated electrodes for terahertz generation up to 3.8 THz was demonstrated 

in 1995 by Brown et al. [120]. Using a log spiral antenna with 1.8 µm gap interdigitated 

electrodes, maximum output power of 10 µW was observed at a 0.3 THz operational frequency, 

with measureable radiation up to 3.8 THz reported [120]. Brown later developed a model for 

predicting the performance of an interdigitated THz photomixer [79]. Here, it was proposed that 

by implementing a reflecting layer under the LT-GaAs and tuning the thickness of the LT-GaAs 

cavity, the absorption of the incident optical pump could be optimized. This increased the output 

THz power by a factor of 7, due to improved quantum efficiency of the device [79]. Later work 

by Gregory et al. extensively studied THz PCA photomixers with varied interdigitated electrodes 

[75]. Photomixers with 3, 5 and 11 finger interdigitated electrodes were fabricated and 

characterized under CW and pulsed operation. Spatial mapping of the emitted THz radiation as a 

function of location of a focused optical excitation was performed for an 11 finger device. The 

results here showed no enhancement of THz emission when focused at the electrode tips, as well 

as no near anode enhancement effects. For CW operation, the larger active region provided by a 

larger number of electrode fingers did not provide enhanced THz emission. At higher THz 

frequencies above 0.4 THz, the increased capacitance led to a high frequency roll off in the 

device performance. However, at sub-0.4 THz operation, larger device active area could provide 

advantages of more efficiency heat dissipation and reduced sensitivity to beam drift [75].  

Many others have utilized interdigitated electrodes in various THz PCA designs for pulsed 

operation [59], [97], [99], [121], [124], [128], [129]. Dreyhaupt et al. proposed a novel 

modification to the interdigitated electrode design to overcome an inherent limitation of this 
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configuration [121]. In standard interdigitated electrodes, the bias electric field direction is 

rotated 180 degrees between adjacent gaps. The carriers generated accelerate in opposing 

directions, leading to a net destructive interference in the emitted electromagnetic field. By 

incorporating a shadow mask which blocks the incident optical excitation in every other gap, 

photogeneration only occurs in regions with the same bias field directions. This leads to a net 

constructive interference, providing high intensity THz pulse emission up to 85 V/cm [121]. This 

was expanded upon in later works, including demonstration of an interdigitated PCA for THz 

detection using an unfocused optical gating pulse [124], study of the dependence of generation 

and detection performance on GaAs carrier lifetimes [59], and emission of 2.5 V/cm THz pulses 

in InGaAs heterostructure emitters under 1.55 µm wavelength optical excitation [99]. All works 

indicate that improved performance was achieved by implementation of the interdigitated large 

active area [59], [97], [99], [121], [124], [128], [129]. 

Hattori et al. characterized a seven element array of larger area interdigitated electrode 

emitters [122]. This was compared to emitter arrays of non-interdigitated large area emitters 

comprised of parallel microstrips with 3 cm gaps. Here, it was found that the non-interdigitated 

array produced nearly two times greater peak THz emission, although they require 6 kV bias 

voltage to achieve the same gap bias field as the interdigitated emitter under 30 V bias voltage 

[122]. Others have implemented shadow masks for interdigitated PCAs [66], [126], [127], with 

reports of 20 THz ultrabroadband performance under collinear operation [127] and high pulsed 

operation average powers of 3.8 mW [66]. Awad et al. presented an alternative method for 

preventing the destructive interference occurring in non-shadowed interdigitated PCAs [123]. 

Here, rather than blocking the incident optical pulse, the photoconductive material in every other 

gap of the device was etched away. In addition to preventing destructive interference this has the 
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added benefit of allowing the active area of the device to be increased since the etched region 

gaps can be reduced while still allowing the majority of the electric field to fall in the non-etched 

gaps [123]. A similar device configuration was studied by Acuna et al. which demonstrated peak 

THz fields of 15 V/cm and 40,000 Hz1/2 SNR under electro-optic sampling [125]. 

1.3.4. Dipole Arrays  

 

Periodic arrays of dipole electrodes have been proposed for improving various aspects of 

THz PCA performance [116], [130]–[133]. Early work by Froberg et al. fabricated a linear array 

of parallel microstrip dipole emitters on SI-GaAs [116]. Each of the 64 electrodes were 

individually biased, while the entire array was illuminated with a train of 200 fs optical pulses. It 

was shown that by controlling the bias of the individual electrodes, the direction and profile of 

the emitted THz pulses could be tuned [116]. Various works by Klatt et al. studied electrode 

arrays utilizing the photo-Dember effect for THz generation [130], [131]. The photo-Dember 

effect arises from the optically induced space-charge gradient in unbiased semiconductors due to 

the difference in electron and hole diffusion coefficients [130]. This effect was shown to be 

enhanced near the edge of an unbiased metal electrode [130], with photo-Dember excitation of 

electrode arrays showing comparable THz generation as interdigitated PCA emitters [131]. 

Berry, Hashemi and Jarrahi fabricated a 3x3 array of log spiral antennas with nanoscale 

plasmonic electrodes [132]. Using an array of optical microlenses, the incident optical pump was 

divided into nine separate beams and focused onto the active area of each device. The net output 

THz radiation was shown to reach record high average power levels of 1.9 mW at an average 

pump power of 320 mW [132]. Microlens arrays were also utilized by Singh and Prabhu to 

excite the individual active areas of an interdigitated THz PCA emitter [133]. The microlens 
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array was utilized to separate and focus the optical excitation such that only regions leading to 

constructive interference were excited, rather than utilizing a shadow mask or etching the 

photoconductor in these regions [133].  

1.3.5. Summary and Outlook 

 

The advantages, disadvantages, and key performance milestones for large area emitter THz 

PCAs are summarized in Table 1.3.5.1. These devices offer potential for drastically increasing 

the optical-to-THz conversion efficiency, which is necessary for high output THz power or 

efficient excitation of multiple devices with a single laser source. However, as device active area 

increases, the driving current can no longer be considered a point source, leading to potential 

phase interference issues not present in single dipole emitters. Additionally, most large area 

emitters have complex fabrication and/or packaging considerations. As solutions to these 

problems continue to be sought out, large area emitters will likely develop into standard THz 

PCA technology.  

Table 1.3.5.1: Summary of large area emitter THz PCAs 

 
Advantages Disadvantages 

Key Reported 

Performance Milestones 

Larger Aperture 

Dipoles 

Reduced saturation 

effects 

Order of magnitude 

higher bias voltage 

required  

No saturation up to 90 µJ/cm2 

optical fluence [62] 

Interdigitated 

Electrodes 

Reduced saturation 

effects 

Increased fabrication 

complexity and unable 

to incorporate 

broadband antenna 

designs 

15-85 V/cm THz Amplitude [121], 

[125] 

Dipole Arrays 
Reduced saturation 

effects 

Increased optical 

alignment complexity 
1.9 mW output THz power [132] 
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1.4. Plasmonic Nanostructures 

1.4.1. Challenges  

 

Several groups have studied the use of plasmonic nanostructures in both THz PCA emitters 

as well as receivers. Similar to large-area emitters, nanostructures attempt to more efficiently 

utilize the incident optical pump. As previously discussed, THz generation in conventional PCAs 

occurs mainly due to the photocarriers that are generated in the high bias field region (i.e. at the 

surface) and near the antenna anode [75], [80]. However, in conventional PCAs only a small 

fraction of the incident photons are absorbed near the surface, with even less being absorbed in a 

region near enough to the antenna anode for the generated carriers to be collected on a sub-

picosecond time scale. This translates to a distance of around 100 nm or less from the antenna 

anode [71]. As an example, consider an 800 nm wavelength, 5 µm diameter optical beam 

focused in the gap of a LT-GaAs THz PCA centered over the anode edge. Anode illumination 

has been shown to generate the highest levels of THz power, as compared to middle of gap of 

cathode illumination [80]. Here, less than 2% of the total photons are incident in a lateral 

distance 100 nm or less from the antenna anode, and only around 13% of these are absorbed in 

the first 100 nm depth of the LT-GaAs. Therefore, considering only THz generation from the 

carriers that are collected by the anode, less than 0.3% of the incident photons are theoretically 

able to contribute to THz generation. The remaining photons are lost either by reflection from the 

anode metallization or are absorbed too far (>100 nm) from the anode to be collected before 

recombining [71].  

Plasmonics have been proposed as a viable solution to overcome this inherent limitation in 

conventional THz PCA design. “Plasmonics” refers to the study of the collective electron 

oscillations that occur in sub-wavelength sized metallic nanostructures when excited by an 
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external optical wave [134]. These oscillations have been shown to enhance the optical near field 

by orders of magnitude, with the oscillation frequency, magnitude and spatial location of the 

enhancement being tunable by the size, shape and surrounding medium of the nanostructures 

[135]–[137]. Plasmonics have been proposed and demonstrated extensively in solar cell 

technology [135]–[139]. Plasmonic enhancement of THz PCAs follows a similar approach, 

where the nanostructures are designed to enhance the optical excitation field in regions inside the 

photoconductive material where the generated carriers most efficiently convert to output THz 

radiation. 

1.4.2. Early Examples of Unbiased Nanostructured THz Emitters 

 

The first examples of using metal nanostructures for THz generation were not PCAs. Instead, 

THz was generated through a process called “optical rectification” [4], [5], [140]–[142]. Similar 

to PCA generation, optical rectification uses sub-picosecond optical pulse to excite an unbiased 

semiconductor, electro-optic crystal, or metal surface. The optical field induces oscillations in 

the material which follow the intensity envelope of the pulse, rather than the electric field. These 

oscillations in the material then re-emit as a propagating THz pulse [5]. Although optical 

rectification using unbiased semiconductors and electro-optic crystals has existed nearly as long 

a PCA technology [40], the first demonstration of THz generation from a nanostructured metal 

surface did not take place until 2006 [143]. This early work of Welsh, Hunt and Wynne studied 

THz surface emission from nanostructured metal surfaces excited by 800 nm wavelength optical 

pulses [143]. Here, it was found that the nanostructured metal surfaces had much higher optical-

to-THz conversion efficiency than flat metal surfaces. However, the peak THz field from the 

nanostructured metal surface was still around one order of magnitude lower than the peak field 
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emitted from a zinc telluride (ZnTe) electro-optic crystal. Additionally, it was found that the 

THz-optical power dependence did not follow a quadratic dependence expected from optical 

rectification alone. Instead, the power dependence followed an x3.4
 behavior, indicating other 

processes such as surface plasmon excitation [143]. This work was the first evidence that THz 

generation utilizing plasmonic nanostructures could be possible. 

Several later works continued to explore THz emission from metallic nanostructured surfaces 

[144]–[148]. Welsh and Wynne expanded on their initial work by studying a periodic nanoscale 

grating structure etched into fused silica and coated in a thin metal layer. Characterization of the 

optical absorption spectrum showed a narrow absorption peak characteristic of plasmonic 

resonance. This peak could be tuned from around 670 nm to 870 nm central wavelength across a 

20° to 50° incident angle range [145]. For gratings coated in a 40 nm gold (Au) layer, the 

maximum output THz field was around 50% lower than the field generated from a 0.5 mm thick 

ZnTe crystal. When coated in 45 nm of silver (Ag), however, the THz field dropped to over two 

orders of magnitude lower [145]. Theoretical studies by Gao et al. investigated ordered arrays of 

metal nanodisks, rings and pyramids on a glass surface [146]. The intensity of THz radiation 

emitted from these surfaces was shown to be highly dependent on the nanostructure geometry, 

although geometry did not alter the bandwidth of the emitted THz [146].  

Extensive experimental work by Polyushkin et al. utilized nanosphere lithography techniques 

to fabricate triangular nanostructure arrays and study their THz emission characteristics [147]. 

Similar to previous works, it was found that the intensity of the output THz pulses was highly 

dependent on the size and shape of the nanostructures. Although the output THz intensity was 

around 10x lower than a standard ZnTe crystal, it was noted that certain applications could take 

advantage of the extremely thin (sub-micron) nature of these nanoplasmonics emitters [147]. 
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Ramakrishnan et al. compared randomly nanostructured metal films to continuous ones, 

observing up to 24x enhancement of output THz intensity as compared to continuous films 

[148]. However, it was noted that the highest THz intensities observed were still nearly two 

orders of magnitude lower than conventional THz PCA emitters [148]. Further work by 

Ramanandan et al. demonstrated that absorption in the region near the Schottky junction of the 

device is critical for THz generation, more so than the total amount of light absorbed [149]. This 

configuration is illustrated in Figure 1.4.2.1(a) (Figure 1(a) in [149]), where the THz surface 

emission is enhanced by the optical interaction with the nanograting surface plasmons. SEM 

images of the fabricated device before and after cuprous oxide (Cu2O) deposition are shown in 

Figure 1.4.2.1(b) and Figure 1.4.2.1(c) (Figure 1(b) and Figure 1(c) in [149]) [149]. 

 

Figure 1.4.2.1: (a) Schematic diagrams of the nanostructured Au/Cu2O Schotky junction 

THz emitter. The pump laser pulses are incident on the sample, generating THz pulses. A 

nanograting is fabricated at the interface to facilitate the excitation of surface plasmons. (b, 

c) False color SEM image of the grating after the deposition of Au and Cu2O, respectively. 

Reprinted with permission from [149]. Copyright 2016 American Chemical Society. 
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Several uniform conclusions can be drawn from the works studying THz emission from 

nanostructured metal surfaces. First, the generated THz oscillations are a direct result of the 

plasmon oscillations in the nanostructures. Second, there is a strong dependence on the intensity 

of the output THz on the magnitude of the nanostructure plasmon resonance. Third, the intensity 

of the emitted THz is generally one order of magnitude lower than that of a ZnTe crystal, though 

the drastically reduced thickness of the emitter could provide advantages in certain applications.  

Although the previously described works presented THz generation through unbiased optical-

plasmon interactions alone, they were inspiration for later works combining nanoplasmonics and 

PCA technology for producing high power pulsed THz sources.   

1.4.3. Gap-Located Nanostructures 

 

The first demonstration of enhanced THz PCA performance through incorporation of 

plasmonic nanostructure arrays was given in 2011 by Park et al. [150]. Standard bowtie dipole 

antennas were patterned on SI-GaAs substrates, followed by electron beam lithography 

patterning of periodic nanostructure arrays in the dipole gap. Four different configurations were 

compared; two nanosquare arrays and two nanograting arrays with 75 nm and 150 nm widths. 

Reflectance measurements illustrated minimum reflectance in the 75 nm nanosquares at an 800 

nm excitation wavelength. Comparing the nanostructured PCAs to conventional ones, it was 

found that the greatest improvement in output THz power was observed in the 75 nm 

nanograting arrays, which increased the 0.1-1.1 THz average power by a factor of 2.27 [150]. 

The work was continued by Park et al. [151], [152] where the electron beam lithography was 

replaced with an annealing process to self-assemble Ag nanoislands, and where the previously 

studied nanogratings [150] were further optimized to improve THz emission. The self-assembled 
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Ag nanoislands showed 0.1-1.1 THz average power enhancement by a factor of 2, lower than the 

nanograting studies [150]. Measurements of the optical spectrum extinction coefficient of the 

array were compared to measured output THz power of the array for varied nanograting width 

[152]. It was found that when the peak in the extinction coefficient centered at the 800 nm 

excitation wavelength the output THz power enhancement across the 0.1-1.1 THz range was 

maximized at 2.4x [152].  

Others have incorporated gap-located nanostructures into THz PCAs in order to improve 

aspects of the device performance. Jooshesh et al. fabricated PCAs with ordered arrays of 

hexagonal and grating nanostructures in the antenna gap, as well as a reference conventional 

non-plasmonic dipole emitter, all on SI-GaAs [153]. SEM images of the fabricated devices are 

shown in Figure 1.4.3.1 (Figure 1 in [153]). Comparing the plasmonic structures to the 

conventional reference, it was found that the hexagonal structures had the greatest enhancement 

of the THz pulse peak at a factor of around 5.5 at an optical pump power of 2 mW [153]. Further 

work exploited an additional advantage of gap-located plasmonic nanograting structures [154]. 

Here, it was demonstrated that these plasmonic structures could enable efficient absorption of 

photons with energy significantly below the bandgap of LT-GaAs. Exciting different PCAs with 

1.57 µm wavelength femtosecond pulses, it was shown that LT-GaAs based PCAs with the 

nanograting structures produced THz pulses with peak amplitude over 11 times greater than a 

conventional LT-GaAs PCA. Even more significant was that the peak THz field of the plasmonic 

LT-GaAs PCA was around 1.8 times greater than that of a commercially available conventional 

PCA based on InGaAs, which had a bandgap below the excitation wavelength [154]. This 

enhanced performance was attributed to the introduction of midgap states in the LT-GaAs due to 

the presence of the plasmonic nanostructures. These midgap states allow for two photon 
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absorptions in order to efficiently excite photocarriers from the valence to conduction band 

[154]. A unique architecture for a thin-film THz PCA detector was recently proposed by 

Mitrofanov et al. [155]. This device consisted of a thin 280 nm LT-GaAs layer located between 

an AlAs/Al0.2Ga0.8As distributed Bragg reflector (DBR) and a periodic array of Au plasmonic 

nanostructures. The nanostructures and DBR worked in unison to effectively trap the incident 

photons in the LT-GaAs layer, increasing the optical absorption and generated photocarriers. The 

detectors showed a 50% increase in detected photocurrent when the nanostructures are included. 

This was achieved while maintaining a high dark resistivity of the device, which is necessary to 

minimize detection noise [155]. 

 

Figure 1.4.3.1: (a) SEM image of the 20 µm dipole on SI-GaAs substrate. (b) The active 

area of the hexagonal plasmonic array. (c) The active area of the strip plasmonic array. 

The diagram shows apex angle θ, gap size d and periodicity p. Reprinted from [153] with 

permission from OSA Publishing.   
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1.4.4. Nanostructured Electrodes 

 

In addition to THz PCAs with gap-located nanostructures, several works have investigated 

nanostructuring of the antenna electrodes directly [61], [66], [67], [71], [132], [156]–[159]. The 

key distinction here is that in this configuration the nanostructured regions are electrically 

continuous with either the anode or cathode, rather than being electrically isolated. An example 

of this from the work of Moon et al. is shown in Figure 1.4.4.1 (Figure 1(a) in [160]).  

 

Figure 1.4.4.1: Optical microscope image of H-dipole structure and SEM of the fabricated 

nano-electrodes. Reprinted with permission from [160] under the Creative Commons 

Attribution 4.0 International License. 

 

Here, a microscope image of a standard dipole antenna structure is shown, along with SEM 

images of the various nanoplasmonic grating structures fabricated as part of the dipole electrodes 

[160]. Most work investigating nanostructured electrodes attempt to enhance the near-anode 

effect, the high output THz power that is observed when the optical pump is centered over the 

anode. By nanostructuring the antenna electrodes, the effective area of the near-anode region can 
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be increased such that the full area of the incident optical pump falls on the near-anode region. 

Additionally, the plasmonic resonances of the nanostructures can be tuned in such a way as to 

concentrate the incident optical pump in the near-field region of the anode, thus increasing the 

optical absorption inside the photoconductor near the anode. One of the first theoretical 

predictions of this effect was made by Zhong et al., where a narrow cone shaped anode fully 

embedded in a LT-GaAs layer was studied. Finite-difference time-domain studies illustrated that 

plasmonic enhancement of the optical field near the anode could be as high as 164 times greater 

in a nanoscale cone electrode as compared to a microscale cone electrode [156]. 

Early fabrication and experimental demonstration of a THz PCA with nanostructured 

electrodes was performed in 2012 by Berry and Jarrahi [157]. Anode-ground-cathode dipole 

antennas were patterned on an In0.53Ga0.47As photoconducting layer, with a 1 µm gap from the 

electrodes to the center ground and a 100/100 nm nanograting array incorporated into the 

electrodes [157]. These arrays, which were computationally studied in previous work [158], 

increase the optical absorption which takes place near the antenna electrodes [157]. Emitted THz 

pulsed from fabricated devices were shown to maintain a narrow 590 fs pulse width and 

generated an average output THz power up to 5 µW under 7 V bias and 85 mW optical power 

[157]. This concept was expanded on in several works [66], [67], [71], [132], [159]. Utilizing a 

3x3 array of log-periodic dipoles with nanograting electrodes, high average output THz power of 

1.9 mW was demonstrated under a 320 mW optical pump power. These antennas, fabricated on 

LT-GaAs, required a microlens array for individual focusing of the incident optical pump onto 

the active area of each device [66]. The highest observed optical-to-THz conversion efficiency 

was demonstrated by designing a three-dimensional array of nanostructured electrodes [67]. In 

this example, the nanostructured electrodes consisted of rows of nanopillars etched into a LT-
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GaAs substrate with Au contact electrodes patterned on the sides and bottoms. These structures 

were shown to further localize the incident optical pump near the antenna anode, and 

demonstrated a 7.5% optical-to-THz conversion efficiency at a 60 V bias and 1.4 mW optical 

pump power [67]. Utilizing the plasmonic nanograting design of [71], [132], a large area emitter 

was fabricated and demonstrated to produce a record high 3.8 mW average THz power across the 

0.1-5 THz range [66]. This design has the advantage of not requiring alignment of a microlens 

array as in [132] as well as requiring comparatively less complicated fabrication methods for the 

plasmonic electrodes as compared to [67]. 

Plasmonic nanostructured electrodes have been studied by several other groups as well [77], 

[160]–[162]. Heshmat et al. fabricated THz PCAs on LT-GaAs with interdigitated electrodes that 

had 100 nm anode-cathode gaps [161]. The emitted THz pulse peak-to-peak amplitude was 

found to be 2x greater than that of a commercially available conventional emitter. The 

improvement was even greater when compared to similar shaped conventional emitters 

fabricated on LT-GaAs and SI-GaAs, which gave 10x and 40x improvement, respectively [161]. 

Tanoto et al. fabricated and compared THz PCAs with tip-to-tip and interdigitated nanograting 

electrodes in a CW photomixing configuration [77]. A bolometer was utilized to measure the 

output THz intensity as a function of optical beat frequency. It was found that the tip-to-tip 

configuration had around two orders of magnitude increase in the THz intensity as well as 

increased bandwidth. Finite-difference time-domain (FDTD) simulations supported these 

measurements, showing that the calculated optical field enhancement matched the out THz 

intensity enhancement [77].  

Moon et al. experimentally compared three different nanograting designs; nanograting 

electrodes with 3 µm and 200 nm anode-cathode gaps, and nanograting electrodes with partially 
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interdigitated nanogratings between the anode and cathode [160]. All devices showed increased 

power output at low optical excitation power as compared to a reference, nonplasmonic PCA, as 

shown in the time-domain waveform and fast Fourier transform (FFT) spectra in Figure 1.4.4.2 

(Figure 5 in [160]).  

 

Figure 1.4.4.2: THz emission from the large-aperture PCAs: (a) Time-domain curves. (b) 

FFT spectra. Reprinted with permission from [160] under the Creative Commons 

Attribution 4.0 International License. 

 

The enhancement was attributed to two mechanisms; plasmonic enhancement of the optical 

field near the electrodes and enhancement of the DC bias field near the electrodes. The 

dominating mechanism depended on the power of the incident optical pump, which indicated 

that nanogratings with the 3 µm gap was dominated by plasmonic enhancement while the 

partially interdigitated nanograting electrode was dominated by bias field enhancement [160]. 

Computational work by Burford and El-Shenawee using COMSOL® Multiphysics proposed a 

thin-film PCA emitter utilizing metal nanodisk arrays to enhance the optical absorption in the 

photoconductor [163]. It was shown that the combination of the plasmonic structures and thin-

film photoconducting layer effectively localized the optical absorption near the antenna anode, 

increasing the peak induced photocurrent by nearly 3 orders of magnitude [163]. 
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1.4.5. Summary and Outlook 

 

The advantages, disadvantages, and key performance milestones for plasmonic nanostructure 

THz PCAs are summarized in Table 1.4.5.1. Similar to the large area emitters, these devices 

offer potential for high device quantum efficiency, with some devices combining nanostructured 

electrodes with large area emitter designs to yield record high output THz power of 3.8 mW 

from a PCA device [66]. However, due to lack of maturity in nanoscale lithography technology, 

fabrication of such ordered metallic nanostructures remains far more complex than standard THz 

PCA devices. This is exaggerated by the high sensitivity of the optical-plasmon interaction with 

the nanostructure geometry, which increases the need for high fabrication standards. As 

nanofabrication processes become increasingly standardized, incorporation of plasmonic 

nanostructures may also become industry standard for THz PCA technology. 

Table 1.4.5.1: Summary of plasmonic nanostructure enhanced THz PCAs. 

 
Advantages Disadvantages 

Key Reported 

Performance Milestones 

Gap Located 

Nanostructures 

Increased quantum 

efficiency 

Decreased gap dark 

resistivity and complex 

fabrication 

2.1 nA peak THz current [154] 

Nanostrcutured 

Electrodes 

Increased quantum 

efficiency and no 

increase in gap dark 

resistivity 

Complex fabrication 
3.8 mW output THz power, 5 THz 

bandwidth [66] 

 

1.5. Broadband Performance  

1.5.1. Challenges  

 

One of the attractive properties of pulsed THz emission from PCAs is the broadband nature 

of the emitted radiation. Typically, usable bandwidths in the range of 0.1 to 4 THz are readily 

achievable in LT-GaAs based PCA emitters pumped with 100 fs pulses [44]. There is significant 

motivation for increasing the spectral power density of higher frequency components. However, 
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several challenges exist in standard THz TDS configurations that limit the usable frequency 

bandwidth. Broadband performance requires dipole antennas with uniform radiation resistance 

and low reactance across the desired bandwidth [132]. For the wide bandwidths desired in THz 

TDS, this often leads to a tradeoff with other performance characteristics [75]. There are also 

inherent limitations in the available bandwidth of the optical femtosecond pulse. Although 

narrower pulse widths with a wider available bandwidth are available, high THz frequency losses 

in the PCA substrate often prevents the extension to higher frequencies using these sub-100 

femtosecond excitation [70]. Propagation through the PCA substrate has a detrimental effect on 

the THz bandwidth, especially in GaAs. GaAs has a phonon absorption resonance centered at 

around 8.3 THz. The absorption loss for a THz pulse propagating through 500 µm (typical 

substrate thickness) of GaAs increases rapidly with frequency, falling to 50% of the original 

signal strength at around 3.3 THz [164]. This absorption loss is a major limiting factor in the 

bandwidth of the emitted THz pulses and is why utilizing below 100 fs optical pulses in these 

configurations does not significantly improve the bandwidth.  

1.5.2. Broadband Dipole Antenna  

 

Early THz PCAs, as well as many still in use today, utilized simple dipole antenna structures 

such as parallel microstrip lines [42] or face-to-face dipoles [41], [73] as the primary radiating 

elements. The major disadvantage of using such simple radiating elements is that they are 

inherently single and narrow band. Although the coherent detection nature of THz TDS systems 

offers high signal-to-noise [165], losses outside of the dipole’s resonant frequency range can be a 

significant source of performance degradation [75]. Utilizing established microwave engineering 
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concepts, several works have aimed to implement multi and/or broadband dipole structures in 

order to improve the radiation efficiencies of these THz antennas [63], [67], [132], [166]–[172]. 

To the author’s best knowledge, the first attempt to study the use of broadband antennas in 

THz PCAs was made in 1991 by Dykaar et al. [166]. This early work compared broadband log 

spiral and log periodic antenna patterns to simple face-to-face dipoles, with results indicating that 

the broadband antennas could yield an order of magnitude response improvement [166]. Log 

periodic antennas were also studied by Gitin et al. [167] and Mendis et al. [63]. In sub-0.1 THz 

frequencies the response was found to be highly multiband, with resonant frequencies 

corresponding to the various lengths of the periodic elements [167]. Brown et al. fabricated 

GaAs based THz PCAs with square spiral antennas and tested their polarization characteristics in 

a photomixing configuration [168]. This antenna was predicted to have a continuous, broadband 

response at lower THz frequencies (< 1 THz). However, experimental results showed narrow 

resonance peaks occurring across the 0.1-1 THz measurement range. These results were 

attributed to the discrete nature of the antenna pattern, where each turn of the square spiral acted 

as an individual radiating element with a single, narrow resonance [168]. The same antenna was 

implemented in a pulsed optical excitation scheme to study the effects of photoconductive 

material and substrate [169], [170].  

A bullseye dipole with periodic grooves in the dipole metallization was studied by Liu, Shou, 

and Nahata [171]. This structure utilized THz frequency plasmon-polariton resonances along the 

periodic groves to produce a narrow, two times greater resonance peak at a single frequency as 

compared to a simple dipole. Numerical simulations indicated that this resonance peak can be 

tuned by adjusting the size and period of the periodic grooves [171]. More recently, logarithmic 

spiral antennas were combined with nanostructured electrodes to improve the radiation 
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efficiency of THz PCAs [67], [132]. Numerical simulations indicated that the log spiral 

maintains a much more uniform radiation resistance and lower reactance than the more common 

bowtie dipoles, with experimental results showing around 4x higher radiated powers [132].    

1.5.3. Ultrabroadband Emission and Detection  

 

Standard configurations of THz TDS setups have a major inherent limitation of their 

available bandwidth. In all TDS setups, the optical pulse excitation is incident on the electrode 

side of the PCA, since it would be unable to penetrate the optically thick substrate material in 

order to excite photocarriers in the dipole gap [39], [44], [73]. The generated THz radiation is 

emitted in both directions, however, the majority of TDS setups only utilize the forward 

propagating THz radiation (i.e. the radiation which passes through the PCA substrate, 

propagating in the same direction as the optical pulse). The reason for this is that it reduces the 

experimental setup complexity, since the optical and THz beam paths do not overlap [173]. As 

previously mentioned, this is at the cost of loss of bandwidth due to absorption loss in the GaAs 

substrate.  

One of the first works observing this effect was reported by Kono et al. [174]. Here, a SI InP 

electro-optic crystal pumped with 15 fs optical pulses was utilized as a source of broadband (>20 

THz) radiation. The same 15 fs optical pump was utilized to gate a LT-GaAs PCA detector in a 

conventional setup where the optical pump and THz beam are incident on opposite sides of the 

detector. A discontinuous frequency band up to around 20 THz was observed with a strong 

absorption band between 7 and 9 THz due to the GaAs detector substrate absorption [174]. Later 

works using a similar setup implemented a collinear detection scheme, where the optical gating 

pump of the detector was aligned with the transmitted THz radiation and both were incident on 
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the antenna side of the detector [55], [70], [82], [173]. PCAs gated with 15 fs pulses were 

demonstrated to achieve the same bandwidth as electro-optical sampling with a ZnTe crystal 

[70]. Modulation of the optical delay using the shaker method was utilized to measure time-

derivatives of the THz waveforms, which expanded the detectable emission from a ZnTe crystal 

up to 60 THz [173]. Others have demonstrated the use of these broadband detection schemes to 

characterize vibrational modes in various materials, including cytindine [175] and maltose [176]. 

A 40 fs THz pulse measured by Shen et al. is shown in Figure 1.5.3.1(a) along with the Fourier 

transform spectrum illustrating a bandwidth beyond 30 THz in Figure 1.5.3.1(b) (Figure 2 in 

[175]). Additional, spectral measurements of polytetrafluoroethylene (PTFE) are shown as the 

dotted trace in Figure 1.5.3.1(b). Here, PTFE vibrational modes up to 19.2 THz were observed 

[175]. More recent work has characterized the high power, broadband forward emission of a LT-

GaAs PCA with interdigitated electrodes [127]. Here, a bandwidth of up to 20 THz was 

observed. Reducing the incident pulse power caused a uniform reduction of THz power across 

the spectrum, while increasing the pulse width reduced the high frequency components of the 

signal [127]. 

 

Figure 1.5.3.1: (a) The temporal THz wave form and, (b) its corresponding Fourier 

transform amplitude spectrum (upper trace, solid line), together with spectrum measured 

in the presence of PTFE sample (lower trace, dotted line). Reprinted from [175], with 

permission of AIP Publishing. 
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1.5.4. Summary and Outlook 

 

The advantages, disadvantages, and key performance milestones for plasmonic nanostructure 

THz PCAs are summarized in Table 1.5.4.1. Design of broadband antennas show potential for 

increasing the useable THz bandwidth. However, it is clear that other factors such as varying 

polarization and resonant/no resonant regions across the desired operating band would likely 

need to be accounted for when implementing these complex antenna geometries into practical 

THz PCA systems. Shorter optical pulses and collection of surface emitted THz waves have 

demonstrated ultrabroadband pulse emission, reaching well into the far-infrared optical regime. 

However, since the optical beam cannot be isolated from the THz beam, safety becomes a 

concern for practical applications. Therefore, these configurations are currently limited to 

laboratory research.     

Table 1.5.4.1: Summary of broadband performance of THz PCAs. 

 
Advantages Disadvantages 

Key Reported 

Performance Milestones 

Broadband Dipole 

Antenna Design 

Increased emission 

bandwidth 

Trade-off with 

polarization control     

4x increased total THz power 

comparing log spiral to bowtie 

[132] 

Ultrabroadband 

Emission and 

Detection 

Full THz band coverage  

Experimental setup not 

practical for many 

applications 

60 THz detection bandwidth [173] 

 

1.6. Concluding Remarks  

 

From this review it is apparent that there are many avenues to the ultimate goal of improving 

the performance of THz PCA technology. Each of these show continuing promise for further 

improvement of THz TDS systems. However, it is likely that the next generation of pulsed THz 

systems will implement several of these methods in order to achieve superior performance as 

compared to current standard technology.  
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Chapter 2. Plasmonic Thin-Film Terahertz Emitter Design and Computational Modeling 

 

This chapter will present the geometry and concept behind the plasmonic terahertz emitter, as 

well as the computational modeling that was utilized to optimize and study the device.  

The majority of the work presented in this chapter has been published in the Journal of the 

Optical Society of America B, in the article titled “Computational Modeling of Plasmonic Thin-

Film Terahertz Photoconductive Antennas” [163]. This was the work of the author of this 

dissertation, along with the advising professor of the author. The author of this dissertation was 

the primary author of the publication and as such there will be notable similarities in the voice 

and style of the two works. 

2.1. Conceptual Plasmonic Thin-Film Terahertz Emitter Design 

 

In order to overcome low optical-to-THz conversion efficiency of conventional THz-PCAs, a 

new plasmonic enhanced thin-film design was proposed. Thin-film photovoltaics have been 

proposed and extensively demonstrated for use in solar cell technology [136], [137], [177], 

[178]. In such applications, high quality active and sacrificial layers a few hundred nanometers in 

thickness are epixatially grown [179]. The active layers can then be “peeled” off through a 

process called “epixial lift off”, allowing a single substrate to be reused and yield multiple high 

quality solar cells [179]. In solar cells, however, this leads to lower device performance 

compared to their thick substrate based counterparts [177], [178]. Much of the incident light is 

reflected out or passed through the photovoltaic thin-film before being absorbed. To overcome 

this, the addition of plasmonic metal nanostructures on the thin-film surface has been proposed 

to concentrate the incident optical energy in the near-field of the nanostructures. This increases 



 

46 

the total photon density in the photoconductive layer, consequently improving the photocarrier 

generation rate [136], [137].  

We propose a new plasmonic thin-film THz-PCA design which utilizes the characteristics of 

thin-film solar cells to offer improved optical-to-THz conversion efficiency. The device 

geometry is illustrated in Figure 2.1.1 - Figure 2.1.3. Figure 2.1.1 shows a 3D view of the THz-

PCA chip mounted on a high resistivity Si lens. The LT-GaAs layer is rendered as semi-

transparent to allow the location of the antenna anode and cathode to be easily observed, as well 

as to illustrate the fact that such thick layers are semi-transparent to the naked eye. The infrared 

optical pump is incident from the -z-direction and focused over the antenna anode. Photocarriers 

generated in the LT-GaAs contribute to a driving current for the antenna, producing THz 

radiation which is coupled out of the device by the Si lens.  

 
Figure 2.1.1: Illustration of the proposed plasmonic thin-film THz-PCA design, 3D 

isometric view of the THz-PCA mounted on a Si THz lens (not to scale). 
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A top view of the x-y plane is shown in Figure 2.1.2. The location of the antenna anode and 

cathode is illustrated by the dashed black line, as these are located under the LT-GaAs layer. A 

Au nanodisk array covers the top of the LT-GaAs across the relative location of the antenna 

anode, gap, and cathode. The nanodisk array is included over all regions to allow future 

investigation of plasmonic enhanced optical excitation of regions other than the anode. 

Additionally, fabrication of the actual device would be simplified by roughly aligning a large 

nanodisk array over the entire region rather than fine alignment to ensure the array is only over 

the anode.  

 
Figure 2.1.2: x-y plane top view of the device, antenna electrode locations outlined by the 

dashed black lines. Computational domain is indicated by the dot-dashed outline (not to 

scale). 

 

Figure 2.1.3 shows a x-z cross section of the device taken at the y-coordinate corresponding 

to the device center. The computational domain to be considered in this work is outlined in 

Figure 2.1.2 and Figure 2.1.3 by the dot-dashed outline. The THz-PCA anode and cathode are 

located on the bottom of the LT-GaAs thin-film layer, while an array of plasmonic nanodisks is 

located on the top surface. In the gap separating the anode and cathode there is a dielectric 

adhesive layer, since during fabrication such a layer will be necessary to attach the device to the 
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Si lens. The incident optical pump excites plasmon resonances in the nanodisk array, leading to 

the enhanced optical field in the LT-GaAs layer. In addition to the plasmonic enhancement, the 

proposed thin-film PCA will have improved performance due to complete usage of the available 

optical pump area.  In LT-GaAs, only the carriers generated within around 100 nm from the 

anode will be collected. The carriers generated further away will recombine due to the sub-

picosecond carrier lifetime of the material. Therefore, in a conventional PCA where the optimal 

location of the optical pump is centered on the anode edge [80], the generated carriers will be 

much less than those generated in the proposed thin-film PCA where the optical pump is 

centered over the anode. 

 
Figure 2.1.3: x-z plane cross section view, nanodisk array located on top of the 120 nm 

thick LT-GaAs photoconductive layer, THz-PCA anode and cathode located on the bottom 

of the LT-GaAs. Device is mounted with adhesive to the Si lens for mechanical support as 

well as coupling of the THz radiation out of the device. Computational domain is indicated 

by the dot-dashed outline (not to scale). 

2.2. Approximations for Reducing the Computational Domain 

 

Due to the fine meshing requirements needed to accurately solve the near field of plasmonic 

nanostructures [136], [137], [180], several approximations are made to reduce the computational 

domain as shown in Figure 2.1.2 and Figure 2.1.3.  
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1) Considering only the interaction between the optically induced photocurrent and the electrode 

induced DC bias in the LT-GaAs, the antenna radiating element, microstrip lines and bias pads 

are neglected. 

2) Asymmetric optical excitation focused on the anode as shown in Figure 2.1.3 allows the 

domain to be reduced by half at the center of the gap.  

3) Geometric periodicity allows plasmonic electrode structures with periodicity along the y-

direction to be modeled while greatly reducing the computational complexity as shown in Figure 

2.1.3.  

These approximations allow the computational domain to be reduced to a point where 

nanoscale structuring of the electrodes can be modeled with sufficiently fine meshing with 

reasonable computational resources. To illustrate this, consider that some of the configurations to 

be discussed in this work require approximately 500,000 mesh elements in the photoconductor 

region to ensure numerical accuracy. Without implementing approximation 2) and 3), the 

number of mesh cells needed to produce the same level of refinement would be at least 50 times 

larger, on the order of 25 million mesh elements. 

2.3. Finite Element Method Modeling using COMSOL® Multiphysics  

 

Unless specified otherwise, the numerical modeling presented in this dissertation was 

performed using the commercially available Finite Element Method (FEM) solver COMSOL® 

Multiphysics. The FEM is a powerful tool for analyzing the physics complex 3D geometries that 

cannot be solved for analytically. In general, the FEM works by discretizing the computational 
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domain into individual volumetric elements, assigning solution points to each element (corners, 

edge centers, face centers, etc.), applying interpolation functions between solution points, and 

solving a set of partial differential equations at all solutions points such that continuity and 

boundary conditions are satisfied. The physics that can be analyzed through this method vary 

greatly, including propagation of mechanical stress and strain, thermal energy transfer, fluid flow 

and most important to this dissertation, the electromagnetic wave interaction and the transport of 

charges in semiconductors. 

As previously discussed, the generation of THz pulses in a photoconductive antenna involves 

the photogeneration of electron-hole pairs inside a photoconductor using an ultrashort optical 

pulse, collection of the generated carriers by a DC biased metal dipole antenna, and reemission 

of a propagating transient THz pulse.  

Computational modeling was divided into two steps: 1) the optical response found by 

calculation of the spatial distribution of the optical field using the frequency-domain form of the 

electromagnetic wave equation; and, 2) the electronic response found by solving the time-

domain forms of the coupled drift-diffusion and Poisson’s equations under carrier generation 

derived from the optical field from the first step.  By implementing several approximations to 

decouple the optical and electrical responses, the model complexity was reduced while still 

accounting for the primary factors determining the induced THz photocurrent response. 

2.4. Optical Response 

 

To properly model the femtosecond laser pulse excitation in COMSOL, an expression for the 

spatially and temporally varying electric field excitation must be defined in terms of standard 

femtosecond laser defining parameters. Femtosecond lasers are most often characterized by their 
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average power, half power beam width (HPBW), pulse time duration, and repetition rate. These 

parameters, units, and range typical values are summarized in Table 2.4.1.  

Table 2.4.1: Defining parameters with typical values for femtosecond laser excitation of 

THz PCAs 

Parameter Symbol Units Typical Value 

Average Power Pave mW 0.1-100 

HPBW Dx,y μm 5+ 

Pulse Time Duration Dt fs 80-200 

Repetition Rate fp MHz 50-100 

   

To begin, first consider the expression for the time-averaged laser power, 

 Pave = fpPmax,t ∫ exp(4 ln(0.5)
(t − to)

2

Dt
2 )dt.

1 fp⁄

0

(Equation 2.4. 1) 

to indicates the time location of the pulse peak, a useful parameter for modeling but with no 

physical significance. By making the approximation, 

∫ = ∫ ,
∞

−∞

1/fp

0

 

Equation Equation 2.4.1 reduces to, 

Pave = fpPmax,t

Dt

2
√−

π

ln(0.5)
. (Equation 2.4. 2) 

The error introduced in this approximation, considering typical values for the parameters, is on 

the order of 1 – erf(105), which is too small to easily compute. Rewriting, the peak power in time 

is, 

Pmax,t = Pave

2

fpDt

√−
ln(0.5)

π
. (Equation 2.4. 3) 
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Assuming a Gaussian distribution of power in the x and y dimensions, the power density (in 

space and time) can be related to the peak power by, 

Pmax,t = ∫ ∫ Smax,t,x,yexp(4 ln(0.5)
(x − xo)

2

Dx
2 )exp(4 ln(0.5)

(y − yo)
2

Dy
2 )dxdy  

∞

−∞

∞

−∞

 

Pmax,t = −Smax,t,x,y

πDxDy

4 ln(0.5)
. (Equation 2.4. 4) 

Smax,t,x,y is the temporal and spatial peak in the power density, xo and yo correspond to the spatial 

location of the peak. Smax,t,x,y is related to the peak electric field by, 

Smax,t,x,y =
Emax,t,x,y

2

ηo

(Equation 2.4. 5), 

where ηo is the electromagnetic wave impedance. For all instances in this work, the wave 

excitation occurs in air and wave impedance is ηo = 120π (Ω). Combining Equations 2.4.3, 2.4.4, 

and 2.4.5 allows for the peak electric field to be written in terms of known laser parameters, 

Emax,t,x,y = √
Pave8ηo

fpDxDyDt
(−

ln(0.5)

π
)

3 4⁄

. (Equation 2.4. 6) 

The full expression for the optical electric field excitation is, 

E⃗⃗ inc(x, y) =  âe√
Pave8ηo

fpDxDyDt
(−

ln(0.5)

π
)

3
4

… 

…ex p(2 ln(0.5)
(x − xo)

2

Dx
2 )ex p(2 ln(0.5)

(y − yo)
2

Dy
2 ) (Equation 2.4. 7) 

 Here, âe is the electric field polarization unit vector. Considering the approximations 

discussed in Chapter 2.2 of this Dissertation, the Gaussian dependence in the y–direction is 

neglected (i.e. y – yo = 0). With an expression for the optical excitation derived, the 
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computational domain’s optical response was determined by solving the electromagnetic wave 

Equation 2.4.8, 

∇ × μr
−1(∇ × E⃗⃗ ) − ko

2 (ϵr −
jλσ

2πcϵo
) E⃗⃗ = 0. (Equation 2.4. 8) 

Here, ϵr, σ and µr are the relative electrical permittivity, electrical conductivity, and magnetic 

permeability for the material, ko and ϵo are the free space propagation constant and permittivity, λ 

is the wave excitation wavelength, c is the speed of light in vacuum and E⃗⃗  is the complex electric 

field vector.   

Upon solving Equation 2.4.8, the optical field distribution E⃗⃗  was found everywhere in the 

computational domain. From here, the vector components of the power flux density can be 

calculated from Equations 2.4.9, 2.4.10, and 2.4.11, where η̂ is the material dependent complex 

wave impedance.   

Pox(x, y, z) =  
1

2η̂
Re (|Ey|

2
− |Ez|

2) (Equation 2.4. 9) 

Poy(x, y, z) =  
1

2η̂
Re(|Ez|

2 − |Ex|
2) (Equation 2.4. 10) 

Poz(x, y, z) =  
1

2η̂
Re (|Ex|

2 − |Ey|
2
) (Equation 2.4. 11) 

The total power flux density in units of W/m2 is, 

(Ps(x, y, z) = (|Pox(x, y, z)|
2 + |Poy(x, y, z)|

2
+ |Poz(x, y, z)|

2)
1

2⁄

) . (Equation 2.4. 12) 

In order to derive an expression for the carrier generation rate inside of the photoconductor, 

an approximation was made that each photon with energy Ep > Eg (where Eg is the 

semiconductor bandgap energy) absorbed in the photoconductor [105]generates a single 

electron-hole pair . The time-dependent carrier generation rate was approximated by [105], 
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g(x, y, z, t) = (4πkPC hc⁄  )Ps(x, y, z) exp (4 ln(0.5)
(t − to)

2

Dt
2 ) , (Equation 2.4. 13) 

where kPC is the imaginary part of the refractive index for the photoconductor, h is Planck’s 

constant, and c is the speed of light in vacuum. Equation 2.4.13 gives both the spatial and 

temporal carrier generation, in units of s-1m-3 inside the photoconductive region. 

The boundary conditions for the optical response are periodic on the x-z boundaries and 

absorbing impedance-matched boundaries are assumed on all other faces. The excitation was 

incident in the -z-direction, with polarization and center location varying depending on the 

configuration of the electrodes under consideration. The various model parameters utilized in 

Equations 2.4.7 – 2.4.13 vary throughout the different studies of this work. Therefore, tables will 

be included to summarize the values used in each case. 

2.5. Electrical Response 

 

With the optically induced carrier generation derived from the optical response analysis, the 

time-dependent carrier dynamics can be solved. The model utilized for this step was the 

standard, time-domain form of the coupled Poisson’s and drift-diffusion equations (Equations 

2.5.1, 2.5.2, and 2.5.3). 

ϵo∇ ∙ (ϵr∇V) = q(n − p −  ND + NA) (Equation 2.5. 1) 

∂n

∂t
= −

1

q
∇ ∙ {−μnq∇(V +  χ)n +  μnkBTG (

n

Nc
) ∇n}…                                                                             

                                                      …−  r(x, y, z) + g(x, y, z, t) (Equation 2.5. 2) 

∂p

∂t
=

1

q
∇ ∙ {−μpq∇(V +  χ +  Eg)p +  μpkBTG (

p

Nv
) ∇p}…                                                                     

                                                       …−  r(x, y, z) + g(x, y, z, t) (Equation 2.5. 3) 
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The unknowns in this system of equations are V, n and p, the electric potential, electron 

concentration and hole concentration, respectively. q is the electron charge, ϵo is the permittivity 

of free space and kB is the Boltzmann constant. For clarity, all other quantities are defined in 

Table 2.5.1, with associated nominal values used in this work to model LT-GaAs. 

Table 2.5.1: Electrical Properties and Constants of Equations 2.5.1-2.5.4. 

Symbol Description Units Value 

ϵr LT-GaAs None 13.3 

ND Donor Doping Concentration 1/cm3 1∙1015 

NA Acceptor Doping Concentration 1/cm3 0 

µn Low-field Electron Mobility m2/V/s 0.8 

µp Low-field Hole Mobility m2/V/s 0.047 

Eg Bandgap V 1.424 

χ Electron Affinity  4.07 

T Room Temperature K 300 

Nc Conduction Band Density of States 1/m3 2.18∙10-23 

Nv Valence Band Density of States 1/m3 5.43∙10-24 

τn SRH Electron Lifetime s 480∙10-12 

τp SRH Hole Lifetime s 480∙10-12 

γn Electron Degeneracy Factor None 2 

γp Hole Degeneracy Factor None 4 

Cn Auger Electron Coefficient cm6/s 7∙10-30 

Cp Auger Hole Coefficient cm6/s 7∙10-30 

ni,eff Effective Intrinsic Carrier Concentration 1/m3 1.23∙10-12 

 

As demonstrated by Moreno et al. [181], the inclusion of field dependent carrier mobility 

significantly impacts the outcome of numerical modeling of THz-PCAs through the drift-

diffusion equations. To account for this, the empirical Caughey-Thomas model was utilized to 

modify the electron and hole mobility, μn and μp, at varied electric fields [182]. Carrier 

recombination was described by the Schottky-Read-Hall and Auger recombination models [105]. 

r(x, y, z) =
np − γnγpni,eff

2

τp(n + γnni,eff) + τn(p + γpni,eff)
…                                                            

                          …+ (Cnn + Cpp)(np − γnγpni,eff
2 ) (Equation 2.5. 4)  
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It is important to note that for the electrical response only the LT-GaAs layer was considered. 

The boundary conditions on the x-z faces are periodic, at the anode/LT-GaAs surface and gap-

centered y-z face ohmic contact boundaries with fixed bias voltages V = Vbias and Vbias/2, 

respectively. All other faces are electrical insulation boundaries. 

2.6. Approximations of the Mathematical Formulation  

 

It is important to consider the approximations used in this model. The optical pulse is time-

dependent and non-monochromatic. As such, the variation of the wavelength dependent material 

properties should be considered in order to provide a complete description. However, the 

bandwidth of the femtosecond pulse is relatively narrow, ∆λ = 9.4 nm for a pulse with center 

frequency λ = 800 nm and width of Dt = 100 fs. Of all the materials considered in this model, the 

highest variance across this bandwidth range occurs in the conductivity of Au up to 3.28%. 

Although the error this approximation introduces may not be significant here, it is important to 

note that wider bandwidth pulses will introduce increased variance in the material optical 

properties.  

A second effect arising from the conductivity time-dependence on the optically induced 

carrier concentration is neglected in this model. This is the carrier screening effect, where excited 

carriers in the photoconductor will contribute to an increase in the effective optical conductivity 

[114]. The effect manifests as an increase in surface reflectivity as the pulse propagates into the 

photoconductor and excites additional carriers. This approximation has led the proposed model 

to utilize underestimated conductivity leading to overestimation of the induced photocurrent. An 

analysis of this effect is discussed later.  
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The above approximations resulted from neglecting iterations between the optical and 

electrical computational domains at each time step. Currently, solving the optical domain a 

single time requires approximately 43 min on a dual Intel six-core Xeon X5670 2.93 GHz 

processor system, in addition to around 1.5 hours to complete the time-stepping in the electrical 

domain. Inclusion of the carrier screening effect (i.e. the increase in conductivity with time) 

would require the optical domain to be solved at each of the 200 or more iterations of the time 

stepping process currently used in the model. 

2.7. Model Validation 

 

In order to demonstrate the validity of the proposed model, comparison against both 

computational and experimental work from the literature was performed here. For comparison of 

this work to other models, consider the computational work established by Moreno et al. [46], 

where the FDTD method and a similar set of coupled Poisson’s/Drift-Diffusion equations were 

utilized. The method in [46] did not utilize any of the domain reduction approximations proposed 

here, thereby providing a more complete analysis of the electro-optical interaction in 

conventional THz-PCAs. Another distinct difference was that the model in [46] did not calculate 

the spatially dependent optical field through the solving of Maxwell’s equations. Rather, Moreno 

et al.’s method approximates the optical field with an analytical Gaussian dependence in the 

lateral direction and a Beer-Lambert dependence in the depth of the photoconductor.   Described 

in [46] was a face-to-face dipole antenna with a 5 μm gap, located on LT-GaAs. The transient 

photocurrent was calculated at the center of the gap (see Figure 8 in [46]). Similarly, using the 

proposed method here, the photocurrent at the gap center is calculated in a conventional THz-

PCA geometry of same dimensions as the face-to-face dipole described in [46]. Table 2.7.1 
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summarizes the model parameters use in this study for Equations 2.4.7 – 2.5.4. Note that the 

value of Pave = 3.57 mW is higher than that reported in [46]. This accounts for the air/LT-GaAs 

reflection losses in our model, which are not considered in [46]. It is important to note that the 

Gaussian beam formulation of this work appears different than that used in [46]. However, the 

Gaussian dependence in both x and t is numerically identical in both works.  

Table 2.7.1: Optical Properties and Constants of Equations (2.4.7)-(2.5.4) for Validation 

Study with Moreno et al. [46]. 

Symbol Description Units Value 

λ Free Space Wavelength nm 780 

Pave Average Laser Power mW 3.57 

fp Laser Pulse Repetition Rate MHz 80 

xo Pulse x-axis Center Location  µm 2.5 

to Pulse Center Location (time) ps 3 

Dx Pulse HPBW (x-direction) µm 3 

Dy Pulse HPBW (y-direction) µm 3 

Dt Pulse FWHM (time) fs 133 

Vbias DC Bias Voltage V 30 

ϵr  Ti [183] None -6.61 

ϵr Au [184] None -22.5 

ϵr  LT-GaAs [185] None 13.7 

σ  Ti [183] S/m 42∙103 

σ  Au [184] S/m 2.4∙103 

σ  LT-GaAs [185] S/m 1.1∙103 

µr 
Magnetic Permeability  

(all regions) 
None 1 

kPC Photoconductor Extinction Coefficient of LT-GaAs [185] None 0.0625 

�̂�𝑒 �⃗� 𝑖𝑛𝑐 Polarization Unit Vector None �̂�𝑥 

 

Comparison of the results from Moreno et al. to calculations utilizing the model proposed in 

this work is illustrated in Figure 2.7.1. The solid line is the photocurrent calculated using the 

proposed model at a point located at the center of the gap and surface of the photoconductor and 

the X marks represent the corresponding results taken from [46]. The optical excitation is 

temporally centered at t0 = 3 ps in both cases. Both results are normalized to the peak value of 

0.02 A/µm2 reported in [46]. The results from this work have a peak value of 0.0126 A/µm2 
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occurring at 3.09 ps and a full-width at half-maximum (FWHM) of 0.42 ps. In comparison, the 

reference results of Moreno et al. have a peak value of 0.02 A/µm2 occurring at 3.12 ps and a 

FWHM of 0.63 ps.  

 
Figure 2.7.1: Comparison of the calculated photocurrent at the center of the gap. Solid 

trace represents the results found using this model, X marks are points traced from Figure 

8 in Moreno et al. [46]. 

 

 The general trend observed in both models agrees, but the peak amplitude of the current 

model is almost 58% of the peak in [46]. There are notable differences in the two methods. This 

difference is mainly due to the approximation of the wave equation solution. In this work, the 

wave equation is solved using the computational FEM method while in [46] the wave equation 

was approximated using the Beer-Lambert equation.  A comparison of the power density inside 

the LT-GaAs at the center of the gap is shown in Figure 2.7.2, demonstrating almost a 53% 

difference between the two methods.  The difference in the power density nearly matches the 

difference in the peak photocurrent in Figure 2.7.2. In addition, for the carrier mobility model, 

we used the Caughey-Thomas equation as function of the local electric potential [182]. The work 
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of Moreno et al. used the MINIMOS set of equations where the effects of lattice, impurity, and 

surface carrier scattering were included [186]. These differences in the carrier mobility model as 

well as the differences in the Beer-Lambert approximation in [46] and the full wave solution of 

the optical field in our model are the main contributors leading to a lower photocurrent and 

optical power density observed in this work as compared to [46]. 

 
Figure 2.7.2: Optical power density at the center of the gap vs. depth inside the LT-GaAs. 

Dashed line represents the Beer-Lambert approximation utilized in [46], solid line 

represents this work, the full-wave solution of Maxwell’s equation. 

 

Another validation is presented here with the plasmonic enhancement of photocurrent that 

has been experimentally observed in the work of Berry et al. [71]. The two electrode 

configurations are a conventional, non-plasmonic electrode and the plasmonic electrodes with a 

nanoscale grating geometry. The same configurations in [71] were modeled and the numerical 

results were compared with their experimental data. The time-averaged photocurrent collected by 
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the antenna was calculated for both configurations as a function of incident optical power, Pave. 

Table 3 summarizes the model parameters use in this study for Equations 2.4.7-2.5.4. 

Table 2.7.2: Optical Properties and Constants of Equations 2.4.7-2.5.4 for Validation Study 

with Berry et al. [71]. 

Symbol Description Units Value 

λ Free Space Wavelength nm 800 

Pave Average Laser Power mW 0.5 - 25 

fp Laser Pulse Repetition Rate MHz 76 

xo (conventional) µm 0 

xo (nanograting) µm -2.5 

to Pulse Center Location (time) ps 0 

Dx Pulse HPBW (x-direction) µm 5 

Dy Pulse HPBW (y-direction) µm 5 

Dt Pulse FWHM (time) fs 200 

Vbias DC Bias Voltage V 40 

ϵr  Ti [183] None -6.21 

ϵr Au [184] None -24.1 

ϵr  LT-GaAs [185] None 13.6 

σ  Ti [183] S/m 42∙103 

σ  Au [184] S/m 2.5∙103 

σ  LT-GaAs [185] S/m 1.0∙103 

µr 
Magnetic Permeability  

(all regions) 
None 1 

kPC Photoconductor Extinction Coefficient of LT-GaAs [185] 1/cm 0.086 

�̂�𝑒 (conventional) None �̂�𝑥 

�̂�𝑒 (nanograting) None �̂�𝑦 

 

Comparison of the current model to experimentally observed reference results in [71] is 

illustrated in Figure 2.7.3. This shows the photocurrent enhancement, defined as the ratio of 

time-averaged photocurrents of the plasmonic and conventional antennas, as a function of 

incident optical power. The X marks represent the reference results calculated from the inset data 

of Figure 3b in the work of Berry et al.  [71]. The open circles are the results calculated using the 

model here. In general, there is a good agreement in the trend and in the magnitude of the 

photocurrent enhancement. At Pave = 5 mW, the difference between the reference and calculation 

was minimal at less than 2%. In conclusion, the current model demonstrates good agreement 
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with the experimental work of [71]. For optical powers greater than 5 mW, the model slightly 

overestimates the photocurrent enhancement. Local heating has been observed in THz-PCAs 

under high optical pump power, which can reduce the quantum efficiency of the device [154]. 

The model assumes a constant 300 K temperature and currently does not account for local 

heating, which could explain the difference between the current model and experimental data in 

[71].    

 

Figure 2.7.3: Comparison of the calculated photocurrent enhancement to experimentally 

values reported by Berry et al. [71]. Solid line with circle marks represent calculated 

results using this model, X marks represent the reference results calculated from the inset 

data of Figure 3b in the work of Berry et al.  [71]. 

 

2.8. Proposed THz PCA Electrode Configurations  

 

With the computational methodology validated against both theoretical and experimental 

examples from the literature, the next step is to analyze the THz-PCA electrodes with new 
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geometric configurations. As previously discussed, the main cause of the low optical-to-THz 

power conversion in PCAs comes from short (<1 ps) carrier lifetime necessary to achieve 

ultrafast operation. This is illustrated in Figure 2.8.1, which shows computational results of the 

transient electrode current in a conventional PCA with a 0.48 ps carrier lifetime (solid line) and 

48 ps carrier lifetime (dashed line). Here, it is noticed that the 0.48 ps carrier lifetime allows for 

the transient current to more closely follow the profile of the excitation, resulting in a narrower 

pulse and better THz performance as compared to the 48 ps carrier lifetime case.  

 

Figure 2.8.1: Anode current versus time for a conventional style THz-PCA under 100 fs 

pulsed optical excitation. Carrier lifetime varied from 0.48 ps (solid line) to 48 ps (dashed 

line). 

 

To overcome this, we propose the new “bottom-located thin-film” (BLTF) and “plasmonic 

bottom-located thin-film” (P-BLTF) THz-PCA geometries, as illustrated in Figure 2.8.2(a) and 

Figure 2.8.2(b), respectively. In addition to these new electrode designs, top-located plasmonic 

nanograting electrode and conventional electrode designs are considered for comparison, shown 

in Figure 2.8.2(c) and Figure 2.8.2(d). The plasmonic nanograting design has been previously 

studied by other groups [66], [67], [71], [76], [132], [157] and for this work the geometry 
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proposed by Berry et al. will be utilized [71]. The THz performance can be compared between 

designs by considering two characteristics of the induced current pulse; the peak value of the 

current and the pulse FWHM. As a first approximation, higher peak current indicates higher total 

THz power, while a low FWHM will give a wider THz bandwidth.  

 

Figure 2.8.2: Illustrations of the various THz-PCA electrode designs considered in this 

work. (a) bottom-located-thin-film, (b) plasmonic bottom-located-thin-film, (c) plasmonic 

nanograting [71] top-located electrodes, and (d) conventional top-located electrodes. 

 

For all four antenna designs, the gap between the anode and cathode was 20 μm and a 0.5 μm 

air layer was included above the photoconductor. For the conventional and nanograting, the LT-

GaAs layer had a 0.5 μm depth. For the BLTF and P-BLTF designs, a 0.5 μm dielectric substrate 

layer was included under the antenna and LT-GaAs. For both these designs, the thickness of the 
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thin-film LT-GaAs layer was set to 120 nm. For the P-BLTF design, the nanodisk array 

geometry is optimized such that the average electric field strength inside the LT-GaAs layer is 

maximized at an 800 nm incident optical wavelength. Details of the optimization are discussed in 

Section 2.10. The array dimensions are set to a diameter of 200 nm, center-to-center spacing of 

520 nm, and a total height of 75 nm. The nanodisks are comprised of a 5 nm Ti adhesion layer, 

followed by a 70 nm Au layer. The frequency dependent optical properties ϵr and σ are taken 

from Aspnes et al. for GaAs [185], Johnson and Christy for Ti [183], and Rakić et al. for Au 

[184]. Table 2.8.1 summarizes the values of the model parameters used in this study for 

Equations 2.4.7-2.5.4. 

Table 2.8.1: Optical Properties and Constants of Equations 2.4.7-2.5.4 for Comparison 

Study of the BLTF, P-BLFT, Nanograting and Conventional PCA Designs. 

Symbol Description Units Value 

λ Free Space Wavelength nm 800 

Pave Average Laser Power mW 10 

fp Laser Pulse Repetition Rate MHz 76 

xo (conventional) µm 0 

xo (BLTF, P-BLTF and nanograting) µm -2.5 

to Pulse Center Location (time) ps 0 

Dx Pulse HPBW (x-direction) µm 5 

Dy Pulse HPBW (y-direction) µm 5 

Dt Pulse FWHM (time) fs 100 

Vbias DC Bias Voltage V 40 

ϵr  Ti [183] None -6.21   

ϵr Au [184] None -24.1 

ϵr  LT-GaAs [185] None 13.6 

σ  Ti [183] S/m 42∙103 

σ  Au [184] S/m 2.5∙103 

σ  LT-GaAs [185] S/m 1.0∙103 

µr 
Magnetic Permeability  

(all regions) 
None 1 

kPC Photoconductor Extinction Coefficient of LT-GaAs [185] 1/cm 0.086 

�̂�𝑒 (conventional) None �̂�𝑥 

�̂�𝑒 (BLTF, P-BLTF and nanograting) None �̂�𝑦 

 



 

66 

2.9. Numerical Convergence 

 

The numerical accuracy of the new models is assured by testing the convergence of the 

model for increasing total number of mesh elements. The results of this study are illustrated in 

Figure 2.9.1. Here, the current at the anode was calculated versus time in the P-BLTF model for 

different numbers of mesh elements (inside the semiconductor region), ranging from 6k to 426k. 

This model was utilized since it had the smallest geometric features of the four models, therefore 

it was expected to be the most sensitive to the total number of mesh elements. The results show 

the shape of the induced current pulse increasing and reaching a converged value for mesh 

elements of 203.9k and above.  

 

Figure 2.9.1: Anode photocurrent vs. time for the P-BLTF as a function of total number of 

mesh cells utilized in the FEM solution. 

 

A more quantitative view of the model convergence is illustrated in Figure 2.9.2. Here, the 

FWHM and peak in the anode current pulse was determined and plotted as a function of total 
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number of mesh elements. At the 4th to 5th iteration the total number of mesh elements was 

increased from 117.9k to 203.9k and the relative errors in the FWHM and peak photocurrent 

were 6.5% and 4.1%, respectively. As the 6th iteration the total number of mesh elements was 

increased to 426.0k, the relative errors in the FWHM and peak photocurrent decreased further to 

0.43% and 1.5%, respectively. In order to maintain low numerical error (<5%), the meshing 

parameters that yielded 426k mesh elements in the P-BLTF configuration were utilized in all 

other PCA configurations in this work.  

 

Figure 2.9.2: Anode current pulse FWHM (left) and peak (right) for the P-BLTF design as 

a function of total number of mesh elements. 

 

2.10. Optimization of Nanodisk Array Geometry 

 

The geometry of the nanodisk array utilized in the P-BLTF configuration was optimized to 

maximize the average electric field inside the LT-GaAs layer as defined by, 

|�⃗� 𝑎𝑣𝑒| = ∫|�⃗� | 𝑑𝑉𝐿𝑇−𝐺𝑎𝐴𝑠 𝑑𝑉𝐿𝑇−𝐺𝑎𝐴𝑠.⁄ (Equation 2.10. 1) 

The advantage of maximizing |�⃗� 𝑎𝑣𝑒| rather than the optically induced photocurrent is that a 

one-quarter unit cell of the nanodisk array can be analyzed rather than the much larger 

computational domain described earlier in this chapter. This reduces the computational expense 
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of the study, allowing for more variations of the nanodisk geometry to be analyzed in a shorter 

time. The methodology of this analysis follows that which was described in the author’s Master’s 

Thesis [187] and previous publications [136], [137] and as such will not be discussed in detail 

here.  

The nanodisk array consists of an infinite square array of cylinders, with radius R, height h + 

5 nm and edge-to-edge spacing d. The cylinders are comprised of Au and Ti layers, with the Ti 

being located between the Au and LT-GaAs and having a fixed height of 5 nm. Prior to 

optimizing the dimensions of the nanostructure array, the thickness of the LT-GaAs layer was 

determined. It was desired to keep the thickness as close to 100 nm as possible, since this was 

approximately the sub-picosecond electron drift distance in the presence of the maximum 

allowable bias field in GaAs [71]. Using the computational domain described in Figure 2.10.1, 

only without including the nanodisks, the average electric field in the LT-GaAs layer was 

calculated as a function of LT-GaAs thickness T. 

 

Figure 2.10.1: Cross section illustration of the computational domain utilized in the 

nanodisk array optimization. 
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The result of this study is shown in Figure 2.10.2. Peaks in the electric field were observed at 

T = 40, 140, and 250 nm, while minimums were observed around T = 90, 200, and 300 nm. As 

the incident optical pulse interacts with the LT-GaAs, multiple internal Fresnel reflections occur, 

leading to net constructive or destructive interference. Thicknesses corresponding to destructive 

interference were observed at the average electric field minimum values, while constructive 

interference was observed at the average electric field maximum values. Choosing the thickness 

to be used in the device design was a matter of balancing the average electric field with the 

decreased mechanical stability of the thin film layer at lower T values and the increased 

recombination losses at higher T values. Ultimately, T = 120 nm was chosen since it provided an 

average electric field value approximately equal to the peak at 40 nm, yet not being so thick as to 

fall in the high recombination loss region.  

 

Figure 2.10.2: Average electric field in the LT-GaAs layer without nanodisks as a function 

of thickness T. 
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peak amplitude, and geometric location within the nanostructure.  This allows the local optical 

field to be maximized at a desired wavelength and location within the structure, such as inside 

the nanostructure, gaps between adjacent nanostructures, or inside the photoconductive substrate 

(as desired in this work). This is illustrated in Figure 2.10.3 for the nanodisk array of this work.  

 
Figure 2.10.3: 2D plots of the average electric field inside the LT-GaAs layer as a function 

of incident wavelength and (top) radius R, (middle) edge-to-edge spacing d, and (bottom) 

height h of the gold nanodisks. 
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parameters R (top), d (middle), and h (bottom). The color corresponds to |�⃗� 𝑎𝑣𝑒| in the LT-GaAs 

calculated by Equation (Equation 2.10.1) for a 1 V/m incident optical field excitation.    

For the parameter ranges shown in Figure 2.10.3 the relationship between nanodisk array 

geometry and resonance peak spectral location, λpeak was observed. Nominally optimized 

parameter values were R = 90 nm, d = 330 nm, and h = 65 nm. The nanodisk radius had the 

strongest influence on λpeak, with a 10 nm increase in R corresponding approximately to a 30 nm 

increase in λpeak. The nanodisk spacing had a weaker influence on λpeak, with a 10 nm increase in 

R corresponding approximately to a 10 nm increase in λpeak. Over the range of 20 nm, h had no 

notable influence on λpeak. Over the parameter range of 80 nm ≤ R ≤ 100 nm, 320 nm ≤ d ≤ 340 

nm, and 60 nm ≤ h ≤ 70 nm it was found that |�⃗� 𝑎𝑣𝑒| had a maximum value at R = 100 nm, d = 

320 nm, and h = 70 nm.    

In order to observe the effect of varying the nanodisk height, the average electric field at the 

spectral peak, |�⃗� 𝑎𝑣𝑒|𝑝𝑒𝑎𝑘
 was calculated across a range of 20 nm ≤ h ≤ 80 nm for fixed values R 

= 100 nm and d = 320 nm. The results of this study are illustrated in Figure 2.10.4.  

 

Figure 2.10.4: Average peak electric field in the LT-GaAs layer as a function of nanodisk 

height for constant R = 100 nm and d = 320 nm. 

 

0.3

0.4

0.5

0.6

0.7

20 30 40 50 60 70 80

P
ea

k
 A

v
er

ag
e 

E
le

ct
ri

c 
F

ie
ld

 (
V

/m
)

Nanodisk Height h (nm)



 

72 

Here, it was observed that a steady increase in |�⃗� 𝑎𝑣𝑒|𝑝𝑒𝑎𝑘
 occurs from h = 20 nm to around h 

= 60 nm. For higher values of h, relatively little change in |�⃗� 𝑎𝑣𝑒|𝑝𝑒𝑎𝑘
 was observed. Important to 

note is that |�⃗� 𝑎𝑣𝑒|𝑝𝑒𝑎𝑘
 was taken from the highest values of |�⃗� 𝑎𝑣𝑒| across a spectral range of 700 

nm to 900 nm. As such, the variation in |�⃗� 𝑎𝑣𝑒|𝑝𝑒𝑎𝑘
 does not occur from spectral shifting of the 

resonance peak, but truly represents the maximum strength of the plasmonic resonance 

regardless of excitation wavelength. This is important to note because there is relatively minor 

shifting in the spectral location of the resonance peak, as shown in Figure 2.10.5. Across the 

range 20 nm ≤ h ≤ 60 nm the peak shifts by a relatively small amount of 5 nm. However, in the 

saturation region above h = 60 nm the shift of the peak is greater, at 10 nm across the 60 nm ≤ h 

≤ 80 nm range. 

 

Figure 2.10.5: Average peak electric field in the LT-GaAs layer as a function of incident 

wavelength and nanodisk height for constant R = 100 nm and d = 320 nm. 
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The plasmonic behavior of the nanodisks is illustrated and compared to the non-plasmonic 

BLTF structure in  Figure 2.10.6. In  Figure 2.10.6(a), the average electric field inside the LT-

GaAs layer is calculated as a function of excitation wavelength for two proposed designs. For the 

P-BLTF design, a peak in the average electric field was observed at 800 nm. This is 

characteristic of a plasmonic resonance in the nanostructures efficiently coupling the incident 

electromagnetic energy into the LT-GaAs thin-film layer.  At the 800 nm excitation wavelength, 

the average electric field is 0.70 and 0.35 V/m for the P-BLTF and BLTF designs, respectively. 

This indicates a two times increase in the average optical field due to the addition of the 

plasmonic nanostructures. In addition to the LT-GaAs absorption spectra, the power reflectance 

spectra for the BLTF and P-BLTF designs are shown in  Figure 2.10.6(b). 

 
Figure 2.10.6: (a) Average electric field absorbed in the LT-GaAs layer under 1 V/m optical 

excitation as a function of excitation wavelength and (b) optical power reflectance 

spectrum. Dashed and solid lines represent the BLTF and P-BLTF designs, respectively. 
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power. For the P-BLTF, the peak in the plasmonic resonance is observed at 800 nm. Interesting 

to note is that in the reflection spectrum for the P-BLTF and BLTF, the minimum reflectance 

observed at 800 nm is 64% and 92%, respectively. 

2.11. Optical Field Comparison of THz PCA Electrode Configurations 

 

With the nanodisk geometry of the P-BLTF design optimized, the full electro-optical model 

was solved for each of the four electrode configurations shown in Figure 2.8.2. In Figure 2.11.1 

2D cross sections of the optical field distribution calculated by solving Maxwell’s wave equation 

(Equation 2.4.8) are illustrated for each of the electrode configurations. In each cross section, the 

horizontal axis spans a spatial region of around 1040 nm centered at the optical pulse center 

location. The electric fields plotted in Figure 2.11.1 correspond to the magnitude of the peak 

optical field, occurring at the pulse center time to. Each of the four plots share a common scale 

for the electric field, ranging from 0 to 2x108 V/m. In the conventional design, it was seen that 

there was negligible optical field in the LT-GaAs region underneath the anode at x < 0. The 

majority of the incident optical pulse in this region was lost due to reflection from the antenna 

metallization. In the LT-GaAs region in the gap at x > 0, the optical field was significant at 

around 0.2–0.4 x108 V/m. However, due to the short carrier lifetime, the majority of the carriers 

generated by this field would recombine before they reached the anode. The nanograting design 

had optical field values in the LT-GaAs region comparable to the values observed in the x > 0 

region of the conventional design. Unlike the conventional design, the nanograting had a greater 

effective anode edge, allowing for significantly more of the optical beam area to be incident in a 

region of the LT-GaAs that is around 100 nm or less from the antenna anode.  
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Figure 2.11.1: Electric field distribution at partial 2D cross sections of the computational 

domain for the conventional (a), nanograting (b), P-BLTF (c) and BLTF (d) designs. Cross 

sections centered at the focus of the optical excitation. 
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interference in the LT-GaAs, which produces a standing wave pattern with minimum and 

maximum field values. The optical field distribution in the LT-GaAs layer of the P-BLTF device 

was more complex. Here, the field was strongest at regions centered in the LT-GaAs and in 

between adjacent nanodisks. With the electric field polarization in the x-direction, the incident 

optical field will polarize the nanodisks along the x-direction as well. Therefore, for two adjacent 

nanodisks the edges facing the gap would have opposing charge, inducing the strong electric 

field that was observed in the gap.   

2.12. Comparison of Optically Induced Photocurrent in the THz PCA Configurations 

 

The time dependent photocurrent of each of the four anode geometries is calculated under 

similar conditions to study each design’s ability to convert the incident optical pulse to 

collectable photocurrent. The results are shown in   

Figure 2.12.1, which covers a range greater than four orders of magnitude.  

  
Figure 2.12.1: Anode photocurrent response versus time for each of the four THz-PCA 

electrode designs. 
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The conventional anode design has the lowest overall photocurrent response, followed by the 

nanograting, BLTF, and finally P-BLTF design which has the strongest response. Peak 

photocurrent of each design is 0.17, 1.7, 14.8 and 56.8 mA for the conventional, nanograting, 

BLTF, and P-BLTF designs, respectively. In addition to peak photocurrent, the FWHM of the 

current pulse is another performance factor to consider since smaller FWHM translates to 

increased power at higher THz frequencies. The FWHM is found from the data in   

Figure 2.12.1 by measuring the time span between the half-maximum values for each curve 

and is 170, 221, 258 and 280 fs for the BLTF, P-BLTF, conventional, and nanograting designs, 

respectively.   

Numerical methods currently exist that allow the output power of a THz-PCA to be 

calculated, once the optically induced photocurrent is known [44], [46], [181], [188]–[190]. 

However, in [71] it has been reported that regardless of electrode design and incident optical 

power, the output THz power is linearly proportional to the photocurrent. The results in   

Figure 2.12.1 show that the peak photocurrent enhancement for the P-BLTF as compared to 

conventional design is approximately 300x. Therefore, the expected output THz power of the P-

BLTF could be 300 times larger than the output power of a conventional emitter. Since 

conventional emitters generally have optical-to-THz conversion efficiencies on the order of 10-5 

– 10-4, the P-BLTF design would provide output power of ~ 30 – 300 µW versus the 

conventional emitter that would provide ~ 0.1 - 1 µW.  

The final study considered in this work examines the effect of increasing the Schottky-Read-

Hall carrier recombination time. Physically, this would represent utilizing higher temperature 

grown GaAs photoconductive layer, since the growth temperature is the main factor dictating 

carrier recombination time [49]. The carrier lifetime τn = τp is varied across values of 0.48, 4.8, 
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and 48 ps and the anode photocurrent is calculated for each of the four designs, similar to the 

results shown in   

Figure 2.12.1. The peak photocurrent versus carrier lifetime is shown in Figure 2.12.2. For all 

designs, with the exception of the conventional electrode, the peak photocurrent increases 

slightly with increasing carrier lifetime. Across the 0.48 to 48 ps range there is a peak 

photocurrent increase of 56.8 to 65.1 mA for the P-BLTF, 14.8 to 17.6 mA for the BLTF, 1.7 to 

2.0 mA for the nanograting, and a decrease of 0.17 to 0.13 mA for the conventional design. In 

the first three designs, the full area of the optical excitation is utilized regardless of carrier 

recombination time. Although the majority of generated photocarriers are collected before being 

recombined, in the τn,p = 0.48 ps case there is still a minority that recombine before being 

reaching the anode. Increasing τn,p minimizes this minor recombination, resulting in the slight 

increase in peak photocurrent that is observed.  
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Figure 2.12.2: Peak anode photocurrent of each of the four electrode designs as a function 

of carrier recombination time τn,p. 
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Figure 2.12.3: FWHM of each of the four electrode designs as a function of carrier 

recombination time τn,p. 
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compared to the P-BLTF. The FWHM is highest and has the most drastic increase with 

recombination time for the nanograting design. Here, the LT-GaAs layer was 500 nm, over four 

times the thickness in the P-BLTF and BLTF designs. Although the nanograting design does 

induce plasmonic localization of the optical field near the anode, much of the photocarriers are 

generated deeper in the LT-GaAs leading to a broadening of the collected current pulse. 

 

2.13. Discussion of the Carrier Screening Effect 

 

Carrier screening is the nonlinear increase in optical reflection loss at the air/LT-GaAs 

interface due to increasing carrier density at higher optical pump power. As discussed in Section 

2.6, this carrier screening effect has not been taken into account in any of the results here. 

However, it is possible to estimate the average effect on the optical power transmittance, and 

consequently the induced photocurrent [191]. First note that the optical conductivity is 

proportional to the total free carrier concentration, Ntot = ND + Nopt. Here, Nopt is the 

concentration of optically generated carriers. For low incident optical power, Nopt << ND and our 

approximation of a constant optical conductivity is reasonable. As the incident optical power 

increases with time there eventually comes a point when Nopt ≥ ND and the optical conductivity 

and surface reflectance will increase. In all cases, Ntot remained on the order of 1016 cm-3 with 

less than an order of magnitude variation between the device geometry.  

To analyze this effect, the spatial and temporal average in Ntot is calculated at the air/LT-

GaAs surface and is used to estimate the expected increased optical conductivity σE, power 

reflectance (RE)2 and expected overestimation in optical power transmittance (1-R2)/(1- (RE)2)-1 

in the current model.  These estimated data are shown in Table 2.13.1. Here, R2 represents the 

reflectance in the current model (i.e. without the carrier screening effect). Neglecting the carrier 
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screening effect leads to overestimation of the optical power transmittance by ~5.8% for the P-

BLTF design. This is due to the large optical fields at the LT-GaAs surface generated by the 

plasmonic nanostructures. In addition, it is important to note that calculated carrier screening 

effect is higher in the nanograting design as compared to the conventional one. This is consistent 

with the validation of our model with experimental data in Figure 2.7.3, where the observed 20% 

overestimation in the calculated and experimental photocurrent enhancement is consistent with 

the observed difference in the carrier screening effect of the nanograting and conventional 

configurations. It is important to note that this simplified model underestimates the reflectance of 

the BLTF and P-BLTF designs, as can be seen by comparing Table 2.13.1 to the reflectance 

spectra of  Figure 2.10.6(b). The simplified model used to calculate the values of Table 2.13.1 

considers only the change in surface reflection of the air/LT-GaAs interface and does not include 

the effects of the nanodisk array and bottom electrode. 

Table 2.13.1: Summary of the Expected Carrier Screening Effect 

Model σ (S/m) σE(S/m) R2 RE2 
1 − 𝑅2

1 − 𝑅𝐸
2 − 1 

Conventional 

1.10∙103 

3.55∙103 

11.3% 

14.0% 3.2% 
Nanograting 4.54∙103 15.0% 4.3% 
BLTF 2.74∙103 12.1% 1.7% 
P-BLTF 5.83∙103 16.2% 5.8% 

 

2.14. Terahertz Emission from the Calculated Optically Induced Photocurrent 

 

In order to fully examine the performance of the various devices configurations as THz 

emitters, a final model was developed to translate the calculated optically induced photocurrent 

to THz electric field emission. Using the RF Module of COMSOL®, a transient study was 

performed of the computational domain illustrated in Figure 2.14.1. Illustrated in Figure 
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2.14.1(c) is a quarter domain representation of the geometry. The external x-z boundary at y = 0 

was a perfect electrical conductor (PEC) symmetry boundary, the y-z boundary at x = 0 was a 

perfect magnetic conductor (PMC) symmetry boundary and all other boundaries were scattering 

boundaries. The electromagnetic properties of the top layer were set to air. The antenna electrode 

pattern was set to a 2D PEC sheet. The first substrate layer represented the adhesive layer, with 

variable thickness, dad, and electromagnetic properties set to the measured THz band properties 

of either JB Weld epoxy or cured SU-8 photoresist. The second substrate layer, dsub, was set to 

500 µm thickness with electromagnetic properties set to either SI-GaAs, 0.65 Ω-cm Si, 50 Ω-cm 

Si, or high-resistivity float zone silicon (HRFZ Si). The final substrate layer dlens was set to 250 

µm thick HRFZ Si to represent the transition from the device substrate to the HRFZ Si THz 

focusing lens. The domain width dimensions wx and wy were set to 500 µm. The antenna 

electrode was a parallel microstrip based bowtie dipole with dimensions described in Figure 

2.14.1(e). The excitation current was described via a spatially uniform surface current density 

across a 2D sheet defined in the antenna gap region and oriented in the +y direction. The time-

profile of the surface current was taken from the calculation of the current density in   

Figure 2.12.1. The radiated THz field was calculated by taking the surface average of the y 

component of the electric field across a one-quarter circle surface of 65 µm diameter in the x-y 

plane centered at x = y = 0 and at various z depth values. 
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Figure 2.14.1: Illustration of the computational domain representation  of the THz PCA. 

(a) y-z plane, (b) x-z plane, (c) isometric view, (d) full x-y plane, and (e) expanded x-y plane 

view of the dipole antenna. 
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with no adhesive layer, no lens layer, and the electric field calculation plane placed at 250 µm 

below the antenna inside the substrate layer. The substrate was set to LT-GaAs. Convergence of 

the time step size dt was observed by decreasing dt from 0.1 ps to 0.01 ps. The results of this 

study are shown in Figure 2.14.2.  

 

Figure 2.14.2: Time step convergence of the emitted THz electric field and comparison 

between COMSOL® Multiphysics and ANSYS® HFSS. 

 

 

Convergence of the results was observed for values of dt ≤ 0.02 ps. Also shown in Figure 

2.14.2 is the same geometry solved using a second computation software, ANSYS® HFSS. These 

results are shown as the trace of black dots in Figure 2.14.2. Both the converged COMSOL 

results and the HFSS results overlap exactly, thus supporting that error arising from the 

numerical solvers and geometric configuration in both solvers were minimized. In addition, it 

was important to note that for HFSS the frequency dependence of the material electrical 

permittivity was taken into account, while for COMSOL the electrical permittivity of the LT-

GaAs was fixed to its corresponding value at 1 THz. This indicated that the frequency 

dependence did not have a significant impact in these time-domain calculations. This model was 

utilized for examining the initial round of fabrication and experimental results, which will be 

discussed in depth in Chapter 3 of this dissertation. 
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Chapter 3. Fabrication Process of the Plasmonic Thin-Film THz Emitter 

 

This chapter will discuss the various fabrication processes used in the creation of the 

plasmonic thin-film emitter prototypes. To better understand the next two chapters, it is 

important to consider the overall timeline of this work. After the computational design of the 

proposed THz emitter, the next step was to fabricate the devices using fabrication methods 

hypothesized to have a high yield of working devises. Each step was attempted to be optimized 

and at the end of the first fabrication round, approximately 35 expected working devices were 

produced. The first round of experimental measurements and testing took place during a visit to 

the facilities of Teraview LTD, a UK based company specializing in the manufacture and 

development of commercial THz systems. However, the overall results of the trip indicated that 

several flaws in the first round fabrication processes were preventing the devices from working 

as designed. Suggestions were made to modify the fabrication process in order to overcome these 

issues, which lead to a second round of fabrication.   

The following chapter is organized into four parts. First, an overview of the general 

fabrication methodology is given, since this remained the same between both rounds. Second, the 

first fabrication round will be discussed in detail. Third, an analysis and discussion will be given 

over the preliminary experimental results and the conclusion that a flawed first-round fabrication 

approach was the cause of the non-working devices. Finally, the updated second-round 

fabrication process will be presented. The measurement results will be presented in Chapter 4. 

3.1. Overview of the Fabrication Process 

 

The fabrication process was divided into five main steps; molecular beam epitaxial growth of 

the LT-GaAs, photolithographic patterning of the antenna electrodes, flip-mounting to a resistive 
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Si carrier wafer, removal of the GaAs wafer substrate, and electron beam lithography (EBL) of 

the nanodisk array. Illustrations of the steps are shown in Figure 3.1.1.   

 

Figure 3.1.1 Illustrative overview of the plasmonic thin-film THz emitter fabrication. (a) 

MBE wafer growth, (b) antenna electrodes patterning, (c) flip-mounting to Si carrier, (d) 

substrate removal, and (e) electron beam lithography patterning of metal nanodisk array. 

 

First, a system of epitaxial layers is grown on a SI-GaAs substrate using molecular beam 

epitaxy (MBE), as shown in Figure 3.1.1(a). The first layer is a 500 nm thick GaAs “buffer” 

layer, which provides a high quality, low defect surface for the subsequent layer growths. The 
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second layer is a 200 nm thick Al0.85Ga0.15As layer, which will be used as an etch-stop during the 

substrate removal process. The Al fraction determines the etching selectivity. The final layer is 

the 120 nm thick LT-GaAs active layer. The second step, shown in Figure 3.1.1(b), is the 

patterning of the THz antenna metallization. Standard processes consisting of photolithographic 

patterning of a photoresist, electron-beam metal evaporation and photoresist-metal liftoff are 

used to produce the bias pads, microstrip lines and anode/cathode of the antennas. Figure 3.1.1(c) 

shows the third step, which is the flip-mounting of the antenna to a resistive Si carrier wafer. 

This flip-mounting is necessary for the substrate removal process, shown in Figure 3.1.1(d).  

Removal of the substrate leaves only the thin 120 nm LT-GaAs layer and antenna 

metallization. As such, the resistive Si substrate is needed to provide mechanical support for the 

device. Removal of the substrate consists first of a mechanical polishing of the SI-GaAs to 

reduce its thickness from 500 µm to less than 100 µm. Next, a chemical etchant such as an 

ammonia hydroxide/hydrogen peroxide solution is used to chemically etch the remaining SI-

GaAs material, down to the Al0.85Ga0.15As etch stop layer. As long as the fractional Al 

concentration x is sufficiently high, the etching rate of the SI-GaAs can be several orders of 

magnitude greater than AlxGa1-xAs, allowing the LT-GaAs layer to be protected during the SI-

GaAs removal. The AlxGa1-xAs can then be removed using diluted hydrochloric acid (HCl), 

which will not affect the LT-GaAs layer. The final step, shown in Figure 3.1.1(e), is the electron 

beam lithography (EBL) patterning of the metal nanodisk array.  

The process steps of the three design variations for the THz PCAs described in this 

dissertation are summarized in Figure 3.1.2. All three designs shared the same first and final 

steps, while the bottom-located thin-film (BLTF) and plasmonic bottom-located thin-film (P-

BLTF) both required the substrate removal step.  
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Figure 3.1.2: Summary of process steps required for each of the three THz PCA designs. 

 

In addition, the P-BLTF required an EBL step to pattern the metal nanodisk arrays. Important 

to note was that the devices produced without performing the substrate removable process were 

really “modified conventional” devices. In standard conventional THz emitters as described in 

the literature, the substrate/photoconductor layer consists of a SI-GaAs substrate with around 1 

µm or more LT-GaAs grown on the surface. The antenna electrodes were then patterned on the 

LT-GaAs layer. The modified conventional devices described in this dissertation differ from this 

conventional architecture, in that the LT-GaAs layer was around an order of magnitude reduced 
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in thickness at 120 nm. Additionally, there was a 200 nm Al0.85Ga0.15As etch stop layer between 

the LT-GaAs and the substrate.  

3.2. First-Round of Plasmonic Thin-Film THz Emitter Fabrication 

3.2.1. MBE Wafer Growth 

 

The wafer used in the first round of fabrication was grown at the University of Arkansas 

Institute for Nanoscience and Engineering MBE facility by Dr. Vasyl Kunets. The wafer was a 

2” diameter SI-GaAs wafer, 515 µm thick. A 500 nm GaAs buffer layer was grown at 588 °C, 

followed by a 200 nm Al0.85Ga0.15As etch stop grown at 609 °C, and lastly, the 120 nm LT-GaAs 

layer grown at 290 °C. For the LT-GaAs layer growth, the As2/Ga beam equivalent pressure 

ratio was approximately 20. No post-growth anneal was performed for the first round of 

fabrication.  

3.2.2. Photolithography Patterning of the Antenna Electrodes 

 

As previously mentioned, the patterning of the antenna electrodes on the LT-GaAs layer 

utilized standard photolithography processes. For this, a positive photomask was designed and 

purchased. Four different general patterns were considered, three of which are illustrated in 

Figure 3.2.2.1. These are a parallel microstrip (M), simple face-to-face dipole (D), and bowtie 

dipole (B) with variable dipole length L and gap size G. The fourth pattern, not shown, is a copy 

of the bowtie dipole antenna described in [71].  Each pattern consists of five replications 

arranged vertically, with the text at the top indicating the antenna type (M, D or B), length (L) 

and gap (G) in microns.  
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Figure 3.2.2.1: Layouts of the microstrip, dipole, and bowtie (white color represents metal). 

 

The arrangement of the patterns on the full mask layout is shown in Figure 3.2.2.2. Each 

white square represents the location of the antenna patterns described by the text above. There 

were 20 total different antenna design variations (not shown in Figure 3.2.2.2), five microstrips, 

six face-to-face dipoles, six bowties, and one bowtie (UCLA) based on reference [71]. The first 

round photomask was designed to provide this large number of different THz antenna designs to 

allow for potential experiments to be conducted later to study the effect of varying the antenna 

geometry.   
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Figure 3.2.2.2: Pattern layout of the first round photomask. 

 

 

A positive photolithography process was developed for the antenna electrode patterning. 

Some of the processes in this step were later determined to be unnecessary and removed from the 

second round fabrication. However, all processes will be explained from the perspective of their 

original reasoning. The process is illustrated in Figure 3.2.2.3.  
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Figure 3.2.2.3: Illustrated overview of the first round photolithography process. 

 

After cleaning the sample with acetone, IPA, and DI-H2O and dehydrating at 100 °C for 5 

min, AZ 5214 photoresist was spun on at 3000 RPM for 30 seconds, Figure 3.2.2.3(a). After a 95 

°C, 90 s pre-exposure bake, the sample was placed in the mask aligner and the pattern was 

exposed in UV light for 18 s, Figure 3.2.2.3(b). Images of the exposed and developed photoresist 

for exposure times of 14, 18 and 22 s are shown in Figure 3.2.2.4. For the 14 s exposure, residual 

photoresist is left behind due to incomplete exposure. In the 22 s exposure, the pattern is slightly 

overexposed as can be seen by the broadening of the microstrip line in the upper left hand corner. 

As such, 18 s exposure was chosen as the optimized exposure time.   
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Figure 3.2.2.4: Microscope images of the developed photoresist on LT-GaAs for varying 

exposure time. Image is taken over the bias pad of the antenna pattern. 

 

After exposure, the sample was developed in AZ 300MIF for 100 s, Figure 3.2.2.3(c). Here it 

was critical to consistently agitate the sample, either by lightly spraying the surface with 

developer or holding the sample with tweezers and swirling it in the developer. This ensured that 

the full pattern was developed in 100 s.  Note in Figure 3.2.2.3(c) that due to diffraction of light 

at the mask edge, a positive slope was created in the photoresist sidewall. After developing, the 

sample was immediately rinsed in DI-H2O for 60 s, blown dry with N2, and baked for 95 °C for 

60 s. The surface of the exposed region was then further cleaned by descumming in a plasma 

cleaner (PE-50 Plasma Cleaner) [192], 200 sccm O2 rate, 30 W power for 15 s and the GaAs 

native oxide layer is removed by a 30 s soak in 3:10 ratio HCl:DI-H2O. After this soak, the 

sample was held under a continuous rinse of DI-H2O for 5 min and kept in DI-H2O until ready 

for metal evaporation. This prevented re-oxidization of the exposed LT-GaAs surface.  

The next step was to deposit the metal for the antenna electrodes via e-beam evaporation. 

The sample was removed from the DI-H2O, blown dry with N2, and baked at 100 °C for 60 s for 

dehydration. The sample was immediately loaded into the e-beam evaporation chamber 

(Edwards 306 [193]) and pumped down. This evaporator included a pre-deposition Ar plasma 
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cleaning process, which was utilized for all samples. After pumping to < 4x10-6 mTorr, the 

electrode metallization consisting of 5/400 nm Ti/Au were evaporated at rates of < 0.1 nm/s and 

< 0.4 nm/s, respectively (see Figure 3.2.2.3(d)). After metal evaporation, the sample is soaked in 

acetone to dissolve the photoresist layer (see Figure 3.2.2.3(e)). Due to the positive sidewall 

profile, a continuous layer of Ti/Au connected the metallization on the LT-GaAs surface with the 

floating metallization where the photoresist was removed. This required sonication to remove the 

unwanted metallization, which had the negative impact of causing defects in the antenna 

metallization as illustrated in Figure 3.2.2.3(f). An example of this sort of defect is shown in the 

microscope image of Figure 3.2.2.5. 

 

 

Figure 3.2.2.5: Microscope image of bowtie antenna pattern after metallization and liftoff. 

Zoomed images shows sonication induced damage to the microstrip line. 
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3.2.3. Wafer Mounting and Substrate Removal 

 

After patterning of the antenna electrodes, the next step was to remove the wafer substrate 

and Al0.85Ga0.15As layer. This was accomplished through a combination of mechanical lapping 

and selective chemical etching. First, the sample was flip-mounted to a 515 µm thick Si carrier 

substrate and bonded using an off-the-shelf epoxy as shown in Figure 3.2.3.1. Uniform pressure 

was applied to reduce the thickness of the epoxy layer and ensure that the sample mounted level 

with respect to the Si carrier substrate. Ensuring that the sample was mounted level was a critical 

step, for reasons that will be discussed later in this section.  

 

 

Figure 3.2.3.1: Illustrate of flip-mounting of the sample to the Si carrier substrate. 

 

After the epoxy was allowed to cure for 24 hours, the sample was mounted to a glass carrier 

plate using bonding wax (heated to 80 °C) and placed in the Logitech PM5 Lapping and 

Polishing System [194]. The system is illustrated in Figure 3.2.3.2. A mixture of 3 µm Al2O3 

powder and DI-H2O was dripped onto a rotating glass plate. The sample was mounted to a 

spring-loaded sample chuck which applied an even pressure between the sample and plate 
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surface. Thinning of the sample was achieved through the mechanical polishing of the sample 

surface by the Al2O3 solution. Four variables were able to be controlled in this setup; slurry 

concentration, slurry drop rate, plate RPM, and sample pressure. As shown in the work of 

Prakash, Tyagi and Gupta, slurry concentration and drop rate do not have significant influence 

on the sample lapping rate [195]. This was confirmed for slurry concentration and drop rates 

varying from 4% to 20% and 15 min-1 and 45 min-1, respectively, where the variation in lapping 

rate across these variable ranges was less than 2%.  

 

 

 
Figure 3.2.3.2: Illustration of the Logitech PM5 Lapping and Polishing System. 

 

Due to the difficulty in controlling the sample pressure, this variable was held constant at a 

comparatively low value and the plate RPM was varied to achieve different lapping rates. For 

most cases, plate RPM of around 5 was used to achieve a lapping rate of approximately 5-10 

µm/min. It is important to note that the lapping rate varied slightly from sample to sample, even 

if all other factors were kept constant. Therefore, it was critical that the sample thickness be 
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checked periodically to confirm the sample lapping rate. The samples were lapped to reduce the 

GaAs wafer thickness to below 100 µm.    

After lapping, the sample was removed from the glass plate and residual wax on the backside 

of the Si carrier was removed with heat and an acetone soaked cleanroom wipe. To remove the 

remainder of the GaAs substrate a 3:19 selective etch solution of NH4OH:H2O2 (NH4OH = 30% 

solution in water, H2O2 = 35 % solution in water) was used [196]. The selectivity, defined as the 

ratio of etch rate for two materials, is as high as 200 for GaAs to AlGaAs for this solution. To 

increase the etch rate the samples were initially agitated in a sonicator for approximately 20 min 

to remove the remaining GaAs wafer. However, it was later considered that the agitation may 

have been too aggressive and caused damage to the LT-GaAs thin film later. As such, later work 

adopted a gentle agitation by hand to prevent damage to the LT-GaAs.  

Figure 3.2.3.3 shows photographs of the samples at points during the selective etching 

process just as the Al0.85Ga0.15As layer begins to be exposed (left) and after the GaAs substrate is 

completely removed (right). On the left image it can be seen that once the Al0.85Ga0.15As layer is 

exposed it is visible as a glossy, semi-transparent green-purple layer, whereas the GaAs 

substrates is less glossy, opaque and grey. In the image on the right, it is seen that once the GaAs 

substrate layer is fully removed, the antenna electrodes can be observed through the semi-

transparent LT-GaAs and Al0.85Ga0.15As layers. After the GaAs substrate was completely 

removed, the sample was rinsed continuously for 5 min in DI-H2O. It is critical that any residual 

etchant is removed from the sample, since the next step is to remove the Al0.85Ga0.15As etch stop 

layer. If residual etchant is left on the sample, it can react with and damage the LT-GaAs layer 

after the Al0.85Ga0.15As is removed. Once the sample was cleaned of etchant, it was placed in a 

30% HCl solution for approximately 30 s to remove the Al0.85Ga0.15As layer. Provided there is no 
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residual oxidizer on the sample surface from the previous etching step, HCl will not etch the LT-

GaAs. 

 
Figure 3.2.3.3: MBE GaAs wafer sample flip mounted onto an Si carrier wafer just as the 

Al0.85Ga0.15As layer is starting to be exposed (left) and just after the Al0.85Ga0.15As is fully 

exposed (right). 

 

As previously discussed, level mounting of the GaAs sample to the Si carrier wafer is 

critical. The problem that can be caused by non-level mounting is illustrated in Figure 3.2.3.4. 

When the sample is mounted to the Si carrier with some tilt, the mechanical lapping process will 

induce a non-uniform thickness to the GaAs substrate. As the sample is etched in NH4OH:H2O2 

the GaAs on the thinner side of the sample will be removed first, as shown in Figure 3.2.3.4(c). 

Since the etchant selectivity is finite, the Al0.85Ga0.15As layer effectively slows the etching, it 

does not completely halt it. If the tilt is great enough, the Al0.85Ga0.15As layer on the thin side can 

become fully etched before the GaAs substrate on the thick side is completely removed, shown 

in Figure 3.2.3.4(d). If this happens, the LT-GaAs in the exposed areas will be immediately 

removed.  
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Figure 3.2.3.4: Illustration of a non-level mounted GaAs sample and the non-uniform 

lapping and etching it causes. 

 

An example of this effect is shown in the photograph in Figure 3.2.3.5. Here, an MBE GaAs 

sample was mounted to glass without considering the necessity of level mounting. It was 

observed that on the left the Al0.85Ga0.15As and LT-GaAs layers became fully etched, while on 

the right there is still remaining GaAs substrate. In between, there is a region where the 

protective Al0.85Ga0.15As remains. Once this effect was observed, samples were mounted with    

< 10 µm vertical displacement across a 5-10 mm horizontal displacement. The mounting was 

achieved by first mounting the Si carrier wafer to the lapping system’s glass mounting plate 

using bonding wax. Epoxy was then placed on the Si carrier and the MBE GaAs samples were 

placed LT-GaAs side down onto the epoxy with moderate pressure. Using digital calipers, the 
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total thickness (glass plate + Si carrier + epoxy + MBE GaAs wafer) was measured at various 

points around the edge of the sample. Pressure was applied to the sample as needed to produce 

the necessary minimized vertical displacement.  

 

 
Figure 3.2.3.5: Photograph of a non-level mounted MBE GaAs sample on glass during the 

substrate removal etching process. 

 

After the GaAs substrate and Al0.85Ga0.15As layers were removed, a final photolithography 

step was required to remove the LT-GaAs over the bias pad regions to allow for electrical 
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to the LT-GaAs layer due to differences in thermal expansion coefficients of the epoxy and LT-

GaAs layer. Therefore, no pre-exposure bake was performed. The sample was then placed in the 

mask aligner and a simple positive photomask was used to block the UV in a rectangular strip 

region over the dipole antennas. The sample was overexposed for 22 s since this process did not 
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in DI-H2O for 2 min and blown dry with N2. This process left a vertical strip of photoresist on 

the LT-GaAs surface, centered over the dipole antennas and approximately 1 mm wide. The 

sample was then placed in 3:19 NH4OH:H2O2 solution for < 30 s to etch the LT-GaAs layer in 

the regions over the bias pads that were not protected by the photoresist. The sample was again 

rinsed in DI-H2O for 5 min (critical to completely remove etchant), rinsed in acetone to remove 

the photoresist, rinsed in IPA and DI-H2O, blown dry with N2, and baked for 60 s at 95 °C to 

remove any residual water from the surface.  

 

Figure 3.2.3.6: Microscope image of a BLTF THz PCA fabricated using the first round 

fabrication methods. 

 

A microscope image of a typical device fabricated with this method is shown in Figure 

3.2.3.6. The LT-GaAs thin film layer can be seen at the center as the blue-green vertical strip. 

The dipole antenna is visible through this semi-transparent layer, as shown by the zoomed image 
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at the top. It is important to note the defects and debris across the sample. In the LT-GaAs layer 

there are cracks and defects throughout the surface. However, only the region in the antenna gap 

is utilized for generation of photocarriers. Therefore, defects and debris in the LT-GaAs in other 

regions should not affect the device performance.  

3.2.4. Electron Beam Lithography 

 

The difference between the fabrication processes of the BLTF and P-BLTF designs is the 

addition of an EBL step to produce the metallic nanodisk arrays on the LT-GaAs surface. Before 

fabricating the nanodisks on the processed samples, several parameters were optimized to ensure 

consistency in the size and shape of the array. Optimization was performed on scrap GaAs wafer 

material and all EBL patterning was performed on the FEI XL-30 Environmental Scanning 

Electron Microscope [197] at the University of Arkansas Nano and Bio Materials 

Characterization Facility. This instrument is fitted with the Nanometer Pattern Generation 

System (NPGS) from JC Nabity Lithography Systems [198], which allows for the EBL 

patterning to be performed. For all EBL processes, the following sample preparation procedure 

was performed. The sample surface was cleaned with acetone and IPA, then blown dry with N2. 

The EBL photoresist 495 PMMA A4 [199] was spun on to the GaAs surface at 3000 RPM for 45 

s, followed by a 180 °C bake for 75 s.  

In this EBL system, two critical factors required optimization in order to produce the desired 

nanodisk array patterns: the pattern magnification scale (MS) and pattern exposure dose (ED). 

The MS dictates the uniform overall uniform size of the pattern while the ED dictates the total 

electrical charge per unit area deposited into the pattern in units of µC/cm2. Another factor, the 

working distance, determines the physical distance between the sample surface and the e-beam 
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source. For the nanodisk arrays there were two defining geometric parameters, the disk center-to-

center spacing S and the disk diameter d. For a fixed input array size, the actual produced S 

depends on the MS, while the produced d depends on both MS and ED. Shown in Figure 3.2.4.1 

is the result of a study of the effects of MS on S. Here, a pattern consisting of a 10x10 array of 

nanodisks with input geometry parameters Sinput = 520 nm and dinput = 200 nm was patterned at 

MS values ranging from 88,000 to 94,000. Here, the measured Sactual of the array (top) and 

absolute error (Sactual – Sinput)/Sinput (bottom) after 5/40 nm Ti/Au metallization and liftoff is 

plotted as a function of MS. The error was below 1% and minimum between MS = 91,000 and 

92,000.  MS = 92,000 was utilized for the remaining work in this dissertation.  

 

Figure 3.2.4.1: Measured nanodisk spacing Sactual for an array with input nanodisk spacing 

of 520 nm (top vertical axis) and absolute error (bottom vertical axis) as a function 

magnification scale (horizontal axis). 
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Several optimization trials were performed in order to determine the optimum ED.  The first 

study considered varying dinput between 100, 150, and 200 nm and varying ED between 200, 300, 

400, 500, and 600 µC/cm2. After 5/40 nm Ti/Au metallization and liftoff, the samples were 

imaged in the SEM and dactual was measured. Figure 3.2.4.2 illustrates the results of this study in 

terms of the difference in dactual and dinput (∆d) as a function of ED for varying dinput. It was 

observed that ∆d was near zero only when dinput = 150 and 100 nm and ED = 200 µC/cm2. When 

dinput = 200, the lowest ∆d observed was around 100 nm for both ED = 200 and 300 µC/cm2.  

 

Figure 3.2.4.2: Difference in dactual and dinput for dinput varying from 100 to 200 nm as a 

function of ED. 
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160 and 200 nm. This effect of nonuniform disk size was observed for all arrays patterned with 

ED < 300 µC/cm2. To avoid this, ED = 300 µC/cm2 was utilized in all other EBL work. 

 

Figure 3.2.4.3: SEM images of Ti/Au nanodisk arrays fabricated on GaAs using EBL. dinput 

= 150 nm and (a) ED = 600 µC/cm2, (b) ED = 300 µC/cm2, and (b) ED = 200 µC/cm2. 
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of input geometry values varying dinput = 75, 80, 85, and 90 nm and Sinput = 500, 510, 520, and 

530 nm. After patterning, 5/40 nm Ti/Au metallization and liftoff was performed, followed by 

SEM imaging of the sample to acquire values of Sactual and dactual. The results are summarized in 

Table 3.2.4.1. Here, it was observed that the desired Sactual = 520 nm and dactual = 200 nm 

occurred at Sinput = 500 nm and dinput = 150 nm.  

Table 3.2.4.1: Measured Sactual and dactual as a function of Sinput and dinput. Optimum 

parameters are highlighted in bold. 

  Sinput (nm) 

  500 510 520 530 

d
in

p
u
t (

n
m

) 

150 
520 

200 

540 

200 

555 

200 

565 

200 

160 
520 

210 

540 

215 

555 

210 

565 

210 

170 
520 

225 

540 

225 

555 

220 

565 

225 

180 
520 

230 

540 

235 

555 

230 

565 

230 

 

With the EBL parameters optimized to yield the desired nanodisk array geometry, the next 

step was to pattern the nanodisk arrays on the LT-GaAs layer of the fabricated BLTF devices. 

Initially, there were concerns with how well the nanodisk patterns optimized on the scrap GaAs 

would pattern on the LT-GaAs thin-film layer. The reason for this is that with SEM imaging, the 

surface to be imaged needs to have some electrical conductivity to prevent charge buildup from 

the electrons. Since the LT-GaAs thin-film is separated from the bulk Si substrate by an epoxy 

layer, it was uncertain if the epoxy would prevent dissipation of the electron charge and have a 

negative effect of the EBL patterning. However, after testing the pattern on a sample of 120 nm 

LT-GaAs epoxy bonded to Si, there were no notable differences in the pattern as compared to 

those on scrap GaAs.  
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The P-BLTF samples were prepared for EBL patterning in the same manner as the previously 

described scrap GaAs samples. One of the main considerations with this process was the 

alignment of the nanodisk pattern with the antenna electrodes. The goal was to have the array 

patterned, at a minimum, over the antenna anode, gap, and cathode. The method for alignment 

and orientation of the sample is illustrated in Figure 3.2.4.4.  

 

Figure 3.2.4.4: Illustration of the method used for aligning the THz-PCA pattern with the 

EBL system. 
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With the SEM in imaging mode, the right side bias pad was located and the imaging window 

was centered over the junction of the bias pad with the microstrip line. The window was blanked, 

and moved to the left a distance of 3 mm (the length of the microstrip line). It was important to 

ensure that the SEM imaging window never passed over the area where the nanodisk array was 

intended to be patterned without first being blanked. The reason for this is to avoid exposing the 

PMMA resist in this area and affecting the pattern. If the sample was mounted with no angular 

tilt, the viewing window should have been centered at the left end of the bottom microstrip line. 

Any displacement of this from the center indicated that the sample was not aligned, so the 

sample stage was rotated accordingly to correct for this. This process was repeated until no 

sample tilt was observed. 

After the sample was oriented, the viewing window was centered over some known reference 

point (for example, the junction of the bias pad with the microstrip line). From here, the pattern 

writing program was set to blank the imaging window, move from the reference point to the 

center of the antenna dipole gap, pattern the nanodisk array, and move back to the starting 

reference point. Since the alignment accuracy was not well known, a relatively large 80x80 µm2 

nanodisk array was utilized to ensure that all three regions (anode, gap, and cathode) were 

covered. After patterning development, 5/40 nm Ti/Au was evaporated and lifted off in acetone 

to produce the metallic array structures. Figure 3.2.4.5 shows optical microscope and SEM 

images of the fabricated nanodisk arrays on the LT-GaAs thin-film antenna. In both the optical 

microscope and SEM images, the antenna electrodes, located under the 120 nm LT-GaAs layer, 

could be observed. The nanodisk array had the desired dimensions of d = 200 nm and S = 520 

nm. In most cases, it was observed that the added process of patterning the nanodisks induced 

cracks and defects to the LT-GaAs thin-film layer. An example is shown in the optical 
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microscope image of Figure 3.2.4.5, where a vertical crack in the LT-GaAs was observed on the 

left side.  

 

Figure 3.2.4.5: Microscope and SEM image of P-BLTF anode after nanodisk array 

fabrication. 
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3.2.5. Device Packaging 

 

After the individual chips were fully processed, the final step was to package the devices for 

later testing. In order to easily connect to the individual devices electrically, the electrodes of the 

antennas needed to be connected to a larger conductor that could be connected to by hand. 

Therefore, a simple copper clad FR4 printed circuit board (PCB) was designed with five separate 

traces for the anode of each device and a single ground trace for the cathodes. The traces were 

soldered to a custom 6-pin cable designed to easily connect to a custom-made switching box. 

The PBC and switching box are shown in Figure 3.2.5.1. The switching box had a single coax 

output and allowed the DC bias voltage to be easily switched between devices.  

 

Figure 3.2.5.1: PCB and switching box for device packaging and testing. 
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A separate PCB was fabricated for each of the THz PCA chips. The devices were mounted to 

the non-copper side of the PCB using the same JB Weld epoxy used to bond the thin-film LT-

GaAs to the Si substrate. A cross section illustration of the THz PCA mounted to the PCB is 

shown in Figure 3.2.5.2. One problem that arose was the electrical connection to the antenna 

electrodes. Originally, the plan was to utilize wire bonding to connect from the PCB copper to 

the antenna bias pads. Wedge bonding was attempted first, and was found to work fairly well for 

the modified conventional devices. However, for the BLTF and P-BLTF devices, the JB Weld 

epoxy under the bias pad metallization did not provide enough mechanical support to allow wire 

bonding. Every attempt to bond to the bias pads would effectively break through the bias pad and 

deform the underlying epoxy layer without bonding. Ball bonding was attempted as well with the 

help of University of Arkansas High Density Electronics Center staff member Mike Steiger. 

Here, it was observed that bonds that did appear the be successful would easily pull the 

metallization away from the surface under very little force. This was likely due to the poor 

adhesion between the antenna metallization and the underlying epoxy layer.  

 

Figure 3.2.5.2: Cross section illustration of the device mounted to the PCB. 
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In order to electrically connect to the device, a less than conventional method was utilized. 

As shown in Figure 3.2.5.2, a conductive epoxy Epotek P1011 [201] was manually applied to 

create an electrical bridge from the antenna bias pads to the PCB metallization. Due to the scale 

and vicinity of the bias pads to one another, the conductive epoxy traces needed to be applied in 

sub-millimeter widths. This required looking at the sample surface through a microscope while 

manipulating the epoxy on the end of a fine point needle to “draw” the epoxy traces. After 

applying the epoxy, the samples were oven baked at 150 °C for 30 min to cure and activate the 

epoxy. After baking, the resistance across the epoxy was checked using a probe station and 

found to be < 5 Ω for the majority of connections. This was considered to be a negligible 

resistance when considering that the gap resistance of the antenna was expected to be on the 

order of 109 Ω. With the mounting and electrical connection to the PCB, the fabrication process 

for the first round of devices was complete. Seven total samples were fabricated, each with five 

devices patterned, two modified conventional, three BLTF, and two P-BLTF. A preliminary 

experimental check of the devices was performed in which each was connected to a DC 10 V 

bias and the anode current was measured under dark and light (broadband white light) 

conditions. The purpose here was to observe a current increase under illumination to check for 

device photoresponsivity and potential electrical faults. The results of this test are shown in 

Table 3.2.5.1.  “Pass” indicated that when measuring the device current, a significant increase 

was observed under broadband white light illumination. “Fail” indicated that no photocurrent 

increase was observed. 
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Table 3.2.5.1: Dark and light photocurrent measurements of the first round devices under 

a DC 10 V bias. 

Chip Name Device Number Dark Current (µA) Light Current (µA) Pass/Fail 

 1 0.1 12.3 Pass 

 2 0.1 10.9 Pass 

Modified 

Conventional 1 

3 0.1 11.1 Pass 

4 0.1 12.3 Pass 

 5 <0.1 6.0 Fail 

 1 0.7 14.4 Pass 

 2 0.7 14.5 Pass 

Modified 

Conventional 2 

3 0.9 16.4 Pass 

4 0.7 17.5 Pass 

 5 26.1 40.4 Fail 

 1 140 264 Pass 

 2 ∞ ∞ Fail 

BLTF 1 3 ∞ ∞ Fail 

 4 16 31 Fail 

 5 110 287 Pass 

 1 75 209 Pass 

 2 80 258 Pass 

BLTF 2 3 81 242 Pass 

 4 80 242 Pass 

 5 0 0 Fail 

 1 52 116 Pass 

 2 37 100 Pass 

BLTF 3 3 43 120 Pass 

 4 36 93 Pass 

 5 37 81 Pass 

 1 47 140 Pass 

 2 40 138 Pass 

P-BLTF 1 3 45 145 Pass 

 4 44 165 Pass 

 5 N/A N/A Fail 

 1 116 232 Pass 

 2 120 280 Pass 

P-BLTF 2 3 N/A NA Fail 

 4 144 390 Pass 

 5 ∞ ∞ Fail 

 

3.3. Failure Analysis of First-Round Prototype Devices 

 

Experimental analysis of the first round of the THz PCA devices revealed several unexpected 

problems with the devices. After fabrication, the devices were taken to Teraview LTD., a 
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company located in the United Kingdom that is manufacturing terahertz technology [202]. There, 

several tests were conducted and although THz emission was observed in the modified 

conventional emitters, it was several orders of magnitude weaker than anticipated. Additionally, 

no THz emission was observed from the BLTF or P-BLTF emitters. This section will present the 

theoretical and experimental analysis of the first round devices that was performed to determine 

their modes of failure.  

3.3.1. I-V Characteristics 

 

When discussing the fabrication process of the BLTF and P-BLTF devices with Michael 

Evans, staff member at Teraview LTD., there was an immediate concern over the epoxy bond of 

the LT-GaAs thin film to the Si substrate. This was before the first testing was even performed 

that concluded that these devices did not generate measureable THz radiation. As illustrated in 

Figure 3.3.1.1, when the LT-GaAs thin film layer is bonded to the Si substrate with epoxy, there 

are two contributions to the gap resistance that exist in parallel with each other; RLT-GaAs and 

Repoxy.  

 

Figure 3.3.1.1: Hypothesized gap resistance contributions in the P-BLTF device. 
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If Repoxy > RLT-GaAs, the total device resistance of the BLTF and P-BLTF devices will be 

lower than the modified conventional devices. This introduced an unwanted conduction path in 

close proximity to the photoconductive gap of the device, which could reduce the device 

capacitance and interfere with THz generation mechanisms.  

After the initial measurement attempts concluded that the BLTF and P-BLTF devices did not 

produce measureable THz radiation, the first step was to analyze the dark I-V characteristics of 

the devices. Current was measured for each device as a function of bias voltage from 0 to 2 V. 

Higher voltage ranges, some as high as 100 V, were also measured for select devices and 

confirmed the same linear trends observed in the 0 to 2 V range. Measurement results for the 

average I-V characteristics of each design are shown in Figure 3.3.1.2. 

 
Figure 3.3.1.2: Average I-V characteristics of the first round fabricated devices. 
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MΩ for the modified conventional devices. Assuming that the resistance of the modified 

conventional emitter is approximately the resistance of the LT-GaAs and following the resistance 

model described by Figure 3.3.1.1, the resistance values were RLT-GaAs = 20 MΩ and Repoxy = 

(1/RBLTF - 1/RLT-GaAs)
-1 = (1/1 – 1/20)-1 MΩ = 1.05 MΩ. Low resistance of the gap would 

effectively lower the capacitance of the gap, decreasing the amount of stored energy able to be 

released as a THz pulse. 

3.3.2. THz Transmission Characterization of Substrate and Adhesive Materials 

 

Another potential contributor to the poor performance in the first round devices was THz 

absorption loss in the substrate and adhesive materials. In the modified conventional emitters, 

THz is generated at the electrodes and propagates through the GaAs substrate before transmitting 

into the Si lens. In the BLTF and P-BLTF, THz is generated at the electrodes, propagates 

through the thin layer of adhesive, transmit into and propagates through the Si substrate, and 

transmits into the Si lens. Since the I-V measurements of the previous measurements indicated 

higher gap conductivity than expected, there was a concern that absorption losses in these layers 

could be occurring.  

In order to quantify the absorption loss in these materials, THz time-domain spectroscopy 

was performed on various samples of the materials. The system utilized was a Teraview TPS 

Spectra 3000, shown in Figure 3.3.2.1 [202]. THz spectroscopy was performed on six different 

samples; the unprocessed GaAs MBE wafer, JB Weld Epoxy, SU-8 2000.5 photoresist and three 

difference Si samples; the Si wafer used in the first round of fabrication (assumed to be high 

resistivity), a 50 Ω-cm wafer, and 0.65 Ω-cm wafer. SU-8 2000.5 was investigated as an 

alternative adhesive material due to its high post-cure strength and low electrical resistance. 
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Figure 3.3.2.1: Photograph of the Teraview TPS Spectra 300 system utilized to 

characterized the THz properties of the antenna materials. 

 

The system measures the magnitude and phase of the THz field transmitted through the 
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+
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𝑐0
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Here, Es and Er are the sample and reference complex electric field values, T(n) is the 

transmission coefficient, d is the sample thickness, ω is angular frequency, α is the material 

absorption coefficient, n is the refractive index, and c0 is the free space speed of light. For the 
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GaAs and Si samples, the reference measurements were taken as transmission through the 

nitrogen gas (N2) purged chamber with nothing in the beam path.  

For the JB Weld Epoxy and SU-8 2000.5 measurements, the samples needed to be mounted 

to some supporting medium, which would then be taken as the reference. Figure 3.3.2.2 shows a 

photograph of the SU-8 2000.5 and JB Weld sample preparation.  

 

Figure 3.3.2.2: Photograph of the JB Weld and SU-8 2000.5 sample preparation for THz 

spectroscopic characterization. 
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unsuitable for THz transmission spectroscopy), scraped off as small flakes, ground to a fine 

particle size, and incorporated into a polyethylene tablet. Two tablets were made, one reference 

tablet containing 500 mg of polyethylene and one sample tablet containing 500 mg of 

polyethylene and 112 mg of the SU-8 2000.5 particles. The difference in tablet thickness 

corresponds to the thickness d of the SU-8 2000.5 material, since the background polyethylene 

material mass was kept the same. The derived values of n and k from the sample measurements 

are shown in Figure 3.3.2.3.  

 

Figure 3.3.2.3: Real and imaginary refractive index values calculated from THz TDS 

transmission measurements of the various substrate materials. 
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values of the n of the JB Weld Epoxy and Si substrates. It is possible that losses could have 

occurred through reflections at the JB Weld/Si interface due to mismatch.   

3.3.3. Modeling of THz Transmission Through PCA Substrate  

 

In order to more accurately understand the THz wave propagation through the THz antenna 

structure, two models were developed and considered. The first was a simplified analysis of the 

reflection and absorption losses in a 1-dimensional multi-layered system. The second was a full-

wave FEM analysis of the antenna structure using COMSOL® Multiphysics. To analytically 

study the effects of the adhesive layer and substrate material on THz transmission a multi-

layered model was based on the geometry illustrated in Figure 3.3.3.1. In this model a steady 

state plane wave is assumed as the excitation, which begins just to the right of the antenna 

electrode inside the adhesive layer.  

 

 
Figure 3.3.3.1: Geometry of the multi-layer transmission analysis of the THz PCA 

structure using the simple model. 
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At the left surface is the antenna electrode metallization, where the THz pulse Ei is generated. 

This interface has a reflection coefficient r01, which for a dielectric/metal interface is -1. The 

pulse propagates to the right through the adhesive layer a distance d1 before reaching the 

adhesive/substrate interface. Here, an approximation is made that the adhesive thickness d1 << 

Dp¸ where Dp is the spatial width of the pulse (Dp = 150 µm for a 500 fs pulse), while the 

substrate thickness d2 > Dp. Under this approximation, multiple reflections were accounted for in 

the adhesive layer while only the single pass through the substrate was considered. This 

approximation arose from the need to model the time-domain pulse using simplified steady-state 

equations. Since the adhesive layer is thin with respect to the pulse duration, the multiple internal 

reflections of the pulses were considered to overlap, leading to either a net constructive or 

destructive interference in the transmitted pulse. In the substrate layer, the thickness was great 

enough that the additional internal reflections would be separated in time enough to not lead to 

interference in the primary pulse.  

Following the described model, the electric field transmitted into the silicon lens �̂�𝑡,𝑓 can be 

written in terms of the incident electric field �̂�𝑖 as shown in Equation 3.3.3.1 [164].  

�̂�𝑡,𝑓 = �̂�𝑖𝑒𝑥 p (
𝑖2𝜋𝑓�̂�1𝑑1

𝑐
) 𝑡12 …                                                                                                                       

… ∑ [𝑟01𝑟12𝑒𝑥 p (
𝑖4𝜋𝑓�̂�1𝑑1

𝑐
)]

𝑗∞

𝑗= 1

𝑒𝑥 p (
𝑖2𝜋𝑓�̂�2𝑑2

𝑐
) 𝑡23 Equation (3.3.3. 1) 

Here, �̂� is the complex index of refraction of each layer, 𝑡𝑗𝑘 and 𝑟𝑗𝑘 are the transmission and 

reflection coefficients from layer j to k, f  is the THz frequency, and c is the speed of light in 

vacuum. The first exponential term represents the first pass of the THz pulse from the antenna 

electrodes through the adhesive layer. The summation represents the attenuation and phase shift 
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from the infinite sum of pulses reflecting internally in the adhesive. Each term in the summation 

represents one round of the internal reflection, where part of the pulse is reflected from surface 

𝑟12, travels backwards through the adhesive layer, reflects from surface 𝑟01, travels forward 

through the adhesive, and reflects/transmits through surface  𝑟12/𝑡12. The final exponential term 

and transmission coefficient 𝑡23 represents the attenuation and phase shift from the pulse 

propagation through the substrate layer and reflection loss at the substrate/lens interface.  

For comparison, modeling of the modified conventional antenna structure was simpler, since 

there were no thin layers with internal reflections to account for. This simplified solution is 

shown in Equation 3.3.3.2, where only the attenuation and phase shift of a single, forward 

propagation through the substrate layer followed by transmission at surface 𝑡23 are considered. 

�̂�𝑡,𝑓 = 𝐸𝑖𝑒𝑥𝑝 (
𝑖2𝜋𝑓�̂�2𝑑2

𝑐
) 𝑡23 Equation (3.3.3. 2) 

In order to check that the internal reflections of Equation 3.3.3.1 are properly accounted for, 

a comparison was made between the solution of this equation with that of Equation 3.3.3.2 as the 

adhesive layer thickness was decreased. Conceptually, as d1 → 0 these two solutions should 

converge, since they would then be modeling the safe effective geometry. For this test, the 

material properties used for the substrate layer was GaAs and the adhesive was SU-8.  The 

adhesive thickness d1 was decreased from 50 µm down to 0.1 µm. The results of this comparison 

are shown in Figure 3.3.3.2. The solution of Equation 3.3.3.2 is shown in the dotted black trace, 

and the colored solid traces show the solutions of Equation 3.3.3.1. Here, it was observed that 

once the adhesive thickness is reduced to 1 µm, the two solutions converge and remain 

converged for a lower thickness of 0.1 µm.  
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Figure 3.3.3.2: Convergence of Equation (3.3.3.1) to Equation (3.3.3.2) as d1 is decreased. 
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Figure 3.3.3.3: Effect of changing the PCA substrate material with no adhesive layer 

present. 
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layer was not a significant contributor to the BLTF and P-BLTF device failure for the first round 

of fabrication. 

 

Figure 3.3.3.4: THz transmission through various substrate materials with addition of 1, 5, 

10 and 50 µm thick JB Weld Epoxy adhesive layers. 
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In addition to investigating the JB Weld adhesive used in the first round of device 

fabrication, it was important to also analyze the effect of replacing the JB Weld with SU-8 

2000.5 as this was the adhesive proposed to be utilized in the second round of fabrication. 

Similar to the JB Weld analysis, the SU-8 2000.5 adhesive layer was varied in thickness from 1 

µm to 50 µm and the THz transmission was calculated for each. The results of this study are 

shown in Figure 3.3.3.5.  

 

Figure 3.3.3.5: THz transmission through various substrate materials with addition of 1, 5, 

10 and 50 µm thick SU-8 2000.5 adhesive layers. 
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Similar to the JB Weld, no effect is noticed for d1 = 1 µm, but as the thickness is increased 

resonant oscillation losses begin to increase. For thicknesses of 5 µm and above, the losses were 

notably greater in the SU-8 2000.5 than in the JB Weld, around 15% at some frequencies. This is 

likely due to the increased mismatch in refractive index of the SU-8 2000.5 as compared to the 

JB Weld.  

The THz property characterization of the materials shown in Figure 3.3.2.2 show that the 

refractive indices of the substrate materials were 3.4 and 3.56 for the Si and GaAs while the 

adhesive materials were 2.2 and 1.6 for the JB Weld and SU-8 2000.5, respectively. Since both 

adhesives had lower refractive indices than the substrates and the SU-8 2000.5 was the lower of 

the two, it is expected that this increased mismatch in refractive index would contribute to the 

higher loss in the SU-8 2000.5. However, in addition to having a higher resistivity the SU-8 

2000.5 has the added benefit of being much less viscous than the JB Weld. This meant that the 

SU-8 2000.5 adhesive layer could be made much thinner than the JB Weld, on the order of 1 µm. 

Therefore, it was concluded that utilizing SU-8 2000.5 as the adhesive material in the second 

fabrication round would not contribute to significant THz transmission losses. 

In order to verify the conclusions of this simplified model, the COMSOL model described in 

Section 2.14 of this dissertation was used to also study the effect of varying the substrate 

material, adhesive material and adhesive thickness. For these studies, the 250 µm thick HRFZ Si 

lens layer was included under the substrate, with the quarter circle electric field evaluation plane 

placed at a depth of 5 µm below the substrate, inside the HRFZ Si lens layer. Since COMSOL is 

not readily capable of accounting for material dispersion in time domain calculations, the 

complex electrical properties for the various materials were taken from the measured properties 

at 1 THz.  
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Comparison of varying the substrate material with no adhesive (NA) layer present is shown 

in Figure 3.3.3.6. These results are the frequency spectrum of the pulse transmitted into the Si 

lens layer, calculated by taking the Fourier transform of the time domain pulse. Across the full 0 

to 3 THz range, there is insignificant difference between the HRFZ and LT-GaAs substrates. 

Between approximately 0.25 and 1 THz the transmitted signal is around 30% lower for the       

50 Ω-cm Si substrate and 33% lower for the 0.65 Ω-cm Si substrate. These results are confirmed 

with those shown in Figure 3.3.3.3 using the analytical model.   

 

Figure 3.3.3.6: Fourier transform of the electric field transmitted into the Si lens layer 

calculated using COMSOL®
 for the various substrate materials without adhesive layers. 
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Figure 3.3.3.7: Fourier transform of the electric field transmitted into the Si lens layer 

calculated using COMSOL®
 for the various substrate materials, with and without 5 

(dashed) and 50 (solid) µm JB Weld (blue) and SU-8 (red) adhesive layers. 

 

Each plot represents a different substrate material, with the black curve indicating the 

substrate with no adhesive layer, the color indicating the adhesive type, and the line type (solid 

or dashed) indicating the adhesive thickness. From the results, several trends were observed. 
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With all substrates, addition of the almost all adhesive layers, regardless of thickness, increased 

or did not degrade THz transmission across the observed frequency range. The exceptions to this 

were for the LT-GaAs substrates with both JB Weld and SU-8 adhesives at 50 µm thickness, as 

well as the HRFZ-Si substrate with JB Weld adhesive at 50 µm thickness. Here, both 50 µm 

adhesives degraded the transmission for frequencies below 1 THz by about 12% for the LT-

GaAs, while the 50 µm JB Weld adhesive on the HRFZ-Si substrate reduced this transmission by 

about 9%. The increased transmission observed was likely due to the adhesive layers acting as 

refractive index matching layers. Matching layers are often used to increase transmission at low 

to high refractive index interfaces. Since the THz refractive index of both adhesives lay between 

the substrate’s refractive indices and air, they could provide the increased transmission observed 

in the model. Most importantly, these modeled results indicated that THz losses from the 

adhesive layers was not a likely mode of failure for the first round devices.  

In conclusion, the mode of failure analysis indicates that primary mode of failure was the 

conduction losses in the JB Weld epoxy, due to its lower resistivity as compared to LT-GaAs. 

Therefore, the remaining devices utilized cured SU-8 2000.5 photoresist as the adhesive due to 

its high electrical resistivity as compared to LT-GaAs. 

3.4. Second-Round of Plasmonic Thin-Film THz Emitter Fabrication 

3.4.1. MBE Wafer Growth 

 

The LT-GaAs MBE wafer for the second fabrication found was grown by Dr. John Prineas at 

the University of Iowa Optical Science and Technology Center. The architecture of the second 

round MBE wafer and comparison to the original first round wafer is shown in Figure 3.4.1.1. 

The structure of the growth varied slightly as compared to the first round, mainly in that 10/1 nm 

AlAs/HT-GaAs was added between the Al0.85Ga0.15As and LT-GaAs layers, as well as increasing 
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the thickness of the Al0.85Ga0.15As from 200 nm to 300 nm. The AlAs was added as an electrical 

barrier layer between the LT-GaAs and Al0.85Ga0.15As, while the 1 nm HT-GaAs was added to 

provide a smooth, high quality surface for the LT-GaAs growth. The Al0.85Ga0.15As layer was 

increased from 200 nm to 300 nm thickness to better protect the LT-GaAs layer during the 

substrate removal process.  

 

Figure 3.4.1.1: Comparison of the second round MBE wafer structure with the original 

first round structure. 
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wafer were cleaved and each was annealed at different temperatures using an AG Associates 

Heatpulse 610 Rapid Thermal Processor [206]. For all samples the process included a 1-min 

ramp from room temperature to the anneal temperature, 10-mins steady state hold at the anneal 

temperature followed by a passive return to room temperature, requiring approximately 10 min. 

For all samples, there was a maximum 10-30 °C overshoot following the 1-min ramp, which 

returned to the steady state anneal temperature value after less than 1 min. The anneal was 

performed in a nitrogen purged environment with the sample LT-GaAs surface placed against a 

SI-GaAs wafer surface. This was to prevent surface oxidation and outgassing of the As+3 

precipitates in the LT-GaAs during annealing. For the six samples, anneals were performed at 

350, 400, 450, 500, 550, and 600 °C.   

Following the annealing, 4 µm gap bowtie dipole antennas were patterned on each sample 

using the process described in the next section of this dissertation. After patterning, the resistance 

across the 4 µm gap of each was measured using a HP 4140B picoammeter and voltage source 

[207]. The I-V characteristics were obtained from 0 to 50 V and the resistance of each was 

extrapolated by applying a linear fit to each curve. The R2 coefficient of determination of the 

linear fits were >99%, indicating highly linear behavior. Figure 3.4.1.2 illustrates the results of 

this study. Similar devices have shown the 100-1000 MΩ region to provide the necessary 

balance between gap resistance and carrier lifetime needed for THz PCA emitters. As such,    

525 °C was chosen as the anneal temperature for the remainder of the LT-GaAs wafer. 
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Figure 3.4.1.2: 4 µm gap resistance as a function of 10 min duration anneal temperature. 
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Figure 3.4.2.1: Photomask of the second generation fabrication process. (a) full photomask, 

(b) single device, and (c) dipole antenna structure. 
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The structure is similar to the B-90-10 design used in the first round. However, the dipole 

gap G is reduced to 4 µm and four bias pads are included, two for each electrode. Each device is 

noted “E-R-C” where “E” stands for “Emitter” (uniform for this mask), “R” stands for the row 

number (1 through 8) and “C” stands for the column number (1 through 8). For example, Figure 

3.4.2.1(b) is notated as “Emitter, Row 4, Column 5”. The mask contains 52 repetitions of the 

same antenna pattern, plus four other patterns shown in the corners. These additional patterns are 

for etching through the LT-GaAs to expose the electrode bias pads and four different variations 

of this pattern were included to potentially add a second metallization process to allow improved 

success of wire bonding.   

As previously discussed, the first round photolithography process led to defects in the pattern 

due to the positive sidewalls in the photoresist. To prevent this in the second round of 

fabrication, an image reversal process was utilized to create negative sidewalls in the photoresist. 

The process is illustrated in Figure 3.4.2.2. If the sample surface required cleaning, a 1-min 

acetone rinse, 1 min IPA rinse, N2 blow dry, and 200 °C 5 min hotplate bake was performed. 

AZ5214E was spin-coated at 6000 RPM for 30 s, followed by a 50 s, 90 °C hotplate bake. The 

sample was then placed in the mask aligner and exposed for a time requiring optimization, 

approximately with half the dose needed for full exposure. The sample was then baked to reverse 

the image, shown in Figure 3.4.2.2(c). This bake caused the exposed regions of the photoresist to 

become cross-linked, while the unexposed regions remain unchanged. The baking time was 

constant at 2 min, and the temperature of the bake required optimization and was critical to the 

process. The sample was then flood exposed in UV for 20 s, exposing the non-crosslinked region 

of the resist while leaving the crosslinked region unchanged, shown in Figure 3.4.2.2(d).  
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Figure 3.4.2.2: Second round photolithography process implementing the image reversal 

process to generate negative photoresist sidewalls. 
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acetone to dissolve the cross-linked photoresist, shown in Figure 3.4.2.2(g). If desired, the 

acetone could be heated to 70 °C for several minutes to speed up the process. Here, it was critical 

that: 1) the sample was not sonicated, since requiring sonication to lift-off the metal indicates a 

negative sidewall profile was not obtained; and, 2) the sample was not allowed to dry before 

complete liftoff, since lifted off metal that has collapsed to the sample surface was very difficult 

to remove. The sample (still immersed in acetone) could be sprayed with acetone as needed to 

lift off the metal.  

In the above described photolithography process, there were three critical parameters to 

investigate and optimize; image exposure dose, image reversal bake temperature, and post-

development plasma clean. This study included a full factorial optimization study of 6 and 8 s 

exposure dose, 120, 123, and 125 °C image reversal bake and 0 (none) and 10 s plasma clean 

time. Samples were prepared as described above, including metallization and liftoff. After liftoff, 

samples were determined to pass/fail depending on if complete liftoff could be achieved. The 

results of this optimization are summarized in Table 3.4.2.1. Four of the twelve samples had 

successful liftoff (pass), while the remainder did not (fail).   

Table 3.4.2.1: Optimization results of the second round photolithography process. 

Sample 

Number 
Exposure Dose (s) 

Image Reversal 

Bake (°C) 
Plasma Time (s) Results 

1 6 120 0 Pass 

2 6 120 10 Fail 

3 6 123 0 Fail 

4 6 123 10 Fail 

5 6 125 0 Fail 

6 6 125 10 Fail 

7 8 120 0 Pass 

8 8 120 10 Pass 

9 8 123 0 Fail 

10 8 123 10 Fail 

11 8 125 0 Pass 

12 8 125 10 Fail 



 

139 

 

3.4.3. Wafer Mounting and Substrate Removal 

 

For the second round of device fabrication, the JB Weld epoxy adhesive was replaced with 

an SU-8 2000.5 photoresist adhesive. SU-8 can be baked at high temperatures in order to cure 

and raise the glass transition temperature of the polymer. After cleaning with acetone and IPA 

the HRFZ Si substrates were brought to 100 °C via hotplate, followed by deposition of the SU-8 

to the surface as shown in Figure 3.4.3.1 (left).  

 

Figure 3.4.3.1: Photograph of the bonding of THz antennas on MBE GaAs sample to the 

HRFZ Si substrates prior to GaAs substrate removal. 
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in Figure 3.4.3.1 (right), with slight tweezer pressure used to ensure contact. The temperature 

was then raised to 180 °C and held there for 30 min to fully cure the SU-8. Finally, the hot plate 

temperature was lowered and the samples were allowed to gradually return to room temperature. 

Differential micrometer measurements before and after bonding indicated an SU-8 bonding layer 

thickness of approximately 5 µm. 

Following wafer bonding, the SI-GaAs substrate, Al0.85Ga0.15As etch stop, and AlAs isolation 

layers were removed. Previously this was accomplished by a combination of mechanical lapping 

to thin the wafer to <100 µm, followed by chemical etching with NH4OH:H2O2 and HCl. 

However, trials using only the chemical etching to remove the SI-GaAs layer demonstrated that 

this could be accomplished without mechanical lapping and in a shorter time period of less than 

one hour. Therefore, the process for the substrate removal was the same as the first round 

devices, only with no mechanical lapping and a longer NH4OH:H2O2 chemical etching time.  

3.4.4. Device Packaging 

 

In order to provide an electrical connection to the antenna electrodes with enough mechanical 

strength to support wire bonding, a second lithography and metal evaporation process was 

included to extend the SU-8 supported electrodes to the Si substrate surface. Prior to this step, 

the antenna electrodes were located on a 5 µm thick cured SU-8 layer. This SU-8 layer did not 

provide enough support for the wedge bonding used to electrically connect to the device. This 

was the same problem in the first round of devices that led to using conductive epoxy to connect 

to the devices. Therefore, an alternative solution was developed.  

First, the SU-8 and LT-GaAs layer were removed by hand from all of the regions 

surrounding the device, thus exposing the Si substrate surface in these regions. Using the same 



 

141 

photolithography process described in Section 3.4.2, photoresist was spin coated, exposed, and 

developed to produce the pattern on the sample surface shown in Figure 3.4.4.1. Here, all of the 

sample surface is covered in photoresist except for the dark blue regions. These regions would 

become the extensions of the antenna electrodes off of the SU-8 and onto the Si surface. Before 

the metal was evaporated to produce the electrode extensions, the sample was submersed in the 

NH4OH:H2O2 etch solution to remove the LT-GaAs in the exposed (dark blue) regions. If this 

step were not done, there would be a layer of LT-GaAs in between the antenna electrodes and 

electrode extensions. After the etching, 25/300 nm of Ti/Au was evaporated followed by acetone 

liftoff to produce the desired electrode extensions.  

 

Figure 3.4.4.1: Illustration of the photolithography pattern utilized to extend the antenna 

electrodes onto the Si surface of the sample. 
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The devices were then mounted with epoxy antenna side down to the back side of standard 

leadless chip carriers (LCC) with 5 mm center cut holes. Wire bonding using a wedge bonder 

was performed to connect from the device surface to the LCC electrodes. Images of the final 

packaged P-BLTF device are shown in Figure 3.4.4.2.  

 
Figure 3.4.4.2: Image of the final device mounted to the leadless chip carrier and zoomed 

image of the device surface. Antenna electrodes under the LT-GaAs layer are not visible 

due to limitations of the microscope used to acquire this image. 
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Chapter 4. Experimental Characterization of the Fabricated Devices 

 

This chapter presents the experimental characterization of the second round of fabricated 

THz PCA emitters. Several devices of different types were fabricated, each being designated C# 

for the modified convention, T# for the thin-film without plasmonics, and P# for the thin-film 

with plasmonics. Here, “#” represents the device number. 20 total devices were fabricated, 7 “C” 

devices, 7 “T” devices, and 6 “P” devices. Devices C1-5, T1-5 and P1-4 were shipped to 

Teraview LTD for spectral characterization. Devices C6, C7, T6, T7, P6 and P7 were tested at 

the University of Arkansas in Dr. Shui-Qing Yu’s optoelectronics lab using the experimental 

setup by the candidate to measure their total THz output power, as will be discussed in the 

following section. 

4.1. Pyroelectric Detection of Relative Emitted THz Power  

 

Characterization of the average output THz power of the fabricated devices was performed 

using pyroelectric detection. The experimental configuration is illustrated and photographed in 

Figure 4.1.1. A wavelength tunable pulsed Ti:Sapph laser with a 100 fs pulse duration was tuned 

to 800 nm to excite the THz PCA under test. The laser pulse was chopped at a 25 Hz rate and 

50% duty cycle to allow lock-in detection with the pyroelectric detector. The beam passed 

through a neutral density filter (NDF) to attenuate the beam power. A beam expander was then 

implemented using a plano-concave and plano-convex lens system with focal lengths F = -27.0 

mm and F = 125 mm, respectively. Adjustable pinholes before and after the beam expander 

allowed the beam size to be adjusted as well as allowing unwanted secondary reflections to be 

removed from the beam path to the device.  



 

144 

 

Figure 4.1.1: Illustration (top) and photograph (bottom) of the experimental setup for 

pyroelectric detection of the average output THz power of the devices. 
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An off-axis 90° parabolic focusing mirror with F = 25.4 mm focused the beam to a 

diffraction limited spot with a diameter that could be varied by changing the beam width at the 

second pinhole. The THz PCA sample was mounted to an x-y-z translation stage to allow the 

focused optical beam to be aligned to the device gap. The radiation emitted from the THz PCA 

was collected by a HRFZ Si lens and collected by a tapered copper tube, which reflected the THz 

radiation onto the active area of the pyroelectric power detector. The detector, a Gentec-EO THz 

Pyroelectric Power Detector, was connected to a Gentec-EP T-Rad USB digital lock-in amplifier 

interface [208]. This allowed for direct connection of the interface to a laptop computer so that 

the emitted THz power levels could be directly measured. Voltage biasing and photocurrent 

measurements of the THz PCAs were performed simultaneously using an HP Picoammeter/DC 

Voltage Source [207]. 

Alignment of the optical beam to the THz antenna gap was not trivial as the beam size at the 

focal point was around 5 µm and the antenna gap size was 4 µm by 4 µm. In order to align the 

beam, a method was implemented to visualize the surface of the THz PCA using the back 

reflection of the optical beam. This is illustrated in Figure 4.1.2. Here it was noted that at the 

THz PCA surface part, of the incident optical beam will be reflected backwards towards the 

parabolic mirror. By placing a glass plate in the beam path to split the beam, the reflected 

component of the beam can be aligned off the optical axis and imaged onto another surface. 

Using an IR viewer this allowed the magnified image of the reflected surface to be visualized. 

Higher reflectivity of the antenna electrodes provided the necessary contrast to locate the dipole 

and align the focused optical beam to the dipole gap. 
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Figure 4.1.2: Illustration of the method utilized for visualizing the focused optical excitation 

beam location on the THz PCA surface. 

 

The output THz power of each of the three device designs measured by pyroelectric detection 

is shown in Figure 4.1.3. Devices C6, T6, and P6 are shown as C7, T7, and P7 did not provide 

measureable THz power above the 20 nW noise floor of the detector, likely due to device failure 

at some point in the fabrication or packaging. Measurements were taken at 50 V bias voltage 

with the optical beam aligned to the dipole gap and tuned to maximize the output THz power. 

The measurement results showed peak THz power of 0.58 µW for C6 and 2.43 µW for both T6 

and P6, all at the highest tested optical pump power of 13.4 mW. All devices demonstrated 

significant saturation of the measured THz power with increasing optical pump power.  

Reflected 

Optical Beam  

High Reflection 

from Antenna 

Electrodes 

Reflection from 

THz PCA 

Surface 

Beam Splitter 

(glass plate) 

Parabolic 

Mirror 

THz PCA 

Focused 

Optical Beam 

Incident 

Optical Beam 

Image of THz PCA Surface 



 

147 

 

Figure 4.1.3: Output THz power versus optical pump power for devices C6 (red), T6 

(green) and P6 (blue). 
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pump powers, this surface reflection loss was greater as indicated by the low conversion 

efficiency. 

 

Figure 4.1.4: Optical to THz conversion efficiency versus optical pump power devices C6 

(red), T6 (green) and P6 (blue). 

 

4.2. Methods for Analyzing the THz Spectral Characteristics  

 

THz spectral characterization of the fabricated devices was performed at Teraview LTD in a 

standard THz time-domain spectroscopy configuration, such as that illustrated in Figure 1.1.2.2. 

In all cases, the optical pump was a 780 nm wavelength, 100 fs pulse width beam focused to a 5 

µm spot size. The bias voltage was a variable magnitude AC 1000 kHz square wave, which 

allowed the antenna to be driven at a bias higher than the DC breakdown voltage. The detector 

was a conventional 2 µm gap bowtie dipole antenna on LT-GaAs, one of Teraview’s own 
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Fourier transform frequency spectrum to be calculated, as shown in the example measurement of 

device C2 in Figure 4.2.1.  

 

Figure 4.2.1: Measured time-dependent electric field waveform of a THz pulse emitted 

from device C2 (left) and frequency spectrum acquired from the Fourier transform (right). 

  

In order to quantify the strength of the emitted THz signals, two methods were considered. 

The first method was measurement of the peak-to-peak THz electric field time-domain signal 

defined as, 

𝐸𝑝𝑝 = 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛. (Equation 4.2. 1) 

Emax and Emin were the maximum and minimum values of the measured pulse electric field from 

the time domain data, as indicated in Figure 4.2.1. In addition to Epp, the total THz power was 

evaluated from the Fourier transform spectra and is defined here by, 

𝑃𝑇𝐻𝑧 = ∫ |𝐸(𝑓)|2𝑑𝑓

8 𝑇𝐻𝑧

0.1 𝑇𝐻𝑧

. (Equation 4.2. 2) 
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Here, E(f) was the frequency dependent Fourier transform of the measured time-domain data. 

The spectra were integrated from 0.1 THz to the maximum frequency of 8 THz, as shown in the 

grey shaded area in Figure 4.2.1. 0.1 THz was chosen as the minimum of the integration range 

since this is often referred to as the beginning of the THz band. Starting the integration at 0.1 

THz therefore removed any low frequency contributions to the calculation. Important to note was 

that all measured values were not calibrated, therefore will be designated in terms of arbitrary 

units (a.u.).  

Since the measurements were obtained in an open air THz TDS configuration, water 

absorption lines were present in all measured data. When comparing multiple spectra on the plot, 

the water lines made differentiating between curves visually difficult. This issue was addressed 

by considering only the top profile of the spectra, as illustrated in Figure 4.2.2. In addition to 

removing the water absorption lines, the approximate system noise region is illustrated in the 

shaded gray.  

 

Figure 4.2.2: Frequency spectrum of the measured time-dependent electric field waveform 

of a THz pulse emitted from device C2 with (red solid) and without (dashed black) water 

absorption lines present in the trace. 
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The final consideration for characterization of the fabricated THz emitter devices was 

alignment in the THz TDS setup. The main issue addressed is illustrated in Figure 4.2.3.  

 

Figure 4.2.3: Illustration of the method for utilizing a 2 mm aperture to prevent non-dipole 

THz emission from reaching the receiver. 

 

First, consider the top views for this illustration (left) and the actual device (right). This 

illustration considered a THz dipole antenna that is in line with the microstrip bias lines, while 

the actual devices had THz dipoles perpendicular to the microstrip bias lines. This difference was 

made for this illustration so that in the device side view, the location of the dipole with respect to 
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the microstrip and bias pads could be observed. In the THz antenna side view, the incident 

optical pulse is focused on the antenna dipole, which then emitted THz radiation from this point 

(black traces) through the substrate, lens, THz focusing optics, and into the THz receiver (not 

shown). However, since the optical pulse excites surface currents in the metal, radiation can be 

emitted from regions elsewhere on the antenna electrodes, illustrated by the non-dipole emission 

(red trace). The illustration shows how THz emission from non-dipole regions will be out of 

focus with respect to the dipole emission. This out of focus, non-dipole emission can lead to 

interference when attempting to align the THz focusing optics to the dipole emission. 

Additionally, inclusion of non-dipole emission has the potential for causing phase interference at 

the receiver. To overcome this, some measurements were taken with a 2 mm aperture at the THz 

beam focal point. As shown in Figure 4.2.3, the aperture will block much of the out-of-focus 

THz emission, ensuring that the majority of the received emission comes from the dipole. 

4.3. Spectral Characterization in a THz Time-Domain Spectroscopy System 

 

The following section provides a presentation and analysis of the measured THz spectra of 

each device in the approximate chronological order in which they were obtained. The analysis 

started with the characterization of devices C2, T2 and P2. The measurements of the time-

domain THz pulses of each device are shown in Figure 4.3.1. For all devices the optical pump 

power was 5 mW, the bias voltage was 50 V, and no aperture was utilized. Comparing Epp, C2 

was the lowest at 7.16, T2 was 2.34 times higher at 16.73, and P2 was 4.77 times higher than C2 

and 2.04 times higher than T2, at a value of 34.15. All devices had similar waveform shapes with 

sub-picosecond pulse widths.  
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Figure 4.3.1: Time-domain measurements of the emitted THz pulses from devices C2 (red), 

T2 (green) and P2 (blue) under 5 mW optical excitation and 50 V bias voltage. 

 

The Fourier transform spectra of the time-domain data of Figure 4.3.1, with water absorption 

lines removed are shown in Figure 4.3.2. All devices had measureable THz signal above the 

system noise floor up to or beyond 5 THz. In the lower THz frequency range, the trend follows 

that which was observed in the time-domain data with C2 having the lowest THz field and P2 

having the highest. The peak THz field (not including the sharp low frequency increase) was 

around 3.0 for C2, 22.4 for T2, and 83.6 for P2. At higher frequency, P2 remained greater than 

T2, however, the THz field of C2 surpassed that of T2 and P2 at frequencies above 1.51 THz and 

2.2 THz, respectively.  

-10

-5

0

5

10

15

20

25

30

35

-605 -603 -601 -599 -597 -595

E
le

ct
ri

c 
F

ie
ld

 (
a.

u
.)

Optical Delay Time (ps)

P2

T2

C2



 

154 

  

 

Figure 4.3.2: Fourier transform spectra of the time-domain measurements of the emitted 

THz pulses from devices C2 (red), T2 (green) and P2 (blue) under 5 mW optical excitation 

and 50 V bias voltage. 

 

Next, the THz time-domain signals and frequency-domain spectra of devices C2, T2, and P2 

were measured as a function of optical pump power at fixed bias voltages. The time-domain 

signals and frequency-domain spectra of device C2 for optical pump power varied from 2.5 mW 

to 10 mW at 75 V bias voltage are shown in Figure 4.3.3. At 2.5, 7.5, and 10 mW the spectra had 

similar trends, with the 7.5 and 10 mW spectra both being greater than the 2.5 mW spectra, but 

no notable difference between 7.5 and 10 mW. The 5 mW spectrum differed from the others in 

that below around 2.3 THz the spectrum was nearly identical to that of 2.5 mW, while above 2.3 

THz the spectrum increased significantly, surpassing the other three. At optical powers 2.5, 7.5, 

and 10 mW the signal reached to just above 5 THz before falling to the system noise level while 
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at 5 mW the signal reached up to 6 THz. The shape of the measured signals in the time-domain 

did not have notable variation with varied optical pump power.  

 

Figure 4.3.3: Time-domain measurements (left) and Fourier transform spectra (right) of 

the emitted THz pulses from device C2 as a function of optical pump power. 

 

The THz time-domain signals and frequency-domain spectra of device T2 are shown in 

Figure 4.3.4 for optical pump power varied from 2.5 to 15 mW at 50 V bias voltage. Here there 

was uniform increase in the THz spectrum across all frequencies as the incident optical pump 

power was increased. For all optical powers, the THz signal fell to the system noise level at 

frequencies between 5 and 6 THz. Similar to device C2, the shape of the measured signals in the 

time-domain did not have notable variation with varied optical pump power. 

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0 1 2 3 4 5 6 7 8

E
le

ct
ri

c 
F

ie
ld

 (
a.

u
.)

Frequency (THz)

10 mW

7.5 mW

5 mW

2.5 mW

-70

-60

-50

-40

-30

-20

-10

0

10

-605 -600 -595 -590 -585

E
le

ct
ri

c 
F

ie
ld

 (
a.

u
.)

Optical Delay Time (ps)

10 mW

7.5 mW

5 mW

2.5 mW

5 

-5 

5 

-5 

5 

-5 

5 

-5 



 

156 

 

Figure 4.3.4: Time-domain measurements (left) and Fourier transform spectra (right) of 

the emitted THz pulses from device T2 as a function of optical pump power. 

 

The THz time-domain signals and frequency-domain spectra of device P2 are shown in 

Figure 4.3.5 for optical pump power varied from 2.5 to 15 mW at 50 V bias voltage. Similar to 

T2, there was uniform increase in the THz spectrum across all frequencies as the incident optical 

pump power was increased. For all optical powers, the THz signal fell to the system noise level 

at frequencies around 5 THz. Again, all devices had a consistent shape of the time-domain signal 

waveforms regardless of incident optical pump power. 
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Figure 4.3.5: Time-domain measurements (left) and Fourier transform spectra (right) of 

the emitted THz pulses from device P2 as a function of optical pump power. 

 

From the time-domain measurements of the devices C2, T2, and P2 operated under various 

optical pump power, the peak-to-peak THz field was extrapolated using Equation 4.2.1. The 

results of this analysis are shown in Figure 4.3.6. All devices showed an increase in Epp with 

increasing optical pump power. At 10 mW optical pump power, the Epp of C2, T2, and P2 were 

14.5, 21.5, and 47.2, respectively. From 2.5 to 15 mW, the Epp increased from 22.2 to 62.9 for P2 

and 9.7 to 31.3 for T2. From 2.5 to 10 mW, the Epp power increased from 8.6 to 15.7 for C2. The 

saturation effect could be seen in all devices in the nonlinear response of Epp with increasing 

optical pump power.  
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Figure 4.3.6: Peak-to-peak THz field extrapolated from time-domain measurements as a 

function of optical pump power for devices C2 (red), T2 (green) and P2 (blue). 

 

From the spectral measurements of the devices C2, T2, and P2 operated under various optical 

pump power, the THz TSP was extrapolated using Equation 4.2.2. The results of this analysis are 

shown in Figure 4.3.7. All devices showed a linear increase in THz power with increasing optical 

pump power. At 10 mW optical pump power, the output THz powers of C2, T2 and P2 were 

0.043, 0.58 and 82.2, respectively. From 2.5 to 15 mW, the output THz power increased from 2.4 

to 433 for P2 and 0.019 to 2.7 for T2. From 2.5 to 10 mW the output THz power increased from 

0.005 to 0.063 for C2.  
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Figure 4.3.7: THz TSP extrapolated from frequency-domain spectrum as a function of 

optical pump power for devices C2 (red), T2 (green) and P2 (blue). 

 

After characterization of the optical power dependence of these first three devices, the 

remaining devices were characterized. At this point, the previously described alignment issues 

were observed. As such, all remaining measurements were taken with a 2 mm aperture in place 

at the THz beam focal point, as illustrated in Figure 4.2.3. Of the remaining devices, several 

failed during initial testing and/or packaging, leaving devices C2, C4, T1, T2, T4, T5, P1, P2, 

and P3 available for measurement. In addition, a conventional emitter fabricated by Teraview 

was also characterized. This device represented the current industry standard for conventional 

THz emitter devices.  
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in place and again with the aperture removed. The results for device C2 are shown in Figure 

4.3.8. 

 

Figure 4.3.8: Fourier transform spectra of the time-domain measurements of devices C2 

(blue and red) and reference (black and gray) both with (blue and gray) and without (red 

and black) 2 mm aperture. 

 

In the reference device, minimal change was observed in the spectrum above 1 THz. At 

lower THz frequencies, a sharp cutout was observed with the 2 mm aperture present. This was 

also observed in device C2. Additionally, in the spectra of C2, the high frequency peaks at 4.2 

and 5.9 THz were drastically reduced. Similarly, for device T2, the spectra with and without 2 

mm aperture are shown in Figure 4.3.9. 
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Figure 4.3.9: Fourier transform spectra of the time-domain measurements of devices T2 

(blue and red) and reference (black and gray) both with (blue and gray) and without (red 

and black) 2 mm aperture. 

 

Similar to device C2, reduction in the lower frequency range below around 0.2 THz was 

observed in device T2 with the addition of the 2 mm aperture. Another notable change in the 

spectrum of T2 was the “smoothing” of the spectral dips at around 1.7 and 2.4 THz. As 

previously discussed, any non-dipole emission from the antenna would be out of phase with the 

dipole emission. This would cause phase interference at the detector, which could have led to the 

periodic dips observed without the aperture present. Similar reduction of spectra dips as well as 

reduction of a high frequency peak at around 4.1 THz were observed in the spectra of device P2, 

as shown in Figure 4.3.10.  
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Figure 4.3.10: Fourier transform spectra of the time-domain measurements of devices P2 

(blue and red) and reference (black and gray) both with (blue and gray) and without (red 

and black) 2 mm aperture. 

 

The measured time-domain signals from devices C2, C4, and Reference under 50 V bias 

voltage, 10 mW optical pump power and 2 mm aperture are shown in Figure 4.3.11. The Epp was 

33.0 for the reference device, 7.0 for C2 and 5.2 for C4. All devices showed sub-picosecond 

pulse widths, with the reference device having the lowest pulse width around 0.3 ps. However, 

the time location of the pulse varied across devices. The peak locations of C2 and C4 were 

shifted +4.5 ps and +3.8 ps, respectively, compared to the peak location of Reference. Shifting in 

the peak location could be attributed to several things, including changes in the THz PCA 

substrate thickness or refractive index. If the substrate thickness increases, the optical pulse will 

be delayed since it will have a greater optical path length inside a slower phase velocity material. 
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A change in substrate thickness (with respect to the reference device) could also place the THz 

PCA dipole out of the focus of the backside mounted HRFZ Si THz lens. A shift in the optical 

delay time of 4.5 ps corresponds to a shift in optical path length of around 1.35 mm. Since the 

thickness of the substrates varied by less than 10-20 µm, it is likely that the observed shift in the 

pulse peak location was due to focusing issues rather than phase delay from extra substrate 

material. 

 

Figure 4.3.11: Time-domain measurements of the emitted THz pulses from devices 

Reference (black), C2 (solid red) and C4 (dashed red). 

 

The measured time-domain signals from devices T1, T2, T4, T5, and Reference under 50 V 
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Epp was 33.0 for the reference device, 24.8 for T1, 4.9 for T2, 15.0 for T4, and 2.8 for T5. Again, 

all “T” devices had pulse widths below 1 ps and had a positive time shift with respect to the 

reference. The time shift varied significantly for these devices, with the peak locations occurring 

at -597.7 ps, -600.0 ps, -599.9 ps, and -590.8 ps for T1, T2, T4, and T5, respectively. Although 

all devices have the LT-GaAs thin-film layers transferred onto HRFZ Si substrates of identical 

thickness, the adhesive layer used to connect the thin-films to the substrates could introduce 

greater variance in the total device thickness than what is observed in the modified conventional 

devices. 

 

Figure 4.3.12: Time-domain measurements of the emitted THz pulses from devices 

Reference (black), T1 (solid green), T2 (large dash green), T4 (medium dash green) and T5 

(small dash green). 
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As with the other devices, the measured time-domain signals from devices P1, P2, P3, and 

Reference under 50 V bias voltage, 10 mW optical pump power and 2 mm aperture are shown in 

Figure 4.3.13. The Epp was 33.0 for the reference device, 14.5 for P1, 5.9 for P2, and 5.0 for P3. 

Again, all “T” devices had pulse widths below 1 ps and had a positive time shift with respect to 

the reference. The time shift varied significantly for these devices, with the peak locations 

occurring at -597.6 ps, -598.9 ps, and -599.3 ps for P1, P2 and P3, respectively. 

 

 

Figure 4.3.13: Time-domain measurements of the emitted THz pulses from devices 

Reference (black), P1 (solid blue), P2 (large dash blue) and P3 (medium dash blue). 
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Considering all time-domain data, several observations were made. First, the best performing 

devices of each type in terms of Epp were C2, T1, and P1 with Epp values of 7.0, 24.8, and 14.5, 

respectively. These were all less than the Epp of the reference device, which was 33.0. 

Comparing these results to the previous measurements of devices C2, T2, and P2, it was 

observed that after addition of the aperture no performance improvement was achieved in the 

plasmonic thin-film device as compared to the non-plasmonic thin-film. However, both of these 

devices did have higher Epp values than the best performing modified conventional device. 

Considering all devices together, it was observed that the greatest Epp values occurred in devices 

that had pulses centered around -598 ps, with Epp reducing the further the pulse center location 

was from -598 ps. This could indicate that the variation in performance in the thin-film devices 

occurred due to variation in the adhesive layer thickness, since this would potentially alter the 

location of the antenna dipole with respect to the HRFZ Si THz lens focal point.  

Comparison of the Fourier transform spectra of the measured emitted THz pulses of each 

device are shown in Figure 4.3.14. Again, the bias voltage was 50 V, the optical pump power 

was 10 mW, and a 2 mm aperture was included at the THz beam focal point. The reference 

device had the broadest spectrum, reaching nearly 6 THz before falling to the system noise level. 

Nearly all of the thin-film devices have bandwidth exceeding the modified conventional devices, 

with device T4 reaching nearly 5 THz. In device C2, it should be noted that the higher frequency 

peaks observed around 3.8 THz and 4.6 THz did not constitute usable THz signal, since none of 

the water absorption peaks were distinguishable in these regions. Therefore, those peaks were 

not included when considering the device bandwidth. T1, T4, and P1 provided higher output 

THz power than the reference device at frequencies below 0.82 THz for T1 and 0.51 THz for T4 
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and P1. At all higher frequencies for these devices, the reference device provided higher output 

THz power.  

 

Figure 4.3.14: Fourier transform spectra of the time-domain measurements of the emitted 

THz pulses from devices Reference (black), C2 (solid red), C4 (dashed red), T1 (solid 

green), T2 (large dash green), T4 (medium dash green), T5 (small dash green), P1 (solid 

blue), P2 (large dash blue) and P3 (small dash blue). All measurements taken at 50 V bias 

voltage and 10 mW optical pump power. 

 

The total THz power taken from the Fourier transform spectra of each of the devices were 

summarized in Figure 4.3.15. All designs showed significant variance with the “C” devices 

varying from 2020 to 15,400, “T” devices varying from 220 to 131,000 and “P” devices varying 

from 1130 to 8400. Considering only the best performing devices, these measurements both 

support and contrast the previously discussed single device measurements taken without an 

aperture, shown in Figure 4.3.3 to Figure 4.3.5. Here, the best thin-film devices still provide 
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higher output power than the best modified conventional device. However, the result did not 

illustrate any performance improvement in the thin-film devices due to the presence of 

plasmonic nanostructures. Since high variation was observed in the device performance, a larger 

number of samples would need to be produced in order to draw sound statistical conclusions. 

 

Figure 4.3.15: Total output THz power for all devices. 

 

A final set of measurements was performed to observe the dependence of output THz power 

on bias voltage under 10 mW optical excitation and with a 2 mm aperture in place. The results of 

this study are shown in Figure 4.3.16. The bias voltage was varied from 12.5 V to 75 V for 

device C2, C4, T2, T4, P2, and P3. For all devices, the relationship between PTHz and Vbias 

matched approximately a second order polynomial relation, indicating linear dependence of ETHz 

on Vbias. However, a few outliers occurred around a bias voltage of 50 V for devices C2, T2, and 
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P2. Each of these devices had a peak in output THz power at this voltage, followed by a decrease 

in power at the next higher measured bias voltage of 62.5 V. This behavior was also observed in 

some of the devices that had failed due to being driven too close to their breakdown voltage. As 

the bias electric field in the LT-GaAs layer increases, a nonlinear response in the carrier drift 

velocity can occur due to carrier screening, as well as other factors [186]. Since this nonlinear 

response is not observed in all devices, it could be attributed to material damage during 

fabrication, natural variation of the LT-GaAs growth across the wafer, or previously induced 

defects from being driving at high bias voltages or optical pump powers.     

 
Figure 4.3.16: Output THz power versus bias voltage for devices C2 (solid red), C4 (dashed 

red), T2 (solid green), T4 (dashed green), P2 (solid blue) and P3 (dashed blue). 

 

From the experimental characterization of the fabricated devices it was seen that although 

broadband THz emission was achieved in all device types, significant performance variation 
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occurred between the same types of devices. Considering average performance of all devices, the 

thin-film devices demonstrated over an order of magnitude improvement in the output THz 

power as compared to the modified conventional devices. Considering average behavior, no 

improvement was seen in the thin-film devices due to the addition of the plasmonic 

nanostructures. However, when considering best performing devices only, clear order of 

magnitude improvement was observed comparing the thin-film without plasmonics device to the 

modified conventional, as well as another order of magnitude improvement comparing the thin-

film devices with and without plasmonics. Additionally, it was important to note that the LT-

GaAs thickness and nanodisk array geometry was optimized for 800 nm excitation wavelength, 

while the spectral characterization was performed at 780 nm. This, along with fabrication and 

LT-GaAs material growth variation, could explain the wide range observed in the device 

performance.  
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Chapter 5. Summary and Conclusions 

 

This work computationally and experimentally investigated the feasibility of a plasmonic 

enhanced THz photoconductive antenna. A computational model utilizing the commercial finite 

element method (FEM) package COMSOL® Multiphysics was developed, combining optical 

field distribution calculations with time-dependent carrier dynamics in order to quantify the 

optically induced photocurrent in various THz PCA designs. The computational modeling 

revealed several observations. First, the optical field distribution for the thin film devices, both 

with and without the plasmonic structures, was found to be visibly greater than both the 

conventional and nanograting devices of Berry et al. [71]. In the BLTF device, the enhanced 

optical field was the result of constructive interference of internal Fresnel reflections inside the 

LT-GaAs layer. For the P-BLTF device, the enhanced optical field was a result of the Fresnel 

reflections and the plasmonic resonances of the nanostructures, which effectively localized the 

incident optical fields into the sub-wavelength LT-GaAs layer. Calculation of the optically 

induced time-dependent photocurrent showed 87 and 329 times enhancement of the peak 

photocurrent in the BLTF and P-BLTF devices, respectively, as compared to the conventional 

device. These were both greater than the enhancement in the nanograting device, which was 10 

times greater than the conventional device. In calculating the width of the optically induced 

current pulse, it was found that the BLTF device had the lowest increase in pulse width with 

increasing carrier lifetime of 55% when increasing the carrier lifetime across two orders of 

magnitude. By comparison, the conventional, P-BLTF, and nanograting devices had increases of 

157%, 97%, and 240%, respectively. This indicated that the BLTF design could potentially be 

implemented with longer carrier lifetime photoconductors without compromising response time 

and bandwidth.  
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Fabrication of the proposed plasmonic thin-film devices was demonstrated by utilizing a 

number of micro and nanofabrication techniques. Photolithography recipes were developed to 

pattern the antenna electrodes. Devices were flip-mounted to silicon carrier wafers and lapping 

and chemical etching procedures were developed to remove the GaAs substrate and sacrificial 

layers. Electron beam lithography writing of plasmonic nanodisk array patterns was optimized, 

yielding 200 nm diameter Au nanodisk arrays with 520 nm center-to-center spacing on the LT-

GaAs thin-film surface. Two rounds of device fabrication were performed, with the first round 

devices showing no measureable THz emission. This was attributed to the conductivity of the 

epoxy adhesive used to bond the LT-GaAs thin-films to their silicon carrier wafers. After 

identifying this issue, an alternative high resistivity adhesive was implemented, along with 

several other process improvements to generate a second round of THz devices.   

The fabrication process revealed several key insights. First, although the methods to remove 

the LT-GaAs thin-film from the GaAs carrier substrate resulted in the substrate being destroyed, 

it had the advantage of being more practical than alternative substrate-conserving epitaxial liftoff 

methods. Additionally, although mechanical lapping was initially utilized to thin the devices 

before chemical etching, it was found that chemical etching of the entire 500 µm thick GaAs 

substrate was just as, if not more, effective. In addition to the substrate removal process, the 

photolithography process was improved upon by implementing an image reversal process in the 

photoresist. This allowed the exposed regions of photoresist to produce negative, recessed 

sidewalls, reducing defects in the metallization due to ineffective liftoff.  

The experimental results of the second round of fabricated devices demonstrated measurable 

emission of sub-picosecond width THz pulses from the three device designs (modified 

conventional, BLTF, and P-BLTF). This corresponded to around 5 THz bandwidth in each 
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device. First results of single devices of each type alluded to promising support for the theorized 

enhancement, with around one and two order of magnitude increase in the THz power of the 

BLTF and P-BLTF devices as compared to a modified conventional device. Later measurements 

were obtained from multiple other devices implementing apertures to improve the THz beam 

alignment. From these results, no improvement in the thin-film devices was observed comparing 

those with and without plasmonic nanostructures. However, comparing all of the thin-film 

devices to the modified conventional devices demonstrated an average of over an order of 

magnitude higher THz power in the thin-film devices.  

While the thin-film devices outperformed the modified conventional devices, the thin-film 

devices also demonstrated greater performance deviation, with output powers varying from 

0.049 to 375.7. This large deviation was attributed to the added steps needed to fabricate the 

thin-film devices. For each added fabrication step, the probability of device defects increases. 

Additionally, thermal strain mismatch between the adhesive layer and LT-GaAs thin-film layer 

could induce cracks in the LT-GaAs any time the device experiences a temperature change. It 

may be possible to reduce this performance deviation by improving the repeatability of the 

fabrication process.  

THz PCA technology is still relatively young, with many opportunities and avenues for 

performance improvement to be realized. By designing THz PCA devices with high optical-to-

THz conversion efficiency, THz time-domain imaging and spectroscopy systems with high 

milliwatt level THz power could be possible. Additionally, by increasing the efficiency the 

amount of laser power needed to excite each device can be reduced. This would potentially allow 

the development of multipixel time-domain THz detectors, which could open the door for the 

practical implementation of many THz imaging and nondestructive evaluation applications.  
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Appendix A: Description of Research for Popular Publication 

 

The Final Frontier 

Exploring the Last Region of the Electromagnetic Spectrum 

 

How many of us recall a time before wireless communication fit in the palm of your hand? 

Or when lasers were only found in laboratories, rather than being something you can purchase 

for $3 at the supermarket? What about x-rays? Imagine how stressful it must have been to not 

really know what’s going on inside your body when something is definitely wrong, such as 

having a broken bone. All of these great technologies rose from our study and understanding of 

various regions of the electromagnetic spectrum. This was made possible by the development of 

devices that can generate and detect electromagnetic waves at these various frequencies, 

allowing these applications to be developed. 

 

However, as Captain James T. Kirk of the starship Enterprise would describe it, there is “the 

final frontier” of the electromagnetic spectrum, a band of frequencies lying between microwaves 

and infrared light known as the “terahertz gap”. The terahertz gap offers many promising 

applications in areas of medical imaging, security screening, material characterization and 

nondestructive quality control. But the problem that has plagued terahertz technology since its 

discovery has been low power, a few micro Watts at best. Imagine if the strongest lasers in the 

world were still 1000 times weaker than common classroom laser pointers we have today. It 

doesn’t take much imagination to realize that would severely limit their potential applications, 

but that’s the reality terahertz technology currently faces. 
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The problem is that generation of terahertz waves is extremely inefficient, since standard 

antenna technology does not work at these high frequencies. Instead, terahertz waves are 

generated using a pulsed laser, an antenna, and a photoconductor. Laser pulses that are absorbed 

in the photoconductor generate pulses of electrical current, similar to how striking a guitar string 

creates pulses of sound waves. These current pulses feed directly into a terahertz antenna and are 

emitted as pulses of terahertz light. The problem is that only a tiny amount, less than 0.01%, of 

the laser power ends up converting to terahertz power, most is reflected or absorbed too far from 

the antenna. 

 

However, at the University of Arkansas, Microelectronics-Photonics Ph.D. student Nathan 

Burford and his major professor Dr. Magda El-Shenawee are working to overcome this 

limitation. Since the laser is made of waves, it can be made to resonate inside of cavities, just 

like sound waves resonate in an acoustic guitar or a drum. By designing a clever geometry for 

the photoconductor and antenna of a terahertz source, Mr. Burford and Dr. El-Shenawee have 

shown using computer modeling that it’s possible to force the incident laser pulses to resonate 

inside the photoconductor. This reduces reflection off the photoconductor surface and allows 

more of the laser power to be absorbed near the antenna.  

 

“We use computer modeling to design devices before fabricating them,” says Mr. Burford. 

“This reduces lab time and material costs associated with designing devices by trial and error.” 

 

Modeling of these terahertz antennas have shown up the 300 times increase in the antenna 

driving current, with preliminary experimental results suggesting similar improvements.  



 

193 

 

“Although there is a lot of work left, pushing antenna performance to these higher 

frequencies will be critical to unlocking the many promising applications of the terahertz gap.” 
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Appendix B: Executive Summary of Newly Created Intellectual Property  

 

The following list of new intellectual property items were created in the course of this 

research project and should be considered from both a patent and commercialization perspective. 

1. A device comprising of a sub-micron thick photoconductive layer, metal electrodes 

and periodic metal nanostructure array that allows sub-picosecond device response 

time regardless of the photoconductor carrier lifetime. 

2. A fabrication method for transferring and bonding sub-micron thick photoconductor 

films to other substrates, allowing top-down fabrication process to be implemented on 

both sides of the thin-films.  

3. A computational method for combing frequency domain optical modeling with time 

domain semiconductor device modeling to study the transient response of 

photoconductive devices.  
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual 

Property Items 

 

C.1 Patentability of Intellectual Property (Could Each Item Be Patented) 

 

The three items listed were considered first from the perspective of whether or not the 

item could be patented. 

1. The device design described in item 1 could be patented. This device architecture 

represent functionality and design not previously described in the literature or prior 

patents. 

2. The fabrication method of item 2 could not be patented. This process is adopted from 

well-known standard wafer bonding, thinning and selective etching processes. It is 

unique only in that it has been developed specifically for LT-GaAs thin-films.  

3. The computational method of item 3 could not be patented. This method was 

developed within a commercially available package (COMSOL® Multiphysics). It is 

based off known methods from the literature and unique in the approximations made 

to simplify the computational model.  

 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

 

The three items listed were considered first from the perspective of whether or not the 

item should be patented. 
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1. The device design in item 1 should not, at this time be patented. The experimental 

results were not conclusive in supporting the hypothesized performance increase over 

industry standard devices.  

2. Not applicable 

3. Not applicable 

 

C.3 Possible Prior Disclosure of IP 

 

The following items were discussed in a public forum of have published information that 

could impact the patentability of the listed IP. 

1. The device design described in item 1 was discussed in publications and presentations 

by the author. The following is a list of publications 

 

N. Burford and M. El-Shenawee, “Computational Modeling of Plasmonic Thin-Film Terahertz 

Photoconductive Antennas,”J. Opt. Soc. Am. B, vol. 33, no. 4, pp. 748-759, 2016. 

 

N. Burford and M. El-Shenawee, “Simulation, Fabrication and Measurement of Plasmonic-

Enhanced Terahertz Photoconductive Antenna,” Proc. of SPIE Photonics West OPTO 2016, 15-

18 2016. 

 

N. Burford and M. El-Shenawee, “Modeling of Plasmonic Terahertz Antennas using COMSOL 

Multiphysics,” Proc. of the IEEE Int. Symp. on Antennas and Prop. and North American Radio 

Science Meeting, Vancouver, Canada, 19-24 July 2015. 

 

2. Not applicable 

3. Not applicable 
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Appendix D: Broader Impact of Research 

 

D.1 Applicability of Research Methods to Other Problems 

 

The research methods utilized in this work to design and study the proposed THz 

photoconductive antenna can be applied to many other problems. Often, device designs are 

considered on a high conceptual level only, before proceeding to fabrication and testing of 

devices. The described approach of concept, rigorous theoretical modeling, fabrication and 

testing demonstrates how a strong theoretical background can be used to predict device 

performance before significant time and financial investment in fabrication and testing is made. 

This could be applied directly to other optoelectronic devices, such as LEDs, semiconductor 

photodetectors and solar cells. While this work is focused on LT-GaAs based devices, THz 

PCAs utilizing other material systems such as InGaAs or multi-quantum-well structures could 

also be studied using the described methodology.  

 

D.2 Impacts of Research Results on U.S. and Global Society 

 

The research results of this dissertation have potential for impacting U.S. and global society. 

The issue addressed in this work is the low output power of THz frequency devices. This band of 

the electromagnetic spectrum is not extensively utilized, one of the reasons being this 

technological limitation. Since THz technology has potential applications in cancer screening, 

development of high power THz sources could improve human survival rates of certain types of 

cancers, providing a potential increase in total human population. Other applications of security 

screening could be realized with such high power THz sources. Although not likely to have 
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significant effect on total human population density, THz frequency security screening would 

raise many societal questions in regards to privacy. This is due to the higher resolution achieved 

in THz imaging allowing a high level of detail of a person’s body to be seen when fully clothed. 

These questions have already been raised with lower resolution millimeter wave imaging 

currently used in many U.S. airport checkpoints and would only be exaggerated through the 

implementation of THz technology in these applications. 

 

D.3 Impact of Research Results on the Environment 

 

The research results do not have significant foreseeable adverse effects on the environment. 

This is mainly due the fact that even under the complete adoption and realization of THz PCA 

based technology, the total number of THz PCA devices produced would be insignificant 

compared to production of other semiconductor devices. However, it is possible that medical 

applications of THz technology could impact the average human life span, indicating that 

environmental impacts are not completely unreasonable.  
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Appendix E: Microsoft Project for Ph.D. MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Dissertation Generation 

 

Computer #1 

Model Number: Dell Optiplex 980 

Serial Number: 2Q2MLM1 

Location: ENRC 4906 

Owner: Dr. Magda El-Shenawee 

 

Software #1 

Name: COMSOL® Multiphysics 

Owner: Dr. Magda El-Shenawee 

 

Software #2 

Name: ANSYS® HFSS  

Owner: Dr. Magda El-Shenawee 

 

Software #3 

Name: Microsoft Office 2016  

Owner: Electrical Engineering Department 

 

Software #4 

Name: Matlab vR2013a  

Owner: Electrical Engineering Department 

 

Computer #2 

Model Number: Dell Latitude E5520 

Serial Number: 26082332533 

Location: N/A 

Owner: Dr. Magda El-Shenawee 

 

Software #1 

Name: Microsoft Office 2016  

Owner: Electrical Engineering Department 

 

 

 

  



 

202 

Appendix G: All Publications Published, Submitted and Planned 

 

 Journal Publications 
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