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Abstract

The goal of this paper is to show for a compact triangulated 3-manifold M with boundary

which fibers over the circle that whenever F is a fiber with sufficiently negative Euler

characteristic the monodromy maps an essential simple closed curve or an essential simple

arc in F to be disjoint from its image (possibly after isotopy). This is shown by applying the

theorem of Ichihara, Kobayashi, and Rieck in [10] to the double of M to get a pair of pants. We

then find an equivariant pair of pants and use it to find an essential simple closed curve or an

essential simple arc which satisfies our theorem. As a corollary, if we add the hypothesis that

M is a hyperbolic manifold, we get that the translation distance of the monodromy in the arc

and curve complex of F is at most 1 for all but finitely many monodromy maps.
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1 Introduction

The goal of this paper is to prove a result about fibered 3-manifolds. Our main result is the

following (for standard definitions see section 2):

Theorem 1.1. Let F be a connected surface, let µ : F → F be a homeomorphism, and let

M := (F × [0,1])/ ∼ where (x,0) ∼ (µ(x),1) for x ∈ F . Let t (M) be the minimal number of

tetrahedra required to triangulate M . If χ(F ) ≤−76t (M)+1 then there is an essential simple

closed curve or essential simple arc which is disjoint from its image under µ (possibly after

isotopy).

The case when F is closed is due to Ichihara, Kobayashi, and Rieck in [10]. The current

paper exclusively deals with the case when F has boundary.

In this section we assume the reader is familar with the curve complex of a surface F

denoted C (F ) and the arc and curve complex of a surface F denoted AC (F ). A brief

discussion on these topics is included in section 3. Notice that the homeomorphism µ : F → F

in Theorem 1.1 induces an isometry µ∗ : AC (F ) →AC (F ) on AC (F ). We define the

translation distance of µ in AC (F ) to be min{d(v,µ∗(v)) | v ∈AC (F ) is a vertex} where d is the

distance between vertices in the arc and curve complex. Note that µ sends essential simple

closed curves to essential simple closed curves and essential simple arcs to essential simple

arcs. Since we found in Theorem 1.1 an essential simple closed curve or essential simple arc

which is disjoint from its image under µ (possibly after isotopy) we see that the translation

distance for µ in AC (F ) is at most 1.

We now describe two types of 3-manifolds. A 3-manifold is simple if it contains no

essential surfaces with nonnegative Euler characteristic and, as in [11, p. 42], a compact

orientable irreducible 3-manifold is a Haken manifold if it contains a 2-sided incompressible

surface. A result due to Haken, as presented in [15], states that for a simple Haken 3-manifold

there is a finite number of essential surfaces with a given Euler characteristic. This result also

holds when the 3-manifold is simple and not Haken since then the manifold will have no
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essential surfaces, however, this case is less interesting to us.

As stated in [8, p. 16], an irreducible 3-manifold is called atoroidal if every incompressible

torus is boundary parallel. Thurston’s hyperbolization theorem, as presented in [12], states

that a compact atoroidal Haken 3-manifold M whose boundary consists of a possibly empty

collection of tori has interior which admits a complete hyperbolic metric of finite volume. A

hyperbolic manifold is a compact 3-manifold whose interior admits a complete finite volume

Riemanian metric locally isometric to hyperbolic 3-space. So this theorem says that such an M

is a hyperbolic manifold. For some background on hyperbolic manifolds see for example [2].

Going back to the setting in Theorem 1.1, notice that if F is orientable and µ : F → F is

orientation preserving then M is orientable. We show in Corollary 2.20 that M must be

irredicuble and moreover we show in Lemma 2.15 that F associated with F × {0} is essential

and hence incompressible in M . We conclude in this case that M is a Haken manifold. So

under these restraints M satisfies all of the hypotheses in Thurston’s hyperbolization theorem

except for being atoroidal. Without adding another hypothesis we cannot guarantee that M is

atoroidal.

Let M be a 3-manifold. A surface F in M is called a fiber if M\\F is diffeomorphic to F × I .

We define for an isotopy class of a fiber F the monodromy of F in M to be the isotopy class of

diffeomorphisms µ : F → F so that M := (F × I )/ ∼ where (x,0) ∼ (µ(x),1) for x ∈ F . If M is a

3-manifold which fibers over S1 then at least one monodromy exists. In general a 3-manifold

M may have more than one monodromy corresponding to distinct fibers. We consider

Thurston’s hyperbolization theorem for fibered manifolds presented in [16] which states: let M

be a 3-manifold that fibers over S1 whose monodromy is a pseudo Anosov diffeomorphism µ.

Then the interior of M admits a complete hyperbolic metric of finite volume. That is, M is a

hyperbolic manifold. For a discussion on what it means for a diffeomorphism to be pseudo

Anosov see for example [4] and [6].

Let M be a compact 3-manifold which fibers over S1. A priori it is unknown how many
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isotopy classes of essential surfaces are fibers for M . Since M is a specific 3-manifold it has a

fixed number of tetrahedra, t (M), for a minimal triangulation. Applying Theorem 1.1 to M we

get that only fibers, F , with sufficiently high Euler characteristic (that is χ(F ) >−76t (M)+1)

will have monodromy with translation distance in AC (F ) greater than 1. Now assume that the

monodromy of F in M is pseudo Anosov, Thurston’s hyperbolization theorem for fibered

manifolds tells us that M is hyperbolic. Additionally, since the monodromy of F is pseudo

Anosov M is simple. Finally, if we require that M is orientable we get from our argument earlier

that M is a Haken manifold. Applying the earlier theorem of Haken’s we get that at most

finitely many isotopy classes of fibers have sufficiently high Euler characteristic. From our

discussion we get the following corollary:

Corollary 1.2. Let M be a compact orientable hyperbolic 3-manifold. Then there are at most

finitely many isotopy classes of fibers whose monodromy has translation distance in AC (F )

greater than 1 .

The closed case for Corollary 1.2 is due to Ichihara, Kobayashi, and Rieck in [10]. Now,

from just Corollary 1.2, we don’t even know if a compact hyperbolic 3-manifold has a single

monodromy; in general a compact hyperbolic 3-manifold need not fiber over S1. Now, under

certain conditions, we can use Corollary 1.2 to get a much stronger conclusion. Let

H2(M ,∂M ;R) be the second homology of M relative to ∂M . Whenever M is a hyperbolic

3-manifold which fibers over S1 and dim(H2(M ,∂M ;R)) ≥ 2, then there are infinitely many

isotopy classes of fibers F in M so that M fibers over S1 with fiber F . This result is derived from

the work of Thurston in [19]. It turns out that hyperbolic 3-manifolds which fiber over S1 with

dim(H2(M ,∂M ;R)) ≥ 2 naturally arise as the covering space of a hyperbolic manifold. Indeed,

in [1] Agol proves the virtual fibering conjecture which states that for a closed hyperbolic

3-manifold M there exists a finite-sheeted cover M̃ → M such that M̃ fibers over S1 and

satisfies dim(H2(M̃ ,∂M̃ ;R)) ≥ 2. Moreover, in [20] Wise proves the virtual fibering conjecture

when M is a complete finite volume hyperbolic 3-manifold that is not closed; also see [21] and
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reference within. So there are many compact hyperbolic 3-manifolds M which fiber over S1

satisfying dim(H2(M ,∂M ;R)) ≥ 2. In particular, our next two corollaries are not vacuous. From

our discussion along with Corollary 1.2 we conclude the following:

Corollary 1.3. Let M be a compact orientable hyperbolic 3-manifold which fibers over S1

satisfying dim(H2(M ,∂M ;R)) ≥ 2. Then M has infinitely many isotopy classes of fibers of which

only finitely many have monodromy with translation distance in AC (F ) greater than 1.

As in Corollary 1.2 the closed case for Corollary 1.3 also follows from [10], this is due to the

fact that the arc and curve complex and the curve complex are equivalent for closed surfaces.

We finish this section off by relating our result for the arc and curve complex to a similar result

for the curve complex. Applying Lemma 3.4 to Corollary 1.3 we conclude the following:

Corollary 1.4. Let M be a compact orientable hyperbolic 3-manifold which fibers over S1

satisfying dim(H2(M ,∂M ;R)) ≥ 2. Then then M has infinitely many isotopy classes of fibers of

which only finitely many have monodromy with translation distance in C (F ) greater than 2.

Again the closed case follows from [10]. In fact, they get the slightly better result that only

finitely many isotopy classes of fibers will have monodromy with translation distance in the

curve complex greater than 1.
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2 Preliminaries

In this paper we use methods from the study of 3-dimensional manifolds. We define briefly

some of our basic terms and mention some of the notation we will use. We always assume

transversality unless it is clear from context otherwise.

Definition 2.1. An N -manifold M N is a Hausdorff second countable topological space such

that every point in M N has a neighborhood homeomorphic to an open set of RN
≥0, where N is

the dimension of M N . The boundary of M N , denoted ∂M N , is the set of all points which do not

have a neighborhood homeomorphic to an open set of RN . Let M1 and M2 be manifolds (not

necessarily of the same dimension) and let f : M1 → M2, we say that f is proper if the preimage

of the boundary of M2 is equal the boundary of M1.

We include some of our basic notation. We use I to represent the closed interval [0,1]. We

use S1 to represent the circle. For a surface F we denote the Euler characteristic of F to be χ(F ).

For a topological space X we denote int(X ) to be the interior of X and cl(X ) to be the closure of

X . We use ∼= to mean homeomorphic to. For a function f we use f |D to mean f restricted to D

and im( f ) to mean the image of f .

Some of the major subjects studied in this paper include that of fiber bundles, essential

surfaces, irreducible manifolds, normal surfaces and the double of a manifold. Over the next

several pages we will be discussing these terms and related concepts in detail. We first

introduce fiber bundles.

Definition 2.2. Let M and N be manifolds. A map f : M → N is an embedding if it is a

homeomorphism onto its image f (M) and f (M) is a submanifold of M . (See [18, p. 4])

Recall for a smooth manifold X and with a point p ∈ X that the tangent space of X at p is

denoted Tp X . Also recall that the tangent bundle of X is denoted by TX where

TX := {(p, v) | p ∈ X , v ∈ Tp X }.

Definition 2.3. Let F be a properly embedded surface in a 3-manifold M . A coorientation of F
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is represented by a continuous function f : F → TM so that for all p ∈ F , f (p) ∈ Tp M\Tp F . We

say that two coorientations g1 and g2 are equivalent if there exists a homotopy

H : F × [0,1] → TM so that H(s,0) = g1(s) and H(s,1) = g2(s) for all s ∈ F and, moreover, for

every fixed t0 ∈ [0,1] we require that H(s, t0) is a coorientation. Notice that for each point p ∈ F

the space Tp M\Tp F is disconnected. So F can have at most two coorientations. We say that F

is 2-sided if it has two coorientations.

Definition 2.4. Let F , E , and B be topological spaces, and p : E → B a continuous surjection.

We say that ξ= (F,E ,B , p) is a fiber bundle (or simply a bundle) if the preimage of every b ∈ B is

homeomorphic to F , and moreover, these preimages satisfy the local triviality condition: every

b ∈ B has an open neighborhood U ⊂ B , so that there is a homeomorphism F ×U → p−1(U )

that maps F × {x} homeomorphically onto p−1(x) for every x ∈U . We call E the total space, B

the base, F the fiber, and p the bundle projection. We say that ξ is an F bundle over B . A bundle

(F,E ,B , p) is called a trivial bundle if E ∼= F ×B and p is the projection onto the second factor.

Definition 2.5. A covering space of a space X is a space X̃ together with a map p : X̃ → X

satisfying the following condition: there exists an open cover {Uα} of X such that for each α,

p−1(Uα) is a disjoint union of open sets in X̃ , each of which is mapped by p homeomorphically

onto Uα. We do not require p−1 to be nonempty, so p need not be surjective. (See [7, p. 56])

Definition 2.6. Let M be an n-manifold. Let S be a submanifold of M of dimension m. A

regular neighborhood of S is a submanfold NS of M of dimension n that is the total space of a

bundle over S with fiber the n −m ball B n−m . (See [18, p. 60])

In this paper we are primarily interested in fiber bundles with total space a 3-manifold M ,

base S1, fiber a surface F , and bundle projection p. It follows from the bundle structure that

p−1(x) ∼= F × {x} is 2-sided in M for every x ∈ S1. In this setting since F × {x} is homeomorphic

to F for all x ∈ S1 we often refer to {F × {x} ⊂ M | x ∈ S1} as the fibers of M without explicitly

mentioning the bundle projection. We often associate F with F × {0} using the association of S1

with [0,1]/ ∼, where 0 ∼ 1, to make sense of {0} in S1.
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We now introduce terminology related to essential surfaces along with related results used

in this paper.

Definition 2.7. A properly embedded surface F in a 3-manifold M is called boundary parallel if

it is isotopic, fixing ∂F , to a subsurface of ∂M . (See [8, p. 16])

Definition 2.8. A 2-sided connected surface F , which is not a sphere, is called incompressible if

for each disk D ⊂ M with D ∩F = ∂D there is a disk D ′ ⊂ F with ∂D ′ = ∂D . If F is a sphere then it

is said to be incompressible if it does not bounds a 3-ball. (See [8, p. 13])

Remark. In some references, such as [9, p. 58], the disk may have additional requirements to be

incompressible. We will not worry about these details.

Definition 2.9. A properly embedded surface F in a 3-manifold M is boundary incompressible

if for each disk D ⊂ M such that int(D)∩ (F ∪∂M) =;, ∂D ∩F is an arc α, ∂D\α⊂ ∂M is an

open arc β, and there exists a disk D ′ ⊂ F with α⊂ ∂D ′ and ∂D ′−α⊂ ∂F . (See [8, p. 18])

In addition to the two previous definitions we also say a surface is compressible if it is not

incompressible and a surface is boundary compressible if it is not boundary incompressible.

Furthermore, in the definition of an incompressible surface, the disk D is a compressing disk

for F and in the definition of a boundary incompressible surface, the disk D is called a

boundary compressing disk for F . We now define what it means to be an essential surface.

Definition 2.10. A surface S in a 3-manifold M is said to be essential if it is incompressible,

boundary incompressible, and not boundary parallel.

Related to the notion of an essential surface we have the notion of an essential simple

closed curve and an essential arc. Before we define these, we introduce the notation \\ which

means cut open along. In particular, for a manifold X with a properly embedded

codimension-1 submanifold Y , we define X \\Y to be the closure of a X \NY , where NY is a

regular neighborhood of Y .

Definition 2.11. A simple closed curve α in a connected surface F is said to be essential if

either F \α is connected or F \\α does not have a disk or an annulus component.

7



Definition 2.12. A simple arc η is said to be an essential arc in a connected surface F if η is

properly embedded and either F \η is connected or F \\η does not contain a disk component.

We now introduce the concept of an essential subsurface contained in a surface along with

a related lemma.

Definition 2.13. Let H be an embedded subsurface of a surface S. We say that H is an essential

subsurface of S if no component of ∂H bounds a disk in S. We do not worry about components

of ∂H being boundary parallel in S.

Lemma 2.14. Let H be a connected essential subsurface of a connected surface S, where S is

not a sphere, then χ(S) ≤χ(H).

Proof of Lemma 2.14. Suppose for a contradiction that χ(H) <χ(S). If it is not already the case

we isotope H to ensure that ∂H is disjoint from ∂S while still ensuring that H ⊂ S. The previous

sentence along with the fact that the boundary components of a surface are all simple closed

curves allows us to have that χ(S) =χ(H)+χ(S\H) or χ(S)−χ(H) =χ(S\H). Since

χ(S)−χ(H) > 0 we see that χ(H\S) > 0. Since the Euler characteristic is addative over disjoint

unions cl(S\H) has a component with positve Euler characteristic and boundary. Hence a

component of cl(S\H) is a disk. Since we are considering H ⊂ S we get that H has a boundary

component which bounds this disk. This is a contradiction since we assumed that H was

essential. We conclude that the result of the lemma. ä
The following lemma is imporant for the main result of this paper.

Lemma 2.15. Let F be a connected surface. Let µ : F → F be a homeomorphism. Identify F

with F × {0}. Then F is an essential surface of M := (F × [0,1])/ ∼ where (x,0) ∼ (µ(x),1) for

x ∈ F .

Proof of Lemma 2.15. In the case that F is a sphere it is clear from the structure of M that F

does not bound a ball and hence is incompressible, In the case that F is not a sphere, suppose

for a contradiction that F is compressible. Then there exists a disk D ⊂ M such that D ∩F = ∂D

and there does not exist a disk D ′ ⊂ F with ∂D ′ = ∂D . Since int(D)∩F =; we conclude that F is
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also compressible in F × I with compressing disk D . We assume without loss of generality that

∂D ⊂ F = F × {0}. Notice that F × I deformation retracts onto F and let ι : F ,→ F × I be the

inclusion. It follows from [7, Prop. 1.17, p. 36] that the induced map ι∗ :π1(F, p) →π1(F × I , p)

is an isomorphism, where p ∈ ∂D . The inclusion of ∂D into F is a nullhomotopic embedding.

Since ∂D represents the trivial element in π1(F × I , p) our isomorphism shows that ∂D also

represents the trivial element in π1(F, p). Since ∂D is an embedded curve in the surface F and

represents the trivial element in π1(F, p) it must bound an embedded disk in F . We assumed

that such a disk does not exist and hence have a contradiction. We conclude that F is

incompressible in M .

If ∂F =; then F is trivially boundary incompressible. Otherwise if ∂F 6= ; we suppose for a

contradiction that F is boundary compressible. Then there exists a disk D in M such that

int(D)∩ (F ∪∂M) =;, ∂D ∩F is an arc α, ∂D\α⊂ ∂M is an open arc β, and there does not exist

a disk D ′ ⊂ F with α⊂ ∂D ′ and ∂D ′\α⊂ ∂F . Notice that β is disjoint from F . Since we are

considering when F has boundary and these boundary components are simple closed curves

we get that ∂M consist of tori and Klein bottles. Let C be the component of ∂M containing β.

Notice that C∗ :=C \F consists of one or more disjoint open annuli. Since β is disjoint from F

we get that β is contained in one of the annuli in C∗; we call this component C ′. Since α⊂ F ,

α∪β= ∂D , and β⊂C ′ we get that either β connects distinct ends of C ′ or β connects an end of

C ′ to the same end. Suppose for a contradiction that β connects distinct ends of C ′, we

consider the following maps:

• ι : ∂D =α∪β∼= S1 ,→ M , the inclusion

• q : M → S1, projection onto the base of the fiber bundle

Since β is disjoint from F and connects distinct ends of C ′ we get that q ◦ ι not nullhomotopic.

We get the following induced homomorphisms:

• ι∗ :π1(∂D, p1) →π1(M , p1), the 0-map
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• q∗ :π1(M , p1) →π1(S1, p2)

where p1 ∈α⊂ ∂D and p2 = q(p1). Since q ◦ ι is not nullhomotopic we get that (q ◦ ι)∗ = q∗ ◦ ι∗
is not the 0-map. Now, since ι∗ is the 0-map q∗ ◦ ι∗ is also the 0-map, a clear contradiction.

Thus, β connects an end of C ′ to the same end of C ′. So β and an arc component of ∂F

cobound a disk in cl(C ′). So we may isotope β, in C , into ∂F . This isotopy will also isotope ∂D

into F . Doing this isotopy of D we get α⊂ ∂D and ∂D\α⊂ ∂F ⊂ F . Since F is incompressible

there exists a disk D∗ ⊂ F such that ∂D∗ = ∂D . In particular, ∂D∗\α⊂ ∂F and since we have

assumed that such a disk D∗ did not exist we have a contradiction. We conclude that F is

boundary incompressible.

Since F is boundary incompressible it follows that F is not boundary parallel. We conclude

that F is essential in M . ä
This lemma actually shows that every fiber of 3-manifold which fibers over S1 is essential.

We now introduce the definition of an irreducible manifold along with a useful definition and

some results which relate to fibered 3-manifolds.

Definition 2.16. A 3-manifold M is irreducible if every 2-sphere S2 ⊂ M bounds a 3-ball

B 3 ⊂ M . (See [8, p. 6])

Definition 2.17. For a disk D and a finite collection of pairwise disjoint simple closed curves

{γi } which are disjoint from ∂D we say that γ ∈ {γi } is an innermost simple closed curve of D if

there exists a disk D ′ ⊂ D bounded by γ which is disjoint from any other element in {γi }.

Similarly, for a 2-sphere S and a finite collection of pairwise disjoint simple closed curves

{γi } ⊂ S we say that γ ∈ {γi } is an innermost simple closed curve of S if there exists a disk D ′ ⊂ S

bounded by γ which is disjoint from any other element in {γi }.

Lemma 2.18. If F is a connected surface with boundary and χ(F ) ≤ 1, then F × I is irreducible.

Proof of Lemma 2.18. We induct on −χ(F ). Base case: If χ(F ) = 1 then since ∂F 6= ; we get that

F is a disk. Thus F × I is a 3-ball and as shown by Schultens in [18, p. 66-67], which utilizes the
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Schonflies Thereom which states that every sphere in R3 bounds a 3-ball, we get that F × I is

irreducible.

Induction hypothesis: F × I is irreducible for −χ(F ) = k.

Induction step: Suppose −χ(F ) = k +1. Recall that ∂F 6= ;.

We consider two cases. First consider when ∂F consists of two or more components. Let η

be a properly embedded arc in F with ∂η in two distict components of ∂F . Notice that F \\η is

connected. See for example Figure 1.

Figure 1: Non-separating essential arc for a surface with more than one boundary component.

Now consider when ∂F consists of exactly one component. Since we have already

considered the case when χ(F ) = 1 we may assume that χ(F ) ≤ 0. It follows that F has genus.

That is, F consists of a finite connect sum of tori or projective planes along with a single

boundary component. It follows that there exists an essential arc η such that F \\η is

connected. See for example Figure 2 and Figure 3.

Figure 2: Non-separating essential arc with a curve connecting points on both sides of the arc
for a surface with one boundary component.

Figure 3: Non-separating essential arc in a mobius strip.
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In both cases, for our choice of η, we get that F \\η is connected. Since χ(η) = 1 we get that

χ(F \\η) =χ(F )+1. Thus,

−χ(F \\η) =−χ(F )−1 = (k +1)−1 = k

and so (F \\η)× I is irreducible by our induction hypothesis. Let B be a regular neighborhood

of η× I . Notice that cl
(
(F × I )\B

)
is homeomorphic to (F \\η)× I and hence is irreducible.

To show that F × I is irreducible, it is sufficient to show that every sphere in F × I can be

isotoped to be disjoint from η× I . This is sufficient because then the sphere can be isotoped

into cl
(
(F × I )\B

)
which is irreducible and hence the sphere must bound a ball both before and

after the isotopy. Suppose for a contradiction that there exist one or more spheres which

cannot be isotoped to be disjoint from η× I . Of all the spheres which cannot be isotoped to be

disjoint from η× I , let S be the sphere which, after isotopy, intersects η× I in the fewest

components. Let A be the components of (η× I )∩S. Let α ∈A be an innermost simple closed

curve in η× I . Since η× I is a disk it is contractible and hence there exists a disk D ⊂ η× I with

∂D =α. Notice that there are open disks D1 and D2 such that S = D1 ∪α∪D2. Define

S1 := D1 ∪D and S2 := D2 ∪D . So S1 and S2 are spheres which may be isotoped, in the region

around D , to be disjoint from η× I without introducing any new intersections. Thus S1∩ (η× I )

and S2 ∩ (η× I ) have fewer components than S ∩ (η× I ) and hence we may isotope S1 and S2 to

be disjoint from η× I due to our assumption that S is the sphere with the fewest components

of interesection with η× I after isotopy. It follows that S1 bounds a 3-ball B1 and S2 bounds a

3-ball B2. Since isotopy will not change the fact that S1 and S2 both bound 3-balls we may

assume they are in their original position where S1 ∩S2 = D . It should be noted that B1

(respectivly B2) may a priori be on either side of S1 (respectively S2), however, a 3-ball only has

one boundary component and hence can only be on one side of S1 (respectively S2). We

conclude that S bounds the 3-ball B1 ∪B2. Since S bounds a 3-ball we may isotope S to be

disjoint from η× I . From our assumption about S this is a contradiction. We get that every
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sphere in F × I may be isotoped to be disjoint from η× I . We conclude that F × I is irreducible

which completes our induction step and the proof. ä

Corollary 2.19. If F is a connected surface with boundary and χ(F ) ≤ 1, then F × (0,1) is

irreducible.

Proof of Corollary 2.19. Every sphere in F × (0,1) is contained in F × I and hence by

Lemma 2.18 must bound a 3-ball (disjoint from the boundary).ä

Corollary 2.20. Let F be a connected surface with boundary and χ(F ) ≤ 1. Let µ : F → F be a

homeomorphism. Define M := (F × [0,1])/ ∼ where (x,0) ∼ (µ(x),1) for x ∈ F . Then M is

irreducible.

Proof of Corollary 2.20. Suppose for a contradiction that M is not irreducible. Then there exists

a sphere S ⊂ M which does not bound a ball. Identify F with F × {0}. We get, from Lemma 2.15,

that F is essential in M . If after isotopy S ∩F =; then S ⊂ M\F = F × (0,1). We know, from

Corollary 2.19 that F × (0,1) is irreducible and hence S must bound a ball. This is a

contradiction. Thus, we may assume that S ∩F 6= ; and that S cannot be isotoped to be

disjoint from F . Suppose that out of all the spheres in M which cannot be isotoped to be

disjoint from F , and hence don’t bound a 3-ball, that S is the sphere which, after isotopy,

intersects F in the fewest number of simple closed curves. Let A be this collection of simple

closed curves in S. Let α ∈A be an innermost simple closed curve in S. Let D be a disk in S

such that int(D) is disjoint from all simple closed curves in A and ∂D =α. At least one such

disk D exists since α is innermost. Notice that D is a compressing disk for F . Since F is

essential it is also incompressible and hence there exists a disk D ′ ⊂ F such that ∂D ′ =α. We

first suppose that S ∩D ′ =;. In this case we see that D ∪D ′ is a sphere in a manifold

homeomorphic to the irreducible manifold F × (0,1). This follows due to the fact that D ′ ⊂ F

and int(D) is disjoint from F . So D ∪D ′ bounds a 3-ball and hence we may isotope D into D ′

and then off of F in such a way as to reduce the number of intersections of S ∩F . This is a

contradiction since we have assumed the number of intersections is minimal. Thus, S ∩D ′
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consists of a finite collection of simple closed curves B in D ′. Let β ∈B be an innermost

simple closed curve in D ′. Let D ′′ be the disk in D ′ such that ∂D ′′ =β and int(D ′′) is disjoint

from the simple closed curves in B. Notice that S\β consists of two open disks, say D1 and D2.

Notice that S = D1 ∪β∪D2. Define S1 := D1 ∪D ′′ and S2 := D2 ∪D ′′. Notice that S1 and S2 are

spheres and S1 ∩S2 = D ′′. Notice that S1 and S2 can be isotoped be be disjoint from each other

and off of F near D ′. This reduces the number of times they intersect F to be fewer than the

number of times S intersects F . From our assumption about S we conclude that both S1 and S2

can be isotoped to be disjoint from F and hence are isotopic to spheres in in the irreducible

submanifold M × (0,1) ⊂ M . Thus, S1 must bound a 3-ball B1 and S2 must bound a 3-ball B2

before isotopy. It should be noted that B1 (respectivly B2) may a priori be on either side of S1

(respectively S2), however, a 3-ball only has one boundary component and hence can only be

on one side of S1 (respectively S2). We conclude that S bounds the 3-ball B1 ∪B2. This is a

contradiction since we assumed that S did not bound a 3-ball. We conclude that every sphere

in M can be isotoped to be disjoint from F and by Corrollary 2.19 must bound a ball. We

conclude that M is irreducible. ä
Combining Lemma 2.15 with Corollary 2.20 we get that every 3-manifold M which is the

total space of a fiber bundle with base S1 and fiber a surface F with boundary is irreducible

with essential fibers. Having established some basic results about irreducible 3-manifolds we

move on to normal surface theory.

We now give a brief introduction to normal surface theory. We include some key

definitions and finish with a couple of major results which are critical to this paper. To learn

more, one may consult for example [18, Ch. 5] which includes a more in-depth discussion. To

start with we need the terminology to describe a triangulation of a manifold.

Definition 2.21. The standard k-simplex in Rk+1 is given by

∆k := {(x1, x2, ..., xk+1) ∈Rk+1 | x1, x2, ..., xk+1 ≥ 0, x1 +x2 + ...+xk+1 = 1}. A k-simplex for a

3-manifold M is a continuous map ψ :∆k → M such that ψ|int(∆k ) is a homeomorphism onto
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its image.

For the next definition to make sense we note that two spaces are isometric if there exists a

map between them which preserves distances. A map with this property is called an isometry.

Definition 2.22. For 0 ≤ i ≤ k we define a face, ∆′
i , of the standard k-simplex, ∆k , to be a subset

of ∆k isometric to ∆i which fixes k − i of the coordinates x1, x2, ...xk+1 in ∆k to equal 0. A face of

a k-simplex ψ :∆k → M is a map ψ|∆′
i

:∆′
i → M for any face ∆′

i of the standard k-simplex ∆k .

Definition 2.23. A simplicial complex for a 3-manifold M is a collection of simplices for M ,

which we denote K , such that for all simplices f ∈ K , all faces of f are in K and for all pairs of

simplices f1, f2 ∈ K the interior of their images are either equal or disjoint. We define the

underlying space of the simplicial complex K to be the union of the images the simplices of K .

(See [18, p. 15])

Definition 2.24. Let K and L be simplicial complexes whose underlying spaces are given by UK

and UL respectively. We say that a continuous map h : UK → UL is a simplicial map if for every

simplex f in K , there is a simplex g in L such that h ◦ f = g . (See [18, p. 18])

Definition 2.25. Let K and L be simplicial complexes whose underlying spaces are given by UK

and UL respectively. We say that h : UK → UL is a simplicial isomorphism if it is simplicial and

a homeomorphism. We say that the two simplicial complexes K and L are isomorphic if there

is a simplicial isomorphism h : UK → UL. (See [18, p. 19])

Definition 2.26. A map f defined from a convex set K into a vector space is said to be affine if

f (
∑
α j x j ) =∑

α j f (x j ) when x j ∈ K , α j ≥ 0, and
∑
α j = 1. (See [5, p. 151])

Definition 2.27. A triangulation of a 3-manifold M is a pair (M ,K ), where K is a simplicial

complex for M , so that the underlying space of K is equal to M ; for every compact subset C of

M , the set { f ∈ K | C ∩ im( f ) 6= ;} is finite; and for f , g ∈ K , restricted to the interior of their

domain, the map g−1 ◦ f is affine on its domain. We often denote the pair (M ,K ) as just T .

(See [18, p. 15])
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A key component of normal surface theory is the ability to triangulate any compact

3-manifold. This fact follows from the work of Edwin E. Moise, in [14], who showed that a

3-manifold can be triangulated and R.H. Bing, in [3], who extended the result to show that all

compact 3-manifolds are triangulable. We now include the basic definitions related to normal

surfaces.

Definition 2.28. A properly embedded arc in a 2-dimensional face of the standard 3-simplex is

a normal arc if its endpoints lie on distinct edges of of the face. A simple closed curve c in the

boundary of the standard 3-simplex is a normal curve if every component of intersection of c

with a 2-dimensional face of the standard 3-simplex is a normal arc. (See [18, p. 149])

Definition 2.29. The length of a normal curve in the boundary of the standard 3-simplex ∆3 is

the number of times it intersects a 1-cell of ∆3. (See [18, p. 149])

Definition 2.30. A normal triangle in the standard 3-simplex is a properly embedded disk

whose boundary is a normal curve of length 3. A normal quadrilateral in the standard

3-simplex is a properly embedded disk whose boundary is a normal curve of length 4. A

normal disk is a normal triangle or quadrilateral. (See [18, p. 150-151])

Definition 2.31. Let T be a triangulation of a 3-manifold M . A surface F is said to be normal

with respect to T if for every 3-simplex ψ :∆3 → M in T we get that ψ−1(F ∩ψ(∆3)) consists of

a collection normal disks or is empty.

If M is irredubile and F is an essential, hence incompressible, surface in M we can isotope

F to be normal with respect to any triangulation of M . For a proof of this when F is closed see

for example [18, p. 152-153]. We will furnish a proof for the similar case when F can have

boundary by adapting the proof in [18, p. 152-153]. We add a couple more definitions and a

lemma before we begin.

Definition 2.32. For a disk D and a finite collection of properly embedded pairwise disoint arcs

{αi } we say α ∈ {αi } is an outermost arc of D if one (or both) of the disks α cobounds with ∂D is

disjoint from any other element in {αi }.
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Definition 2.33. Let T be a triangulation of the 3-manifold M . Let F be a properly embedded

surface in M . The weight of F with respect to T , denoted w(F ), is the number of components

in the intersection of F with the 1-skeleton of T . Similary, the measure of F with respect to T ,

denoted m(F ), is the number of components in the intersection of F with the union of the

interior of the 2-faces of T in M .

Lemma 2.34. A closed normal curve on the boundary of a 3-simplex either has length 3 or 4 or

it meets some edge more than once.

Proof of Lemma 2.34. For a proof see [18, Lemma 5.2.4, p. 149-150] ä

Lemma 2.35. Let M be a compact irreducible 3-manifold with incompressible boundary and

triangulation T . If F is an incompressible and boundary incompressible surface in M , that is

not a disk, then we can isotope F to be normal with respect to T .

Proof of Lemma 2.35. Let (w(F ),m(F )) be the weight and measure of F respectively. Let

(w1,m1) and (w2,m2) be different pairs of weight and measure. We say that (w1,m1) is greater

than (w2,m2) if w1 > w2 or if w1 = w2 and m1 > m2. We say that (w1,m1) is equal (w2,m2)

w1 = w2 and m1 = m2. Otherwise, (w1,m1) is less than (w2,m2). We isotope F to be transverse

to the triangulation T and so that (w(F ),m(F )) is minimal. In particular, w(F ) is as small as

possible. Let ψ :∆3 → M be a 3-simplex of T . Define T :=ψ(∆3).

Suppose for a contradiction that a 2-cell ∆ of T intersects F in a nonempty collection of

simple closed curves. Let α be an innermost simple closed curve from this collection. Notice

that α is contained in int(∆) and hence is contained entirely in ∂M or entirely in int(M). Let D

be the disk in ∆ that α bounds. Since F is incompressible there exists a disk D ′ in F such that

∂D ′ =α= ∂D . Notice that D ∪D ′ is a sphere. Since M is irreducible D ∪D ′ bounds a 3-ball B .

There are two cases to consider. Case 1 occurs if α⊂ ∂M . In this case ∂F =α and F is a disk

which we have assumed is not the case and hence we get a contradiction. Case 2 occurs if

α⊂ int(M). Then B gives an isotopy of D ′ into D which we can then isotope off of ∆ and this

reduces (w(F ),m(F )) by at least (0,1) which is a contradiction since we assumed (w(F ),m(F ))
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Figure 4: Examples of possible disks in F which can be isotoped off of ∆.

was minimal. See for example Figure 4. Thus, ∆∩F consists of no simple closed curves. Since

∆ was an arbitrary 2-cell for T and T was arbitrary itself so we may assume that the image of

every 2-simplex in T does not intersect F in a simple closed curve.

Suppose for a contradiction that a 2-cell ∆ of T intersects F in a nonempty collection of

arcs of which at least one has endpoints in the same 1-cell l of ∆. Let η be an outermost arc in

∆ with both endpoints in l . Let D be the disk in ∆ cobounded by η and a component l ′ of l .

Notice that int(D) is disjoint from F . Keeping in mind that ∂D = η∪ l ′ and D\l ′ ⊂ int(∆) we

have 3 cases. Case 1 occurs when D ⊂ int(M). In this case the disk D gives us an isotopy of η

into l ′ which we can then isotope off of l to redcuce (w(F ),m(F )) by at least (2,1) which is a

contradiction since we assumed (w(F ),m(F )) was minimal. Case 2 occurs when D ⊂ ∂M . In

this case D gives us an isotopy of η into l ′ which we can then isotope off of l to redcuce

(w(F ),m(F )) by at least (2,1) which is a contradiction since we assumed (w(F ),m(F )) was

minimal. Case 3 occurs when D ∩∂M = l ′. In this case D is a boundary compressing disk.

Since F is boundary incompressible there exists a disk D ′ ⊂ F such that D ′∩D = η and

∂D ′\η⊂ ∂F . Notice that D ′′ = D ∪D ′ is a compressing disk for ∂M . Since we have assumed that

∂M is incompressible there exists a disk D ′′′ ⊂ ∂M such that D ′′∪D ′′′ is a sphere in M . Since M

is irreducible D ′′∪D ′′′ bounds a 3-ball. This 3-ball gives us an isotopy of D ′ into D which we

can then isotope off of ∆ and this reduces (w(F ),m(F )) by at least (2,1) which is a

contradiction since we assumed (w(F ),m(F )) was minimal. Thus, ∆∩F consists of no arcs
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whose boundary points shard the same 1-cell. Since ∆ was an arbitrary 2-cell for T and T was

arbitrary itself we may assume that the image of every 2-face in T does not intersect F in arcs

whose boundary points share the same 1-cell in the 1 skeleton of T .

So far we have shown that the intersection of F with the image of any 2-simplex in T does

not consist of simple closed curves nor does it consist of arcs whose boundary are in the image

of the same 1-simplex. Thus, the intersection of F with the image of a 2-simplex is either

empty or is the image of a collection of normal arcs. In particular, since F is properly

embedded and transverse to T , the intersection of F with the boundary of the image of any

3-simplex of T is empty or the image of a collection of normal curves. Consider again an

arbitrary 3-simplex ψ :∆3 → M in T with image given by T :=ψ(∆3) so that T ∩F 6= ;. Let

α∗ ⊂∆3 be a normal curve and define α :=ψ(α∗) ⊂ ∂T . Since α is an embedded curve and T is

contractible it must bound a disk D . Suppose that F intersects int(D). Let β be an innermost

simple closed curve of D ∩F in D . So β bounds a disk D ′ in D and since F is incompressible

there exists another disk D ′′ ⊂ F such that ∂D ′ = ∂D ′′. In particular, D ′∪D ′′ is a sphere in M .

Since M is irreducible D ′∪D ′′ bounds a 3-ball B . Due to the existence of B we may isotope D ′′

into D ′ and then off of D without increasing (w(F ),m(F )) and reducing the number of

components in D ∩F . Continuing in this way we may isotope F to be disjoint from D . Notice

that D is a compressing disk for F . Since F is incompressible there exists a disk D∗ ⊂ F such

that ∂D =β= ∂D∗. Since D ∪D∗ is a sphere in an irreducible manifold we know that D ∪D∗

bounds a 3-ball. Thus, we may isotope D∗ into D . If int(D∗)∩∂T 6= ; then this isotopy reduces

(w(F ),m(F )) which is a contradiction since we assumed (w(F ),m(F )) is minimal. Thus, we

may assume that int(D∗) ⊂ int(T ). Since T was arbitrary we may assume that the image of

every normal curve in a simplex in T must bound a disk in F . We would like to show that these

disks are the images of a normal disk.

Let ψ :∆3 → M be an arbitrary 3-simplex in T with T :=ψ(∆3). Assume that α∗ is a normal

curve in ∆3 and define α :=ψ(α∗). By Lemma 2.34, α∗ bounds a normal disk or intersects a
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1-face of ∆3 more than once. If α∗ bounds a normal disk we are done, otherwise we know that

α⊂ T intersects a 1-cell of T more than once. Let D ⊂ T be the disk in F with ∂D =α. Since α is

an embedded curve in the sphere ∂T the Jordan Curve Theorem tells us that there exist disks

D1 and D2 in ∂T such that ∂D1 =α= ∂D2 and D1∪D2 = ∂T . Since α intersects a 1-cell, say l , of

T more than once there is an arc η which is a component of either D1 ∩ l with ∂η⊂ ∂D1 or

D2 ∩ l with ∂η⊂ ∂D2 . We may assume without loss of generality the former case. Since

int(D) ⊂ int(T ) and ∂η⊂ ∂D there exists an arc η′ ⊂ D ⊂ F such that ∂η′ = ∂η and

int(η′) ⊂ int(D). Since η∪η′ is a simple closed curve in the contractible space T we get that

η∪η′ bounds a disk D∗ such that D∗\η⊂ int(T ). Notice that F ∩ int(D∗) is empty or consists of

simple closed curves. If F ∩D∗ 6= ; let ζ be an innermost curve in this collection. Then ζ

bounds a disk Dζ ⊂ D∗. Notice that Dζ is a compressing disk for F . Since F is incompressible

there exists a disk D ′
ζ

in F such that ∂Dζ = ∂D ′
ζ
. Since M is irreducible Dζ∪D ′

ζ
is a ball

bounding sphere. Thus we may isotope D ′
ζ

into Dζ and then off of D∗. We remark that since

this isotopy may reduce (w(F ),m(F )), which we assumed was minimal, it must be the case that

Dζ′ was already contained in int(M) before isotopy. We continue this process until

F ∩ int(D∗) =;. Since η⊂ l ⊂ ∂T and D∗\η⊂ int(T ) we can break up the remainder of the

problem into 2 cases. Case 1 is when η⊂ int(M). In this case we use D∗ to provide an isotopy of

η′ into η. We do this isotopy followed by an isotopy which moves η′ off of l . This will reduce

w(F ) by 2 and hence reduce (w(F ),m(F )) which is a contradiction since we assumed that

(w(F ),m(F )) was minimal. Case 2 is when η⊂ ∂M . In this case D∗ is a boundary compressing

disk. Since F is boundary incompressible there exists a disk D∗∗ in F such that D∗∩D∗∗ = η′

and ∂D∗∗\η′ ⊂ ∂F ⊂ ∂M . Notice that D∗∪D∗∗ is a compressing disk for ∂M . Since ∂M is

incompressible there exists a disk D∗∗∗ in ∂M such that ∂D∗∗∗ = ∂(D∗∪D∗∗). Since M is

irreducible the sphere D∗∪D∗∗∪D∗∗∗ bounds a 3-ball. So we may isotope D∗∗ into D∗.

Following this isotopy we isotope D∗∗∗ off of l . This will reduce w(F ) by at least 2 and hence

reduce (w(F ),m(F )) which is a contradiction since we assumed that (w(F ),m(F )) was
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minimal. We conclude for both cases that α must intersect a 1-cell of T at most once and

following from Lemma 2.34 we conclude that α∗ bounds a normal disk in ∆3. Since ψ, α∗, T ,

and α were arbitrary choices we conclude that every normal curve bounds a normal disk. In

particular we get after our particular isotopy of F that F is normal with respect to the

triangulation T . ä
The lemma which we have just proved is useful, however, it has the downside of requiring

that the boundary of the 3-manifold is incompressible. Thankfully, for the particular class of

manifolds that we are interested in this will not be a problem. The following lemma will clarify

what is meant by this.

Lemma 2.36. Let F be a connected surface with boundary with χ(F ) ≤ 0. Let µ : F → F be a

homeomorphism. Define M := (F × [0,1])/ ∼ where (x,0) ∼ (µ(x),1) for x ∈ F . Then ∂M is

incompressible.

Proof of Lemma 2.36. Notice that ∂M consists of a collection of tori and Klein bottles. Suppose

for a contradiction that ∂M is compressible, then there exists a component of ∂M , say S, so

that S is compressible. Let D ⊂ M be a compressing disk for S so that D ∩S = ∂D , but there

does not exists a D ′ ⊂ S such that ∂D = ∂D ′. Consider the following maps:

• ι : ∂D ∼= S1 ,→ M , the inclusion

• q : M → S1, projection onto the base of the fiber bundle

We get the following induced homomorphisms:

• ι∗ :π1(∂D, p1) →π1(M , p1), the 0-map since ∂D bounds a disk D ⊂ M

• q∗ :π1(M , p1) →π1(S1, p2)

where p1 ∈ ∂D ⊂ M and p2 = q(p1). We consider two cases. Case 1 is when

(q ◦ ι)∗ :π1(∂D, p1) →π1(S1, p2) is a nontrivial homomorphism. Thus (q ◦ ι)∗ is not the 0-map.

Now, since ι∗ is the 0-map (q ◦ ι)∗ = q∗ ◦ ι∗ is also the 0-map, a clear contradiction. Case 2 is
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when (q ◦ ι)∗ :π1(∂D, p1) →π1(S1, p2) is the trivial homomorphism and hence q ◦ ι : ∂D → S1 is

nullhomotopic. In this case we may homotope ∂D to be the boundary of a fiber F × {x} where

x ∈ [0,1). In particular, we may homotope ∂D , in S, to be in ∂F where F identified with F × {0}.

We get from Lemma 2.15 that F is essential and hence incompressible, so there exists a disk

D∗ ⊂ F so that ∂D = ∂D∗. Since F is connected, D∗ ⊂ F , and ∂D ⊂ ∂F we see that F = D∗. So

χ(F ) = 1, however, we have assumed that χ(F ) ≤ 0 so we have a contradiction. Since in both

case 1 and case 2 we get a contradiction, we see that S is not compressible. Thus, ∂M is

incompressible. ä
We have established some properties of a 3-manifold M which fibers over S1 with fiber a

surface F . We have also established some of the properties of F when we identify it with F × {0}

with S1 thought of as [0,1]/ ∼ where 0 ∼ 1. We would now like to understand the properties of

the double of M and the double of F thought of as a submanifold of M .

Definition 2.37. Let M ′ be a copy of M and φ : M → M ′ the homeomorphism which takes a

point x ∈ M to the corresponding point of M ′. We define the double of M , DM , as

DM := (M tM ′)/ ∼, where ∼ is the equivalence relation generated by x ∼φ(x) for all x ∈ ∂M .

Additionally, for F a properly embedded subsurface of M , the double of F , DF , is defined as

DF := (F tF ′)/ ∼ where F ′ :=φ(F ) and ∼ is the equivalence relation generated by x ∼φ(x) for

all x ∈ F ∩∂M .

We first remark that by our definition of the double, both DF and DM are closed manifolds.

While not neccessarily critical to the our proof it is useful to have the following lemma.

Lemma 2.38. If M is an irreducible 3-manifold and ∂M is incompressible then DM is

irreducible.

Proof of Lemma 2.38. Let S be a sphere in DM . Isotope S so that S intersects ∂M minimally and

trasversally. From our definition of DM we can see that M ′ = cl(DM\M). If S ∩∂M is empty

then S ⊂ int(M) or S ⊂ int(M ′). Since M and M ′ are irreducible S must bound a ball. Now if

S ∩∂M is not empty then S intersects ∂M in a finite number of simple closed curves.
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Claim. Together S ∩M and S ∩M ′ contain at least 2 disk components.

Proof of Claim. Firstly, since S is a sphere, none of the components of S ∩M or S ∩M ′ has

genus. Secondly, since S ∩∂M is not empty no component of S ∩M or S ∩M ′ is a sphere. Now

χ(S) = 2 and so there exists at least two components of positive Euler characteristic 1 and these

components must be disks.

Now take one of the disks from the claim and call it D . If D is isotopic to a disk in ∂M then

we can isotope D so that it does not intersect ∂M , but this contradicts the minimality of S

intersecting with ∂M and so we may assume that D is not isotopic to a disk in ∂M . Now if D is

not isotopic to a disk in ∂M then either there is a disk D ′ in ∂M with ∂D = ∂D ′ and hence

S′ := D ∪D ′ is a sphere or D is a compressing disk which does not share its boundary with an

embedded disk D ′ ⊂ ∂M . Now in the case that we get the sphere S′ we know that since D is not

isotopic to a disk in ∂M that S′ does not bound a ball. Notice that S′ ⊂ M or S′ ⊂ M ′ and so by

isotopy we can get S′ ⊂ int(M) or S′ ⊂ int(M ′). We just said that S′ does not bound a ball,

however, S′ is a sphere in M or in M ′ and hence by irreducibility S′ bounds a ball which leads

to a contradiction. Thus we only need to concern ourselves with the case in which D is a

compressing disk which does not share its boundary with an embedded disk D ′ ⊂ ∂M . Since

∂D ⊂ ∂M and D is a compressing disk which does not share its boundary with an embedded

disk D ′ ⊂ ∂M we see that ∂M is compressible which is a contradiction since we have assumed

∂M is irreducible. This argument tells us that any sphere which intersects ∂M minimally must

not intersect ∂M at all and hence by irreducibility of M and M ′ bound a ball. From this we see

than DM is irreducible. ä
We now establish that DF is essential in DM whenever F is essential in M .

Lemma 2.39. If F is an essential surface in a 3-manifold M , then DF is essential in DM .

Proof of Lemma 2.39. By the definition of the double of a manifold given in this paper it is

trivially true that DF is both boundary incompressible and not boundary parallel since DM

has empty boundary. So we only need to show that DF is incompressible in DM . We assume
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transversality for all of our interesections. Let D be an arbitrary disk in DM such that

∂D ∩DF ⊂ DF . Now D ∩∂M is empty or consists of a finite collection of simple closed curves

and properly embedded arc components. If D ∩∂M is empty then rename D as D∗∗ and go to

section 3 of the proof, otherwise D ∩∂M is nonempty and |D ∩∂M | = n +k is nonzero with n

and k natural numbers where n is the number of simple closed curve components of D ∩∂M

and k is the number of arc components of D ∩∂M .

Section 1. If n = 0 we rename D as D∗ and go to section 2 of the proof, otherwise if n 6= 0 then

there exists an innermost simple closed curve component of D ∩∂M in D which we will call

γin. Now since γin is the boundary of a disk in D , whose intersection with ∂M is γin, and ∂M is

incompressible it follows that γin bounds a disk, say D∂M , in ∂M as well. Notice now that

int(D∂M )∩D is empty or consists of simple closed curve components. Figure 5 gives a partial

illustration of the following argument.

Figure 5: We give an illustration when D intersects int(D∂M ) above and another which includes
D1 and D2 below.

If int(D∂M )∩D is empty then we find a regular neighborhood ND∂M of D∂M such that

ND∂M ∩D = A and ∂ND∂M = D1 ∪D2 ∪ A where A is an annulus in D and D1 and D2 are disks

with ∂D1 ∪∂D2 = ∂A where without loss of generallity D1 ⊂ int(M) while D2 ⊂ int(M ′). Define

Dtemp := (D\A)∪D1 ∪D2. Notice that Dtemp is the disjoint union of a disk and a sphere. Let D ′

be the disk component of Dtemp. Notice that ∂D = ∂D ′, but |D ′∩∂M | = n −1+k.

If int(D∂M )∩D is not empty then we find an innermost simple closed curve of
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int(D∂M )∩D in D∂M . Let D ′
∂M be the disk in ∂M bounded by this simple closed curve.

Following the argument of the previous paragraph with D∂M replaced with D ′
∂M we again end

up with a disk D ′ such that ∂D = ∂D ′, but |D ′∩∂M | ≤ n −1+k.

We repeat the process above to find a disk D ′′ such that ∂D ′ = ∂D ′′ and

|D ′′∩∂M | ≤ n −2+k. We repeat this process until we find a disk D (n) such that ∂D (n−1) = ∂D (n)

and |D (n) ∩∂M | = k. We rename D (n) as D∗. Notice that D∗∩∂M only contains arc

components and ∂D∗ = ∂D .

Section 2. If k = 0 we rename D∗ as D∗∗ and go to section 3 of the proof, otherwise if k 6= 0 then

there is an outermost arc component of D∗∩∂M in D∗ which we call αout . Since αout is

outermost there is at least one arc, say α′
out , in ∂D∗ such that ∂αout = ∂α′

out , α′
out ⊂ F or

α′
out ⊂ F ′, and α′

out does not intersect any components of D∗∩∂M except for αout . We assume

without loss of generality that α′
out ⊂ F . Notice that αout ∪α′

out form the boundary of a disk in

D∗, we call this disk D∗
out . Since α′

out ⊂ F we have D∗
out ⊂ M . Notice that D∗

out is a boundary

compressing disk for F in M with D∗
out ∩F =α′

out . Thus, since F is boundary incompressible in

M , there exists a disk D∗
F ⊂ F with ∂D∗

F =α′
out ∪α∂M where α∂M is an arc in ∂M such that

∂α′
out = ∂α∂M . Since D∗

F exists we isotope ∂D∗, in DF , so that α′
out ⊂ int(F ′) and D∗∩∂M still

has k components, but now exactly one of these components is a simple closed curve.

Following the result of section 1 of the proof we can find a disk D∗(1) such that

|D∗(1) ∩∂M | = k −1, D∗(1) ∩∂M consists only of arc components and ∂D∗(1) is isotopic ∂D∗.

Repeating the process above we may after an appropriate isotopy of D∗(1) find a disk D∗(2)

such that |D∗(2) ∩∂M | = k −2, D∗(2) ∩∂M consists only of arc components and ∂D∗(2) is

isotopic to ∂D∗(1). We repeat this process until we get a disk D∗(k) such that D∗(k) ∩∂M is

empty and ∂D∗(k) is isotopic to ∂D∗(k−1) in DF . We rename D∗(k) as D∗∗.

Section 3. Notice that ∂D∗∗ is isotopic to ∂D , in DF , and D∗∗∩∂M is empty and so D∗∗ ⊂ M or

D∗∗ ⊂ M ′. Without loss of generality we assume D∗∗ ⊂ M . Notice that D∗∗ is isotopic to ∂D , in

DF ; D∗∗∩DF ⊂ F ; and D∗∗ ⊂ M . Thus, since F is incompressible as a subsurface of M , we get
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that D∗∗ bounds a disk in F and hence D bounds a disk in DF . Since D was arbitrary we get

that DF is incompressible and hence essential. ä
We include two more lemmas related to the double of a manifold.

Lemma 2.40. If F is a 2-sided surface in a 3-manifold M , then DF is 2-sided in DM .

Proof of Lemma 2.40. We may assume F and M are smooth. Additionally, in this case,

φ : M → M ′ from the definition of the double is a diffeomorphism. By smoothing DM we may

assume that φ extends to a diffeomorphism Φ : DM → DM such that Φ|M =φ and Φ|M ′ =φ−1.

Let Φ∗ : Tp DM → TΦ(p)DM be the pushforward. Since F is 2-sided there is a trivial normal

bundle NF := {(p, v)|p ∈ F, v ∈ Tp M , v ∉ Tp F }.

To show that DF is 2-sided we take a coorientation on F and extend it a coorientation on

DF . Give F a coorientation f : F → TM . For an arbitrary point p ∈ F we have f (p) = (p, vp ). For

this coorientation we require that whenever p ∈ ∂F ⊂ ∂M that vp ∈ Tp∂M\Tp F . We extend f to

fext : DF → T (DM) as follows:

fext(p) :=

 (p, vp ) p ∈ F

(p,Φ∗(vΦ(p))) p ∈ int(F ′)

Notice that fext agrees with the coorientation of f on ∂F . Furthermore, since fext is continuous

on F it must also be continuous on F ′. Thus, fext is a coorientation for DF . Now since fext

agrees with f on F and in particular on ∂F and F , itself, has two distinct coorientations it must

be the case that there is another distinct coorientation for DF . We conclude that DF is 2-sided.

ä
For the next lemma, assume that M is a triangulated 3-manifold with triangulation T and

that F ⊂ M is normal with respect to T . Give M ′ a triangulation T ′ such that Φ sends the

image of every simplex of T to the image of a simplex of T ′. Notice that F ′ will be normal with

respect to T ′ since F is normal with respect to T . Let DT denote the triangulation of DM

using the tetrahedra from T and T ′. It is easy to verify that DT is in fact a triangulation of
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DM .

Lemma 2.41. Given F normal with respect to T then DF is normal with respect to DT .

Proof of Lemma 2.41. Since F is normal with respect to T and F ′ is normal with respect to T ′

we get for every 3-simplex ψ :∆3 → DM in DT we get that ψ−1(DF ∩ψ(∆3)) consists of a

collection normal disk or is empty. This holds because every simplex in DT is a simple in T

or in T ′. ä
We conclude this section with two basic definitions which are used throughout the

remainder of the paper.

Definition 2.42. Let h : X → Y . Let Q be a subset of X . We say that Q is fixed under h if for all

q ∈Q we have that h(q) = q . We say that Q is invariant under h if h(Q) =Q. We say that Q is

equivariant under h if h ◦h(Q) =Q and either h(Q) =; or h(Q) =Q.

Definition 2.43. A continuous map h is nullhomotopic if it is homotopic to the identity map.
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3 Curve Complex and Arc and Curve Complex

In this section we give a brief introduction to the curve complex and the arc and curve

complex. For more details one may consult [18] or [17]. We begin with the definition of the

curve complex of a surface.

Definition 3.1. The curve complex of a surface F , which we denote C (F ), is a simplicial

complex associated with F which relates isotopy classes of essential simple closed curves in F

with a 0-simplex (or vertex) in C (F ) and relates any collection of k +1 isotopy classes of

essential simple closed curves with pairwise disjoint representatives in F to a k-simplex whose

k +1 vertices in C (F ) each correspond to one of the pairwise disjoint isotopy classes of

essential simple closed curves. We define for the surface F the complexity

c(F ) := 3g (F )+b(F )−4

where g (F ) is the genus of F and b(F ) is the number of components of ∂F .

We are primarily interested in a surface, F , satisfying c(F ) > 0. For an example of part of a

simplicial complex for a genus 3 surface see Figure 6. It is shown in [18, p. 249]) that the curve

complex of a surface is connected whenever the Euler characteristic of the surface is less than

or equal to −2. Thus, the types of surfaces we are considering in our paper will all have a

connected curve complex. An important concept of the curve complex is distance.

Figure 6: Part of simplicial complex for a genus 3 surface.
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Definition 3.2. Let F be a surface. The distance between two vertices v and w in C (F ) is the

minimal number of edges in the 1-skeleton of C (F ) required to connect v with w .

It has been shown in [13], for an oriented surface, that for any vertex v in the curve

complex there exist another vertex which can have arbitrarily large distance from v . Due to

this, we say that the curve complex has infinite diameter.

In addition to the curve complex we are also interested in the arc and curve complex.

Definition 3.3. The arc and curve complex of a surface F , which we denote AC (F ), is a

simplicial complex associated with F which relates each isotopy class of essential simple

closed curves and each isotopy class of essential simple arcs in F with a 0-simplex (or vertex) in

AC (F ). Furthermore a k-simplex in AC (F ) is associated to a collection of k +1 isotopy

classes of essential simple closed curves and essential simple arcs with pairwise disjoint

representatives in F .

It is worth pointing out that for a surface F without boundary C (F ) and AC (F ) are

equivalent. Since we are primarily interested in surfaces with boundary this fact is not so

useful to us, however, we can relate the two complexes in another way. First we define the

translation distance. Let µ : F → F be a homeomorphism and µ∗ : AC (F ) →AC (F ) be the

isometry on AC (F ) induced by µ. We define the translation distance of µ in AC (F ) to be

min{d(v,µ∗(v)) | v ∈AC (F ) is a vertex} where d is the distance between vertices in the arc and

curve complex. Translation distance also makes sense for the curve complex.

Lemma 3.4. Let F be a connected surface with χ(F ) ≤−16 and let µ : F → F be a

homeomorphism. If the translation distance of µ in AC (F ) is at most 1 then the translation

distance of µ in C (F ) is at most 2.

Proof of Lemma 3.4. If the translation distance of µ in AC (F ) is at most 1 then there is an

essential simple closed curve or essential simple arc α⊂ F so that α is disjoint from µ(α)

(possibly after isotopy). It may be the case that α and µ(α) are in the same isotopy class. We

have 2 cases to consider.
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Case 1 is when α is an essential simple closed curve. Since α and µ(α) are essential simple

closed curve they are represented by vertices in C (F ) (possible the same one). Thus, as α and

µ(α) are disjoint (possibly after isotopy) the translation distance of µ in C (F ) is at most 1.

Case 2 is when α is an essential simple arc. In this case α and µ(α) are both essential

simple arcs disjoint from each other (possibly after isotopy). Essential simple arcs are not

represented in C (F ) and so we need a different strategy than in the previous case. Our goal is

to show that we can use α to find an essential simple closed curve β with the property that β

and µ(β) intersect in at most 4 points (possibly after isotopy). First we let c be the disjoint

union of the boundary components (or component) of F which intersect ∂α. So c contains at

most 2 components. Now let N (c ∪α) be a regular neighborhood of c ∪α in F . At least one

component of ∂N (c ∪α) is not a component of ∂F ; we let β be one such component (it does

not matter which).

We have 6 subcases to consider. Let c1, c2, c3, and c4 be an arbitrary collection of

components from ∂F . Note that some subcases may not apply to F if it has fewer than 4

boundary components. The following subcases are sufficient since we do not care about the

arrangement of the components of ∂F . We first consider subcases in which ∂α is contained in

a single component of ∂F . Subcase 1 is when ∂α⊂ c1 and ∂µ(α) ⊂ c1 and as we traverse c1 we

alternate intersecting ∂α and ∂µ(α), see Figure 7. Subcase 2 is when ∂α⊂ c1 and ∂µ(α) ⊂ c1 and

as we traverse c1 we intersect ∂α twice and then intersect ∂µ(α) twice after picking an

appropriate starting point, see Figure 8. Subcase 3 is when ∂α⊂ c1 and ∂µ(α) ⊂ c2, see Figure 9.

We now consider subcases in which ∂α is contained in distinct components of ∂F . Subcase 4 is

when one component of ∂α is contained in c1 and the second is contained in c2 while one

component of ∂µ(α) is contained in c1 and the second is contained in c2, see Figure 10.

Subcase 5 is when one component of ∂α is contained in c1 and the second is contained in c2

while one component of ∂µ(α) is contained in c2 and the second is contained in c3, see

Figure 11. Subcase 6 is when one component of ∂α is contained in c1 and the second is
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contained in c2 while one component of ∂µ(α) is contained in c3 and the second is contained

in c4, see Figure 12.

The figures associated to subcase 1 through subcase 6 show, up to isotopy, all the possible

ways in which we can obtain β and µ(β) given α. The figures take advantage of the fact that µ is

a homeomorphism and hence must map the regular neighborhood N (c ∪α) to a regular

neighborhood of µ(c ∪α), limiting our choice of µ(β) which must be a boundary component of

this regular neighborhood. The figures only show the minimum required number of boundary

components from F . The possible intersections between β and µ(β) can, after isotopy, always

be contained in an annulis in F which is cobounded by a component of ∂F and a boundary

parallel simple closed curve and hence we only show the interesting region near ∂F in our

figures. From Figure 7 to Figure 12 we can see that depending on our α it is only possibly for β

and µ(β) to intersect at most 4 times after an intersection minimizing isotopy. We isotope β

and µ(β) to intersect minimally.

Let K = N (β∪µ(β)) be a regular neighborhood of β∪µ(β). We get

0 ≥χ(K ) =χ(β∪µ(β)) ≥−4.

Now ∂K consists of simple closed curves which have Euler characteristic 0 and so

−16 ≥χ(F ) =χ(K )+χ(F \K ).

Therefore,

χ(F \K ) ≤−12.

Now, since F is connected and β∩µ(β) consists of at most 4 points we see that F \K consists of

at most 6 components. Since the Euler characteristic is additive over disjoint unions there is a
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component K ′ of F \K so that

χ(K ′) ≤ −12

6
≤−2.

Since K ′ ≤−2 there is an essential simple closed curve β′ ⊂ K ′, moreover, since β,µ(β) ⊂ K it

must be the case that β and µ(β) are disjoint from β′. We conclude that the translation

distance of µ in C (F ) is at most 2. ä

Figure 7: Subcase 1 with α, µ(α) on the left and possible β, µ(β) on right.

Figure 8: Subcase 2 with α, µ(α) on the left and possible β, µ(β) on right.
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Figure 9: Subcase 3 with α, µ(α) on the left and possible β, µ(β) on right.

Figure 10: Subcase 4 with α, µ(α) on the left and possible β, µ(β) on right.

Figure 11: Subcase 5 with α, µ(α) on the left and possible β, µ(β) on right.

Figure 12: Subcase 6 with α, µ(α) on the left and possible β, µ(β) on right.
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4 Proof

Introduction

Our goal is to generalize the work of Ichihara, Kobayashi, and Rieck in [10]. The statement

of their main result given in terms of the Euler characteristic is:

Theorem 4.1. Let M be a connected tame 3-manifold that admits a triangulation using t (M)

tetrahedra and F ⊂ M a 2-sided connected essential closed surface. If χ(F ) ≤−76t (M)+2, then

F is strongly cylindrical.

We would like to have a similar result for an essential surface F with boundary. We cannot

achieve a result as general as in [10]. Instead we focus on the case when M is the total space of

a fibered manifold with base space the circle. We prove Theorem 1.1, as stated below, when F

is a surface with boundary; the closed case is due to Ichihara, Kobayashi, and Rieck in [10].

Theorem 1.1. Let F be a connected surface, let µ : F → F be a homeomorphism, and let

M := (F × [0,1])/ ∼ where (x,0) ∼ (µ(x),1) for x ∈ F . Let t (M) be the minimal number of

tetrahedra required to triangulate M . If χ(F ) ≤−76t (M)+1 then there is an essential simple

closed curve or essential simple arc which is disjoint from its image under µ (possibly after

isotopy).

To help achieve this, we will take the double of the manifold M described in the statement

of Theorem 1.1 and apply Proposition 11 from the proof of [10]. The statement of Proposition

11 is as follows: there exists a pair of pants X ⊂ int(Y ) or X ⊂ int(B) so that ∂X is essential in F .

Set up for Proof of Main Theorem

Let F and M be as in Theorem 1.1. Throughout this section we associate F with F × {0}. It

follows from our construction that F is 2-sided in M and we get from Lemma 2.15 that F is

essential in M . Notice that M cut open along F is homeomorphic to F × I ; this fact is

important later on in the proof.

Let T be a minimal triangulation of M such that the number of tetrahedra in T is equal to

t (M), where t (M) represents the minimal number of tetrahedra required to triangulate M .
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Using Lemma 2.36 we get that ∂M is incompressible. Applying Lemma 2.35 we isotope F to be

normal with respect to T . In the following discussion of tetrahedra in a triangulation we will

be a bit informal in describing whether we are in the domain of a 3-simplex or in the image of a

3-simplex. Notice that the intersection of F with the tetrahedra of T gives a decomposition of

F into normal disks (normal triangles and normal quadrilaterals). Let N be a regular

neighborhood of the 1-skeleton of T . Consider the components of N ∩F . These components

consist of disks disjoint from ∂F which we call vertex disks and disks having a single arc in ∂F

which we call half-vertex disks. For every normal disk Dnormal we take cl (Dnormal\N ) and call

this a truncated normal disk. In this way normal triangles become truncated normal triangles

(which are hexagons) and normal quadrilaterals become truncated normal quadrilaterals

(which are octagons). Notice that F has a decomposition which consists of truncated normal

disks, vertex disks, and half-vertex disks. We shall call the components of this decomposion

the faces of F .

As in [10] we use the idea of parallel families. In this case we have 4 distinct types of

parallel families. First consider the edges of the 1-skeleton of T . The intersection of an edge of

the 1-skeleton of T with the faces of F will either intersect a collection of vertex disks or

half-vertext disks. When this edge is contained in ∂M then this collection is empty or consists

of half-vertex disks and hence we call this a parallel family of half-vertex disks. Otherwise, for

an edge whose interior is disjoint from ∂M the edge intersects a collection of vertex disks or is

empty and this collection is called a parallel family of vertex disks. From normal surface theory

there are four types of normal triangles and one type of normal quadrilateral in a given

tetrahedron. A type of normal triangle is determined by which vertex is separated from the

other three vertices by the normal triangle. We only have one type of normal quadrilateral

since if we had more they would intersect each other. It should be noted that we can have

many normal disks of the same type in a given tetrahedron. We have in total five types of

normal disks in each tetrahedron and since our truncated normal disks are contained in our
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normal disks we define the type of our truncated normal disk to correspond to the type of the

normal disk it is contained in. We call a collection of truncated normal triangles of the same

type a parallel family of truncated normal triangles and we call a collection of truncated

normal quadrilaterals of the same type a parallel family of truncated normal quadrilaterals.

Thus we have four families of truncated normal triangles and one family of truncated normal

quadrilaterals in each tetrahedron. It should be noted that a parallel family may be empty.

We define a RBY coloring of a normal surface in a triangulated 3-manifold to be a coloring

of the faces of the surface such that in each parallel family the outermost faces are colored red

and the remaining faces are colored alternately yellow and blue. We color F in this way. Thus

at most two faces are red in each parallel family. Let R be the union of red faces, B the union of

blue faces, and Y the union of yellow faces of F . Let G be the union of the boundary of the

faces of F . By construction G is a trivalent graph and so R, B , and Y are subsurfaces of F .

Let M ′ be a copy of M and φ : M → M ′ the homeomorphism which takes a point x ∈ M to

the corresponding point of M ′. We define the double of M , DM , as DM := (M tM ′)/ ∼, where

∼ is the equivalence relation generated by x ∼φ(x) for all x ∈ ∂M . Additionally, for F in M , the

double of F , DF , is defined as DF := (F tF ′)/ ∼ where F ′ :=φ(F ) and ∼ is the equivalence

relation generated by x ∼φ(x) for all x ∈ F ∩∂M . There is a natural map, which we will call the

symmetric map, Φ : DM → DM such that Φ|M =φ and Φ|M ′ =φ−1. Notice that both DM and

DF are invariant under Φ and that ∂M and ∂F = F ∩∂M are fixed under Φ. Since M has a

decomposition into tetrahedra and F has a decomposition into faces we give M ′ a

triangulation T ′ such that Φ sends a tetrahedron of T to a tetrahedron of T ′ and Φ sends a

face f ⊂ F to a face Φ( f ) ⊂ F ′. We color the face Φ( f ) the same color as the face f . For the

purpose of convenience we will use the notation DT to denote the triangulation of DM using

the tetrahedra from T and T ′. It is easy to see that DT is in fact a triangulation of DM since in

the double of M we force the faces, edges, and vertices of the tetrahedra of T which intersect

∂M to match up exactly with a corresponding face, edge, or vertex of a tetrahedra of T ′.
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From the above argument we have a RBY coloring of the surface DF , with respect to the

triangulation DT , which is invariant under Φ. For simplicity we reuse the notation R, B , and

Y to represent the union of red, blue, and yellow faces of DF respectively. It is easy to see that

G ∪Φ(G) is the union of the boundary of the faces of DF , however, G ∪Φ(G) is not trivalent. We

replace every half-vertex disk Dhalf ⊂ F and its corresponding half-vertex disk Φ(Dhalf ) ⊂ F ′

with the disk Dhalf ∪Φ(Dhalf ). Notice that our new disks are vertex disks. Moreover these new

vertex disks are invariant under Φ and have the same color as the two half-vertex disks they

contain. Each of these new vertex disks lie in a parallel family of vertex disks where a collection

of these vertex disks lie in the same parallel family if its associated half-vertex disks in F lie in

the same parallel family. We consider these new vertex disks to be faces of DF . We now have a

new decomposition of DF into faces which are truncated normal triangles, truncated normal

quadrilaterals, and vertex disks. Our faces no longer include half-vertex disks. Let G ′ be the

union of the boundary components of the faces of DF under our new decomposition of faces;

then G ′ is a trivalent graph and R, B , and Y are subsurfaces of DF . We still have a RBY coloring

of DF with the new decomposition of faces.

Since the Euler characteristic is additive over disjoint unions and the intersection of the

two copies of F in the double is along simple closed curves which have Euler characteristic

zero we get that χ(DF) = 2χ(F ). Using t ′(DM) to represent the number of tetrahedra in DT ,

with DT as described above, we see that t ′(DM) = 2t (M). Using the hypothesis of

Theorem 1.1, that χ(F ) ≤−76t (M)+1, along with the facts above we get the inequality

χ(DF) ≤−76t ′(DM)+2.

Lemma 4.2. There exists a RBY coloring of DF invariant under Φ for which there is an essential

pair of pants X ⊂ DF contained in int(B) (or in int(Y )).

Proof of Lemma 4.2. We remark that a compact 3-manifold is always tame. Since

χ(DF) ≤−76t ′(DM)+2, as seen above; DM is a connected compact 3-manifold with a

triangulation of t ′(DM) tetrahedra; and DF ⊂ DM is a 2-sided connected essential closed
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surface, which follows from Lemma 2.40 and Lemma 2.39; it is clear that DF ⊂ DM satisfies the

hypothesis of the main theorem in [10]. We make four observations. The first observation is

that DF is already normal with respect to the triangulation DT and hence we do not need to

isotope it, this follows from Lemma 2.41. The second observation is that any RBY coloring of

DF is sufficient for the result of [10]. The third observation is that in the proof of the main

theorem in [10] there is a possible need to swap the coloring of every blue and yellow vertex

disk. That is, we may need to recolor every blue vertex disk to be yellow and recolor every

yellow vertex disk to be blue. Since our RBY coloring of DF is invariant under Φ we will still

have an invariant RBY coloring of DF if we swap every blue and yellow vertex disk. So we do

not have an issue here and can use our RBY coloring of DF or one with the blue and yellow

vertex disks swapped. The fourth observation is that we do not require a minimal triangulation

of DM and so DT is good enough. Now, rather than take the result from the main theorem

in [10] we take the result from [10, Prop. 11] to get that there is an essential pair of pants

X ⊂ DF in int(B) (or in int(Y )). ä
We now want to consider some special pairs of pants that we can have in DM . In

particular, we give a definition of the types of pairs of pants that we are interested in and prove

some useful properties that they have.

Figure 13: Example of pairs of pants of type T0, T1, and T3 in that order.

Definition 4.3. We define three types of equivariant under Φ pairs of pants in DF . An

equivariant pair of pants X is of type T0 if X ∩Φ(X ) is empty. An equivariant pair of pants X is
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of type T1 if there is exactly one component c of ∂X such that c =Φ(c). Finally, an equivariant

pair of pants X is of type T3 if for each component c of ∂X we get c =Φ(c). See Figure 13.

Remark. In the case when X is a pair of pants of type T1 we have that the two components c1

and c2 of ∂X which do not map to themselves under Φ have the property Φ(c1) = c2 and hence

Φ(c2) = c1.

Notice that if X is equivariant under Φ then either Φ(X ) = X or Φ(X )∩X is empty.

Lemma 4.4. Let X be a pair of pants equivariant under Φ, then X is of type T0, T1, or T3.

Proof of Lemma 4.4. Let c1, c2, and c3 be the boundary components of X . We break this

problem into cases based on the number of invariant boundary components of X under Φ.

Case 1: No component of ∂X is invariant under Φ. Suppose for a contradiction that

Φ(X ) = X . Since Φ|X is a homeomorphism it maps boundary components to boundary

components and the only way to do this without an invariant boundary component is that

without loss of generality Φ(c1) = c2, Φ(c2) = c3, and Φ(c3) = c1 which contradicts the fact that

Φ◦Φ is the identity. Thus X and Φ(X ) are disjoint and X is a pair of pants of type T0.

Case 2: Exactly one component of ∂X is invariant under Φ. Then X is by definition a pair of

pants of type T1.

Case 3: Exactly two components of ∂X are invariant under Φ. We show that no such X

exists. Suppose for a contradiction that without loss of generality Φ(c1) = c1 and Φ(c2) = c2.

Since X is equivariant under Φ and Φ|X is a homeomorphism, and hence maps boundary

components to boundary components, then Φ(c3) =Φ(c3). So every component of ∂X is

invariant under Φ which is a contradiction. Thus there are no equivariant pairs of pants with

exactly two invariant boundary components.

Case 4: Every boundary component of X is invariant under Φ. By defintion X is a pair of

pants of type T3. This completes the proof of the lemma. ä
Description of Opp map

We construct a special map, similar to the one in [10], Opp : V → DF where V is a
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connected subsurface of DF contained in int(B) or in int(Y ). We show that Opp is injective.

Moreover, we show that for V ⊂ int(B) then Opp(V ) ⊂ F \B or for V ⊂ int(Y ) then

Opp(V ) ⊂ F \Y . We construct the map below.

This section is very technical and hence we clarify our use of terminology. A vertex disk

cannot, in general, be contained in the preimage of a single 3-simplex. So when we refer to a

vertex disk we are refering to a subsurface in DM . Thus a parallel family of normal disk is

contained in DM . In contrast a normal disk is, by definition, contained in the preimage of a

single 3-simplex. So we consider a normal disk as an object in the standard 3-simplex. We are

primarily interested in the faces of F , however, and want to think about them all as subsurfaces

of DM . Our decomposition of DF into faces consists of vertex disks, truncated normal

triangles, and truncated normal quadrilaterals. We already consider a vertex disk as a

subsurface of DM . Similarly, in this section we will consider our truncated normal disks as

subsurfaces of DM . Thus, a parallel family of faces is contained in DM . A parallel family of

truncated normal disks has the additional propery of being properly embedded in the image of

a 3-simplex of DT .

Let {ψ j } j=2t (M)
j=1 be the 3-simplices of DT . Then ψ j : T̂ → M where T̂ is the standard

3-simplex in R4. If we refer to a tetrahedron of DT we are refering to one of the pairs (T̂ ,ψ j )

where 1 ≤ j ≤ 2t (M).

We define a partial vertex disk to be the intersection of a vertex disk with the image of T̂

under a 3-simplex of DT and a parallel family of partial vertex disks to be the intersection of a

parallel family of vertex disks with the image of T̂ under a 3-simplex of DT . In this way we can

decompose every vertex disk into partial vertex disks. Let [F ] be a nonempty parallel family of

truncated normal triangles, truncated normal quadrilaterals, or partial vertex disks with

ordered faces F1, ...,Fn and n ≥ 3. We define [F̂ ] ⊂ T̂ to be ψ−1([F ]) where ψ is a simplex in DT

such that [F ] ⊂ψ(T̂ ). The components of [F̂ ] are given by F̂1 =ψ−1(F1), ..., F̂n =ψ−1(Fn) which

we call the faces of [F̂ ]. Let T̂ (1) be the 1-skeleton of T̂ and let T̂ (2) be the 2-skeleton of T̂ . For
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1 ≤ i ≤ n we give the face F̂i ⊂ [F̂ ] a cell decomposition as follows:

• 0-cells: components of
(
∂F̂i \

(
int(∂F̂i ∩ T̂ (2))∪ int(T̂ )

))∪ (
∂F̂i ∩∂T̂ (1)

)
• 1-cells: components of ∂F̂i \(0-cells)

• 2-cell: int(F̂i )

Recall from earlier that N is a regular neighborhood of the 1-skeleton of T . By this we

mean that N is a regular neighborhood of the underlying space of the 2-simplices of T . We

define DN := N ∪Φ(N ). Notice that DN is a regular neighborhood of the underlying space of

the 2-simplices of DT .

When [F ] is a parallel family of truncated normal triangles (or quadrilaterals), with at least

3 faces, assume (T̂ ,ψ) is the tetrahedron of DT so that [F ] ⊂ T where T :=ψ(T̂ ) and define Ĉ

to be the closure of the component of
(
T̂ \ψ−1(DN ∩T )

)
\{outermost faces of [F̂ ]} which

intersects [F̂ ] nontrivially.

When [F ] is a parallel family of partial vertex disks, with at least 3 faces, assume (T̂ ,ψ) is

the tetrahedron of DT so that [F ] ⊂ T where T :=ψ(T̂ ) and define Ĉ to be the closure of the

component of ψ−1(DN ∩T )\{outermost faces of [F̂ ]} which intersects [F̂ ] nontrivially.

In both cases Ĉ is homeomorphic to D × I :=C where D is a disk simplicially isomorphic to

the faces of [F̂ ] and I := [0,1]. Let p : D × I → D be the natural projection. Let D (1) be the

1-skeleton of D and let D (2) be the 2-skeleton of D . Let h : C → Ĉ be a homeomorphism such

that for 0 = p1 < ... < pi < pi+1 < ... < pn = 1 and F̂1, ..., F̂i , F̂i+1, ..., F̂n , the faces of [F̂ ], we have

h|D×{pi } : D × {pi } → F̂i and:

• For each q ∈ D (1)\D (0) we have that h({q}× I ) is contained in the interior of a 2-face of T̂

or in the interior of T̂ .

• We require the following to hold for all 1-cells l of D and for all s ∈ I . Let l̂ be the image

under h ◦ (p|D×{s})−1 of a 1-cell l of D and v̂ a boundary point of l̂ . Define v := p ◦h−1(v̂).
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Notice that v is a boundary component of l . We require for t a point of distance d from v

in l that h ◦ (p|D×{s})−1(t ) is of distance d∗leng th(l̂ )
leng th(l ) from v̂ in l̂ . We may assume that C lies

in R3. Thus, since T̂ is the standard 3-simplex in R4 the notion of length above makes

sense.

• Finally for all q in D (1) define lq := q × [0,1] and l̂q := h(lq ). We require that for t a point in

lq of distance d from q × {0} in lq that h(t ) is of distance
d∗length(l̂q )

length(lq ) from h(q × {0}) in l̂q .

Let U be a, not necessarily connected, subsurface in a blue (or yellow) face Fi =ψ(F̂i ) of

the parallel family [F ] above and U ⊂ int(B) (or U ⊂ int(Y )) where [F ] is a parallel family of

truncated normal triangles, truncated normal quadrilaterals, or partial vertex disks. We define

for all u ∈U the points

opp±(u) :=ψ◦h ◦ (p|D×{pi±1})
−1 ◦p ◦h−1 ◦ψ−1(u)

and define the map Opp|U : U → DF either to be Opp|U : u 7→ opp+(u) for all u ∈U or to be

Opp|U : u 7→ opp−(u) for all u ∈U so that Opp|U : U → DF agrees with the coorientation of DF

in DM . Notice that Opp|U sends U ⊂ Fi either to Fi−1 or to Fi+1. It is easy to see that Opp|U is

injective and hence a homeomorphism.

We would like to define an Opp map for a connected subsurface V ⊂ int(B) (or V ⊂ int(Y ))

such that Opp : V → DF is a homeomorphism onto its image and behaves similar to Opp|U
when Opp is restricted to a face of DF . We now think of the faces of DF to be truncated normal

triangles, truncated normal quadrilaterals and partial vertex disks. Let F̃1, ..., F̃w be the faces of

DF whose interiors have nonempty intersection with V and define for 1 ≤ i ≤ w that

F∗
i := F̃i ∩V . Simlar to Opp|U we have for each F∗

i a map Opp|F∗
i

which sends F∗
i ⊂ F̃i into the

face directly above or below F̃i in the parallel family containing F̃i consistent with the
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coorientation of DF in DM . We define Opp : V → DF so that

Opp(x) :=



Opp|F∗
1

(x) x ∈ F∗
1

Opp|F∗
2

(x) x ∈ F∗
2

...
...

Opp|F∗
w

(x) x ∈ F∗
w

for all x in V .

By our construction of Opp : V → DF it is clear that for V ⊂ int(B) (or V ⊂ int(Y )) that

Opp(V ) ⊂ DF\B (or Opp(V ) ⊂ DF\Y ). We finish this section by proving that Opp is injective.

Remark. Our description of Opp is defined for an arbitrary connected subsurface of DF which

is contained in int(B) or in int(Y ) and hence we may have multiple Opp maps so long as we

specify an appropriate domain. Additionally, for a given domain Opp is well-defined.

Lemma 4.5. For a connected subsurface S ⊂ DF which is contained in int(B) or in int(Y ), Opp

is injective and hence a homeomorphism onto its image.

Proof of Lemma 4.5. Suppose without loss of generality that S ⊂ int(B). By our comment

above, S is disjoint from Opp(S) ⊂ DF\B . Suppose for a contradiction that Opp is not injective.

Then there exists distinct points s1, s2 ∈ S so that Opp(s1) = Opp(s2). Since Opp(s1) = Opp(s2) it

must be the case that s1, s2, and Opp(s1) are in the same parallel family; let F1, ...,Fn be the

faces of this parallel family. It is not hard to see that if Opp(s1) ∈ Fi then without loss of

generality s1 ∈ Fi−1 and s2 ∈ Fi+1. Let Ns1 be a regular neighborhood of s1 in S ∩Fi−1 and Ns2 be

a regular neighborhood of s2 in S ∩Fi+1. Define Q1 := Opp(Ns1) and Q2 := Opp(Ns2). Recall that

Opp is injective on a single face of DF and hence Q1 and Q2 are homeomorphic to Ns1 and Ns2

respectively.

There is a natural fiber structure between adjacent parallel faces in a given parallel family;

in particular we define a fiber Ip to be the fiber which has initial point p ∈ S and end point

Opp(p). We define an induced coorientation of Opp(S), by S, under Opp to be the
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Figure 14: Illustration of induced coorientation of Opp(S), by S, under Opp relative to Ip .

coorientation so that for every point p ∈ S the induced coorientation points in the direction

opposite of Ip . See Figure 14. Since S is a connected subsurface and Opp is continuous, we

have that the induced coorientation on Opp(S) either agrees with the coorientation of DF for

all points in Opp(S) or disagrees with the coorientation of DF for all points in Opp(S); we

assume without loss of generality that the induced coorientation on Opp(S) agrees with the

coorientation on DF .

Using the notion of an induced coorientation that we just defined there is an induced

coorientation of Q1, by Ns1, under Opp and an induced coorientation of Q2, by Ns2, under

Opp. Notice that the induced coorientations point in opposite directions, particularly at

Opp(s1), and hence one of our induced coorientations doesn’t agree with the coorientation of

DF , a contradiction. We conclude that Opp is injective and hence a homeomorphism onto its

image. ä
Main Lemma

Before we prove the Main Lemma we prove a useful lemma and corollary. We use | · | to

represent the number of components of.

Lemma 4.6. A simple closed curve in DF which is invariant underΦ intersects ∂F exactly twice.

Proof of Lemma 4.6. Let α be a simple closed curve such that Φ(α) =α. Since DF\∂F consists

of the two components int(F ) and int(F ′), it is not connected and hence |α∩∂F | = 2k, k ≥ 1.
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Now α\(α∩∂F ) consists of 2k components, k components in F and the other k components in

F ′. Since Φ fixes ∂F it must be the case that for α1 the closure of a component of α\(α∩∂F ) in

F , there is a corresponding α2 which is the closure of a component of α\(α∩∂F ) in F ′ such

that Φ(α1) =α2. Thus, ∂α1 = ∂α2 and α1 ∪α2 is a simple closed curve component of α. Since α

is connected α=α1 ∪α2 and hence k = 1. ä

Corollary 4.7. A disk in DF which is invariant under Φ intersects ∂F in exactly one arc.

Proof of Lemma 4.7. The defintion of invariance guarantees that any invariant disk must

interesect ∂F at least once. Suppose for a contradiction that there exists a disk D ⊂ DF such

that Φ(D) = D and |D ∩∂F | = k where k ≥ 2. Notice that D ∩∂F consists only of arc

components. Indeed if D ∩∂F contained simple closed curves then D would contain a

component of ∂D and no longer be a disk. Thus, |D\∂F | = k +1 and

|∂D\∂F | ≥ k +1 ≥ 3

which is a contradiction by Lemma 4.6 since ∂D ⊂ DF is an invariant simple closed curve . ä
In the next lemma, or Main Lemma, we make use of some terminology. We say a

subsurface of DF is essentially blue (or yellow) if the subsurface is blue (or yellow) except

possibly for a portion which can be contained in the interior of a disk, where the disk is in the

interior of the subsurface. We also may say that a subsurface of DF is entirely blue (or yellow) if

it is contained in int(B) (or in int(Y )).

Lemma 4.8. There exists a RBY coloring of DF invariant under Φ for which there is an entirely

blue (or entirely yellow) essential pair of pants X ⊂ DF of type T0, T1, or T3.

Proof of Lemma 4.8. The RBY coloring of DF already exists. It remains to show that there exists

X satisying the lemma. We assume without loss of generality that X , from Lemma 4.2, is a pair

of pants in int(B). When we talk about intersections we assume transversality, as usual, and in

particular transversality of X and Φ(X ). If X does not intersect ∂F it is a pair of pants of type T0
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with essential boundary components and X ⊂ int(B) and we are done. We assume from now

on that X intersects ∂F . We construct a surface, denoted X s,d , with the following properties:

• X s,d is a connected subsurface of DF ,

• Φ(X s,d ) = X s,d (i.e. X s,d is invariant under Φ),

• ∂X s,d is essential in DF ,

• X ⊂ X s,d ,

• X s,d is essentially blue, and

• χ(X s,d ) ≤−1.

We first define X s := X ∪Φ(X ). Notice that X s is invariant under Φ, is a subsurface of DF (this

follows from transversality) containing X , and is entirely blue. Let D be the disjoint union of

the disks in DF which are bounded by boundary components of X s . We define X s,d := X s ∪D .

Thus ∂X s,d is essential in DF . The only part of X s,d which can be yellow is contained in D and

since X s,d is connected we can find a single disk in X s,d which contains all of D . So X s,d is

essentially blue. Since X s is invarint under Φ we get for any boundary component c of X s

which bounds a disk Dc that there is a corresponding boundary component Φ(c) which

bounds a disk Φ(Dc ). It may be the case that Dc =Φ(Dc ). We conclude that X s,d is invariant

under Φ. Notice that X is a connected essential subsurface of X s,d and hence Lemma 2.14 tells

us that χ(X s,d ) ≤χ(X ) ≤−1. Thus, X s,d is a subsurface of DF satisfing the six properties above.

Claim. X s,d contains an entirely blue essential pair of pants of type T1 or T3.

Proof of claim. Since X is entirely blue and connected we can define Opp : X → DF and get

that Opp(X ) ⊂ DF\B = int(R ∪Y ).

Subclaim. For any component α of ∂X we get that α is essential in DF if and only if Opp(α) is

essential in DF .
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Proof of subclaim. We show one direction using proof by contrapositive; the other direction is

similar. If Opp(α) is inessential in DF , then it bounds a disk D ′′ ⊂ DF . From our construction of

the Opp map, α and Opp(α) cobound an annulus A in DM . Thus α is the boundary of the disk

D ′′∪ A ⊂ DM . Now int(D ′′∪ A)∩F = D ′′ so we use an isotopy to push D ′′ off of F so that

int(D ′′∪ A)∩F =;. So D ′′∪ A is a compressing disk for DF whose boundary is α. Since DF is

essential and hence incompressible in DM we get that α bounds a disk in DF and hence is

inessential in DF . This completes the proof of the subclaim.

We conclude that since X is essential in DF that Opp(X ) is essential in DF . We now show

that Opp(X )∩X s,d is empty. Suppose for a contradiction that Opp(X )∩X s,d is nonempty.

Since Opp(X ) ⊂ int(R ∪Y ) it is disjoint from X s ⊂ int(B). Thus Opp(X ) is contained in a disk

component of D . Since Opp(X ) is essential in this disk Lemma 2.14 tells us that χ(Opp(X )) ≥ 1

which is a contradiction. Thus Opp(X ) is disjoint from X s,d . We conclude that X s,d is not all of

DF and hence X s,d has boundary. Let ρ be a boundary component of X s,d . Notice that ∂X s,d is

contained in ∂X s and hence ρ is entirely blue. Since ∂X s,d is invariant under Φ we get that ρ is

equivariant under Φ and hence is disjoint from ∂F or intersects ∂F exactly twice.

In the case that ρ does not intersect ∂F then due to connectedness of X s and the

invariance under Φ of X s there is a simple path l in X s starting at the point p in ρ and ending

in ρ′ :=Φ(ρ) such that l only intersects ρ at p. Suppose without loss of generality that ρ ⊂ F

and let l ′ be the component of l ∩F containing p. Notice that l ′∪Φ(l ′) is a simple path with

one boundary component in ρ, the second boundary component in ρ′, and is invariant under

Φ. We define q := ρ∪ l ′∪Φ(l ′)∪ρ′. See Figure 15. Notice that q is invariant under Φ and is

contained in X s (hence is entirely blue). Let N (q ∩F ) be the regular neighborhood of q ∩F , in

F ∩X s . Notice that there is a regular neighborhood of q , in X s , which is invariant under Φ

given by Q := N (q ∩F )∪Φ(N (q ∩F )). We see that Q is an entirely blue pair of pants of type T1.

By our construction of Q we know that since ρ and ρ′ are boundary components of X s they

are also boundary components of Q. Moreover, ρ and ρ′ are boundary components of X s,d
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Figure 15: Example of possible decomposition for q .

and hence are essential in DF . Let ρ′′ be the third boundary component of Q. Since Q is a

regular neighborhood of q and ρ′′ was not already a boundary component of X s,d we get from

our construction that ρ′′ ⊂ int(X s).

Claim. ρ′′ is essential in DF .

Proof of Claim. Suppose for a contradiction that ρ′′ is inessential and hence bounds a disk D ′.

This disk either contains both ρ and ρ′ or neither. If ρtρ′ ⊂ D ′ then ρ and ρ′ both bound a

disk and hence are inessential which is a contradiction. Thus D ′ is disjoint from ρ and ρ′. Now

ρ′′ is an inessential simple closed curve in X s ⊂ X s,d . We show that D ′ ⊂ X s,d . Suppose for a

contradiction that D ′ 6⊂ X s,d . Since ∂D ′ ⊂ X s,d , but D ′ 6⊂ X s,d we get that int(D ′)∩X s,d is a

submanifold of D ′ with boundary consisting of simple closed curves from ∂X s,d . Each

boundary component of X s,d in D ′ bounds a disk in D ′; this contradicts the construction of

X s,d . We conclude that D ′ ⊂ X s,d .

Since ρ and ρ′ are boundary components of X s,d , ρtρ′ = ∂(Q ∪D ′), Q ∪D ′ ⊂ X s,d , and X s,d

is connected we get that X s,d =Q ∪D ′. Thus, since Q ∪D ′ is an annulus, χ(X s,d ) =χ(Q ∪D ′) = 0

which is a contradiction since χ(X s,d ) ≤−1 and so our claim holds.

Thus ρ′′ is essential as desired, moreover, we get that Q is an essential pair of pants of type
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T1 which is entirely blue.

We now consider the case when ρ intersects ∂F . Let p be one of the two points in ρ∩∂F .

There exists a path ρ2 contained in ∂F ∩X s,d which has endpoints in ∂X s,d one of which is p.

The other endpoint of ρ2 we call p ′. We now consider 2 separate cases:

Case 1: p ′ is in ρ.

Let ρl ⊂ F ′ and ρr ⊂ F be the oriented paths starting at p and ending in p ′ such that

ρ = ρlρ
−1
r . Additionally, orient ρ2 from p to p ′.

Claim. The simple closed curves ρlρ
−1
2 and ρrρ

−1
2 are essential in DF .

Proof of Claim. Assume for a contradiction that ρlρ
−1
2 is inessential in DF . Since

Φ(ρlρ
−1
2 ) = ρrρ

−1
2 it follows that ρrρ

−1
2 is also inessential in DF . Now with ∼ standing for

homotopy we get

(ρlρ
−1
2 )(ρrρ

−1
2 )−1 ∼ (ρlρ

−1
2 )(ρ2ρ

−1
r ) ∼ ρl (ρ−1

2 ρ2)ρ−1
r ∼ ρlρ

−1
r ∼ ρ

Now we consider these curves in the fundamental group of DF with base point p and we get

for e the identity that

e = e ∗e−1 = [ρlρ
−1
2 ]∗ [ρrρ

−1
2 ]−1 = [ρ]

and hence ρ is inessential giving us our contradiction. Showing ρrρ
−1
2 is essential is basically

the same proof and so our claim holds.

Recall that X s,d is only essentially blue. We know that X s,d \int(D) = X s is entirely blue. Let

D ′ be the disjoint union of the components of D which have nontrivial intersection with ρ2.

Since each of these components intersect ∂F and D is invariant under Φ it is clear that D ′ is

invariant under Φ and hence every component of D ′ intersects ∂F in exactly one arc. Let

N ((D ′∪ρ2)∩F ) be a regular neighborhood, in F ∩X s,d , of (D ′∪ρ2)∩F , then

N (D ′∪ρ2) := N ((D ′∪ρ2)∩F )∪Φ(N ((D ′∪ρ2)∩F )) is a regular neighborhood of D ′∪ρ2, in

X s,d , which is invariant under Φ. We define ρ′
2 := cl((∂N (D ′∪ρ2)∩F )\ρ). Notice that
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ρ′
2 ⊂ ∂N (D ′∪ρ2) is entirely blue since the contruction of N (D ′∪ρ2) was designed so that

∂N (D ′∪ρ2) was entirely blue. We also remark that ρ′
2 ⊂ int(F ) and ρ′

2 is homotopic relative the

boundary of X s,d to ρ2. Define q := ρ∪ρ′
2 ∪Φ(ρ′

2). Notice that q is entirely blue and invariant

under Φ. Let qp ′ be the component of q\(∂ρ′
2 ∪∂Φ(ρ′

2)) containing p ′. Define q ′ := q\qp ′ .

Similar to q we get that q ′ is entirely blue (in fact q ′ ⊂ X s) and invariant under Φ. Let N (q ′∩F )

be a regular neighborhood, in F ∩X s , of q ′∩F ; then Q := N (q ′∩F )∪Φ(N (q ′∩F )) is a regular

neighborhood, in X s , of q ′, is invariant under Φ, and is entirely blue. Since Q is a pair of pants

with boundary components homotopic to ρ, ρlρ
−1
2 , and ρrρ

−1
2 we conclude that Q is an

entirely blue essential pair of pants of type T1.

Case 2: p ′ is not in ρ and hence is in a different boundary component of X s,d ; we call this

component ρ′ and remark that since it is a boundary component of X s,d it is essential.

The following argument is fairly similar to case 1 and hence we omit some details. Let D ′

be the disjoint union of the components of D which have nontrivial intersection with ρ2. Like

case 1, D ′ is invariant under Φ and hence every component of D ′ intersects ∂F in exactly one

arc. We are able to find a regular neighborhood N (D ′∪ρ2), in F ∩X s,d , of D ′∪ρ2 which is

invariant under Φ. We define ρ′
2 := cl((∂N (D ′∪ρ2)∩F )\(ρ∪ρ′)). By our construction ρ′

2 is

entirely blue, ρ′
2 ⊂ int(F ), and ρ′

2 is homotopic relative the boundary of X s,d to ρ2. We define

q := ρ∪ρ′∪ρ′
2 ∪Φ(ρ′

2). Notice that q is entirely blue and invariant under Φ. Let qp ′ be the

component in q\(∂ρ′
2 ∪∂Φ(ρ′

2)) containing p ′. Define q ′ := q\qp ′ . Similar to q we get that q ′ is

entirely blue (in fact q ′ ⊂ X s) and invariant under Φ. Let N (q ′∩F ) be a regular neighborhood,

in F ∩X s , of q ′∩F , then Q := N (q ′∩F )∪Φ(N (q ′∩F )) is a regular neighborhood, in X s , of q ′, is

invariant under Φ, and is entirely blue. Now Q is an entirely blue pair of pants of type T3.

Claim. Q is essential in DF .

Proof of claim. By construction the essential simple closed curve ρ is a component of ∂Q. Let

q1 and q2 be the remaining boundary components of Q. By our construction and since ρ′
2 is

homotopic to ρ2 it follows that one of the boundary components, say q1, of Q is homotopic to
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ρ2ρ
′ρ−1

2 which is the conjugate of an essential curve and hence essential. It remains to show

that q2 is essential. Suppose for a contradiction that q2 is inessential, then q2 bounds a disk D ′′

in DF . Now ρtq1 ⊂ D ′′ or (ρtq1)∩D ′′ =;. If ρtq1 ⊂ D ′′ then both ρ and q1 bound a disk in

D ′′ and hence are inessential which is a contradiction. Thus D ′′ is disjoint from ρtq1.

Now ∂Q ⊂ X s ⊂ X s,d and hence q2 ⊂ X s ⊂ X s,d . While not all of q ′ is disjoint from ∂X s we

know that since Q is a regular neighborhood of q ′, in X s , that Q\q ′ ⊂ int(X s). Thus, since q2 is

disjoint from q ′ we know that q2 ⊂ int(X s). We show that D ′′ ⊂ X s,d . Suppose for a

contradiction that D ′′ 6⊂ X s,d . Since ∂D ′′ = q2 ⊂ int(X s) ⊂ int(X s,d ) there exist at least one

component of ∂X s,d ⊂ int(D ′′) and each component bounds a disk and hence is inessential

which is a contradiction. Thus, Q ∪D ′′ is an essential annulus contained in X s,d with

∂(Q ∪D ′′) = ρtq1 where ρ ⊂ ∂X s,d and q1 is homotopic to ρ′ ⊂ ∂X s,d . Since X s,d is connected

we get that Q ∪D ′′ is homotopic, in X s,d to X s,d and hence χ(X s,d ) =χ(Q ∪D ′′) = 0 which is a

contradiction. Thus, q2 is essential and hence Q is essential which proves the claim.

We conclude that Q is an entirely blue essential pair of pants of type T3. ä
Half of Double

Let X be the pair of pants found in Lemma 4.8, we assume without loss of generality that

X ⊂ int(B). We consider Opp : X → DF . Let α1, α2, and α3 be the boundary components of X .

Using the bundle structure from the parallelism of faces we have for each αi ⊂ ∂X that there is

an annulus Ai ⊂ DM with boundary components αi and Opp(αi ).

Notation: We write \\ to mean cut open along. We let I stand for the interval [0,1] and let

S1 stand for the circle.

We want to determine what happens to X when we restrict our problem back to the case

with just F in M by cutting DM open along ∂M . In other words we want to know what

X ∩F ⊂ F is. Before we look at DM\\∂M , however, we want some results about X and Opp(X )

in DM\\DF . Using the bundle structure of DM , which is derived from M , we get that DM\\DF

is homeomorphic to DF × I and we use the two expressions interchangably.
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Consider DF × I . Since F is 2-sided it follows that DF is 2-sided and hence ∂(DF × I ) has

two copies of DF , DF × {0} and DF × {1}. We define DF0 := DF × {0} and DF1 := DF × {1}.

Additionally, there are two copies of X ; one in DF0 and the other in DF1. Suppose without loss

of generality that DF0 is characterized by having a coorientation in DM\\DF which points in

while DF1 is characterized by having a coorientation in DM\\DF which points out. Choose X

to be the copy of X ⊂ DF0 so that the Opp map makes sense. Then, Opp(X ) ⊂ DF0 or

Opp(X ) ⊂ DF1. Moreover, A1, A2, and A3 all make sense in DF × I and the symmetric map

Φ : DM → DM which we defined earlier will also make sense in DF × I .

Lemma 4.9. For our choice of X ⊂ DF0 we get that Opp(X ) ⊂ DF1.

Proof of Lemma 4.9. Suppose for a contradiction that Opp(X ) ⊂ DF0. For i = 1,2,3 let

fi : S1 → DF × I such that imfi ) =αi and gi : S1 → DF × I such that im(gi ) = Opp(αi ). Let

Hi : S1 × I → DF × I such that Hi (s,0) = fi (s) and Hi (s,1) = gi (s). We know Hi exists because of

the annulus Ai . Now let P : DF × I → DF × {0} be the natural projection, then

P ◦Hi : S1 × I → DF × {0} is a homotopy of fi and gi in DF0. The existence of a homotopy in the

surface DF0 guarantees that there is an isotopy in DF0 of fi and gi . Thus, for i = 1,2,3 we get

that αi is isotopic to Opp(αi ) in DF0.

Since X is in int(B) we get that Opp(X ) is disjoint from B and hence X and Opp(X ) are

disjoint subsurfaces of DF0. We get for i = 1,2,3 that since αi is isotopic to Opp(αi ) then there

exists an annulus, Qi , in DF0 between αi and Opp(αi ) which has interior disjoint from X and

Opp(X ). Thus we have that Q := X ∪Opp(x)∪Q1 ∪Q2 ∪Q3 is a closed genus 2 subsurface of

DF0 and hence is equal to DF0. From our hypothesis χ(F ) ≤−76t (M)+1. So,

−2 =χ(Q) =χ(DF0) =χ(DF) = 2χ(F )

≤−152t (M)+2

≤−150
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where the last inequality holds since t (M) ≥ 1. This is a clear contradiction and hence

Opp(X ) ⊂ DF1 as desired. ä
We now go back to studying M . Recall that DM\\∂M is homeomorphic to M tM ′. Using

the bundle structure of M we conclude that M\\F is homeomorphic to F × I and use the two

expressions interchangably. Thus, since DM\\DF is homeomorphic to DF × I we talk about

F × I ⊂ DF × I instead of M\\F ⊂ DM\\DF . In this setting we consider seperately when X is a

pair of pants of type T0, T1, or T3 in DF0 ⊂ DF × I .

If X is a pair of pants of type T0 in DF0 then Φ(X ) is also a pair of pants of type T0 in DF0.

Either X or Φ(X ) is contained in F0 := F × {0}. If X ⊂ F0 then we leave it alone, otherwise if

X ⊂ DF\F0 we redefine X to be Φ(X ). Thus X is an entirely blue essential pair of pants of type

T0 contained in F0. Recall for i = 1,2,3 that Ai is the annulus with αi and Opp(αi ) as boundary

components; the αi are boundary components of X . Recall that we are associating F × I with

M\\F . Since X ⊂ F0 ⊂ F × I and Opp works with tetrahedra which are contained entirely in M

or M ′, it turns out that Ai ⊂ F × I for all i . By Lemma 4.9 we conclude for i = 1,2,3 that since

αi ⊂ F0 that Opp(αi ) ⊂ F1 := F × {1}.

Lemma 4.10. When X ⊂ F0 is an essential pair of pants of type T0, as above, then at least one of

A1, A2, or A3 is not boundary parallel to ∂(F × I ).

Proof of Lemma 4.10. Suppose for a contradiction that A1, A2, and A3 are all boundary parallel

in F × I . We know for i = 1,2,3 that Ai has the boundary components αi ⊂ F0 and

Opp(αi ) ⊂ F1. Since Ai is boundary parallel in F × I there exists for each i an annulus Bi in

∂(F × I ) with boundary components αi and Opp(αi ).

We need to show that for each i that int(Bi ) is disjoint from X and Opp(X ). Suppose for

now that the annulus B1 intersects int(X ), int(Opp(X )), or both. Then it must be the case that

int(X ), int(Opp(X )), or both are contained in the annulus B1. This is because to be boundary

parallel A1 must, with fixed boundary components, be isotopic to a subsurface of ∂(F × I )

which we are calling B1 which contains everything in ∂(F × I ) which is on the same side of ∂A1
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as B1. Thus, B1 contains one or two essential pairs of pants which is a contradiction by

Lemma 2.14. Since B1 was an arbitrary choice we conclude that int(Bi ) is disjoint from X and

Opp(X ) for i = 2,3 as well. We conclude that Q := B1 ∪B2 ∪B3 ∪X ∪Opp(X ) is a closed genus 2

subsurface of ∂(F × I ).

Notice that F has boundary and hence ∂(F × I ) is a connected closed surface with

χ(∂(F × I )) = 2χ(F ). Since Q is a closed genus 2 subsurface of ∂(F × I ) we get that Q = ∂(F × I ).

Thus,

−2 =χ(Q)

=χ(∂(F × I ))

= 2χ(F )

≤ 2(−76t (M)+1), by the hypothesis of Theorem 1.1

≤−150, since t ≥ 1

This gives a clear contradiction and we conclude that at least one of A1, A2, or A3 must not be

boundary parallel in F × I . ä
Using the result of Lemma 4.10 we assume without loss of generality that A1 is not

boundary parallel in F × I . Let α :=α1 = A1 ∩F0 and so Opp(α) = Opp(α1) = A1 ∩F1.

Lemma 4.11. Opp(α) is isotopic to α× {1} in F1.

Proof of Lemma 4.11. Let f : S1 → F × I such that im( f ) = Opp(α) and let g : S1 → F × I such

that im(g ) =α. Now let H : S1× I → F × I such that H(s,0) = f (s) and H(s,1) = g (s) for all s ∈ S1.

We know H exists because of the annulus A1. Now let P : F × I → F × {1} be the natural

projection, then P ◦H : S1 × I → F × {1} is a homotopy of f and P ◦ g in F1. The restrictions of P

to F0 and F1 are homeomorphisms and since im( f ) and im(g ) are embeddings we get that

im(P ◦ f ) = im( f ) = Opp(α) and im(P ◦ g ) =α× {1} are embedded. Thus, since f is homotopic

to P ◦ g and both im( f ) and im(P ◦ g ) are embedded, we get that there exists an isotopy of f
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and P ◦ g and hence Opp(α) is isotopic to α× I in F1. ä
The next two paragraphs are used to fix some notation for when X is a pair of pants of type

T1 or T3. We use similar notation in order to prove Lemma 4.12 and Lemma 4.13

simultaneously for both types of pants.

If X is a T1 pair of pants in DF0 then in F × I we may assume without loss of generality that

A1 ∩ (F × I ) is a disk D1, A2 ∩ (F × I ) = A2, and A3 ∩ (F × I ) is empty. Notice that

η := D1 ∩α1 = F0 ∩α1 and Opp(η) = D1 ∩Opp(α1) = F1 ∩Opp(α1) are arcs in F0 and F1

respectively.

Lastly if X is a T3 pair of pants in DF0 then for i = 1,2,3 we get that Di := Ai ∩ (F × I ) ⊂ F × I

is a disk. Notice that ai := Di ∩αi = F0 ∩αi and a′
i := Di ∩Opp(αi ) = F1 ∩Opp(αi ) are arcs in F0

and F1 respectively. We define η := a1 = D1 ∩α1 = F0 ∩α1 and hence

Opp(η) = a′
1 = D1 ∩Opp(α1) = F1 ∩Opp(α1).

Lemma 4.12. η and Opp(η) are essential arcs in F0 and F1 respectively.

Proof of Lemma 4.12. Suppose for a contradiction that η is inessential in F0. Then there is an

arc a in ∂F0 such that ∂η= ∂a and η∪a bounds a disk Dη ⊂ F0. We go back to the double DF0

and notice that this implies that Φ(η) is inessential in Φ(F0) and we see that Φ(η)∪a bounds

the disk Φ(Dη) ⊂Φ(F0). We conclude, since a is a single arc in ∂F0, that α1 = η∪Φ(η) bounds

the disk Dη∪Φ(Dη) ⊂ DF0 and hence is inessential which is a contradiction. We can prove,

similarly, that Opp(η) must be essential. ä

Lemma 4.13. Opp(η) is isotopic to η× {1} in F1.

Proof of Lemma 4.13. Let f : [0,1] → F × I such that im( f ) = Opp(η) and let g : [0,1] → F × I

such that im(g ) = η. Now let H : [0,1]× I → F × I such that H(s,0) = f (s) and H(s,1) = g (s) for

all s in [0,1] and such that for all t in I we have that H(0, t ) and H(1, t ) are in ∂F × I . We know H

exists because of the disk D1. Now let P : F × I → F × {1} be the natural projection, then

P ◦H : [0,1]× I → F × {1} is a homotopy relative the boundary of F1 of f and P ◦ g in F1. Now P

restricted to F0 or F1 is a homeomorpism and since im( f ) and im(g ) are embeddings we get
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that im(P ◦ f ) = im( f ) = Opp(η) and im(P ◦ g ) = η× {1} are embedded. Thus, since f is

homotopic to P ◦ g and im( f ) and im(P ◦ g ) are embedded we get that there exists an isotopy,

relative the boundary of F1, of f and P ◦ g and hence Opp(η) is isotopic to η× {1} in F1 ä
Conclusion

If X is a pair of pants of type T0 then Lemma 4.10 implies that α and Opp(α) are essential

simple closed curves. Recall µ : F → F from the statement of Theorem 1.1. In F × I , which is

homeomorphic to M\\F , we get µ(α) =α× {1} which, by Lemma 4.11, is isotopic to Opp(α).

Since α⊂ int(B) (or is in int(Y )) we know Opp(α) is disjoint from B (or from Y ) and so µ(α) is

(possibly after isotopy) disjoint from α.

If X is a pair of pants of type T1 or of type T3 then Lemma 4.12 implies that η and Opp(η)

are essential arcs in F0 and F1 respectively. Recall µ : F → F from the statement of Theorem 1.1.

In F × I , which is homeomorphic to M\\F , we get µ(η) = η× {1} which by Lemma 4.13 is

isotopic relative to the boundary of F0 to Opp(η). Since η⊂ int(B) (or is in int(Y )) we know

Opp(η) is disjoint from B (or from Y ) and so µ(η) is (possibly after isotopy) disjoint from η.

From the two preceeding paragraphs we conclude the result of Theorem 1.1.
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