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Abstract

Improvement in a variety of technologies can often
be successfully modeled using a general version of
Moore’s law (Moore 1965) (i.e., exponential
improvements over time). Another successful approach
is Wright’s law, which models increases in
technological capability as a function of an effort
variable such as production. While these methods are
useful, they do not provide prediction distributions,
which would enable a better understanding of forecast
quality.

Farmer and Lafond (2016) developed a forecasting
method which produces forecast distributions and is
applicable to many kinds of technology. A
fundamental assumption of their method is that
technological progress can be modeled as a random
walk with drift.

We demonstrate a class of technology, space
exploration, in which random walk with drift does not
occur. This shows the need for alternative approaches
suitable in such technological domains.

Introduction

The recognition that technology progresses in a
predictable way is now widespread. Some of the
earliest research in this area was conducted by the
aeronautical engineer Theodore Paul Wright. Wright
described a phenomenon he observed while
supervising the production of aircraft, as the batch size
of a model of aircraft increased, the per-unit cost to
manufacture those aircraft decreased at a predictable
rate. The approximate relationship was a 20% drop in
cost for every doubling of production volume (Wright
1936). This phenomenon has been attributed by many
researchers, to “learning by doing” where productivity
is improved through the accumulation of experience.
Subsequent research indicated that this pattern holds
for a variety of industries although the rate of cost

decline varies by industry (Hax and Majluf 1982). This
relationship between effort and per-unit cost has been
referred to by various names such as learning curves
and experience curves (Henderson 1968).
Contemporary research into technology foresight uses
the term Wright’s law, so in this paper we will be using
this term.

A more popularly known trend is Moore’s law.
Originally this phenomenon was described by one of
the co-founders of Intel, Gordon Moore, in 1965.
Moore famously noted a regular doubling of the
number of components that could be built into an
integrated circuit and hypothesized that this trend
would continue (Moore 1965). The trend soon slowed
somewhat but then continued with a doubling time, for
that domain, of approximately 18 months to 2 years.
Just like Wright’s law, Moore’s law has been found to
be generally applicable to a variety of technologies as
shown below.

Before we can develop models of technological
improvement, we must first define a metric for
improvement. While many legitimate metrics of
technological performance exist, one of the simplest to
use is cost per performance. This metric has two
important advantages for researchers, the data may be
available, and the metric captures a general notion of
the development of a technology at a given time. Let us
review the general applicability of Moore’s law in
terms of cost with a few examples.

First, we can consider the cost to sequence a
human genome. This cost is not only declining
exponentially, but it is also declining much more
rapidly than the rate of Moore’s law as applied to
computer processors. More specifically, we see that
sequencing a genome today is approximately 100,000
times cheaper than sequencing a genome in 2001
(NHGRI 2020).

Solar electricity is another source of exponential
improvement which is having a massive impact on our
society. Like most exponential technologies, the initial
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slow rate of improvement led many to dismiss its
importance. Today the situation is much different with
many believing that the plummeting cost of solar is a
primary cause of the decline of the coal industry
(Plumer 2020; Gimon et al. 2019; Our World in data
2021).

Finally, we can consider nanotechnology. It is not
immediately obvious how progress in nanotechnology
should be quantified since it is not a specific
technology but rather a scale at which technological
effort is undertaken. However, it is often argued that
number of nanotechnology publications is reasonable
since an exponential increase in the number of
publications suggests a commensurate increase in
effort to improve the technology and thus, one might
reasonably conjecture, the capability of the technology
(Palmberg et al. 2009; Hullman 2006). Figure 1 shows
just such an exponential increase in the number of
nanotechnology related scientific publications over
time.

Figure 1. Nanotechnology publications by leading countries. Based
on Kwon (2016).

Progress in Space Technology
While many technologies have displayed

exponential improvement, one technology that is often
missing from the literature on exponential
improvement is space exploration. It would be
surprising if such improvement did not occur in that
domain since it would imply there is something
innately different about space exploration technology.

In response to this conundrum, a primary focus of our
research has been to find exponential trends in space
exploration technology that have been previously
unnoticed.

As mentioned earlier, however, we must first
define our metric of improvement before attempting to
find these trends. With this in mind, we investigated
spacecraft lifespan as a metric, which we define as the
length of time a spacecraft sent to at least one
extraterrestrial body operates. The data we used is
maintained as a Google spreadsheet located at
https://docs.google.com/spreadsheets/d/1ZtfkjbcTOoZ
TbETUkOY5Hlq5SY5GREvFYjgzmKZQww4/edit#gi
d=117287008. The data covers deep space missions to
extraterrestrial bodies (except the Sun) beginning in
1959 and continuing to the present day. All of the data
was collected from public sources. Our previous
investigations had shown signs of exponential
improvement for the domain (Berleant et al. 2017;
Berleant et al. 2019). An important difference between
this metric and other metrics for technological progress
is that it does not directly measure empirical properties
of the spacecraft such as mass, thrust, or fuel
efficiency. However, it can be argued that good metrics
for technological progress should capture the utility to
the user since this is what results in the societal impact
of the technology (Magee et al. 2014). Mission
lifespan does have this advantage as a metric.

While this initial analysis of trends in mission
lifespan was encouraging, there were some problems
with using mission lifespan for modeling
improvements in space exploration technology. Many
models of technological progress use least-squares
regression. When building such a model using mission
lifespan as the dependent variable, this leads to absurd
scenarios where predicted lifespan is longer than the
entire history of spacecraft technology (Berleant et al.
2019). Therefore, the use of this metric required other
modeling techniques to really be useful.

Determining Forecast Quality
The search for other techniques required to model

space exploration technology dovetails with another
problem brought about by using least-squares
regression for modeling improvements in technology.
Namely, while Moore’s law (Moore 1965) and
Wright’s law (Wright 1936) have been quite successful
in modeling the increase in a wide variety of
technologies, they do not provide forecast
distributions. This is important because no forecast is
100% accurate and these distributions would give us an
idea of the range of outcome values we might
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encounter. Farmer and Lafond (2016) mention this
problem in relation to technology foresight and
describe why understanding forecast uncertainty is so
important for policy considerations.

So where does forecast uncertainty arise?
Hyndman (2014) lists four primary sources:

1.) The assumption of the continuation of past
trends

2.) Model quality
3.) Parameter uncertainty
4.) Random shocks

The first assumption is a prerequisite for an
extrapolation-based approach. Factor (2) can be
optimized by modeling techniques such as optimizing
model fit and distribution of residuals. Parameter
uncertainty can theoretically be minimized using
simulations although this increases the complexity of
forecasting (Ibid). In this article we focus on the
impact of random shocks. This can be done by using
the standard literature of time series analysis.

There are important differences between the
methods used by us and those used by Farmer and
Lafond (2016). Their method assumes that parameter
uncertainty is the largest source of forecast uncertainty.
More specifically, the method assumes that forecast
variances grow with the square of the time horizon in
the presence of parameter uncertainty but only linearly
when there is no parameter uncertainty (Sampson
1991). Parameter uncertainty was likely more of an
issue since most of the time series data was short and
had to be aggregated (Farmer and Lafond 2016).

Another important assumption of their method is
that improvements in each technology can be modeled
as a random walk with drift. More specifically:

(1)

where is the performance of the technology at a
given time step, is the “drift” or trend, and is an
i.i.d. noise process. Each technology is modeled with a
different mean and variance parameter for the noise
component of the model. Due to the limited size of the
time series, they were unable to perform unit root tests
to justify this approach theoretically; however the
empirical results they derived were consistent with this
model.

We did not have this problem since our space
mission data is large enough to perform unit root tests,
and our results indicated that the data was not
generated by a random walk as we demonstrate below.

Therefore, space exploration is one technology that
would benefit from an approach other than the random
walk model. In the following section we detail how
unit root tests, autocorrelation patterns, and backtesting
demonstrate that this data does not have a unit root.

Methods and Results

As stated before, we used time series modeling to
describe improvements in space exploration
technology. This approach does not consider parameter
uncertainty, suggesting prediction intervals would
likely be too narrow in backtesting (Hyndman 2014).
Since this did not happen for mission lifespan models it
is likely that parameter uncertainty is not a significant
issue for them. Each point forecast was based on an
ARIMAX model, which is a combination of a linear
regression and an ARIMA model fitted on the
residuals. The regressor for the model was the order of
launch. This approach was chosen over a standard
ARIMA model since this performed better on
backtesting.

All analysis was conducted using the R statistical
packages tseries, forecast, and stats. First, we had to
determine if the time series was stationary or not. This
is done usually by examining the autocorrelation
function (ACF) of the data. Figure 2 displays a plot of
the autocorrelation of mission lifespan which decays
very slowly. While this is usually considered a sign of
nonstationarity, the first differences tell a different
story. Figure 3 shows the plot of the first differences of
the data which displays several significant lags. This is
inconsistent with time series that contain stochastic
trend (i.e., a random walk) but is consistent with time
series that contain a deterministic trend. This is
because the first differences of a time series describe
the changes from one period to the next, the first
differences of a random walk should therefore be
uncorrelated.

The next step is to determine the autoregressive
components of the model. A plot of the Partial
Autocorrelation Function (PACF) is displayed in
Figure 4. This plot shows significant autocorrelations
for lags 1, 2, and 5. Autoregressive models display
decaying autocorrelations alongside partial
autocorrelations with significant lags typically equal to
the appropriate autoregressive parameter. These plots
indicate that an autoregressive parameter no larger than
2 would be appropriate. An Augmented Dickey-Fuller
(ADF) test statistic of -3.4854 was generated at 5 lags
with a p-value of 0.0473 which further indicates
stationarity. The lag length of 5 was originally chosen
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