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Abstract 

The use of Linked Open Data (LOD) has been explored in recommender systems in different 

ways, primarily through its graphical representation. The graph structure of LOD is utilized to 

measure inter-resource relatedness via their semantic distance in the graph. The intuition behind 

this approach is that the more connected resources are to each other, the more related they are. 

One drawback of this approach is that it treats all inter-resource connections identically rather 

than prioritizing links that may be more important in semantic relatedness calculations. Another 

drawback of current approaches is that they only consider resources that are connected directly 

or indirectly through an intermediate resource only. In this document, we show that different 

types of inter-resource links hold different values for relatedness calculations between resources, 

and we exploit this observation to introduce improved resource semantic relatedness measures 

that are more accurate than the current state of the art approaches. Moreover, we introduce an 

approach to propagate current semantic distance approaches that does not only expand the 

coverage of current approaches, it also increases their accuracy. To validate the effectiveness of 

our approaches, we conducted several experiments to identify the relatedness between musical 

artists in DBpedia, and they demonstrated that approaches that prioritize link types resulted in 

more accurate recommendation results. Also, propagating semantic distances beyond one hub 

resources does not only result in an improved accuracy, it also shows that propagating semantic 

distances beyond one hub resources improves the coverage of LOD-based recommender 

systems. 
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1 Introduction 

Due to the massive amount of digital information available in recent years, it has become 

necessary to tailor the right information to the right user at the right time. Accordingly, new 

techniques and approaches have started to emerge that focus on matching information to users in 

order to help them make proper decisions. Some systems actively alert users to information or 

items that might be of interest to them; these methods are called recommender systems. Such 

systems have been embraced widely in various online platforms including commerce, news, and 

entertainment. There are numerous research works in this field that attempt to improve different 

aspects of recommender systems some of which are their recommendation accuracy, diversity, 

and novelty [1]. Researchers developing these systems continue to face several challenges, 

particularly a lack of a priori data needed in order for these systems to work appropriately. 

Several systems also lack sufficient semantic information about items, and semantic information 

about the relationships between items, so that related items can be accurately identified and 

recommended. 

Information is widely available online through a different medium, particularly the world 

wide web (www). This information is available mainly as unstructured data as in the case of the 

text format that lacks sufficient information in order to effectively exploit the contents for 

advanced applications. The drive to address this issue has led to the creation of new standards 

and formats that enable consumption and distribution of structured data openly among different 

parties; this shareable structured data is known as Linked Open Data (LOD). There are four 

principles of Linked Open Data [2]. Firstly, the Uniform Resource Identifier (URI) must be used 

to identify resources in any LOD dataset. Secondly, HTTP URIs must be used to look up 

resources. Thirdly, useful information must be provided on standard formats at each URI. Lastly, 
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resources are linked for further exploration. Following this trend, various organizations have 

started to publish their data openly following LOD standards enabling organizations to interlink 

their concepts to other related concepts in different datasets. As a result, enormous datasets are 

now connected to each other, creating a huge map of datasets in different domains of knowledge. 

There are over 1014 linked data datasets in different domains [3]; some of these are specialized 

to a particular knowledge domain including music or books whereas others are generic, 

containing many cross-domain concepts such as the popular LOD provider, DBpedia [4]. Figure 

1 displays a graph of several Linked Open Data datasets crawled in the year of 2014. 

 

Figure 1: LOD cloud in 20141 

 

                                                           
1 Linked Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja 

Jentzsch and Richard Cyganiak. http://lod-cloud.net . 
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Because of its extensive offering of structured data in different domains, researchers have 

begun to investigate ways to exploit Linked Open Data in the field of recommender systems. 

One advantage for using LOD in recommender systems is that LOD provides broad open 

datasets containing multi-domain concepts with their relationships to each other, and these 

relations enable recommender systems to identify related concepts across collections [5]. 

Additionally, LOD standards and technologies ease the task of recommender systems by 

providing standard interfaces to retrieve required data, eliminating the need for additional 

computational processing of raw data. Furthermore, LOD provides ontological knowledge of the 

data that allows recommender systems to identify the relationship between concepts [6]. As a 

result, recommender systems can utilize LOD datasets and benefit from LOD’s extensive open 

datasets to overcome the challenges presented by the lack of a priori data. LOD also facilitates 

explaining recommendation results of recommender systems since the relationship of items can 

be tracked easily in the LOD graph [7]. 

The use of LOD has been explored in recommender systems in different ways, primarily 

through exploiting its graph representation or through statistical approaches [8]. One approach 

that utilizes the graph structure of LOD in recommender system is to measure resources 

relatedness through their semantic distance in the graph [9] [10] [11]. The intuition behind this 

semantic distance approach is that the more connected resources are to each other in the LOD 

graph, the more related they are. This concept is the core of a resource relatedness measure, the 

Linked Data Semantic Distance (LDSD) [9], as well as a more recent measure based on it, 

Resource Similarity (Resim) [10]. These approaches analyze the connectivity between two 

resources, whether they are directly connected or indirectly connected through another resource, 

to generate a semantic distance value that represents the relatedness between the resources. 
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Resource similarity approaches are not only applicable to recommender systems; they can also 

be used in other applications as in the case of community detection in social networks [9]. One 

drawback of these approaches is that they treat all links between resources equally rather than 

prioritizing inter-resource links that may deliver additional value in semantic relatedness 

calculations. However, we argue in this document that different types of inter-resource links hold 

different importance for relatedness estimation. Furthermore, we exploit this observation to 

introduce improved resource semantic relatedness measures (WLDSD, WTLDSD, WResim, and 

WTResim) that extend current state of the art approaches. In addition, we present two new ways 

to calculate link weights based on probability theory (the Resource-Specific Link Awareness 

Weights (RSLAW)) and information theory (the Information Theoretic Weights (ITW)).  

Another drawback of the existing approaches is that they only calculate the semantic 

distance between resources that are directly linked or indirectly linked through another resource. 

Thus, these approaches cannot calculate relatedness between resources if they are two resources 

away from each other in the LOD graph; they assume that these resources are not related. In this 

document, we propose a new approach that propagates semantic distances generated by current 

approaches to expand their coverage beyond current limitations.  

To validate the effectiveness of our proposed approaches, we conducted several 

experiments to identify the relatedness between musical artists in DBpedia and we measured the 

recommendation accuracy based on the proposed approaches versus baselines based on the 

existing approaches (LDSD and Resim), and we found that several of our new approaches 

outperform the baselines. These experiments demonstrated that approaches that prioritize link 

types resulted in more accurate recommendation results. Also, the results show that the proposed 



 

5 
 

propagated approach does not only increase the span of the semantic distance computations; it 

also increases the accuracy of the semantic distance calculations. 

The contributions of this dissertation are the following: 

1. Studying the significance of differentiating links types for relatedness purposes. 

2. Proposing improved resource semantic relatedness approaches (WLDSD, WTLDSD, 

WResim, and WTResim) that are more accurate than the current state of the art. 

3. Proposing two different ways to calculate links weights: RSLAW and ITW. 

4. Proposing an approach that expands semantic distances generated by current approaches 

beyond current limitations. 

5. Implementation and evaluating these approaches on top of DBpedia. 

The remainder of this document is organized as follows: Section 2 presents related 

concepts and works followed by background information about the baselines that this document 

adopts and improves in Section 3. Next, Section 4 presents the design of the first goal of this 

document which details several approaches that exploit differential weights in LOD links for 

recommendation purposes. Subsequently, Section 5 details the second goal of this document, i.e., 

how current semantic distances can be propagated to expand their coverage. Afterward, the 

proposed system architecture is discussed in Section 6 followed by how the proposed approaches 

are evaluated against current state of art approaches in Section 7. Finally, Section 8 offers a 

summary of this document and presents some future work. 
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2 Literature Review 

2.1 Recommender Systems 

As information systems grow, an increasingly massive amount of digital information is available, 

and there is a need to tailor this information to the user when needed. One approach is to employ 

recommender systems, software methods and algorithms that suggest likely items of interest to 

users [12]. These systems identify the right information for users based on their needs. 

Recommender systems typically consist of three main components: background data, input data, 

and a recommendation algorithm [13]. First, there must be enough background data about the 

domain of the system such as the information about the items to be recommended and the 

relationships among them. Then, a sufficient information, input data, about the user is required to 

understand the user preferences in order to identify items related to his or her preferences. 

Information about the user is usually represented by a user profile that may be temporary or 

persistent between sessions. Finally, an appropriate algorithm is applied to the background data 

to suggests items to users based on their input data (user profiles). 

Adomavicius and Tuzhilin [14] overview recommender systems and classify them into 

three general classes: content-based, collaborative, and hybrid. In content-based recommender 

systems, items are recommended to a user based on their similarities to other items the user has 

in his or her user profile. Collaborative recommender systems, on the other hand, recommend 

items to a user based on the similarity of the user and other users; then, items liked by their most 

similar users are recommended. Hybrid recommender systems combine different approaches, 

namely, content-based and collaborative methods into one system. Burke in [15] suggests two 

more classes: knowledge-based and demographic recommender systems. Knowledge-based 

recommender systems suggest items to users based on the inference of user’s needs and 
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preferences. Also, demographic recommender systems take the demographic profile of the user 

into consideration based on the assumption that people with different demographic niches have 

different needs. Some examples of these demographic niches are language, country, gender, and 

age. Still, demographic recommender systems have less research works in the literature 

compared to others types [12]. 

Focusing on one class, Lops et al. [16] present an overview of content-based 

recommender systems. They discuss some advantages of content-based recommender systems, 

some of which are their capability of handling new items, their user independence so they need 

only the user information to recommend items regardless of other users in the system. They are 

also transparent in terms of explaining how the recommended item was generated. On the other 

hand, content-based recommender systems face some challenges such as their ability to handle 

new users, their ability to produce diverse results, and their dependence on domain knowledge. 

Because they work by recommending similar items to previous items, they are only appropriate 

when there are some semantic features available about the items so that similarity between items 

can be detected, e.g., tagged documents or images. 

Su and Khoshgoftaar [17] survey different collaborative filtering approaches. They start 

by discussing the challenges of using collaborative filtering approaches as in the case of the cold 

start problem for new items and users, the scalability challenge when systems grow to include 

huge information about items and users. In addition, collaborative systems suffer from the 

synonymy problem for items with different names, shilling attacks wherein malicious users can 

affect the system bias to some content, and privacy concerns surrounding users’ information. 

Nonetheless, because they work by exploiting users with similar patterns of preferences, they can 

be used to recommend items that have little or no semantic information available. Su and 
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Khoshgoftaar categorize collaborative techniques into three classes: memory-based, model-based 

and hybrid. Memory based systems estimate the similarity between users or items based on the 

user rating data in order produce recommendations. Model-based systems, on the other hand, 

utilize the rating data to learn a model that will be used to make the recommendation. Hybrid 

approaches combine both memory-based and model-based techniques in order achieve better 

recommendation results. 

Parra and Sahebi [18] also provide an overview of recommender systems, and they 

discuss their sources of knowledge such as users’ ratings, implicit feedback and interaction in the 

system, social tags and keywords, online social networks, and contexts, namely, location and 

time. They also discuss evaluation metrics used in recommender systems including prediction-

based metrics which compare algorithms based on their ability to make fewer mistakes in 

predicting recommended items. Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE) are some examples of prediction-based metrics. Other 

metrics are related to the information retrieval field wherein users are provided with a list of 

recommended items and they classify these results as relevant or not. Examples of information 

retrieval metrics are Precision, Mean Average Precision (MAP), Recall, and Discounted 

Cumulative Gain (DCG). Additionally, recommender systems can be evaluated based on their 

diversity, novelty, and coverage. 

The field of cross-domain recommender systems has been explored lately by the 

recommender systems community due to its promise to allow progress on several problems of 

recommender systems contributing to the cold start problem and producing better 

recommendation results. The cross-domain recommendation problem has been formally defined 

by Cremonesi et al. [1] as suggesting new and unknown items in a target domain to the users of a 
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source domain where the preferences of the users exist. They also introduced a collaborative 

filtering based cross-domain recommender system that relies on a modified standard 

neighborhood-based collaborative filtering method in this paper. Furthermore, Fernández-Tobías 

et al. [19] have introduced a similar formal definition of the cross-domain recommendation 

problem, and they characterized several cross-domain related strategies that were proposed in the 

literature. Cantador and Cremonesi came together later in [20] and characterized recommender 

systems domains into four levels: item attribute, item type, item, and system level. 

2.2 Linked Open Data (LOD) 

Linked Data is a term that describes a model of published data that follows four rules [2]:  

(1) using Uniform Resource Identifiers (URI) to identify things (resources). 

(2) using HTTP URIs in order look up resources. 

(3) providing useful information at these URIs based on standard formats (e.g., RDF, 

SPARQL). 

(4) connecting to other resources to allow for further exploration.  

Additionally, data should be available on the web and be under an open license in order 

to be fully qualified as Linked Open Data (LOD) [21]. Linked Open Data requires standard 

formats to distribute and consume data, including Uniform Resource Identifiers (URI), which is a 

set of characters used to identify a resource following the Internet Engineering Task Force 

(IETF) standard (RFC 3986) [22]. Furthermore, the Resource Description Framework (RDF) 

standard is an XML-based format used to specify the meaning of links between resources. 

SPARQL, SPARQL Protocol and RDF Query Language, is a query language used to query and 

manipulate data stored as RDFs [23] [24]. 
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Schmachtenberg et al. [3] analyzed the LOD cloud datasets to study their growth using a 

Linked Data crawler. They found that the number of LOD datasets has increased from 294 in 

2011 to 1091 datasets in 2014. They also observed that 77% of LOD datasets utilize well-known 

vocabularies such as Friend of a Friend2 (FOAF), which is an ontology to describe people, while 

the usage of proprietary vocabularies has declined from 64.41% in 2011 to 23.08% in 2014.  

One of the most popular Linked Open Data providers is DBpedia, which Auer et al. [4] 

describe as a community project to extract structured data from Wikipedia and make it available 

openly on the web. They detail the extraction of the DBpedia dataset into two steps: (1) they map 

already available structured data directly into RDF format, and (2) they extract additional useful 

information from article texts and then make it available in RDF format. DBpedia is 

interconnected with several LOD providers including WordNet, MusicBrainz, US Census, 

Geonames, the DBLP bibliography, and others. In addition, Freebase [25], originally introduced 

in [26], is another Linked Open Data provider of human knowledge with a large community-

based data in diverse domains. Freebase consists of over 4000 resource classes with more than 

125,000,000 links. It is currently owned by Google, which used it among others to build its own 

knowledge graph [27].  

Since LOD providers utilize different ontologies, Jain et al. [28] presented a system, 

called BLOOMS, that align LOD datasets ontologies even if they are not directly linked. This 

system matches LOD ontologies with the Wikipedia hierarchy to link these ontologies. After 

preprocessing each ontology, this system constructs a concept tree per ontology though matching 

it with Wikipedia articles. These concept trees are constructed using the Wikipedia categories. 

After that, the concept trees are compared and aligned to each other. 

                                                           
2 www.foaf-project.org 
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In one LOD real life application, Kobilarov et al. [29] show how BBC uses several LOD 

providers to integrate data and link documents together. They exploit DBpedia to link all their 

published programs data and documents. They also built a web musical portal that links music to 

their programs on top of the music-specific LOD provider, MusicBrainz. 

2.3 LOD in Recommender Systems 

Figueroa et al. [8] review recommender systems that utilize linked data for recommendation 

purposes. They start by discussing the motivation behind adopting LOD in recommender 

systems, and one of the most popular motivation is the lack of semantic information about items 

to be recommended. In addition, using LOD in recommender systems can help to solve the cold-

start problem especially in collaborative-filtering systems. Figueroa et al. group algorithms in 

this field into two classes: graph-based algorithms, and statistical information techniques. Graph-

based algorithms take the graph nature of LOD into consideration by working directly in the 

LOD graph to find linked related items. In contrast, statistical approaches extract content features 

from the LOD graph and then apply a recommendation algorithm to these features. 

Di Noia and Ostuni [6] also present an overview of recommender systems generally and 

follow it by discussing how LOD can be employed to build semantics-aware recommender 

systems. They suggest that there are two essential components for LOD-based recommender 

systems to work properly: an item linker and an item graph analyzer. The item linker component 

is responsible for mapping items in the system with the corresponding item in the LOD dataset. 

The item graph analyzer generates a subgraph of items related to the item after analyzing the 

relationship between this item and other items in the LOD graph. 

Passant [9] suggests an approach to exploiting LOD in recommender systems by 

computing the semantic distance between resources in the LOD. His approach, called Linked 
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Data Semantic Distance (LDSD), exploits direct links between resources along with indirect 

resources through an intermediate resource to calculate a semantic distance between these 

resources. Utilizing this approach, Passant in [30] has created a music recommender system, 

called dbrec, that is built on top of the popular LOD provider, DBpedia, in order to recommend 

musical artists and bands. This system starts by reducing the LOD dataset to a compact one that 

enables efficient semantic distance computations. It then calculates the semantic distance 

between each pair of musical artists or bands. Finally, utilizing these semantic distances, related 

artists are generated for the user. Exploiting the aforementioned concept, Piao et al. [10] 

introduced an improved linked data semantic distance approach, called Resource Similarity 

(Resim), that revised the original LDSD approach overcoming some its weaknesses namely equal 

self-similarity, symmetry, and minimality issues. They also improved their approach in [11] by 

applying different normalization methods based on the path appearances in the LOD graph. One 

drawback of these approaches is that they handle all resources connections equally and do not 

prioritize resources links that hold additional value in semantic relatedness calculations. Also, 

they can only calculate the semantic distance between two directly connected resources or 

indirectly connected through an intermediate resource only. In a similar approach, Leal et al. [31] 

[32] present another semantic relatedness approach, called Shakti, that measures the relatedness 

between LOD resources. In this approach, the relatedness between resources is measured based 

on their proximity. In particular, the proximity is measured based on the number of indirect links 

penalized by their distance length. Still, LDSD and Resim accuracy outperform Shakti as 

demonstrated by [10]. 

Rather than basing resource similarity on specific links and link types between pairs of 

resources, Nguyen et al. [33] investigate the usage of two structural context similarity 



 

13 
 

approaches of graphs in the field of LOD recommender systems. They found that two metrics 

SimRank and PageRank, are promising in this field and can produce some novel 

recommendations, but they carry a high-performance cost. Furthermore, Damljanovic et al. [5] 

present a concept recommender system based on LOD that assists users choosing proper concept 

tags and topics to improve their web search experience. They introduced a similarity-based 

approach relying on the relationship between concepts in the LOD graph. They also present 

another statistical-based method to calculate concept similarities and a comparison of both 

approaches to the Google Adwords Keyword Tool. They conclude that the graph-based method 

outperforms their baseline in relatedness measures while the statistical method came up with 

better-unexpected results. Correspondingly, Fernández-Tobías et al. [34] have developed a cross-

domain recommender system that relies on LOD to link concepts from two different domains. 

They extract information about the two domains from LOD sources and then link concepts using 

a graph-based distance between these concepts. Based on this approach, they developed in [35] a 

recommender system for the domains of architecture and music to suggest musical artists based 

on a selected location built on top of DBpedia. 

Di Noia et al. [36] show that LOD has the potential to be effectively used in content-

based recommender systems, particularly because LOD can help overcome issues of items that 

are described by limited content. They also describe [37] a content-based recommender system 

that employs LOD datasets, for instance, DBpedia, Freebase, and LinkedMDB to recommend 

movies. They utilize these LOD datasets to gather contextual information about movies such as 

actors, directors, and genres and then apply a content-based recommendation approach to 

generate recommendation results. Similarity, Ostuni et al. [38] presented a location-based movie 

recommender system, called Cinemappy, that takes into consideration both time and location of 
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the user to produce a recommendation. This content-based recommender system leverages 

DBpedia to determine movies similarities based on their connectivity, i.e., exploiting linkages 

between movies. In addition, Ostuni et al. [39] present a hybrid LOD-based recommender system 

that exploits users’ implicit feedback and is built on top of DBpedia. Semantic information about 

items in the user profile and items in DBpedia are merged into a unified graph from which path-

based features are extracted for the recommendation algorithm. Similarly, Ostuni et al. [40] also 

introduce a content-based recommender system that generates semantic item similarities using 

DBpedia. The semantic similarity between items is calculated using a neighborhood-based graph 

kernel that finds local neighborhoods of these items. Later, Nguyen et al. [41] examine whether 

or not LOD providers can improve recommender systems in terms of precision, diversity, and 

novelty. They evaluated four different recommendation approaches employing the LOD 

providers DBpedia and Freebase in the music domain. They argued that using DBpedia 

enhances novelty of the recommendation results whereas using Freebase increases the coverage 

of the recommender system. 

Meymandpour and Davis [42] describe a LOD-based recommender system that combines 

semantic analysis of items with collaborative filtering approaches to overcome the item cold-start 

problem. They found that their semantic approach works well when combined with collaborative 

filtering methods to improve recommendations. The collaborative filtering is particularly helpful 

when there is limited information available in the user profile. Likewise, Heitmann and Hayes 

[43] exploit LOD to overcome common collaborative-filtering challenges as in the case of the 

new-user, new-item, and sparsity problems. Heitmann [44] has also developed an open 

framework for cross-domain personalization relying on the data representation in LOD. The 
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LOD representation is used to model the user profile as well as the system catalog of items that 

results in an open framework for recommender systems.  

In other work, Musto et al. [45] investigated the potential contribution of LOD to 

recommender systems by evaluating how features extracted from LOD can affect the accuracy of 

different recommendation algorithms. They found that recommendation approaches with features 

extracted from LOD outperformed non-LOD-based approaches. Similarly, Peska and Vojtas [46] 

[47] show that LOD can be used effectively to enhance recommender systems in current e-

commerce sites. They rely on LOD sources to fetch additional information about items in current 

systems in order for content-based recommender systems to work properly. In addition, 

Kabutoya et al. [48] propose a hybrid movie recommender system that combines content-based 

and collaborative filtering techniques. Their system obtains movies’ metadata from a LOD 

provider, MovieLens, and then applies a collaborative-based technique to tackle the cold start 

problem. 

Clearly, there is a very active research community focusing on applying LOD sources to 

recommender systems. Our work builds on these projects but differs in that it takes the advantage 

of the LOD nature to improve current relatedness measures approaches through prioritizing some 

links that hold more relatedness value between the LOD resources. It also expands semantic 

distance generated by current approaches to include additional resources beyond current 

limitations.  
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3 Background 

Linked Open Data is used in the field of recommender systems in different ways. Its semantic 

structured data can be exploited to improve recommender systems, particularly content-based 

systems. In one approach, Passant [9] introduced a semantic distance-based approach within 

LOD to identify related resources within recommender systems. It measures the relatedness 

between resources in LOD by calculating a semantic distance between them such that resources 

are considered more related (closer) if they are connected to each other through several paths. 

Primarily, Linked Open Data is designed as resources (nodes) connected semantically to 

each other via links (edges) as in a graph. This graph-based nature is essential to formally define 

LOD instances. This document adopts the same definition for LOD datasets as the one described 

in [9]: 

A Linked Open Data dataset is a graph G such as G = (R, L, I) in which: 

R={r1, r2, … , rm} is a set of resources identified by their URI (Unique universal identifier)  

L = {l1, l2, … , ln} is a set of typed links identified by their URI 

I = {i1, i2, … , io} is a set of instances of these links between resources, such as ii = <lj, ra, rb> 

To put this definition in perspective, a simple graph instance is shown in Figure 2. Part A 

of the chart is a generic version that follows the definition where R= {r1, r2, r3, r4, r5}, L = {l1, l2, 

l3, l4}, and I = {<l1, r1, r2>, <l1, r3, r2>, <l2, r4, r2>, <l3, r5, r3>, <l3, r5, r4>, <l4, r3, r2>}. The same 

example can be understood better by applying it in the music domain where the resources can be 

artists, songs, etc. and the links shows the relationship between these resources as in part B of 

Figure 2. 
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r1 r2 r3

r4

l1 l1

l3

l2

r5

Artist 1 Song 1 Artist 2

Album 
1

artist artist

genre

title

Pop 
music

A: Sample Generic Graph B: Applied Example

l4 writer

l3 genre

 

Figure 2: Sample graph 

3.1 Direct Connectivity (DC) 

Connectivity between resources in the graph can show relatedness, and the more connected the 

resources the more relatedness indication there is. In this context, a direct connection between 

two resources exists when there is a distinct direct link (directional edge) between these two. The 

Direct Connectivity (DC) can be calculated as the total number of distinct direct links between 

two resources. Formally, Direct Connectivity (DC) between two resources ra and rb is the sum of 

Direct Link Connectivity (DLC) over all links that connect them and originated from ra as 

follows: 

𝐷𝐶(𝑟𝑎, 𝑟𝑏) =∑𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑎, 𝑟𝑏)

𝑖

 , {∀ 𝑙𝑖| ∃〈𝑙𝑖, 𝑟𝑎, 𝑟𝑏〉} 

The Direct Link Connectivity (DLC) between two resources ra and rb through a link of 

type li is equal to one if there a link of type li exists that connects the resource ra to the resource 

rb as follows: 
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𝐷𝐿𝐶(𝑙𝑘, 𝑟𝑎, 𝑟𝑏) = {
1                 if the link 〈𝑙𝑘, 𝑟𝑎, 𝑟𝑏〉 exists
0                                              otherwise

 

By looking at the example shown in Figure 2, the direct connectivity between r3 and r2 is 

two (𝐷𝐶(𝑟3, 𝑟2) = 2) because they are connected by l1 and l4, and the direct connectivity between 

r2 and r3 is zero (𝐷𝐶(𝑟2, 𝑟3) = 0) as there are no direct links originating from r2. 

3.2 Indirect Connectivity (IC) 

Resources can also be indirectly connected to other resources. Indirect connectivity between two 

resources occurs when they are connected through another resource, and these connections are 

either both incoming or both outgoing through the intermediate resource. Therefore, there are 

two types of indirect connections: incoming and outgoing. An incoming indirect connection 

between two resources ra and rb exists if there is a resource rc such that rc is directly connected to 

both ra and rb as in part A of Figure 3. Likewise, an outgoing indirect connection between two 

resources ra and rb exists if there is a resource rc such that both ra and rb are directly connected to 

rc as in part B of Figure 3. 

ra rc rbli li

A: Incoming indirect connection B: Outgoing indirect connection

ra rc rbli li

 

Figure 3: Indirect connection types 

Formally, the Incoming Indirect Connectivity (ICi) between two resources ra and rb is the 

sum of the Incoming Indirect Link Connectivity (ILCi) of all links that connect them as follows: 

𝐼𝐶𝑖(𝑟𝑎, 𝑟𝑏) =∑∑𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑟𝑛, 𝑟𝑎, 𝑟𝑏)

𝑗𝑛
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The Incoming Indirect Link Connectivity (ILCi) between two resources ra and rb is equal 

to one if there is a resource rc such that rc is directly connected to both ra and rb via a link of type 

lk as follows: 

𝐼𝐿𝐶𝑖(𝑙𝑘, 𝑟𝑐, 𝑟𝑎 , 𝑟𝑏) = {
1          {∃ 𝑟𝑐| 〈𝑙𝑘, 𝑟𝑐, 𝑟𝑎〉&〈𝑙𝑘, 𝑟𝑐, 𝑟𝑏〉 }

 0                                           otherwise
 

Likewise, the Outgoing Indirect Connectivity (ICo) between two resources ra and rb is the 

sum of the Outgoing Indirect Link Connectivity (ILCo) of all links that connect them as follows: 

𝐼𝐶𝑜(𝑟𝑎, 𝑟𝑏) =∑∑𝐼𝐿𝐶𝑜(𝑙𝑗 , 𝑟𝑛, 𝑟𝑎, 𝑟𝑏)

𝑗𝑛

 

The Outgoing Indirect Link Connectivity (ILCo) between two resources ra and rb is equal 

to one if there is a resource rc such that both ra and rb are directly connected to rc via a link of 

type lk as follows: 

𝐼𝐿𝐶𝑜(𝑙𝑘, 𝑟𝑐, 𝑟𝑎, 𝑟𝑏) = {
1      {∃ 𝑟𝑐│〈𝑙𝑘, 𝑟𝑎 , 𝑟𝑐〉&〈𝑙𝑘, 𝑟𝑏 , 𝑟𝑐〉 }

 0                                        otherwise
 

Following the example in Figure 2, the incoming indirect connectivity between r3 and r4 

is one (𝐼𝐶𝑖(𝑟3, 𝑟4) = 1) through the resource r5 linked by the link type l3, however, the outgoing 

indirect connectivity between r3 and r4 is zero (𝐼𝐶𝑜(𝑟3, 𝑟4) = 0) since there is no resource such 

that both r3 and r4 are directly connected to through the same link type. 

The Indirect Link Connectivity (ILC) notation can be generalized for all intermediate 

resources as follows3: 

𝐼𝐿𝐶𝑖(𝑙𝑘, 𝑟𝑎, 𝑟𝑏) =∑𝐼𝐿𝐶𝑖(𝑙𝑘, 𝑟𝑛, 𝑟𝑎, 𝑟𝑏)

𝑛

 

                                                           
3   These versions of ILC accept three inputs instead of four as in the regular ILC 
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𝐼𝐿𝐶𝑜(𝑙𝑘, 𝑟𝑎, 𝑟𝑏) =∑𝐼𝐿𝐶𝑜(𝑙𝑘, 𝑟𝑛, 𝑟𝑎, 𝑟𝑏)

𝑛

 

3.3 Linked Data Semantic Distance (LDSD) 

Based on the previously mentioned concepts, Passant [9] defines an approach that measures the 

relatedness between two resources in the LOD using direct connections only. This metric is 

called the Linked Data Semantic Distance - direct (LDSDd); it is essentially the inverse of the 

direct connectivity between the two resources. Since the links in LOD are directional, the 

formula includes a component for links from ra to rb and vice versa. The LDSDd is calculated as 

follows: 

𝐿𝐷𝑆𝐷𝑑(𝑟𝑎, 𝑟𝑏) =
1

1 + 𝐷𝐶(𝑟𝑎, 𝑟𝑏) + 𝐷𝐶(𝑟𝑏, 𝑟𝑎)
 

Continuing the example from the previous section: 

𝐿𝐷𝑆𝐷𝑑(𝑟1, 𝑟2) =
1

1 + 𝐷𝐶(𝑟1, 𝑟2) + 𝐷𝐶(𝑟2, 𝑟1)
=

1

1 + 1 + 0
= 0.5 

𝐿𝐷𝑆𝐷𝑑(𝑟3, 𝑟2) =
1

1 + 𝐷𝐶(𝑟3, 𝑟2) + 𝐷𝐶(𝑟2, 𝑟3)
=

1

1 + 2 + 0
= 0.33 

In this example, the value of 𝐿𝐷𝑆𝐷𝑑(𝑟3, 𝑟2) is smaller than 𝐿𝐷𝑆𝐷𝑑(𝑟1, 𝑟2) which indicates r3 is 

closer to r2 than r1 when calculated using direct connections only.  

In the same fashion, Passant [9] defines another metric called the Linked Data Semantic 

Distance - indirect (LDSDi) based on the Indirect Connectivity concept. It is essentially the 

inverse of both incoming and outgoing indirect connectivity between the two resources as 

follows: 

𝐿𝐷𝑆𝐷𝑖(𝑟𝑎, 𝑟𝑏) =
1

1 + 𝐼𝐶𝑖(𝑟𝑎, 𝑟𝑏) + 𝐼𝐶𝑜(𝑟𝑎, 𝑟𝑏)
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Meanwhile, the indirect connectivity is bidirectional by its nature (𝐼𝐷𝑖(𝑟𝑎, 𝑟𝑏) = 

𝐼𝐷𝑖(𝑟𝑏, 𝑟𝑎)), and there is no need to include the ICi or ICo twice, once per direction, as in the 

LDSDd. Passant also [9] evaluated different combinations of the direct and indirect connectivity 

measures and found that the best performing formula that measures the relatedness between two 

resources in LOD, called Linked Data Semantic Distance - combined normalized (LDSDcn), is 

the following4: 

𝐿𝐷𝑆𝐷𝑐𝑛(𝑟𝑎, 𝑟𝑏) =
1

1 + 𝐷𝐶′(𝑟𝑎, 𝑟𝑏) + 𝐷𝐶′(𝑟𝑏, 𝑟𝑎) + 𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) + 𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝐷𝐶′(𝑟𝑎, 𝑟𝑏) is merely the direct connectivity (DC) between resources ra and rb normalized 

by the log of all outgoing links from the resource ra as follows: 

𝐷𝐶′(𝑟𝑎, 𝑟𝑏) =∑
𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑎, 𝑟𝑛)𝑛 )
𝑗

 

𝐷𝐶′(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log of 

all outgoing links from the resource rb as follows: 

𝐷𝐶′(𝑟𝑏 , 𝑟𝑎) =∑
𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑏 , 𝑟𝑎)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑏 , 𝑟𝑛)𝑛 )
𝑗

 

𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) is the incoming indirect connectivity (ICi) between resources rb and ra normalized by 

the log of all incoming indirect links to the resource ra as follows: 

𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) =∑
𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐼𝐿𝐶𝑖(𝑙𝑗, 𝑟𝑎, 𝑟𝑛)𝑛 )
𝑗

 

 

 

                                                           
4 The definition of LDSD is rewritten to be consistent with this document’s concepts 
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𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing indirect connectivity (ICo) between resources rb and ra normalized by 

the log of all outgoing indirect links from the resource ra as follows: 

𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) =∑
𝐼𝐿𝐶𝑜(𝑙𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐼𝐿𝐶𝑜(𝑙𝑗, 𝑟𝑎, 𝑟𝑛)𝑛 )
𝑗

 

This algorithm incorporates both direct and indirect connectivity between two resources in 

both ways and normalizes the semantic distance value based on the count of each link instances to 

give less value for most used links regardless of thier importance for recommendation purposes. 

The semantic distances generated by the LDSDcn approach are ranged from zero to one; zero 

represents that the two resources are 100% related while the value one represents no relatedness 

at all between them. Since LDSDcn utilizes both the direct connectivity (DC) and the indirect 

connectivity (ICi and ICo) only to calculate the semantic distance, it can only compute the semantic 

distance between two directly linked resources or indirectly linked through an intermediate 

resource only. As a result, resources that are located more than one resource away are 

automatically considered unrelated to each other. The LDSDcn approach is our first baseline in this 

document in which we refer to it as just LDSD for simplicity. We also discuss a second baseline 

in the next section. 

3.4 Resource Similarity (Resim) 

Resource Similarity (Resim) [10] is an improved linked data semantic distance approach that 

enhances the original LDSD approach by overcoming some of its weaknesses, namely, equal 

self-similarity, minimality, and symmetry issues. In LDSD, the semantic distance between each 

resource and itself can vary between resources (i. e. , 𝐿𝐷𝑆𝐷(𝑟𝑎, 𝑟𝑎) = 0.2 𝑎𝑛𝑑 𝐿𝐷𝑆𝐷(𝑟𝑏 , 𝑟𝑏) = 0.4), 

which violates the equal self-similarity property that is desirable for similarity measures since 

(𝐿𝐷𝑆𝐷(𝑟𝑎, 𝑟𝑎) ≠  𝐿𝐷𝑆𝐷(𝑟𝑏 , 𝑟𝑏)). Moreover, a semantic distance between each resource and itself 
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does not always equal zero in LDSD (𝐿𝐷𝑆𝐷(𝑟𝑎, 𝑟𝑎) ≠ 0), which violates the minimality 

property. Resim solves these issues by including a criterion that ensures the semantic distance 

between each resource and itself is always zero. In addition, a semantic distance between two 

resources ra and rb is not always equal to the semantic distance between rb and ra 

(𝐿𝐷𝑆𝐷(𝑟𝑎, 𝑟𝑏) ≠  𝐿𝐷𝑆𝐷(𝑟𝑏, 𝑟𝑎)) because the normalization in LDSD is performed to one 

resource only; hence, there is no symmetry. Resim solves this issue by using a consistent 

normalization method that depends on shared properties between resources. The Resim measure 

solves these issues as follows5: 

𝑅𝑒𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏) = {

0                                       𝑖𝑓 𝑈𝑅𝐼(𝑟𝑎) = 𝑈𝑅𝐼(𝑟𝑏) 𝑜𝑟 𝑟𝑎 𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 𝑟𝑏
𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏)                                                           𝑖𝑓 𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) ≠ 1

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏)                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The Linked Data Semantic Distance (𝐿𝐷𝑆𝐷𝛾) component is calculated as follows: 

𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) =
1

1 + 𝑅𝐶(𝑟𝑎, 𝑟𝑏) + 𝑅𝐶(𝑟𝑏, 𝑟𝑎) + 𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) + 𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝑅𝐶(𝑟𝑎, 𝑟𝑏) is the direct connectivity (DC) between resources ra and rb normalized by the 

log of number of instances of a link lj as follows: 

𝑅𝐶(𝑟𝑎, 𝑟𝑏) =∑
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑎, 𝑟𝑏)

1 + 𝑙𝑜𝑔(∑ ∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
𝑗

 

𝑅𝐶(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log of 

number of instances of a link lj as follows: 

𝑅𝐶(𝑟𝑏 , 𝑟𝑎) =∑
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑏 , 𝑟𝑎)

1 + 𝑙𝑜𝑔(∑ ∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
𝑗

 

                                                           
5 The definition of Resim is rewritten to be consistent with this document’s concepts 
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𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) is the incoming indirect connectivity (ICi) between resources ra and rb through a 

resource rj normalized by the log of all incoming indirect links to the resource rj with a link type 

of li as follows: 

𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) =∑∑
𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑟𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + 𝑙𝑜𝑔(∑ 𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑟𝑗 , 𝑟𝑛)𝑛 )
𝑗𝑖

 

𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing indirect connectivity (ICo) between resources ra and rb through a 

resource rj normalized by the log of all outgoing indirect links from the resource rj with a link 

type of li as follows: 

𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) =∑∑
𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑟𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑟𝑗 , 𝑟𝑛)𝑛 )
𝑗𝑖

 

In addition, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚 calculates the similarity of shared links types between resources ra and 

rb if the semantic distance generated by LDSD is one as follows: 

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏) = 1 −

(

 
∑ (

𝐶𝑠𝑖𝑝(𝑙𝑖, 𝑟𝑎, 𝑟𝑏)

∑ ∑ 𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑚, 𝑟𝑛)𝑛𝑚
)𝑖

𝐶𝑖𝑝(𝑟𝑎) + 𝐶𝑖𝑝(𝑟𝑏)
+

∑ (
𝐶𝑠𝑜𝑝(𝑙𝑖, 𝑟𝑎, 𝑟𝑏)

∑ ∑ 𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑚, 𝑟𝑛)𝑛𝑚
)𝑖

𝐶𝑜𝑝(𝑟𝑎) + 𝐶𝑜𝑝(𝑟𝑏)

)

  

where: 

 𝐶𝑠𝑖𝑝(𝑙𝑖, 𝑟𝑎, 𝑟𝑏) is the number of shared incoming links of type li between resources ra and rb 

 𝐶𝑠𝑜𝑝(𝑙𝑖, 𝑟𝑎, 𝑟𝑏) is the number of shared outgoing links of type li between resources ra and rb 

 ∑ ∑ 𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑚, 𝑟𝑛)𝑛𝑚  represents the number of instances of the link type li 

 𝐶𝑖𝑝(𝑟𝑎) is the total number of incoming links to a resource ra 

 𝐶𝑜𝑝(𝑟𝑎) is the total number of outgoing links from a resource ra 

The 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚 estimates the similarity of shared incoming and outgoing link types by 

calculating the ratio between the number of shared link types among the two resources and the 

total number of link types in the dataset. This ratio is normalized by the total number of 
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incoming and outgoing links to the resources. It is another improvement of the Resim approach 

over LDSD, and it is useful when the semantic distance generated by the LDSD component is 

one (𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) = 1); a case indicating that there is no relatedness between ra and rb or there 

is no direct or indirect links between the resources.  

The Resim approach is the second baseline in this document. Our proposed 

enhancements are discussed in the following sections. 
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4 Exploiting Differential Weights in LOD Links for Recommendation Purposes 

Linked Open Data is used in the field of recommender systems in different ways. Their 

structured semantic data can be exploited to improve recommender systems, particularly content-

based systems. Some approaches [9] [10] incorporates semantic distance-based approaches 

within LOD to identify related resources within recommender systems. They measure the 

relatedness between resources in LOD by calculating a semantic distance between them such that 

resources are considered more related (closer) if they are linked to each other through several 

paths. One drawback of these approach is that all links (paths) in LOD are treated equally, and 

there is no distinction between links that have no significant impact on recommendations and 

those that should influence recommendations.  

The first goal of this document investigates this case and suggests several approaches to 

address it. First, we introduce weighted variations of our baselines (WLDSD and WResim) to 

assess the significance of prioritizing some link paths in LOD for recommender systems and then 

propose two different approaches to calculate link weights (RSLAW and ITW). Then, we study 

the significance of recognizing link types by introducing typeless variations of our baselines 

(TLDSD and TResim). Lastly, we combine these two approaches to introduce weighted typeless 

variations of the baselines (WTLDSD and WTResim) to evaluate the effects of prioritizing some 

link paths in LOD regardless of their type. 

4.1 Weighted Semantic Distance 

Links between different resources in LOD can be of different importance for recommender 

systems. Recognizing these differences could be vital in order to produce better recommendation 

results. For instance, singers who create a joint work (duet) together are likely more related to 

each other than singers who just share the same birth city since performing on the same work 
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implies more similarities between these two artists. Therefore, the “collaboration” link based on 

the shared work in a LOD graph is likely to have a higher impact on relatedness than a “born in” 

link, and it should carry more weight for recommendation purposes. However, our baselines 

LDSD and Resim treat these cases equally and do not recognize the significance of some link 

paths that are more helpful for recommender systems. It is our belief that links should be 

distinguished based on the level of relatedness between resources indicated by the link. 

Therefore, we introduce weighted variations of our baselines (WLDSD and WResim) in this 

section to that prioritize different link types in LOD for recommender systems and then propose 

two different approaches to calculating the link weights, one based on probability theory 

(RSLAW) and the other based on information theory (ITW). 

4.1.1 Weighted Approaches 

4.1.1.1 Weighted Linked Data Semantic Distance (WLDSD)  

A weighted version of the LDSD is introduced by including a weighting factor that modifies the 

semantic distance value based on link importance as an indicator of relatedness. This factor is 

introduced to the original LDSD defining the Weighted Linked Data Semantic Distance 

(WLDSD) as follows: 

𝑊𝐿𝐷𝑆𝐷𝑐𝑛(𝑟𝑎, 𝑟𝑏) =
1

1 +𝑊𝐷𝐶′(𝑟𝑎, 𝑟𝑏) +𝑊𝐷𝐶′(𝑟𝑏, 𝑟𝑎) +𝑊𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) +𝑊𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝑊𝐷𝐶′(𝑟𝑎, 𝑟𝑏) is the direct connectivity (DC) between resources ra and rb normalized by 

the log of all outgoing links from the resource ra and weighted by the weight factor 𝑊𝑙𝑗 for each 

link of type lj as follows: 

𝑊𝐷𝐶′(𝑟𝑎, 𝑟𝑏) =∑(
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑎, 𝑟𝑛)𝑛 )
×𝑊𝑙𝑗)

𝑗
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𝑊𝐷𝐶′(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log 

of all outgoing links from the resource rb and weighted by the weight factor 𝑊𝑙𝑗 for each link of 

type lj as follows: 

𝑊𝐷𝐶′(𝑟𝑏, 𝑟𝑎) =∑(
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑏 , 𝑟𝑎)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑏 , 𝑟𝑛)𝑛 )
×𝑊𝑙𝑗)

𝑗

 

𝑊𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) is the incoming indirect connectivity (ICi) between resources ra and rb normalized 

by the log of all incoming indirect links to the resource ra and weighted by the weight factor 𝑊𝑙𝑗 

for each link of type lj as follows: 

𝑊𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) =∑(
𝐼𝐿𝐶𝑖(𝑙𝑗, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑟𝑎, 𝑟𝑛)𝑛 )
×𝑊𝑙𝑗)

𝑗

 

𝑊𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing indirect connectivity (ICo) between resources ra and rb normalized 

by the log of all outgoing indirect links from the resource ra and weighted by the weight factor 

𝑊𝑙𝑗 for each link of type lj as follows: 

𝑊𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) =∑(
𝐼𝐿𝐶𝑜(𝑙𝑗, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐼𝐿𝐶𝑜(𝑙𝑗, 𝑟𝑎, 𝑟𝑛)𝑛 )
×𝑊𝑙𝑗)

𝑗

 

such that the value of every weight 𝑊𝑙𝑗 is a positive rational number between zero and one (0 ≤

𝑊𝑙𝑗 ≤ 1).  

The weighting factor 𝑊𝑙𝑗 is introduced in the LDSD approach for every link-based 

operation. Therefore, higher direct and indirect connectivity values are generated for those links 

with a high weight (𝑊𝑙𝑗); conversely, less emphasis is resulted on these links when their weight 

is low while some link types are cancelled if their corresponding weight is zero. 
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4.1.1.2 Weighted Resource Similarity (WResim)  

The weighting factor is also introduced to the second baseline in this document, Resim, defining 

the Weighted Resource Similarity (WResim) as follows: 

𝑊𝑅𝑒𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏) = {

0                  𝑖𝑓 𝑈𝑅𝐼(𝑟𝑎) = 𝑈𝑅𝐼(𝑟𝑏) 𝑜𝑟 𝑟𝑎 𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 𝑟𝑏
𝑊𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏)                             𝑖𝑓 𝑊𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) ≠ 1

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏)                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The Weighted Linked Data Semantic Distance (𝑊𝐿𝐷𝑆𝐷𝛾) component of WResim is 

calculated as follows: 

𝑊𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) =
1

1 +𝑊𝑅𝐶(𝑟𝑎, 𝑟𝑏) +𝑊𝑅𝐶(𝑟𝑏 , 𝑟𝑎) +𝑊𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) +𝑊𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝑊𝑅𝐶(𝑟𝑎, 𝑟𝑏) is simply the direct connectivity (DC) between resources ra and rb 

normalized by the log of number of instances of a link li weighted by the weighting factor 𝑊𝑙𝑖 for 

each link of a type li as follows: 

𝑊𝑅𝐶(𝑟𝑎, 𝑟𝑏) =∑(
𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ ∑ 𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
×𝑊𝑙𝑖)

𝑖

 

𝑊𝑅𝐶(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log of 

number of instances of a link li weighted by the weighting factor 𝑊𝑙𝑖 for each link of a type li as 

follows: 

𝑊𝑅𝐶(𝑟𝑏, 𝑟𝑎) =∑(
𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑏 , 𝑟𝑎)

1 + log(∑ ∑ 𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
×𝑊𝑙𝑖)

𝑖

 

𝑊𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) is the incoming indirect connectivity (ICi) between resources ra and rb through a 

resource rj normalized by the log of all incoming indirect links from the resource rj with a link 

type of li weighted by the weighting factor 𝑊𝑙𝑖 for each link of a type li as follows: 

𝑊𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) =∑∑(
𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑟𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑟𝑗, 𝑟𝑛)𝑛 )
×𝑊𝑙𝑖)

𝑗𝑖
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𝑊𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing indirect connectivity (ICo) between resources ra and rb through a 

resource rj normalized by the log of all outgoing indirect links from the resource rj with a link 

type of li weighted by the weighting factor 𝑊𝑙𝑖 for each link of a type li as follows: 

𝑊𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) =∑∑(
𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑟𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑟𝑗, 𝑟𝑛)𝑛 )
×𝑊𝑙𝑖)

𝑗𝑖

 

such that the value of every weight 𝑊𝑙𝑖 is a positive rational number between zero and one (0 ≤

𝑊𝑙𝑖 ≤ 1). 

In addition, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚 calculates the similarity of shared links types between 

resources ra and rb as previously mentioned in the original Resim. Similar to WLDSD, the 

weighting factor 𝑊𝑙𝑖 is introduced in the Resim approach for every link-based operation and, 

therefore, higher direct and indirect connectivity values are generated for those links with a high 

weight (𝑊𝑙𝑖). 

4.1.2 Link Weights Calculation 

The previous section raises a critical question: how to measure the weight of each link (𝑊𝑙𝑖)? 

This section introduces two approaches to this calculation: Resource-Specific Link Awareness 

Weights (RSLAW) and Information Theoretic Weights (ITW). The RSLAW weights are based on 

the association between each link type and its linked resources’ classes whereas the ITW weights 

are based on the importance of the link to the resource along with its distribution in the LOD 

graph. 

4.1.2.1 Resource-Specific Link Awareness Weights (RSLAW) 

LOD resources are connected using different link types, and most of these types are used to 

connect different classes of resources. For example, the link type “genre” can be used to connect 

artists to their corresponding genre, and it can be used to link a song or a movie to its 
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corresponding genre too. On the other hand, some link types tend to be very specific in 

connecting resources only within similar classes as in the case of the link type 

“associatedMusicalArtist” that is mostly used to connect musical artists to each other. It is our 

belief that link types that are typically used to link specific resource classes together indicate 

more relatedness than links used to connect a wide variety of resource classes. Based on this 

intuition, LOD link weights can be generated to emphasize those links that are specific to 

particular resources.  

As R is already defined as the set of all resources in the linked data dataset, a recommender 

system can define a subset of R to indicate those resources that the recommender system is 

interested to include in the recommendation process. Formally, 𝛾  is a set of resources with a 

resource class intended for recommendation specified by the recommender system (𝛾 ⊆ R). 

In this approach, the weight of a link lx is the probability that this link is associated with 

𝛾. In particular, the weight of a link lx is the total number of instances of the link lx between 

resources ri and rj that belong to a specific resource class set (𝛾) divided by the total number of 

instances of the link lx between all resources regardless of their resource class as follows: 

𝑊𝑙𝑥 =
∑ ∑ 𝐷𝐿𝐶(𝑙𝑥, 𝑟𝑖, 𝑟𝑗)𝑗𝑖

∑ ∑ 𝐷𝐿𝐶(𝑙𝑥, 𝑟𝑚, 𝑟𝑛)𝑛𝑚
,   {∀ 𝑟𝑖, 𝑟𝑗  | 𝑟𝑖 ∈ 𝛾  and 𝑟𝑗 ∈ 𝛾 } 

To illustrate this approach, Table 1 shows the number of link type instances in a LOD 

dataset. The total number of instances of each link type in the whole dataset is shown in Table 

1.a whereas Table 1.b shows the number of instances of each link type between specific resource 

classes only (“dbpedia:MusicalArtist” or “dbpedia:MusicalBand”), therefore 𝛾 is the set of all 

resources with class of (“dbpedia:MusicalArtist” or “dbpedia:MusicalBand”). There are three 

categories of link types in this example: highly resource-specific link types such as 

associatedMusicalArtist (95/100) and associatedBand (70/75), poorly resource-specific link 
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types such as influencedBy (10/50) and relative (5/25), in addition to generic link types 

occupation (0/10), hometown (0/6). This approach prioritizes highly resource-specific link types 

as they carry more value between those resources whereas generic link types tend to describe 

general information about all classes of resources. 

Table 1: RSLAW Example 

a: Total link type instances 

Link Type Count 

associatedMusicalArtist 100 

associatedBand 75 

influencedBy 50 

relative 25 

occupation 10 

hometown 6 
 

b: Resource-specific link type instances 

Link Type Count 

associatedMusicalArtist 95 

associatedBand 70 

influencedBy 10 

relative 5 

occupation 0 

hometown  0 
 

 

4.1.2.2 Information Theoretic Weights (ITW) 

The second approach to calculating the link weights is inspired from the well-known method from 

the information retrieval field, TF-IDF (Term Frequency–Inverse Document Frequency) [49], 

which is used to weight the importance of a term in a document within a pool of documents. In our 

scope, the importance of a link to a resource is assessed based on the entire collection of resources 

and links in the LOD dataset. Unlike the RSLAW approach which considers only the links 

distribution in the dataset, the weights in this approach are dynamically calculated and take into 

consideration the relationship between the link and other links in the dataset in addition to the 

relationship between the link and the resources linked to. In contrast, the disadvantage of this 

approach is that the whole LOD dataset must be traversed in order to compute the weights for each 

link which can be heavy on computing resources. Yet, this value can be computed once and stored 

in a preprocessing step, then integrated into the LOD engine to use the weights on the fly as needed. 
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Since the weights are calculated dynamically, they are referred here as W(𝑙𝑥, 𝑟𝑎, 𝑟𝑏) 

instead of 𝑊𝑙𝑖 because they require all the link information for their calculation. Additionally, 

this approach results in weights that do not meet our proposed constraints of the link weights 

range ([0-1]); therefore, rescaling these values back into this range is required as discussed later 

in this section. Initially, the non-scaled information theoretic weights W𝑛𝑠(𝑙𝑥, 𝑟𝑎, 𝑟𝑏) are 

calculated as follows: 

W𝑛𝑠(𝑙𝑥, 𝑟𝑎, 𝑟𝑏) = 𝐿𝐹(𝑙𝑥, 𝑟𝑎, 𝑟𝑏)×𝐼𝑅𝐹(𝑙𝑥, 𝑟𝑎 , 𝑟𝑏) 

In this formula6, the link frequency 𝐿𝐹(𝑙𝑥, 𝑟𝑎 , 𝑟𝑏) is the average normalized frequency of 

a link lx that connects either resources ra or rb to others. This normalized frequency is calculated 

as the total number of both incoming and outgoing links of a type lx to either resource ra or rb 

normalized by the total number of both incoming and outgoing links to either resource ra or rb as 

follows: 

𝐿𝐹(𝑙𝑥, 𝑟𝑎 , 𝑟𝑏) =

(
∑ 𝐷𝐿𝐶(𝑙𝑥 , 𝑟𝑎 , 𝑟𝑗)𝑗 + ∑ 𝐷𝐿𝐶(𝑙𝑥 , 𝑟𝑗 , 𝑟𝑎)𝑗

∑ ∑ 𝐷𝐿𝐶(𝑙𝑖 , 𝑟𝑎 , 𝑟𝑗)𝑗𝑖 + ∑ ∑ 𝐷𝐿𝐶(𝑙𝑖 , 𝑟𝑗 , 𝑟𝑎)𝑗𝑖

) + (
∑ 𝐷𝐿𝐶(𝑙𝑥 , 𝑟𝑏 , 𝑟𝑗)𝑗 + ∑ 𝐷𝐿𝐶(𝑙𝑥 , 𝑟𝑗 , 𝑟𝑏)𝑗

∑ ∑ 𝐷𝐿𝐶(𝑙𝑖 , 𝑟𝑏 , 𝑟𝑗)𝑗𝑖 + ∑ ∑ 𝐷𝐿𝐶(𝑙𝑖 , 𝑟𝑗 , 𝑟𝑏)𝑗𝑖

)

2
 

The inverse resource frequency 𝐼𝑅𝐹(𝑙𝑥, 𝑟𝑎 , 𝑟𝑏) is the total number of resources in the 

LOD dataset intended for recommendation (|𝛾|) divided by total instances of the link lx as 

follows: 

𝐼𝑅𝐹(𝑙𝑥, 𝑟𝑎, 𝑟𝑏) = log
∑ 𝑟𝑖𝑖

∑ ∑ 𝐷𝐿𝐶(𝑙𝑥, 𝑟𝑖, 𝑟𝑗)𝑗𝑖

,   {∀ 𝑟𝑖 | 𝑟𝑖 ∈ 𝛾 } 

Finally, weights calculated using this approach must be rescaled back in the range [0-1] 

as follows: 

                                                           
6 We have tried different variations of this approach, and we report the best performing version 

only. 
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W(𝑙𝑥, 𝑟𝑎, 𝑟𝑏) =
W𝑛𝑠(𝑙𝑥, 𝑟𝑎, 𝑟𝑏) − 𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
 

where min is the value of the minimum calculated weight, and max is the maximum calculated 

weight value. 

4.2 Typeless Semantic Distance 

One of the advantages of the LOD is the massive amount of interconnected information, but the 

sheer volume of data causes several challenges. One of these challenges is that data accuracy in 

LOD can vary from one dataset to another and even within a given dataset. Several LOD 

datasets, including DBpedia, have their data collected and linked via human effort. For example, 

a link in DBpedia that represents the relationship between a song and its album can have 

different names (labels) such as “fromAlbum” or “title” depending on the editor who updated the 

song or album page in Wikipedia. However, when applying LOD in recommender systems, the 

recommender system must be able to recommend items even if the resources to be recommended 

are connected using different types of links. Therefore, it may be necessary for a 

recommendation to consider the relationship between resources even when their links have 

different types. This is especially true when mining relationship from multiple LOD datasets, 

each of which may have its own ontology or set of link types. Despite this, the indirect 

connectivity (IC) algorithm of our baselines does not consider these cases when calculating the 

indirect connectivity. In our work, we asses extending indirect connectivity calculations to 

include the effect of multiple links of differing types within Linked Open Data. This extension 

can be incorporated within both baselines to measure the effect of including heterogeneous link 

types in the semantic distance calculation. 

Following the example in Figure 2, the outgoing indirect connectivity between r1 and r4 is 

zero (𝐼𝐶𝑜(𝑟1, 𝑟4) = 0) since there is no resource such that both r1 and r4 are directly connected to 
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through the same link type. However, both r1 and r4 are directly connected to r2 but this is via 

different link types (l1 and l2). In our extension, we develop a typeless incoming and outgoing 

indirect connectivity between two resources ra and rb to broaden the indirect connectivity to 

include cases where the two resources can be connected by two different link types (lk and lp) as 

displayed in Figure 4. Formally, the incoming typeless indirect connectivity, TICi, between two 

resources ra and rb is the sum of the incoming typeless indirect link connectivity, TILCi, of all 

links that connect them as follows: 

𝑇𝐼𝐶𝑖(𝑟𝑎, 𝑟𝑏) =∑∑∑𝑇𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑙𝑘, 𝑟𝑛, 𝑟𝑎 , 𝑟𝑏)

𝑘𝑗𝑛

 

The Incoming Typeless Indirect Link Connectivity (TILCi) between two resources ra and 

rb is equal to one if there is a resource rn such that rn is directly connected to both ra and rb via 

links of type lk and lp as follows: 

𝑇𝐼𝐿𝐶𝑖(𝑙𝑘, 𝑙𝑝, 𝑟𝑛, 𝑟𝑎, 𝑟𝑏) = {
1       {∃ 𝑟𝑛| 〈𝑙𝑘, 𝑟𝑛, 𝑟𝑎〉&〈𝑙𝑝, 𝑟𝑛, 𝑟𝑏〉 }

 0                                         otherwise
 

Similarly, the outgoing typeless indirect connectivity, TICo, between two resources ra and 

rb is the sum of the outgoing typeless indirect link connectivity, TILCo, of all links that connect 

them as follows: 

𝑇𝐼𝐶𝑜(𝑟𝑎, 𝑟𝑏) =∑∑∑𝑇𝐼𝐿𝐶𝑜(𝑙𝑗, 𝑙𝑘, 𝑟𝑛, 𝑟𝑎 , 𝑟𝑏)

𝑘𝑗𝑛

 

The Outgoing Typeless Indirect Link Connectivity (TILCo) between two resources ra and 

rb is equal to one if there is a resource rn such that both ra and rb are directly connected to rn via 

links of type lk and lp as follows: 

𝑇𝐼𝐿𝐶𝑜(𝑙𝑘, 𝑙𝑝, 𝑟𝑛, 𝑟𝑎, 𝑟𝑏) = {
1        {∃  𝑟𝑛│〈𝑙𝑘, 𝑟𝑎, 𝑟𝑛〉&〈𝑙𝑝, 𝑟𝑏 , 𝑟𝑛〉 }

 0                                            otherwise
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ra rc rblk lp

A: Typeless incoming indirect connection B: Typeless outgoing indirect connection

ra rc rblk lp

 

Figure 4: Typeless indirect connectivity 

Even though 𝐼𝐶𝑜(𝑟1, 𝑟4) = 0 as previously mentioned, the outgoing typeless indirect 

connectivity between r1 and r4 is one (𝑇𝐼𝐶𝑜(𝑟1, 𝑟4) = 1) through the resource r2 with the links 

types (l1, l2), which shows that r1 and r4 are indirectly connected to each other with the typeless 

variation. 

The typeless indirect link connectivity (TILC) notation can be generalized for all 

intermediate resources as follows7: 

𝑇𝐼𝐿𝐶𝑖(𝑙𝑘, 𝑙𝑝, 𝑟𝑎, 𝑟𝑏) =∑∑∑𝑇𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑙𝑘, 𝑟𝑛, 𝑟𝑎, 𝑟𝑏)

𝑘𝑗𝑛

 

𝑇𝐼𝐿𝐶𝑜(𝑙𝑘, 𝑙𝑝, 𝑟𝑎, 𝑟𝑏) =∑∑∑𝑇𝐼𝐿𝐶𝑜(𝑙𝑗, 𝑙𝑘, 𝑟𝑛, 𝑟𝑎, 𝑟𝑏)

𝑘𝑗𝑛

 

This concept can be applied to our baselines resulting in two typeless versions: Typeless 

Linked Data Semantic Distance (TLDSD) and Typeless Resource Similarity (TResim). 

  

                                                           
7   These versions of TILC accept four inputs instead of five as in the regular TILC 
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4.2.1 Typeless Linked Data Semantic Distance (TLDSD) 

Based on the typeless indirect connectivity, a typeless version of LDSD is calculated as follows: 

𝑇𝐿𝐷𝑆𝐷𝑐𝑛(𝑟𝑎, 𝑟𝑏) =
1

1 + 𝐷𝐶′(𝑟𝑎, 𝑟𝑏) + 𝐷𝐶′(𝑟𝑏, 𝑟𝑎) + 𝑇𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) + 𝑇𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝐷𝐶′(𝑟𝑎, 𝑟𝑏) is merely the direct connectivity (DC) between resources ra and rb normalized 

by the log of all outgoing links from the resource ra as follows: 

𝐷𝐶′(𝑟𝑎, 𝑟𝑏) =∑
𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑎, 𝑟𝑛)𝑛 )
𝑗

 

𝐷𝐶′(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log of 

all outgoing links from the resource rb as follows: 

𝐷𝐶′(𝑟𝑏 , 𝑟𝑎) =∑
𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑏 , 𝑟𝑎)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑏 , 𝑟𝑛)𝑛 )
𝑗

 

𝑇𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) is the incoming typeless indirect connectivity (TICi) between resources ra and rb 

normalized by the log of all incoming typeless indirect links to the resource ra as follows: 

𝑇𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) =∑∑
𝑇𝐼𝐿𝐶𝑖(𝑙𝑗, 𝑙𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝑇𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑙𝑘, 𝑟𝑎, 𝑟𝑛)𝑛 )
𝑘𝑗

 

𝑇𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing typeless indirect connectivity (TICo) between resources ra and rb 

normalized by the log of all outgoing typeless indirect links from the resource ra as follows: 

𝑇𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) =∑∑
𝑇𝐼𝐿𝐶𝑜(𝑙𝑗, 𝑙𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝑇𝐼𝐿𝐶𝑜(𝑙𝑗, 𝑙𝑘, 𝑟𝑎, 𝑟𝑛)𝑛 )
𝑘𝑗

 

4.2.2 Typeless Resource Similarity (TResim) 

Similar to TLDSD, a typeless version of Resim is defined as follows: 

𝑇𝑅𝑒𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏) = {

0                                  𝑖𝑓 𝑈𝑅𝐼(𝑟𝑎) = 𝑈𝑅𝐼(𝑟𝑏) 𝑜𝑟 𝑟𝑎 𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 𝑟𝑏
𝑇𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏)                                                 𝑖𝑓 𝑇𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) ≠ 1

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏)                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The Typeless Linked Data Semantic Distance (𝑇𝐿𝐷𝑆𝐷𝛾) component is calculated as follows: 

𝑇𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) =
1

1 + 𝑅𝐶(𝑟𝑎, 𝑟𝑏) + 𝑅𝐶(𝑟𝑏, 𝑟𝑎) + 𝑇𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) + 𝑇𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝑅𝐶(𝑟𝑎, 𝑟𝑏) is the direct connectivity (DC) between resources ra and rb normalized by the 

log of number of instances of a link lj as follows: 

𝑅𝐶(𝑟𝑎, 𝑟𝑏) =∑
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑎, 𝑟𝑏)

1 + 𝑙𝑜𝑔(∑ ∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
𝑗

 

𝑅𝐶(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log of 

number of instances of a link lj as follows: 

𝑅𝐶(𝑟𝑏 , 𝑟𝑎) =∑
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑏 , 𝑟𝑎)

1 + 𝑙𝑜𝑔(∑ ∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
𝑗

 

𝑇𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) is the incoming typeless indirect connectivity (TICi) between resources ra and rb 

through a resource rk normalized by the log of all incoming typeless indirect links from the 

resource rk as follows: 

𝑇𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) =∑∑∑(
𝑇𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑙𝑗 , 𝑟𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝑇𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑙𝑗 , 𝑟𝑘, 𝑟𝑛)𝑛 )
)

𝑗𝑖𝑘

 

𝑇𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing typeless indirect connectivity (TICo) between resources ra and rb 

through a resource rk normalized by the log of all outgoing typeless indirect links from the 

resource rk as follows: 

𝑇𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) =∑∑∑(
𝑇𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑙𝑗, 𝑟𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝑇𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑙𝑗 , 𝑟𝑘, 𝑟𝑛)𝑛 )
)

𝑗𝑖𝑘

 

In addition, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚 calculates the similarity of shared links types between 

resources ra and rb as previously mentioned in the original Resim. 



 

39 
 

4.3 Weighted Typeless Semantic Distance 

After we defined weighted variations of our baselines as well as the typeless variations, we 

investigate combining the approaches of weighting links and typeless links to evaluate the effects 

of prioritizing some link paths in LOD regardless of their type in the indirect connectivity. This 

combined approach results in two new variations of the baselines: Weighted Typeless Linked 

Data Semantic Distance (WTLDSD) and Weighted Typeless Resource Similarity (WTResim). 

4.3.1 Weighted Typeless Linked Data Semantic Distance (WTLDSD)  

The weighted approach can be applied to the typeless version of LDSD as follows: 

𝑊𝑇𝐿𝐷𝑆𝐷𝑐𝑛(𝑟𝑎, 𝑟𝑏) =
1

1 +𝑊𝐷𝐶′(𝑟𝑎, 𝑟𝑏) +𝑊𝐷𝐶′(𝑟𝑏 , 𝑟𝑎) +𝑊𝑇𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) +𝑊𝑇𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝑊𝐷𝐶′(𝑟𝑎, 𝑟𝑏) is the direct connectivity (DC) between resources ra and rb normalized by 

the log of all outgoing links from the resource ra and weighted by the weight factor 𝑊𝑙𝑗 for each 

link of a type lj as follows: 

𝑊𝐷𝐶′(𝑟𝑎, 𝑟𝑏) =∑(
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑎, 𝑟𝑛)𝑛 )
×𝑊𝑙𝑗)

𝑗

 

𝑊𝐷𝐶′(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log 

of all outgoing links from the resource rb and weighted by the weight factor 𝑊𝑙𝑗 for each link of a 

type lj as follows: 

𝑊𝐷𝐶′(𝑟𝑏, 𝑟𝑎) =∑(
𝐷𝐿𝐶(𝑙𝑗, 𝑟𝑏 , 𝑟𝑎)

1 + log(∑ 𝐷𝐿𝐶(𝑙𝑗 , 𝑟𝑏 , 𝑟𝑛)𝑛 )
×𝑊𝑙𝑗)

𝑗

 

𝑊𝑇𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) is the incoming typeless indirect connectivity (TICi) between resources ra and rb 

normalized by the log of all incoming typeless indirect links to the resource ra and weighted by 

𝑊𝑙𝑗 or 𝑊𝑙𝑘 for each link of types lj or lk correspondingly as follows: 
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𝑊𝑇𝐼𝐶′𝑖(𝑟𝑎, 𝑟𝑏) =∑ (∑
𝑇𝐼𝐿𝐶𝑖(𝑙𝑗, 𝑙𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(𝑇𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑙𝑘, 𝑟𝑎, 𝑛𝑟))𝑘
×𝑊𝑙𝑘)×𝑊𝑙𝑗

𝑗
 

𝑊𝑇𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing typeless indirect connectivity (TICo) between resources ra and rb 

normalized by the log of all outgoing typeless indirect links from the resource ra and weighted by 

𝑊𝑙𝑗 or 𝑊𝑙𝑘 for each link of types lj or lk correspondingly as follows: 

𝑊𝑇𝐼𝐶′𝑜(𝑟𝑎, 𝑟𝑏) =∑ (∑
𝑇𝐼𝐿𝐶𝑖(𝑙𝑗, 𝑙𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(𝑇𝐼𝐿𝐶𝑖(𝑙𝑗 , 𝑙𝑘, 𝑟𝑎, 𝑛𝑟))
×𝑊𝑙𝑘

𝑘
)

𝑗
×𝑊𝑙𝑗 

The value of every weight 𝑊𝑙𝑗 or 𝑊𝑙𝑘 is a positive rational number between zero and one 

(0 ≤ 𝑊𝑙𝑗 ≤ 1) & (0 ≤ 𝑊𝑙𝑘 ≤ 1). 

4.3.2 Weighted Typeless Resource Similarity (WTResim)  

Similar to WTLDSD, a typeless version of WResim is defined as follows: 

𝑊𝑇𝑅𝑒𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏) = {

0                                          𝑖𝑓 𝑈𝑅𝐼(𝑟𝑎) = 𝑈𝑅𝐼(𝑟𝑏) 𝑜𝑟 𝑟𝑎 𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 𝑟𝑏
𝑊𝑇𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏)                                                𝑖𝑓 𝑊𝑇𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) ≠ 1

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚(𝑟𝑎, 𝑟𝑏)                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The weighted typeless linked data semantic distance (𝑊𝑇𝐿𝐷𝑆𝐷𝛾) component is calculated as 

follows: 

𝑊𝑇𝐿𝐷𝑆𝐷𝛾(𝑟𝑎, 𝑟𝑏) =
1

1 +𝑊𝑅𝐶(𝑟𝑎, 𝑟𝑏) +𝑊𝑅𝐶(𝑟𝑏 , 𝑟𝑎) +𝑊𝑇𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) +𝑊𝑇𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏)
 

where 𝑊𝑅𝐶(𝑟𝑎, 𝑟𝑏) is simply the direct connectivity (DC) between resources ra and rb 

normalized by the log of number of instances of a link li weighted by the weighting factor 𝑊𝑙𝑖 for 

each link of a type li as follows: 

𝑊𝑅𝐶(𝑟𝑎, 𝑟𝑏) =∑(
𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ ∑ 𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
×𝑊𝑙𝑖)

𝑖
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𝑊𝑅𝐶(𝑟𝑏, 𝑟𝑎) is the direct connectivity (DC) between resources rb and ra normalized by the log of 

number of instances of a link li weighted by the weighting factor 𝑊𝑙𝑖 for each link of a type li as 

follows: 

𝑊𝑅𝐶(𝑟𝑏, 𝑟𝑎) =∑(
𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑏 , 𝑟𝑎)

1 + log(∑ ∑ 𝐷𝐿𝐶(𝑙𝑖, 𝑟𝑚, 𝑟𝑛)𝑛𝑚 )
×𝑊𝑙𝑖)

𝑖

 

 𝑊𝑇𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) is the incoming typeless indirect connectivity (TICi) between resources ra and rb 

through a resource rk normalized by the log of all incoming typeless indirect links from the 

resource rk , and weighted by 𝑊𝑙𝑖 or 𝑊𝑙𝑗 for each link of types lj or lk correspondingly as follows: 

𝑊𝑇𝑅𝐼𝑖(𝑟𝑎, 𝑟𝑏) =∑(∑(∑(
𝑇𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑙𝑗 , 𝑟𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝑇𝐼𝐿𝐶𝑖(𝑙𝑖, 𝑙𝑗 , 𝑟𝑘, 𝑟𝑛)𝑛 )
)

𝑗

×𝑊𝑙𝑗)

𝑖

×𝑊𝑙𝑖)

𝑘

 

𝑊𝑇𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) is the outgoing typeless indirect connectivity (TICo) between resources ra and rb 

through a resource rk normalized by the log of all outgoing typeless indirect links from the 

resource rk , and weighted by 𝑊𝑙𝑖 and 𝑊𝑙𝑗 for each link of types lj or lk correspondingly as 

follows: 

𝑊𝑇𝑅𝐼𝑜(𝑟𝑎, 𝑟𝑏) =∑(∑(∑(
𝑇𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑙𝑗 , 𝑟𝑘, 𝑟𝑎, 𝑟𝑏)

1 + log(∑ 𝑇𝐼𝐿𝐶𝑜(𝑙𝑖, 𝑙𝑗 , 𝑟𝑘, 𝑟𝑛)𝑛 )
)

𝑗

×𝑊𝑙𝑗)×𝑊𝑙𝑖
𝑖

)

𝑘

 

The value of every weight 𝑊𝑙𝑖 or 𝑊𝑙𝑗 is a positive rational number between zero and one 

(0 ≤ 𝑊𝑙𝑖 ≤ 1) & (0 ≤ 𝑊𝑙𝑗 ≤ 1). In addition, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑖𝑚 calculates the similarity of shared 

links types between resources ra and rb as previously mentioned in the original Resim. 
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5 Employing Semantic Distance Approaches for Multiple Nodes Apart Resources in LOD 

Linked Open Data is rich with resources related to each other but they are not always directly 

linked or indirectly linked via a single hub. Resources that are further apart within the network 

could be important to recommend. However, one drawback of the LDSD approach is that it only 

calculates the semantic distance between resources that are either directly connected or indirectly 

connected through an intermediate resource. Therefore, resources that are located more two links 

away are automatically considered unrelated to each other. Resim improves upon this calculating 

a simpler semantic relatedness between resources more than two links away based upon their 

properties. However, this calculation ignores the graph structure for these more distance 

resources altogether. For example, Figure 5 illustrates an example of a snapshot of a LOD 

dataset with five resources. In this example, resources r2 and r3 are reachable to the resource r1 in 

LDSD, however, resources r4 and r5 are not reachable to the resource r1 and therefore are 

considered unrelated to r1. 

 

Figure 5: Example of reachable resources in LDSD 

In this document, we introduce an approach that expands the coverage of current semantic 

distance approaches to resources that are linked through more than one intermediate hub. This 

approach is beneficial in several ways. First, we are able to create a much fuller collection of related 

resources for isolated resources that have sparse connections to others. In particular, LOD-based 

recommender systems performance has a strong correlation with the number of resource links as 

r1 r2 r3 r4 r5

 



 

43 
 

their accuracy declines for sparse resources [10]. Thus, propagating semantic connections further 

through the network of LOD expands resource coverage and may lead to a higher recall. 

Additionally, even for well-connected resources, propagating connections more widely may allow 

us to recommend related resources from another domain, e.g., link from a book to a related movie.  

To achieve this goal, we employ an all-pairs shortest path algorithm, namely, the well-

known Floyd-Warshall algorithm [50] to propagate semantic connectivity weights throughout the 

network of connected resources. This algorithm may not just increase the span of the semantic 

distance calculations; it also may increase the accuracy of the semantic distance calculations. This 

section is under publishing at [51]. 

5.1 Design 

Incorporating more than one intermediate node in semantic distance calculations is challenging, 

especially with respect to efficiency. As we propagate weights throughout the network, the time 

complexity undergoes combinatorial explosion. Computing all semantic connection weights has an 

upper bound of O(nn) where n is the number of resources in the network, clearly intractable in LOD 

since it contains millions of nodes. The principle of our approach is to calculate the semantic 

distance between each linked resource pair in 𝛾, and then propagate these values using an all-pair 

shortest path algorithm to get the final semantic distance values between all pairs. This approach 

first reduces the original graph to include only those resources that are under consideration by the 

recommender system, and then it calculates final semantic distances using this reduced graph. 

Figure 6 illustrates this proposed propagated approach based on the Floyd–Warshall algorithm for 

calculating an all-pair shortest path in graphs. The time complexity of this algorithm for both 

average and worst-case performance is Θ(| 𝛾 |3). 
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The first step in our approach is to create an | 𝛾 | × | 𝛾 | matrix (assuming that resources are 

labeled from 1 to | 𝛾 |). Since semantic distances range from 0.0 to 1.0, this matrix is initialized with 

either 0.0 for the distance from each resource to itself, 1.0 otherwise. Unlike the original Floyd-

Warshall algorithm in which the matrix is initialized with infinity (∞), the value 1.0 here is the 

maximum semantic distance referring value that reflects the lack of any relatedness. 

 

 

Figure 6: The propagated semantic distance algorithm 

 

5.2 LOD Graph Reduction 

After initializing the semantic distance matrix (d), the semantic distance is calculated between each 

resource pair that is an element of 𝛾 (lines 8 and 9 in Figure 6). This semantic distance calculation 

can use any semantic distance approach including LDSD or Resim. This step results in a reduced 

graph consisting only of 𝛾 resources instead of the whole LOD graph. For example, Figure 7 shows 

1 let d be a |𝛾| × |𝛾| array of minimum semantic distances 

2 for i from 1 to |𝛾| 

3 for j from 1 to |𝛾| 

4 if i==j 

5 d[i][j]=0 

6 else 

7 d[i][j]=1 

8 for each resource pair (ra, rb) ∈ |𝛾|  

9 d[ra][rb] = SemanticDistance(ra, rb) 

10 for k from 1 to |𝛾| 

11 for i from 1 to |𝛾| 

12 for j from 1 to |𝛾| 

13 if  d[i][j] > 1- ((1- d[i][k]) × (1- d[k][j])) 

14 d[i][j] = 1- ((1- d[i][k]) × (1- d[k][j])) 

15 end if 
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an example of a snapshot of a LOD dataset. In this example, resources r1, r3 and r5 have the same 

resource class (e.g. MusicalArtist) that is a subset of 𝛾 while resource r2 and r4 have different 

resource classes (e.g. Album or MusicalWork) that are not subsets of 𝛾. Therefore, this approach 

calculates the semantic distance between resources r1, r3 and r5 only and results in semantic distance 

values between these pairs. Yet, resources r2 and r4 contribute to the semantic distance calculation 

because resources r1, r3 and r5 are indirectly linked through these resources. 

 

 

Figure 7: LOD graph reduction example 

 

5.3 Semantic Distance Propagation 

After obtaining semantic distance values between all resources pairs as shown in lines 8 and 9 of 

the algorithm, the Floyd–Warshall algorithm is applied to compare all possible paths in the reduced 

graph to find the optimal path that achieves the lowest semantic distance value. The intuition behind 

this propagation is that relatedness can be propagated through resources taking into account that 

semantic distance values reflect this propagation. For instance, if a resource ra is 50% related to a 

r1 r2 r3 r4 r5

r1 r3 r5distance distance
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resource rb, and the resource rb is 50% related to a resource rc then the resource ra is 25% related to 

the resource rc (50% of the 50%). The Floyd–Warshall algorithm is feasible in this application since 

semantic distance values are positive values ranging from zero to one where zero represents 100% 

relatedness while the value one represents no relatedness at all.  

The semantic distance matrix is updated by considering all resources as an intermediate 

resource. This algorithm considers all resources one by one and updates all shortest paths including 

the current resource as an intermediate resource. In the algorithm, there are three phases: 

1. the intermediate resource (k) iteration as in line 10 

2. the source resource (i) iteration as in line 11 

3. the destination resource (j) iteration as in line 12 

When an intermediate resource (k) is picked between resources i and j, it can contribute 

to a lower semantic distance if the semantic distance value through it is lower than the current 

one (lines 13 and 14). Unlike the original Floyd-Warshall that deals with distances as integer 

numbers, our comparison takes into consideration semantic distance values that range from 0.0 

to 1.0. Also, semantic distances propagation is performed via multiplication so that semantic 

connectivity loss is proportional to the amount of propagation in the network from the original 

resources. 
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6 System Architecture 

The proposed approaches are implemented and evaluated in a real world scenario in order to 

measure their effectiveness. A content-based musical recommender system is implemented to 

recommend musical artists or bands based on the popular LOD dataset, DBpedia. The 

recommendation results of this recommender system are based on the semantic distance between 

resources (musical artists or bands) calculated using the various proposed semantic distance 

approaches. The following section details the components of this system. 

6.1 System Components 

We designed and implemented the recommender system to work with any resource class in the 

LOD ontology, thus it is capable of being applied in any domain. However, we tailored the 

current version of the recommender system to recommend musical artists or bands as a proof of 

concept. Figure 8 diagrams the system components. Each component is described in more detail 

in the following sections. 

 

Feeder

Ranker

Resource ManagerArtist

Results

DB

DBpedia
Link Weight 
Calculator

Semantic Distance 
Calculator

 

Figure 8: System architecture 
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6.1.1 Feeder 

The Feeder component retrieves all the required data used by all other components from LOD 

providers such as DBpedia. This component requests all the desired data using the query 

language, SPARQL Protocol and RDF Query Language (acronymed as SPARQL). The Feeder 

component receives the requested data from the LOD provider in Resource Description 

Framework (RDF) format and then converts it to our system’s appropriate internal data 

structures. The Feeder component also caches some data request responses in the system’s 

database in order to increase the efficiency of data gathering by avoiding duplicate requests. 

6.1.2 Link Weight Calculator 

The Link Weight Calculator component is responsible for computing the weight of every link 

type in the LOD dataset so that these weights can be used for the various semantic distance 

calculations between resources. This component runs independently of the interactive 

recommender system and it performs its calculations before any recommendations can be 

produced. It traverses the LOD dataset through the Feeder component and calculates the link 

weights based on the weighting approach being employed. Finally, it stores the weights of each 

weighting approach for every link in the system database to be used later by the Semantic 

Distance Calculator component. 

6.1.3 Semantic Distance Calculator 

The Semantic Distance Calculator component calculates the semantic distance between all the 

resources in order to be used later by the Ranker component. This component runs after the Link 

Weight Calculator component completes its work. This component traverses the LOD dataset 

through the Feeder component and stores the semantic distances calculated by the various 

approaches being employed in the system database. 
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6.1.4 Resource Manager 

The Resource Manager component is responsible for searching the desired resources (musical 

artists or bands) in the LOD provider via the Feeder component. It retrieves their Uniform 

Resource Identifiers (URI) that uniquely identify resources in the system. It also ensures that 

semantic distances between the desired resource and all the other resources are already 

calculated by the Semantic Distance Calculator component and stored in the system database. 

Then, it forwards the URI to the Ranker component. 

6.1.5 Ranker 

The Ranker component retrieves and ranks related resources based on the semantic distance 

already calculated by the Semantic Distance Calculator component. The Ranker component 

generates a list of recommended resources for each user based on the similarity between the 

user’s profile and every resource in the dataset. The similarity score between user ui and resource 

ra is calculated based on the semantic distance generated by the various approaches we are 

evaluated as in the following: 

similarity(𝑢𝑖 , 𝑟𝑎) =
∑ (1 − 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑎, 𝑟𝑏))𝑟𝑏∈𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑢𝑖)

|𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑢𝑖)|
 

where 𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑢𝑖) is the user profile containing a list of resources that a user ui has liked. 

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑎, 𝑟𝑏) is the semantic distance between resources ra and rb based on the 

various semantic distance approaches.  

The resulting list of resources is then sorted in a descending order and presented to the 

user. 

6.2 System Environment 

The recommender system is implemented in Java programming language. Both the Weight 

Calculator and Distance Calculator components are implemented as individual Java 
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applications for efficiency reasons since they can run independently of the other system 

components. The database of the system is hosted in the database engine, MySQL. The entire 

system is cross-platform as Java and MySQL work on all popular operating systems such as 

Microsoft Windows and Linux. 
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7 Evaluation 

In order to assess whether or not our proposed approaches are effective, we conducted several 

experiments to measure their effectiveness against three baselines LDSD, Resim, and Jaccard 

Index. The Jaccard Index [52], also called the Jaccard similarity coefficient, is a statistical 

measure to estimate the similarity between two sets. It is calculated as the number of items 

shared by the sets divided by the number of items in either set as follows: 

Jaccard(𝑟𝑎, 𝑟𝑏) =
|𝑁(𝑟𝑎) ∩ 𝑁(𝑟𝑏)|

|𝑁(𝑟𝑎) ∪ 𝑁(𝑟𝑏)|
 

such that 𝑁(𝑟𝑎) is the set of neighbor resources to a resource ra. which is directly linked to each 

member of the set. 

Similar to several related works in this field [9] [30] [33], we applied these experiments 

in the music domain to measure the relatedness between musical artists and bands. The following 

sections detail the dataset of the experiments followed by their methodology. 

7.1 Dataset 

We conducted the experiments using a dataset from the second Linked Open Data-enabled 

recommender systems challenge8. This dataset was built from Facebook profiles by collecting 

personal preferences (likes) for items (resources) in several domains. It contains the preferences 

of 52,069 users and includes 5,751 distinct resources in the music domain mapped to their 

corresponding resources in DBpedia (those with resources type “dbpedia:MusicalArtist” or 

“dbpedia:MusicalBand”). The total number of users’ musical preferences was 1,013,973 with an 

average of 19.47 likes per user and a maximum of 37 likes per user. In addition, we calculated 

                                                           
8 http://sisinflab.poliba.it/events/lod-recsys-challenge-2015/dataset/ 
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the semantic distance between all resources in the previously mentioned dataset for all 

approaches (ours and baselines) on a live DBpedia server (version 2015-10)9. 

7.1.1 DBpedia 

DBpedia [4] is a cross-domain LOD dataset with 400 million properties about more than 5 

million resources (“things”) extracted from Wikipedia pages. These resources are categorized 

into classes that construct the DBpedia ontology which contains around 750 classes 10. Figure 9 

displays a snapshot of the DBpedia ontology. 

 

Figure 9: A snapshot of the DBpedia ontology 

 

Table 2 shows the number of resources for some resource classes in DBpedia. There are 

around 1.5 million resources classified as Person in DBpedia. Fragment of these resources are 

                                                           
9 http://wiki.dbpedia.org/Downloads2015-10 
10 http://wiki.dbpedia.org/services-resources/ontology 
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50,978 resources classified as musical artists (dbo:MusicalArtist) and 33,613 classified as 

musical bands (dbo:Band) making a total of 84,591 resources.  

 

Table 2: DBpedia resources statistics 

Resource Class # of resources 

Place 816,252 

Person 1,517,816 

Work 492,729 

Species 301,025 

Organisation 275,077 

Other 1,706,991 

Total 5,109,890 

 

In DBpedia, there are 43 unique outgoing links types and 131 unique incoming links 

types from the MusicalArtist and Band classes. Table 3 shows a detailed link analysis for both 

resource classes in DBpedia. There are 39 unique link types outgoing from the resources class 

MusicalArtist, and 116 unique link types incoming to it. The average number of unique outgoing 

link types per resource with a MusicalArtist class is 3.91 while the average number of unique 

incoming link types per resource is 3.05. Also, the average number of the total outgoing links 

types per resource with a MusicalArtist class is 8.74 while it is 11.43 for incoming links. 

Similarly, there are 20 unique link types outgoing from the resources class Band, and 91 unique 

link types incoming to it. Furthermore, the average number of unique outgoing link types per 

resource with a Band class is 3.84 whereas the average number of unique incoming link types 

per resource is 3.08. The average of the total outgoing links types per resource with a Band class 

is 8.76 while it is 11.18 for incoming links. 
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Table 3: Link analysis of musical artists and bands in DBpedia 

 dbo:MusicalArtist dbo:Band Both * 

# of unique outgoing links types 39 20 43 

Average # of unique outgoing links types per 

resource  
3.91 3.84 3.88 

Average # of total outgoing links types per 

resource 
8.74 8.76 8.75 

# of unique incoming links types 116 91 131 

Average # of unique incoming links types per 

resource 
3.05 3.08 6.64 

Average # of total incoming links types per 

resource 
11.43 11.18 11.33 

* {?resource a dbo:MusicalArtist } UNION {? resource a dbo:Band} 

 

7.2 Methodology 

There are two ways to measure the recommendation accuracy of recommender systems: rating 

prediction and ranking [53]. The rating prediction method compares the prediction rating of a 

particular algorithm to ground truth, and it is often measured using the Round Mean Square 

Error (RMSE) or the Mean Absolute Error (MAE). On the other hand, the ranking approach, also 

called top-k recommendation, compares a ranked list of recommended items to set aside items in 

a user profile using metrics such as precision, recall, F1 score and Mean Reciprocal Rank (MRR). 

Since we adopt the latter approach in this document, we describe each of the previously 

mentioned four metrics in the following subsections. 

Similar to the approach taken by previous studies [10] [11], we randomly selected 500 

users who have at least 10 preferences from the aforementioned dataset. Five preferences per 

user were reserved for testing purposes while the rest of their preferences, from a minimum of 5 

to a maximum of 35 with an average of 19.22, were used to build a profile for each user ui. The 

Profile is simply the set of resources liked by the user (represented by the resource ids) as 

follows: 
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𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑢𝑖) =  {𝑟1, 𝑟2, . . . , 𝑟𝑚} 

where m is the number of resources in the training set that a user ui has liked. 

Next, we generated a list of recommended resources for each user based on the similarity 

between the user’s profile and every resource in the dataset. The similarity score between user ui 

and resource ra is calculated based on the semantic distance generated by the various approaches 

we evaluated as in the following: 

similarity(𝑢𝑖 , 𝑟𝑎) =
∑ (1 − 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑎, 𝑟𝑏))𝑟𝑏∈𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑢𝑖)

|𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑢𝑖)|
 

This essentially computes the probability that a user ui appreciates the resource ra by 

calculating the average semantic distance between each resource in the user profile and the 

specified resource. 

This resulting list of resources was sorted in a descending order per user, and rank 

ordered list of recommended resources were compared to the ground truth by seeing where the 

user’s liked resources in the testing dataset appeared within the list of recommendations. We 

measured the effectiveness of each semantic distance approach using the standard metrics of the 

F1 Score and the Mean Reciprocal Rank (MRR). 

7.2.1 F1 Score 

The F1 score (also referred to as F-score or F-measure) [54] is a measurement of test accuracy 

that combines both precision and recall measurements. Precision, the percentage of good results 

in a set, is calculated as the number of correct positive results divided by the total number of all 

positive results. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|

|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|  +  |𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|
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Recall, the percentage of all good results that are presented to the users within the result set, is 

calculated as the number of correct positive results divided by the total number of actual positive 

results in the dataset.  

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑡𝑟𝑢𝑒 𝑝𝑜𝑟𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|

|𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|  +  |𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠|
 

The F1 score, the harmonic mean of precision and recall, is calculated as follows: 

𝐹1 = 2×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

7.2.2 Mean Reciprocal Rank (MRR) 

Precision, recall, and F1 all treat the results as a set, ignoring the order of presentation of the 

good results within a rank ordered list. Thus, many researchers prefer to use the Mean 

Reciprocal Rank (MRR) that takes into account how early a relevant result appears within ranked 

results. MRR is calculated as follows [55]: 

𝑀𝑅𝑅 =
∑

1
𝑟𝑎𝑛𝑘𝑖

|𝑄|
𝑖=1

|𝑄|
 

where ranki is the highest rank of relevant results in a query Qi. 

7.3 Experiment 1: Effects of Weighting Links in Semantic Distance 

In this experiment, we evaluate the effect of differentially weighting link types on 

recommendation accuracy. We calculated the link weights using three techniques: 

1) Probability-based weights for each link type (RSLAW) 

2) Information theory-based weights for each link type (ITW) 

3) Random weights 

We compared each of the three link-weighting schemes to three baselines, LDSD and 

Resim, and Jaccard Index, all of which weight all links identically. Table 4 shows the results of 
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the experiment evaluated using the F1 score and MRR metrics. The F1 score values are presented 

at different ranked results cutoffs, i.e., 5, 10, and 20. In this table, the best results are shown in 

bold. 

Table 4: Experiment 1 results for weighted approaches vs baselines 

 

 LDSD-based Approaches Resim-based Approaches 

Jaccard LDSD 
Weighted (WLDSD) 

Resim 
Weighted (WResim) 

RSLAW ITW Random RSLAW ITW Random 

MRR 0.010 0.028 0.036 0.029 0.026 0.037 0.040 0.038 0.035 

F1@5 0.009 0.031 0.041 0.033 0.016 0.049 0.052 0.049 0.046 

F1@10 0.011 0.044 0.048 0.045 0.043 0.053 0.054 0.054 0.048 

F1@20 0.012 0.046 0.053 0.052 0.051 0.051 0.054 0.051 0.046 

 

The first conclusion we can draw from this experiment is that our basic baseline, Jaccard 

Index, indeed scored the lowest among all the metrics (F1 and MRR). The MRR of the Jaccard 

Index was 0.010 whereas it was 0.028 and 0.037 for LDSD and Resim respectively. We can 

confirm that LDSD and Resim approaches which take resource connections in the LOD graph 

into considerations performs better in LOD resource similarity approaches.  

Second, the Resim baseline outperforms the LDSD baseline among all metrics (MRR of 

0.037 for Resim versus 0.028 for LDSD), confirming results reported by [10].  

Third, our weighted approaches using either RSLAW or ITW weights outperform all 

baselines Jaccard Index, LDSD and Resim in all metrics. These improvements were statistically 

significant (p<0.05) based on a paired student t-test. As seen in Figure 10, the MRR was 0.036 

for our WLDSD-RSLAW approach versus 0.028 for the non-weighted LDSD approach, an 
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improvement of 29%, whereas it was 0.040 for WResim-RSLAW versus 0.037 for the original 

Resim, an 8% improvement.  

 
 

(a) LDSD-based approaches 

 
 

(b) Resim-based approaches 

Figure 10: MRR scores for weighted approaches vs baselines 

Confirming the MRR metric, the F1 score of WLDSD-RSLAW was 0.041 for the top five 

results versus a score of 0.031 for LDSD, an improvement of 32% while it was 0.052 for 

WResim-RSLAW versus 0.049 versus the unweighted Resim, an improvement of 6%. These 
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results also hold at other results cutoff points as displayed in Figure 11. Even though the 

improvement rate in WResim-RSLAW is not as large as it is in WLDSD-RSLAW, it achieved the 

most accurate recommendation results among all approaches in the experiment. 

 
 

(a) LDSD-based approaches 

 
 

(b) Resim-based approaches 

Figure 11: F1 scores at different ranked results cutoffs for weighted approaches vs 

baselines 
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The fourth conclusion we can draw from this experiment is that the RSLAW weights 

produced a bigger improvement than the ITW weights in both weighted approaches WLDSD and 

WResim. The information theoretic weights approach (ITW) performed slightly better than the 

baselines, LDSD (MRR of 0.029 vs 0.028) and Resim (MRR of 0.038 vs 0.037) but worse than 

the RSLAW weighting approach in general. Even though it was not as accurate as the RSLAW 

approach, it still confirms the importance of exploiting the link types in order to achieve better 

recommendation results. 

Lastly, the experiment results also demonstrate that using random weights in both 

WLDSD-Random and WResim-Random results in reduced accuracy against both baselines LDSD 

(MRR of 0.026 vs 0.028) and Resim (MRR of 0.035 vs 0.037). This observation also holds at all 

the F1 results cutoffs (@5, @10, and @20), and it confirms that the higher accuracy achieved by 

the RSLAW weights was not due to chance.  

Overall, the results demonstrate that, although both baselines (LDSD & Resim) and their 

weighted variations (WLDSD & WResim) calculate the semantic distance between resources 

using the same underlying techniques, our approaches that weight links differentially provide 

increased accuracy. Also, weighting links using the RSLAW approach based on their association 

with specific classes of resources enables us to identify, and incorporate, latent semantic 

correlations between links and entities. WLDSD and WResim demonstrate that links play 

different roles and should be exploited in any semantic relatedness process for further accurate 

results. 

7.3.1 Example 

Figure 12 provides an example of this differential treatment of link types extracted from our 

experiment results. In this example, Christina Aguilera is both directly and indirectly linked to 
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Sasha Allen and to Cher by indirect links only. The baseline LDSD approach considers Cher is 

more related to Christina Aguilera than Sasha Allen; however, our WLDSD-RSLAW approach 

considers Sasha Allen to be more related to Christina Aguilera than Cher. Even though both 

Christina Aguilera and Cher have been guests at The Tonight Show with Jay Leno twice (through 

indirect links of type guests), their appearance should not be used as an evidence for their 

relatedness since any famous person can appear at this type of show including politicians who 

clearly have less association with musical artists than other artists. The same concept applies to 

the other links between Christina Aguilera and Cher as most of these links are associated with 

other resources classes. Although the LDSD approach treats all links equally, our WLDSD-

RSLAW approach differentiates between them based upon their association with musical artists 

within the entire dataset. In this case, the link types, associatedMusicalArtist and 

associatedBand, are highly correlated with the resource class MusicalArtist to which Christina 

Aguilera, Sasha Allen, and Cher belong whereas link types guests, seeAlso, extra are associated 

with several other resources classes. 
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Figure 12: Link differential treatment example 

 

7.4 Experiment 2: Effects of Typeless Links in Semantic Distance 

In this experiment, we assess the significance of ignoring link type when calculating the indirect 

connection (IC) part of semantic distance approaches. We compare both baselines, LDSD and 

Resim, to their typeless variations. Table 5 shows the results of the experiment using the F1 score 

and MRR metrics. The F1 score values are presented at different ranked results cutoffs, i.e., 5, 

10, and 20. In this table, the best results are shown in bold. 
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Table 5: Experiment 2 results for typeless approaches vs baselines 

 Jaccard LDSD TLDSD Resim TResim 

MRR 0.010 0.028 0.022 0.037 0.024 

Precision@5 0.009 0.031 0.008 0.049 0.015 

Precision@10 0.008 0.033 0.014 0.040 0.021 

Precision@20 0.008 0.029 0.028 0.032 0.030 

Recall@5 0.009 0.031 0.008 0.049 0.025 

Recall@10 0.017 0.065 0.028 0.079 0.033 

Recall@20 0.029 0.115 0.112 0.128 0.097 

F1@5 0.009 0.031 0.008 0.049 0.019 

F1@10 0.011 0.044 0.019 0.053 0.026 

F1@20 0.012 0.046 0.045 0.051 0.046 

 

As seen in Table 5, the typeless variations of both baselines underperform their original 

versions according to all metrics (F1 and MRR), and this result was statistically significant 

(p<0.05) based on a paired student t-test. The MRR score of the TLDSD approach was 0.022 

versus 0.028 for the original LDSD approach and it was 0.024 for TResim versus 0.037 for the 

original Resim.  The F1 score also confirms the MRR metric results with a score of 0.008 for 

TLDSD for the top five results versus a score of 0.031 for the original LDSD whereas it was 

0.019 for TResim versus 0.049 for Resim. In particular, the F1 score at the top ten results for 

TLDSD was 0.019 versus 0.044 for LDSD, and it was 0.026 for TResim versus 0.053 for Resim. 

Similarly, The F1 score at the top twenty results for TLDSD was 0.045 versus 0.046 for LDSD, 

and it was 0.046 for TResim versus 0.051 for Resim. Figure 13 displays the MRR values of Table 

5 graphically, and Figure 14 displays the three F1 score results from Table 5 graphically. From 

these figures, it is clear that the two original approaches outperform both typeless variations and, 

once again, Resim outperforms LDSD. 
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Figure 13: MRR scores for typeless approaches vs baselines 

 

 

Figure 14: F1 scores at different ranked results cutoffs for typeless approaches vs baselines 
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7.5 Experiment 3: Effects of Weighting Typeless Links in Semantic Distance 

In this experiment, we investigate the implication of differentially weighting link types in the 

case of typeless indirect connectivity on semantic distance approaches. This work allows us to 

find the middle ground between differentiating link based on their importance for 

recommendation as in WLDSD and WResim in addition to treating all link types identically in the 

typeless variations of LDSD and Resim. Because RSLAW was the best performing link weighting 

approach in our first experiment, we evaluate both baselines, LDSD and Resim, to their weighted 

typeless variations using the RSLAW weighting method only. Table 6 shows the results of the 

experiment using the F1 score and MRR metrics. The F1 score values are presented at different 

ranked results cutoffs, i.e., 5, 10, and 20. In this table, the best results are shown in bold. 

Table 6: Experiment 3 results for weighted typeless approaches vs baselines 

 Jaccard LDSD WTLDSD Resim WTResim 

MRR 0.010 0.028 0.043 0.037 0.041 

Precision@5 0.009 0.031 0.050 0.049 0.055 

Precision@10 0.008 0.033 0.049 0.040 0.041 

Precision@20 0.008 0.029 0.040 0.032 0.034 

Recall@5 0.009 0.031 0.050 0.049 0.055 

Recall@10 0.017 0.065 0.097 0.079 0.083 

Recall@20 0.029 0.115 0.159 0.128 0.134 

F1@5 0.009 0.031 0.050 0.049 0.055 

F1@10 0.011 0.044 0.065 0.053 0.055 

F1@20 0.012 0.046 0.063 0.051 0.054 

 

As seen in Table 6, both weighted typeless variations of our baselines outperformed their 

original variations in all metrics (F1 and MRR), and this result was statistically significant 
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(p<0.05) based on a paired student t-test. The MRR score of the WTLDSD approach was 0.043 

versus 0.028 for the original LDSD approach while it was 0.041 for WTResim versus 0.037 for 

Resim. 

The F1 score also confirms the MRR metric results with a score of 0.050 for WTLDSD for 

the top five results versus a score of 0.031 for the original LDSD whereas it was 0.055 for 

WTResim versus 0.049 for Resim. These results also hold at other results cutoff points as 

displayed in Figure 16. In particular, the F1 score at the top ten results for WTLDSD was 0.065 

versus 0.044 for LDSD, and it was 0.055 for WTResim versus 0.053 for Resim. Similarly, The F1 

score at the top twenty results for WTLDSD was 0.063 versus 0.046 for LDSD, and it was 0.054 

for WTResim versus 0.051 for Resim. Figures 15 and 16 show these results graphically, plotting 

the MRR scores and F1 scores, respectively. 

 

 

Figure 15: MRR scores for weighted typeless approaches vs baselines 
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Figure 16: F1 scores at different ranked results cutoffs for weighted typeless approaches vs 

baselines 
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7.6 Experiment 4: Effects of Propagating Semantic Distances 

Our fourth and final experiment evaluates the effect of propagating semantic distances through 

the LOD graph from the current restriction of being no more than one link away. We ran this 

experiment on both baselines LDSD and Resim in addition to their weighted typeless variations 

(WTLDSD and WTResim). Table 7 shows the results of the experiment using the precision, 

recall, F1 score and MRR metrics. The precision, recall, and F1 score values are presented at 

different ranked results cutoffs, i.e., 5, 10, and 20. In this table, the best results are shown in 

bold. 

Table 7: Experiment 4 results for propagated approaches vs others 

 Jaccard LDSD pLDSD WTLDSD pWTLDSD Resim pResim WTResim pWTResim 

MRR 0.010 0.028 0.044 0.043 0.050 0.037 0.032 0.041 0.032 

Precision@5 0.009 0.031 0.051 0.050 0.065 0.049 0.034 0.055 0.036 

Precision@10 0.008 0.033 0.044 0.049 0.056 0.040 0.039 0.041 0.041 

Precision@20 0.008 0.029 0.037 0.040 0.050 0.032 0.037 0.034 0.036 

Recall@5 0.009 0.031 0.051 0.050 0.065 0.049 0.034 0.055 0.036 

Recall@10 0.017 0.065 0.088 0.097 0.113 0.079 0.079 0.083 0.083 

Recall@20 0.029 0.115 0.146 0.159 0.199 0.128 0.148 0.134 0.142 

F1@5 0.009 0.031 0.051 0.050 0.065 0.049 0.034 0.055 0.036 

F1@10 0.011 0.044 0.059 0.065 0.075 0.053 0.052 0.055 0.055 

F1@20 0.012 0.046 0.058 0.063 0.079 0.051 0.059 0.054 0.057 

 

As the results show, our propagated LDSD-based approaches (pLDSD and pWTLDSD) 

outperformed their corresponding baselines for LDSD-based approaches (LDSD and WTLDSD) 

in all metrics (F1 and MRR). Figure 17 displays the MRR scores for all the approaches in this 

experiment. The MRR score of the pLDSD approach was 0.044 versus 0.028 for the original 

LDSD, an improvement of 57%, while it was 0.050 for pWTLDSD versus 0.043 for WTLDSD, an 
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improvement of 16%. The F1 score also confirms the MRR metric results with a score of 0.051 

for pLDSD for the top five results versus a score of 0.031 for the original LDSD whereas it was 

0.065 for pWTLDSD versus 0.050 for WTLDSD. These results also hold at other results cutoff 

points (@10 and @20). 

 

 

Figure 17: MRR scores for propagated approaches vs others 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

MRR

Jaccard LDSD WTLDSD Resim WTResim pLDSD pWTLDSD pResim pWTResim



 

70 
 

 

Figure 18: F1 scores at different ranked results cutoffs for propagated approaches vs 

others 
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(WTLDSD). Overall, these results show that propagating semantic distances beyond one hub 

resources improves the accuracy of LOD-based recommender systems. 

Recommender systems are not only evaluated by their accuracy; they can also be 

evaluated by other criteria including their coverage. Thus, it is important to note that our 

propagated approach increased the coverage. According to [56], the coverage of a recommender 

system is defined as the percentage of the dataset that the system is able include its 

recommendation results. As a reminder, semantic distance calculations on a pair of resources 

produce results on a scale of 0 (no distance apart, therefore completely identical) to 1 (as far 

away as possible, therefore completely unrelated). Thus, related results are defined as all 

resources with a semantic distance less than 1 whereas non-related resources are those with a 

semantic distance of exactly 1. Table 8 shows the coverage of the propagated approaches vs 

others. The coverage here is defined as the average number of related results per resource as 

follows: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =

∑ (
∑ 1𝑟𝑗∈𝑅(𝑟𝑖)

𝑛 )𝑟𝑖

𝑛
×100 

where n is the number of resources in the dataset, and R(ri) is the set of resources that have 

semantic distances less than 1 from ri. 

These results demonstrate clearly that the coverage of each approach increases when the 

propagated approach is applied with a maximum increase of 81% (pWTLDSD vs WTLDSD) and 

a minimum increase of 33% (pResim vs Resim). As a result of this coverage increment, the 

recommender system has access to more possible related resources that may result in an 

enhanced novelty of the recommendation results. 
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Table 8: The coverage of the propagated approaches vs others 

 LDSD pLDSD WTLDSD pWTLDSD Resim pResim WTResim pWTResim 

Coverage 10% 85% 9% 90% 61% 94% 60% 95% 

 

7.7 Discussion 

Figure 19 summarizes the overall performance for all approaches. Because RSLAW weights 

outperformed ITW weights, each of the weighted approaches in this figure is based on RSLAW 

weights. From this we can see that the best performing approach is our pWTLDSD that presents 

an improvement of 79% over LDSD and 36% over Resim. The pWTLDSD combines links 

weighting approach in typeless indirect connectivity with propagated semantic distances. All the 

weighted approaches (WLDSD, WTLDSD, WResim, and WTResim) gained better accuracy than 

their corresponding non-weighted variations (LDSD, TLDSD, Resim, and TResim); showing the 

significance of distinguishing links based on the level of relatedness between resources indicated 

by each. Moreover, propagating semantic distances beyond one hub resources does not only 

result in an improved accuracy as in pLDSD and pWTLDSD, it also shows that propagating 

semantic distances beyond one hub resources improves the coverage of LOD-based 

recommender systems. 
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Figure 19: All approaches overview 
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distance computations between resources took a long time. Our experiments required an average 

of 8 days to complete, primarily because of the slow response of the DBpedia server. Several 

studies [57] [58] point to this problem and suggest enhanced implementations of current software 
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live public version to emulate real life scenarios. [9] recommended also breaking SPARQL 

queries into several smaller queries instead of one larger complete query to increase the response 

time; a tactic we adopted. One additional tactic we applied is caching, so every SPARQL request 

is cached locally. In a nutshell, efficient LOD engines are a necessity if we are to effectively and 

efficiently utilize the huge amount of publicly available Linked Open Data. In addition, future 

semantic distance studies should take computation efficiency into consideration. 
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8 Conclusion 

8.1 Summary  

The rise of Linked Open Data has encouraged researchers to exploit it in recommender systems 

through identifying the relatedness between resources in LOD. One approach is to compute the 

semantic distance between resources to recognize their relatedness. In this document, we showed 

that different types of resources links hold different values for relatedness calculations, and we 

exploited this observation to introduce improved weighted resource semantic relatedness 

measures that is more accurate than current approaches. In our methods, we distinguished links 

based their type by introducing a weighting factor for every link, and then we calculated this 

weight based on the association rate of the link type within a specific resource class. Also, we 

introduce a new approach that expands the coverage of current semantic distance approaches to 

include additional resources. We employ an all-pair shortest path algorithm, namely, the well-

known Floyd-Warshall algorithm, to efficiently compute semantic distances based on resources 

more than beyond one or two links away. 

To verify our observations, we conducted an experiment in the music domain, and its 

results showed that the best performing approach is our pWTLDSD that presents an improvement 

of 79% over LDSD and 36% over Resim. The pWTLDSD combines links weighting approach in 

typeless indirect connectivity with propagated semantic distances. All the weighted approaches 

(WLDSD, WTLDSD, WResim, and WTResim) gained better accuracy than their corresponding 

non-weighted variations (LDSD, TLDSD, Resim, and TResim); showing the significance of 

distinguishing links based on the level of relatedness between resources indicated by each. 

Moreover, propagating semantic distances beyond one hub resources does not only result in an 

improved accuracy as in pLDSD and pWTLDSD, it also shows that propagating semantic 
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distances beyond one hub resources improves the coverage of LOD-based recommender 

systems. 

8.2 Future Work 

In future, we will explore different ways to calculate the links weights. One possible approach is 

to combine link type nature with path-based normalization to achieve higher relatedness 

accuracy. Furthermore, we will analyze the effects of our proposed approaches on different 

domains such as books and movies as well as to perform cross-domain recommendations. 

Moreover, we will investigate improving the efficiency of LOD similarity measures in term of 

time complexity in order to achieve efficient similarity approaches with comparable accuracy 

and coverage. 
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10 Appendix 

10.1 Screenshots 

 

Figure 20: Experiment main window 
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Figure 21: LDSD approach calculation window 

 

 

Figure 22: PLDSD experiment window 
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