
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2017

A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time

Assembly of Custom Accelerators on FPGAs Assembly of Custom Accelerators on FPGAs

Zeyad Tariq Aklah
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Hardware Systems Commons, and the Software Engineering Commons

Citation Citation
Aklah, Z. T. (2017). A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time Assembly of
Custom Accelerators on FPGAs. Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/1928

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fetd%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uark.edu%2Fetd%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/1928?utm_source=scholarworks.uark.edu%2Fetd%2F1928&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:uarepos@uark.edu

A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time
Assembly of Custom Accelerators on FPGAs

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

by

Zeyad Tariq Aklah
University of Basrah

Bachelor of Science in Computer Engineering, 2002
University of Basrah

Master of Science in Computer Engineering, 2008

May 2017
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council

Dr. David Andrews
Dissertation Director

Dr. John Gauch
Committee Member

Dr. Michael Gashler
Committee Member

Dr. Xuan Shi
Committee Member

Abstract

The state of the art in design and development flows for FPGAs are not sufficiently mature to al-

low programmers to implement their applications through traditional software development flows.

The stipulation of synthesis as well as the requirement of background knowledge on the FPGAs’

low-level physical hardware structure are major challenges that prevent programmers from using

FPGAs. The reconfigurable computing community is seeking solutions to raise the level of design

abstraction at which programmers must operate, and move the synthesis process out of the pro-

grammers’ path through the use of overlays. A recent approach, Just-In-Time Assembly (JITA),

was proposed that enables hardware accelerators to be assembled at runtime, all from within a tra-

ditional software compilation flow. The JITA approach presents a promising path to constructing

hardware designs on FPGAs using pre-synthesized parallel programming patterns, but suffers from

two major limitations. First, all variant programming patterns must be pre-synthesized. Second,

conditional operations are not supported.

In this thesis, I present a new reconfigurable overlay, URUK, that overcomes the two limita-

tions imposed by the JITA approach. Similar to the original JITA approach, the proposed URUK

overlay allows hardware accelerators to be constructed on FPGAs through software compilation

flows. To this basic capability, URUK adds additional support to enable the assembly of pre-

synthesized fine-grained computational operators to be assembled within the FPGA.

This thesis provides analysis of URUK from three different perspectives; utilization, perfor-

mance, and productivity. The analysis includes comparisons against High-Level Synthesis (HLS)

and the state of the art approach to creating static overlays. The tradeoffs conclude that URUK can

achieve approximately equivalent performance for algebra operations compared to HLS custom

accelerators, which are designed with simple experience on FPGAs. Further, URUK shows a high

degree of flexibility for runtime placement and routing of the primitive operations. The analysis

shows how this flexibility can be leveraged to reduce communication overhead among tiles, com-

pared to traditional static overlays. The results also show URUK can enable software programmers

without any hardware skills to create hardware accelerators at productivity levels consistent with

software development and compilation.

c©2017 by Zeyad Tariq Aklah
All Rights Reserved

Acknowledgements

I would like to thank my academic advisor, Professor David Andrews, for his extraordinary care
and support. His guidance helped me throughout the research and the writing of this thesis.

Beside my advisor, I would like to extend my thanks to my thesis committee: Professor John
Gauch, Dr. Gashler, and Dr. Shi.

Additionally, I would like to thank the HCED-Iraq for providing me the opportunity to pursue my
Ph.D.

My sincere thanks also goes to the staff of the Sponsored Students Program at the University of
Arkansas, especially to the director of the program, Gloria Flores Passmore, and the program
coordinator, Catherine Cunningham.

Last but not least, I would like to thank my family for their everlasting support.

Contents

1 Interoduction 1
1.0.1 Compilation Challenges . 4
1.0.2 Technical Challenges . 5

1.1 Just-In-Time Assembly . 5
1.2 Thesis Statement . 6

1.2.1 Thesis Contributions and Organization . 7

2 Background 9
2.1 FPGAs Overview . 9
2.2 CGRAs Overview . 11
2.3 High Level Synthesis . 13
2.4 Overlays . 14

2.4.1 JIT FPGA . 15
2.4.2 Virtual FPGAs . 15
2.4.3 ZUMA: . 16
2.4.4 Intermediate Fabrics . 16
2.4.5 Synthesis-Free JIT Compilation: . 16
2.4.6 SCGRA . 17
2.4.7 QuickDough . 17
2.4.8 QUKU: . 18
2.4.9 Soft Processors . 18

2.5 Domain Specific Languages . 19
2.5.1 FSMLang: . 19
2.5.2 Chisel: . 20
2.5.3 Aspen: . 20
2.5.4 Lime: . 21
2.5.5 Delite: . 21

3 Just-In-Time Assembly 23
3.1 Introduction . 23
3.2 JITA Approach . 23
3.3 Compilation Flow . 24
3.4 JITA Overlay . 25

3.4.1 PR Tiles . 28
3.4.2 Programmable Switch . 28
3.4.3 Local Memory . 29

3.5 Run Time Interpreter . 29
3.6 Summary . 34

4 Proposed Solution 37
4.1 Introduction . 37
4.2 Hardware Design Flow . 38

4.3 URUK Architecture . 40
4.3.1 Tile Structure . 42
4.3.2 PR Regions . 42
4.3.3 Configurable Switches: . 43
4.3.4 Memory Interface . 45
4.3.5 Tile Controller . 45
4.3.6 Tile Instruction Sets . 46

4.4 Design Automation . 50

5 URUK Compilation Flow 51
5.1 Introduction . 51
5.2 URUK Parallelism . 54
5.3 Conditional Operations . 54
5.4 Domain Specific Langauges . 54
5.5 Data Flow Graph . 55

5.5.1 Pattern Based . 55
5.5.2 Operator Based . 56

5.6 Example 1 . 57
5.7 Example 2 . 60

6 Evaluation 66
6.1 Benchmark: . 66
6.2 HLS Implementation . 67
6.3 URUK Implementation . 68
6.4 Prototyping System . 70
6.5 Performance Evaluation . 74

6.5.1 Pattern Based . 77
6.5.2 Operator Based . 81
6.5.3 Optimization . 82

6.6 Productivity . 84
6.7 Dynamic vs. Static . 85

6.7.1 Area . 88
6.7.2 Routing Data . 88
6.7.3 Parallelism . 89

7 Conclusion 90
7.1 Summary . 90
7.2 Future Work . 91

References 93

List of Figures

1.1 General Processors vs. FPGAs Compilation Flows. 3

2.1 General FPGA Architecture. 11

2.2 General CGRA Architecture. 12

3.1 Design Approach. 24

3.2 Compiler Flow and VAM Call Generation. 26

3.3 3×3 Tile Array and Interconnect Network. 27

3.4 Switch Routing. 28

3.5 VAM Run Time Interpreter Configuration Steps. 30

3.6 Design Portability with JIT. 31

3.7 VAM Run Time Interpreter Configuration Steps For Inner Product. 33

3.8 All variant patterns must be pre-synthesized. Modfied source from OptiML[58]. . . 36

3.9 Composing conditional operations problem. Modfied source from OptiML[58]. . . 36

4.1 DSL parallel programming patterns. 38

4.2 Hardware design flow for the overlay static logic and partial bitstreams. 39

4.3 Patterns/Operators HLS template. 40

4.4 2D URUK Overlay Structure. 41

4.5 Three tile interconnect types. 44

4.6 Tile Controller. 46

4.7 URUK instructions set and operations code . 47

5.1 URUK compilation flow. 52

5.2 A DSL source code. 58

5.3 Data Flow Graphs (DFGs) for the code in Figure 5.7 58

5.4 Place&Route DFGs in Figure 5.8 . 59

5.5 Instructions and executable binaries for the two placement examples in Figure 5.9 59

5.6 Instructions and executable binaries for the two placement examples in Figure 5.9 60

5.7 OptiML Example . 61

5.8 Data Flow Graph for the code in Figure 5.7 . 61

5.9 Place&Route DFGs in Figure 5.8 . 62

5.10 Instructions and executable binaries for the pattern based placement in Figure 5.9

(a). 63

5.11 Instructions and executable binaries for the operator based placement in Figure 5.9

(b). 64

6.1 Prototype System. 70

6.2 The DFG of CP1 function based on pre-synthesized (a) Patterns and (b) Operators,

and the placement on 3×3 overlay. 72

6.3 The DFG of CP2 function based on pre-synthesized (a) Patterns and (b) Operators,

and the placement on 3×3 overlay. 73

6.4 The DFG of CP3 function based on pre-synthesized (a) Patterns and (b) Operators,

and the placement on 3×3 overlay. 74

6.5 The DFG of CP1 function based on pre-synthesized (a) Patterns and (b) Operators,

and the placement on 3×3 overlay. 75

6.6 Vector Addition and Matrix Multiplication DFGs, Pattern Based. Also, the three

mapping methods, USingle, UDouble, and UQuad. 76

6.7 The execution time of the 7 benchmark functions. Only CP1 function was not

implemented in UQuad due to the limited number of tiles. The HLS accelerators

were not optimized. 4K data elements(32-bit integers) are used. 79

6.8 The speed ups of the HLS and URUK (USingle, UDouble, and UQuad) implemen-

tations over software versions of (a) CP1 and (b) CP2 functions. 79

6.9 The speed ups of the HLS and URUK (USingle, UDouble, and UQuad) implemen-

tations over software versions of (a) CP3 and (b) CP4 functions. 80

6.10 The speed ups of the HLS and URUK (USingle, UDouble, and UQuad) implemen-

tations over software versions of (a) Vector add and (b) Vector multiply functions. . 80

6.11 Compares the execution time and speed up of UPB and UOB implementations

using 4K data elements(32-bit integers). 82

6.12 The execution time of the optimized and non-optimized HLS of 64x64 matrix mul-

tiply also the speed up compared to MicroBlaze and the three methods of URUK

overlay implementations using 4K data elements(32-bit integers). 83

6.13 The required design experience on FPGA to optimize the 64x64 matrix multiply,

in Figure 6.12, on both HLS and URUK to gain speed up. 83

6.14 (a) The HLS design steps including estimated time; (b) URUK compilation steps

including estimated time. 86

6.15 Dynamic vs. static overlays . 87

List of Tables

2.1 DSLs for design applications on FPGAs. 19

3.1 VAM Calls . 32

4.1 Conditional branching instructions. 49

6.1 Synthetic Benchmark Functions . 67

6.2 Resource Utilizations of HLS Full Accelerators on Vertix7 68

6.3 Resource utilizations of Computational Operators on Virtex7 68

6.4 Tile’s Resource utilization on Virtex7 . 69

6.5 Resource utilizations of Programming Patterns on Virtex7 69

6.6 Tile Utilizations of Benchmark Functions on URUK Overlay. 70

Terms and Definitions

API Application Programmer Interface. The defined interface of a piece of software, often times

a library or operating system.

CP Functions that include Compound Patterns.

CPU Central Processing Unit. A programmable hardware component, often referred to as proces-

sor or core.

DMA Direct Memory Access. Often referring to hardware devices that can perform memory-to-

memory operations without processor assistance.

DFG Data Flow Graph.

DSP Digital Signal Processor. A processor specialized for signal processing, often featuring vec-

tor and multiply-accumulate operations.

FIFO First-In, First-Out. A hardware component or data structure that exhibits First-In, First-Out

behavior (e.g. a queue).

FPGA Field Programmable Gate Array. A hardware chip whose functionality can be changed

post-fabrication.

GPU Graphics Processing Unit. A hardware component specialized for graphics processing.

HDL Hardware Description Language (e.g. VHDL or Verilog).

HLL High-Level Language.

HLS High Level Synthesis. Synthesis the hardware design from hight level programming lan-

guage. Or the abbreviation of the hight level synthesis tools named Vivado HLS.

HPC High Performance Computing.

HW Abbreviation for Hardware.

ICAP Internal Configuration Access Port

ISA Instruction Set Architecture. Also known as the instruction set of a particular processor.

JIT Just In Time. A compilation approach.

JITA Just-In-Time Assembly of hardware custom accelerators.

JVM Java Virtual Machine

LUTs Look up tables.

MM Matrix Multiply.

MPSoC Multiprocessor System-on-Chip.

NUMA Non-uniform Memory Access

OS Operating System.

P2P point to point

PAR place and routing

PE processing element

PIIL Platform Independent Interpreter Language. A language used in the run time interpreter,

which is platform independent.

PRA Partial Reconfigurable Accelerator

PR Partial Reconfiguration

SMP Symmetric Multiprocessing

SW Abbreviation for Software.

UDouble mapping two copies of the DFG pattern(s) on the overlay tiles.

UOB URUK Operator Based.

UPB URUK Pattern Based.

UQuad mapping four copies of the DFG pattern(s) on the overlay tiles.

URUK An ancient city of Sumer in southern Mesopotamia, where the author of this work was

born.

USingle mapping data flow graph’s pattern(s) on the overlay tiles without doubling.

VADD Vector Addition.

VMUL Vector Multiplication.

VAM Virtual Accelerator Machine

XDC Xilinx Design Constraint

Chapter 1

Interoduction

Two trends are driving the pursuit of next generation computer architectures for data centers. The

first trend is not new; the size, complexity, and diversity of the software applications running across

distributed nodes as well as the data sets processed by these applications continues to increase. A

little over a decade ago, our semiconductor industry switched our fundamental processing capa-

bilities from scalar processors to manycores, or chips with multiple cores to meet these growing

demands. Manycores can support scalable program concurrency through increasing the number of

processor cores that can be fabricated within a chip.

The second trend is being driven by growing concerns over the relatively inefficient levels of

energy efficiency achieved by todays computer systems. The CRA working group report entitled

“Revitalizing Computer Architecture Research for Next Generation Systems” called this out as a

grand challenge problem for their “System 2020 Vision”. They put forth the challenge of creating

a new featherweight supercomputer architecture that can achieve 0.001 nJ/op [22]. This is four

orders of magnitude improvement over today’s systems.

While the switch from scalar processors to manycores promised a more scalable solution

for next generation data centers, it turned out to be no panacea when viewed through the lens of

energy efficiency. Simply stated, Dennard scaling ended. Informally Dennard scaling states that as

feature sizes of transistors are shrunk, the associated voltage and current scale down proportionally.

Effectively under Dennard scaling the power would remain constant for a constant area of silicon.

The ending of Dennard scaling posed immediate problems for the success of the newly evolving

manycore era. The end of Dennard scaling resulted in a phenomena that became known as Dark

Silicon [26], or the inability to turn on available cores due to energy limitations as well as lack of

available concurrency within the program.

1

To date, there has been no definitive answer on how to eliminate Dark Silicon, or field an

architecture that can reach an energy efficiency of 0.001 nJ/op. What has occurred has been a

fairly rapid evolutionary change to mixes and types of traditional processors that are built into the

manycore chips. Providing systems with mixed types of processors can increase energy efficiency

by increasing the use of the transistors that we can turn on. Manycores with mixes of processor

types are referred to as heterogeneous manycores. By including heterogeneous components the

data center can exploit a broader range of parallelism and at multiple levels of granularity. Modern

heterogeneous systems include general purpose processors to exploit to support multithreading, as

well as Graphics Processor Units (GPUs) to exploit data parallelism. This richer set of resources

is an improvement compared to the initial manycore chips, which simply replicated a standard, or

homogenous, general purpose processor.

However heterogeneous systems are limited in their ability to exploit all available types of

parallelism and achieve new levels of energy efficiency. The problem is that modern workloads

contain what can be referred to irregular types of parallelism that cannot be efficiently computed

by fixed general purpose and data parallel types of processors. Custom hardware accelerators in

the form of Application Specific Integrated Circuits (ASIC’s) can be created to tailor transistors

and wires to better match the data and control flow patterns of the irregular parallelism. This can

result in better energy efficiency per a given set of transistor and wire resources. However, these

circuits require long system development cycles and exhaustive pre and post silicon verification

procedures. Moreover, the very fact that ASICs are tailored for specific applications limit their

flexibility and reusability compared to more general-purpose processors. ASICs can cost upwards

of $ 50 M to design, and the development and test times are too long to attempt redesigns at

anything close to the rate that the algorithms and application programs are modified.

The concept of custom accelerators is still being pursued by our semiconductor industry, but

using Field Programmable Gate Arrays (FPGAs) in place of ASICs. FPGAs are not as dense or fast

as an ASIC but they do provide acceptable levels of performance increases through customization,

2

Source Code
VHDL, Verilog,Netlist

Synthesis

Place &
Route

Analysis

Bitstream
Generation

Source Code
C/C++

Compile

Binary

FPGA

CPU

Function

(a)

(b)

Figure 1.1: General Processors vs. FPGAs Compilation Flows.

while still providing higher flexibility and much shorter design times compared to ASICs. Our

semiconductor industry is willing to trade some peak performance for design flexibility and in-

creased developer productivity. This tradeoff was highlighted when Microsoft revealed Catapult, a

prototype server with FPGAs to accelerate their Bing search engine [53]. Following the disclosure

of Catapult, Intel announced acquisition of Altera, one of two major FPGA vendors, and created

HARP, a new compute node that will integrate an FPGA. This trend is continuing. Recently, Ama-

zon announced the EC2 F1 which is a compute instance with FPGAs that allow programmers to

create custom hardware accelerators for their applications.

Unfortunately the state of the art in design and development tools for FPGAs are not suffi-

ciently mature to allow application programmers that comprise the workforce in the data center

to easily write, compile and run code on the FPGAs. Enabling FPGAs to be part of the solution

for building energy efficient next generation systems will require successfully resolving two long

standing research challenges that have so far prevented reconfigurable computing from becoming

mainstream.

3

1.0.1 Compilation Challenges

The compilation flow for FPGAs is different from the traditional compilation for general processors

as shown in the Figure1.1. The design flow for FPGAs still require bit level manipulation during

design time using synthesis, place and route which are time consuming processes. These processes

need to be repeated again and again with every changes in the source code or design constraints.

It may take from several minutes to several hours depends on the design size. This produces a

large compilation gab between FPGAs and general processors. Despite the great enhancement in

the CAD tools by using High Level Synthesis (HLS), the design has to go through the traditional

FPGAs compilation phases, which are synthesis, place and route.

Thus a large productivity gap exists between programming gates within FPGAs and gen-

erating executables for general processors. This is true despite the great advancement provided

by High Level Synthesis (HLS), tools. These tools allow functionality to be expressed in C like

programming languages instead of traditional Hardware Description Languages (HDLs) such as

Verilog or VHDL. While this allows programmers to express applications in a form closer in look

and feel to the languages used to program processors, the designs still must still be created in hard-

ware centric CAD tools, still require knowledge of digital design, and ultimately pass through the

inefficient and time consuming steps of synthesis, place and route.

To bridge the compilation gab, other options has been suggested such as constructing an

intermediate fabric (Overlay) on top of the FPGA resources to raise the level of abstractions and

route in word level rather than in bit level. Theoretically, this is one of the viable solutions to

redeem the gab and reduce the compilation time for FPGAs. However, overlays can be designed in

many different ways to virtualize the original FPGAs resources. The costs and benefits can vary for

each way. In this work, we are exploring the advantages and disadvantages of each way of design

that is included in this study. Also, this study shows the tradeoffs among performance, resource

utilization, and compilation complexity.

4

1.0.2 Technical Challenges

The current state-of-the-art programming languages, design abstractions and design flows used for

programming FPGAs evolved from VLSI chip design and require hardware development skills.

FPGA designers must still learn hardware programming models and digital design. This is a con-

cern as the United States Bureau of Labor Statistics reported in 2015 that the United States em-

ployed approximately 85,000 hardware engineers compared to 1.3M software programmers [31].

The reconfigurable computing community put great effort to increase productivity and bring soft-

ware developers to program FPGAs using High Level Synthesis(HLS). High Level Synthesis has

been considered as a robust compilation technology to increase productivity. The HLS provides

more familiar syntax to software programmers by using Clike languages such as SystemC, Han-

dleC, CC++,.. etc. However, it failed at getting programmers to use FPGAs because it,also, re-

quires hardware background knowledge such as the type of interface between hardware compo-

nents, timing analysis, physical constraints, resource utilization,.. etc. Moreover, the design still

has to go through synthesis and place and route.

If FPGAs are to become part of the infrastructure for data center and warehouse scale com-

puters, the large cadre software programmers must be given access to these devices through their

accepted practices and tools. This requires giving them a path to programming FPGAs that by-

passes CAD tools, the need to understand hardware programming models, and synthesizing, plac-

ing and routing each new design. The next section briefly describes a recent proposed idea to move

the synthesis process out of the way of programmers.

1.1 Just-In-Time Assembly

Recently Just-in-Time (JIT) techniques have been proposed for assembling pre-built circuits at

runtime within FPGAs [43], [45], and [44]. The idea is that pre-synthesized parallel patterns

such as map, reduce, foreach, filter..etc can be made available within libraries and then placed

5

into the FPGA by a runtime interpreter. JIT holds promise for effectively moving the synthesis

process out of a programmers path and allowing hardware circuits to be compiled and interpreted.

JIT techniques have been applied to programming predefined overlay components such as ALUs

as well as moving bitstreams into and out of partial reconfiguration regions. While this approach

allows programmers to compile accelerators it suffers from the following drawbacks:

• All Variants of Programming Patterns Must be Synthesized.

• Cannot Compose Simple Conditionals with Pre-synthesized Programming Patterns.

1.2 Thesis Statement

Enabling software developers to apply their skills over FPGAs continues to be an unreached re-

search objective in the reconfigurable computing community. JIT Assembly holds promise for ef-

fectively moving the synthesis process out of a programmers path and allowing hardware circuits

to be compiled and interpreted. To extend the JIT Assembly approach and support moving the

synthesis process out of the way of programmers, I am proposing Reconfigurable Overlay,URUK,

which composes fundamental computational operators instead of full patterns . This thesis evalu-

ates the new JIT Assembly by considering the following questions:

• Can URUK eliminate the challenges that result from composing pre-synthesized parallel

patterns while still preserving all the productivity benefits of the original JIT approach?

• Can URUK allow conditionals to be composed with the synthesized programming patterns

without generating multiple bitstreams for each case?

• How much time does it take to construct an accelerator using the new compilation flow

targeting URUK compared to Vivado HLS?

• How will performance and resource utilization be affected compared to full custom designed

modules using Vivado HLS as well as the original JIT approach?

6

• What are the costs and benefits of considering Partial Reconfiguration techniques as part of

the overlay dynamic system?

1.2.1 Thesis Contributions and Organization

Throughout the exploration of this work, I have made the following set of contributions and pub-

lished them in top-tier conferences.

• A Dynamic Overlay to Support Just-In-Time Assembly: In this work, a dynamic overlay is

designed to support Just-In-Time assembly by composing hardware operators to construct

full accelerators. The hardware operators are pre-synthesized bitstreams and can be down-

loaded to Partially Reconfigurable(PR) regions at runtime [3].

• A Run-time Interpretation Approach For Creating Custom Accelerators: We provided a new

approach in which hardware accelerators can be built and run using compilation and run time

interpretation. Also, we demonstrated that our approach can enable software programmers

without any hardware skills to create hardware accelerators at productivity levels consistent

with software development and compilation [43].

• Composing Pre-Synthesized Building Blocks at Run-Time: We demonstrated a technique to

move synthesis out of the programmers path by composing pre-synthesized building blocks

using a domain-specific language that supports programming patterns tailored to FPGA

accelerators. Our results show that the achieved performance of run time assembling ac-

celerators is equivalent to synthesizing a custom block of hardware using automated HLS

tools [44].

• Just-In-Time Assembly of Custom Accelerators: We demonstrated that Synthesis can be

eliminated from the application programmers path by becoming part of the initial coding

process when creating the programming patterns that define a Domain Specific Language.

Programmers see no difference between creating software or hardware functionality when

7

using the DSL. A run time interpreter is introduced that assembles hardware accelerators

within a configurable tile array of partially reconfigurable slots at run time [45].

• A Flexible Multilayer Perceptron Co-processor for FPGAs: We designed a Multilayer Per-

ceptron Co-processor (MLPCP) targeting FPGAs that is configurable during design time

and programmable during runtime. The MLPCP can be reprogrammed at run time to rapidly

change network topologies and use different activation functions. It promotes design reusabil-

ity and allows application developers to change parameters of a given network without the

need to resynthesize [2].

The rest of this thesis is organized as follows. Chapter 2 gives background on fine-grind

reconfigurable architectures, and Course-Grind Reconfigurable Accelerators as well as providing

a survey on the start-of-the-art approaches on constructing intermediate fabrics, overlays, FPGA

virtualizations and programming modules. Chapter 3 provides background on the original Just-In-

Time Assembly (JITA) of custom accelerators. Next, Chapter 4 presents the proposed solution as

well as the new overlay architecture including the overlay instruction sets. Chapter 5 provides a

guideline for the compilation process when targeting URUK overlay. Chapter 6 describes the eval-

uation methods and dissusses the results. Finally, Chapter 7 gives answers to the thesis questions

and potential future work.

8

Chapter 2

Background

This chapter provides an overview of reconfigurable hardware architectures including Field Pro-

grammable Gate Arrays (FPGAs) and Coarse-Grained Reconfigurable Architectures(CGRAs).

Additionally, the compilation flow and the productivity challenges of FPGAs are discussed. Then,

it presents the effort of the reconfigurable computing community on raising the design abstrac-

tion level and increasing productivity. Moreover, the start-of-the-art approaches on constructing

intermediate fabrics, overlays, and programming modules are presented.

2.1 FPGAs Overview

Field-Programmable Gate Arrays (FPGAs) are electrically programmable silicon devices that can

be configured to implement almost any complex digital circuits or systems. An FPGA is a two-

dimensional array of logic units and electrically programmable routing interconnects [34]. Logic

units comprise Configurable Logic Blocks(CLBs), Digital Signal Processors (DSPs), Block RAMs

(BRAMs), Input-Output Buffers (IOBs), and Digital Clock Managers (DCMs). These logic units

can be configured and connected to implement different combinations of sequential and combi-

national circuits to provide different functionalities ranging from one simple gate to a sophisti-

cated microprocessor. CLBs include a number of Lookup Tables (LUTs) that can be programmed

to implement any boolean expression. The routing interconnects consist of variant length wire

segments and electrically programmable switches, which can switch on and off the connection

between logic units in bit level. Figure 2.1 shows a general example of FPGAs which includes

a two-dimensional grid of CLBs surrounded by I/O blocks. The grid is wired and connected by

programmable switches. The “programmable/reconfigurable” term in FPGAs refers to the capa-

bility of forming a new digital circuit on a chip after fabrication by programming the interconnect

9

switches and changing the behavior of the logic units [34].

Routing interconnect makes up 90 percent of the total area of FPGAs[60]. In consideration

of that FPGAs architecture meant to be general and capable of implementing any digital circuit, the

routing interconnect must be very flexible to adapt to a large variety of circuits. During the design

phase, Computer Aided Design (CAD) tools search for an optimal solution to place specific logic

into specific configurable units and wire them at bit level. With every possible place and route

solution, the CAD tools evaluate design constraints to meet the specifications. For instance, the

tools perform timing analysis for every place and route to meet the timing constraints, and if the

design violates timing, the tools will seek for another possible solution for place and route. These

processes consume a large amount of time, which ranges from several minutes to days depending

on the design size.

Typically, FPGAs are programmed with Hardware Description Languages (HDLs) such as

VHDL and Verilog. The traditional FPGAs’ design flow includes four stages as follows. First,

designers write their code in VHDL or Verilog and set timing and I/O constraints of the design.

Second, CAD tools apply logic synthesis, which translates a source description code written in an

HDL into a set of Boolean gates and Flip-Flops. Then, synthesized design is passed to the imple-

mentation stage which includes place and route processes. The place and route are the heaviest

tasks in the whole design flow because tools are looking for the best solution in a large search

space. After the implementation, bitstreams can be generated which will be downloaded to the

target FPGA.

To enable programmers to access FPGAs and increase their productivity, we need to eliminate

two major challenges: First, we need to allow programmers to write their applications in high level

languages. Second, we should move the synthesis, place and route out of the programmers’ way.

The next sections present the effort of the reconfigurable computing community to phase out these

challenges.

10

S C S S SC C

C CLB C CLB C CLB C
I/O

I/O

I/O

I/O

S C S S SC C

C CLB C CLB C CLB C
I/O

I/O

I/O

I/O

S C S S SC C

C CLB C CLB C CLB C
I/O

I/O

I/O

I/O

I/O

S C S S SC C

I/OI/OI/OI/OI/O

I/OI/OI/OI/OI/OI/O

Programmable
Switch I/O Block

Connection
Block

Configurable
Logic Block

Figure 2.1: General FPGA Architecture.

2.2 CGRAs Overview

Coarse-Grained Reconfigurable Architectures(CGRAs) have been proposed as an alternative to the

fine-grain architectures (FPGAs) to support faster compilation through raising the level of recon-

figurability from bit-width to word-width granularity, which enables on-the-fly customization and

reduces configuration overload. Particularly, CGRAs are designed to be customized on ASIC for

specific applications that have inherent data-parallelism. CGRAs are mainly composed of Process-

ing Elements(PEs), that include ALUs, multipliers, and shift registers connected by word width

mesh-like interconnects and are controlled by resources managers and synchronization modules.

Figure 2.2 shows a sample of a CGRA architecture. CGRAs can be either tightly coupled(e.g,

Matrix[52], Chess[46], and DySER[30]), or loosely coupled (e.g. MorphoSys[56], CHARM[19],

and PipeRench[29]). Loosely coupled CGRAs are more independent from the host CPU, and they

have their own control flow.

11

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

FU
Register

File

Register

Config-
uration

To#neighbors

From#neighbors

Configuration Memory

Local M
em

ory B
uffer

Figure 2.2: General CGRA Architecture.

CGRAs can be connected in a linear array (1D)based architecture such as RaPid[25] and

PipeRench[29] or in 2D mesh interconnect such as Matrix[52] and MorphoSys[56]; The 1D archi-

tecture is suitable for computations that can be linearly pipelined. In contrast, it is not efficient to

support block-based applications [62]. On the other hand, the 2D mesh architectures have a better

support to block-based processing such as in multimedia applications.

CGRAs are typically configured using opcodes instead of Hardware Description Languages

(HDLs), which leads to reducing compilation time through eliminating the extensive place and

route processes. CGRAs instructions can be stored in a centralized or distributed instructions

memory(s) [39]. Each computation unit interprets the assigned instructions and selects the right

hardware operator for the specified operation. ALUs within CGRAs should have the hardware

components for all supported operators on fabrics. Only selected components will be used while

others occupy area while staying idle. CGRAs, in general, are limited to simple operations such as

add, sub, mul, and logical operations. In order to support more computational operations, PEs will

12

become larger and may reach to the complexity of a processor.

Furthermore, CGRAs are limited to accelerating simple operations in nested loops. Most

CGRAs do not support conditional operations and branching. Additionally, they lack the flexibility

that FPGAs provide regarding user control over low-resource definition and allocation.

2.3 High Level Synthesis

The increase in silicon capacity and System-On-Chip (SOC) complexity has shifted interest toward

a higher level of abstraction which is considered on of the powerful ways of regulating complexity

and enhancing design productivity [18]. The reconfigurable computing community has addressed

the productivity challenges within FPGAs design flow and tried to raise the abstraction level be-

yond Register Transaction Level (RTL) by using High Level Synthesis (HLS). The HLS tools

translate untimed or partially timed functional specifications written in one of the high level lan-

guages such as C, C++, SystemC, Haskell, ..etc into low level fully timed RTL specifications. That

leads to not only providing more familiar syntax to software programmers but also reducing the

code density. For example, the conducted study from NEC[68] shows that large designs within

around 300k lines of RTL code can be reduced by 7X-10X when using high abstractions. Further,

the HLS flow reduces the required time for creating hardware as well as reducing verification time

and facilitates resource utilizations and power analysis. Currently, several commercial HLS tools

are available such as Vivado HLS, LegUp[14], and ROCCC[61].

In general, HLS has faced many challenges in translating source codes written in sequential

languages into hardware description specifications. For instance, bit accuracy, timing, concur-

rency, and synchronization are not supported explicitly in Standard C/C++; while they are essen-

tial in hardware design [18]. On the other hand, pointers, recursion, polymorphism, and memory

management are complex C/C++ constructs, which cannot be transformed easily into hardware.

To overcome these challenges, several solutions have been applied, such as disallowing the use of

dynamic constructs, using compiler directives and pragmas to explicitly specify concurrency, and

13

introducing hardware-oriented language extensions and libraries. HardwareC[33], SpecC[27], and

HandelC are examples for hardware language extensions, and SystemC is an instance for hardware

libraries.

Despite the great accomplishments in High Level Synthesis, software programmers still obli-

gated to gain knowledge in hardware low level details to create efficient designs. In order to create

an optimized design, programmers/designers should explicitly specify pragmas and directives (Vi-

vado HLS), clock boundaries(Handel-C), and clock edges/events (SpecC, SystemC) in their source

code. For example, in Vivado HLS, the user is required to understand which loop to unroll, when

to pipeline operations, what suitable interfaces for the inputs and the outputs, and the tradeoffs

among power, performance, and resources utilization. Furthermore, even through the HLS has

reduced the hardware design time, the compilation time is still significant. In fact, the design still

has to go through the extensive processes,which are synthesis, place and route.

The FPGAs research community has taken another path to reduce compilation time and in-

crease productivity by using overlays, which are discussed in the next section.

2.4 Overlays

Intermediate Fabrics, or overlays, have been proposed to allow higher level computational compo-

nents such as soft processors, and vector processors [67, 66], as well as Course Grained Reconfig-

urable Arrays(CGRAs) type structures [20, 21, 16], to be embedded within FPGAs. The potential

advantage of such overlays is that circuits and hardware acceleration can be achieved through com-

pilation instead of synthesis on existing FPGAs. Conventional approaches for enabling CGRAs on

an FPGA are to replace LUTs and Flip Flops with small programmable computational units like

ALUs as the compilation target. The ALUs are embedded within a network of switch boxes and

channels. The computational units can be populated with programmable functions at a rough

equivalence in circuit density to Medium Scale Integrated (MSI) components. Arithmetic and log-

ical operations, as well as shift registers, and multipliers have been proposed. These units then

14

serve as the target for compilers to exploit loop level parallelism. The interconnect structures are

defined to support wider word widths instead of bit level interconnections. Typically, overlays

introduces some overhead inefficiencies due to the additional resources, routing delays between

computational units, and limitations on the granularity of parallelism. Over the past years, several

approaches for virtualizing FPGA resources and building overlays have been published. The next

sections present some overlay projects proposed by the reconfigurable computing community.

2.4.1 JIT FPGA

The JIT FPGA approach presents a virtual FPGA, a synthesizable firm-core described in struc-

tural VHDL. It enables the development of standard hardware binaries, which provide portability

among different FPGAs. The virtual FPGA is a fine-grained fabric with virtualized LUTs. The

structure of one virtual LUT requires 100 physical FPGA LUTs. The JIT compiler for FPGAs

begins with the standard hardware binary and performs mapping to place the hardware logic onto

the virtual LUTs, then implements place and route. The virtual FPGA can achieve portability and

programmability at the cost of area and performance, around 100x area overhead and 6x slow down

in speed respectively [9, 40, 41, 42].

2.4.2 Virtual FPGAs

FPGAs’ virtualization can be accomplished by constructing a coarse-grained architecture, which

utilizes the low level hardware of FPGAs and provides high level of programmability. Metzner [51]

presented a coarse-grained architecture that enables run-time dynamic hardware multithreading.

The architecture includes computational elements connected in a 2D mesh network, which can

route data among them. Virtualization also can be achieved through partial reconfiguration tech-

niques as in OpenStack [13], which allows users to “boot” pre-designed custom hardware acceler-

ators in a similar way of Virtual Machines.

15

2.4.3 ZUMA:

An open source embedded FPGA architecture constructs an overlay on top of existing FPGA

resources and intends to achieve portability of designs and bitstreams among different vendors

(Xilinx, Altera) and parts. It follows the philosophy of virtual machines in computing environ-

ments. The ZUMA architecture attains virtualization by taking advantage of reprogrammability

of LUTRAMs provided in modern Xilinx and Altera FPGAs also forming a new programmable

LUTs and routing MUXs. It requires a bout 40 physical FPGA LUTs to create one virtual ZUMA

LUT. That puts around 40x area overhead and consumes more resources which basically increases

power consumption [10, 63].

2.4.4 Intermediate Fabrics

Intermediate Fabrics(IF) provides a virtual intermediate layer between the underlying physical

FPGA resources and user designs. The IF structure is nearly identical to conventional FPGAs

structures; this is represented by distributed computational unites in a grid across the fabric, with

switch boxes, connection boxes, and tracks. Similarly to FPGAs, IF is programmed using a con-

figurable bitstream. On the contrary, the IF resources are not as general as the FPGA resources. In

fact, computational unites and routing resources are specialized for a particular domains or appli-

cations. The specialization of the IF approach makes it effective when the application is matching

an already pre-built fabric. A new fabric should be implemented if there is no match between the

application and the current available fabrics. Additionally, the area overhead incurred by virtual

fabrics is significant [20, 21].

2.4.5 Synthesis-Free JIT Compilation:

Synthesis-Free JIT Compilation [15] is another project that explored the feasibility of translating

hot straight lines of code into Virtual Dynamically Reconfigurable(VDR) overlay, which consists

16

of an array of functional units that are interconnected by a set of programmable switches. The

approach uses traces to capture the line of codes that are going to be executed frequently, and trans-

forms them into Data Flow Graphs(DFG), which are then mapped to the VDR overlay. Functional

units in the VDR are also limited to basic operations (e.g. addition, subtraction, and multiplica-

tion).

2.4.6 SCGRA

An FPGA based CGRA called Soft Coarse-Grained Reconfigurable Array(SCGRA) [38] is an

intermediate compilation step that replaces compiling high-level applications directly to circuits

into scheduling operational tasks targeting SCGRA overlay. The approach aims to promote de-

sign productivity. SCGRA focused on the hardware resource constrains, IO bandwidth constrains

and the loop parallelism partition, whereas processing architectural design supports only simple

logical and arithmetic operations, which limits the capability of processing complicated functions.

Additionally, it does not support conditional branchings within loops.

2.4.7 QuickDough

Presents a design framework for constructing loop accelerators targeting an FPGA-based Soft

Coarse-Grain Reconfigurable Array (SCGRA) overlay. During compilation, QuickDough frame-

work transforms a high level loop into a Data Flow Graph(DFG), schedules the DFG nodes to the

SCGRA and estimates the communication cost, and then selects an accelerator from a pre-built

bitstream library. By taking the advantage of pre-built bitstreams, the framework aims to translate

C-nested loops into hardware circuits supporting quick compilation for a hybrid CPU-FPGA sys-

tem. In the same way, the work focuses on the automatic customization of the overlay hardware

parameters, loop unrollment factors, and buffer sizing as well as hardware-software communica-

tion. Their results show that with the cost of 10 to 20 minutes in compilation overhead spent in

customization, the performance was improved by 5x [37].

17

2.4.8 QUKU:

QUKU is a coarse-grained reconfigurable PE array (CGRA) overlaid on an FPGA. The main goal

of this overlay is to reduce the reconfiguration time and increase the accessibility of FPGAs. By

applying the model at an architectural level in QUKU, better hardware efficiency can be achieved

for a wide domain of applications. A few widely used DSP algorithms have been presented to

demonstrate the application of process network models to architectural template generation in

QUKU [54, 55].

2.4.9 Soft Processors

Soft processors are considered one of the overlay forms that support fast application compilation.

In addition to the commercial cores such as MicroBlaze form Xilinx [65] and Nios II from Al-

tera [4], some other soft processors are provided by different research groups. For instance, an

open source soft processor [32] is provided with RISC-V instruction set. It is a 4-stage pipeline,

tightly-coupled architecture with FPGA accelerators. The processor is portable between FPGA

platforms and can be synthesized to run at maximum frequency, 268.67 MHz.

Another tightly-coupled VLIW processor with a course-grind reconfigurable matrix called

Architecture for Dynamically Reconfigurable Embedded Systems (ADERS) [49] was designed

to simplify hardware-software programming models, scale down communication overhead, and

essentially gain sharing resources. The same research group developed a framework [48], to

compile C-source code, targeting the architecture along with a scheduling algorithm to exploit

loop level parallelism [47]. The integration between the processor and the reconfigurable array as

well as the overall system performance was the main concern in the ADERS project.

Several other soft processors published in the academia briefed as follows: DSP Extension

Architecture (iDEA), a lightweight soft processor which takes advantage of DSP48E1 primitive

in Xilinx FPGAs [17]; Octavo, a highly parametrized multi-threaded processor with ten pipeline

18

DSL Language Syntax Output Reference

FSMLang C-style VHDL, Verilog, C (drivers) [1]
Chisel Scala Verilog , C++ (simulation) [7]
Kiwi C# .Net RTL netlist [64]
Lime Jave VHDL, Verilog [6]
Delite Scala C, C++, Scala, OpenCL [12]

Table 2.1: DSLs for design applications on FPGAs.

stages implemented on Stratix IV FPGA [35]; CUSTARD, a customizable multi-threaded soft

processor supporting hardware threads to be implemented in dedicated hardware [23]; Anjam and

others [5] also presented a VLIW soft processor with dynamically adjustable issue width and cores

through utilizing the partial reconfiguration feature in Xilinx FPGAs. In general, soft processors

allow software developers to directly compile their source code into FPGAs and provide reusable

overlay. However, soft processors are considered mostly suitable for embedded systems due to

their low frequency and sequential execution.

2.5 Domain Specific Languages

Domain Specific Languages(DSLs) (e.g. Python, Snort, HTML) are common within software de-

velopment. DSLs promote the use of languages tuned for the needs of specific application domains.

Once created and tuned, the language promotes increased programmer productivity through appro-

priate abstractions and heavy reuse. DSLs are also being considered to generate accelerators within

FPGAs. Table 2.1 summarizes the currently used DSLs for building accelerators on FPGAs.

2.5.1 FSMLang:

FSMLanguage is a domain-specific language (DSL) for describing finite-state machines. The lan-

guage was developed in order to create a way for programmers to develop reusable representations

of FSMs. The FSMLanguage compiler is capable of producing both software and hardware imple-

19

mentations of FSMLanguage programs. Both implementation types remain compatible with one

another as the communication abstractions that are built in to FSMLanguage are able to cross the

hardware/software boundary [1]. The language structure allows one to easily describe FSMs in a

way that eliminates many of the common errors that occur when describing FSMs in typical HDLs.

The FSMLanugage compiler automatically generates correct code for FSM reset, sensitivity lists,

memory access schemes, FSM flip-flops, and state transitions. The abstractions for memories and

channels allow programmers to use familiar, software-like constructs for describing timing and

synchronization sensitive operations. Additionally, these abstractions are reusable and can be used

in both software or hardware implementations of FSMLanguage programs.

2.5.2 Chisel:

To design more flexible hardware units, Chisel, a new hardware construction language that supports

advanced hardware design, has been created. The goal of Chisel is to allow a designer to provide

a procedural description of how the hardware should be instantiated, given a set of parameters that

are fixed at the prototyping phase of the design. By embedding with the Scala programming lan-

guage, Chisel can raise the level of hardware design abstraction by providing concepts including

object orientation, function programming, parameterized types, and type inference[7]. Chisel can

reduce the programming challenges through a high-speed C++ based cycle-accurate software sim-

ulator as well as low-level Verilog, which is designed to be mapped either to FPGAs or to standard

ASIC flow for synthesis.

2.5.3 Aspen:

Abstract Scalable Performance Engineering Notation (Aspen) fills a gap between existing per-

formance modeling techniques and rapid exploration of new algorithms and architectures [57]. In

particular, both formal specification of application and an abstract machine model are need to anal-

ysis the performance behavior. In Aspen language, the modularity of performance can be achieved

20

by balancing the workload with the overall performance characteristics of main kernels [50]. How-

ever, only the control flow and data flow are expressed at a function or module level and the behav-

ior is input-dependent and implementation-specific. Thus, Aspen is not able to analyze auto-tuning

and projecting expected performance.

2.5.4 Lime:

Lime, developed at IBM Research, is a Java-compatible object-oriented language which targets

heterogeneous systems with general purpose processors, FPGAs, and GPUs. Java bytecode can be

generated by the Lime compiler, which allows a programmer to design a suitable Java program into

a pattern amenable for heterogeneous parallel devices, and the program can run on any platform

that supports a Java virtual machine. The compiler can also synthesize and then generate hardware

designs for FPGAs. The Lime language exposes parallelism and computation explicitly with high-

level abstractions. Streaming computation as well as vector operators are virtualized using some

extra abstractions. Although the paradigms provide a very high-level abstraction, optimizations

are limited due to the initiative point is focus on lower-level byte-code [24].

2.5.5 Delite:

Delite was essentially created as an open source compiler framework to build substantial con-

currency languages for use on heterogeneous multiprocessor systems. Delite simplifies the def-

inition and construction of a DSL language and includes the generation of the compiler for the

new language. OptiML-a DSL for machine learning applications, OptiQL –a DSL for data query-

ing, and OptiGraph –a DSL for graphic analytics have been created using Delite and are pub-

licly available. Delite is built in a modular fashion to allow the insertion of unique domain spe-

cific optimizations to be included into the compiler flow. All DSLs then take advantage of the

built in traditional lower level instruction optimizations, such as common subexpression elimina-

tion, loop fusion, etc. Delite’s modular structure allows new backends to be easily added [12].

21

Current backends produce Scala, C++, and CUDA. Delite can be downloaded at http://stanford-

ppl.github.io/Delite/index.html.

22

Chapter 3

Just-In-Time Assembly

3.1 Introduction

The earlier work by Sen Ma, Just-In-Time Assembly (JITA) [43, 45, 44], aims to move the synthe-

sis process out of the programmers’ path, increase application developers productivity, and support

design portability between different FPGA vendors and parts. JITA approach takes advantage of

partial reconfiguration technology to compose custom accelerators on the fly by using pre-built

bitstreams. Since this work is extending the JITA approach, this chapter is dedicated to provide

background description about the JITA.

3.2 JITA Approach

The JITA approach aims to increase the FPGAs’ programmers productivity by moving the synthe-

sis, place and route processes out of their path through composing pre-synthesized small bitstreams

to form full custom accelerators. Under traditional FPGA design flows the programming patterns

are combined into a single object, and then object is synthesized. Each time the functionality in

the source code is changed to create a new object, it must be re-synthesized. This keeps synthesis,

place and route in the development path of the programmer. The JITA approach differs in that indi-

vidual programming patterns are synthesized at the same time they are coded as part of creating a

Domain Specific Language (DSL). Software prototypes for each programming patterns are placed

in a library and made available to the application programmers. This allows programmers to work

with the software prototypes within a DSL without having to repeat synthesis.

To achieve the goal, the JITA approach provides a prototype system that includes an overlay

to virtualize the FPGA resources, a new compilation flow, and a runtime interpretation.

23

User Application Compilation Flow

Application Developers

1 DSL Application Coding

2 Delite Compiler

Compose Primitives
F(G (x))

Generate VAM Calls

Type Check
Syntax Check

Front
End

Back
End

3 DSL Specification

Link
Code

VAM Calls
Bitsreams

User Application Compilation Flow

Application Developers

DSL Application Coding

Delite Compiler

Compose Primitives
F(G (x))

Generate VAM Calls

Type Check
Syntax Check

Front
End

Back
End

Executable Image

Link
Code

VAM Calls
Bitsreams * f = F_Bitstreams

 *g = G_Bitstreams
 *h = H_Bitstreams

Bitstreams
Repository

Code
Repository

F (x)
G (x)
H (x)

…

Prototypes

DSL
Library

DSL Primitives Generation Flow

System Designers and
Hardware Engineers

DSL Specification

map, reduce, foreach,
sort, … etc

Primitives Body Coding

Define DSL Primitives

Hardware Development

Application Developers

Tile array
Builder

Platform
constraints file

Virtex 7
Kintex 7

Zynq

Primitives Generate Partial
Bitstream

Platforms
templete

bitstreams

Primitives
Bitstreams

Virtex 7
Kintex 7
Zynq FPGA

PRPR

PRPR

Patterns

TempletesGenerate Full
Bitstream

PR

PR

PR

PR

PR

PR

ppp

p

p

p p

pp

Figure 3.1: Design Approach.

3.3 Compilation Flow

The JITA uses the Delite Framework to create a new DSL. This is then compiled into for the

overlay. Figure 3.1 shows how Delite supports two classes of users; system programmers and

hardware engineers that create the DSL use the flow on the left, and application programmers

use the flow on the right. Creating a standard DSL on the left involves defining and coding the

programming patterns. The body of each primitive defined for the DSL is passed through an

HLS generator to produce bitstreams. The modularity of the flow allows any HLS generator to

be plugged in. The Vivado HLS tools were used for this step. Prototypes for the DSL primitives

as well as their bitstream representations are placed in a library. Application programmers pull

24

prototypes from the library just as if the DSL was created for traditional software implementation.

After the application programmer forms the complete accelerator functionality, they invoke

the Delite compiler with the ”-vam calls” flag set. This invokes the JITA backend generator to

produce a series of interpreter instructions that represent data and control flow information that will

be used by a run time interpreter to build and control the accelerator at run time. These instructions,

called Virtual Accelerator Machine (VAM) language are shown in Table 3.1. Figure 3.2 shows

the interpreter instructions (pseudo code) output by the compiler for creating an accelerator to

compute an inner product. The inner product was created by composing the REDUCE and VMUL

primitives defined within the DSL. The compiler can also be run without the ”-vam calls” flag to

generate standard software executables for running on a standard processor and during debugging.

3.4 JITA Overlay

The JITA overlay was pre-formed programmable components built on top of an FPGAs lookup

tables and flip-flops. The overlay was occupied with tile array and Black RAMs. The overlay

includes a nearest neighbor programmable word width interconnect similar to traditional CGRA

type overlays. Different from traditional CGRA overlays, the JITA overlay exposes the lookup

tables and flip flops of the FPGA as partially reconfigurable tiles instead of abstracting them into

programmable computational units. This combination of pre-formed interconnects and partial

reconfiguration regions allows the bitstreams for the programming patterns to be downloaded at

run time into the intermediate fabric. Figure 3.3 shows the structure of the hybrid overlay. The

basic structure is a 2D array of partial reconfiguration tiles and programmable switches that are

connected as a nearest neighbor interconnect network.

25

Interpreter
Executables

AXI
Interconnect

Processor

P
R

Boot
Kernel

BRAM
Arrays

P
R

P
R

P
R

P
R

P
R

P
R

P
R

P
R

DMA

PR Accelerator

CHMP Node

VAM
Interpret

Functor
Template
Library

<VAM_GET_PR &PR1>

<VAM_GET_PR &PR2>

<VAM_GET_BRAM &BRAM1 dataA>
<VAM_GET_BRAM &BRAM2 dataB>

<VAM_DMA dataA BRAM1>

<VAM_GET_BRAM &BRAM3 sum>

<VAM_DMA dataB BRAM2>
<VAM_ROUTE PR1 PR2>
<VAM_START PR1 PR2>
<VAM_DONE PR1 PR2>
<VAM_DMA BRAM3 sum>

VAM CALLs
Pseudocode

int sum = 0;
for (e = 0; e < SIZE; e++) {
 sum += dataA[e] * dataB[e];
}

User Application

DSL Substitute
sum = REDUCE(
 VMUL(dataA,dataB,SIZE),SIZE);

VMUL

REDUCE

dataA

sum

dataB

Data Flow Graph

<VAM_SET_PR &PR1 VMUL>

<VAM_SET_PR &PR2 REDUCE>

Figure 3.2: Compiler Flow and VAM Call Generation.

26

Tile

SWITCH

Tile

SWITCH

FIFO Tile

SWITCH

FIFO

FIFO FIFO FIFO

Tile

SWITCH

Tile

SWITCH

FIFO Tile

SWITCH

FIFO

FIFO FIFO FIFO

Tile

SWITCH

Tile

SWITCH

FIFO Tile

SWITCH

FIFO

FIFO

FIFO

BRAM

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

FIFO

BRAM

LUTs
BRAMs
DSPs

SWITCH
740
24KB
-

Tile
9,600
360KB
80

Broadcast

In
MUX

Control

sNORTH
sEAST
sSOUTH
sWEST

In
MUX

Out
MUX

Tile

mNORTH
mEAST
mSOUTH
mWEST

BRAMc1
BRAMc2

SWITCH

Processor
CMD

Figure 3.3: 3×3 Tile Array and Interconnect Network.

27

3.4.1 PR Tiles

The configurable 3×3 array, shown in Figure 3.3, was constructed of partial reconfiguration tiles

sized at 9,600 LUTS, 360KB BRAM, and 80 DSPs. This PR regions was sized to hold the largest

bitstream generated from the test DSL. The exact size of tiles is variable and can be set when the

DSL is created. The number of the tiles is derived based on the size of the tiles and the number of

resources available on a target FPGA logic family. At runtime, the PR tiles will be populated with

functors’ partial bitstreams which behave as computational units. By swapping different functors

in the PR regions, a new accelerator will be formed. The input and output data for each PR region

are controlled by tiles’ programmable switches.

In
MUX

In
MUX

Broadcast

N

E

S

W

O
ut M

U
X

N

E

S

W

SWITCH

PR
Tile

(a)

In
MUX

In
MUX

Broadcast

N

E

S

W

O
ut M

U
X

N

E

S

W

SWITCH

PR
Tile

(b)

In
MUX

In
MUX

Broadcast

N

E

S

W

O
ut M

U
X

N

E

S

W

SWITCH

PR
Tile

(c)

In
MUX

In
MUX

Broadcast

N

E

S

W

O
ut M

U
X

N

E

S

W

SWITCH

PR
Tile

(d)

Figure 3.4: Switch Routing.

3.4.2 Programmable Switch

Figure 3.4 provides an exploded view of a switch. Figure 3.4 shows the types of routing patterns

that can be programmed into switch. The routing patterns were defined to enable each switch to

direct inputs and outputs through the tile, as well as serving as a pass through for routes between

distant tiles.

28

Routes can be set statically or dynamically. Dynamic settings used for allowing the switch

to support different time varying routing needs when multiple accelerators are resident within the

overlay. Each switch serves as a pass through for one accelerator, and then source and synch data

for a tile that is part of a different accelerator.

3.4.3 Local Memory

The boundary cells in the overlay include connections to blocks of local memories (BRAMs).

These BRAMS can be used as addressable local memories or as FIFO data buffers for streaming

data. Block data transfers use DMA (not shown) between the BRAMs and Global DRAM memory.

The BRAMs are placed within the global address map of the system, allowing any processor or

bus master device to transfer data into and out of a local memory. The BRAMS have buffer

full/empty handshaking signals that are connected through the switches to enable processing to be

dynamically triggered.

3.5 Run Time Interpreter

The JITA has a run time mechanism to interpret the function calls generated by the compiler to

compose accelerators. Using the interpreter allows the data flow graph information generated by

the back end of the DSL compiler to remain portable, similar to portable Java Byte Code. Table 3.1

shows the instructions the compiler produces to represent the data and control flow graphs. The

output of the backend generator called Virtual Accelerator Machine (VAM) language. Just as a

Java Virtual Machine (JVM) provides the run time mechanisms needed to implement the policies

defined by the Java Byte Code, the VAM run time interpreter provides the run time executables

specific to a particular organization of partially reconfigurable slots.

The interpreter allows the same output from the compiler to remain portable and used over

different configurations of reconfigurable slots, and logic families. The run time interpreter, also,

29

provides the separation between policy and mechanism to enable the same data flow graph to be

mapped and run on any configuration of reconfigurable.

SWITCH SWITCH

FIFO

FIFO FIFO

BRAM00

BRAM
31

BRAM01
dataA

da
ta
B FIFO

FIFO

FIFO

FIFO

1

2

2
7

8 9
4

9

12

5

1 VAM_GET_PR(&VAM_TABLE, &PR[0]);

VAM_SET_PR(&icap, &BITSTREAM_TABLE, PR[0], VMUL);

VAM_DMA(&vam_dma, dataA, BRAM1[0], SIZE);

VAM_GET_BRAM(&VAM_TABLE, PR[0], BRAM1, 2, SIZE, 0, SIZE);

VAM_ROUTE(&VAM_TABLE, PR, 2);
VAM_START(PR, 2, SIZE); // Not shown in figure

VAM_GET_PR(&VAM_TABLE, &PR[1]);

VAM_SET_PR(&icap, &BITSTREAM_TABLE, PR[1], REDUCE);
VAM_GET_BRAM(&VAM_TABLE, PR[1], BRAM2, 0, SIZE, 1, 1);

VAM_DMA(&vam_dma, dataB, BRAM1[1], SIZE);

VAM_DONE(&VAM_TABLE, PR, 2); // Not shown in figure
VAM_DMA(&vam_dma, sum, BRAM2[0], SIZE);

2

3

4

5

1

6

7

8

9

10

11

12

2

2
8

7

3

9 9
4

6

5

12

sum

VMUL

PR[0]

REDUCE

PR[1]

sum += dataA[e] × dataB[e];

sum = REDUCE(VMUL(dataA,dataB,SIZE),SIZE);

Inner Product :

DSL :

VAM CALLs :

Figure 3.5: VAM Run Time Interpreter Configuration Steps.

The interpreter calls listed in Table 3.1 and shown in the example in Figure 3.2 make no

commitment on how partially reconfigurable regions should be sized, configured or organized

within a programmable interconnect network. As an example the VAM GET PR instruction in

Figure 3.2 is a request to the run time system to get a free partially reconfigurable slot. The

VAM SET PR instruction directs the run time system to load a slot with a particular bitstream, and

30

the VAM ROUTE instruction requests the run time system to connect a data path between slots.

How these commands are implemented are clearly dependent on how each FPGA is configured.

The approach defines a run time interpreter to perform these platform specific operations. In this

fashion the run time interpreter provides the same operation as a Java Virtual Machine with the

platform independent VAM calls produced by the compiler taking the place of portable Java Byte

Codes.

For example, Figure 3.7 shows how the run time interpreter constructs the accelerator shown

in Figure 3.2 into the 3×3 tile array of partially reconfigurable slots shown in Figure 3.3.

MicroBlaze
(Application, OS + Interpreter*)

BRAM
Arrays

PR

Tile Array

PR

2 × 2 Tile Array on
Xilinx Kintex 7

PR PR

BRAM
Arrays

PR

Tile Array

PR

3 × 3 Tile Array on
Xilinx Virtex 7

PR

PR PRPR

PR PRPR

MicroBlaze
(Application, OS + Interpreter*)

BRAM
Arrays

PR

Tile Array

PR

Tow 2 × 2 Tile Array on
Xilinx Virtex 7

PR PR

BRAM
Arrays

PR

Tile Array

PR

PR PR

MicroBlaze
(Application, OS + Interpreter*)

MicroBlaze
(Application, OS + Interpreter*)

int tmp = 0;
for (e = 0; e < SIZE; e++) {
 tmp = tmp + dataA[e] * dataB[e];
}

User Application

Compile DSL

Build IR

Extract Patterns

Interpreter Call Generation

Compiler

BitStreams
Repository

Bit-Streams

* Interpreters can be implemented in SW or in HW.

Portable Calls

U2

VMUL

REDUCE

dataA

tmp

dataB

U1

VAM_GET_Tile &PR1 U1

VAM_GET_Tile &PR2 U2
VAM_GET_BRAM &BRAM1 dataA

VAM_GET_BRAM &BRAM2 dataB

VAM_DMA dataA BRAM1
VAM_GET_BRAM &BRAM3 tmp

VAM_DMA dataB BRAM2
VAM_ROUTE PR1 PR2
VAM_START PR1 PR2
VAM_DONE PR1 PR2
VAM_DMA BRAM3 tmp

VAM_LOAD_Tile PR1 VMUL

VAM_LOAD_Tile PR2 REDUCE

Figure 3.6: Design Portability with JIT.

Functor Placement and Loading The VAM interpreter manages the tile array by main-

31

Table 3.1: VAM Calls
Type Name Semantics Description

PR Region
Operations

VAM GET PR
bool VAM GET PR (

vam table t *VAM TABLE,
int *nPR);

Requesting a free
PR slot.

VAM GET BRAM

bool VAM GET BRAM (
vam table t *VAM TABLE,
int nPR, u32 BRAMList,
int nIN, int InSize,
int nOUT, int OutSize);

Requesting free
BRAMs.

VAM SET PR

bool VAM SET PR (
XHwIcap icap,
vam Bitstream table t
*BITSTREAM TABLE,

int nPR, int nFunctor);

Reconfiguring PR
region.

Datapath
Operations

VAM DMA

bool VAM DMA (
XAxiCdma *InstancePtr,
u32 SrcAddr, u32 DstAddr,
int Byte Length);

Starting DMA from
the SrcAddr to
DstAddr based on
the Byte Length.

VAM ROUTE
bool VAM ROUTE (
vam table t *VAM TABLE,
int PR[], int nPR);

Routing the nearest
neighbor 2-D switch
based on the data

and control path.

Control
Operations

VAM START
bool VAM START (
int PR[], int nPR,
int len);

Launching the
accelerator in
PR region

VAM DONE
bool VAM DONE (
int PR[], int nPR,
int len);

Stalling until
the accelerator
in PR region
is done.

32

taining a list of free tiles in a queue (the VAM TABLE). For each VAM GET (steps 1, 4) the

interpreter pops a free tile from the queue. The tiles returned for two consecutive VAM GET calls

are not required to be adjacent within the array. Functor bitstreams are then loaded into free tiles

using VAM SET (steps 3, 6). The VAM interpreter performs this operation by DMA’ing the bit-

stream resident in DRAM into the ICAP port of the FPGA. The VAM interpreter manages input

and output buffers for the accelerator in a similar fashion to tiles. For each input variable the

VAM GET BRAM (steps 2, 5) returns a list of available local BRAM to be used as an input buffer.

Functor Routing After the VAM interpreter transfers the bitstreams into the tiles, the data paths

1

VMUL
1 3

REDU

dataA2

4

5

7

9

12

6

Scenario 1

BUSY

BRAM

VMUL

2

7

12

Scenario 2

REDU
4 6

SWITCH

5

2

3

4

5

6

7

8

9

10

11
BUSY

VAM_GET_TILE(&VAM_TABLE,&PR);

VAM_GET_BRAM(&VAM_TABLE,PR,L,L);

VAM_LOAD_TILE(&Bit_Table,PR,VMUL);

VAM_GET_TILE(&VAM_TABLE,&PR);

VAM_GET_BRAM(&VAM_TABLE,PR,L,L);

VAM_LOAD_TILE(&Bit_Table,PR,REDU);

VAM_DMA(&vam_dma,dataA,BRAM,L);

VAM_DMA(&vam_dma,dataB,BRAM,L);

VAM_START(PR,2,L);

VAM_DONE(&VAM_TABLE,PR,2);

VAM_DMA(&vam_dma,sum,BRAM,L);

VAM_ROUTE(&VAM_TABLE,PR,2);

12

DSL : sum = REDUCE (VMUL (dataA, dataB, L),L)

Inner Product : sum+= dataA[e] x dataB[e]

2

8

1 3

2

8 9

9

9

SWITCH

sum

dataB

dataA

dataB
sum

Figure 3.7: VAM Run Time Interpreter Configuration Steps For Inner Product.

represented by VAM ROUTE (step 9) can be set.For this prototype, the VAM interpreter imple-

ments a simplified version of maze-routing algorithm [36]. This simple routing algorithm allows

the VAM to host multiple accelerators within 3×3 tile array.

Data Transfer The VAM interpreter transfers input data from DRAM into the local input

33

buffer BRAMS using VAM DMA (steps 7, 8). The outputs of the accelerator are transferred from

the output BRAM buffer back into DRAM using VAM DMA (step 12).

Control Operations The VAM START (step 10) initiates the execution of the array. The

VAM DONE (step 11) returns status from the accelerator. The VAM run time interpreter prototype

was written in 800 lines of C and runs on the MicroBlaze.

3.6 Summary

The JITA approach presents a way of allowing software developers to use standard software devel-

opment tools and reach software levels of productivity when creating hardware accelerators. It can

eliminate synthesis from the path of FPGAs’ software applications developers. The JITA presents

a prototype system which includes a configurable overlay and a compilation flow as well as a run-

time interpreter. The overlay represents an intermediate fabric between design applications and

low level FPGA hardware resources. The overlay consists of a number of tiles connected by a 2D

mesh interconnect, and local block memories. Each tile is equipped with a partially reconfigurable

region that can be populated with functors bitstreams. The PR region behave like computational

units which can be replaced at runtime. An accelerator can be formed by downloading its functors

partial bitstreams into tiles’ PR and configuring the interconnect network to control data flow. The

overlay is able to compose multiple accelerators at the same time when there are enough free tiles.

In JITA, Domain Specific languages (DSLs) are the platform for the software developers

to express their applications. The approach presented the DSLs compilation flow and how the

function calls (VAM) are created to construct an accelerator. The JITA separates the hardware

design flow and creating partial bitstreams from the application compilation flow. The hardware

design is produced one time by hardware designers while different applications can be created and

implemented several times utilizing the provided hardware.

Additionally, the JITA runtime interpreter can compose accelerators by interpreting the com-

34

piled function calls. The interpreter keeps track of free tiles in order to manage composing multiple

accelerators at the same time. The runtime system downloads partial bitsreams to the specified tiles

and configures tiles interconnects.

While the presented JITA approach allows application developers to build accelerators on

FPGAs, it suffers from the following limitations:

Bitstream Library Size The JITA requires that all variants of programming patterns within

a DSL must be synthesized. Otherwise it will fail to compose accelerators that include non pre-

synthesized patterns. For instance, the sumIf pattern in Figure 3.8 has two different versions (lines

14 & 18), each one has different functionality. We can imagine how many possible operations that

can be included in this particular pattern. In practice, DSLs should have software programming

flexibility to express a wide range of operations which leads to a large number of pattern versions.

That means we need to pre-synthesize all the pattern variations in order to cover all the possible

DSL expressions. This would require a large bitstream library.

Conditional Operations The JITA approach cannot handle conditional operations when they

appear between patterns. For example, the code in Figure 3.9 has a condition between the two

patterns (lines 5 &16). These kinds of conditions prevent composing these patterns as part of

an accelerator. When we do not have a pre-synthesized circuit to handle the condition, then the

overlay would fail to fully implement this application. The overlay structure expects patterns with

a continuous data stream. In the given example, the expression of the condition can be combined

with the second map (line 16) as an inside condition. However, the new map pattern should be

pre-synthesized and available in the bitstream library in order to be composed with the other map

(line 5).

One of the ways to resolve these problems is implementing non synthesized and un-composable

patterns using software run by the host processor and other patterns implemented on the overlay.

However, this would create high data transfer overhead and increase the complexity of the runtime

system.

35

This work is propsoing a new overlay structure to overcome these limitations including pre-

synthesized operators and adding a mechanism to resolve conditional operation problem.

 1 object Example7Interpreter extends OptiMLApplicationInterpreter with Example7
 2 trait Example7 extends OptiMLApplication {
 3 def main() = {
 4 val simpleSeries = sum(0, 100) { i => i } // sum(0,1,2,3,...99)
 5 println("simpleSeries: " + simpleSeries)
 6
 7 val m = DenseMatrix.rand(10,100)
 8 // sum first 10 rows of m
 9 val rowSum = sumRows(0,10) { i => m(i) }
 10 println("rowSum:")
 11 rowSum.pprint
 12
 13 // sum(0,2,4,8...98)
 14 val conditionalSeries = sumIf(0,100)(i => i % 2 == 0) { i => i }
 15 println("conditionalSeries: " + conditionalSeries)
 16
 17 // conditional sum over rows of a matrix
 18 val conditionalRowSum = sumRowsIf(0,10)(i => m(i).min > .01) { i => m(i) }
 19 println("conditionalRowSum:")
 20 conditionalRowSum.pprint
 21 }
 22 }

Figure 3.8: All variant patterns must be pre-synthesized. Modfied source from OptiML[58].

 1 object Example21Interpreter extends OptiMLApplicationInterpreter with Example21
 2 trait Example21 extends OptiMLApplication {
 3 def main() = {
 4 val V1 = DenseVector.rand(1000) // immutable vector initialized to random values
 5 val V2 = V1.map(e=> e*1000) // normalize values to be between from 0 to 1000 8
 6 var i = 0
 7 while (i < V2.length) {
 8 if (i % 10 == 0) {
 9 V3(i) = 1
 10 }
 11 eles {
 12 V3(i) = V2(i)/2
 13 }
 14 i += 1
 15 }
 16 val V4 = V3.map(e => if (e != 1) e * -1)
 17 }
 18 }

Figure 3.9: Composing conditional operations problem. Modfied source from OptiML[58].

36

Chapter 4

Proposed Solution

4.1 Introduction

The aim of this work is to move the synthesis process out of the FPGAs programmers’ path, in-

crease productivity, and remove the barrier of hardware skill design requirements on programming

FPGAs. I believe this can be achieved by the use of pre-build programmable/reconfigurable over-

lays. By using overlays, we can split programming FPGAs into two phases: hardware design phase

and software application phase. In the hardware design phase, the programmable/reconfigurable

overlay hardware architecture is created by FPGAs hardware experts. The software application

phase, on the other hand, starts when the overlay hardware platform is ready to use. The created

overlay would go one time through the hardware design phase; while it will be used by software

programmers many times without the need of re-synthesis. This way helps move the synthesis

process from application developers’ path and increase productivity. Xilinx FPGAs provide Par-

tial Reconfiguration (PR) technique which allows replacing modules at run time by swapping in

and out partial bitstreams. The PR technique provides very useful pre-built sub-circuits which can

be used at run time to make changes in the circuit functionality. This feature serves our goal of

removing synthesis process out of the way of programmers. Thus, our designed overlay, URUK,

is equipped with multiple PR regions and a pre-synthesized bitstream library. This chapter is cov-

ering the URUK overlay architecture and the system design flow; while the software compilation

is covered in the next chapter.

37

Map ZipWith Reduce
Foreach

Pattern Example
Map

ZipWith

Reduce

Foreach

In.map { e => e + 1 }

 InA.zipWith(InB) { (eA , eB) => eA + eB }

 In.reduce { (e1 , e2) => e1 + e2 }

 InA.foreach { e => if (e > 0) inB(e) = true}

In

Out

InA InB In

Out Out

Figure 4.1: DSL parallel programming patterns.

4.2 Hardware Design Flow

The hardware design flow consists of two parts. First, creating the overlay static logic shown in

the right side of Figure 4.2. In our design, the creation of the overlay static logic is scripted and

parametrized to produce overlays with different settings. For instance, the number of tiles can be

specified to 2×2 or 3×2 or any other dimensions depending on the target FPGA size. Besides, the

PR region size parameters specifying the PR regions size for each tile. The tiles’ PR region sizes

may have the same or different depending on the design strategy. Once the parameters are set, the

overlay static logic design will be created. Three overlay examples are given on the right side of

the graph. The Second part which is on the left side of Figure 4.2. This side handles creating partial

bitstreams for the DSL parallel programming patterns (i.e. map, reduce, zipwith, etc.) and basic

computational operations (i.e. add, sub, mul, log, etc.). The flow starts from the DSL specified

primitives (patterns, operators). Then, designers hard code the primitives on C language using one

Vivado HLS template, shown on Figure ??. The interface template maintains common input and

output ports for all synthesized primitives. As a result, all PR regions and primitives will have the

same I/O interface which allows many primitives synthesized for the same PR region. The coded

primitives will be synthesized using Vivado HLS. A checkpoint for each primitive will be created.

Then, the checkpoints will be passed to the next stage which is the system synthesis. In the system

38

DSL Specifications

DSL Patterns & Operators

add, sub,
mul, sort,
log, etc.

map,
reduce,

filter, etc.

Primitives
C code

Interface
Template

High Level Synthesis

create checkpoints
*.dcp

Overlay Builder

Overlay Parameters
- Number of tiles
- PR regions size
- Topology

PR

PR

Ov
er

lay
 1

PR

PR PR PR

PR

PRPR

PR

Ov
er

lay
 2

PR

PR

PR

PR

PR

PR

PR PR

PR

Ov
er

lay
 n

Bitstreams Repository

Add

map

SubMul
log

exp

Overlay
Static
Logic

reduce

System Synthesis

Generate
Static

Bitstream

Generate
Partial

Bitstream

Figure 4.2: Hardware design flow for the overlay static logic and partial bitstreams.

synthesis, the first primitive checkpoint will be assigned to all fitting PR regions in the static logic.

Then, partial synthesis begins and generates the partial bitstream for that primitive. This process

will be repeated for other primitives. By the end, both static and partial bitstreams will be stored

in the bitstream repository to be used later in the DSL application compilation, covered in the next

chapter.

39

Figure 4.3: Patterns/Operators HLS template.

4.3 URUK Architecture

URUK overlay is structured to compose a wide variety of accelerators using pre-synthesized opera-

tors and parallel patterns benefiting from the partial reconfiguration technology. In URUK overlay,

the candidate function for acceleration is partitioned into fundamental operators(add, sub, mul,

div, and, or, not, and xor) and standard parallel patterns shown on Figure 4.1. These operators and

patterns are pre-synthesized and stored into a bitstream library. During system setup time, these

small partial bitstreams will be downloaded from the library and assigned to the specified tiles’

PR regions. After filling the PR regions, the interconnect network will be configured to route and

control the communication data between PR regions in word width level. That gives the URUK

overlay an advantage of constructing different accelerators with different functionalities from the

same standard bitstreams. What makes URUK overlay different from other PR-Based overlays []

is that the logic of an accelerator is partitioned and distributed among multiple PR regions instead

of being employed in one PR region.

40

PR PR

PR

PRPR

PR PRPR

PRPR PRPR

PRPR PRPR

Memory Bus

FIFO AXI Stream
Partial Reconfigurable

 Region

Control Signals

PR
Region

Ns
Es
Ss
Ws

Tile Controller

BR
AM

1

BR
AM

2

In
st

ru
ct

io
ns

 M
em

or
y Mux2Mux1

O
ut

 M
ux

Status Reg
ZGLR

1
R
2

R
3

R
8

Wr
Sr
Er
Nr

Figure 4.4: 2D URUK Overlay Structure.

41

Figure 4.4 shows the basic structure of the URUK overlay which has a 3×4 tile matrix.

Tiles are connected with each other by a configurable word width 2D mesh interconnect. The

interconnect interfaces are simple AXI Stream with FIFOs to maintain synchronization between

tiles. Besides, each tile has a link to the memory interface bus to provide the host processor and

the DMA engine a direct access to the tiles’ local memories. Additionally, there are some other

signals (not shown in the graph) between the processor and tiles to issue tiles start execution and

check done signal when tiles finish execution.

4.3.1 Tile Structure

Tiles are constructed to have a PR region that holds the main computational logic, word width in-

terconnect switches to direct the data in and out of the tile, two local data BRAMs , one BRAM for

instructions, and a controller that controls data movement and computational operations. Tiles are

programmable with a special instructions set (see Section4.3.6). The tile components are described

in following sections.

4.3.2 PR Regions

At setup time, PR regions can be populated with one of the computational operators or parallel

patterns partial bitstreams which can be dynamically replaced to change the functionality. The

wrapper of the PR region has two AXI Stream input ports, one AXI Stream output port, start

signal, and done signal. Figure 4.3 shows the Vivado-HLS template for a synthesized pattern or

operator that will be mapped to PR regions. Based on the tile instructions, the input ports receive

data either from a local BRAM or neighbor tiles, and likewise the output port sends data to a local

BRAM or other tiles.

The size of the PR regions should be set by the size of pre-synthesized operators and parallel

patterns. In URUK overlay, we have two strategies to set the size of the PR regions. First, we can

set all the PR regions to one size which the size of the largest pattern/operator partial bitstream in

42

the library. This choice provides high flexibility and allows any operator or pattern to be mapped to

any tile. However, it costs more resources and suffers from internal resources fragmentation when

small operators are mapped to a large PR region. The Second strategy is to set the PR regions to

different sizes. Few PR regions are set to a large size while the rest are small. This strategy can

reduce the internal fragmentation and provide better resource utilization. Contrarily, it reduces the

flexibility of mapping any operator or parallel pattern to any tile. In addition, it may increase the

communication cost when two dependent operators cannot be mapped to close tiles due to the size

fit. Since URUK overlay is automated and parametrized during design time, it provides the two

options to set the sizes of PR regions.

4.3.3 Configurable Switches:

Tiles are equipped with programmable switches to route data internally to/from local BRAMs and

computational logic in the PR region as well as externally with neighbor tiles. As shown the

Figure 4.4 there are two 32 bit multiplexers to direct the data that is either coming from neighbor

tiles or local BRAMs to the logic in the PR region. The tile also has one output switch to bypass

data to near tiles or stores the data in the local BRAMs. The controller sets these multiplexers

based on the execution instructions. The size of input and output switches depend on the tile type.

There are three types of tiles with different numbers of interconnects based on their positions in

the 2D mesh overlay.

Type A This type of tiles are normally located in the corners of the overlay tile matrix.

These tiles have two interconnect input ports, two interconnect output ports, and one port to pass

data internally. Figure 4.5(a) shows the structure of type A tiles. The output switch has three

multiplexers, two of them to pass data out to the neighbor tiles and one to direct the data internally.

Type B This type is located in the surrounding tiles except the corners. As shown in the

Figure 4.5(b), type B has three interconnect input ports, three interconnect output ports, and one to

pass data inside. The PR input multiplexers (Mux1 and Mux2) are larger than the PR multiplexers

43

Ns

Es

Ss

Ws

PR
Region

Mux2Mux1

Wr
Sr
Er
Nr N

 M
ux

E M
ux

S M
ux

W
 M

ux

Cont.

I M
ux

I1
I2

sel

sel

Ns

Es

Ss

PR
Region

Mux2Mux1

Sr
Er
Nr N

 M
ux

E M
ux

S M
ux

Cont.

I M
ux

I1
I2

sel

sel

Ns

Es

PR
Region

Mux2Mux1

Er
Nr N

 M
ux

E M
ux

Cont.
I M

ux

I1
I2

sel

sel

(a)

(b)

(c)

Figure 4.5: Three tile interconnect types.

44

on type A by one extra input each.

Type C Type C are the inside tiles which require four input ports and four output ports to

be fully interconnected with the neighbor tiles. This type has larger multiplexers and use more

hardware resources compared to the other two types. Figure 4.5(c) shows the type C structure.

4.3.4 Memory Interface

Each tile is equipped with three dual ports BRAMs, two 64Kbytes each for data and one 8Kbytes

for instructions. All BRAMs are connected to memory bus system to allow the host processor and

the DMA engine to access them. In addition to the tile interconnect network, the DMA engine can

transfer large data between tiles. This is useful when tiles are not neighboring each other, and the

data is large. The tile controller, on the other hand, can read from all the three BRAMs and write

into the two data BRAMs. The instructions memory holds the executable binaries that is consumed

by the tile controller in order to control the data movements and execution.

4.3.5 Tile Controller

The controller fetches and interprets the commands from the instruction memory to control data

movement and operations. The controller can issue commands to move data between local BRAMs,

internal registers, input and output communication ports. It also selects the input data to the com-

putational logic in the PR region as well as directs the output data from the PR region to local

BRAMs, internal registers, or to the output communication ports. Additionally, it can stream a

large segment of data from local BRAMs to near tiles. Streaming allows the controller to issue

vector operations in addition to the scalar operations.

To highlight here, the controller is designed to only manage the coming and going data

to/from the logic in the PR region. In other words, it does not have control over the internal logic

of the PR region. This way of design provides high computational capability compared to standard

45

BR
AM

1

BR
AM

1

In
st

ru
ct

io
ns

 M
em

eo
ry

R1
R2
R3

R8 Z
G
L

EQ
LE
GE

Start
Done

PR Region
Signals

From Output Switch

I1

I2

To
 In

pu
t S

w
itc

he
s

Instructions
Decoder

Figure 4.6: Tile Controller.

ALUs. For Instance, when an ALU supports the four basic operations (Add, Subtract, Multiply,

and Divide), the ALU will have at least four different commands to represent these operations. In

addition a full logic for these operators should exist as part of the ALU. If we want to add some

more computational capabilities to the ALU, we need to add more logic, more instructions, and

more decoding. However, when we want to add more computational operators or functions to the

URUK overlay, we do not need to make changes to the tile controller, interface, neither adding

new instructions. All we need is to have a pre-synthesized bitstreams for the new computational

operator or pattern swapped in the PR region. This is one of the big advantages that makes the

implementation and the compilation more flexible and easier.

4.3.6 Tile Instruction Sets

Special instruction set for URUK is provided to manage data transfer and implement operations.

As shown in Figure 4.7, URUK overlay provides 7 instructions categorized into three types: oper-

ational instruction(opr), data movement instructions (mov ,and movi), and branching instructions

46

Category Instr. Format & Example

Operational opr

opcode S1 S2 D Length
15-019-1623-2027-2431-28

opr S1, S2, D, Length
i.e. opr Nr, Er, Bram1[index], 1024

0001

Sources Destinations

Nr 0001

Name Code

Ns 0001

Name Code

Er

Sr

opcode S D Length
19-023-2027-2431-28

0010mov
Data

Movement mov S, D, Length
i.e. mov Er, Ws, 256

opcode D Value
23-027-2431-28

0011

movi D, value
i.e. movi Ws, 0xFFFFFE

movi

Conditional
Branches

jnz

jgt

jlt

opcode Location
27-031-28

0100

i.e. jnz 0x2bf

jnz
0101 jgt
0111 jlt

*conditional branches read the flags from
the status register

Unconditional
Branches jump

opcode Location
27-031-28

1000

i.e. jump 0x2bf
jump

Wr

Bram1

Bram2

R1

R2

R3

R4

R5

R6

R7

R8

non STR0000 0000

Es

Ss

Ws

Bram1

Bram2

R1

R2

R3

R4

R5

R6

R7

R8

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

Figure 4.7: URUK instructions set and operations code

47

(jnz, jgt, jlt, and jump). The ”opr” instruction has the format : opr source1, source2, destination,

length (i.e. opr Nr,Bram1[index], Es,1024). The special thing about ”opr” command is, it does not

specify the type of operation such as add, sub, mul, etc. It works as a general command for compu-

tation which depends on what computational operand or parallel pattern logic is downloaded to the

tile PR region. Based on the ”opr” command argument, the controller will configure the input and

the output switches and also will set the start signal high and wait for the done signal to execute the

next instruction. The ”mov” command can transfer a single, or a stream of data, between registers,

local memories, and input and output communication ports. It has the format: mov source1, desti-

nation, length (i.e. mov Bram2[index], Ws,256). One important note here about the length in both

”opr” and ”mov”, it will be set explicitly when memories are included in the operations or data

transactions. Otherwise, the length part will be set to ”0000”. The reason for that is when the data

size is unknown at compilation time as in the example ??, the length will be set to ”0000” which

indicates that the computation or data transmission will continue until the tile controller receives

end code ”0xFFFFFE” from the transmitter. The command,”movi”, is used explicitly for sending

the end code to the receiving tile. The ”movi” is formatted as follows : movi destination, value (i.e.

movi Ns, 0xFFFFFE). The URUK overlay is spared with branching instructions to overcome the

main JITA approach and allow changing the execution order. The conditional jumps such as Jump

Non Zero (JNZ), Jump if Greater Than (JGT), and Jump if Less Than (JLT) are made to check the

status register (STR) and jump to the specified location if the flag is set. Also, the unconditional

jump (JUMP) is provided to change the execution sequence when it is needed.

Operational Instruction: Since the main computational logic for each tile is based on the

downloaded logic into the tile PR region, the tile controller does not need to specify and select

the type of the operation (i.e. add, mul, log, map, etc). As a result, the responsibility of the

controller is to direct the input data to the logic in the PR region, issues start signal to the PR logic

to begin execution, and retrieves the output results from the PR region. Therefore, URUK uses

one operational instruction ”opr” to preform different computations depend on the downloaded

logic in the PR region. This reduces the instruction decoder size and complexity. The ”opr” is

48

Table 4.1: Conditional branching instructions.
Instruction Flag Description

jz Z = 1 Jump if the zero flag is set.
jnz Z = 0 Jump if the zero flag is not set.
jgt G = 1 Jump if the greater than flag is set.
jlt Z = 0 & G = 0 Jump if the zero flag and greater than flag are not set.
jge G = 1 ‖ Z = 1 Jump if the greater than flag or Zero flag is set.
jle G = 0 ‖ Z = 1 Jump if the grater than flag is not set and the zero flag is set.

formatted as follows: opr source1, source2, destination, length. The source1 and source2 can be

any general register, data memory, or interconnect input as listed on Table 4.7. The destination,

also, can be one of the listed destinations on the mentioned table. The length specifies the number

of data elements. Based on the specified sources, destination, and length, the controller configures

the input and output switches, sets the Start signal to ”1”, and waits for the Done signal to execute

the next instruction. When memory is used as an operand in the ”opr”, the start address should be

explicitly specified. At run time, the address will be incremented until it reaches the upper bound

specified by the length operand.

When the data size is unknown at compilation time, the length will be set to zero in the

”opr” instruction. The controller will interpret that and put the execution into a while loop with a

condition of receiving the end code ”0xFFFFFE” from the on of the source inputs.

Data Movement: The overlay provides the instruction (” mov”) to move data between mem-

ories, registers, and communications interconnects. The ”mov” instruction is formatted to specify

data source, destination, and length. When the source is one of the input interconnect ports, and

the length is unknown at compilation time, the length will be set to zero. If the length is zero, the

controller will continue to read input ports until it receives the end-code,”0xFFFFFE”, from the

transmitter.

Another move instruction, ”movi”, is provided to immediately set registers and output inter-

connect ports to a specific value. The ”movi” instruction is formatted to define the destination and

the immediate value. The destination can be any of the listed destinations on Table 4.7. However,

49

the output interconnect ports are mostly used with this instruction to set the ”end-code” when the

length is unknown (i.e. ”movi Ns, 0xFFFFFE”).

Conditional Branching To handle conditional operations, URUK overlay provides six in-

structions as shown on Table 4.1. The conditional branching instructions checks the status register

flags and changes the sequence of execution by changing the Program Counter (PC) to the specified

address when the condition is true.

Unconditional Branching The overlay, also, provides the ”jump” to change the execution

sequence unconditionally. This instruction adds more flexibility for the overlay programmability.

4.4 Design Automation

The whole design flow is scripted using TCL script to automate the creation of the overlay with

multiple settings as well as the bitstream library. The overlay script is parametrized to set the

dimension of the tile matrix and the size of PR regions. The HLS script creates the checkpoints for

the synthesizable parallel patterns and computational operators using Vivado HLS. Both the output

of the overlay and the HLS scripts will used by the top level PR flow script to create the overlay

static logic bitstream and the partial bitstream. The script shortens the design development time

and reduces possible design errors.

50

Chapter 5

URUK Compilation Flow

5.1 Introduction

This chapter provides a guideline for the compilation process when targeting URUK overlay. The

overlay is designed to support Domain Specific Languages (DSLs) that include parallel program-

ming patterns. The DSL can be written in any software programming language,and it is not nec-

essary to be a hardware DSL such as FSMLang [1]. Figure 5.1 shows the compilation flow of a

DSL application targeting URUK overlay. The DSL compiler is responsible for extracting the par-

allel programming patterns and computational operators from the user source code and generating

Data Flow Graphs(DFGs). Each node in the generated DFGs should be a parallel pattern(i.e. map,

reduce, zipwith, filter, etc) or a computational operator. Further, the DSL compiler should have a

backend generator to create function calls for mapping the DFG patterns and operators to the tile

matrix as well as creating binaries for each tile to control data movements based on the DFG. The

compiler design and development are out of the scope of this work.

When the DSL compiler creates the DFG from the source code, it will represent the parallel

patterns in the graph nodes that already have bitstreams in the library. Further, if the compiler

did not find a matchable bitstream for a specific pattern, then the compiler would break down

that pattern into its fundamental operators and inserts them in the graph nodes. Using patterns

is more efficient in tile utilizations and performance than using pre-synthesized operators as the

results show in Chapter6. Therefore, using patterns should be a priority for the compiler if they are

available in the bitstream library. The overlay supports pre-synthesized operators as an alternative

if a specific pattern is not pre-synthesized.

After creating the DFG, the DSL compiler will search through the nodes and their connec-

51

DSL Application

DSL Compiler

Bitstreams Repository

Add

map

SubMul
log

exp

Overlay
Static
Logic

reduce

Generate
DFG

?

Mul Mul Mul

Add Add

Add

Overlay
Specifications

mapping
file

Tiles
instructions

 Assign(Filter, Tile[0,0])
 Assign(Mul, Tile[0,1])
 Assign(Mul, Tile[0,2])
 Assign(Mul, Tile[1,0])
 Assign(Add, Tile[1,1])
 Assign(Add, Tile[1,2])
 Assign(log, Tile[2,0])

Generate
map file

Generate
Tile Instructions

Cross Compile

URUK
Assembler

GCC
Compiler

Host
CPU Binaries

Overlay
Tiles Binaries

Run Time

Host
Processor

Figure 5.1: URUK compilation flow.

52

tions to create a map file as well as tile instructions. The map file will contain a sequence of

function calls to assign and place partial bitstreams of the DFG nodes (patterns, operators) into

the chosen Tiles’ PR regions. The overlay allows the compiler to assign nodes to the target tiles

offline or leave the assignment flexible for the runtime system which should keep track of the tiles

availability in this case.

When the compiler assigns nodes to the tile matrix offline, it should consider reducing com-

munication overhead through placing dependent nodes as close as possible in the matrix. Trans-

mitting data through tile interconnects between two distant tiles keeps other tiles in between busy

by passing data. The interconnect latency also will be incremented. Moreover, the compiler would

create extra instructions for those intermediate tiles for passing data. Therefore, it is more efficient

to place dependent tiles near each other.

After creating the map file, the DSL compiler should generate tile instructions which will be

downloaded into tile’s instruction memories at setup time in order to control data movement and

tile operations. Each tile will have its own instructions. Additionally, the tile instructions should

be generated based on the links between DFG node and the tile position in the matrix. The tile

instruction sets are presented and explained previously in Chapter 4.

The generated tile instructions and map file will be cross compiled to generate executable

binaries. The tile instructions will be translated into executable binaries using URUK Assembler,

which is built purpose. The assembler is written in Python. It reads the tile instructions, translates

them into binaries, then writes the binaries into a C header file to be downloaded later into the

specified tile’s instruction memory.

The main body code of the map file function calls is in C language. Thus, it will be cross

compiled using a “gcc compiler” to generate executable binaries for the host processor. When

executing the function calls, the host processor will download the specified partial bitstreams into

the their target tiles.

53

5.2 URUK Parallelism

Within URUK overlay, parallelism can be achieved by instantiating additional copies of the appli-

cation throughout additional tiles. This is like unrolling a loop which translates temporal iterations

into spacial parallelism. Each copy will have the same DFG patterns of the original one. Besides,

The source data should be divided among them be processed in parallel, then the results should

be collected back from the tiles that hold the results. This is similar to unrolling loops by a factor

in HLS. However, unrolling loops should be done compilation which include synthesis, place and

route; while unrolling in the URUK can be done during application compilation which does not

require repeating synthesis process.

5.3 Conditional Operations

Conditionals were a barrier that prevents composing patterns in the original JITA. Some DFGs

have conditional branching which was a limitation in the original JITA approach. Within URUK

overlay, branches are handled by swapping a comparator bitstream into a tile PR region, supplying

the inputs, and feeding the PR region’s output to the status register within the same tile. Based on

the status of the flag, the next command will change the direction of data, or change the execution

sequence by modifying the Program Counter (PC) and jump to a specified address.

5.4 Domain Specific Langauges

This section provides a brief introduction about possible Domain Specific Languages (DSLs) that

can serve as developing applications as well as compiling for the overlay. DSLs (eg. Python, Snort,

HTML) are common within software development. DSLs promote the use of languages tuned

for the needs of specific application domains. Once created and tuned, the language promotes

increased programmer productivity through appropriate abstractions and heavy reuse. DSLs are

54

also being considered to generate accelerators within FPGAs. How DSLs are currently being used

with FPGAs can be found in [8, 11, 28]. A DSLs ability to define reusable programming patterns

is advantageous to moving the use of CAD tools and synthesis from application programmers

development flows.

Delite framework [12] can be modified and used to compile for the URUK overlay for several

reasons. First, Delite facilitates the definition and construction of a DSL language and includes the

generation of the compiler for the new language. Delite also is built in a modular fashion to allow

the insertion of unique domain specific optimizations to be included into the compiler flow. All

DSLs then take advantage of the built in traditional lower level instruction optimizations, such

as common subexpression elimination, loop fusion, etc. Importantly, Delite’s modular structure

allows new backends to be easily added. These features can make the job easy of integrating the

map file and tile instructions generators in a new backend.

5.5 Data Flow Graph

Since the overlay enables utilizing PR regions with pre-synthesized programming patterns as well

as pre-synthesized computational operators, the compiler can create Data Flow Graphs (DFGs)

based on patterns, operators, or mixes between them.

5.5.1 Pattern Based

In general, functional languages (i.e. Python, Scala, etc) support programming patterns such as:

map, reduce, zipwith, filter, etc. Also, these patterns are provided within DSLs (i.e OptiML). In

software programming, patterns are linked to implement a specific function. For instance, by link-

ing the zipwith and the reduce pattens, we can implement matrix multiply. If these patterns are

pre-synthesized, then their bitstreams can be downloaded to two overlay tiles and linked together

by tile interconnects. In URUK Pattern Based (UPB), each node in the DFG represents a pro-

55

grammable pattern. Therefore, the DFG generator should search through the user source code for

patterns and their data flow as well as searching the bitstream library for matchable bitstream. If

the DFG generator does not find a matchable bitstream for a specific pattern, the generator will

replace it by its basic operations and expand the DFG nodes.

The number of nodes in the pattern based DFGs are equal or less than the number of nodes

in the operator based DFGs for the same application. Using patterns are advantageous due to

their fine-grind place and route. In contrast, when patterns are not pre-synthesized, they should be

replaced by operators. In some cases, the performance will decrease due to the expansion of the

original pattern among tiles, a tile for each operation. The communication latency increases by the

number of tiles because it adds around 2 clock cycles to every transmitted data element.

In contrast, large prgramming patterns require big PR regions which may lead to inefficient

FPGA resource utilizations. The overlay is designed to keep balance between performance and

FPGA resource utilizations which is discussed in Chapter6.

5.5.2 Operator Based

In the original JITA approach, all variant programming patterns must be pre-synthesized. In prac-

tice, this requires a large bitstream library to cover all the DSL patterns diversity. URUK overlay

overcomes this problem by supporting pre-synthesized computational operators when some pat-

terns are not pre-synthesized. In URUK Operator Based (UOB), patterns and other scalar opera-

tions are represented in the generated DFG nodes on their basic operators. The UOB utilizes more

tiles, but makes composing accelerators, using pre-synthesized primitives, flexible and possible.

With few types of pre-synthesized operators, different accelerators can be composed. For evalua-

tion purposes, all DFG nodes represent operators when the UOB is used. the next two examples

illustrate how the UOB data flow graphs are mapped into the overlay.

56

5.6 Example 1

This example illustrates how pattern based and operator based data flow graphs are represented

and placed on the overlay. Additionally, the example shows the created function calls and tiles’ in-

structions to compose and implement the accelerator. Figure 5.2 displays a source code, written in

OptiML syntax, which conditionally sum matrix rows. The function is represented in DFGs shown

in Figure 5.3. The DFG on the left side will be created when the sumRowIf is pre-synthesized and

available in the bitstream library. If it is not pre-synthesized, the DFG generator would create the

DFG on the right side in which the sumRowIf is replaced by its internal basic operations (e.g. min,

compare, and reduce).

Then, the DFGs are placed separately on a 2×2 overlay as shown in Figure 5.4. The example

assumes that we do not have a pre-synthesized random circuit, and the random numbers will be

generated on the host processor and transferred to Tile 00 local memory. The DFG in the left side,

Figure 5.3 (a), requires two tiles, one multiply and one for the sumRowIf. While, the DFG in the

right side requires four tiles as shown in Figure 5.4 (b).

The example, also, presents how conditionals are implemented within the overlay as shown

in Figure 5.4 (b), Tile 10. The output of the comparator on Tile 11 is sent to Tile 10 and written in

the Status Register (STR). Then, the next instruction in Tile 10 will check the gth flag. Based on

the flag value, the controller will either implement reduce or flush the data buffer and read the next

row from Tile 00.

The function calls are shown in the bottom of the tile matrix in Figure 5.4. The function calls

will be executed by the host processor to download the partial bitstreams at runtime. Additionally,

the generated tile instructions are shown in Figures 5.5, 5.6.

57

 1 object Example7Interpreter extends OptiMLApplicationInterpreter with Example7
 2 trait Example7 extends OptiMLApplication {
 3 def main() = {
 4 val m = DenseMatrix.rand(4,100)
 5 m = m * 100
 6 // conditional sum over Vector
 7 val conditionalSum = sumRowIf(0,4)(i => m(i).min > 0) { i => m(i) }
 8 println("conditionalSumRow:")
 9 conditionalSumRow.pprint
 10 }
 11 }

Figure 5.2: A DSL source code.

100

random

sum
RowIf

mul

Row

random

mul

100
Row

min

> 0 ?

reduce

Row

Row

true

(a) (b)

Figure 5.3: Data Flow Graphs (DFGs) for the code in Figure 5.7

58

1

2

Assign(mul_const,Tile_00);

Assign(sumRowIf,Tile_01);

Map calls for the DFG in (a)
1

2

3

4

Assign(mul_const,Tile_00);

Assign(min,Tile_01);

Assign(comp,Tile_11);

Assign(reduce,Tile_10);

Map calls for the DFG in (b)

mul min

reduce comp

gtCont

1 2

34

mul sum
RowIf

1 2

(a) Pattern Based (b) Operator Based

non-used tiles

Figure 5.4: Place&Route DFGs in Figure 5.8
on 2×2 URUK overlay.

Tile001

opr Bram1[R1],R2,Es,0x64

movi R2,0x64
movi R1,0x0

loop (4)

Inc R1,0x64
end

opr Er,0,Bram1[R1], 0x64

Tile012
movi R1,0x0
loop (4)

Inc R1,0x4
end

Figure 5.5: Instructions and executable binaries for the two placement examples in Figure 5.9

59

Tile001

opr Bram1[R1],R2,Bram2[R1],0x64

movi R2,0x64
movi R1,0x0

loop (4)

Inc R1,0x64
end

opr Nr,0,Ws, 0x1

Tile113

loop (4)

end

opr Bram1[0],0,Bram2[R1], 0x64

Tile104

loop (4)

end

mov Nr,Bram1[0], 0x64
mov Er,STR,0x1
jgt process

process:
jump newRow

newRow:

movi R1,0x0

inc R1,0x4

mov Bram2[R1],Es, 0x64
mov Bram2[R1],Ss, 0x64

opr Er,0,Ss, 0x64

Tile012

loop (4)

end

Figure 5.6: Instructions and executable binaries for the two placement examples in Figure 5.9

5.7 Example 2

In this section, we provide an example that shows how to compile a source code from OptiML,

a domain specific language for machine learning built by PPL on top of Delite framework [59],

targeting the URUK overlay. The source code in Figure 5.7 has some programming patterns such

as: random, filter, map, reduce and other operations like multiply and log. The compiler would

generate a DFG as shown in Figure 5.8 in which each node represents a pattern or an operator.

When the compiler finds a pattern in the source code, it will look for a matchable bitstream in the

pre-synthesized library. If it did not find one, then it will break down the pattern into its basic

operators and represent them in the DFG nodes. As illustrated in Figure 5.8, when the compiler

finds a map pattern that squares elements multiplied by a constant, it generates the DFG in (a). If

not, it generates the DFG in (b) through replacing the map pattern by two nodes, a node for square

and the other for multiply by constant.

60

 object Example1Interpreter extends OptiMLApplicationInterpreter with Example1
 trait Example1 extends OptiMLApplication {
 def main() = {
 val v = DenseVector.rand(1000)

 // filter selects all the elements matching a predicate
 // map constructs a new vector by applying a function to each element
 val v2 = (v*1000).filter(e => e < 500).map(e=>e*e*random[Double])

 // reduce produces a scalar by successively applying a function to pairs
 val logmin = v2.reduce((a,b) => if (log(a) < log(b)) a else b)
 }
 }

Figure 5.7: OptiML Example .

random

filter

Mul

loglog

reduce

first value

seq

Mul

1000random

filter

map

loglog

reduce

first value

Mul

1000

(a) When map pattern is available (b) When map pattern is not available

randomrandom

Figure 5.8: Data Flow Graph for the code in Figure 5.7

61

mul filter

log map

reduce log

mul filter

seq

log mul

reduce log

1

2

Assign(mul_const,Tile_00);

3

Assign(filter_gt,Tile_01);

4

5

Assign(mul_2m,Tile_11);

6

Assign(log,Tile_01);

Assign(log,Tile_21);

Assign(reduce_cmp,Tile_20);

1

2

Assign(mul_const,Tile_00);

3

Assign(filter_gt,Tile_01);

4

Assign(seq,Tile_11);

5

Assign(mul_const,Tile_21);

6

Assign(log,Tile_20);

7 Assign(reduce_cmp,Tile_30);

Assign(log,Tile_31);

Map calls for the DFG in (a) Map calls for the DFG in (b)

unused tiles

Figure 5.9: Place&Route DFGs in Figure 5.8
on 4×4 URUK overlay.

62

Tile001

opr Bram1[0],R1,Es,0x3E8

opr Er,0,Ss, 0x3E8
Tile012

movi Ss,0xFFFFFE

Tile113
opr Nr,Bram1[0],Ws,0x1

opr Nr,Bram1[1],Ss,0

movi Ss,0xFFFFFE

Tile 214
opr Nr,0,Ws,0
movi Ws,0xFFFFFE

Tile 105
opr Er,0,Ss,1
opr Sr,0,Ss,0

Tile 206
opr Er,Nr,R1,0

0x157203E8

0x120303E8
0x33FFFFFE

0x11540001

0x11530000

0x33FFFFFE

0x11040000
0x34FFFFFE

0x12030001
0x13030000

0x12170000
movi Ns,0xFFFFFE 0x31FFFFFE

Binaries Tile Instruction(s)

movi R1,0x3E8 0x370003E8

0x00000000

0x00000000

0x00000004

Figure 5.10: Instructions and executable binaries for the pattern based placement in Figure 5.9
(a).

63

Binaries Tile Instruction(s)

Tile001

opr Bram1[0],R1,Es,0x3E8 0x157203E8
movi R1,0x3E8 0x370003E8

0x00000000

opr Er,0,Ss, 0x3E8
Tile012

movi Ss,0xFFFFFE
0x120303E8
0x33FFFFFE

Tile113
opr Nr,0,Ss,0 0x11030000
movi Ss,0xFFFFFE 0x33FFFFFE

Tile214
opr Nr,Bram1[0],Ws,0x1

opr Nr,Bram1[1],Ss,0

movi Ss,0xFFFFFE

0x11540001

0x11530000

0x33FFFFFE

0x00000000

0x00000004

Tile 315
opr Nr,0,Ws,0
movi Ws,0xFFFFFE

Tile 206
opr Er,0,Ss,1
opr Sr,0,Ss,0

Tile 307
opr Er,Nr,R1,0

0x11040000
0x34FFFFFE

0x12030001
0x13030000

0x12170000
movi Ns,0xFFFFFE 0x31FFFFFE

Figure 5.11: Instructions and executable binaries for the operator based placement in Figure 5.9
(b).

64

Previously mentioned that the URUK overlay comes up with different settings such as the

number of tiles and PR region size. Therefore, the target overlay settings should be known during

compilation. In this example, we are using a target overlay with 4×4 tile matrix and same size

settings for all PR regions (the size of the largest pattern).

Once the DFG created, the DSL complier map file generator will search where to place nodes

within the tile matrix and create a map file. The map file will have function calls that will be used by

the during accelerator setup time to download the nodes’ partial bitstreams to the specified tiles as

shown in Figure 5.9. From the example, we can see that the DSL compiler has several solutions to

place and route nodes within the given target overlay. Since URUK overlay allows more than one

accelerator to be implemented within the overlay at the same time, it would be efficient to reduce

the ”dead” tiles such as the tile in the second row and first column ,”tile 10”, on Figure 5.9(b).

Even though ”dead” tiles can be used in other accelerators that work concurrently on the overlay,

but they will degrade the performance of neighbor tiles by keeping them busy bypassing data.

Also, they will make code generation for neighbor tiles more difficult by including extra ”mov”

instructions to bypass data .

It is clear that the search space for the place and route within URUK overlay is extremely less

than the search space on fine-grind FPGAs. This makes a significant difference in the compilation

time between using the overlay and the traditional FPGA applications development tools.

In addition to the map file, URUK generator will create instructions for each tile to control

data flow between tiles. Figure 5.11 shows the created instructions and their binaries for each

tile in both cases which are represented on Figure 5.9. The tile controller will ignore the source

operand in the ”opr” instruction when it is set to zero because in some patterns the computational

logic requires only one source operand. Further, when the operand length is set zero in both ”opr”

and ”mov” instructions, the tile controller will keep executing the same instruction in a while loop

until it receives the end code,”0xFFFFFE” from the sending tile. This is important when the data

size is unknown during compilation.

65

Chapter 6

Evaluation

This chapter presents an evaluation of the thesis’ claims and questions put earlier in Section 1.2.

The newly designed overlay, URUK, is programmable and able to compose pre-synthesized pro-

gramming patterns as well as pre-synthesized computational operators. Additionally, the thesis

claims the new overlay can handle conditional operations. Thus, we chose benchmark functions

that include patterns and operators with conditionals to evaluate these claims. Next, the bench-

mark functions are implemented on the overlay using patterns then using operators to measure the

impact of replacing patterns by operators on resource utilizations and performance.

High Level Synthesis (HLS) has been considered as a robust compilation technology to in-

crease productivity. Hence, the HLS was chosen to compare against URUK’s performance, re-

source utilizations, and productivity. Further, a software version for each benchmark function is

implemented on MicroBlaze to be the common factor in the speedup of both the HLS and URUK.

Moreover, the optimization of both HLS and URUK is presented to assess the hardware skills’

requirement to gain more speed up. The last section discusses the flexibility of URUK overlay

for being dynamic and compared against a static overlay from three different perspectives : area,

routing data, and achieving parallelism.

6.1 Benchmark:

Table 6.1 shows the used benchmark functions to evaluate the approach. The benchmark in-

cludes vector addition, vector multiplications, matrix multiply, and four other functions with Com-

pound Patterns (CP). The CP functions are chosen to show the differences between the use of

pre-synthesized patterns and pre-synthesized computational operators as well as to examine condi-

66

Table 6.1: Synthetic Benchmark Functions
Name Formula Patterns Operators

VADD ~vc = ~va +~va zipwith add
VMUL ~vc = ~va ·~va zipwith mul

Matrix Multiply Mc = Ma×Mb zipwith , reduce mul , add
CP1∗ cost = ∑

n
i=0 (ypred− yreal)

2 zipwith, map, reduce sub,sqr,add

CP2† f (xi) =

{
∑

n
i=0
√

2xi−1, if xi > 0
null, otherwise

map, reduce > ,sqrt,mul,sub

CP3‡ f (xi) =
2xi

1+|xi| map mul,div,add,abs

CP4§ f (xi) =

{
x2

i +2xi + c, if xi > 0
null, otherwise

filter, map >,sqr,add,mul,add

∗V3 =V1 - V2; V4 = V3.map(e=> e2).reduce((a,b)=>a+b).
†V2 = V1.map(e=> if (e >0) sqrt(2*e -1) else 0).reduce((a,b)=>a+b).
‡V2 = V1.map(e=> 2*e/(1+abs(e))).
§V2 = V1.filter(e=> e>0).map(e=> e2 +2*x+ const).

tional operations. Besides, the table presents the patterns and operators involved in each function.

6.2 HLS Implementation

For comparison purposes, we created a full hardware for each function on Table 6.1 using Vivado

HLS. The created HLS accelerators were not optimized with directives and pragmas in the first im-

plementation because our study is targeting software developers with little background on FPGAs

hardware design. In the second implementation, we used an optimized HLS source code for ma-

trix multiply to compare the optimization difficulty and benefits of both HLS and URUK. Table 6.6

shows the resource utilization of the synthesized accelerators in term of BRAMs, DSPs, FFs, and

LUTs. From the table, it is obvious that the optimized matrix multiply is utilizing more resources

compared to the non-optimized one. All accelerators were synthesized for 100MHz frequency.

67

Table 6.2: Resource Utilizations of HLS Full Accelerators on Vertix7
Function BRAMs DSPs FFs LUTs

Vector Add 0 0 300 427
Vector Multiply 0 4 268 128
Matrix Multiply (unoptimized) 0 12 689 585
Matrix Multiply (optimized) 0 28 1046 1393
CP1 0 4 203 224
CP2 0 0 1636 3367
CP3 0 0 489 554
CP4 0 4 267 203

Table 6.3: Resource utilizations of Computational Operators on Virtex7
Operator BRAMs DSPs FFs LUTs

Add 0 0 3 48
Sub 0 0 3 48
Mul 0 4 6 15
Div 0 0 293 336
Logf 0 13 572 1380
Expf 0 7 400 1697
sqrt 0 0 1440 3144

fmax, fmin 0 0 578 2240
abs 0 0 3 91

comp (>, <, ==, >= ,<=) 0 0 8 81

6.3 URUK Implementation

For prototyping, we created an URUK overlay with 3×3 tiles matrix as well as a bitstream library

which includes pre-synthesized patterns and computational operators. Tables 6.5& 6.3 show the

resource utilizations of the pre-synthesized patterns and operators respectively. From Table 6.5,

the pattern map{sqrt(2x-1)} requires 1506 FFs and 3180 LUTs, which is the highest among other

patterns and operators. Therefore, the PR regions, as shown on Table 6.4, are set to fit the largest

used patterns. Table 6.4 also displays the total tile size on Vertix7 including the PR region and

other logics.

68

Table 6.4: Tile’s Resource utilization on Virtex7
Part BRAMs DSPs FFs LUTs

Tile logic ∗ 45 0 921 2072
PR Region 0 18 1506 3180

Total 45 18 2427 5252

∗Including three interconnect switches, five 256 streaming FIFOs, two 64Kbytes data BRAMs, one 8Kbytes
instruction BRAM, and the controller logic.

Table 6.5: Resource utilizations of Programming Patterns on Virtex7
Pattern BRAMs DSPs FFs LUTs

map{e=> e*e} 0 4 73 17
map{(a,b) => if (a>b) a else b} 0 0 41 59

map{e => sqrt(2*x -1)} 0 0 1506 3180
map{e=> 2*e/(1+abs(e))} 0 0 360 444

map{e=> e*e + 2*e + const.} 0 4 138 53
A.zipwith(B){(eA,eB) => eA + eB} 0 0 39 49
A.zipwith(B){(eA,eB) => eA * eB} 0 4 40 16
A.zipwith(B){(eA,eB) => eA - eB} 0 0 39 49

reduce{(a,b) => a*b} 0 0 90 104
filter{e=> if(e>0) e } 0 0 37 28
filter{e=> if(e<0) e } 0 0 37 28

filter{e=> if(e==const.) e } 0 0 37 28
filter{e=> if(e>=const.) e } 0 0 37 28
filter{e=> if(e<=const.) e } 0 0 37 28

To study the differences between the use of pre-synthesized programming patterns and pre-

synthesized computational operators within URUK overlay, we implemented the Compound Pat-

terns (CP) functions on the benchmark table based on patterns as well as operators. Table 6.6

presents the resource utilizations in term of tiles for the benchmark functions in both pattern’s

based and operator’s based implementations. The performance section will discuss how that will

impact the execution time and the overall speed up.

69

Table 6.6: Tile Utilizations of Benchmark Functions on URUK Overlay.
Function Pattern Based Operator Based

Vector Add 1 Tile [zipwith] 1 Tile [add]
Vector Multiply 1 Tile [zipwith] 1 Tile[mul]
Matrix Multiply 2 Tiles [zipwith, reduce] 2 Tiles [mul, add]
CP1 3 Tiles [zipwith, map, reduce] 3 Tiles [sub, sqr, add]
CP2 2 Tiles [map, reduce] 4 Tiles [greater than, sqrt, mul, sub]
CP3 1 Tile [map] 4 Tiles [mul, div, add, abs]
CP4 2 Tiles [filter, map] 5 Tiles [greater than, sqr, add, mul, add]

HLS
Accelerators

MicroBlaze

Timer UART CDMA

DDR

BR
AM

1

BR
AM

2

BR
AM

3
3x3 Tile
Matrix

Overlay

Figure 6.1: Prototype System.

6.4 Prototyping System

We built a system that includes a MicroBlaze, a Central Direct Memory Access (CDMA), a timer

, a 3×3 URUK overlay, and custom HLS full accelerators for each function in the chosen bench-

mark. In this work, the HLS accelerators’ performance represents the baseline to compare against

URUK performance. Figure 6.1 displays the prototype system. The figure shows only one HLS

accelerator box connected to three BRAMs; however, in the actual system, every HLS accelerator

is connected independently to three BRAMs, 64 Kbytes each. The system is built on Vertix7 us-

ing Vivado 2015.4 and synthesized at 100MHz frequency. The MicroBlaze is configured with the

70

following features:

• 256 Kbytes for data and 256 kbytes for instructions

• Data cache and instruction cache are enabled with 16 kbytes and 8 line length each

• Extended floating point unit is enabled

• 32 bit integer multiplier is enabled

• Integer divider is enabled

The MicroBlaze plays the role of the host processor in the system to set the CDMA in order to

transfer data from the DDR to tiles’ local memories as well as the HLS accelerators memories.

At the accelerator setup time, the MicroBlaze downloads the partial bitstreams to the specified

tiles. Additionally, the MicroBlaze issues a start signal to tiles matrix and HLS accelerators to

begin executing. Then, it waits until they finish to calculate the execution time and print the output

results. The MicroBlaze is also used to run the software version of the testing functions in order

to calculate the speed ups of the overlay and the HLS accelerators. In this study, the MicroBlaze’s

execution time is not the baseline target to evaluate the overlay performance. However, it represents

the common factor in the speed up measurement.

The CDMA can transfer data between the DDR and the local BRAMs as well as between

local BRAMs themselves. The tiles memory interface allows the CDAM to transfer data between

them. It is crucial to transfer data between tiles by using the CDMA instead of using the com-

munication interconnect when the data size is large. In the system, the CDMA is mastered by the

MicroBlaze.

The timer is used to time the execution time for both the overlay and the HLS accelerators.

Before measuring the actual execution time, the time calibration is calculated to be subtracted later

from the total execution time for relatively accurate measurements. The 32-bit AXI timer IP is

used in the implemented system. To print out the results, the AXI UART Lite is used.

71

Patterns Based

f = Va.zipwith(Vb) { (Va, Vb) => Va - Vb }.map {e => e*e}.reduce { (a, b) => a+b};

zipwith

Va Vb

zipwith

Va Vb

sub

sqr

Operators Based

map

reduce

f

map reduce

sub

add

f

(a)

sqr

add

(b)

These tiles can be used to compose another
accelerator or to parallelize the execution

of the current function through
doubling patterns/operators and

using data divide&conquer method.

Figure 6.2: The DFG of CP1 function based on pre-synthesized (a) Patterns and (b) Operators,
and the placement on 3×3 overlay.

72

map

Patterns Based
f = Va.map{ e => if (e > 0) sqrt(2*e -1) }.reduce { (a, b) => a+b};

map

Va

gt

reduce

f

reduce

(a) (b)

Va

sub

Operators Based

mul
sqrt

f

2

1

add

mul sub

sqrt

>

add

Figure 6.3: The DFG of CP2 function based on pre-synthesized (a) Patterns and (b) Operators,
and the placement on 3×3 overlay.

73

Patterns Based

f = Va.map{ e => 2*e /(1+abs(e)) };

map

Va
map

Va

mul

div

Operators Based

f

mul

f

(a)

(b)

2

absabs

add

1

div add

This connection is not used when "Va"
downloaded on both the "mul" tile and

the "abs" tile local memories

Figure 6.4: The DFG of CP3 function based on pre-synthesized (a) Patterns and (b) Operators,
and the placement on 3×3 overlay.

6.5 Performance Evaluation

In addition to the HLS full accelerators and URUK overlay implementations, a software application

for each function in the benchmark is created and run on the MicroBlaze. The software execution

time will represent the common factor on the speed up formula of HLS accelerators and URUK.

In this work, the speed up of the HLS accelerators represents the baseline in our comparisons. In

URUK , the benchmark functions are implemented in two methods; pattern based and operator

based. Initially, this section evaluates the performance of the pattern based URUK implementation

and compares it with non-optimized HLS as well as the MicroBlaze. Additionally, it discusses the

cost and the benefits of optimizing the execution of both URUK overlay and HLS. Next, it presents

the performance of the optimized implementations. Then, a comparison between pattern based

and operator based performance is provided to evaluate the advantages and disadvantages of using

each one of them.

74

filter

Patterns Based
f = Va.filter{ e > 0 }.map{ e => e*e + 2*e + const };

filter

Va

gt

map

f

map

(a) (b)

Va

add

Operators Based

sqr
f2

add

sqr

add

>

mul

const.

mul add

Figure 6.5: The DFG of CP1 function based on pre-synthesized (a) Patterns and (b) Operators,
and the placement on 3×3 overlay.

75

Vector Add (VADD)

Vc = Va.zipwith(Vb) { (Va, Vb) => Va + Vb };

zipwith

Va Vb

Vc

zipwith

zipwith

zipwith

zipwith

zipwith

UQuad

UDouble

USingle

Matrix Multiply (MM)

Mi,j = Vi.zipwith(Vj) { (Vi, Vj) => Vi * Vj} .reduce {(a,b) => a+b)};

zipwith

Vi Vj

Mi,j

zipwith

reduce

reduce

zipwith

reduce

UQuad

UDouble

USingle

reduce

reduce

zipwith

zipwith

Composing Five Different Modules on One 3x3 Overlay

f = Va.zipwith(Vb) { (Va, Vb) => Va - Vb }.map {e => e*e}.reduce { (a, b) => a+b};

Mi,j = Vi.zipwith(Vj) { (Vi, Vj) => Vi * Vj} .reduce {(a,b) => a+b)};

Vc = Va.zipwith(Vb) { (Va, Vb) => Va + Vb };

f = Va.map{ e => if (e > 0) sqrt(2*e -1) }.reduce { (a, b) => a+b};

Vc = Va.zipwith(Vb) { (Va, Vb) => Va * Vb };

1 :
2 :
3 :
4 :
5 :

zipwith

map

reduce

reduce

zipwith

4

zipwith reduce

3

zipwith

map

1

2 5

(a)

(b)

(c)

Figure 6.6: Vector Addition and Matrix Multiplication DFGs, Pattern Based. Also, the three
mapping methods, USingle, UDouble, and UQuad.

76

6.5.1 Pattern Based

In the URUK Pattern Based (UPB) implementation , a DFG for each function is created. Every

node in the DFG represents a pattern. During the overlay setup time, patterns are mapped to the

tiles matrix through downloading their partial bitstreams. Figures 6.6,6.2,6.3,6.4, and 6.5 show the

pattern based DFGs and how they are mapped on the overlay.

Within URUK overlay, parallelism can be achieved by increasing the number of computa-

tional components (tiles) through mapping the same DFG patterns into multiple tiles. For instance,

the vector addition function is represented in ”zipwith” pattern, which requires only one tile. How-

ever, it can be parallelized by downloading the ”zipwith” bitstream into multiple tiles and dividing

the vectors’ data among them, then gathering their results. The overlay allows doubling patterns as

long as there are free available tiles. This feature provides an easy way to parallelize the execution

and increase performance without the need of repeating synthesis, place and route. In contrast, the

speed up does not increase linearly with the increase of used patterns. In this work, three mapping

ways are used as follows:

• USingle: mapping the DFG pattern(s) on the overlay tiles without doubling

• UDouble: mapping copies of the DFG pattern(s) on the overlay tiles

• UQuad: mapping four copies of the DFG pattern(s) on the overlay tiles

Figure 6.6 presents mapping DFG patterns using USingle, UDouble, and UQuad. Figure 6.7 dis-

plays the execution time (ns) of the 7 benchmark applications using software versions on MicroB-

laze, HLS full accelerators(non-optimized), and the three ways of pattern based URUK overlay

implementations. The USingle achieved equivalent or less performance than the HLS implemen-

tation of the tested applications.

By comparing the execution time of the USingle, UDouble, and UQuad, we see that the

speed up is not dropping linearly with the increase of computational components (tiles). The

77

nonlinear relationship is a result of the data transfer overhead which increments by increasing

the number of tiles. For instance, when the USingle implements the VADD application which

normally occupies one tile, the DMA makes two data transactions to the two tile’s local BRAMs

and one additional transaction to gather the results back to the main memory. However, when

UDouble is used to implement the same application, it will occupy two tiles which require four

DMA data transactions to the tiles’ local BRAMs and two DMA transactions to move the results

back to the main memory. With every DMA transaction, there is a constant DMA setup time

which accumulates to be significant when multiple transactions of small data size occur. The DMA

transactions increase with the number of utilized tiles. The CDMA engine takes around 177ns to

transfer 4Kbytes (1K elements), 189ns to transfer 8Kbytes, and 209ns to transfer 16Kbytes.

The chart also shows that the benefit of using UQuad is proportional to the ratio between

the processing time and the data transfer time (marked black in the chart) of the implemented

application. For example, the UQuad implementation of CP2 achieved more than two times the

speed up of the USingle implementation of the same application because the processing time is

dominant and significant in that function compared to DMA time. The UQuad of VADD did not

show much of a difference from UDouble in the execution time even though the processing time

in the UQuad was decreased. That is because the DMA time in the UQuad was increased nearly

by the same amount of the processing time decrease. The UQuad impact appears in the functions

that have considerable processing time such as CP2, CP3 and matrix multiply.

The speed up of the implementations in Figure 6.7 is calculated based on the following for-

mula:

Speedup =
AcceleratorExecutionTime
MicroBlazeExecutionTime

Here, the Accelerator refers to the HLS accelerator as well as the URUK accelerators.

Figures 6.8, 6.9, and ?? display the calculated speed up of the HLS and URUK implementations.

The speed up charts are related to the execution time in Figure 6.7. Since the computations of

78

106

101

102

103

104

105

.

Ex
ec

ut
io

n
Ti

m
e

(n
s)

CP1 CP2 CP3 CP4 VADD VMUL MM(64x64)

MicroBlaze
HLS Full Module
USingle

UDouble
UQuad
DMA Time

Figure 6.7: The execution time of the 7 benchmark functions. Only CP1 function was not imple-
mented in UQuad due to the limited number of tiles. The HLS accelerators were not optimized.
4K data elements(32-bit integers) are used.

19

11

12

13

14

15

16

17

18

CP1

Sp
ee

d
up

HLS USingle UDouble

(a)

140

50

60

70

80

90

100

110

120

130

CP2

Sp
ee

d
up

HLS USingle UDouble UQuad

(b)

Figure 6.8: The speed ups of the HLS and URUK (USingle, UDouble, and UQuad) implementa-
tions over software versions of (a) CP1 and (b) CP2 functions.

79

21

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

CP3

Sp
ee

d
up

HLS USingle UDouble UQuad

(a)

10

5

6

7

8

9

CP4
Sp

ee
d

up
HLS USingle UDouble UQuad

(b)

Figure 6.9: The speed ups of the HLS and URUK (USingle, UDouble, and UQuad) implementa-
tions over software versions of (a) CP3 and (b) CP4 functions.

18

9

10

11

12

13

14

15

16

17

Vector Add

Sp
ee

d
up

HLS USingle UDouble UQuad

Label

(a)

22

12

13

14

15

16

17

18

19

20

21

Vector Multiply

Sp
ee

d
up

HLS USingle UDouble UQuad

(b)

Figure 6.10: The speed ups of the HLS and URUK (USingle, UDouble, and UQuad) implemen-
tations over software versions of (a) Vector add and (b) Vector multiply functions.

80

CP2 , CP3 and VMUL are intensive compared to other functions in the benchmark, doubling the

computational components (tiles), which increases the speed up by nearly two times the USingle

implementation. The DMA time is not significant in these cases.

6.5.2 Operator Based

As discussed earlier, using pre-synthesized patterns requires multiple versions for each pattern

to cover variant functionalities. For instance, the map pattern on Table 6.5 has several versions to

implement various operations. In order to implement map with a new functionality, the map pattern

should be synthesized and added to the library. Practically, this requires a big bitstream library in

order to make the overlay capable of composing wide variety of accelerators. To overcome this

problem, URUK overlay supports composing accelerators using pre-synthesized computational

operators. In this section, we evaluate the URUK Operator Based (UOB) performance compared

to the URUK Pattern Based (UPB) implementation.

Figures 6.2, 6.3, 6.4, and 6.5 show the Data Flow Graph (DFG) and tile utilizations of the

UOB and UPB implementations for the CP1, CP2, CP3, and CP4 functions respectively. In the

UOP, the overlay composes accelerators using pre-synthesized operators instead op patterns. Fig-

ure 6.11 presents the execution time (ns) and the speedups of both UOB and UPB implementations

for the benchmark functions, CP1, CP2, CP3, and CP4. In this experiment, 4K data elements

(32-bit integers) size is used. The chart demonstrates that using patterns provides better perfor-

mance than using operators. In fact, patterns utilize fewer tiles than operators which leads to less

communication overhead. Additionally, patterns can have many operations which are all placed in

one PR region and routed internally in bit level, which optimizes the circuit and reduces latency.

As a result, patterns can achieve more speed up than operators. However, the UOB provides more

flexibility to implement a wide range of applications with few pre-synthesized operators.

81

200

400

600

800

1000

1200

1400

1600

1800

.

Ex
ec

ut
io

n
Ti

im
e

(n
s)

CP1 CP2 CP3 CP4

Synthesized Patterns

Synthesized Operators

Pattrens Operators Pattrens Pattrens PattrensOperators Operators Operators

CP1 CP2 CP3 CP4

12x 12x 53x 47x 7x 6x 6x 4xSpeed up

Figure 6.11: Compares the execution time and speed up of UPB and UOB implementations using
4K data elements(32-bit integers).

6.5.3 Optimization

To compare the three methods of URUK overlay implementations with an optimized HLS acceler-

ator, we created an optimized version of the matrix multiply using Vivado HLS. Pipeline directive

was used in the optimized version. Figure 6.12 shows the 64x64 matrix multiply execution time

(ns) using a software version on MicroBlaze, HLS (unoptimized), HLS (optimized), and the three

ways of URUK overlay(USingle, UDouble, UQuad). The figure also displays the speed up of each

method. The chart presents that the optimized version of HLS achieved around 96x speed up which

is higher than the other implementations. The URUK Quad is similar to unrolling the inner loop

by a factor of 4 in Vivado HLS. The UQuad achieved around 60x speed up, which is less than

the HLS optimized version speed up. However, optimizing an HLS source code requires some

hardware skills as well as repeating the synthesis, place, and route process, which are time con-

suming. In contrast, enhancing an application performance within the overlay through doubling

82

Speed up 1x 17x 96x 16x 31x 60x

Micro
Blaze

HLS (N
o Opt.)

HLS (O
pt.)

USingle

UDouble

UQuad

1000

10,000

100,000

400

500

2000

3000

4000

5000

20,000

30,000

40,000

50,000

200,000

300,000

.

Ex
ec

ut
io

n
Ti

m
e

(n
s) DMA Time

64x64 Matrix Multiply

MicroBlaze
HLS (Not Opt.)
HLS (Opt.)

USingle
UDouble
UQuardruple

Implementations

Figure 6.12: The execution time of the optimized and non-optimized HLS of 64x64 matrix mul-
tiply also the speed up compared to MicroBlaze and the three methods of URUK overlay imple-
mentations using 4K data elements(32-bit integers).

HLS

URUK

16x 17x 60x 96x

Expert HW
Designer

Four
Execution

Units

Naive
Programming

FP
G

A
 H

ar
dw

ar
e

Ex
pe

ri
en

ce

Single
Execution

Units

Speed up

Figure 6.13: The required design experience on FPGA to optimize the 64x64 matrix multiply, in
Figure 6.12, on both HLS and URUK to gain speed up.

83

tiles can be achieved without repeating synthesis and without hardware design skills. It only costs

downloading more bitstreams and making minor changes in the system application level to divide

and conquer data. This cost nothing compared to repeating synthesis.

Figure 6.13 shows a relation between design experience level and gaining speed up. Essen-

tially, with little experience on FPGAs, one can optimize the implemented application on URUK

to increase performance. From the optimized matrix multiply example, the programmer can gain

44 more speed up by only increasing the number of computational units to 4 and dividing the pro-

cessing data among them. However, even a trivial implementation on HLS requires FPGA design

skills to integrate the created accelerator into the system, and background knowledge on how to

drive it. Moreover, optimizing a design on HLS requires more design skills and low level hardware

details. On the other hand, the optimized designs on HLS gains more speed up, which presents

tradeoffs between productivity and performance.

6.6 Productivity

To quantify the productivity, URUK is compared against HLS, which is currently considered the

FPGAs’ highest productive tools. Figure 6.14 shows the compilation steps of a design in Vivado

HLS and URUK including the estimated time for each step. The left side of the figure shows

the design compilation steps of Vivado HLS. The shown time may vary based on the design size.

For instance, Vivado HLS takes around 30 seconds to generate a matrix multiply IP. Then Vivado

System takes a round 16 minutes to synthesis, place, route, and generate the bitstream for the

system, which includes the IP of matrix multiply with a MicroBlaze. When the system is large,

Vivado may take hours to place and route the design. This is the most extensive step in the system

design. Further, the time here is not including the designer work time on building the system

as well as integrating the IP into the system. This by itself requires high level of experience on

system design, interfacing, and connections. After generating the bitstream, the design should be

exported to the System Development Kit (SDK) in order to implement the application. In the SDK,

84

applications go through a normal software compilation process.

In the HLS design compilation flow, the real challenge is that any minor changes within

the design source code requires repeating the whole flow processes including the Vivado system

process. In fact, the HLS increases the designers’ productivity only for the part where they rep-

resents their algorithms in a high level language instead of using one of the hardware description

languages. However, the generated IP from the HLS must be integrated into the system and syn-

thesized within the Vivado system, which is the most time consuming stage in the CAD tool flow.

Therefor, to achieve equivalent productivity to normal software, we moved this stage from design

compilation in URUK by using pre-synthesized parallel-data patterns and computational operators.

The right side of Figure 6.14 presents URUK compilation steps of a design. Since the overlay

is constructed as a coarse-grind, the place and route search space is very small compared to the

fine-grind. Thus, the DSL compilation time is expected to be fast, a few seconds. The generated

function calls and tile binaries are executed directly by the host processor, the MicroBlaze in this

work. When the MicroBlaze executes the function calls, it downloads the partial bitstreams to the

specified tiles. The download time depends on the size of PR regions and the FPGA. The total

download time vary between 2 seconds to milliseconds. It took around 2.37ms to download and

compose the partial bitstreams of the matrix multiplay patterns.

In summary, URUK can enable software programmers without any hardware skills to create

hardware accelerators at productivity levels consistent with software development and compilation.

6.7 Dynamic vs. Static

Since URUK is using Partial Reconfiguration (PR) technique, it can assign (place) computational

operators dynamically. This feature provides high flexibility in placing operators and routing data

between them. To evaluate the cost and benefits of this feature, we designed a static overlay, which

has a similar structure to the original URUK overlay except no PR regions. In the static overlay,

85

System

Bitstream

Design

IPV
iv

ad
o

H
LS

 T
oo

l
V

iv
ad

o
Sy

st
em

To
ol

Download

Run

SD
K

integrate the IP
into the system

export the design

Design

Map File + Tile Binaries

D
SL

 C
om

pi
le

r
Download

Compose

SD
K

build
application

Run

seconds

milliseconds

milliseconds

minutes

minutes to hours

seconds

(a)

(b)

Figure 6.14: (a) The HLS design steps including estimated time; (b) URUK compilation steps
including estimated time.

86

f = Va.filter{ e > 0 }.map{ e => e*e + 2*e + const };

(b) Static Overlay

Va

add

sqr
f2

add

>

mul

const.

gt sqr

mul add add

add sub

div log exp

abs sqrt

mul

gt

(a) Dynamic Overlay

Figure 6.15: Dynamic vs. static overlays

87

instead of using PR regions, each tile has an non-replaceable computational operator, synthesized

as part overlay static logic. URUK is compared against the static overlay in three different parts as

follows:

6.7.1 Area

Tiles in the static overlay are naturally different in size because every tile is statically holding a

different operator(small or large). In contrast, tiles in the URUK overlay have the same size when

PR regions are set to the largest operator. Thus, resources internal fragmentations appear in the

URUK overlay tiles when small operators are placed in large PR regions. As a result, the overall

area usage of URUK overlay is higher than the static one. This is a cost of being dynamic. Further

optimizations can be made within URUK overlay to reduce the resources internal fragmentations

such as setting PR regions to variant sizes.

6.7.2 Routing Data

Figure 6.15 presents example of implementing CP4 function on a 3×3 URUK overlay and a a 3×3

static overlay. Both overlays can route data between tiles using same configurations. However,

URUK has the flexibility of placing operators as close as possible tiles at accelerator’s setup time

to reduce communication overhead. While, the static overlay does not have this flexibility at setup

time, and the communication overhead depends on how operators are distributed among tiles at

design time. Each tile interconnect in both overlays has a latency of 2 clock cycles to transfer a

data element. In this study, operators are distributed arbitrarily in the static overlay, which can be

optimized with better organizations. Therefor, the shown results are not standard in this case of the

static overlay.

Figure 6.15 (a) shows that dependent operators are placed near each other without data hoping

throughout tiles. In contrast, the static organization of operators on the right side of the figure forces

the data to be bypassed though other tiles in order to reach the destination tile. For example, the

88

output of square root (sqrt) tile has to pass through two other tiles to get to the destination, add tile.

Likewise, the output of the comparator (gt) has to hop one tile to get to the multiply (mul) tile.

The execution time of URUK using USingle is around 452ns; while the execution time of the

static overlay is around 764ns for the same function, CP4. The noticeable difference between the

performance of URUK and the static overlay is due to two reasons. First, the four hops in the static

overlay are making incremental latency. Second, the add tile handles two separate add operations

without taking the advantage of streaming. Contrarily, URUK uses two add tiles to benefit from

streaming.

6.7.3 Parallelism

As shown previously, parallelism can be achieved by instantiating additional copies of the appli-

cation throughout additional tiles as presented in using UDouble and UQuad. In contrast, It is

complicated to be achieved in the static overlay for some reasons. First, the number of tiles should

be increased by the number of additional copies of the application during design time. Since tiles’

operators are irreplaceable, the overlay size should be increased by the number of copies. Second,

performance will not be guaranteed because it depends on the operators organization among tiles.

89

Chapter 7

Conclusion

7.1 Summary

To summarize, this thesis has investigated the following questions:

Can URUK eliminate the challenges that result from composing pre-synthesized parallel pat-

terns while still preserving all the productivity benefits of the original JIT approach? URUK

eliminated the challenges, all variant parallel programming patterns must be pre-synthesized, by

composing the fundamental pre-synthesized operators of the non synthesized patterns. The pre-

sented solution achieved not only the same productivity benefits but also more flexibility in con-

structing a wide variety of accelerators. The results show also that this solution is valid with some

sacrifice in tile utilizations and performance.

Can URUK allow conditionals to be composed with the synthesized programming patterns

without generating multiple bitstreams for each case? The URUK overlay structure provided

a mechanism with instruction sets to handle conditional operations, which are used to prevent

(in some cases) composing patterns in the original JITA approach. Three of the test benchmark

functions (CP1, CP2, and CP4) include conditional operation to validate the solution.

How much time does it take to construct an accelerator using the new compilation flow target-

ing URUK compared to Vivado HLS? Constructing an accelerator URUK takes a few seconds

due to the extremely small search space of tiles’ place and route compared to the HLS flow, which

has a large find-grind search space. The system synthesis, place and route are moved out of the

programmers’ path. Therefore, URUK can enable software programmers without any hardware

90

skills to create hardware accelerators at productivity levels consistent with software development

and compilation.

How will performance and resource utilization be effected compared to full custom designed

modules using Vivado HLS as well as the original JIT approach? The results show that

URUK can achieve equivalent or higher performance when the HLS design is not optimized.

Contrarily, the HLS provides higher performance, around 36x, when it is optimized by an ex-

pert designer. The HLS also presents better resource utilization in all examples. However, this is

the penalty of achieving software level productivity.

What are the costs and benefits of considering Partial Reconfiguration techniques as part of

the overlay dynamic system? URUK is compared against a static overlay to evaluate the cost

and benefits of using Partial Reconfiguration techniques. The static overlay occupies less area

than URUK, which is dynamic. On the other hand, URUK presented high flexibility in placing

dependent operators as close as possible and routing data between them. The static overlay was

limited by the operators’ organization at the overlay design time. Additionally, parallelism can be

easily implemented with the URUK overlay; while parallelism is costly and hard to be achieved in

the static one.

7.2 Future Work

The presented overlay architecture and the compilation flow hold potential for additional construc-

tions and several other optimizations, which can be considered in the future. First, a DSL compiler

need to be developed by integrating a backend generator into the Delite Framework or similar plat-

form. This stage includes several critical steps to enhance the overlay performance and utilizations.

For instance, integrating a search algorithm for efficient place and route.

Second, the diminution of the overlay can be increased and distributed across multiple FP-

91

GAs for large scale computations. This will allow achieving high parallelism and optimizing the

performance especially when the computational task is extensive, and the data set is very large.

Third, to optimize the resource utilization of the overlay, tiles’ PR regions can be set to

variant sizes. This will reduce the resource’s internal fragmentations. Further, since the overlay is

dynamic, it is crucial to explore other interconnect topologies, which may provide more efficient

overlay structure.

92

References

[1] Jason Agron. Domain-Specific Language for HW/SW Co-design for FPGAs. In DSL, volume
5658 of Lecture Notes in Computer Science, pages 262–284. Springer, 2009.

[2] Zeyad Aklah and David Andrews. A Flexible Multilayer Perceptron Co-processor for FPGAs,
pages 427–434. Springer International Publishing, Cham, 2015.

[3] Zeyad Aklah, Sen Ma, and David Andrews. A dynamic overlay supporting just-in-time as-
sembly to construct customized hardware accelerators. CoRR, abs/1603.01187, 2016.

[4] Alterra. Nios II Processor Reference Handbook. http://www.altera.com/literature/hb/nios2/
n2cpu nii5v1.pdf. Last accessed May 3, 2017.

[5] F. Anjam, M. Nadeem, and S. Wong. A vliw softcore processor with dynamically adjustable
issue-slots. In 2010 International Conference on Field-Programmable Technology, pages
393–398, Dec 2010.

[6] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. Lime: A java-
compatible and synthesizable language for heterogeneous architectures. In Proceedings of
the ACM International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’10, pages 89–108, New York, NY, USA, 2010. ACM.

[7] J. Bachrach, Huy Vo, B. Richards, Yunsup Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanovic. Chisel: Constructing hardware in a scala embedded language. In Design
Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 1212–1221, June 2012.

[8] J. Bachrach, Huy Vo, B. Richards, Yunsup Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanovic. Chisel: Constructing hardware in a scala embedded language. In Design
Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 1212–1221, June 2012.

[9] A. Becker, S. Sirowy, and F. Vahid. Just-in-time compilation for fpga processor cores. In
Electronic System Level Synthesis Conference (ESLsyn), 2011, pages 1–6, June 2011.

[10] A. Brant and G.G.F. Lemieux. Zuma: An open fpga overlay architecture. In Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on, pages 93–96, April 2012.

[11] Gordon J. Brebner and Weirong Jiang. High-speed packet processing using reconfigurable
computing. IEEE Micro, 34(1):8–18, 2014.

[12] K.J. Brown, A.K. Sujeeth, Hyouk Joong Lee, T. Rompf, H. Chafi, M. Odersky, and K. Oluko-
tun. A heterogeneous parallel framework for domain-specific languages. In Parallel Architec-
tures and Compilation Techniques (PACT), 2011 International Conference on, pages 89–100,
Oct 2011.

[13] Stuart Byma, J.Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and Paul Chow.
Fpgas in the cloud: Booting virtualized hardware accelerators with openstack. In Field-
Programmable Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual Interna-
tional Symposium on, pages 109–116, May 2014.

93

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

[14] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz
Czajkowski, Stephen D. Brown, and Jason H. Anderson. Legup: An open-source high-level
synthesis tool for fpga-based processor/accelerator systems. ACM Trans. Embed. Comput.
Syst., 13(2):24:1–24:27, September 2013.

[15] D. Capalija and T. S. Abdelrahman. Towards synthesis-free jit compilation to commodity
fpgas. In 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 202–205, May 2011.

[16] D. Capalija and T.S. Abdelrahman. A high-performance overlay architecture for pipelined
execution of data flow graphs. In Field Programmable Logic and Applications (FPL), 2013
23rd International Conference on, pages 1–8, Sept 2013.

[17] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell. idea: A dsp block based fpga soft processor.
In 2012 International Conference on Field-Programmable Technology, pages 151–158, Dec
2012.

[18] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-level synthesis
for fpgas: From prototyping to deployment. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 30(4):473–491, April 2011.

[19] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn Reinman.
Charm: A composable heterogeneous accelerator-rich microprocessor. In Proceedings of the
2012 ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED
’12, pages 379–384, New York, NY, USA, 2012. ACM.

[20] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for circuit portability
and fast placement and routing. In Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference on, pages 13–22, Oct 2010.

[21] J. Coole and G. Stitt. Adjustable-cost overlays for runtime compilation. In Field-
Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual International
Symposium on, pages 21–24, May 2015.

[22] CRA. Revitalizing Computer Architecture Research.

[23] R. Dimond, O. Mencer, and W. Luk. Custard - a customisable threaded fpga soft proces-
sor and tools. In International Conference on Field Programmable Logic and Applications,
2005., pages 1–6, Aug 2005.

[24] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J. Fink.
Compiling a high-level language for gpus: (via language support for architectures and com-
pilers). In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 1–12, New York, NY, USA, 2012. ACM.

[25] Carl Ebeling, Carl Ebeling, Darren C. Cronquist, Darren C. Cronquist, Paul Franklin, Paul
Franklin, Chris Fisher, and Chris Fisher. Rapid - a configurable computing architecture for
compute-intensive applications, 1996.

[26] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th annual

94

international symposium on Computer architecture, ISCA ’11, pages 365–376, New York,
NY, USA, 2011. ACM.

[27] Daniel D. Gajski, Jianwen Zhu, Rainer Dmer, Andreas Gerstlauer, and Shuqing Zhao.
SPECC: Specification Language and Methodology. Springer US, 1997.

[28] N. George, Hyoukjoong Lee, D. Novo, T. Rompf, K.J. Brown, A.K. Sujeeth, M. Odersky,
K. Olukotun, and P. Ienne. Hardware system synthesis from domain-specific languages. In
Field Programmable Logic and Applications (FPL), 2014 24th International Conference on,
pages 1–8, Sept 2014.

[29] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor. Piperench: a
reconfigurable architecture and compiler. Computer, 33(4):70–77, Apr 2000.

[30] V. Govindaraju, Chen-Han Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and
Changkyu Kim. Dyser: Unifying functionality and parallelism specialization for energy-
efficient computing. Micro, IEEE, 32(5):38–51, Sept 2012.

[31] http://www.bls.gov/ooh/Computer-and Information-Technology/. Occupational Outlook
Handbook.

[32] T. Kranenburg and R. van Leuken. Mb-lite: A robust, light-weight soft-core implementa-
tion of the microblaze architecture. In 2010 Design, Automation Test in Europe Conference
Exhibition (DATE 2010), pages 997–1000, March 2010.

[33] David Ku and Giovanni DeMicheli. Hardwarec – a language for hardware design (version
2.0). Technical report, Stanford, CA, USA, 1990.

[34] Ian Kuon, Russell Tessier, and Jonathan Rose. Fpga architecture: Survey and challenges.
Found. Trends Electron. Des. Autom., 2(2):135–253, February 2008.

[35] Charles Eric LaForest and John Gregory Steffan. Octavo: An fpga-centric processor family.
In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’12, pages 219–228, New York, NY, USA, 2012. ACM.

[36] C.Y. Lee. An algorithm for path connections and its applications. Electronic Computers, IRE
Transactions on, EC-10(3):346–365, Sept 1961.

[37] C. Liu, H. C. Ng, and H. K. H. So. Quickdough: A rapid fpga loop accelerator design
framework using soft cgra overlay. In 2015 International Conference on Field Programmable
Technology (FPT), pages 56–63, Dec 2015.

[38] C. Liu, C. L. Yu, and H. K. H. So. A soft coarse-grained reconfigurable array based high-
level synthesis methodology: Promoting design productivity and exploring extreme fpga fre-
quency. In 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 228–228, April 2013.

[39] Xiaobin Liu. Energy Efficient Exploration of Coarse-Grain Reconfigurable Architecture With
Emerging . Master’s thesis, University of Massachusetts Amherst, USA, 2015.

95

[40] R. Lysecky, F. Vahid, and S. D. X. Tan. A study of the scalability of on-chip routing for just-
in-time fpga compilation. In 13th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’05), pages 57–62, April 2005.

[41] Roman Lysecky, Kris Miller, Frank Vahid, and Kees Vissers. Firm-core virtual fpga for
just-in-time fpga compilation (abstract only). In Proceedings of the 2005 ACM/SIGDA 13th
International Symposium on Field-programmable Gate Arrays, FPGA ’05, pages 271–271,
New York, NY, USA, 2005. ACM.

[42] Roman Lysecky, Frank Vahid, and Sheldon X.-D. Tan. Dynamic fpga routing for just-in-time
fpga compilation. In Proceedings of the 41st Annual Design Automation Conference, DAC
’04, pages 954–959, New York, NY, USA, 2004. ACM.

[43] S. Ma, Z. Aklah, and D. Andrews. A run time interpretation approach for creating custom
accelerators. In 2015 25th International Conference on Field Programmable Logic and Ap-
plications (FPL), pages 1–4, Sept 2015.

[44] S. Ma, Z. Aklah, and D. Andrews. Run time interpretation for creating custom accelerators.
In 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pages 900–905,
March 2016.

[45] Sen Ma, Zeyad Aklah, and David Andrews. Just in time assembly of accelerators. In Pro-
ceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’16, pages 173–178, New York, NY, USA, 2016. ACM.

[46] Alan Marshall, Tony Stansfield, Igor Kostarnov, Jean Vuillemin, and Brad Hutchings. A
reconfigurable arithmetic array for multimedia applications. In Proceedings of the 1999
ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, FPGA
’99, pages 135–143, New York, NY, USA, 1999. ACM.

[47] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo scheduling. IEE
Proceedings - Computers and Digital Techniques, 150(5):255–61–, Sept 2003.

[48] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. Dresc: a retargetable
compiler for coarse-grained reconfigurable architectures. In 2002 IEEE International Con-
ference on Field-Programmable Technology, 2002. (FPT). Proceedings., pages 166–173, Dec
2002.

[49] BingfengMei2003 Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. ADRES: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix, pages 61–70. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[50] Jiayuan Meng, Xingfu Wu, Vitali Morozov, Venkatram Vishwanath, Kalyan Kumaran, and
Valerie Taylor. Skope: A framework for modeling and exploring workload behavior. In
Proceedings of the 11th ACM Conference on Computing Frontiers, CF ’14, pages 6:1–6:10,
New York, NY, USA, 2014. ACM.

96

[51] Michael Metzner, Jesus A. Lizarraga, and Christophe Bobda. Architecture Virtualization for
Run-Time Hardware Multithreading on Field Programmable Gate Arrays, pages 167–178.
Springer International Publishing, Cham, 2015.

[52] E. Mirsky and A. DeHon. Matrix: a reconfigurable computing architecture with configurable
instruction distribution and deployable resources. In 1996 Proceedings IEEE Symposium on
FPGAs for Custom Computing Machines, pages 157–166, Apr 1996.

[53] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-
maeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,
J. Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and
D. Burger. A reconfigurable fabric for accelerating large-scale datacenter services. IEEE
Micro, 35(3):10–22, May 2015.

[54] S. Shukla, N. W. Bergmann, and J. Becker. Quku: a two-level reconfigurable architecture. In
IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architec-
tures (ISVLSI’06), pages 6 pp.–, March 2006.

[55] S. Shukla, N. W. Bergmann, and J. Becker. Quku: A fpga based flexible coarse grain archi-
tecture design paradigm using process networks. In 2007 IEEE International Parallel and
Distributed Processing Symposium, pages 1–7, March 2007.

[56] H. Singh, Ming-Hau Lee, Guangming Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho.
Morphosys: a reconfigurable architecture for multimedia applications. In Proceedings. XI
Brazilian Symposium on Integrated Circuit Design (Cat. No.98EX216), pages 134–139, Sep
1998.

[57] Kyle L. Spafford and Jeffrey S. Vetter. Aspen: A domain specific language for performance
modeling. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages 84:1–84:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[58] Stanford-PPL. OptiML. http://stanford-ppl.github.io/Delite/optiml/examples.html. Last ac-
cessed May 3, 2017.

[59] Arvind K. Sujeeth, Hyoukjoong Lee, Kevin J. Brown, Hassan Chafi, Michael Wu, Anand R.
Atreya, Kunle Olukotun, Tiark Rompf, and Martin Odersky. Optiml: an implicitly parallel
domainspecific language for machine learning. In in Proceedings of the 28th International
Conference on Machine Learning, ser. ICML, 2011.

[60] Farooq U, Marrakchi Z, and Mehrez H. FPGA architectures: An overview. In: Tree-based
Heterogeneous FPGA Architectures, pages 7–48. Springer, New York, 2012.

[61] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular hardware accelerators
in c with roccc 2.0. In Field-Programmable Custom Computing Machines (FCCM), 2010
18th IEEE Annual International Symposium on, pages 127–134, May 2010.

[62] Lu Wan, Chen Dong, and Deming Chen. A coarse-grained reconfigurable architecture with
compilation for high performance. International Journal of Reconfigurable Computing,
pages 1–17, 2012.

97

http://stanford-ppl.github.io/Delite/optiml/examples.html

[63] T. Wiersema, A. Bockhorn, and M. Platzner. Embedding fpga overlays into configurable
systems-on-chip: Reconos meets zuma. In 2014 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig14), pages 1–6, Dec 2014.

[64] J.G. Wingbermuehle, R.D. Chamberlain, and R.K. Cytron. Scalapipe: A streaming appli-
cation generator. In Application Accelerators in High Performance Computing (SAAHPC),
2012 Symposium on, pages 44–53, July 2012.

[65] Xilinx. MicroBlaze Processor Reference Guide. http://bit.ly/1xFtH8q. Last accessed May 3,
2017.

[66] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. VESPA: Portable, Scalable, and
Flexible FPGA-Based Vector Processors. In CASES ’08: Proceedings of the 2008 Interna-
tional Conference on Compilers, Architectures and Synthesis for Embedded Systems, pages
61–70, New York, NY, USA, 2008. ACM.

[67] Jason Yu, Guy Lemieux, and Christpher Eagleston. Vector Processing as a Soft-Core CPU
Accelerator. In FPGA ’08: Proceedings of the 16th international ACM/SIGDA Symposium
on Field Programmable Gate Arrays, pages 222–232, New York, NY, USA, 2008. ACM.

[68] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong. Au-
toPilot: A Platform-Based ESL Synthesis System, pages 99–112. Springer Netherlands, Dor-
drecht, 2008.

98

http://bit.ly/1xFtH8q

	A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time Assembly of Custom Accelerators on FPGAs
	Citation

	Interoduction
	Compilation Challenges
	Technical Challenges

	Just-In-Time Assembly
	Thesis Statement
	Thesis Contributions and Organization

	Background
	FPGAs Overview
	CGRAs Overview
	High Level Synthesis
	Overlays
	JIT FPGA
	Virtual FPGAs
	ZUMA:
	Intermediate Fabrics
	Synthesis-Free JIT Compilation:
	SCGRA
	QuickDough
	QUKU:
	Soft Processors

	Domain Specific Languages
	FSMLang:
	Chisel:
	Aspen:
	Lime:
	Delite:

	Just-In-Time Assembly
	Introduction
	JITA Approach
	Compilation Flow
	JITA Overlay
	PR Tiles
	Programmable Switch
	Local Memory

	Run Time Interpreter
	Summary

	Proposed Solution
	Introduction
	Hardware Design Flow
	URUK Architecture
	Tile Structure
	PR Regions
	Configurable Switches:
	Memory Interface
	Tile Controller
	Tile Instruction Sets

	Design Automation

	URUK Compilation Flow
	Introduction
	URUK Parallelism
	Conditional Operations
	Domain Specific Langauges
	Data Flow Graph
	Pattern Based
	Operator Based

	Example 1
	Example 2

	Evaluation
	Benchmark:
	HLS Implementation
	URUK Implementation
	Prototyping System
	Performance Evaluation
	Pattern Based
	Operator Based
	Optimization

	Productivity
	Dynamic vs. Static
	Area
	Routing Data
	Parallelism

	Conclusion
	Summary
	Future Work

	References

