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Abstract 

Steel buildings in high seismic areas often require special structural systems to transfer 

large lateral forces induced by earthquake accelerations.  The selection of an appropriate 

seismic steel system (braced frame, moment frame, shear wall, etc.) is often influenced by 

architectural considerations.  Moment frame configurations offer the most architectural 

flexibility, but are limited by code prequalification requirements that limit the use of non-

orthogonal (skewed) beam-column connection geometries.  A recent study has investigated 

laterally skewed moment frame connections, indicating that skew increases the potential for 

column twist and column flange yielding; however, it is unclear how realistic column axial loads 

will affect the skewed connection performance.  

 This study investigates the effects of column axial loads on skewed special moment 

frame connections containing reduced beam sections (RBSs).  Detailed finite element analyses 

are used for all investigations, and several beam-column connection configurations are 

considered, representing: 3 beam-column geometries (shallow, medium and deep columns); 4 

levels of skew at the beam-to-column connection; and 4 levels of applied column axial load.   

Results indicate that combined beam skew, axial load, and applied connection rotations lead to 

local buckling issues within deep column moment frame configurations; however, increasing 

beam-skew and axial load has little effect on connection moment capacity prior to column local 

buckling initiation.  Beam-skew angle is the dominate contributor to resulting column twist and 

increasing column axial load (up to 50% ΦPn) has a negligible effect on resulting column twist. 

Applied column axial loads have little effect on resulting column flange yielding within the 

skewed beam-to-column connections. 
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1. Introduction: 

Steel buildings in high seismic areas often require special structural systems to transfer 

large lateral forces induced by earthquake accelerations.  These structural systems include 

specially detailed moment frames (called special moment frames (SMFs)) having connection 

regions capable of providing adequate lateral stiffness and ductility.  One common SMF 

connection detail involves a reduced beam section (RBS) wherein a portion of the beam flange 

is removed to prevent large forces from developing at the beam-column connection welds (see 

Figure 1) [Hamburger et al. 2009]. SMFs with RBS flange cuts were developed following the 

1994 Northridge Earthquake [Engelhardt and Sabol (1997), Lee et al. (2005), Tsai et al. (1995), 

Ricles et al. (2003), Zhang and Ricles (2006)], which produced unanticipated moment frame 

connection fractures as shown in Figure 2 [FEMA (2000)].  

The selection of an appropriate seismic steel system (braced frame, moment frame, 

shear wall, etc.) is often influenced by architectural considerations. For example, braced frames 

provide adequate lateral stiffness and high system ductility to resist seismic demands, but have 

diagonal frame elements which can interfere with the building’s architectural objectives 

(unobstructed views, open passageways, etc).  Moment frames overcome these limitations by 

providing brace-free spaces for passageways and unobstructed views, but can be limited by 

code pre-qualification restrictions which require orthogonal frame connections [AISC-358 

(2010b)] (see Figure 3).     
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Figure 2 Common Post-Northridge Earthquake failure modes: (a) fracture of weld or column 

flange, (b) column flange rupture and propagation into column web. [ECA (2003)] 

 

Figure 3 Example framing plan view of SMFs with skewed (non-orthogonal) connections. 

Figure 1 Plan view of beam-flange cuts in an RBS connection.  
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Experimental testing and analytical investigations are required for pre-qualifying SMF 

connections. Existing prequalified RBS SMF connections in the Seismic Provisions for Structural 

Steel Buildings [AISC-358 (2010b)] are all orthogonal beam-column configurations [Hamburger 

et al. (2009)].  Information on seismic demands in skewed (non-orthogonal) RBS connections is 

limited. 

In an effort to improve architectural flexibility of common moment frame 

configurations, Prinz and Richards (2016) investigated the performance of laterally skewed SMF 

connections with detailed finite element models. Two types of models were considered by Prinz 

and Richards (2016): one type simulating typical laboratory moment connection testing, and 

the other type more realistically representing building conditions (specifically column boundary 

conditions).  Results demonstrated a complex relationship between out-of-plane skew, column 

twisting, column yielding, and strain demands in the RBS.  Out-of-plane skew increased column 

twisting and resulted in irregular yielding in the column flange tips near the beam-to-column 

connections.  While columns analyzed by Prinz and Richards (2016) contained some axial loads 

introduced through beam shear, effects of larger (more realistic) column axial loads on column 

twisting and the resulting system-level response are unknown.  

Deep columns commonly used in SMF configurations can exhibit greater column twist 

than shallow columns due to the increased eccentricity from lateral movement of the RBS 

compression flange [Zhang and Ricles (2006), Chi and Uang (2002)].  Full-scale tests on un-

skewed connection configurations [Zhang and Ricles (2006), Chi and Uang (2002)] were used to 

develop a procedure for predicting column torsion resulting from the use of RBS connections; 

however, it is not clear how large column axial loads combined with skewed RBS connections 
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will affect column torsional demands and the resulting beam bracing requirements.   

The following research focuses on extending the work of Prinz and Richards (2016) by 

investigating effects from column axial loads on column twisting and yielding in skewed SMF 

RBS connections.  The study involves advanced finite element modeling of SMF connections 

using techniques similar to Prinz and Richards (2016) and other analytical studies on SMF 

connections [Chi et al. (2006), Gilton and Uang (2002), Pachoumis et al. (2009), Zhang and 

Ricles (2006)]. The investigation consists of four out-of-plane beam skew angles of 0°, 10°, 20°, 

and 30° (see Figure 4); three column configurations representing shallow, medium, and deep 

columns; and four levels of column axial loads: 10%, 15%, 25%, and 50% of the nominal column 

compressive strength (ΦPn).  

In this thesis, a detailed description of the considered frame configurations is provided, 

modeling techniques are discussed, and results from the finite element analyses are presented.  

Following, conclusions on the effects of column axial loads in skewed RBS SMF connections are 

given. 

 

Figure 4 Plan view of out-of-plane (lateral) skew. 
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Frame Configurations 

Three moment frame designs are considered in this study, consisting of shallow, 

medium, and deep-columns.  The moment frame designs represent a three-story beam-column 

assembly (see Figure 5), which is different from traditional laboratory prequalification testing 

configurations.  Traditional SMF assembly testing typically includes only one beam-column 

assembly spliced near the member inflection points; however, boundary effects from the 

column restraints in these configurations can be unrealistic and result in unrealistic column 

flexural demands. The three-story configuration used in this study allows realistic moment 

gradients and column torsional restraints to develop in the middle connection (termed 

‘Connection of Interest’ (COI) in Figure 5). Similar three-story frame geometries were 

considered in the initial skewed SMF study by Prinz and Richards (2016).  

  
Figure 5 Model Geometry. 
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The considered beam-column configurations (presented in Table 1) are near the 

allowable slenderness limits provided in the AISC provisions [AISC (2010b)], representing worst-

case skewed geometries for design.  Also shown in Table 1 are the RBS flange cut dimensions 

(‘a’, ‘b’, and ‘c’, see Figure 6).  Sample RBS flange-cut design calculations are presented later in 

Appendix C.   

The deep column configurations in Table 1, while commonly used in un-skewed SMFs 

due to story drift and “strong-column/weak-beam” requirements [Hamburger et al. (2009)] 

create concerns about column twisting for skewed connections.  Even in un-skewed 

geometries, the combination of lateral beam displacements (resulting from RBS-buckling) and 

out-of-plane column bending, often create higher warping stresses than more shallow columns. 

High “h/tf
3“ ratios are mainly responsible for large warping stresses in deep columns resulting 

from centerline distances between flanges (h) and flange thicknesses (tf) [Chi and Uang (2002)].  

Additionally, wider column sections, particularly the lighter-weight sections, are susceptible to 

local and lateral-torsional buckling [Hamburger et al. (2009)].  The column sections chosen in 

this study must also accommodate skewed beam geometry, which can result in wider required 

column flanges (see Figure 7).  

The chosen SMF RBS connections incorporate both continuity plates and doubler plates 

for panel zone strength and ductility requirements (see Figure 8) [AISC (2010b)]. In addition, the 

continuity and doubler plates brace the column web and flanges to prevent local buckling in the 

connection. 
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Table 1 Beam-column combinations and the beam RBS flange-cut dimensions. 

Column Beam 
Beam RBS dimensions (in.) 

a b c 

Shallow:  W14×132 W24×76 5.5 18 2 

Medium:  W18×86 W24×76 5.5 18 2 

Deep:  W30×173 W36×150 9 23 2.5 
 

 
Figure 6 Reduced Beam Section details. 

 

Figure 7 Increased column width “b” required by beam skew. 
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Figure 8 Connection Geometry. 

2.1 Finite Element Modeling Techniques  

A total of 48 advanced finite element simulations were performed, representing 3 

beam-column configurations, 4 levels of beam skew, and 4 levels of column axial load.  Table 2 

presents the analysis matrix for the 48 simulations along with some results which will be 

discussed later in the ‘Results and Discussion’ section. 

The finite element analysis software, ABAQUS/CAE [HKS (2006)], was used for all analyses.  

Shell elements (type “S4R” in ABAQUS) were used to model all frame geometries and are useful 

for simulating local buckling, asymmetric yielding, and generating local stress data for 

behavioral analysis at the connection. Reduced integration shell elements were used for 

computational efficiency and shear-locking prevention during the expected development of 

bending strains in the column and beam members, particularly in the RBS regions. The 

modeling methods used in this study are similar with those used in the previous study by Prinz 

and Richards (2016), allowing for comparison.  
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Table 2 Analysis matrix and results. 

 
 
Model 

 
 
Column 

 
 
Beam 

Beam 
Skew 
Angle 

(degrees) 

Axial 
Compression 
Force (% of 

ΦPn) 

Peak 
Moment at 
Connection 
(K-ft) 

Rotation 
at 0.8Mp 
(rad) 

Column Twist 
at 0.04 rad 
drift 
(degrees) 

W14X132_0_10%  
 
 
 
 
 
 
W14X132 

 
 
 
 
 
 
 
W24X76 

 
0 

10 869.19 0.053 0.102 

W14X132_0_15% 15 872.02 0.053 0.093 

W14X132_0_25% 25 862.24 0.053 0.096 

W14X132_0_50% 50 868.77 0.054 0.081 

W14X132_10_10%  
10 

10 857.14 0.050 0.194 

W14X132_10_15% 15 856.40 0.051 0.193 

W14X132_10_25% 25 857.34 0.051 0.186 

W14X132_10_50% 50 853.46 0.052 0.247 

W14X132_20_10%  
20 

10 857.98 0.050 0.259 

W14X132_20_15% 15 855.65 0.050 0.260 

W14X132_20_25% 25 852.89 0.050 0.268 

W14X132_20_50% 50 850.33 0.052 0.428 

W14X132_30_10%  
30 

10 851.97 0.049 0.318 

W14X132_30_15% 15 854.16 0.050 0.326 

W14X132_30_25% 25 852.89 0.050 0.354 

W14X132_30_50% 50 846.82 0.052 0.670 

W18X86_0_10%  
 
 
 
 
 
 
W18X86 

 
 
 
 
 
 
 
W24X76 

 
0 

10 874.22 0.051 0.184 

W18X86_0_15% 15 875.54 0.051 0.193 

W18X86_0_25% 25 866.17 0.051 0.214 

W18X86_0_50% 50 873.32 0.052 0.041 

W18X86_10_10%  
10 

10 855.35 0.050 0.402 

W18X86_10_15% 15 855.69 0.050 0.421 

W18X86_10_25% 25 855.09 0.051 0.453 

W18X86_10_50% 50 853.29 0.052 0.587 

W18X86_20_10%  
20 

10 832.89 0.050 0.643 

W18X86_20_15% 15 831.69 0.051 0.692 

W18X86_20_25% 25 832.97 0.051 0.773 

W18X86_20_50% 50 837.94 0.051 0.821 

W18X86_30_10%  
30 

10 817.91 0.051 1.102 

W18X86_30_15% 15 817.88 0.052 1.137 

W18X86_30_25% 25 817.76 0.052 1.117 

W18X86_30_50% 50 819.12 0.050 0.730 

W30X173_0_10%  
 
 
 
 
 
 
W30X173 

 
 
 
 
 
 
 
W36X150  

 
0 

10 2752.75 0.045 0.356 

W30X173_0_15% 15 2738.61 0.044 0.392 

W30X173_0_25% 25 2725.28 0.042 0.456 

W30X173_0_50% 50 2747.22 0.037 - 

W30X173_10_10%  
10 

10 2690.62 0.043 0.524 

W30X173_10_15% 15 2693.11 0.043 0.566 

W30X173_10_25% 25 2687.66 0.043 0.703 

W30X173_10_50% 50 2691.69 0.038 - 

W30X173_20_10%  
20 

10 2638.13 0.045 0.876 

W30X173_20_15% 15 2637.68 0.045 0.977 

W30X173_20_25% 25 2640.81 0.034 - 

W30X173_20_50% 50 2640.81 0.035 - 

W30X173_30_10%  
30 

10 2557.70 0.046 2.032 

W30X173_30_15% 15 2557.92 0.046 1.993 

W30X173_30_25% 25 2565.33 0.047 1.518 

W30X173_30_50% 50 2571.84 0.038 - 
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 A combined non-linear isotropic and kinematic material model defined the steel post-

elastic strain hardening (see Eq.1) [ABAQUS (2015)]. The steel material plastic behavior used in 

the analyses was calibrated from stabilized cycles of A572 Gr 50 steel generated from cyclic 

coupon testing [Kaufmann et al. (2001)]. A572 Gr 50 steel is similar to A992 steel, commonly 

used in rolled wide-flange shapes within the United States.  

𝛼 =  
𝐶

𝛾
(1 − 𝑒−𝛾𝜀𝑝𝑙

) +  𝛼1𝑒−𝛾𝜀𝑝𝑙
    Eq. 1  

The kinematic hardening parameter (C) and gamma 1 (γ) factor were 406.18 and 37.175, 

respectively. One backstress was used; therefore, α1 was zero. Since large plastic strains were 

expected to develop in the analyses, a yield stress (εpl) of 63.5 Ksi was specified to fit the 

hardening model to the backbone curve at larger strains, allowing better hardening accuracy 

during large plastic straining which was to be expected during the analyses. Figure 9 shows the 

calibrated hardening model (blue) in comparison with the backbone curve (red) derived from 

the stabilized cyclic coupon test data for A572 Gr 50 steel up to 8% strain [Kaufmann et al. 

(2001)]. Previous finite-element investigations [Richards and Prinz (2007), Prinz and Richards 

(2016), Richards and Uang (2005)] have used this plastic strain data in their models, which 

produced realistic global plastic strain responses for A992 steel.  

The degrees of freedom (DOFs) shown in Figure 10 are chosen to represent realistic 

constraints for the interior moment frame connection. The DOFs at the column’s base 

represent a pinned connection, conservatively overestimating connection flexural demands and 

first-story drift [Hamburger et al. (2009)]. Lateral beam supports restrain lateral movement of 
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the buckled RBS, and placed at the maximum allowable spacing of half the beam depth away 

from the RBS.  

 
Figure 9 Comparison of backbone curve and the hardening model [Kaufmann et al. (2001)]. 

 

All DOFs at a given location were applied to a node located at the cross section’s 

centroid. These particular nodes are constrained (or rigidly tied) to all edges within its cross-

section, which allows the applied boundary conditions to behave uniformly across the entire 

cross-section. Prinz and Richards (2016) considered similar boundary conditions, with the 

exception of column base fixity. 
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Figure 10 DOFs and applied loads. 

 
2.2 Mesh Size and Initial Imperfections  

For computational efficiency, the mesh size varied between 0.5-inches in the connection 

regions to 2.0-inches outside of the connection regions (see Figure 11). Larger mesh sizes were 

used outside the connection regions where an elastic response and low strain gradients are 

expected. Finer mesh sizes are used within the connection regions for better accuracy in areas 

of non-uniform geometry and high expected plastic strain gradients. The chosen refined mesh 

size of 0.5-inches corresponds to that used by previous studies of finite-element analysis of RBS 

moment connections [Zhang and Ricles (2006)], which achieved reasonable results. 
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To simulate fabrication tolerances, present in actual construction, initial imperfections 

were applied to all simulated geometries. These initial imperfections were scaled from the 

buckled mode shapes determined from eigen-frequency analyses.  Frequencies for the twelve 

different model geometries were obtained using linear perturbation analysis in ABAQUS (see 

Figure 12). Mode-shapes were then superimposed on the models as initial deformations, and 

scaled by the straightness tolerance limit of “L/1000” [AISC (2010a)], where L is the column’s 

unbraced length.  

 
 

Figure 11 Overview of meshing with 
locations of refinement. 

Figure 12 Fundamental frequency mode 
shapes for W14X132 models with (a) 0° 
skew, and (b) 30° skew.  Note the deformed 
shapes are scaled by 50 times for ease of 
viewing. 
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2.3 Loading Protocol 

All columns are loaded with an axial load equal to a percentage (between 10% and 50%) 

of the nominal compressive strength (ΦPn).  Because the columns in SMFs are often sized based 

on drift limits and ultimate demands from the RBS regions, column sections are often much 

larger than those required for gravity loads alone, and axial compressive loads up to 50% ΦPn 

represent fairly large axial loads.  Additionally, the columns used in this study are close to the 

slenderness limits for members in axial compression, again representing worst-case design 

scenarios. The slenderness limits for members with axial compression specified in AISC steel 

construction manual (2011) outline the calculation for member nominal compressive strength 

(see Appendix D for determining the nominal compressive strengths, ΦPn). 

All models were loaded using the displacement-based protocol (see Figure 13) specified 

in AISC seismic provisions (2010b). This loading protocol has been used in both analytical and 

full-scale testing of SMF components [Tsai et al. (1995), Chi and Uang (2002)]. The protocol 

outlines the number of cycles and the applied interstory drift.  In this study, beam-end 

deformations (Δy) were used to apply connection interstory drift rotations.  

Acceptable ductility for connection prequalification is defined as having reached and 

completed two cycles at 0.04 rad storydrift [AISC-341 (2010b)] (see Figure 13). The loading 

protocol continued to 0.08 rad drift (two cycles per +0.01 rad increments, as specified in the 

AISC seismic provisions (2010b)) to investigate the behavior of the SMFs at extreme 

deformations and determine the capacity of the connections. 

The nonlinear geometry option in ABAQUS captured large displacement effects on the 

SMF assembly by considering the orientation of individual elements and the resulting 
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component forces. Note however, that the analyses performed are insufficient for capturing 

crack initiation or propagation, which would typically occur at larger strains and influence the 

behavior of the assembly. Such cracks are unexpected within the connections due to the 

stiffening modifications (continuity plates and doubler plate). 

. 
Figure 13 Loading protocol. 

3. Results and Discussion 

3.1 Effect of Column Axial Loads on Global Connection Response (Yielding and Buckling) 

Column axial loads (P) affect the resulting lateral displacements (Δ) and can increase the 

presence of local buckling. Increasing axial load causes amplification of flexural/lateral 

displacements leading to column local buckling.  In addition, skewed beam-column connection 

geometries force the columns to resist moments with both strong and weak axes (see Figure 

14) causing in-plane (strong axis, Δx) and out-of-plane (weak axis, Δy) bending in the columns. 

~ 
~ 
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The distribution of accumulated equivalent plastic strain (PEEQ in ABAQUS) within the 

connection of interest (COI) showed little change with increasing axial loads (see Figure 15).   

Increase in column-flange yielding between the 25% and 50% ΦPn in the shallow-column SMFs 

was attributed to initiation of column local buckling, since the SMF eventually buckled below 

the COI (second-story connection) (see Figure 16a). Most medium-column SMFs and all deep-

column SMFs experienced column local buckling below the first-story connection (see Figure 

16b), and therefore showed no noticeable increase in PEEQ distribution in the column-flange at 

the COI.  

“Reactionary moments” at the column-flange were calculated by multiplying the 

reactionary vertical force at the beam-end and the moment arm (the beam length) (see Figure 

17).  Reactionary moments obtained at multiple storydrifts (0.02, 0.03, 0.04, and 0.05 rad drift) 

determine the SMF connection performance and help visualize RBS buckling and identify the 

development of instability mechanisms within the SMFs.  Since the beam-column 

configurations narrowly satisfy slenderness limits, the SMF “moment capacities” (reactionary 

moments following the development of an instability mechanism) were limited by column local 

buckling at relatively large drifts. The column properties for the three SMF combinations (see 

Table 3) are used to relate and compare the overall performance of the three SMFs.  
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Figure 14 Resisting of moment forces by the strong and weak axes of the column due to beam-
skew. 

  

Figure 15 Effect of column axial loads on PEEQ distribution in the COI at 0.04 rad drift, for 
models with 30° skew. Note the deep-column SMF connection at 50% ΦPn failed before 

reaching 0.04 rad drift.  
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column-
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 Figure 16 Failure from column local buckling below the: (a) second-story connection for the 
shallow column model with 30° skew and 50% ΦPn; (b) first-story connection for the deep 

column model with 20° skew and 25% ΦPn. 
 

  

Figure 17 Location of connection-moment data. 

Table 3 Column properties. 

 W14×132 
(shallow) 

W18×86 
(medium) 

W30×173 
(deep)  

ΦMpx (K-ft) 878 698 2280 

ΦMpy (K-ft) 424 182 461 

J (in4) 12.3 4.1 15.6 

 

3.1.1 Shallow-Column Models (W14×132) 

The shallow-column (W14×132) SMF simulations demonstrated the most ductility, when 

compared to the medium and deep column SMFs. Reactionary moments at the connection 

Moments at the 
connections
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initially increased in early interstory drift cycles, but decreased after 0.03 rad drift due to the 

RBS buckling and loss of bending strength (see Figure 18). Level lines in early story drifts 

indicate the beam-skew having almost no effect on the shallow-column SMFs’ reactionary 

moment. Eventually, asymmetric load distribution induced by beam-skew began to negatively-

influence the reactionary moments in later story drifts (0.05 rad drift) as distributed yielding 

within the connection increased. 

Figure 18 shows the relationship between beam skew, and moment capacity for various 

levels of column axial load.  With the exception of the largest axial load, it is evident that axial 

load has little effect on the skewed SMF moment capacity (compare the plots in Figure 18). The 

decrease in moment capacity for the 50% ΦPn axial load, 30deg skew, at 0.05rad drift  can be 

attributed to increased yielding of the column compression flange below the second-story 

connection, leading to column local buckling initiation (see again Figure 16a). 

  

Figure 18 Effects of beam-skews and axial loads on reactionary moments at the connection for 
shallow-column SMFs at various interstory drift angles. 
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3.1.2 Medium-Column Models (W18×86) 

Moment capacities in the medium-column (W18×86) SMF connections were similar to 

those in shallow-column SMFs; however, the downward trend in moment capacity with 

increased skew angle at early story drifts indicates a negative-influence of beam-skew on 

resulting moment capacity.  These downward trends gradually level-out in larger story drifts 

(story drifts greater than 0.03rad).  Note that the similarities in performance between the 

medium and shallow column could be attributed to the configuration, wherein the same 

beam section was used.   

Much like the shallow-column models, moment capacities for the lowest axial loads 

(ΦPn between 10%-25%) are grouped close to one another indicating a negligible influence of 

column axial load on global connection performance (see Figure 19). However, the highest 

column axial load (50% ΦPn) resulted in initiation of column local buckling and subsequent 

decrease in SMF moment capacity (see again Figure 19). Column local buckling was observed 

near the first story connection for the 20° and 30° skewed connections at 0.04rad story drift 

(see Figure 19a) and near the second story connection at 0.05rad drift for the 0° and 10° 

beam-skews (see Figure 19b and Figure 19c). The differing column local buckling locations 

illustrates the level of influence beam-skew exhibits on the global behavior of the SMFs with 

50% ΦPn.  
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Figure 19 Effect of beam-skews and axial loads on connection moment capacity for medium-

column SMFs at various interstory drift angles. Also included are the visualizations of the 

instability mechanisms. 

3.1.3 Deep-Column Models (W30×173) 

 The deep-column (W30×173) SMFs, which have the greatest overall flexural capacities, 

performed the worst during cyclic loading due to column local buckling issues (see Figure 20). 

Many of the deep-column SMF simulations experienced column local buckling at low 

connection rotations (near 0.03rad). Due to these early local buckling issues at higher axial 

loads, connection moment capacities from only the two lowest axial loads (10% and 15% ΦPn) 

are valid for determining the effects of beam-skew and axial load on connection response. As 



22 

shown in Figure 20, increased beam skew results in a slight reduction in moment capacity; 

however, the addition of moderate axial loads (between 10% and 15% ΦPn) appears to have 

negligible effect on connection performance (note in Figure 20 that the resulting moment 

capacity from the 10%-15% ΦPn axial loads are tightly grouped at all skew levels).  Under higher 

axial loads (25% and 50% ΦPn), the SMF connections were negatively affected by increased 

beam skew (see Figure 20).  Under 50% ΦPn column axial load local buckling initiated at 0.03rad 

for all levels of beam skew.  Under the 25% ΦPn column axial load, local buckling initiated at 

0.03rad for connection skews of 20 and greater.  

These observations raise concerns for the justifications behind modern approach of 

using deeper column sections in SMFs. These tests relied on the ductility of all components 

(beam, column, and the connection) to achieve the adequate level of ductility of 0.04 rad drift 

[AISC 341 (2010b)]. The deepest/stiffest column and beam sections significantly reduced the 

frame’s overall ductility.  Given the sudden failures of the deep-column SMFs with moderate to 

high axial loads (25% to 50% ΦPn) (see Table 4); imprecise axial load estimations could lead to a 

substantial reduction in ductility through premature column local buckling. For the deep-

column SMFs, simply increasing the axial load from 25% to 50% ΦPn affects whether the frame 

achieves the 0.04 rad drift or not, regardless of beam-skew.  The early column local buckling 

observed coincides with the failure mechanisms observed in the full-scale experiments on deep 

columns subjected to both axial loads and strong-axis bending [Uang et al. (2017)].  
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Figure 20 Effect of beam-skews and axial loads on reactionary moments at the 
connection for deep-column SMFs at various interstory drift angles. The missing data point (20° 

skew, and 25% ΦPn) is due to column buckling prior to completing 0.04 rad drift, as shown in 
Figure 16b, and an explanation is given in section 3.2.3. Also included are the instability 

mechanism visualizations, where points “h”, “i” and “j”, “k” are 10% and 15% ΦPn, respectively.  
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Table 4 Deep-column SMF failure observations. 

Model 
Rotation of Column Local 
Buckling Initiating (rad) 

W30×173_0_10% - 

W30×173_10_10% - 

W30×173_20_10% - 

W30×173_30_10% First cycle of 0.04 

W30×173_0_15% - 

W30×173_10_15% - 

W30×173_20_15% - 

W30×173_30_15% First cycle of 0.04 

W30×173_0_25% - 

W30×173_10_25% - 

W30×173_20_25% First cycle of 0.03 * 

W30×173_30_25% First cycle of 0.04 * 

W30×173_0_50% First cycle of 0.03 * 

W30×173_10_50% First cycle of 0.03 * 

W30×173_20_50% First cycle of 0.03 * 

W30×173_30_50% First cycle of 0.03 * 

* Model failed (column local buckling) in first 
cycle of subsequent rotation. 

3.2 Effect of Column Axial Load on Skewed RBS Connection Column Twisting 

Out-of-plane skew increased out-of-plane bending and resulted in increased column 

twisting and column flange tip yielding near the beam-to-column connections similar to the 

findings from [Prinz and Richards (2016)]. The beam-skew resulted in beam moment 

components along both the strong and weak axes of the column, which led to the development 

of torsional forces (Tskew) within the column section (see Figure 21a). 

Equivalent plastic strain (PEEQ) in the column-flange at the connection increased as the 

skew angle increased (see Figure 22), resulting from asymmetric yielding of the RBS, which 

ultimately led to larger lateral RBS displacements. However, the lateral displacement of the 

buckled RBS caused additional torsion within the connection (TRBS) (see Figure 21b). The torsion 
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in the column resulting from lateral movement of the RBS resembled the torsion induced by 

beam-skew, since they were both derived from the same beam-flange force (F). Therefore, the 

total torsion from both mechanisms (skew and RBS deformations) can determined by 

combining the various force-eccentricity pairs.  

Lower column axial loads (between 10% to 15% ΦPn) had little effect on resulting 

column twist (see Figure 23); however, the moderate axial load (25% ΦPn) caused premature 

column local buckling in the deep-column SMFs at 20° and 30° skews. The highest axial load 

(50% ΦPn) caused early column local buckling in the medium-column SMFs at 30° skew and 

complete column instability for the deep-column SMFs prior to reaching 0.04rad drift. Further 

discussion on the performance of each column depth configuration is provided in the following 

sections. 

  

Figure 21 Column torsion and weak axis bending produced by (a) out-of-plane beam skew 
and (b) lateral-torsional buckling of the RBS [Chi and Uang (2002)]. 
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Figure 22 Effect of beam-skew on equivalent plastic strain (PEEQ) distribution in the COI at 0.04 
rad drift, for SMFs with a consistent axial load. 

 
Figure 23 Effect of beam-skew and axial load on column twist at 0.04 rad drift. 
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3.2.1 Shallow-Column Models 

The shallow-column section (W14×132) experienced the lowest column twisting of the 

three beam-column configurations (see again Figure 23). Beam-skew showed a consistent 

correlation with column twist in all SMFs, which was expected due to the torsional force 

resulting from the out-of-plane moment components. 

Increased axial loads, excepting the highest axial load that led to column local buckling 

at high drifts, had a negligible effect on column twisting.  Note in Figure 24 that the column 

twist behavior from the 10%-25%ΦPn axial loads are tightly grouped at all beam-skew levels.  

Under larger column axial loads (50% ΦPn), the columns experienced local buckling, but only in 

later storydrifts (0.06 rad drift). No column local buckling was observed in any of the shallow-

column SMFs leading up to 0.05 rad drift. All of the column twist data were calculated from 

flange displacements Δ1 and Δ2 as shown in Figure 25. 

Axial-loads and beam-skews are inherently tied to column twisting, since they both 

influence the development of axial, torsional, and flexural stresses in the columns; however, 

any deleterious effects of combining axial load and beam-skew are only evident under the 

largest axial load (note the increase in column twist of the 50% ΦPn line in Figure 24).  
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Figure 24 Column twist with differing skews and axial loads for the shallow-column SMFs at 
various interstory drift angles. 

 

 

Figure 25 Location of data points for obtaining column twist. 
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 The medium-column (W18X86) SMFs exhibited less ductility than the shallow-column 
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0

0.2

0.4

0.6

0.8

1

0 10 20 30

0

0.2

0.4

0.6

0.8

1

0 10 20 30

10% ΦPn
15% ΦPn
25% ΦPn
50% ΦPn

0.03 Rad

0.05 Rad

Skews (°) Skews (°)

C
o

lu
m

n
 T

w
is

t 
(°

)
C

o
lu

m
n

 T
w

is
t 

(°
)

0

0.2

0.4

0.6

0.8

1

0 10 20 30

0

0.2

0.4

0.6

0.8

1

0 10 20 30

0.0
1.0

0.02 Rad

0.04 Rad

30|0



29 

polar moment of inertia and deeper section, which led to decreased torsional stiffness and 

higher eccentricity (ey-skew) from beam skew (see again Figure 21a) when compared to the 

shallow column section.  

Beam-skew influenced the magnitude of plastic strains experienced in the column web 

and flanges below the first and second-story connections, and was demonstrated by the 

differing location of column local buckling in the SMFs with the highest axial load. Beam-skew 

showed a strong correlation with column twist and resembled the shallow-column SMFs, where 

increase in beam-skew subsequently increased column twist (see Figure 26). 

Increased column axial loads had a negligible effect on column twist, at rotations up to 

0.04rad.  Figure 26 shows the relationship between beam-skew angle, column twist, and 

applied axial load.  Note in Figure 26 that axial load effects begin to increase the amount of 

column twisting at high connection rotations (0.05rad and greater).  The column of the 50% 

ΦPn load case experienced local buckling, which reduced column twist similar to the way a soft-

story reduces interstory drifts at subsequent floors.  

3.2.3 Deep-Column Models 

The SMFs containing deep columns (W30×173) demonstrated the highest overall 

column twist (see Figure 27). Beam-skew increased column twist, but determining the 

contribution at the COI is limited since the early development of column local buckling below 

the first-story connection relieved some torsional stresses.  The effect of the two lowest axial 

loads (10% and 15% ΦPn) on column twist indicate negligible effects of axial load on resulting 

column twist (see Figure 27). 
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Figure 26  Column twist with differing skews and axial loads for the medium-column SMFs at 
various interstory drift angles. Also included are the instability mechanism visualizations of the 

column compression flange. 
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Figure 27 Column twist with differing skews and axial loads for the deep-column SMFs at 

various interstory drift angles. Also included are the instability mechanism visualization of the 
column compression flange. 
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3.3 Column Flange Stress 

 Column-flange equivalent plastic strains (PEEQ in ABAQUS) were obtained to investigate 

the distribution of yielding within the connection at differing beam-skews and axial loads. 

Plastic strain data was obtained at two locations: 1) the column flange-tip outside the beam-to-

column connection and 2) the lower beam-to-column flange connection where fractures were 

observed following the 1994 Northridge Earthquake (see Figure 28). 

The column flange-tip consistently experienced the greatest amount of plastic strains. 

The plastic strains resulted from the applied boundary conditions to the column cross section at 

that location which restricted column twisting. As beam-skew increased column twist 

increased, and the resulting plastic strains at the column flange-tip increased. 

 Plastic strain distributions along the lower beam-flange to column-flange interface (see 

Figure 28 and Figure 29) were seemingly unaffected by increases in column axial load for each 

of the column configurations (see Figure 30).  Only the plastic strains along the acute angle 

between the beam and column are presented, as these strains are more severe for every 

simulation (see again the sample plastic strain contours in Figure 28).  From Figure 30, increases 

in connection plastic strains are dominated by increases in beam skew, with little variation due 

to the increases in axial load.  Additional plastic strain distributions at 0.04rad drift for each 

column configuration are shown in Figure 31.  Strain distributions resulting at higher story drifts 

are included in Appendix A.  
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Figure 28 Two common areas of maximum equivalent plastic strains (shaded). 

                      

Figure 29 Location of data extraction for column-flange PEEQ distribution. 

 

Figure 30 Effect of beam-skew and axial load on the PEEQ at the column flange-tip at 0.04 rad 
drift. 
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(a) 

 

(b) 

 

(c) 

Figure 31 PEEQ distribution along the normalized deep-column flange with varying skews and 
axial loads at 0.04 rad drift. (a) W 14×132 models; (b) W18×86 models; and (c) W30×173 

models. The red lines denote the presence of column local buckling. 
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4. Summary and Conclusions 

The effect of column axial loads on the performance of SMFs containing skewed RBS 

connections was investigated using detailed finite element analyses. A total of 48 analyses were 

performed, representing 3 beam-column configurations, 4 levels of beam skew, and 4 levels of 

column axial load.  All considered beam-column geometries narrowly satisfy slenderness limits 

as outlined in the AISC Seismic Provisions, representing worst-case scenarios for performance 

evaluation. The following conclusions are based on the 48 analyses: 

1. Increasing beam-skew and axial load has little effect on connection moment capacity 

prior to column local buckling initiation.   

2. Increasing column axial load (up to 50% ΦPn) has a negligible effect on resulting column 

twist. Beam-skew angle is the dominate contributor to resulting column twist.  

3. Applied column axial loads have little effect on column flange yielding within the beam-

to-column connections.  Column flange yielding is dominated by the applied beam-skew 

angle.  

4. Deep-column SMFs are susceptible to column local buckling at low beam-skew angles. 

Under the larger applied axial loads (50% ΦPn) column local buckling was observed in 

the deep-column configurations at low drifts (less than 0.04rad) and at all beam skew 

angles.  It is important to note that the medium-depth columns also experienced local 

buckling issues at low drifts (less than 0.04rad); however, this only occurred at large 

beam-skew angles (greater than 20deg) and large axial loads. 
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Appendix 

A. Distribution of PEEQ along column flange: 

 Figures 32A, 33A, and 34A display the equivalent plastic strains (PEEQ) along the column 

flange for the shallow (W14X132), medium (W18X86), and deep (W30X173) column sections, 

respectively. The strains, taken at the elevation just below the bottom flange of the beam on 

the acute angle side of the skew (see Figure 29), showed the distribution of yielding as skew 

and/or axial load increased. The red lines represent the rotations at which the columns 

contained an instability mechanism, usually some degree of column local buckling. 

 

 

Figure 32A Distribution of PEEQ at 0.04 and 0.05 rad drift with varying skews and axial loads for 
the shallow-column SMFs. 
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Figure 33A Distribution of PEEQ at 0.04 and 0.05 rad drift with varying skews and axial loads for 

the medium-column SMFs. 

 

 

Figure 34A Distribution of PEEQ at 0.04 and 0.05 rad drift with varying skews and axial loads for 
the deep-column SMFs. 
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B. Hysteresis graphs: 

 Figures 35B – 38B, Figures 39B – 42B, and Figures 43B – 46B show the hysteresis graphs 

for the W14×132 (shallow-column) models, W18×86 (medium-column) models, and W30×173 

(deep-column) SMFs at the four different beam skews, respectively. The hysteresis graphs on 

the left show the connection moments (in K-ft), and the respective storydrifts. The hysteresis 

graphs on the right show the same connection moments along with the corresponding effect on 

column twisting. The red dashed-lines are the beam moments (K-ft) representing 0.8Mp, and 

the green lines show the approximated backbone curves. The intersection of the red and green 

lines are the storydrifts obtained at 0.8Mp, summarized in Table 2. 
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Figure 35B Hysteresis graphs showing moments and column twist with storydrift for the 
shallow-column SMFs containing 0° skew. 
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Figure 36B Hysteresis graphs showing moments and column twist with storydrift for the 
shallow-column SMFs containing 10° skew. 
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Figure 37B Hysteresis graphs showing moments and column twist with storydrift for the 
shallow-column SMFs containing 20° skew. 

 

M
o

m
e

n
t 

(K
-f

t)

Storydrift (Rad)

M
o

m
e

n
t 

(K
-f

t)
M

o
m

e
n

t 
(K

-f
t)

M
o

m
e

n
t 

(K
-f

t)

-1000

-500

0

500

1000

-0.014 -0.01 -0.006 -0.002 0.002 0.006

10% ΦPn

-1000

-500

0

500

1000

-0.014 -0.01 -0.006 -0.002 0.002 0.006

15% ΦPn

-1000

-500

0

500

1000

-0.014 -0.01 -0.006 -0.002 0.002 0.006

-1000

-500

0

500

1000

-0.014 -0.01 -0.006 -0.002 0.002 0.006

25% ΦPn

50% ΦPn

-1000

-500

0

500

1000

-0.1 -0.05 0 0.05 0.1

10% ΦPn

-1000

-500

0

500

1000

-0.1 -0.05 0 0.05 0.1

15% ΦPn

-1000

-500

0

500

1000

-0.1 -0.05 0 0.05 0.1

-1000

-500

0

500

1000

-0.1 -0.05 0 0.05 0.1

25% ΦPn

50% ΦPn

Column Twist (Rad)

0.1/-0.014

-1000
1000

-1000
1000

-1000
1000



44 

 

Figure 38B Hysteresis graphs showing moments and column twist with storydrift for the 
shallow-column SMFs containing 30° skew. 
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Figure 39B Hysteresis graphs showing moments and column twist with storydrift for the 
medium-column SMFs containing 0° skew. 
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Figure 40B Hysteresis graphs showing moments and column twist with storydrift for the 
medium-column SMFs containing 10° skew. 
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Figure 41B Hysteresis graphs showing moments and column twist with storydrift for the 
medium-column SMFs containing 20° skew. 
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Figure 42B Hysteresis graphs showing moments and column twist with storydrift for the 
medium-column SMFs containing 30° skew. 
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Figure 43B Hysteresis graphs showing moments and column twist with storydrift for the deep-
column SMFs containing 0° skew. 
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Figure 44B Hysteresis graphs showing moments and column twist with storydrift for the deep-
column SMFs containing 10° skew. 
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Figure 45B Hysteresis graphs showing moments and column twist with storydrift for the deep-
column SMFs containing 20° skew. 
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Figure 46B Hysteresis graphs showing moments and column twist with storydrift for the deep-
column SMFs containing 30° skew. 
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C. RBS flange-cut dimension calculations: 

The following section outlines the iterative process of calculating the RBS flange-cut 

dimensions as outlined in AISC seismic design manual (2012). The process is summarized in 

three steps once the beam and columns have been selected: 

1. Assume the values for “a”, “b”, and “c” based on dimension limits provided in the 
AISC Seismic Provisions (AISC, 2012). 

2. Calculate the moment at the column flange (Mf) resulting from the plastic moment 
in the RBS (MPR), as shown in Figure 46C. 

3. Make sure the induced moment (Mf) is less than the moment capacity (MPf) at the 
column face. 

 

Figure 47C Visualization of moment distribution along the beam and the influence of the plastic 
moment in the RBS moment (MPR) on the moment at the column face (Mf). 
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1. Assuming a, b, and c: 

Beam (W24×76) properties: bf = 8.99 in, db = 23.9 in, tf = 0.68 in, Zx = 200 in3 

Column (W14×132) properties: dc = 14.7 in 

Limits:          0.5bf ≤ a ≤ 0.75bf                    4.0 ≤ a ≤ 6.74 

0.65db ≤ b ≤ 0.85db              15.54 ≤ b ≤ 20.31  

0.1bf ≤ c ≤ 0.25bf             0.9 ≤ c ≤ 2.24 

    Initial assumptions: a = 6 in, b = 18 in, and c = 1.5 in 

2. Calculate the moments at the column flange (Mf) induced by the RBS plastic moment (MPR). 

𝐿’ =  𝐿 –  2𝑎 – 𝑑𝑐 –  𝑏     Eq. 2 
𝑍𝑅𝐵𝑆  =  𝑍𝑋 – (2)(𝑐)(𝑡𝑓)(𝑑𝑏 – 𝑡𝑓)     Eq. 3 

𝑀𝑃𝑅 =  𝐶𝑃𝑅𝑅𝑌𝑍𝑅𝐵𝑆𝐹𝑌      Eq. 4 

𝑉𝑃 =  
𝑀𝑃𝑅

(
𝐿′

2
)
       Eq. 5 

𝑀𝑓 =  𝑀𝑃𝑅 +  (𝑉𝑃)(𝑎 +
𝑏

2
)      Eq. 6 

where “FY” is the yield strength of A992 Grade 50 steel, which is 50 Ksi. “L’” is the distance 

between the two plastic hinges (middle of the flange cuts), and was found to be 315.3 

inches. “ZX” and “ZRBS” are the plastic section moduli about the axis of bending (X- axis) for 

the entire (uncut) section and the reduced section, which were found to be 200 in3 and 

152.63 in3, respectively. “MPR” is the plastic moment of the RBS, calculated as 10,073.6 K-

in. “CPR” is the strain hardening factor and “RY” is the over strength factor of 1.2 and 1.1, 

respectively. “VP” is the shear at the plastic hinge, and was determined to be 63.9 K. 

Finally, “Mf” is the moment force at the column face determined from the linear 

relationship of the shear force along the beam, and was calculated as 11,032 K-in. 
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3. Compare to the moment capacity at the column flange (MPf): 

𝑀𝑃𝑓 =  𝑅𝑌𝑍𝑋𝐹𝑌      Eq. 7 

“MPf” was found to be 11,000 K-in. The limit Mf < MPf was not satisfied, and therefore must 

start over. To reduce Mf, we can either increase “c” and/or “b”, or decrease “a”. 

1. The new RBS flange cut dimensions will be: 

a = 5.5 in, b = 18 in, and c = 2 in 

2. L’ = 316.3 in, ZRBS = 136.84 in3, MPR = 9,031.55 K-in, VP = 57.11 K, Mf = 9,859.61 K-in 

3. The limit Mf < MPf was satisfied, therefore: 

 a = 5.5 in, b = 18 in, and c = 2 in 
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D. Determination of column nominal compressive strength: 

Table 1-2 in the AISC’s seismic design manual (2012) shows that all columns and beams 

used in the models are “seismically-compact” for SMFs. However, the columns must also be 

checked for additional slenderness ratios since they are also experiencing axial compression. 

The local buckling slenderness ratios, found in Table B4.1a in AISC steel construction manual 

(2011), dictate how to determine the “KL/r” ratio which in turn governs which equations used 

to find the nominal compressive strengths (ΦPn). The shallow and medium columns passed all 

of the local buckling ratios from the mentioned table (Q=1). The deep column, however, did not 

satisfy the slenderness ratio for stiffened elements (i.e. the web) for a yield strength of 50 Ksi. 

The calculation for its nominal compressive strength, ΦPn, in this thesis was based on a Q of 1; 

however, the actual Q is 0.95 considering the stiffened slender web section. This results in a 

slight discrepancy for the deep column axial loads provided (ie. a 25% ΦPn as described, 

considering Q=1, will represent approximately 25.8% ΦPn when considering a Q of 0.95).  Since 

the slenderness ratio (Eq. 8) was satisfied in all column sections, ΦPn was found using equations 

9-11, gathered from Chapter E in the AISC steel construction manual (2011) for compression 

members with slender elements: 

𝐾𝐿

𝑅
≤ 4.71√

𝐸

𝑄𝐹𝑦
                Eq. 8 

𝐹𝑐𝑟 = 𝑄 [0.658
𝑄𝐹𝑦

𝐹𝑒 ] 𝐹𝑦       Eq. 9 

𝐹𝑒 =
𝜋2𝐸

(
𝐾𝐿

𝑟𝑦
)2

           Eq. 10 
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ΦPn = (0.9)𝐹𝑐𝑟𝐴𝑔      Eq. 11 

The nominal compressive strengths were found to be 1510, 880, and 1968 Kips for the 

shallow (W14×132), medium (W18×86), and deep columns (W30×173), respectively. 
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