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ABSTRACT 
 Grain sorghum is an underutilized crop despite many advantages to its cultivation. A 
drought-tolerant plant with many pest-resistant cultivars, its applications are limited by problems 
with nutrient availability, particularly protein digestibility. Digestibility of grain sorghum protein 
is reduced by antinutritional compounds in the grain like tannins and phytates, and by moist-heat 
cooking. Some of these concerns can be mitigated by how the grain is processed. Fermentation is 
one processing method that can improve digestibility. Fermentation can also concentrate protein 
in a substrate. In this experiment, grain sorghum was subjected to different treatments and used 
as a substrate for yeast fermentation. Two species of yeast were tested; common baker’s yeast 
(Saccharomyces cerevisiae), and an amylolytic strain (Lipomyces kononenkoae). Effects of 
pasteurization or sterilization of the substrate, nitrogen supplementation, amyloglucosidase 
addition, and co-culture with an amylolytic lactic acid bacteria Lactobacillus amylovorous were 
examined. After 48 hours of incubation, baker’s yeast samples treated with enzyme increased in 
crude protein, from 9% in unfermented grain to approximately 27% after treatment. Nitrogen 
supplementation accelerates protein enrichment and is a significant factor at 24 hours of 
fermentation. Pepsin digestibility of fermented samples was improved compared to thermally 
processed controls. Phytates increased in concentrated high-protein samples, but the ratio of 
phytate to protein was reduced by both yeasts. Both types of yeast increased pepsin digestibility 
of sorghum protein compared to thermally processed control samples. L. kononenkoae reduced 
phytates in the substrate, but did not enrich protein content. The lactic co-culture had no 
significant effect on measured responses, but decreased incidence of spoilage and contamination 
of the fermentation samples. A fermentation with baker’s yeast can concentrate sorghum protein 
in a substrate if the grain starch is hydrolyzed first, and can increase digestibility as well. 
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CHAPTER 1: INTRODUCTION, OBJECTIVES, AND LITERATURE REVIEW 
INTRODUCTION 

Grain sorghum is a staple food for people and their livestock all over the world. It is of 
particular importance to human nutrition in arid parts of Africa and Asia, as it is better suited to 
dry climates than other cereal crops. Globally, the United States is the top producer of grain 
sorghum, with much of the crop exported for animal feed applications (Kumar et. al., 2011). 
Sorghum is considered an important dietary protein source despite being relatively low in 
protein. Like many cereals, it is deficient in lysine and methionine as well (Belton and Taylor, 
2004). Additionally, the presence of antinutritional factors interferes with digestion and 
absorption of the protein that the grain does contain (Weaver, Hamaker and Axtell, 1998). 
Cooking also reduces protein digestibility through various mechanisms including protein 
crosslinking and amino acid racemization, both of which make the protein resistant to digestive 
enzymes of monogastric organisms (Duodu et al., 2003). These issues limit the extent to which 
sorghum can be used in feed applications; though grain sorghum contains roughly the same 
amount of protein as maize, the digestibility of sorghum protein is much lower (Duodu et al., 
2003). 

Because of its dietary importance and potential for expanded applications, much work 
has been done on improving the availability of protein in grain sorghum. Cultivars with low or 
no tannin content generally have better protein digestibility than high-tannin grain, but at the cost 
of reduced pest resistance which increases losses in the field. Breeding for cultivars with higher 
protein is another approach, however increased protein in the grain does not necessarily translate 
into more protein metabolized by the consumer (Axtell et al., 1981). Post-harvest processing of 
the grain can be used to improve protein quality and digestibility. Chemical and physical 
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processing such as alkali treatment and de-hulling can decrease tannins and phytates; removal of 
these compounds correlates with higher protein digestibility (Chavan et al., 1979). 

Fermentation is another way of increasing protein digestibility. Many traditional 
preparation methods for sorghum foods involve a fermentation step, and studies of these methods 
show improvement in nutrition over non-fermented methods (Axtell et al., 1981). Often the 
bacteria indigenous to the microbiome of the grain are enough to facilitate the fermentation 
(Chavan, Chavan, and Kadam 1988) but the process can be controlled and improved by 
inoculation with a specific organism (Oboh, 2006). Lactic fermentations are commonly 
employed in making porridges, breads, and other sorghum food products; studies of these 
fermented foods have shown higher digestibility and improved amino acid profile compared to 
foods prepared from unfermented grain. (Hassan and El Tinay 1995; Correia et al., 2005) 
However, these fermentations do not change the total protein content of the grain food product.  

There are many other benefits to lactic acid fermentation. Increased vitamin content and 
mineral bioavailability have been observed in fermented foods (Kazanas and Fields, 1981; Pyo, 
Lee and Lee, 2005; Leroy and De Vuyst, 2004). Lactic acid bacteria also contribute to shelf life 
and food safety by inhibiting growth of many types of spoilage and pathogenic organisms. This 
occurs not only because of the reduced pH as lactic acid accumulates, but can also result from 
the production of antimicrobial compounds called bacteriocins. These compounds have been 
shown to inhibit contamination by Listeria and Salmonella species in fermented food products 
(Ashenafi, 1991; Makras et al., 2006).  

Fermentation also has been used to increase protein contents of plant matter, generally for 
feed applications. Organisms used in these processes are generally fungi, particularly in solid-
substrate applications. Molds have the advantage of rapid growth, which means faster 
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carbohydrate respiration and accumulation of biomass. However, production of mycotoxins is a 
concern when using mold, either by the desired organism or contamination by another. Yeasts 
are also used in protein production applications. Yeast biomass can be used directly as a protein 
supplement (Winkler et al., 2011; Maylin, Cervantes, and Beames, 1984), or as part of a 
fermentation byproduct as with distiller’s grain (Ferreira et al., 2010; Øverland et al., 2013).  
Many common yeasts can metabolize glucose as a carbon source; this sugar can be obtained by 
breaking down starch, as with malting in beer processing. Some yeasts are amylolytic, and can 
produce enzymes to degrade the starch directly. Such organisms may still require processing of 
the substrate to function efficiently. Yeasts also require other vitamins and minerals to thrive, in 
some protein-enrichment studies these nutrients are provided using yeast extract, a common 
ingredient in yeast growth media formulas. Yeast extract is also a good nitrogen source, but an 
expensive one. Replacement of yeast extract with other nitrogen sources such as urea or 
ammonium salts have proved successful in some studies (Rosma and Cheong, 2007). 
 Development of an inexpensive processing method that could preserve or improve the 
digestibility of protein in sorghum grain could provide several benefits. Increasing the content of 
digestible protein in the grain would make it more useful in food or feed applications. Increase in 
demand for sorghum could allow commercial farmers to shift production to sorghum during 
drought conditions and still have a profitable harvest if other more water-intensive crops fail. 
The goal of this research is to determine conditions for a fermentation process to enrich and 
improve protein content in grain sorghum.                 
RESEARCH OBJECTIVES 

The overall purpose of this study is to increase protein content and quality of grain 
sorghum by a fermentation process using yeast. Preliminary studies with baker’s yeast and 
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sorghum meal have demonstrated that a statistically significant increase in percent protein can be 
achieved with the Saccharomyces cerevisiae available to consumers if the grain has been treated 
enzymatically to convert the starch into sugars. However, literature has shown increases in 
percent protein with other species of yeasts and different substrate treatments. This study will 
compare commercial active dry baker’s yeast to an amylolytic strain of yeast, Lipomyces 
kononenkoae, under different substrate treatment conditions, to determine which of the factors 
tested have the most effect on protein content in the final fermented grain product. 

Digestibility is also important in assessing the quality of protein in a food or feed product. 
The amount of crude protein in sorghum grain is similar to that of other grains, but the 
digestibility of sorghum protein is lower. This is a result of the structure of the grain, as well as 
antinutrient compounds present in the grain. A fermentation process that could increase both the 
quantity and digestibility of sorghum grain would expand the range of potential food and feed 
applications for this crop.  
Objective 1: Examine the effects of thermal and enzyme treatments, nitrogen supplementation, 
and bacterial co-culture on the final percent protein in yeast-fermented sorghum  
Objective 2: Compare the nutritional quality of sorghum fermented by different species of yeast 
in terms of in vitro protein digestibility and phytate content. 
LITERATURE REVIEW 
  
Sorghum Cultivation and Use  
 Sorghum is an important crop in many parts of the world. Indigenous to Africa, sorghum 
has been cultivated in a wide range of locations and climates in Asia, Australia and the Americas 
as well as its native habitat. There are different varieties of sorghum grown for several 
applications; many consumers are familiar with sorghum syrup, which is extracted from the 
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sugar-rich stalks of sweet sorghum cultivars. There are leafy varieties grown for livestock 
forages; some fast-growing cultivars have also been examined as feedstock for biofuel 
production (Zhao et al, 2009; Schittenhelm and Schroetter, 2014). Grain sorghum is grown 
primarily as a food source for humans and livestock. Currently the top producing nations are the 
United States, Mexico, Nigeria, India, and Ethiopia (FAOSTAT 2015). 

There is recent interest in bioethanol production from grain sorghum (Wu et al. 2007; 
Dyartanti et al. 2015). However, food and feed are still the most common applications for the 
grain. Grain sorghum can be made into many food products, including porridge, breads, tortillas, 
beverages, and a snack similar to popcorn (Anglani, 1998). There is also increasing interest in 
sorghum as an ingredient in gluten-free products (Pineli et al., 2015; de Meo et al., 2011). In the 
United States, grain sorghum is used primarily for animal feed applications. Sorghum grain has 
been examined as a low-cost replacement for corn or other grains in feed formulations. Sorghum 
has been studied in feed applications for dairy and beef cattle (Delgado-Elorduy et al. 2002; 
Wood et al. 2011), poultry (Selle et al., 2010), swine (Lizardo, Peiniau, and Aumaitre, 1995), and 
fish (Alderolu et al., 2009) with varying degrees of success. 
Benefits of Grain Sorghum Use  
 Grain sorghum is a very water efficient crop. Native to arid desert regions, it is well-
adapted to dry climates can often be grown without any irrigation and still produce a harvest. 
Various cultivars have been developed for optimized performance in warmer or cooler climates 
and different patterns of water availability including rainy seasons and irrigation. Careful 
cultivation has increased yield without requiring more land area, production volumes have been 
maintained even in places where land area used for sorghum cultivation has decreased (Kumar 
et. al., 2011; FAOSTAT 2015). Cultivars can be selected for resistance to insect and bird damage 
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as well, with tannins and seed hardness contributing to reduced losses caused by these pests 
(Kumar et al., 2011). Though other grain crops such as maize and wheat have surpassed sorghum 
in its native regions for economic reasons, sorghum remains an important source of energy 
particularly when heat and drought reduce yields of these other crops.  
Challenges to Grain Sorghum Use 

While there are many advantages to cultivation of grain sorghum, there are limitations to 
its practical application. The hard seed and high tannin contents that confer pest resistance to 
some cultivars of the grain also make them unpalatable to livestock, and difficult to metabolize 
nutrients for both people and animals. One major reason other cereals are preferred over 
sorghum for many applications is the relatively low digestibility of sorghum grain. The 
percentage of crude protein sorghum contains is similar to that of other grains, but the 
digestibility of that protein is lower by comparison. And, unlike many other grains, the 
digestibility decreases significantly upon cooking (Duodu et al., 2002). Low digestibility of 
nutrients slows growth in livestock, which makes sorghum less attractive for feed applications. 
Studies comparing sorghum grain to maize have shown sorghum to result in reduced weight gain 
or weight loss by poultry (Harms et al., 1958), swine (Sotak-Peper et al., 2015) and fish (Allan et 
al., 2000). Low protein digestibility also contributes to malnutrition in humans who depend on 
sorghum as a primary food source (Wong et al., 2009). 

One contributing factor to the low digestibility of sorghum grain is presence of anti-
nutritional compounds in the grain, particularly tannins and phytates. While many species of 
sorghum grown in the United States are low-tannin or tannin-free sorghum cultivars, many of the 
more drought-tolerant and pest-resistant cultivars widely grown in other parts of the world are 
high in tannins. Sorghum tannins help protect the grain from insect and bird damage, and reduce 



7  

other types of loss in the field (Price et al., 1979). However, these tannins have antinutritional 
properties in humans and livestock. In addition to being unpalatable, which reduces overall food 
intake, tannin compounds can bind to protein and inhibit enzymatic digestion of the nutrient 
(Hassan and El Tinay, 1995). Even non-tannin sorghum cultivars contain phytate compounds, 
which also bind protein and interfere with protein digestion (Osman, 2004; Duodu et al., 2003). 

Another factor which contributes to reduced protein digestibility is heat processing of the 
grain. The grain must be cooked for human consumption, and is often subjected to some thermal 
treatment for use as animal feed, such as steam-flaking. Such wet-heat processing has been 
shown to reduce protein digestibility (Duodu et al., 2001). The mechanisms behind this are not 
completely understood, but may include formation of protein-starch complexes, as well as cross-
linking of proteins in general and of sulfur-containing amino acids in particular. Changes in 
protein structure that result from these reactions can result in increased resistance to the typical 
protease enzymes found in monogastric organisms’ digestive systems (Duodu et al., 2003). Wet-
heat applications could also possibly cause isomerization of amino acids from L to D isomers, 
which would reduce their bioavailability as well as their digestibility (Duodu et al., 2003). These 
adverse effects of heat treatment are less pronounced or even absent in dry-heat processing, such 
as extrusion (Duodu et al., 2001; de Mesa-Stonestreet, Alavi, and Gwirtz, 2012) 

Improving sorghum protein availability is of great concern; though most of its calories 
come from carbohydrates, the grain is considered to be more important as a source of dietary 
protein. It is most vital in areas where other types of protein are difficult to access, so there has 
been extensive research into mitigating the effects of anti-nutritional factors and optimizing the 
digestibility of the amino acids it contains (Duodu et al., 2003). Sorghum, like many other grains, 
is known to be deficient in lysine (Virupaksha and Sastry, 1968), so efficient and cost-effective 
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ways to supplement the amino acids it lacks have also been studied. Blending sorghum grain 
with other available plant proteins has been one way of supplementing needed protein in 
sorghum foods (Chavan, Chavan and Kadam, 1988). Fermentation has also been employed as a 
means of improving availability of protein from sorghum (Correia et al., 2005). 
Fermentation Process Applications 

Fermentation has been used as a food processing method throughout human history, for 
various reasons. The wild fermentations that traditionally resulted in foods like cheese, tempeh 
and sauerkraut have been gradually refined into processes that today produce a myriad of food 
and pharmaceutical products as well as industrial chemicals. Fermentation is an efficient way of 
generating complex molecules that would be time-consuming, expensive, and difficult (if even 
possible) to synthesize by other means. Fermentation can also remove undesirable compounds as 
the fermenting organisms metabolize the substrate. Many organisms can be used in fermentation 
processes, including yeasts, molds, algae, bacteria and mixed cultures. 

In food, fermentation has several applications. Traditional fermentation methods were 
used to make food safe to eat, to preserve it for storage, or to make foods taste better. Many 
fermentation organisms produce organic acids, peroxides, and antimicrobial chemicals that 
inhibit pathogens and other organisms from colonizing the food product (Bourdichon et al., 
2012; Chang and Chang, 2010). Fermenting perishable foods can extend their shelf lives by 
reducing pH or making the food otherwise inhospitable to spoilage organisms; fermentation 
effects can help make other preservation methods such as drying or curing more effective (Ross, 
Morgan and Hill 2010). Fermentation can impart desirable sensory characteristics as well. 

Fermentation has been found to reduce antinutritional factors and toxic compounds and 
can increase vitamin and antioxidant content (Caplice and Fitzgerald, 1999; Juan and Chou, 
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2010). Enzymatic processes involved in fermentations increase digestibility of nutrients, so they 
are easier to metabolize by the intended consumer, an effect has been seen in both human food 
and livestock feed preparations (Gibson, Perlas and Hotz, 2006; Kiers et al., 2000; Feng et al., 
2007). Fermentation can change molecular structures in foods, for instance by hydrolysis of 
carbohydrates or proteins, which can result in improvements in nutritional quality. 
Protein Enrichment by Fermentation 

Fermentation processes can be used to increase protein content in foods in addition to 
increasing protein quality. Bacterial fermentation can be used to generate proteinaceous biomass 
from a carbon-rich fluid substrate, such as a sugar solution (Wang et al., 2013), industrial 
processing byproduct (Bough et al. 1972), or even methane gas (Bothe et al., 2002). However, 
most bacterial protein must be separated from the growth medium for use as an ingredient, and 
separation processes are often expensive. Fungal fermentations are generally more efficient, and 
have a wider range of applications (Nasseri et al., 2011). Fungal fermentations can use a variety 
of substrates, including semi-solid, solid-state, and solid substrate fermentations with water 
activities too low for bacterial culture. Co-cultures and mixed cultures with many types of 
organisms are commonly used for protein production, and are often more effective at protein 
accumulation than monoculture processes (Fields, Tantratian, and Baldwin, 1991; Cojho et al., 
1993; Tesfaw and Assefa 2014) 

Yeast fermentation can increase both content and digestibility of proteins in plant foods, 
and often yield a product with acceptable sensory qualities (Khetarpaul and Chauhan, 1990). 
Yeast fermentation processes have been demonstrated to double the protein contents in sweet 
potato and cassava processing wastes (Yang, 1988; Oboh, 2006), and triple the protein in potato 
and cactus process wastes (Gélinas and Barrette 2007; Araújo et al., 2005). A fermentation of 
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sorghum with yeast to generate ethanol yielded a distillers grain byproduct that was 44% protein 
(Horn, du Preez and Kilian, 1992). The goal of this work was to convert all of the starch in the 
grain into ethanol, a process that took up to 200 hours. A more modest increase in protein could 
be achieved in a shorter amount of time. 

Factors that can affect the amount of protein increased by yeast fermentation include 
inoculation rate, type of carbon source, and micronutrient availability. Compared to bacteria, 
yeast are tolerant of a wider range of temperatures and pH, and can survive much lower water 
activities and moisture contents; varying these conditions appears to have less of an effect on 
growth compared to the amount of yeast added initially (Araújo et al., 2005). Inoculum sizes 
used in literature range from 3.6 mg dry yeast per gram (0.36%) of substrate weight (Hong et al., 
1989) to 15 percent of the substrate weight (Araújo et al., 2005) in fresh yeast, which contains 
about 70% moisture. Fresh yeast is approximately 40% crude protein on a dry basis, so an 
inoculation rate of 15 grams of fresh yeast per 100 g would immediately increase the total 
protein content by about 2 percent. However, the increase in percent protein at such an 
inoculation rate was seen to be much greater than that 2 percent, indicating that the increase is 
not merely an artifact of the added yeast. Increased inoculum size also shortens the lag time in 
the yeast growth cycle, reducing the total incubation time (Horn, du Preez and Kilian, 1992). 
However, such large quantities of yeast may not be feasible for a cost effective process. 
Applications of Fermentation to Sorghum 
 There are several types of fermentation processes that use sorghum as a substrate. 
Sorghum is used for the production of ethanol for both biofuel and consumption in beverages. 
Sweet sorghum and sorghum cultivars developed specifically for cellulosic biomass are 
generally used over grain sorghum for bioethanol applications (Mamma et al., 1996), but 
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fermentation of grain sorghum has been studied for this purpose as well. The distillers grain from 
sorghum ethanol fermentation has been shown to be nutritionally similar to other distillers grain 
byproducts (Al-Suwaiegh et al., 2002). Fermentation of sorghum grain has been used to increase 
digestibility in both food and feed applications. Fermentation in traditional preparations of foods, 
like porridges and flatbreads, has been shown to increase digestibility of protein and starch, 
reduce phytate and tannins, and increase bioavailability of iron (Kazanas and Fields, 1981; 
Taylor and Taylor, 2002; Osman, 2004). As a feed ingredient, fermenting sorghum can result in 
better outcomes compared to using unfermented grain (Aderolu, Kuton and Odu-Onikosi, 2009). 
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CHAPTER 2: PRELIMINARY STUDIES AND PARAMETER SELECTION 
INTRODUCTION 

Preliminary studies were conducted to determine what substrate conditions would support 
fermentation, which organisms should be used for fermentation, and how cultures for the 
organisms used would be maintained and propagated. Treatment parameters were selected over a 
series of experiments, which demonstrated their effect on the sorghum meal substrate. Initially, 
the study was on the effects of lactic fermentation of sorghum, and only inoculation with L. 
amylovorous was studied. However, the desired information on how the treatments affected the 
sorghum substrate were still relevant. Here, the effects of different pH control methods, nitrogen 
supplementation, enzyme treatments, and thermal treatments were studied. Different yeast strains 
were tested for use in this substrate system as well. The results of these studies helped establish 
the treatments parameters used in the main experiment. 
EXPERIMENT OVERVIEW 
 Grain sorghum was ground and mixed with water to make a slurry for the fermentation 
substrate. The substrate was subjected to different treatments including thermal processing, 
enzyme treatment, pH control, nitrogen supplementation or any combination of those. Substrates 
were inoculated with lactobacillus, yeasts, or co-cultures of both types of organism. Control 
samples without inoculation were prepared for these treatments as well. Samples and were 
incubated for up to 96 hours, with samples collected at intervals throughout the duration of the 
run. Substrate samples were tested for pH, lactic acid, and crude protein, to monitor for microbial 
growth and any occurrence of protein enrichment. 
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PRELIMINARY STUDIES 
pH control 
 Fermentation by lactobacillus and yeast both result in reduced pH of the fermentation 
substrate. As the name suggests, lactic acid bacteria are quite efficient at producing lactic acid, 
and though these bacteria are acid tolerant they can generate enough to inhibit their own growth. 
While the main fermentation products of Saccharomyces cerevisiae are carbon dioxide and 
ethanol, other compounds can be produced, particularly from complex substrate systems. Many 
of these minor products are acidic, including malate, pyruvate and several amino acid 
degradation byproducts (Postma et. al., 1989; Zelle et. al., 2008).  

 Changes in pH can affect the progress of the fermentation. Microorganisms and enzymes 
have optimum pH ranges for best performance, as well as pH limits that will result in death or 
deactivation if exceeded. In these experiments, various methods of pH control with different 
compounds were tested. Calcium carbonate (CaCO3), ammonium carbonate ((NH3)2CO3), 
ammonium sulfate ((NH3)2SO4), and solutions of sodium hydroxide (NaOH) were tested as 
means of raising acidic pH during fermentation. 

 During initial trials pH was adjusted every few hours using CaCO3, (NH3)2CO3, or 
NaOH. The CaCO3 was rarely effective enough to use alone; the quantity required for even a 
modest change in pH was very large compared to the total amount of substrate. Instead, it was 
often combined with NaOH or (NH3)2CO3, with the stronger basic compounds used for gross pH 
adjustments, and the CaCO3 used to stabilize that pH and maintain it for longer periods. 

In studies on lactic acid production, it was shown that the pH could be held within a 
given desirable range by adding the pH adjustment compounds directly to the substrate before 
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inoculation (Hofvendahl and Hahn-Hägerdal 2000; Yang et. Al., 2015). The presence of CaCO3 

in the substrate would bind lactic acid continuously as it is generated to form calcium lactate, 
which is mostly insoluble in aqueous solution. The lactate salt would precipitate from the 
substrate as it formed, and the pH would decrease much more slowly. However, in practice, the 
lactobacillus often failed to grow when the pH was modulated in advance. Addition of 
(NH3)2CO3 with the CaCO3 resulted in very high pH of the substrate; adjusting the pH to neutral 
with a solution of hydrochloric acid before inoculation did not result in any bacterial growth. 
Samples subjected to this treatment showed no lactic acid production. Substrate treated with 
(NH3)2SO4 and CaCO3 did show growth and lactic acid production, but (NH3)2SO4 is mildly 
acidic and does not raise pH of the substrate. The pH of substrate treated with (NH3)2SO4 started 
low and continued to fall throughout the fermentation unless CaCO3 was also present. Even 
samples that showed some growth were very slow to ferment, with no lactic acid detected until 
66 hours of incubation. Pre-emptive pH control was not feasible for this system, in subsequent 
experiments pH control was not applied until after microbial growth was established. 

When the scope of the experiment shifted to protein enrichment by yeast, pH control 
became less critical to the result. The yeast appeared to tolerate a low pH, so the main concern 
was for the enzymes added. The amyloglucosidase chosen to hydrolyze starch into sugars has an 
optimum pH range between 4.5 and 4.8. For subsequent experiments pH was monitored early in 
the fermentation and adjusted if necessary. After several trials it was determined that pH should 
be checked 8 to 9 hours after inoculation to allow sufficient growth of the organisms before 
adjustments were made, and any sample with a pH below 4.5 at that time would be adjusted to 
between 4.5 and 5 with CaCO3 and a NaOH solution. Addition of CaCO3 was not to exceed 1.5g 
for a 40g sorghum substrate, and any further adjustment required was performed with the NaOH 
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solution. Subsequent experiments used CaCO3 and NaOH exclusively for adjusting the pH of the 
samples. 

Nitrogen supplementation 
 During the pH adjustment work with L. amylovorous, it was noted that substrate samples 
adjusted with ammonium carbonate and ammonium sulfate showed slightly more lactic acid 
production than those treated with other compounds; this was true even though ammonium 
sulfate is acidic and did very little to control the pH of the substrate. Literature on the matter 
revealed that these compounds are readily metabolized by microorganisms as a nitrogen source 
(Belasco, 1954; Nancib et. al., 2001). Experiments were conducted to separate the effects of 
nitrogen supplementation from those of pH control. Ammonium carbonate was eliminated from 
the study for its effects on the pH of the substrate. Ammonium sulfate was studied as a nitrogen 
source since it had the least effect on pH, as well as superior material handling properties such as 
the absence of dust and ammonia fumes. Nitrogen addition increased lactic acid production; 
measurement of the acid was used to monitor bacterial growth.  

 Though nitrogen supplementation was having an effect on the growth of the lactobacillus, 
it was not affecting the total protein in the substrate. It was hypothesized that a more effective 
nitrogen supplement could promote enough growth to increase the substrate protein. Organic 
nitrogen sources like urea, corn steep liquor, and yeast extract were considered; these are good 
nitrogen sources but costly, their use could prove prohibitively expensive for most processes. 
Yeast extract in particular is used as a supplement because not only does it provide nitrogen, but 
other trace nutrients as well. One way to take advantage of these benefits is to blend yeast extract 
with a less expensive nitrogen source. This was the approach used in a 2007 study by Rosma and 
Cheong, which found that a 1:4 w/w blend of yeast extract and ammonium sulfate performed as 
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well as pure yeast extract in terms of lactic acid produced by the fermentation. The same ratio of 
yeast extract and ammonium sulfate was used to supplement a lactic fermentation at a rate of 5% 
of the dry grain weight in the substrate. This resulted in a modest increase in lactic acid 
production, but no change in percent protein. The lactobacillus were growing well, but not to an 
extent that their accumulated biomass could have any effect on the percentage of protein in the 
substrate. 

 It was determined that the lactobacillus used here could not increase the amount of 
protein in the substrate. Literature on protein enrichment of complex substrates often use fungi 
rather than bacteria (Durand and Chereau, 1988; Yang 1988; Araújo et. al., 2005). In light of this 
fact, a fermentation was conducted with baker’s yeast instead of, and in co-culture with, the L. 
amylovorous used in prior experiments. Initially the substrate tested was raw sorghum meal 
mixed with sterile deionized water, and treatments included addition of a saccharification 
enzyme (amyloglucosidase) and the addition of a 3:1 blend of ammonium sulfate and yeast 
extract, at an addition rate of 3% of the dry grain. Tests for crude protein showed an increase in 
the fermented samples, from 12% (dry basis) in the unfermented grain to about 16% in the 
fermented grain after 48 hours. A similar experiment was performed on thermally processed 
substrate, there crude protein increased to between 23% and 29% after 48 hours of incubation. 
The method by which the crude protein was determined showed the amounts of ammonia 
nitrogen left in the supplemented samples. It was noted that there was an excess of ammonia left 
in the samples after fermentation was mostly complete, an indication that more nitrogen was 
being added than the organisms were able to metabolize. This finding prompted a reduction of 
the nitrogen addition rate in the proposed work, to 2% of the dry grain weight in the substrate.  
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Enzyme selection 
A test was run to study the activity of amyloglucosidase with and without amylase. The 

amylase used was a solution of thermostable α-amylase from Bacillus lichenformis (18,000 
U/ml), and the amyloglucosidase was produced by Aspergillus niger (321 U/ml); both enzymes 
were purchased from Sigma-Aldrich Co. (St. Louis, MO). Four sets of grain samples were 
prepared; raw (R), cooked (C), cooked with amylase (A), and cooked with amylase and 
amyloglucosidase (AG). A 1:1 w/v ratio of grain to water was used. Addition rates of the 
enzymes were 5.33 μl amylase per gram sorghum, and 8.0 μl amyloglucosidase per gram 
sorghum in the substrate. Each of these were prepared in pairs, with and without a nitrogen 
supplement, which was added at 5% of the dry grain weight.  The thermal treatment applied was 
to place the sample flasks in a water bath maintained at 86°C for 90 minutes; the time and 
temperature selected were the optimum conditions for the thermostable α-amylase to act on 
starch. The same treatment was applied to all the cooked samples including the ones without 
enzyme treatment. After the thermal treatment, the samples were cooled to 40°C. The AG 
samples were adjusted to a pH of 4.5, from an initial pH of about 6.3, using a 2 N solution of 
HCl. Amyloglucosidase was added to the pH-adjusted samples, and  the samples were held at 
55°C for another 30 minutes; the other 3 samples were held at the incubation temperature of 
37°C. At the end of the enzymatic treatment, the pH of the AG samples was returned to the 
initial pH of about 6.3 using a 4 N solution of NaOH. These were equilibrated to 37°C also. The 
lactobacillus inoculum was prepared and each sample received 3.8*108 cells. These samples 
were incubated at 37°C for 72 hours, with samples collected for nitrogen testing at 0, 24, and 72 
hours, and for lactic acid by HPLC more frequently. The pH of each sample was taken at each 
sampling and adjusted to about 5 with CaCO3 if it fell below 4.5. 
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Samples were inoculated with Lactobacillus amylovorous to see how the treatments 
affected the growth of the organism. After incubation, lactic acid was present in all samples 
except the amylase/amyloglucosidase treatment. The reason why the lactic bacteria did not grow 
in these samples was not determined, but it is possible that the pH adjustment raised the salinity 
of the samples above a concentration that the organism could survive. Lactobacillus become 
stressed at sodium chloride levels exceeding 10 g/L in part because of reduced water activity; 
this effect is exacerbated by high sugar concentrations (Neysens, Messens, and De Vuyst, 2003) 
Reducing the pH to 4.5 for the treatment using 2 N HCl, and raising it back to the original pH of 
6.3 using 4 N NaOH added an equivalent to 10 g salt per liter of water in the substrate, which 
already had a high solid content. The sugars generated by the enzymes combined with the excess 
salt could have been enough to inhibit the growth of the L. amylovorous in these samples. These 
samples showed signs of microbial growth eventually, but had a high pH for most of the 
incubation period. Toward the end of the 72 hour incubation the pH dropped below 4, indicating 
some acid-forming organism was growing in the substrate. However, HPLC analysis showed no 
lactic acid, indicating that the organisms growing were not the Lactobacillus originally 
inoculated. 

Because of the difficulty of pH adjustment and potential for poor growth as a result, 
another test was conducted using only amyloglucosidase, with no pH adjustment for the enzyme 
treatment. The enzyme works best at a pH range of 4.5 to 4.8, and should be more effective in 
conjunction with amylase, which will break the starch into smaller dextrins with more ends 
exposed for the amyloglucosidase to attack. It was hypothesized that the enzyme would be more 
effective at hydrolyzing starch into fermentable sugars when the amylolytic lactobacillus was 
present, as L. amylovorous would release amylases into the substrate to degrade the starch, and 
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reduce the pH as well. The test was conducted without thermal treatment, sorghum meal was 
mixed with water 1:1 (w/v) with treatments administered as in Table 1: 

Table 1: Crude protein in raw sorghum meal substrate by treatment 
Treatment avg. % protein 
ground sorghum control 12.05a 
ground sorghum/yeast control 12.23a 
ground sorghum/yeast/nitrogen control 13.45abc 
t=0 yeast only 12.68a 
t=0 yeast/lactic co-culture 13.06ab 
t=6 yeast/lactic co-culture 12.78a 
t=0 yeast/nitrogen  13.07ab 
t=0 yeast/nitrogen/lactic co-culture 13.57abc 
t=6 yeast/amyloglucosidase 15.22cd 
t=6 yeast/amyloglucosidase/lactic co-culture 14.92bcd 
t=6 yeast/amyloglucosidase/nitrogen 16.23d 
t=0 yeast/amyloglucosidase/nitrogen 16.39d 
t=6 yeast/amyloglucosidase/nitrogen/lactic co-culture 15.63d 
t=0 yeast/amyloglucosidase/nitrogen/lactic co-culture 16.50d 
 
These samples were inoculated with dry Saccharomyces cerevisiae baker's yeast (Best Choice 
Traditional Active Dry Yeast, AWG Brands, Kansas City, KS) granules at a rate of 0.5% w/w of 
the dry grain meal, either at the start of the incubation, or 6 hours later. The delayed inoculation 
was to determine whether there was any advantage to allowing sugars to be produced before the 
yeast were added to the substrate. Inoculated samples were incubated for 72 hours, including the 
6 hour delay. The samples were tested for crude protein at 48 hours of incubation. 

Though it was expected that the samples with the acidity and amylases conferred by the 
lactic bacteria would result in more sugars generated, there did not appear to be much difference 
in the final results. Amyloglucosidase samples with the lactic co-culture did not exhibit more 
fermentation than the amyloglucosidase samples without it, and delaying the inoculation did not 
make a difference in final percent protein. Samples with amyloglucosidase and the lactic co-
culture were visibly liquefied, as were samples treated with amyloglucosidase but no co-culture. 
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Protein enrichment occurred in all samples with amyloglucosidase added, and none of the 
samples without it, regardless of which other treatments were also applied. 

Thermal treatment 
The previous test was conducted without thermal treatment, but amylolytic enzymes are 

generally more effective against gelatinized starch. Initially, when only L. amylovorous 
fermentation was being studied, it appeared that raw grain was an acceptable substrate. This 
organism produces enzymes that are capable of hydrolyzing raw starch, so lactic acid was 
produced in similar concentrations whether the substrate was thermally processed or not, 
particularly when the fermentation was permitted to run for several days. Making the starch 
easier to hydrolyze by gelatinizing it with a thermal treatment did not appear to make a 
difference, possibly because the inoculation rates used were the same; if the bacteria were 
already metabolizing as much of the carbohydrate as that number of bacteria could consume, 
increasing the availability of the starch without increasing the amount of bacteria would not be 
likely to change the amount of lactic acid produced.  

For a protein enrichment by baker’s yeast, which is not amylolytic, the amount of growth 
depends on availability of fermentable sugars. The amyloglucosidase enzyme is much more 
effective at hydrolyzing gelatinized starch, so cooking the starch should increase the amount of 
sugar available to the yeast, which would potentially yield higher protein enrichment. A thermal 
process should be able to increase the amount of starch hydrolyzed by the amyloglucosidase.  

To test this hypothesis and determine an appropriate grain/water ratio to use in a 
thermally processed substrate, four different slurries were prepared in duplicate. The 1:1 ratio of 
grain to water  used for the raw samples would not be a feasible moisture level for a thermally 
processed sample, so different grain to water ratios were tested as illustrated in Table 2. The 
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water ratios used were (in weight of dry grain to volume water) 2:3, 1:2, 1:3, and 1:4, each with 
20 grams of sorghum meal and 0.6 grams of the ammonium sulfate/yeast extract nitrogen 
supplement. Sterilized slurry samples were autoclave sterilized in a Tuttnauer model 3870 ELVC 
vertical steam sterilizer (Tuttnauer USA, Hauppauge, NY, USA) at 121°C for 15 minutes.  
Pasteurized slurry samples were processed in a VWR Model 1227 water bath (VWR, Radnor, 
PA, USA) at 86°C for 90 minutes, with 20 rpm shaking to maintain water circulation. After 
processing, the samples were cooled to room temperature for addition of amyloglucosidase and 
the lactic co-culture. The samples were then stirred and inoculated with dry baker’s yeast 
granules. Incubation was conducted at 37°C for up to 96 hours, with samples taken at 24-hour 
intervals. Crude protein was tested initially and after 48 hours of incubation. The grain/water 
ratio with the highest protein enrichment was chosen for the main experiment. 

Liquefaction of the substrate was apparent in all samples when pH was adjusted after 8 
hours, a phenomenon not observed with raw grain substrate. Bottles with lower water-to-grain 
ratios had firm lumps of substrate floating in them, and sterilized samples had more solid chunks 
of substrate than pasteurized samples. Better mixing at the start of fermentation to break up the 
large pieces could prevent this by allowing the enzyme to contact more of the substrate. All 
thermally processed samples increased in percent protein. The 1:3 w/v ratio resulted in high  

Table 2: Crude protein results by thermal treatment 
Treatment Grain-to-water ratio (w/v) initial % CP 48-hour % CP 
Pasteurized 2:3 11.49 24.74 
Pasteurized 1:2 10.76 23.70 
Pasteurized 1:3 10.4 29.68 
Pasteurized 1:4 11.62 28.77 
Sterilized 2:3 10.85 22.50 
Sterilized 1:2 10.94 28.05 
Sterilized 1:3 11.74 28.85 
Sterilized 1:4 11.04 28.53 
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protein for both thermal treatments as seen in the result in Table 2, this ratio was used in the 
main experiment. 

Co-culture organism 
The co-culture organism was selected for its ability to metabolize starch, demonstrated in 

preliminary studies as well as literature (Nakamura, 1981). Lactobacillus amylovorous has been 
used to decrease viscosity of grain slurries, which occurs as it secretes extracellular amylases 
into the substrate. Yeast and lactic acid bacteria compete for the same nutrients in a fermentation 
system, and have been shown to inhibit growth of each other in mixed culture. Because of this, 
lactobacillus are often considered a contaminant in ethanol fermentation processes (Narendranath 
et. al., 1997). However, ethanol production was not the goal of this work, and test runs showed 
that baker’s yeast and L. amylovorous were able to grow in the same substrate without evidence 
of serious growth inhibition for either organism. For the yeast, substrate weight losses were 
similar between samples with and without the lactic co-culture, which would only occur if the 
yeast were metabolizing sugars at similar rates in both sample treatments. Decreases in pH of the 
co-culture samples were comparable to the pH reduction using only L. amylovorous for lactic 
fermentation, suggesting the bacterial growth and subsequent lactic acid production were similar 
in both systems. 

Amylolytic yeast selection 
 The previous tests were performed exclusively using baker’s yeast and L. amylovorous. 
However, one objective of the proposed research was to determine whether an amylolytic yeast 
could be used to metabolize starch directly for protein enrichment of the sorghum substrate, 
without the need for the enzymatic treatment required by normal Saccharomyces cerevisiae. To 
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select an amylolytic organism, yeasts documented to have the ability to produce amylases and 
glucoamylases were requested from the United States Department of Agriculture’s Agricultural 
Research Service (USDA ARS) Culture Collection. Five strains with this capability were 
available; Pseudozyma tsukubaensis NRRL Y-7792, Piskurozyma capsuligena NRRL Y-6355, 
Saccharomycopsis fibuligera NRRL Y-1062, Schwanniomyces occidentalis var. occidentalis 
NRRL Y-2477, and Lipomyces kononenkoae NRRL Y-11553. The cultures arrived as 
lyophilized pellets in glass vials; pellets were aseptically transferred to cryovials with 0.6 ml 
sterile YM broth; each vial was streaked to its own YM agar plate and grown for approximately 
3 days at between 25°C and 28°C. The vials containing the original cultures were frozen at -80°C 
with 30% v/v of a sterile 87% glycerol solution for long-term storage.  

After the initial incubation, one isolated colony from each agar plate was streaked to new 
YM plates and grown for 24 hours. From each plate, 0.02 grams of cells were collected with a 
sterile loop and placed into Erlenmeyer flasks containing 50 ml of YM broth. The flasks were 
incubated in a MaxQ 4450 orbital shaker (ThermoScientific, Waltham, MA, USA) at 250 rpm 
and 27°C for 9 hours, then 18 ml of fresh YM was added to each flask. Shaking was increased to 
275 rpm to ensure aeration, and incubation was continued for another 9 hours for 18 hours total. 
Cells were counted with a hemocytometer to choose the inoculum volume, between 15 and 30 ml 
of broth. The inoculum was transferred to centrifuge tubes and centrifuged in and Allegra X-22R 
(Beckman Coulter, Brea, CA, USA) at 1450 g for 10 minutes.  

To test the yeasts, a commercial food-grade white sorghum (Pleasant Hill Grain, 
Hampton, NE, USA) was ground into meal, sieved through #18 mesh, and mixed with sterile 
water in a 1:3 w/v ratio and pasteurized at 86°C for 90 minutes. Each bottle was inoculated with 
one yeast species and incubated at 35°C for 48 hours. Weights of each bottle were taken initially, 
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after 24 hours of incubation, and after 48 hours of incubation. The organism associated with the 
most weight loss, Lipomyces kononenkoae, was selected for the research experiment. 

Table 3: Substrate weight reduction by each amylolytic yeast 
Species grams lost 
Lipomyces kononenkoae 4.95 
Schwanniomyces occidentalis occidentalis 1.94 
Piskurozyma capsuligena 0.90 
Pseudozyma tsukubaensis 1.47 
Saccharomycopsis fibuligera 2.23 

 
Propagation of yeast inoculum 

Throughout the proposed research, cultures of the fermentation organisms had to be 
maintained and propagated for inoculating test samples. To maintain consistency, both the 
Saccharomyces cerevisiae baker’s yeast and the Lipomyces kononenkoae cultures were streaked 
to separate YM agar plates. Colonies harvested from these plates were streaked or spread onto 
new plates to grow cells for the inoculum. Initially, it was intended that the test substrates would 
be inoculated with the same cell counts for both species of yeast. However, the L. kononenkoae 
cells are much smaller than the baker’s yeast cells, and the disparity in cellular mass added to the 
substrates could have resulted in an incorrectly perceived advantage in efficiency for the larger 
yeast. Adding the same cell mass was also considered, but the smaller yeast species was also 
more difficult to cultivate and would require several agar plates to grow enough colonies to 
match the amount of baker’s yeast used in the other preliminary experiments. Instead, it was 
decided that volumes of YM broth medium would be inoculated with the same weight of cells, 
and incubated for the same amount of time. The broth inoculation rate used was 0.02 grams of 
live yeast cells for 50 milliliters of media. At the end of the incubation, the same volume of broth 
would be used per test sample for each type of yeast.  
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Initially it seemed that both yeasts had comparable growth requirements; each had been 
grown in shaker flasks of YM broth for 18 hours, near room temperature. However, in the first 
trial with both yeast species, while the baker’s yeast flourished none of the L. kononenkoae 
samples showed any signs of growth of the inoculated species. The propagation method was 
revisited, and it was found that the incubation temperature for the inoculation broth had been 
raised to 32°C, from a temperature range of 25°C to 27°C. In the next trial run the temperature 
was reduced to the original temperature.  

The next inoculum was grown for a substrate weight loss study. New YM agar spread 
plates were grown for each yeast species, resulting in a dense lawn of cells of each yeast. Two 
500ml Erlenmeyer flasks containing 100ml aliquots of YM broth were inoculated with 0.04 
grams of cells for each yeast, for 200ml of inoculated broth per yeast species. The flasks were 
incubated at 26°C with 250-rpm rotary shaking for 18 hours; 36ml of fresh sterile YM broth was 
added to each flask after 9 hours of incubation. After 18 hours, cell counts for both yeasts were 
on the order of 106 cells. This was a normal count for baker’s yeast, but at least one order of 
magnitude low for the L. kononenkoae. The samples were inoculated anyway, with the volumes 
increased to make up for the low L. kononenkoae count. Agar plates were streaked from each 
flask and incubated at room temperature while the fermentation ran. The baker’s yeast samples 
grew well, but the L. kononenkoae showed no signs of growth in the fermentation substrate. 
There was no growth of L. kononenkoae on the agar plate streaked from the inoculum. 

At this point a study on the cultivation of L. kononenkoae was conducted. Colonies were 
harvested from older plates that had been stored in the refrigerator (2-8°C) to determine if age of 
the colonies influenced the growth in the broth medium. One plate was had been incubated for 
43 hours before refrigeration, and the other plate had been incubated 69 hours. Two 250 ml 
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Erlenmeyer flasks containing 50 ml YM broth were inoculated with 0.02 g of cells from each 
plate. Spread plates were inoculated from each plate as well. Broth cell counts were taken at 8.5 
and 18 hours. Both flasks appeared to have good growth, with the broth inoculated from the 43-
hour old plate showing higher counts. The spread plate inoculated from the 43-hour old plate was 
incubated for 45 hours, and substrate was prepared for another experimental run. Cells from the 
new plate were harvested to inoculate 3 flasks of fresh YM broth; baker’s yeast was cultured 
from a spread plate grown at the same time the L. kononenkoae plate was started. The flasks 
were incubated for the same amount of time at the same temperature as the cultivation study. 
After 18 hours, the baker’s yeast had good counts; the broth in the L. kononenkoae flasks was 
clear and showed no signs of growth. The substrate had not been hydrated yet, and was saved for 
a later date. The L. kononenkoae flasks were left shaking in the incubator; several hours later one 
of the three flasks showed signs of growth. Examination of the broth under a microscope showed 
L. kononenkoae cells, and the flask emitted the characteristic odor of L. kononenkoae 
fermentation. Neither of the other two L. kononenkoae flasks showed any activity. 

After this inoculum failed to grow, the original plates were reexamined. The first plate, 
which grew successfully, had sparse, isolated colonies, while the second plate was covered in a 
dense lawn of growth. It appeared that overcrowding on the plate was inhibiting the cells’ 
growth, even after they were removed from the plate and placed in new media. Baker’s yeast 
appeared to have no such difficulty growing in densely populated conditions. Subsequent 
propagation plates were streaked with diluted broth, and any plate without well-isolated colonies 
was discarded and not used to prepare the inoculum. 

Substrate was prepared for another run. Broth was inoculated from several plates with 
well-isolated colonies for both yeast species. Yeast cell counts were taken after 10 and 18 hours 
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of incubation at 25°C with constant shaking. After 18 hours, the counts for L. kononenkoae had 
fallen slightly, from 6.9x107 to 6.5x107 cells, but these counts were still considered sufficient for 
inoculation. The substrate was inoculated and the fermentation was conducted under the same 
conditions as the amylolytic yeast test (35°C, 72 hours, pH adjustment at 9 hours). Growth was 
detected, but not to the extent that it was during the preliminary test- the most weight lost from 
any substrate treatment was not very different than the pasteurized control.  

At this point it was suspected that the drop in cell counts was not a result of error in 
counting or variation in the sample collected, but of actual cell death. This would imply that the 
cells were past the exponential growth phase, and even the stationary phase as they were 
beginning to die. A test was conducted to determine the optimum incubation time for L. 
kononenkoae. A 500 ml Erlenmeyer flask with 150 ml sterile YM broth was inoculated with 0.06 
grams of cells scraped from appropriately isolated colonies. The flask was incubated at 25°C 
with shaking. Cell counts were taken at 6, 9, 12, and 15 hours, at which point the counts began to 
drop. Prepared substrate samples were inoculated with cells from 15 ml of broth at 7, 9, 11, 13, 
and 15 hours of incubation. The inoculated samples were incubated for 72 hours, with samples 
collected at 48 and 72 hours. Sample bottle weights were recorded every 24 hours.  

 
Figure 1: L. kononenkoae cell counts 
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The sample inoculated with 9-hour broth showed the most substrate weight loss after 
both 48 and 72 hours of incubation, as seen in Table 4. All subsequent L. kononenkoae 
inoculation broth cultures were incubated for 9 hours instead of 18 hours. Baker’s yeast 
incubation time was not altered. 

Table 4: Substrate weight loss by inoculum incubation time 

 
Lactic acid analysis 

Though the method was not used in the main research experiment, much of the 
preliminary work used high-pressure liquid chromatography (HPLC) to analyze lactic acid. 
Lactic acid production was used to monitor the progress of fermentation by L. amylovorous, and 
many of the decisions around thermal processing, pH control, and nitrogen supplementation were 
based on these results. The HPLC method used to analyze for lactic acid was high-performance 
size exclusion chromatography (HPSEC) with a refractive index (RI) detector. The HPSEC-RI 
system was a Waters (Milford, MA, USA) which included a 515 HPLC pump and 2410 
refractive index detector. The column used was a 150 x 7.80 mm Rezex ROA organic acid 
column (Phenomenex Inc., Torrance CA, USA), and the mobile phase was an aqueous 0.005 N 
H2SO4 solution. The sample preparation for this method was both rapid and simple; the 
fermented samples were extracted 1:10 in sterile deionized water and filtered through a 45μm 
syringe filter, 50 μl of this filtrate was injected into the column. This convenient method could 
quantify simple sugars, dextrins, and carbonate compounds as well as lactic acid when 

Inoculum age (hours) 48 hour loss (g) 72 hour loss (g) 
7 0.55 0.79 
9 2.99 4.31 
11 0.82 1.28 
13 1.02 2.55 
15 1.85 2.99 
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appropriate standards were used. Degradation of starch in to dextrins and accumulation or 
consumption of sugars could be monitored concurrently with lactic acid production.  

 
Figure 2: Chromatograms of glucose, maltose, maltodextrin, and lactic acid standards. 
 

 
Figure 3: Chromatograms of raw and autoclaved sorghum slurries fermented with L. 
amylovorous compared to unfermented sorghum control.  
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PARAMETER SELECTION SUMMARY 
Based on the results of the preceding trials, the following conditions were selected for the 

research experiments: the pH of the fermentation samples was checked after 9 hours of 
fermentation, if the pH fell below 4.5 pH adjustment was performed with calcium carbonate. 
Nitrogen was supplemented by a 3:1 w/w blend of ammonium sulfate and yeast extract, at a rate 
of 2% w/w of the dry grain in the substrate. Amyloglucosidase from Aspergillus niger (321 
U/ml, Sigma-Aldrich) was added at a rate of 0.8% v/w of dry grain.  Thermal treatments used 
were pasteurization at 86°C and sterilization at 121°C, the appropriate grain/water ratio for 
thermal treatments applied was 1:3 w/v. At least 108 cells of Lactobacillus amylovorous were 
added to the co-cultured sample flasks. Fermentation yeasts selected were Lipomyces 
kononenkoae and baker’s yeast (S. cerevisiae). Fermentation temperature was 37°C during the 
preliminary tests; this was the optimum temperature for L. amylovorous growth. However, yeasts 
tend grow better at lower temperatures, so temperature was reduced to 35°C for fermentations 
during the main research experiment as well as studies on substrate weight and effect of yeast 
cultivation method. Fermentations were initially run for 96 hours, but very little change in 
substrate mass occurs after 72 hours. Analyses were conducted on samples incubated for 48 
hours, so the incubation time was reduced to 72 hours for the research experiment. 
Table 5: Summary of experimental fermentation conditions 
Fermentation conditions   
Nitrogen supplement 3:1 ammonium sulfate/yeast extract; 2% of dry substrate weight 
Thermal treatment Pasteurization 86°C/90 minutes; Sterilization 121°C/15 minutes 
Enzyme treatment Amyloglucosidase from Aspergillus niger, 8μl/g dry substrate 
Co-culture organism Lactobacillus amylovorous, 1x108 cells per sample 
Yeast species Saccharomyces cerevisiae (baker’s yeast); Lipomyces 

kononenkoae 
Fermentation temperature 35°C 
pH adjustment Add CaCO3 if pH falls below 4.5 
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CHAPTER 3: OBJECTIVE 1 - PROTEIN ENRICHMENT FERMENTATION OF 
GRAIN SORGHUM  
INTRODUCTION 
 The overall goal of this work is to develop a fermentation method that can improve both 
the content and quality of protein in grain sorghum. To determine the conditions required for 
such a process to be successful, critical parameters must be identified. The preliminary studies 
showed that enrichment will occur when a nitrogen supplemented, thermally processed, and 
enzyme treated substrate is inoculated with yeast and lactic acid bacteria. The goal of this 
experiment is to separate the effects of each treatment factor and determine which ones are the 
most important for protein enrichment of sorghum.  
Objective 1: Examine the effects of thermal and enzyme treatments, nitrogen supplementation, 
and bacterial co-culture on the final percent protein in yeast-fermented sorghum 
 
MATERIALS AND METHODS  
Culture Propagation and Inoculum Preparation 
Lactobacillus propagation 

Cultures of Lactobacillus amylovorous NRRL B-4540 obtained from the USDA 
Agricultural Research Service (ARS) were maintained frozen in deMan, Rogosa and Sharpe 
(MRS) broth (EMD, Gibbstown NJ, USA) with 15% v/v of an 80-86% sterile glycerol solution 
in 1ml aliquots at -80°C. The frozen vials were revived in 50 ml MRS broth per 2 ml culture and 
stored in 4 ml aliquots at -20°C. The 4 ml vials were grown in MRS broth to use for the 
inoculum within 2 weeks of freezing.  

Approximately 48 hours before the fermentation run, two 4-ml vials of frozen L. 
amylovorous were thawed and placed into two 250ml Erlenmeyer flasks containing 100 ml of 
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prepared sterile MRS broth. The flasks were incubated at 37°C with 150 rpm rotary shaking for 
18 hours. After 18 hours, a 1/100 dilution of the culture medium was prepared using two 9 ml 
0.1% peptone blanks, a drop of the diluted medium was placed on a hemocytometer to count the 
cells. Once the count was obtained, aliquots of the volume required for at least 108 cells were 
frozen in centrifuge tubes until the fermentation was performed. The frozen tubes were thawed in 
cool water, centrifuged and decanted, then the cells were suspended in PBS buffer immediately 
prior to inoculation. 
Baker’s yeast propagation 

To maintain consistency with the amylolytic yeast samples, dry yeast granules (AWG 
Brands, Kansas City, KS) were suspended in Difco Yeast Mold (YM) broth (Becton, Dickinson 
and Co., Sparks, MD, USA) and incubated at 35°C. This broth was used to streak YM agar 
plates, which were incubated at 27°C for 24 hours. Isolated colonies from those plates were 
collected, suspended in sterile water, and spread on YM agar plates and incubated to grow lawns 
of cells. These cells were used to grow the fermentation inoculum, or to streak new plates for the 
next run.  

Approximately 3 days prior to the fermentation run, a new YM agar plate was streaked 
with isolated yeast colonies from a previously grown plate. This plate was incubated for at least 
43 hours, at which point there was enough growth to collect 0.02 g of cells per 50 ml YM broth. 
Cultures were usually 0.06 g in 150 ml YM or 0.08 g in 200 ml YM; this was the maximum 
volume used in a single flask to ensure sufficient aeration. The inoculated YM broth was 
incubated between 25°C and 28°C with rotary shaking between 250 and 300 rpm in a MaxQ 
4450 incubator for 18 hours. At the end of the incubation, the cells were diluted 1/20 and 1/200 
in aqueous 0.1% sterile peptone (Amresco, Solon, OH, USA). The cells were counted under an 
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AO Model L150 microscope (American Optical, Buffalo, NY, USA) using a Bright Line 
hemocytometer (Hausser Scientific, Horsham, PA, USA). The volume of broth required to 
supply approximately 1x108 cells was calculated, usually between 15 and 30 ml per sample. The 
broth was mixed well and distributed between 16 sterile disposable centrifuge tubes (VWR LLC, 
Radnor, PA, USA) and centrifuged at 1200 g for 10 minutes. The broth media was decanted and 
the cells were re-suspended in 3 ml sterile deionized water by vortex mixing. The suspension of 
cells in sterile water was used for inoculating samples. 
Lipomyces kononenkoae propagation 

The amylolytic yeast was obtained from the USDA ARS Culture Collection. Culture 
method for L. kononenkoae was similar to that used for the baker’s yeast, with the notable 
exceptions that cells harvested from agar plates to inoculate the culture broth had to be from 
well-isolated colonies, and the incubation period was reduced to 9 hours for the last two 
attempts. The target cell count was 1x109 in 15-30 ml broth, and the centrifuged cultures were 
decanted to approximately 5ml and mixed by vortex to re-suspend the cells in this reduced 
volume of the original growth media, instead of being suspended in water. 
Fermentation Process 
Substrate preparation 

A single lot of food-grade, USDA organic, white grain sorghum (Pleasant Hill Grain, 
Hampton, NE, USA) was used in this experiment. The grain was ground in a Sunbeam Mr. 
Coffee grinder (Jarden Consumer Solutions, Boca Raton, FL, USA) and sieved through #18 
mesh to yield particle sizes of 1mm or less. Forty grams of grain were weighed into sterile glass 
media bottles labeled 1 through 34 for the 32 treatments, pasteurized control, and sterilized 
control samples. The samples that received nitrogen supplement had the ammonium sulfate and 
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yeast extract mixed into the dry sorghum meal. Sterile deionized water was added to each bottle, 
and thermal treatment was applied immediately. Sterilized treatment bottles were autoclaved 
while the pasteurized treatment bottles were placed in an approximately 90°C water bath. The 
pasteurization time was measured from when the bath and samples equilibrated to 86°C, this 
temperature was maintained for 90 minutes. The pasteurized and sterilized samples were cooled 
to room temperature in a water bath while the yeast and lactobacillus were prepared for 
inoculation.  
Batch Fermentation  

Once the thermally-processed substrate cooled to room temperature, amyloglucosidase 
was added to bottles designated for enzyme treatment. The centrifuged Lactobacillus cultures 
had the MRS broth decanted, and the cells were re-suspended in 2 ml of PBS buffer and added to 
the co-culture treatment samples. The prepared yeast inoculum was added to the substrate. A 
summary of the treatment combinations used is listed in Table 6. The initial weight of each bottle 
was recorded, then the inoculated media bottles were placed in a 35°C water bath. One 
pasteurized control and one sterilized control sample of uninoculated grain slurry was placed in 
the bath with each run. After 9 hours of incubation, the bottles were removed from the bath, 
dried, and weighed again. The pH of each bottle was taken, and any pH below 4.5 was adjusted 
to around 5 with calcium carbonate (Alfa Aesar, Ward Hill, MD, USA). After pH adjustment 
was complete, all samples were weighed again and returned to the bath. Weights and/or samples 
were taken at 24-hour intervals. Samples collected were dried in an oven between 55°C and 
70°C, transferred to sterile containers and held at room temperature until chemical analyses were 
conducted. 
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Table 6: Experimental design by treatment 
Sample Yeast species Nitrogen 

supplement 
Thermal 
treatment 

Enzyme 
addition 

Lactic co-
culture 

1 Saccharomyces cerevisiae Yes 86°C Yes Yes 
2 Saccharomyces cerevisiae Yes 86°C Yes No 
3 Saccharomyces cerevisiae Yes 86°C No Yes 
4 Saccharomyces cerevisiae Yes 86°C No No 
5 Saccharomyces cerevisiae Yes 121°C Yes Yes 
6 Saccharomyces cerevisiae Yes 121°C Yes No 
7 Saccharomyces cerevisiae Yes 121°C No Yes  
8 Saccharomyces cerevisiae Yes 121°C No No 
9 Saccharomyces cerevisiae No 86°C Yes Yes 
10 Saccharomyces cerevisiae No 86°C Yes No 
11 Saccharomyces cerevisiae No 86°C No Yes 
12 Saccharomyces cerevisiae No 86°C No No 
13 Saccharomyces cerevisiae No 121°C Yes Yes 
14 Saccharomyces cerevisiae No 121°C Yes No 
15 Saccharomyces cerevisiae No 121°C No Yes  
16 Saccharomyces cerevisiae No 121°C No No 
17 Lipomyces kononenkoae Yes 86°C Yes Yes 
18 Lipomyces kononenkoae Yes 86°C Yes No 
19 Lipomyces kononenkoae Yes 86°C No Yes 
20 Lipomyces kononenkoae Yes 86°C No No 
21 Lipomyces kononenkoae Yes 121°C Yes Yes 
22 Lipomyces kononenkoae Yes 121°C Yes No 
23 Lipomyces kononenkoae Yes 121°C No Yes  
24 Lipomyces kononenkoae Yes 121°C No No 
25 Lipomyces kononenkoae No 86°C Yes Yes 
26 Lipomyces kononenkoae No 86°C Yes No 
27 Lipomyces kononenkoae No 86°C No Yes 
28 Lipomyces kononenkoae No 86°C No No 
29 Lipomyces kononenkoae No 121°C Yes Yes 
30 Lipomyces kononenkoae No 121°C Yes No 
31 Lipomyces kononenkoae No 121°C No Yes  
32 Lipomyces kononenkoae No 121°C No No 

 
Weight loss study 

The mechanism by which protein is concentrated as a result of fermentation is removal of 
carbohydrate from the substrate as the yeast metabolize sugars into carbon dioxide and water 
vapor. As such, a relationship between the decrease in mass of the substrate and the final protein 
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content could be expected. To determine whether this was the case, bottles of substrate with and 
without nitrogen supplementation were prepared for each yeast species and inoculated. The 
baker’s yeast samples had amyloglucosidase added at the same rate used in the main experiment, 
8 μl enzyme per gram of dry grain. The L. kononenkoae samples had no enzyme added, as in the 
preliminary screening study. These bottles were weighed and sampled at shorter intervals, with 
weights recorded at 0, 8, 18, 24, 30, 48, 71, and 99 hours, and protein analyses conducted at 0, 
18, 30, and 48 hours.  
Crude protein analysis  

Samples collected during the run were dried in an oven between 55°C and 70°C, and 
crushed with a metal spoonula or ground with a mortar and pestle to prepare them for analyses. 
Dried samples were analyzed for percent moisture using an Omnimark μ-wave moisture analyzer 
(Sartorius Corporation, Bohemia, NY, USA), and prepared samples and extracts were tested for 
total and ammonia nitrogen at the Altheimer Laboratory in Fayetteville, AR. Total nitrogen was 
assayed by combustion using an Elementar Rapid N III unit (Elementar Analysensysteme 
GmbH, Langenselbold, Germany). Ammonia nitrogen was assayed as follows: one gram of 
sample was extracted into 30 ml of a 2 N solution of potassium chloride by mixing the samples 
and KCl solution in sterile plastic centrifuge tubes. The tubes were placed on a shaker at 180 rpm 
for 15 minutes, then the extract was filtered through #4 Whatman qualitative filter paper (GE 
Healthcare, Buckinghamshire, UK) into glass vials with screw caps. The filtered extract was 
analyzed for ammonia nitrogen content by Skalar autoanalyzer (Skalar Analytical, Breda, The 
Netherlands). Crude protein was calculated from the difference between total and ammonia 
nitrogen using a factor of 6.25, which is appropriate for calculating sorghum protein (Tontisirin 
and others, 2003). 
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Statistical analysis 
Statistical analyses were performed using SAS 9.4 software (SAS Institute Inc., Cary, 

NC, USA). Effects of individual treatments and treatment interactions on crude protein were 
determined using analysis of variance (ANOVA), and means were compared with Fisher’s least 
significant difference (LSD) test. 
 
RESULTS AND DISCUSSION 
Crude protein analysis 
 After 48 hours of fermentation, only samples inoculated with baker’s yeast and treated 
with amyloglucosidase exhibited any crude protein increase (Figure 4). Percent protein in 
samples with just one of these factors but not the other were not significantly different from the 
uninoculated control samples. No significant protein enrichment was observed in any sample 
inoculated with L. kononenkoae regardless of what other treatments were applied. Substrate mass  
 

Figure 4: Crude protein by yeast species after 48 hours of fermentation, compared to 
pasteurized and sterilized controls.  N- Nitrogen supplement; P- Pasteurized; S- Sterilized; 
E- Enzyme treatment; C- Co-culture 
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loss was observed with L. kononenkoae fermentation in the preliminary tests, but did not occur in 
any of the trials during the experiment, despite improvements to the culture method.  Effects for 
each factor and their interactions are displayed in the analysis of variance (Table 7), only yeast 
type and enzyme addition have significant effect. 
Table 7: Significance of each treatment on percent crude protein at 48 hours of incubation. 
Y- yeast species, N- nitrogen supplement, T- thermal treatment, E- enzyme, C- co-culture. 
Significant factors (P<0.0001) are Y, E, and Y*E 
Source  DF  Anova SS Mean Square  F Value Pr > F 
Y  1 1819.36248 1819.36248 321.42 <.0001 
N  1 0.138928 0.138928 0.02 0.876 
Y*N  1 1.471635 1.471635 0.26 0.6119 
T  1 19.618608 19.618608 3.47 0.0672 
Y*T  1 0.730108 0.730108 0.13 0.7207 
N*T  1 2.449287 2.449287 0.43 0.513 
Y*N*T  1 1.823811 1.823811 0.32 0.5723 
E  1 2158.122176 2158.122176 381.26 <.0001 
Y*E  1 1801.93874 1801.93874 318.34 <.0001 
N*E  1 0.410555 0.410555 0.07 0.7886 
Y*N*E  1 0.007776 0.007776 0 0.9705 
T*E  1 10.943101 10.943101 1.93 0.1692 
Y*T*E  1 0.657035 0.657035 0.12 0.7344 
N*T*E  1 0.013824 0.013824 0 0.9607 
Y*N*T*E 1 0.729759 0.729759 0.13 0.7207 
C  1 2.30764 2.30764 0.41 0.5254 
Y*C  1 1.353275 1.353275 0.24 0.6265 
N*C  1 4.532704 4.532704 0.8 0.3742 
Y*N*C  1 6.091345 6.091345 1.08 0.3035 
T*C  1 0.237009 0.237009 0.04 0.8385 
Y*T*C 1 0.496513 0.496513 0.09 0.7681 
N*T*C 1 3.369752 3.369752 0.6 0.4432 
Y*N*T*C 1 5.012376 5.012376 0.89 0.3502 
E*C 1 3.365257 3.365257 0.59 0.4435 
Y*E*C  1 6.140817 6.140817 1.08 0.3015 
N*E*C  1 6.842676 6.842676 1.21 0.2757 
Y*N*E*C 1 8.799126 8.799126 1.55 0.217 
T*E*C 1 0.000963 0.000963 0 0.9896 
Y*T*E*C 1 1.039584 1.039584 0.18 0.6697 
N*T*E*C 1 6.745841 6.745841 1.19 0.2791 
Y*N*T*E*C 1 3.627815 3.627815 0.64 0.4263 
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Literature on protein enrichment fermentation using L. kononenkoae exists, but the 
organism almost always appears in co-culture with a non-amylolytic yeast (Horn, du Preez, and 
Kilian, 1992; Horn, du Preez and Lategan, 1988). It seems the predominant use of this organism 
is as an enzyme source. In the 1992 study, fermentation of a 10% sorghum slurry with a co-
culture of L. kononenkoae and Candida utilis yielded a final crude protein content of 43.7 
percent, but a fermentation using L. kononenkoae alone was not attempted. The low percent 
solids in the substrate was used to facilitate continuous stirring for oxygenation, which results in 
higher protein content. Stirring was not possible above 20% solids, so no higher percent solids 
were used. 

Lactic co-culture, thermal treatment, and nitrogen supplement did not have any 
significant effect at 48 hours. However, based on mass lost in the test samples, addition of the 
nitrogen supplement did have an effect on the fermentation rate. The maximum amount of 
substrate mass lost was reached 24 to 30 hours earlier in samples with nitrogen supplementation, 
suggesting an effect on crude protein as well. Nitrogen supplementation has been shown to 
increase the rate and amount of protein accumulation in enrichment fermentation processes 
(Yang, 1988; Correia, Magalhães, and Macêdo, 2007). 
 The mechanism by which protein enrichment occurs from plant material is by the 
removal of non-protein substrate by the fermentation organism (Araújo et. al, 2005). The 
organism must be able to convert the carbon portion of the substrate into a substance that will 
leave the system, specifically CO2 or water vapor, while retaining any proteinaceous mass. The 
biomass of the organisms themselves may have little effect on the total protein of the substrate, 
instead the amount of carbohydrate they can consume and release from the substrate will change 
the protein content. A study of ethanol fermentation from sorghum grain (Horn, du Preez, and 
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Killian 1992) yielded a high-protein distillers grain co-product. After complete conversion of 
starch to ethanol, the substrate was 43.2% protein. Initially, the substrate was 1000 kg of grain 
containing 120 kg protein, with 8.5 kg of protein from the yeast that was added. After all starch 
was consumed there was 300 kg of grain biomass left, which still contained 120 kg protein, and 
9.5 kg of yeast protein. Almost 93% of the protein in was originally present in the grain, the 
increase in yeast biomass accounted for 0.77% of the total protein. A fermentation of sorghum 
specifically for protein enrichment resulted in a 30-fold increase in protein from yeast biomass, 
but not all starch was consumed, and the total protein in the substrate was still about 43% at the 
end of the fermentation (Horn, du Preez, and Killian 1992). 

The amount of carbohydrate consumed was dependent on how much starch was 
converted to fermentable sugars. The amyloglucosidase was very effective at hydrolyzing the 
starch into sugars, and the baker’s yeast was very effective at consuming those sugars. Despite a 
reported ability of L. kononenkoae to produce extracellular amylases capable of complete 
hydrolysis of starch (Spencer-Martins and van Uden, 1979; Ramachandran, Pretorius and Otero, 
2005), the organism did not consume much carbohydrate in the substrate. There was no 
difference between starch only gelatinized by the thermal process, and starch hydrolyzed into 
sugars by the addition of amyloglucosidase. The fact that no significant protein enrichment 
occurred in either case implies that enzyme production by the yeast was not the limiting factor 
for enrichment to occur. 
Weight loss study 
 As the fermentation progresses, the substrate mass decreases, and percent protein 
increases as a result. A plot of the weight lost in substrates treated with each yeast species shows 
a faster rate of loss in substrates with nitrogen added (Figure 5). Total weight loss was greater in 
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 Figure 5: Substrate weight losses over time for both yeast species 
the baker’s yeast samples than in L. kononenkoae samples. Select samples from this study were 
analyzed for crude protein. The percent protein was calculated and plotted against the amount of 
substrate weight loss for each type of yeast. Percent crude protein was plotted against substrate 
weight loss (Figure 6). A linear correlation between weight loss and crude protein was observed 
for the baker’s yeast samples, with an R2 value of 0.98. No correlation was seen for the L. 
kononenkoae samples, possible since no statistically significant protein accumulation occurred in 

Figure 6: Correlations between weight loss and percent crude protein in fermented samples 
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any of these samples. The L. kononenkoae inoculum for this test initially failed to grow, so the 
samples were re-inoculated with freshly grown cells 18 hours later. Some weight loss occurred 
after the second inoculation, but did not show correlation to the protein content. The L. 
kononenkoae sample with nitrogen supplement did lose slightly more substrate mass than the 
sample without it, though this was not enough to make a significant difference in the amount of 
protein in the substrate. 

 Crude protein content analyses on the experimental samples was conducted after 48 hours 
of fermentation; to check the validity of the linear correlation, the equation was applied to the 
weight lost from the baker’s yeast samples at 48 hours. The calculated values were plotted 
against the analytical values in to determine whether they were similar. The plot exhibited a 
linear correlation with an R2 value of 0.976 (Figure 7). Thus, it is reasonable to assume the 
correlation can predict protein content from substrate weight losses that result from baker’s yeast 
fermentation. 

 Figure 7: Correlation between analytical results and calculated values for crude protein in 
baker’s yeast fermentation samples after 48 hours of incubation 
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Treatment effects 
Nitrogen supplementation 

After 48 hours of fermentation, there was no significant difference in protein content 
between samples with the nitrogen supplement added and without it. However, in the baker’s 
yeast samples it was apparent that weight loss occurred much more quickly in the nitrogen 
supplemented samples. The linear relationship found between weight loss and protein content 
was used to estimate the percent protein in the samples after 24 hours.  The calculated values 
show a significant difference in protein between samples with nitrogen treatment and their 
untreated counterparts. This suggests that nitrogen availability is an important factor for 
fermentation efficiency, and has a significant effect on protein content early in the process.  

  Figure 8: Protein in baker’s yeast samples calculated from weight lost after 24 hours of 
incubation.  N- Nitrogen supplement; P- Pasteurized; S- Sterilized; E- Enzyme treatment; 
C- Co-culture 
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nitrogen supplementation rate was reduced from the amount used in the preliminary study 
because high levels of ammonia nitrogen were detected in the fermented substrate, even in 
samples that displayed a lot of growth. Nitrogen concentrations that are too high can inhibit 
growth of some organisms under certain circumstances, (Rajagopal, Massé, and Singh, 2013) so 
the supplement was reduced form 3% to 2% for the main experiment.  

The amount of ammonia nitrogen in preliminary samples with the 3% supplementation 
rate increased after fermentation. The increase was most likely a result of the entire substrate 
being concentrated as carbohydrate was consumed. However, at the 2% supplementation rate, 
ammonia nitrogen decreased in samples where protein enrichment occurred, even as the 
substrate became concentrated. Presence of ammonia nitrogen in inoculated samples that did not 
undergo protein enrichment shows that the ammonia nitrogen does not evaporate or get removed 
by other mechanisms during the fermentation, drying, or other steps in the process. This suggests 
that the fermentation organisms were in fact metabolizing the nitrogen, and doing so more 
effectively at the lower supplementation rate. Both the 3% and the 2% supplementation resulted 
in the same amount of protein enrichment, to between 25% and 30% protein for thermally  
Table 8: Typical examples of residual ammonia nitrogen in Baker's yeast samples. 
*'unfermented' samples were either not inoculated, initial time, or no amylase added. 
**'fermented' samples were incubated for 48 hours 
Substrate treatment / nitrogen supplement rate  unfermented* 

NH4-N (mg/g) 
fermented** 
NH4-N (mg/g) 

Raw, co-culture / 3%  4.314 4.474 
Raw / 3%  4.395 5.178 
Pasteurized, co-culture / 3% N 4.030 4.525 
Sterilized, co-culture / 3% N 3.451 5.351 
Pasteurized, co-culture / 2% N 2.537 0.568 
Sterilized, co-culture / 2% N 2.613 1.247 
Pasteurized / 2% N 2.814 0.503 
Sterilized / 2% N 2.730 0.501 
Pasteurized Control / 0% N 0.038 0.051 
Sterilized Control / 0% N 0.047 0.021 
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processed samples. A study on nitrogen effects on wine yeast growth and sugar consumption 
reached a similar conclusion; nitrogen supplied in excess of what the yeast will metabolize will 
not have any effect on growth (Taillandier et. al., 2007). That study also found that a large excess 
in nitrogen could reduce the rate of sugar consumption by the yeast, which would slow the rate 
of protein concentration in a protein enrichment fermentation. This would imply that the lower 
supplementation amount is more efficient for this protein enrichment fermentation process. 
Effect of thermal processing 
 The thermal process method had no significant effect on final crude protein. The purpose 
of the thermal treatments was to gelatinize the starch, and reduce microbial load of the substrate 
to prevent competition from the natural flora of the grain. One of the two factors that had an 
effect on crude protein was enzyme treatment; if the enzyme was more effective with one of the 
thermal treatments it could result in differences in the protein content. The fact that there was no 
difference suggests that the enzyme treatments were similarly effective on both types of 
thermally treated substrate. A similar outcome was obtained in a study on ethanol production 
from corn starch (Shigechi et. al., 2004); a strain of Saccharomyces cerevisiae engineered to 
express amylolytic enzymes produced the same amount of ethanol from starch cooked at 80°C as 
it did from starch cooked at 120°C. The specific temperature at which the starch is gelatinized is 
not as important as long as it is above the minimum gelatinization temperature for the starch, and 
the length of time at the temperature is sufficient for gelatinization to occur. 
 The thermal process also did not appear to have a direct effect on growth of the 
fermentation organisms themselves; protein enrichment was not significantly different between 
sterile and unsterile substrate. Any competition from the grain’s natural flora did not affect the 
amount of substrate consumed by the yeast. The physical condition of the substrate after thermal 
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processing did not appear to have an effect on microbial growth. The pasteurized substrate 
remained soft and easily stirred after thermal processing, while the sterilization process 
completely solidified the grain slurry. Despite the rheological differences that resulted from the 
thermal processes at the initial time, both enzymatic and microbial action resulted in at least 
partial liquefaction of both types of substrate by the time pH adjustment was performed.  
Effect of co-culture organism 
 Presence of L. amylovorous had no significant effects on crude protein content. The 
amylases secreted by L. amylovorous did result in some degree of starch liquefaction, which was 
more readily observed in samples without amyloglucosidase treatment. However, the activity of 
the enzymes produced by the bacteria did not have any detectable effect on the effectiveness of 
the added enzyme, and there was no evidence of increased fermentation rates in samples with co-
culture added. If more sugars were being formed, no difference would be seen if there were not 
enough yeast to utilize them. The exogenous amylases produced by the co-culture also had no 
effect on the L. kononenkoae fermentations, which did not appear to be promoted or inhibited by 
the presence of the co-culture. Lactobacillus has been documented to reduce ethanol production 
by inhibiting yeast growth (Narendranath et. al., 1997), but any growth inhibition that may have 
occurred was not enough to reduce the amount of protein enrichment by the baker’s yeast.  
CONCLUSION 

Of the five treatments tested, the combined effect of baker’s yeast and amyloglucosidase 
was the only factor that increased final crude protein content. Samples with one of those 
treatments applied but not the other had no significant increase in protein. Inoculation with L. 
kononenkoae did not result in any significant protein enrichment. Type of yeast and availability 
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of fermentable sugars are the most important factors in protein enrichment, nitrogen 
supplementation can accelerate the rate at which protein is enriched in the substrate. 

 

  



48  

CHAPTER 4: OBJECTIVE 2- EFFECTS OF FERMENTATION ON PROTEIN 
DIGESTIBILITY AND PHYTATE CONTENT OF GRAIN SORGHUM  
INTRODUCTION 
  In addition to protein enrichment, fermentation has other effects on the substrate. Low 
digestibility of sorghum protein is one of the problems that limit its applications, and 
fermentation is one way to improve digestibility. Phytate compounds in grain can reduce 
digestibility of protein and other nutrients, so removal of this antinutrient is one mechanism by 
which digestibility increases. A fermentation that could improve digestibility as well as increase 
protein could increase the utility of this grain. The next set of analyses was conducted to 
determine fermentation effects on in vitro digestibility and phytate content in the substrate. 
Objective 2: Compare the nutritional quality of sorghum fermented by different species of yeast 
in terms of in vitro protein digestibility and phytate content.  
 
MATERIALS AND METHODS  
Percent digestibility 

Percent digestibility was analyzed in vitro using two enzymatic methods: a multi-enzyme 
pH-drop method based on one developed by Hsu et. al. in 1977, and a standard method for 
pepsin digestibility modified from AOAC method 971.09. The pepsin method was performed by 
the Tyson Foods, Inc. Food Safety and Research Laboratory in Springdale, AR. 

For the multienzyme method, the dried and ground samples were weighed into small 
glass beakers and a 1% NaCl solution was added. The amount of sample used was determined by 
the amount of protein in the sample, to achieve a slurry concentration with 6.25 mg protein per 
ml of the NaCl solution. The method was tested at the original sample size of 50 ml of the NaCl 
solution, and a reduced sample size which used only 15 ml of NaCl solution. Casein from bovine 
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milk (Sigma Aldrich Co., St. Louis, MO, USA) was used as a standard. The casein powder as 
received was approximately 93% protein, so amounts tested were 0.336 g in 50 ml of 1% NaCl, 
and 0.1008 g in 15 ml of the NaCl solution. The multienzyme solution was prepared fresh 
immediately prior to each test. Enzymes used were trypsin, chymotrypsin, and peptidase (Sigma 
Aldrich). Solid enzymes were dissolved into 1% NaCl at 1.6 mg trypsin/ml, 3.1 mg 
chymotrypsin/ml, and 1.3 mg peptidase/ml of the solution. The pH of the enzyme solution was 
adjusted to 8.0, and the enzyme solution was kept in an ice bath for the duration of the test. The 
pH of all samples and standards were adjusted to 8.0 immediately prior to analysis. Beakers were 
placed in a 37°C water bath with constant stirring while the pH was adjusted to 8.0, once the 
desired pH stabilized, the multienzyme solution was added at 10% of the sample volume (5 ml 
for 50 ml samples or 1.5 ml fir 15 ml samples). The resulting pH change after the enzyme 
addition was recorded over a period of 10 minutes. Percent digestibility was calculated by the 
applying the following equation:  

% digestibility = 210.46 – 18.10 x (pH at 10 minutes) 
The test was started when the initial pH stabilized at 8.0 ± 0.01, and the final pH was 
standardized by taking the absolute difference and subtracting it from 8.0 before applying the 
calculation. 

Pepsin digestibility was determined as follows: solid pepsin enzyme was dissolved in 
0.075M HCl to make three different concentrations of acid pepsin solutions. A 0.20 percent 
solution, a 0.020 percent solution, and a 0.002 percent solution (w/v) were prepared and used for 
this test. One gram of the dried, ground sample was weighed into filter paper for each test. The 
samples were extracted with petroleum ether to remove and quantify any fat by Soxhlet method, 
using a Gerhardt Soxtherm unit (C. Gerhardt GmbH & Co., Königswinter, Germany). The 
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defatted samples were transferred to 250 ml Erlenmeyer flasks and mixed with 150 ml of acid 
pepsin solution. The flasks were covered with foil and digested by incubation in a shaking water 
bath set to 45°C and 100 rpm for 16 hours. The digested samples were vacuum filtered through 
Whatman #541 filter paper on Buchner funnels and washed with several aliquots of DI water to 
remove the acid. The filter papers were transferred to Kjeldahl tubes to analyze the undigested 
residue for nitrogen using the Kjeldahl distillation method. The original samples were assayed 
for protein using a LECO Nitrogen Analyzer (LECO Corporation, Saint Joseph, MI, USA), and 
the percent digestibility was calculated from the difference in nitrogen between the original and 
pepsin-digested samples, using the following equation: 

Pepsin digestibility = 100 x  (୰୧୧୬ୟ୪ %)ି(ୈ୧ୣୱ୲ୣୢ %)
(୰୧୧୬ୟ୪ %)  

The digestibility was calculated separately for each concentration of pepsin used. 
Phytate Determination 

Phytate content was analyzed using the colorimetric method described by Haug and 
Lantzsch in 1983. Standards were prepared from solid phytic acid sodium salt hydrate (Sigma 
Aldrich) over a range of 3 to 30 μg/ml. To maintain an acidity of 0.2 N HCl for all standards, an 
aqueous stock solution of 300 μg/ml phytic acid was diluted 1:1 in 0.4 N HCl, and all standards 
were prepared by diluting this solution in volumes of 0.2 N HCl. A solution was prepared by 
dissolving 0.1 gram of solid of ammonium ferric sulfate (Acros Organics, Geel, Belgium) in 50 
ml 0.2 N HCl, and diluting to 500 ml with deionized water. The indicator solution was made by 
dissolving 2.5 grams of 2,2’ bipyridine (TCI America, Portland, OR, USA) and 2.5 ml of 
thioglycolic acid (TCI America) in 250 ml deionized water. 

Approximately 0.04 grams of each sample were extracted into 10 milliliters of 0.2 N 
HCl, by rotary shaking in 50 ml Erlenmeyer flasks at 250 rpm for 2 hours at 29°C. After 
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extraction, 0.5 ml of each sample extract or standard were mixed with 1 ml of the ferric 
ammonium sulfate solution in 13x100 mm glass tubes with screw caps and boiled for 30 
minutes. The samples were cooled in an ice bath for 15 minutes, then brought to room 
temperature. There are two methods to complete this analysis, and both were attempted. In the 
first, the 2 ml of the 2,2’-bipyridine/ thioglycolic acid indicator solution is added directly to the 
cooled tubes, mixed, and transferred to a disposable cuvette to read immediately. In the second 
method, the glass tubes were placed inside plastic centrifuge tubes and centrifuged at 3000 g for 
30 minutes. One milliliter of the supernatant was mixed with 1.5 ml of the 2,2’-bipyridine/ 
thioglycolic acid indicator solution, which was then transferred to a cuvette. The absorbance was 
read at 519nm using a UV-1700 PharmaSpec spectrophotometer (Shimadzu, Columbia, MD, 
USA) for both methods. Phytate in the samples was quantified against a phytic acid standard 
curve.  
Statistical analysis 
 

Statistical analyses were performed using SAS 9.4 software (SAS Institute Inc., Cary, 
NC, USA). ANOVA with Fisher’s LSD test was used to compare means and determine 
differences in phytate and multienzyme digestibility of select samples. 

 
 RESULTS AND DISCUSSION 
Percent digestibility 
 Two methods were used to determine percent digestibility. Pepsin digestibility is a 
standard method for animal feeds, the use of multiple concentrations of pepsin increase the 
sensitivity of the test (Johnston and Coon, 1979). The multi-enzyme method was designed to 
better predict digestion in human models (Hsu et. al., 1977). Four baker’s yeast-fermented 
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samples and two L. kononenkoae-fermented samples were evaluated for pepsin digestibility; the 
same four baker’s yeast samples were evaluated with the multi-enzyme assay. 

The pepsin digestibility test yielded results similar to literature values for sorghum 
digestibility (Duodu et. al., 2003). The pepsin digestibility test was performed on composite 
samples because of limited sample availability, so the values obtained represent an average for 
the samples. According to the test method, low concentrations of pepsin give better correlation to 
in vivo digestibility, with the lowest concentration used here showing a strong correlation to in 
vivo lysine digestibility. Thermal processing appeared to reduce digestibility, with sterilized 
samples generally less digestible than pasteurized samples. Digestibility was increased by 
fermentation with both types of yeast compared to thermally processed controls, a result seen in 
yeast fermentations of other grains (Khetarpaul and Chauhan, 1990). Pasteurized samples 
fermented with baker’s yeast were as digestible as raw grain, with sterilized baker’s yeast 
samples slightly lower. Sterilized L. kononenkoae samples had slightly higher digestibility than 
sterilized baker’s yeast samples. Natural fermentation was noted in the pasteurized control  

 Figure 9: Pepsin digestibility of select samples at 3 pepsin concentrations. B- Baker’s yeast; 
L- L. kononenkoae; N- Nitrogen supplement; P- Pasteurized; S- Sterilized; E- Enzyme; C- 
Co-culture 
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sample, an expected result of the non-sterile condition. This fermentation appears to have 
increased the digestibility compared to the initial condition of that sample, as seen in studies on 
natural fermentations of sorghum and green gram (Chavan, Chavan, and Kadam, 1988) and pearl 
millet (Elyas et. al., 2002).  

The multi-enzyme test resulted in questionable values for percent digestibility. The 
average results for the test samples were similar to those obtained using the pepsin assay, but the 
standards and controls gave both inconsistent and unexpected results. The digestibility of the 
thermally processed sorghum controls at the initial time were not significantly different from the 
raw control or fermented samples. The digestibility of both thermally processed control samples 
was higher at the initial time than they were after 48 hours, despite evidence of natural 
fermentation (from wild flora in the pasteurized samples, or contamination of sterile samples)  

 Figure 10: Multi-enzyme digestibility of baker’s yeast (B) and unfermented (Pasteurized, 
Raw, and Sterilized) samples at initial condition or 48 hours of incubation. N- Nitrogen 
supplement; P- Pasteurized; S- Sterilized; E- Enzyme; C- Co-culture 
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occurring in the sample bottles. The digestibility for the casein standard used to verify the test 
yielded inconsistent results as well, with the pH drop varying from 1.12 to 1.38 for trials run on 
different days. This amount of variation in the pH should not occur for the same material. Similar 
variations were seen in the test samples, not necessarily during the same trials in which the 
casein standards were off. The pH meter was calibrated with fresh standards prior to each run, 
and verified against those same standards during and at the end of the run, but the sample 
variability persisted. One potential source of error was the time the sample spent stirring in the 
37°C bath before the enzyme was added, which was not specified by the method. It is also 
unknown if additives like the ammonium sulfate used in the nitrogen supplement could 
potentially interfere with the method, no literature could be found on this matter. 
Phytate determination 
 Microorganisms can use phytases to degrade phytates in plant materials to obtain 
phosphorus (Sreeramulu et. al., 1996; Türk, Carlsson, and Sandberg, 1996). This is one 
mechanism by which phytate concentrations in plant matter are reduced as a result of 
fermentation. In one study, fermentation of millet by yeasts and lactic acid bacteria resulted in a 
50% reduction in phytic acid after 36 hours (Elyas et. al., 2002). A study of phytate in whole 
grain bread found that an acidic pH caused by the presence of organic acids in the dough can 
increase the activity of phytase, and baker’s yeast phytases were most active at a pH of 4.5 
(Türk, Carlsson, and Sandberg, 1996). However, in this experiment, the baker’s yeast samples 
with the highest protein enrichment actually had higher phytate levels than the unfermented 
control samples (Figure 11). This was most likely a result of substrate concentration, as there is 
not a mechanism for phytates to be produced in the system. The carbohydrate reduction that 
resulted in higher percent protein in these samples would concentrate other components present 
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in the grain substrate. For a protein enrichment fermentation, simply evaluating the phytate 
content would give an incomplete view of the effect of the fermentation process. 

 Figure 11: Total phytate and phytate/protein ratio for select samples. B- Baker’s yeast; L- 
L. kononenkoae; N- Nitrogen supplement; P- Pasteurized; S- Sterilized; E- Enzyme; C- Co-
culture 

Phytate is considered an antinutrient because it binds to proteins, making them resistant 
to digestive enzymes (Osman, 2004). Thus, reducing the amount of phytate relative to the 
amount of protein should increase protein digestibility, even if the total phytate does not 
decrease.  The amount of phytate was compared to the amount of protein in the samples. The 
phytate/protein ratio was lower in the fermented samples than the control samples, as seen in 
Figure 11. For baker’s yeast, the ratio of phytate to protein is much lower than in the control 
samples, though with the concentration effect it is unclear if the reduction is merely an artifact of 
the high percent protein, or if the fermentation activity actually removed phytate from the 
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certain that fermentation by the baker’s yeast had occurred in these samples. There were L. 
kononenkoae samples that showed growth despite the lack of protein concentration; these 
samples were tested for phytate. These samples exhibited reduced phytate/protein ratios 
compared to the control samples, even without protein enrichment. This shows that the 
fermentation did reduce phytate content. 
CONCLUSION 

Digestibility of sorghum grain was reduced by thermal treatments, but the protein 
enrichment fermentation described was demonstrated to mitigate decreases in pepsin 
digestibility. Some fermented samples approached or exceeded the percent pepsin digestibility of 
raw grain. Fermentation using L. kononenkoae also increased pepsin digestibility despite the fact 
that the fermentation did not result in protein enrichment. The multi-enzyme test attempted was 
not found to be suitable for this substrate. Phytate reduction was demonstrated in the L. 
kononenkoae fermentation, and implied in the baker’s yeast fermentation, though the absolute 
phytate increased as the substrate became concentrated. Decreases in the ratio of phytate to 
protein may account for some of the positive effect on protein digestibility of the grain sorghum 
substrate.  
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CHAPTER 5: CONCLUSIONS AND OPPORTUNITIES FOR FUTURE RESEARCH 
 
Baker’s yeast significantly increased percent protein of the sorghum substrate if 

amyloglucosidase was added; it has no amylolytic capability but is very efficient at metabolizing 
simple sugars if they are made available. Furthermore, the digestibility of the protein was 
improved by fermentation, each organism used increased pepsin digestibility compared to 
thermally processed control samples. The combined effect of the increase in protein content and 
digestibility results in over 20% digestible protein in the pasteurized samples fermented with 
baker’s yeast, even at the lowest concentration of pepsin. 
Table 9: Percent digestible protein in sorghum samples at different pepsin concentrations. 
B- Baker’s yeast; L- L. kononenkoae; N- Nitrogen supplement; P- Pasteurized; S- 
Sterilized; E- Enzyme; C- Co-culture 
Sample % Crude 

Protein 
Digestible protein 
at 0.002% pepsin 

Digestible protein 
at 0.02% pepsin 

Digestible protein 
at 0.2% pepsin 

Raw  9.035 6.27 6.35 7.62 
Pasteurized  9.257 4.40 5.55 7.17 
Sterilized  8.91 3.79 5.26 6.74 
BNPEC 29.312 20.67 24.47 26.55 
BNPE  27.369 20.15 22.98 24.42 
BNSEC  25.022 15.84 19.82 21.34 
BNSE  30.736 17.38 23.27 26.37 
LNSEC  11.261 7.51 8.80 9.76 
LNSE  10.875 7.09 9.15 9.36 

 
The S. cerevisiae used commercially and sold to consumers for baking is a particularly 

robust organism. There is evidence that species in this genus of yeast has been in use by humans 
for food production for 2500 years, and beverage production considerably longer (Mortimer, 
2000), and is well adapted to these applications. It is capable of growing at a wide range of 
temperatures and does not appear to suffer from temperature variation or overcrowding issues 
that were observed when using L. kononenkoae. It is also generally recognized as safe (GRAS) 
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for human consumption, and is already used as a protein source in animal feed applications 
(Winkler et. al., 2001; Lim, Li, and Klesius, 2011). These attributes make this yeast a good 
candidate for continued research in protein enrichment. 

The protein increase observed in this study could likely be improved by altering the 
fermentation process. Baker’s yeast grows most efficiently under aerobic conditions, but the 
batch system employed here is not the most effective for oxygen transfer, especially once the 
samples liquefy from enzymatic activity. Oxygen-limited systems favor ethanol production over 
cell growth (Strohm and Dale, 1961), better oxygenation results in more carbohydrate 
consumption, reduced ethanol production, and higher biomass accumulation (Novak et. al., 
2007). A process with constant stirring or air bubbled through the substrate could result in higher 
protein accumulation, or shorter fermentation time as a result of more aerobic activity. 

Enzyme use in the system could be optimized as well. The amyloglucosidase addition 
rate in this experiment was in excess of literature values for sorghum starch hydrolysis (du Preez 
et. al., 1985) and could most likely be reduced for this system. Enzymes are one of the most 
expensive components in this process, the fermentation would be more economically feasible if 
the quantity of enzyme could be decreased. Some work has been done to eliminate enzyme 
addition completely through the use of S. cerevisiae that can metabolize starch (Ogden and Tubb, 
1984). Genetic modification of S. cerevisiae by insertion of genes for amylase production has 
been attempted, with limited success in direct starch conversion (Eksteen et. al., 2003). However, 
this could sacrifice some of the utility as a food ingredient if the modified yeast did not retain 
GRAS status. 

Though use of L. kononenkoae did not result in effective protein concentration, there are 
other amylolytic organisms that could be used for this purpose. Of the organisms screened for 



59  

this research, Saccharomycopsis fibuligera was very effective at liquefaction of the substrate, 
and is known to make both amylase and amyloglucosidase enzymes. However, the main product 
of the fermentation is the sugar trehalose (Chi et. al., 2009), which remains in the substrate; no 
protein concentration occurs. Combining this yeast with an organism capable of metabolizing 
that sugar into carbon dioxide and water could yield an effective protein concentration process. 
Co-culture may be more effective than monoculture for this application. 

This work has shown the potential for improvement of sorghum grain through yeast 
fermentation. Not only can the protein digestibility be improved, and the antinutrient phytate 
decreased, but the percentage of protein can increase significantly though fermentation. Though 
the process reduces the total grain mass, the increase in protein could yield a more valuable 
product than the original grain. One potential application of the work here could be to test the 
effect of yeast fermentation on the types of tannin sorghum commonly grown in other areas of 
the world. Development of an efficient fermentation process that could increase both protein 
digestibility and content in these grains could improve the nutritional quality and utility of this 
staple crop.  
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APPENDIX 1: OTHER EFFECTS OF FERMENTATION 
 
While the main objectives of this study were to determine the effects of five test factors 

on three responses (crude protein, percent digestibility, and phytate content) there were other 
interesting observations on the effects of the treatments. Qualitative effects of fermentation 
observed are discussed below. Although thermal treatment and lactic co-culture did not have an 
effect on protein enrichment or phytate content, they did have an obvious effect on organoleptic 
qualities of the fermented grain. Sterilization and lactic fermentation reduced incidence of 
spoilage and other signs of contamination. These effects were not in the scope of the main 
experiment, but would be worthwhile considerations for any future work. 
Effect of thermal processing 
 The parameters chosen for the thermal process were meant to capture the extremes of 
potential thermal processes. The standard sterilization method is a relatively harsh process, 
which subjects the substrate to very high temperatures and pressures in a moist environment. 
These are the conditions documented to have negative effects of sorghum digestibility (Duodu et. 
al., 2003). The sterilization was compared to a pasteurization conducted at a relatively low 
temperature, to determine whether reducing the thermal processing temperature had an effect, 
particularly on digestibility of the sorghum protein.  
 A notable difference was seen between thermal processes in pepsin digestibility, but 
more testing would be needed to confirm its significance. Type of thermal process did not appear 
to make a difference in phytate content. The thermal process did have qualitative effects on the 
fermentation. As pasteurized samples are not sterile, evidence of activity by other organisms was 
observed in most of these, particularly in samples without the lactic co-culture. Gray, red, purple, 
and yellow discoloration was often observed, occasionally slime formation was seen as well. 
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Pasteurized samples also tended to develop rotten or rancid odors; these were less prevalent in 
sterilized samples. Signs of spoilage did occur in some sterilized substrates, most likely as a 
result of contamination during sampling or pH adjustment, but there were far fewer instances of 
discoloration or off odors in the sterilized substrate bottles. Organoleptic qualities do become 
important in food and feed applications, this would be another factor that would need to be 
considered in choosing an appropriate thermal process. The milder process, which preserves 
digestibility, could be used with other antimicrobial treatments to maintain quality.  
Lipomyces kononenkoae fermentation 

L. kononenkoae has been used in fermentation studies for nutrient enrichment. As the 
genus name suggests, the organism generates fatty acids as a fermentation product. It also 
metabolizes carbohydrates into carbon dioxide, and produces amylases to consume starch, which 
makes it a candidate for protein enrichment of starchy substrates. This organism has appeared in 
a few such studies, but seems to be primarily used for the extracellular amylase it produces rather 
than as the primary fermentation organism; it occasionally appears as a co-culture organism 
(Horn et. al., 1992).  In the work described here, the exponential phase of growth occurred 
between 8 and 12 hours at 25°C, and a 9-hour incubation was used to prepare the inoculum for 
the experiments. Cell counts fell after 15 hours, and the viability of the cells was severely 
diminished by 18 hours. However, in literature, incubations for L. kononenkoae cultures ranged 
between 20 and 24 hours (Horn et. al., 1992; Wang et. al., 2011). Even if the cells did begin to 
die off, the amylolytic enzymes they produced would remain functional in the broth media such 
that a second organism would have access to sugars freed by the activity of those enzymes. In the 
work described here, L. kononenkoae is used for fermentation directly. Compared to 
unfermented grain, slight protein enrichment did occur, but the amylolytic yeast was not 
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 Figure 12: Percent protein in L. kononenkoae-fermented samples at 48 hours of incubation. 
N- Nitrogen supplement; P- Pasteurized; S- Sterilized; E- Enzyme; C- Co-culture 
 
effective at concentrating the protein in sorghum grain compared to the baker’s yeast with 
enzyme addition. When only L. kononenkoae samples are considered, the samples follow a 
similar pattern to the baker’s yeast samples, with enzyme treatment and nitrogen addition having 
an influence on percent protein. 

One possible reason this yeast did not perform as well as expected is that it is difficult to 
cultivate; it has a narrow temperature range for optimum growth, and will reach the stationary 
phase rapidly with low cell counts at temperatures above 29°C. Growth of the organism is also 
inhibited by crowded conditions. Cells collected from a continuous lawn on an agar plate will 
have an extended lag phase and slow growth, it may take up to 20 hours before any turbidity is 
observed in the growth medium. The cells are very small, and relatively high counts do not yield 
much cellular mass compared to other yeast species. Attempting to increase the counts by 
increasing the inoculum may result in inhibited growth, or no observable growth in the media. 

Fermentation temperature may have also had an effect on the performance of L. 
kononenkoae in this case. The temperature in this experiment was fixed at 35°C and not 
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considered a factor in the experimental design. It was determined that incubation temperature 
had little effect on the performance of the baker’s yeast in preliminary studies, an observation 
also seen in other fermentations using S. cerevisiae for protein enrichment (Araújo et al, 2005). 
The temperature selected for the study was between the optimum growth temperature for the 
yeasts and that of the lactic co-culture organism; the optimum temperatures for the enzymes to 
function was also considered, but such temperatures (40°C to 60°C depending on type and 
source of the amylase) would be too high for the organisms to survive. A specific study of the 
effect of temperature on L. kononenkoae may have been helpful in determining what temperature 
to use for this experiment, but it did appear that L. kononenkoae would grow at 37°C during the 
preliminary screening for amylolytic yeasts. It also appeared to grow at 35°C during the 
propagation experiment to determine the incubation time. 
Effect of co-culture organism 
 Presence of L. amylovorous appeared to have no significant effects on the investigated 
results. There were not significant differences in protein content or phytate concentration 
between samples with the co-culture and samples without it, and its presence in the fermentation 
samples did not have an obvious effect on digestibility.  

Though the amylolytic lactic co-culture did not improve the final protein content, other 
benefits were observed. The yeast appeared to tolerate the presence of L. amylovorous well 
enough that there was no decrease in protein in co-culture treated samples compared to samples 
without the co-culture. The presence of the co-culture effectively reduced contamination by other 
organisms, either present in the pasteurized substrate or introduced into the sterilized substrate by 
sampling or pH adjustment. Samples without the co-culture were more likely to exhibit poor 
organoleptic qualities such as foul odors, off colors, slime formation, and other evidence of 
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spoilage. By contrast, the samples with L. amylovorous added generally had no offensive odors 
and could even be described as pleasant. Though mold can grow at the reduced pH induced by 
lactic fermentation, samples with the L. amylovorous co-culture did not have as many instances 
of observable mold contamination as samples only inoculated with yeast. 
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APPENDIX 2: PHYTATE RESULT TABLE 
 
Table 10: Phytates in control and select test samples. N- Nitrogen supplement; P- 
Pasteurized; S- Sterilized; E- Enzyme treatment; C- Co-culture.  
Treatment  mg/g Phytate mg Phytate / mg Protein 
Raw Control  17.31 CDE 0.192 AB 
Bakers yeast NPEC 26.20 A 0.091 EF 
 NPE 28.35 A 0.106 DEF 
 NSEC 16.54 C 0.068 F 
 NSE 24.32 AB 0.080 F 
L. kononenkoae NPEC 14.85 E 0.133 CDE 
 NPE 13.58 E 0.123 DE 
 NSEC 14.47 DE 0.129 CDE 
 NSE 15.49 DE 0.142 CD 
Thermally Processed Controls P 0 17.64 CDE 0.197 AB 
 S 0 15.51 DE 0.173 BC 
 P 48 19.44 CD 0.207 AB 
 S 48 20.31 BC 0.224 A 
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APPENDIX 3: PROTEIN AND FAT ANALYSIS FROM TYSON FOOD SAFETY AND 
RESEARCH LABORATORY 
 
Table 11: Protein by combustion (AOAC 992.15; 990.03) and fat by Rapid Soxhlet 
petroleum ether extraction (AOAC 2003.05; AOAC 991.36). B- Baker’s Yeast, L- L. 
kononenkoae, N- nitrogen, P- pasteurized, S- sterilized, E- enzyme, C- co-culture 
Sample Treatments % Protein % Fat 
Raw Control None 7.54 2.26 
1 B, N, P, E, C 26.50 5.34 
2 B, N, P, E 28.44 5.94 
5 B, N, S, E, C 25.85 4.92 
6 B, N, S, E 29.07 6.26 
21 L, N, S, E, C 10.29 1.20 
22 L, N, S, E, 9.91 1.78 
33 initial P 7.51 1.19 
34 initial S 7.93 1.53 
33 48 hours P 8.16 2.09 
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