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Fungal fibers are used for nest construction by 176
species of birds (Elliott et al. 2019). At least 98 bird
species use the black rhizomorphs of Marasmioid
Basidiomycetes fungi as nest material (Hansell 2000;
Aubrecht et al. 2013; Caballero 2020). The Yellow-
olive Flycatcher (Tolmomyias sulphurescens), a
common bird of forests and forest edges in Central and
South America, principally uses these black
Marasmius fibers for nesting (Fig. 1; Anciães et al.
2012; Menezes et al. 2014). Several hypotheses have
been proposed to explain this phenomenon. There are
conflicting reports on whether the fibers have antibiotic
properties (Melin et al. 1947; Meng et al. 2011;
Ramesh and Pattar 2010; Seupaul 2021). These slender
fungal filaments have been shown to have anti-
carcinogenic properties (Rosa et al. 2009), but whether
this is a factor in nest material selection by birds has
not been examined. An additional selective advantage
proposed of these so-called horse-hair fungi, owing to
their resemblance to long black horse hairs, is that they
are longer than locally available grass fibers and hence
afford flexibility and convenience in the construction
of long pendulous nests (Freymann 2008). This too
remains to be addressed empirically. Another possible
advantage of choosing horse-hair fungi may be that
they are more water-resistant than grass material. This
has been tested and supported by data (Freymann
2008).

Two more hypotheses have either been
incompletely tested or untested thus far. The first is
that these fungal filaments are physically stronger than
grass fibers, and thus they are preferred for their
durability (Freymann 2008; Aubrecht et al. 2013). To
test this, Freymann (2008) conducted experimental
trials comparing tensile strengths of Marasmioid
filaments used by Streak-backed Orioles (Icterus
pustulatus) in Costa Rica, with grass fibers extracted
from nest linings from the same nests. He
demonstrated that the fungal filaments were stronger
than the grass lining material. An obvious drawback of

his study was that he compared the physical
performance of fungal filaments with grass linings of
nests, and not to grass fibers used in the main nest
structure. Such a comparison would be necessary to
establish if fungal filaments afford greater durability in
terms of higher load bearing than alternate grass
material used in similar ways by coexisting bird
species that also construct pendent fiber nests.

The second hypothesis is that using Marasmius
fibers in nest provides some advantage in the control of
temperature exchange between the interior and exterior
of the nest. Until now, this hypothesis has not been
tested empirically.

In this study, we tested these two hypotheses. We
compared tensile strengths of Marasmius fibers
obtained from six nests of Yellow-olive Flycatchers in
Belize, Central America, with grass fibers extracted
from a Yellow-tailed Oriole (Icterus mesomelas) nest
from the same general area. Both species build pendent
nests made of fibers. We also compared nest interior
temperatures of the five Marasmius nests with that of
the control grass nest and concurrent ambient
temperatures.

All nests were inactive and empty at the time of
collection in June 2019. We could not determine
exactly when they were in use, but the intact condition
of the nests indicated that they were in use that
summer. The flycatcher nests were predominantly or
exclusively made of black fungal fibers. The oriole
nest was comprised of grass material only. We
provisionally identified the flycatcher nest fibers as
Marasmius in the field based on their black color (Fig.
1) and their thin and wiry form (Hedger 1990; Hedger
et al. 1993; Koch et al. 2020) resembling horse hairs.

To confirm that the black fibers were indeed aerial
rhizomorphs of Marasmius fungi, a sample of fibers
was sequenced with NS1 [5’(GTA GTC ATA TGC TTG
TCT C)3’] and NS8 [5’(TCC GCA GGT TCA CCT
ACG GA)3’] primers used for higher fungi. Examination
of 1659 base pairs (bp) of the full 18S rRNA sequence
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Our tensile strengths data suggests that Marasmius
fibers do not have a tensile strength advantage to at
least one stronger nesting material that was readily
available in the area. This seems to contradict the
results of Freymann (2008), but it should be reiterated
that he compared tensile strength of Marasmius fibers
used as the main structural component of nests to the
grass fibers used to line the same nests. In contrast, our
study compares the Marasmius fibers used exclusively
in a nest of one species to brown grass fibers used
exclusively in the nest of a different local species.

We tested the temperature buffering hypothesis by
suspending the black fiber nests and control nest from
small trees at 4.5m above ground and 1.8m from one
another. This study was conducted at the Crystal
Paradise Resort, Cayo District, Belize. HOBO
MX2201 data loggers were placed inside the empty
nests and set to record the temperature every 30
minutes for 24-hour time increments. Temperatures
were recorded for the ambient environment, the
interior of the grassy control nest and one Marasmius
nest. In addition, 2 of the other 4 Marasmius nest
temperatures were recorded on a rotating basis. The
mean of the temperatures in the Marasmius nests was
computed. The absolute value of the differences in the
ambient temperature from the oriole nest and from the
average flycatcher nest temperatures was computed
(Fig. 4). This produced ordered pairs of absolute
temperature difference for each time for each type of
nest. The mean of these differences was -0.021oC with
the oriole sample producing the higher degree of
temperature buffering. A one-sample t-test was
performed on the difference of these pairs, producing a
p-value of 0.47. While both types of nests provided

Figure 4. Absolute differences in internal and external temperatures
for grass and Marasmius nests

some degree of temperature moderation, there is no
statistical difference in the temperature moderation
ability of the two types of nests.

Therefore, we reject both the hypothesis that
Marasmius nests provide greater tensile strength and
that they provide greater temperature moderation than
that provided by other readily available nesting
material. In fact, we tested one such material and
found it provided the same temperature moderation and
greater tensile strength.

Nest microclimate is crucial for successful
incubation and brooding, and it directly impacts daily
energy requirements of adults (Gill 2007). Birds adopt
a range of strategies to promote thermal inertia, from
nesting communally (Lowney et al. 2020) to placement
of nests in cavities and burrows (Ar and Piontkewitz
1994). The choice of nest materials plays a role in
buffering external temperatures (Mainwaring et al.
2014). Within species, nests in colder climates have
better heat retaining features, aided in part by the nest
materials chosen by parents (Kern and van Ripper
1984; Briskie 1995; Rohwer and Law 2010). Given the
importance of nest materials in thermoregulation, and
the widespread usage of Marasmius in tropical birds, it
is surprising that this is the first time this nest material
has been examined for possible regulation of nest
microclimate.

There are two limitations in our study. First was
the small sample size, particularly of the grass control
material. Using a larger sample size, particularly for
the control material, from multiple nests examining
different nesting materials, would have strengthened
this study. The second was the availability of only five
data loggers, requiring us to take data over three days
for the five different available black nests and the
single nest from the grassy material. Ideally, we would
have preferred taking the data concurrently from more
nests of both types. Despite these limitations, our study
should spur future inquiries examining these and other
hypotheses, using and building on the technologies and
methods we used.

Our study suggests that neither tensile strength nor
temperature moderation is a factor in the frequent
usage of black fungal fibers in Yellow-olive Flycatcher
nests. Perhaps these fibers are chosen because of their
water resistance (Freymann 2008) or simply due to
their easy availability in forested environments,
compared to grassy material that may be more
common in open habitats. Also, Marasmius fibers may
be better suited for cup nests compared to hanging
nests, with a possible tradeoff between physical
strength and other properties. Nestlings may be
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benefitted by these fiber linings in some way
(Aubrecht et al. 2013). There is some evidence that
uneven distribution of Marasmius may be involved in
selective use differences by birds across geographical
areas and habitats (Aubrecht et al. 2013).

The complex web of interactions between
Marasmius, birds, ant-acacia trees, acacia-ants, and
social hymenopterans (Fig. 1) make teasing out cause-
and-effect challenging (Young et al. 1990; Flaspohler
and Laska 1994; Menezes et al. 2014). Also, there is
evidence that many species of Marasmiod fungi form
aerial rhizomorphs, and birds selectively use them for
different roles (lining, support) in nest (Koch et al.
2020). Given these complexities, we encourage more
research to solve the mystery of why these black
Marasmius fibers are preferred by the Yellow-olive
Flycatcher and other tropical birds.

Acknowledgments

Steven L. Stephenson of the University of
Arkansas – Fayetteville helped with fungal
identification and provided import permits. Nawaf
Alshammari sequenced the fibers in the labs of
Macrogen in Saudi Arabia. Haris Rana performed
some of the data collection during a summer High
School Research Program in Shawn Bourdo’s lab at
Center for Integrative Nanotechnology Sciences,
University of Arkansas at Little Rock. Anant Deshwal
assisted in data collection. Andy Tut collected all the
nests. David Oakley provided the photograph. Becky
Mroczek helped us interpret the sequencing data. The
temperature study was part of the Belize Coastal
Caribbean Biology undergraduate summer study
abroad course at the University of Arkansas- Fort
Smith. Three anonymous reviewers made suggestions
that enabled us to improve the manuscript.

Literature Cited

Anciães M, TM Aguilar, LO Leite, RD Andrade,
and MA Marini. 2012. Nesting biology of the
Yellow-olive Flatbill (Tyrannidae, Elaninae) in
Atlantic forest fragments in Brazil. The Wilson
Journal of Ornithology 124:547-557.

Ar A and Y Piontkewitz. 1994. Nest ventilation
explains gas composition in the nest-chamber of the
European Bee-eater. Respiration Physiology
87:407-418.

Aubrecht G, W Huber, and A Weissenhofer. 2013.
Coincidence or benefit? The use of Marasmius
(horse-hair fungus) filaments in bird nests. Avian

Biology Research 6:26-30.
Briskie JV. 1995. Nesting biology of the yellow

warbler at the northern limit of its range. Journal of
Field Ornithology. 66:531–543.

Caballero I. 2020. Yellow-olive Flycatcher
(Tolmomyias sulphurescens), version 1.0. In: Birds
of the World (J. del Hoyo, A. Elliott, J. Sargatal, D.
A. Christie, and E. de Juana, Editors). Cornell Lab
of Ornithology (Ithaca, NY, USA).

Elliott TF, MA Jusino, JM Trappe, H Lepp, G
Ballard, JJ Bruhl, and K Vernes. 2019. A global
review of the ecological significance of symbiotic
associations between birds and fungi. Fungal
Diversity 98:161-194.

Flaspohler DJ and MS Laska. 1994. Nest site
selection by birds in Acacia trees in a Costa Rican
dry deciduous forest. The Wilson Bulletin 106:162-
165.

Freymann BP. 2008. Physical properties of fungal
rhizomorphs of basidiomycetes used as nesting
material by birds. Ibis 150: 345-399.

Gill FB. 2007. Ornithology. Third edition. WH
Freeman and Co. (New York).

Hansell M. 2000. Bird Nests and Construction
Behaviour. Cambridge University Press (Cambridge,
UK).

Hedger J. 1990. Fungi in the tropical forest canopy.
Mycologist 4:200–202.

Hedger J, P Lewis, and H Gitay. 1993. Litter-
trapping by fungi in moist tropical forest. In: Isaac
S, JC Frankland, R Watling, AJS Whalley, eds.
Aspects of tropical mycology. Cambridge
University Press (Cambridge, UK). p 15–36.

Kern MD and C van Ripper, III. 1984. Altitudinal
variations in nests of the Hawaiian honeycreeper
Hemignathus virens virens. Condor 86: 443–454.

Koch RA, J Liu, M Brann, B Jumbam, N Siegel, and
MC Aime. 2020. Marasmiod rhizomorphs in bird
nests: Species diversity, functional specificity, and
new species from the tropics. Mycologia 112:1086-
1103.

Lowney AM, D Bolopo, BA Krochuk, and RL
Thomson. 2020. The large communal nests of
Sociable Weavers provide year-round insulated
refuge for weavers and Pygmy Falcons. Frontiers in
Ecology and Evolution 8:1-13.

Mainwaring MC, IR Hartley, MM Lambrechts, and
DC Deeming. 2014. The design and function of
birds’ nests. Ecological Evolution 4:3909–3928.

Melin E, T Wikén, and K Oblöm. 1947. Antibiotic
agents in the substrates from cultures of the genus
Marasmius. Nature 159:840-841.

93

Journal of the Arkansas Academy of Science, Vol. 75 [2021], Art. 19

https://scholarworks.uark.edu/jaas/vol75/iss1/19
DOI: 10.54119/jaas.2021.7511



H. Rana, S. Smithson, J.L. Jackson II, and R. Kannan

Journal of the Arkansas Academy of Science, Vol. 75, 2021
94

Menezes JCT, BS Barbosa, and F Prezoto. 2014.
Previously unreported nesting associations of the
Yellow-olive Flycatcher (Tolmomyias
sulphurescens) (Aves: Tyrannidae) with social wasps
and bees. Ornitologia Neotropical 25:363-368.

Meng J, Y Li, Y Ou, L Song, C Lu, and Y Shen.
2011. New sesquiterpenes from Marasmiu
scladophyllus. Mycology 2: 30-36.

Ramesh CH and MG Pattar. 2010. Antimicrobial
properties, antioxidant activity, and bioactive
compoundsfrom six wild edible mushrooms of
Western Ghats of Karnataka, India. Pharmacognosy
Research 2:107-112.

Rohwer VG and JSY Law. 2010. Geographic
variation in nests of yellow warblers breeding in
Churchill, Manitoba, and Elgin, Ontario. Condor
112:596–604.

Rosa LHK, MG Machado, ALT Rabello, EM
Souza-Fagundes, R Correa-Oliveira, CA Rosa,
and CL Zani. 2009. Cytotoxic, immunosuppressive,
trypanocidal and antileishmanial activities of
Basidiomycota fungi present in Atlantic Rainforest
in Brazil. Antonie van Leeuwenhoek 95:227-237.

Seupaul SR. 2021. Antibacterial properties of
Horsehair fungus (Marasmius spp.) in tropical bird
nests. Honors thesis, University of Arkansas.

Young BE, M Kaspari, and TE Martin. 1990.
Species-specific nest site selection by birds in Ant-
Acacia trees. Biotropica 22:310-315.

94

Journal of the Arkansas Academy of Science, Vol. 75 [2021], Art. 19

Published by Arkansas Academy of Science, 2021


	Bird Usage of Black Marasmius Fibers as Nest Material
	Recommended Citation

	tmp.1636042330.pdf.tJd0_

