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Abstract 

It is widely known that orexin A and B peptides as well as their receptors are expressed 

in the hypothalamus and distributed throughout the central nervous system, but there have been 

few studies regarding its presences in other parts of the body. There is now evidence that orexin 

(ORX) and its receptors (ORXR1/2) are present in the avian liver; however, their regulation 

under different environmental conditions is still unknown. In the current study, we sought to 

determine the effects of heat and oxidative stress using hydrogen peroxide (H2O2) and 4-

hydroxynonenal (4-HNE) on the hepatic expression of ORX and ORXR1/2 in the avian species.  

Overall, heat stress significantly down regulated the expression of ORX, and ORXR1/2 mRNA 

and pro1tein in quail liver and LMH cells.  LMH cells treated with H2O2 had decreased ORX 

protein and increased ORX mRNA levels (P < 0.05).  There was a biphasic effect of 4-HNE on 

the expression of ORX and ORXR1/2 in LMH cells.  There was a significant upregulation at low 

doses (10 and 20 μM) and significant down-regulation at a high dose (30μM) of 4-HNE.  In light 

of the current data, the hepatic expression of orexin could serve as a molecular signature in the 

heat and oxidative stress response.   
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INTRODUCTION 

 Increased efficiencies coupled with low feed costs allow the poultry industry to be 

profitable, yet continue to produce a wholesome and safe product for consumers.  Over the years, 

researchers have been able to reduce the number of days to reach full growth and increase the 

size of birds by either genetic selection or changing the feed formulation, leading to an overall 

reduction in costs.  Approximately 70% of the total cost of raising broilers is allocated towards 

chicken feed (1), but about 20% of the body weight of the broiler is attributed to fat, 85% of 

which is not necessary for survival (2).  The conclusion drawn from this data is that the nutrients 

from the feed are not being optimally utilized.   

 The liver serves as the central organ in overall energy metabolism and serves as the 

regulator for fat, glucose, and protein production.  It is in the liver that feed nutrients are 

converted into glycogen for storage for a quick release of energy in the fasted state or converted 

into lipids that are used throughout the body or stored in adipose tissue.  Understanding how 

energy metabolism is regulated in the liver, especially during times of stress, could lead to better 

feed conversion and a decrease in fat deposits.      

 Heat stress, which is only predicted to get worse with an overall increase in the global 

temperature, is also having an effect on the industry.  When exposed to high temperatures, 

chickens can face a higher mortality rate and a decrease in body weight than in birds maintained 

in thermo-neutral conditions (3).  Heat stress has also been shown to trigger lipid accumulation 

due to de novo lipogenesis in chickens (4).  Heat stress in the US poultry industry accounts for a 

total economic loss of $128 million annually (5).  With climate changes occurring, this number 

could begin to rise steadily.     
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 The neuropeptide orexin has long been known to play a role in feeding behavior in the 

mammalian species, but was only recently found in the liver of the avian species (6).  Research 

has shown that orexin stimulates the uptake of glucose in adipocytes and stimulates lipogenesis 

and inhibits lipolysis in rats (7).  Additionally, subcutaneous injection of orexin increased plasma 

levels of insulin and reduced plasma levels of glucose and glucagon (8).         

 The purpose of our research was, therefore, to study the regulation of hepatic expression 

of orexin and its related receptors during times of acute heat stress.   
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CHAPTER 1 

Literature Review 

 

I. Overview of Heat Stress 

Heat stress is defined as when the amount of heat produced by metabolism or gained 

from the environment exceeds the amount of heat dissipated through thermoregulation.  Heat 

related stress in the avian species, while always an issue, is going to become a much more 

important topic with the global temperature rising steadily.  Since the early 1950’s, the industry 

has increased the average body weight of birds by 1kg to a total of 2.5kg and decreased the 

number of days to reach maturation from 70 days by almost 30 days (9).  With temperatures 

rising, this increased growth rate may not persist.  Chicks that demonstrate the highest growth 

rate under normal temperatures had the largest decrease in body weight when exposed to high 

temperatures when compared to the control (3).  Early heat conditioning, humidity levels, 

feeding strategies, nutrient load, and genetic selection for birds with less feathers are all 

strategies being implemented to counter the adverse effects of heat stress (10).  Heat stress 

accounts for a total economic loss of $128 million nationally (5).  With climate changes 

occurring, this number could begin to rise steadily in the near future.     

Heat stress has been linked to the following in broiler chickens: damage of the small 

intestine of broiler chicks (11), a decrease in daily feed intake and body weight (12), a 

significantly higher feed conversion, a decrease in protein synthesis, and an increase in protein 

degradation (13).  It has been shown that heat stress induced oxidative stress and impaired 

mitochondrial function in the muscle of broiler chickens leading to tissue damage (14).  It has 

also been linked to the suppression of the immune system with a significant decrease in the 

expression of antibodies and decrease in primary and secondary response when antigen was 
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encountered (15).  Macrophage activity was also shown to be suppressed in heat stressed broilers 

(16).  

Heat stress has been shown to have a negative effect on neuroendocrinological activities 

in poultry.  It was found that the hypothalamic-pituitary-adrenal (HPA) axis becomes activated in 

chicks when elevated temperatures cause a change in activity in the neuroendocrine system (16).  

The expression of thyroid hormone T3 is shown to consistently decrease when chicks are 

exposed to heat stress which could have a negative impact on the reproductive function of laying 

hens (4, 17).  Additionally, changes in metabolic and endocrine function due to chronic heat 

stress lead to a decrease in plasma amino acids, decreased sensitivity to insulin when starved and 

increased sensitivity when fed, leading the researchers to conclude that chronic heat stress could 

induce lipogenesis and inhibit lipolysis (4).  

More specifically, the liver of broiler chicks that were exposed to acute heat stress was 

shown to exhibit 317 differentially expressed genes in comparison to thermoneutral controls 

(18).  Of those genes, six were analyzed based on their similarly being expressed in the brain and 

muscle as well.  These genes include: two heat shock proteins that are often expressed during 

heat stress; RB1- Coiled-Coil 1 (RB1CC1) and Bcl-2-associated athanogene 3 (BAG3) which 

negatively regulate apoptosis; pyruvate dehydrogenase kinase (PDK) which relates to diabetes, 

hunger, and metabolism; and inhibitor of differentiation 1 protein (ID1) which may play a role in 

cell growth and proliferation by negatively inhibiting transcription factors.  Additionally, there 

are four gene expression networks, one of which contains 16 genes involved in energy 

metabolism (18).  In a similar study in which only the liver transcriptome was analyzed, heat 

stress induced the upregulation of genes involved in the reduction of apoptosis, promotion of 

tissue repair, and regulation of cellular calcium levels (19).  Orexin has been linked to energy 
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homeostasis (20) and apoptosis (21, 22) in previous studies as well as in the regulation of 

intracellular calcium levels (23, 24).  This may lead to the hypothesis that its expression may be 

regulated by heat stress as well, and this is part of the study recently performed.   

Because heat stress will continue to plague the poultry industry, measures must be taken 

to alleviate heat stress on birds and increase heat tolerance.  Some of these measures can be 

related to the chicken houses by adding ventilation and controlling humidity, other measures can 

be taken on the molecular level.  It is on this level that the following research is based.       

II. Overview of Oxidative Stress 

Oxidative stress occurs when there is a disproportionate amount of reactive oxygen 

species (ROS) or reactive nitrogen species (RNS) to normal antioxidant activity in the cell, with 

ROS and RNS far outnumbering the antioxidants.  These ROS and RNS are free radicals such as 

superoxide, hydroxyl radicals, and nitric oxide or compounds leading to free radicals such as 

hydrogen peroxide and peroxynitrite.  Free radicals have such high reactivity because they 

contain a single unpaired electron in their outermost orbital.  In order to gain more stability, the 

free radical will take an electron from another source causing the source to then become a free 

radical.  Antioxidants such as uric acid and bilirubin serve as a source for free radicals and 

donate an electron without becoming a free radical themselves.  The cell also contains enzymes 

such as superoxide dismutase (SOD), catalase, and glutathione peroxidase that will help rid the 

cell of free radicals (25) Several diseases are associated with oxidative stress including 

Parkinson’s Disease (26), Asperger’s syndrome (27), attention deficit hyperactivity disorder 

(ADHD) (28), and cancer (29), just to name a few of the many ailments associated with 

oxidative stress.   
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As mentioned in the previous section, oxidative stress has been shown to be a direct 

result of heat stress in broilers (30-33), but the mechanisms by which the two are linked are still 

being scrutinized.  It has been found that heat stress down regulates the expression of uncoupling 

proteins (UCP) (31) which have been shown to play an important role in decreasing the 

production of ROS in broilers (34).  Down regulation of UCP during heat stress and an increase 

in ROS production and oxidative stress, may potentially lead to cell and tissue damage by the 

mechanism of lipid peroxidation (35).  Moreover, it was previously reported that when exposed 

to heat, the metabolic processes of broiler chickens change and begin to induce oxidative stress, 

and more so in the liver versus other tissues in the body (36).   

III. Overview of Orexin and Its Receptors 

Orexin was first discovered in the rat hypothalamus almost simultaneously by two 

separate research groups who called the peptide orexin (23) and hypocretin (37).  Prepro-orexin 

is a precursor peptide of orexin that is cleaved into two active subunits orexin A (ORXA) and 

orexin B (ORXB), which are 33 and 28 amino acids in length respectively.  ORXB was shown to 

be 46% identical in sequence to ORXA.  It was also found to have two G protein-coupled 

receptors; orexin receptor 1 (ORXR1) which binds ORXA at a much higher affinity than ORXB, 

and orexin receptor 2 (ORXR2) which binds ORXA and ORXB at almost equal affinity.  Both 

receptors range between 420 and 460 amino acids in length with ORXR2 being the larger of the 

two (38).  Since its discovery, the orexin system has been found in the rat testis (23) duodenum 

(39), and in human peripheral tissue such as the gastrointestinal tract and pancreas (40) but very 

few studies have been done in the avian model.  Recently, orexin has been identified in brain, 

testis, ovary, liver, and muscle in avian species (6).   
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Orexin plays a diverse role depending on the tissue or cell upon which it is acting.  When 

orexin is bound, both receptors have been shown to interact with several different G-proteins as 

well as other proteins in the cell membrane (41).  ORXR2 has been shown to couple with Gs, Gq, 

and to a lesser degree Gi proteins (41, 42), while ORXR1 is believed to rely more on its 

interactions with other proteins within the cells membrane.  In one study, the release of Ca2+ 

from intracellular stores of cell’s expressing ORXR1 was not affected when Gq proteins were 

inhibited (43).  When Gq proteins are stimulated by ORXR2, they dissociate from the receptor 

and the alpha subunit binds with phospholipase C (PLC).  PLC hydrolyzes Phosphatidylinositol 

biphosphate (PIP2) forming diacyl glycerol (DAG) and inositol triphosphate (IP3).  The DAG 

activates protein kinase C, which phosphorylates intracellular proteins.  Finally, IP3 binds to the 

endoplasmic reticulum resulting in the release of Ca2+ into the cell.  When Gs proteins are 

stimulated, the alpha subunit dissociates and binds adenylyl cyclase, which in turn converts ATP 

to cAMP.  The cAMP activates protein kinase A (PKA) to phosphorylate proteins within the cell.  

Gi proteins act in opposition to Gs and deactivates adenylyl cyclase (25).     

Depending on the intracellular environment of the cell, different pathways can become 

active upon the binding of orexin.  The mechanism of Gs and Gq proteins can work in concert to 

activate the MAP kinase pathway for both receptors (44, 45).  The PI3K/AKT signaling pathway 

has also been shown to become stimulated upon the binding of ORXR1 causing the deactivation 

of FoxO1 and the activation of mTORC1, protecting the cell from apoptosis (22).  In contrast, 

cancerous cells were shown to respond to orexin differently and induce apoptosis in response to 

ORXR1, but the mechanisms by this induction is not clear (21).   

Additionally, in mammals, orexin is known to play a key role in energy homeostasis (20), 

appetite control (23, 46-49), and the sleep/wake cycle (50-53) and has also been shown to play a 
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role in the stress response (54, 55).  As in heat stress, the orexin system also plays a role in the 

activation of the HPA stress axis in rodents (56).  Only recently has research in the avian model 

been conducted.  As opposed to the mammalian model that showed an increase in feed intake 

when given orexin through intracerebroventricular administration (48, 49), a study in neonatal 

chicks showed no role in feed intake when orexin was administered intracerebroventricularly 

(57), but it was found to induce arousal (58).   

When rat hypothalamic cells were challenged with hydrogen peroxide to induce oxidative 

stress and then treated with orexin, the orexin was shown to decrease lipid-oxidative stress 

induced by the challenge (59).  Tests should be conducted to see if orexin could serve a 

protective role during times of heat stress and examined whether this protective role could have a 

positive effect on body weight or mortality.   

IV. Overview of Cell Metabolism and Orexin 

 The liver serves as a regulatory organ in which it controls the circulation of glucose, 

amino acids, and lipids and is fundamentally involved in maintaining whole body energy 

homeostasis.  The liver also maintains energy homeostasis by stimulating the storage of glucose 

into either glycogen, which is stored in the liver, or fatty acids, which are stored in adipose tissue 

during times of excess nutrients.  These processes are regulated in the liver by several hormones 

including insulin, glucagon, and epinephrine.  Recently, the neuropeptide orexin has been 

suggested to have a regulatory effect on energy homeostasis (20).      

 As previously shown, the role of orexin has been mainly viewed in the hypothalamus and 

its ability to regulate several different functions in the body, such as the sleep/wake cycle and 

appetite.  Recently, the role of orexin has been expanded to other peripheral tissues and the 
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effects it may have on cell metabolism is being further considered.  Research has shown that the 

central administration of orexin is able to regulate glucose levels in the body, not only based on 

the need, but also on circadian rhythm (20).  The same research group later reported that orexin 

played an important role in regulating glucose levels and preventing hepatic insulin resistance in 

a bidirectional fashion based on the circadian rhythm (60).  Moving into other tissues, 

researchers found that orexin stimulated the uptake of glucose into adipocytes and stimulated 

lipogenesis and inhibited lipolysis (7).  Additionally, mice were subjected to subcutaneous 

injects of orexin A and then glucose, insulin, and glucagon levels were measured.  Plasma levels 

of insulin increased while plasma levels of glucose and glucagon decreased in the presence of 

orexin in the serum as compared to those of the control.  In the same study, orexin was found to 

stimulate the production of cAMP as well as increase intracellular calcium (8).        

V. Objectives 

 The purpose of this study was to examine the hepatic expression of orexin and its related 

receptors during times of oxidative and acute heat stress.  As described previously orexin has 

long been known to play a role in energy homeostasis, feeding behavior, and the sleep/wake 

cycle in the mammalian model as well as various stress responses.  The recent discovery of 

orexin in the peripheral tissue in the avian model warrants further study in those tissues.  The 

reason for choosing the liver in the current study is the role it plays in energy homeostasis and 

more specifically lipogenesis.  By investigating orexin expression and regulation during times of 

stress, more information will be available to hypothesize what role the orexin system plays in the 

liver.  Also, orexin could be used as a novel molecular marker used to signify that the cell is 

undergoing a stressful event.  
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ABSTRACT: 

It is widely known that orexin A and B peptides as well as their receptors are found in the 

hypothalamus and distributed throughout the central nervous system, but there have been few 

studies regarding its presences in other parts of the body. There is now evidence that orexin 

(ORX) and its receptors (ORXR1/2) are expressed in the avian liver; however, their regulation 

under different environmental conditions is still unknown. In the current study, we sought to 

determine the effects of heat and oxidative stress using hydrogen peroxide (H2O2) and 4-

hydroxynonenal (4-HNE) on the hepatic expression of ORX and ORXR1/2 in the avian species.  

Overall, heat stress significantly down-regulated the expression of ORX, and ORXR1/2 mRNA 

and protein in quail liver and LMH cells.  LMH cells treated with H2O2 had decreased ORX 

protein and increased ORX mRNA levels (P < 0.05).  There was a biphasic effect on the 

expression of ORX and ORXR1/2 of cells treated with 4-HNE.  There was a significant 

upregulation at low doses (10 and 20 μM) and significant down-regulation at a high dose (30μM) 

of 4-HNE.  In light of the current data, the hepatic expression of orexin could serve as a 

molecular signature in the heat and oxidative stress response.   

 

Key words: Heat stress, oxidative stress, orexin, liver 
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INTRODUCTION: 

 

 The orexigenic neuropeptide orexin was first discovered in the rat hypothalamus almost 

simultaneously by two separate research groups who called the peptide orexin (23) and 

hypocretin (37).  Prepro-orexin is a precursor peptide of orexin that is cleaved into two active 

subunits orexin A (ORXA) and orexin B (ORXB).  It was also found to have two G protein-

coupled receptors orexin receptor 1 (ORXR1) which bind ORXA at a much higher affinity that 

ORXB and orexin receptor 2 (ORXR2) which binds ORXA and ORXB at almost equal affinity 

(38).  Since its discovery, orexin has also been found in the rat testis (23) and duodenum (39), 

and in human peripheral tissue such as the GI tract and pancreas (40), but very few studies have 

been done in the avian model.  Recently, orexin has been identified in brain, testis, ovaries, liver, 

and muscle avian tissues (6).   

In mammals, orexin is known to play a key role in energy homeostasis (20) , appetite 

control (23, 46-49), the sleep/wake cycle(50-53), and in the apoptotic pathway (21, 61).  

Furthermore, it has also been shown to play a role in the stress response (54, 55).  Recently, there 

has been an increase in research in the avian model.  As opposed to the mammalian model that 

showed an increase in feed intake when given orexin through intracerebroventricular 

administration (48, 49), a study done on neonatal chicks showed no role in feed intake when 

orexin was administered intracerebroventricularly (57), but it was found to induce arousal (58).   

Additionally, orexins role may be geared towards a whole body event in the avian model, 

such as a response to stress, since it has been identified in several tissues (6).  Heat stress in the 

poultry industry accounts for a total economic loss of $128 million nationally (5).  Heat stress 

has been linked to damage of the small intestine of broiler chicks (11), a decrease in daily feed 
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intake and body weight (12), a decrease in protein synthesis, and increase in protein degradation 

(13).       

In addition, oxidative stress has been shown to be a direct result of heat stress in broilers 

(30-33) but the mechanisms by which the two are linked are still being scrutinized.  It has been 

found that heat stress down regulates the expression of uncoupling proteins (UCP) (31) which 

has been shown to play an important role in decreasing the production of reactive oxygen species 

(ROS) in broilers (34).  When the UCP is inactivated due to heat stress the ROS remain active 

which can lead to cell and tissue damage by the mechanism of lipid peroxidation (35).  

Moreover, it was previously reported that when exposed to heat, the metabolic processes of 

broiler chickens change and begin to induce oxidative stress, more so in the liver versus other 

tissues in the body (36). 

By conducting studies of both heat and oxidative stress on the avian liver, it is 

hypothesized that the orexin system will be affected meaning that it can serve as a new molecular 

marker involved in the stress response. 

MATERIALS AND METHODS: 

In Vivo study 

The present study was conducted in accordance with the recommendations in the guide 

for the care and use of laboratory animals of the National Institute of Health and the protocol was 

approved by the University of Arkansas Animal Care and Use Committee under protocols 13039 

and 10025. 

Males from two lines of Japanese quail (Coturnix coturnix japonica) established by long-

term divergent selection for stress were used.  Selection took place over 44 generations in which 
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corticosterone response to restraint stress was measured and the quail from the low stress line 

(resistant, R) had 66% less corticosterone levels compared to their high stress (sensitive, S) 

counterparts (62).  The two lines were hatched at the University of Arkansas poultry farm 

hatchery and were reared separately in an environmental chamber and allowed ad libitum access 

to water and food (12.6 MJ·kg-1, 22% protein).  They were warm-brooded for 10d at 32ºC and 

the brooding temperature was gradually decreased each week to 22ºC (thermoneutral) at 4 weeks 

of age.  Photoperiod was 17L: 7D cycle.  At 4 weeks of age, 6-10 birds of each line were 

exposed to acute heat stress (37ºC for 90 min) while 6-10 birds were maintained at thermo-

neutral conditions.  The relative humidity was 50% ± 5%.  Control ambient temperature and 

heat-stressed groups were housed in separate environment controlled rooms.  Animals were then 

killed by cervical dislocation and liver tissues were removed, immediately snap frozen in liquid 

nitrogen, and stored at -80ºC until use.   

In Vitro study 

Leghorn male hepatoma (63) were cultured in Waymouth’s complemented with 

(10%FBS, 1% chicken serum, and 1% pen/strep) at 37°C in a humidified atmosphere of 5% CO2 

and 95% air.  All media reagents were purchased from Life Technologies (Grand Island, NY).  

Once cells reached 80% confluence, based on visual observation, they were treated as follows: 

Heat Stressed: subjected to heat stress at 45°C in a humidified atmosphere of 5% CO2 and 95% 

air for 120 minutes.   

Hydrogen Peroxide (H2O2) Treatment: cells treated with 0, 10, 50, and 100μM of H2O2 for 

three hours.  
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4-Hydroxynonenal (4-HNE) treatment: cells treated with 0, 10, 20, and 30μM of 4-HNE for 

24 hours.   

Isolation of RNA for Reverse transcription and qPCR 

Total RNA was collected from liver tissue and LMH cells using Trizol reagent (Life 

Technologies, Grand Island, NY).  As previously described (64), complementary DNA was then 

obtained by taking 1μg of DNAase treated total RNA that was added to 4μL of supermix Quanta 

and ultra-pure H2O to give a final volume of 20μL.  The RNA was reverse transcribed (RT) into 

DNA for 5 min at 25°C, 30 min at 42°C, 5 min at 85°C, and placed on hold at 4°C.  Then ultra-

pure H2O, 10μL of Sybrgreen, and 5μL of the RT was used with 4 pairs of primers specific for 

chicken orexin (ORX): forward, 5’-CCAGGAGCACGCTGAGAAG-3’  and reverse, 

5’CCCATCTCAGTAAAAGCTCTTTGC-3’), orexin receptor 1 (ORXR1): forward, 5’-

TGCGCTACCTCTGGAAGGA-3’, and reverse, 5’-GCGATCAGCGCCCATTC-3’  ; orexin 

receptor 2 (ORXR2): forward, 5’-AAGTGCTGAAGCAACCATTGC-3’, and reverse, 5’-

AAGGCCACACTCTCCCTTCTG-3’; and ribosomal 18S as a housekeeping gene forward, 5’-

TCCCCTCCCGTTACTTGGAT-3’  and reverse, 5’-GCGCTCGTCGGCATGTA-3’.  Thermal 

cycling parameters consisted of initial denaturation 50°C for 2 min and then 95°C for 10 min and 

then a cycling of 95°C for 15 sec and 58°C for 1 min for a total of 40 cycles.  The data was then 

analyzed using Graph Pad Prism software (version 6, La Jolla, CA).   

Isolation of Protein and Western Blot Analysis 

A protein homogenate was collected from the samples using lysis buffer (10mM Tris 

base, pH 7.4, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 0.5% NP-40, and a 

protease and phosphatase inhibitor cocktail.  The protein concentration was determined using the 
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Bradford Assay kit (Bio-Rad, Hercules, CA) and using BSA as the standard.  The samples were 

separated in a NuPage 4-12% Bis-Tris gels (Invitrogen) along with a pre-stained molecular 

weight marker (precision plus protein Dual color) and transferred to Immun-Blot PVDF 

Membrane (Bio-Rad).  The membrane was blocked 1h at room temperature and then a primary 

antibody was added in a 1:1,000 dilution and left overnight at 4°C.   The antibodies rabbit anti-

ORX, rabbit anti-ORXR1, and rabbit anti-ORXR2 (Interchim, Montlucon, France) were used as 

well as antibodies for β-actin or GAPDH that served as housekeeping proteins (Cell Signaling 

Technology, Danvers, MA).  Once the primary antibody was removed, the secondary antibody, 

conjugated with horseradish peroxidase, was added at a 1:5,000 dilution for 1h at room 

temperature.  The secondary antibody is less specific and can be used with multiple samples. For 

example, goat-anti rabbit antibodies were used to bind the primary antibodies for ORX and 

ORXR1/2.  The signal was then visualized using chemiluminescence (ECL plus) (GE Healthcare 

Bio-Sciences, Buckinghamshire, UK) which is catalyzed by horseradish peroxidase resulting in 

light emission.  The light emissions were captured by FluorChem M MultiFluor System 

(Proteinsimple, Santa Clara, CA) and analyzed using AlphaView SA Software (version 3.4.0, 

1993-2011; Proteinsimple, Santa Clara, CA). 

Immunofluorescence  

 Cell cultures were treated on chamber slides (Lab-Tek, Hatfield, PA) and fixed using 

methanol at -20°C for 10 min and permeabilized using Triton-X 100.  Dako blocking reagent 

(Dako, Carpinteria, CA) was used for 1 hr to reduce background due to non-specific binding.  

The cultures were incubated overnight at 4°C with the 1° antibody for ORX, ORXR1, or ORXR2 

at a 1:200 dilution (Interchim, Montlucon France).  The 1° antibody was removed and the Alexa 

Fluor 488- or 594-conjugated 2° antibody (Molecular probes, Life Technologies, Grand Island, 
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NY) containing the fluorescent marker was incubated at room temperature for 90 minutes at a 

1:400 dilution.  Vectashield with DAPI (vector Laboratories, Burlingame, CA) was placed on the 

slides and they were viewed under a fluorescence microscope at 20x magnification to detect the 

expression of either ORX, ORXR1, or ORXR2 and analyzed using Zeiss Imager M2 and 

AxioVision software (Carl Zeiss Microscopy, GmbH 2006-2013).   

STATISTICS: 

Data from R/S genotype quail were analyzed by two-factor ANOVA with heat stress and 

genotype as classification variables.  The rest of the data (oxidative stress) were analyzed by one 

way ANOVA.  If ANOVA revealed significant effects, the means were compared by Student 

Newman Keuls (SNK) multiple comparison test.  All data were analyzed using Graph Pad Prism 

software (version 6, La Jolla, CA).  Significance was set at P < 0.05. 

RESULTS: 

Acute heat stress down regulates orexin system expression in quail liver tissue and LMH 

cells 

 There was a significant down regulation of gene and protein expression of orexin and its 

related receptors, ORXR1 and ORXR2, in both R and S quail lines when exposed to acute heat 

stress (P<0.05, Fig. 1a-d).  Both R and S quail lines responded in a similar manner and 

magnitude with no significant difference between the two responses (Fig. 1a-d).  Concurrently, 

acute heat exposure also down regulated the orexin system expression in LMH cells (P<0.05, Fig 

2a, b).  Immunofluorescence supported the data (Fig. 2c) and the up-regulation of HSP70 in heat 

stressed cells indicate that the LMH cells were effectively undergoing heat shock (Fig. 2c). 
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Oxidative Stress Has Varying Effects on Orexin System Expression in LMH Cells 

 When treated with H2O2, LMH cells had a decrease in the expression of orexin protein 

but no change in the protein expression of its related receptors, ORXR1 and ORXR2 (fig. 3a, b).  

In contrast, mRNA of orexin and its related receptors was up-regulated when treated with H2O2 

(P<0.05, fig. 3c-d).  4-HNE had a biphasic effect with both the mRNA and protein expression 

up-regulated at 10 and 20 µM, but significantly down regulated at 30 µM (P<0.05, Fig. 4a-c). 

DISCUSSION: 

 The objective of the current study was to examine the hepatic expression of orexin and its 

related receptors during times of oxidative and acute heat stress.  Heat stress has already been 

shown to have a significant economic effect on the poultry industry leading to a loss of millions 

of dollars even at optimal heat abatement strategies.  With global temperatures rising it is safe to 

conjecture that these losses will only increase.  Heat stress has shown to induce oxidative stress 

and impair mitochondrial function in the muscle of broiler chickens leading to tissue damage 

(14).  High temperatures have also been linked to a decrease in body weight and increase in 

mortality rate for chicks bred for rapid growth (3).  Heat stress has also shown to increase hepatic 

lipogenesis and decrease lipolysis in broilers (4) meaning during times of stress much of the 

nutrients in feed is being converted to fat rather than muscle leading to a decrease in profitability.      

 We recently found orexin and its related receptors are expressed in avian liver (6) and 

hypothesize that it may play a role in fatty acid synthesis in the liver especially during times of 

stress.  The first step in testing this hypothesis was to study the regulation of the hepatic 

expression of orexin during times of stress which was done in the current study.  It was found 

that acute heat stress lead to the down regulation of both hepatic protein and mRNA in both 
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sensitive and resistant quail lines.  The divergent selection of the quail line did not factor into the 

results with both lines responding in a similar manner.  This is consistent with previous data in 

which heat stress did not have an effect on circulating corticosterone levels between the two lines 

(65). The hepatic expression of the orexin system in LMH cells responded in parallel to the in 

vivo model and was down regulated when exposed to acute heat stress.  Orexin has been linked 

to the regulation of plasma glucose levels (8, 20) and has shown to have a bidirectional effect on 

the regulation of glucose levels based on circadian rhythm (60).  Orexin is thought to work in 

conjunction with insulin, stimulating glucose transporters to the cell surface (7).  We hypothesize 

that orexin may also play a role in up-regulating lipogenesis during heat stress in conjunction 

with its role in glucose uptake in hepatic cells, which would provide the nutrients needed in the 

synthesis of fatty acids.   

 These results did differ from those reported by Lei et al. (42) who showed there was no 

effect on orexin gene expression in the hypothalamus of broiler chickens when undergoing acute 

heat stress (66).  These differences may be due to species-specific or tissue-specific regulation of 

the orexin system by heat stress.  Lei et al. (42) used hypothalamus tissue while we used hepatic 

tissue and they worked with broiler chickens (Gallus gallus domesticus) while we worked with 

Japanese quail (Cortunix cortunix japonica).  There was also a difference in age and 

experimental conditions between the two studies that may have led to the inconsistencies as well.  

We found a positive correlation between both the protein and mRNA expression, while Lei et al. 

2013 only measured mRNA levels.   

 The regulation of the orexin system by oxidative stress has not been previously reported, 

but neurons containing orexin have been shown to be affected by endoplasmic reticulum stress 

(67).  In the current study, we found that oxidative stress lead to an increase in the abundance of 
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mRNA and a decrease in protein levels in a dose dependent manner when LMH cells were 

treated with H2O2.  This correlates with the findings of a study performed in yeast that found 

oxidative stress caused and overall down regulation of protein synthesis, but could upregulate 

mRNA levels in order to create stores for the cell to utilize once the stressor had been eliminated 

(68).  When cells were treated with 4-HNE, they had a biphasic effect with an increase in mRNA 

and protein concentration at 10 and 20µM but then a significant decrease in the expression at the 

high concentration of 30µM.  Oxidative stress is known to inactivate proteins by causing 

conformational changes in the tertiary structure.  These misfolded proteins are then marked with 

ubiquitin for degradation. 

 To our knowledge this report is the first showing that the orexin system is regulated by 

both oxidative stress and acute heat stress in the avian liver.  Further studies must be done in 

order to examine the reason behind these findings.  We hypothesize that the orexin system may 

play a role in the induction of lipogenesis especially during times of heat stress and is a future 

direction being pursued.  Further research must be done to see how both heat and oxidative stress 

are regulating the expression of orexin and its related receptors.   
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Figure 1.  Heat stress down regulates ORX and ORXR1/2 expression in male quail 

liver. 

Total protein and RNA were extracted from the liver of stess-sensitive (S) and stress-

resistant (R) male quails maintained at thermoneutral (TN) or heat stress (HS) 

environments for 90 minutes.  Protein levels were determined by Western blot (a).  mRNA 

abundances were measured by qPCR using -2ΔΔCt method (b-d).  Data are mean ± SEM 

(n=6).  Means without a common letter differ, P<0.05. 
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Figure 2. Heat stress down regulates ORX and ORXR1/2 expression in LMH cells. 

LMH cells were exposed to heat stress (45˚C, 120 min) or maintained at 37˚C (control).  

Protein levels were determined by Western blot (a) and immunofluorescence (b).  mRNA 

abundances were measured by qPCR using -2ΔΔCt method (c).  The * indicates a 

significant difference (P<0.05) between the heat-stressed and control cells. 
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Figure 3. Dose-dependent alteration of ORX and ORXR1/2 expression in LMH cells 

by H2O2. 

LMH cells were treated with 10, 50, and 100 µM. of H2O2 for 3h.  Untreated cells were 

used as the control. Protein levels were determined by Western blot (a) and 

immunofluorescence (b).  mRNA abundances were measured by qPCR using -2ΔΔCt method 

(c-e).  The * indicates a significant difference (P<0.05) between H2O2-treated and untreated 

cells. 
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Figure 4. Biphasic effects of 4-HNE on ORX and ORXR1/2 expression in LMH Cells. 

LMH cells were treated with 10, 20, and 30 µM. of 4-HNE for 24h.  Untreated cells were used 

as the control. Protein levels were determined by Western blot (a) and immunofluorescence (b).  

mRNA abundances were measured by qPCR using -2ΔΔCt method (c).  The * indicates a 

significant difference (P<0.05) between 4-HNE-treated and untreated cells. 
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CHAPTER 3 

Conclusions 

 The aim of the following study was to examine the regulation of the hepatic expression of 

the orexin system during times of oxidative and acute heat stress.  When cells were heat stressed 

both in vivo and in vitro, there was an overall down regulation of hepatic mRNA and protein 

levels of orexin and its related receptors.  When challenged with H2O2, LMH cells had a decrease 

in the expression of orexin protein but no change in the protein expression of its related 

receptors.  In contrast, the expression of mRNA of orexin and its related receptors was up-

regulated when treated with H2O2.  This data suggest that H2O2 may affect post-transcriptional 

mechanisms of the orexin system.    In contrast, 4-HNE had a biphasic effect with both the 

mRNA and protein expression up-regulated at 10 and 20 µM, but significantly down regulated at 

30 µM.   

Due to the positive results of the current experiment, several avenues of research can be 

taken in order to examine the function of the orexin system.  Studies regarding the series of 

events that occur once the orexin receptors are stimulated are still in their infancy with little 

information on what pathways are being activated within the cell.  Additionally, the downstream 

cascade in which orexin stimulates or suppresses a cellular response during times of stress also 

needs to be further investigated.  One possibility may be that orexin may play a role in de novo 

lipogenesis, especially during times of heat stress.  Finally, because orexin has been shown to be 

regulated by both heat and oxidative stress it may be used as a novel molecular marker for cells 

undergoing a stress response.     
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