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ABSTRACT 

 

Dynamic representations of power systems usually result in the order of hundreds or even 

thousands of buses. Therefore, reduction of these dynamic representations is convenient. Two 

applications of model order reduction in power systems are discussed in this thesis. First, Krylov 

subspace-based method is applied to the IEEE-123 Node Test Feeder in the context of distribution-

level power systems simulation. Second, a Balanced Truncation-based model reduction is 

implemented in the 3-Machine 9-Bus system for designing a power system controller in the context 

of generation- and transmission-level power systems.  

First, for the IEEE-123 Node Test Feeder, a two-sided Arnoldi algorithm is proposed to 

compute the basis of the Krylov subspace-based model reduction. The two-sided Arnoldi 

algorithm was found to decrease the deviation between the reduced and full-order model.  

Second, for the 3-Machine 9-Bus, a linear quadratic regulator (LQR) controller is designed 

based on the reduced model. The selection method of Q and R matrices is adopted from [1]. The 

resulting controller is shown to damp the oscillations of the open-loop system. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation for this study 

Power systems are complex and constituted by several elements. For instance, in [4] a 

representation of the Danish power system formed by 470 buses is used to study the integration of 

wind power, in [5] the Indian southern power system is represented by a system with 246 buses, 

and in [6] power system stabilizers are designed for the 1262 buses Northwest China Grid. Thus, 

dynamic representations of power systems usually result in the order of hundreds or even 

thousands; for example, the order of the open-loop representation for the later system is 1643.  

The increasingly integration of non-linear power electronic-based sources increments the 

order of the system and introduces more complexity to it. For the case of distribution level power 

systems, the inclusion of distributed generation, often based on voltage source converters, 

transforms the system into a bi-directional power flow network. This creates phenomena not seen 

before in the network, and the study of electromagnetic transients acquires more attention. In 

addition, the inclusion of power electric-based equipment increases the computation time, for each 

switching implies a new network configuration. For instance, [7] reports that the simulation of a 

given distribution feeder without penetration of power electronic-based sources took 80 seconds, 

while the simulation of the same feeder with high penetration of this sources took approximately 

two hours.  

Moreover, the real-time simulation of power system requires the solution of the network 

in a determined time step in actual clock time. Thus, with a constant computing power, the larger 
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the system the bigger the time step. For the case of power-electronic-based simulation, a small-

time step is required to accurate reproduce the phenomena involved, which limits the amount of 

nodes that can be simulated [8]. Hence, when the computing power limit is reached, three options 

may be available: increase the computing power which may be costly, increase the time step which 

may be unacceptable for the accuracy of the solution, or simplify the representation of the system 

at expense of inaccuracy issues also. 

In addition, the application of traditional control theory concepts to power system is 

complicated due to the size of the system. The representation of power systems often generates 

large and sometimes ill-conditioned matrices, and the system is often treated as a multiple-input 

multiple-output system. Many control design methods generate gains of the same order of the 

system that is controlled. This makes complex and computationally demanding the implementation 

of control theory to power systems.  

The aforementioned issues motivate in this research to study the applications of model 

order reduction techniques in power systems. A number of model order reduction methods are 

available in the literature. However, the main idea of these methods remains the same, to reduce 

the order of the system while keeping, as far as possible, its original properties. The specific 

purpose of this study is expanded in the next section. 

1.2 Purpose of this study 

The purpose of this study is to apply model order reduction methods to a given power 

system. Specifically, two methods are emphasized: Krylov subspace-based and Balance 

truncation. A Krylov subspace-based method is applied to improve the simulation in the context 

of distribution-level power system; specifically, the IEEE-123 Node Test Feeder presented in [2]. 

On the other hand, the Balanced Truncation method is implemented for designing a power system 
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controller. This time, the reduction method is applied in the context of generation and transmission 

network; specifically, the 3-Machine 9-Bus power system presented in [9] . The objective of the 

power system controller is to damp the oscillations present in the uncontrolled system. 

The simulation for the accomplishment of the above objectives are carried out using 

MATLAB™ code editor and MATLAB/SIMULINK™ SimPower System™ package. 

1.3 Outline of this thesis 

This thesis is outlined as follows: 

Chapter 2: This chapter condensed the theory background regarding the two model order 

reduction methods implemented in this study: Krylov subspace and Balanced Truncation.  

Chapter 3: The implementation of the Krylov subspace method for the reduction of the 

IEEE-123 Node Test Feeder is presented. The test feeder is described in detailed, and the 

assumptions adopted for the simulation of this feeder are listed. A SimPower System™ model is 

developed as well as a state-space representation of the system. The comparison of the reduced 

model and the full-order model is reported. In addition, a two-sided Arnoldi algorithm is 

implemented to reduce the deviation between the full-order and reduced model. 

Chapter 4: The implementation of the Balanced Truncation for the controller design of the 

3-Machine 9-Bus system is presented in this chapter. A linearized model of the system is obtained, 

and its reduced model is used to simplify the design and implementation of the LQR controller. 

Chapter 5: Conclusions and future work suggestions regarding this work are presented in 

this chapter. 
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CHAPTER 2  

MODEL ORDER REDUCTION IN POWER SYSTEM 

 

This chapter discusses the theory background concerning model order reduction methods. 

Special emphasis is made on Balance Truncation and Krylov subspace-based method since these 

methods were adopted for the development of this work. The aim of model order reduction 

methods is to reduce the size of the system while maintaining its properties. The reduction methods 

are developed considering the preservation of certain properties as: stability [10] or passivity [7]. 

Besides the preservation of these properties, keeping the input-output behavior is crucial; 

therefore, the amount of reduction that can be applied to the original system is going to be 

determined by the acceptable deviation between the output of the original and reduced system.  

 

2.1 Model order reduction applications 

Model order reduction methods have been applied in several disciplines. One of these 

disciplines is the design and simulation of integrated circuits, where the order of the systems is of 

several thousands. Another area of application for model order reduction methods is the analysis 

of electromagnetic phenomena in telecommunications [11]. Whenever the size of the system 

represents an inconvenient, there may be an opportunity for applying model order reduction 

methods. Power system model reduction is a good implementation as well. The accurate 

representation of actual power systems can easily surpass the order of hundreds or even thousands 

since each bus of the system contributes with information of the behavior of the system. For 

instance, in [4] a representation of the Danish power system formed by 470 buses is used to study 
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the integration of wind power, in [5] the Indian southern power system is represented by a system 

with 246 buses, [12] implements a 111 nodes representation of a distribution feeder from Moscow; 

moreover, the IEEE Distribution Test Feeder Working Group presents in [2] a 8500 nodes system 

based on a typical North American distribution feeder. 

The more detailed and intricated the representation is, the higher the order of the model. 

The model of the IEEE-123 Node Test Feeder developed in the following chapter has an order of 

110. However, a representation of the same test feeder reported in [7] has an order of 916. The 

difference in the size of the system underlined in the model of the distribution lines and the 

methods for representing the system. 

 

2.2 Model order reduction classification 

Many model order reduction methods are reported in the literature. They can be 

accommodated in categories based on the mathematical principles in which they are found. A fair 

classification of model order reduction methods is presented in [13]. In this classification, the 

reduction methods are grouped based on the type of domain or system representation in which they 

have been developed (frequency and time domain), and based on the theoretical foundation in 

which they were developed (polynomial approximation, state truncation and parameter 

approximation). According to [13], polynomial approximation-based methods are suitable for 

system representation in the frequency domain, while parameter approximations can be applied 

either for problems formulated in the time or frequency domain. In the case of polynomial 

approximation, the coefficient of the transfer function of the original system is approximated by a 

reduced order transfer function; for instance, moment matching methods can be allocated in this 
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category. State truncation-based methods use control theory concepts to accommodate the state 

representation, and systematically eliminate the less relevant states for the dynamic of the system. 

In this category, balanced truncation methods can be mentioned. Finally, parameter approximation 

methods apply optimization methods to minimize the error between parameters in the original and 

reduced system.  

The separation of model order reduction methods may not be relevant anymore because, 

in recent years, model reduction techniques combining concepts of the methods presented before 

have been reported. For instance, in [14], a polynomial approximation-based method is 

implemented to speed up the process of creating a balance realization of the system in a state 

truncation-based method. In addition, [15] presents a method that uses parameter approximation 

concepts to find the optimal points around which a polynomial approximation of the original 

system is found. 

 

2.3 The concept of projection and its application on model order reduction 

Despite the classification of model order reduction methods presented in the previous 

section, many of these methods lay on the concept of projection onto a subspace. Thus, it is 

convenient to present these concepts next. 

The projection theory establishes that a projector P can be defined by using two subspaces 

𝓜 and 𝓛 such that [16]  

𝓜⋂𝓛⊥ = 𝟎 (2-1) 
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where 𝓜 is the subspace spanned by the range of P and 𝓛 is the subspace orthogonal to the null 

subspace of P. The projector P can define the projection u of the any vector x over the subspace 

𝓜 and the residual vector r over the subspace 𝓛⊥ as follows 

𝒖 = 𝑷𝒙, 

𝒓 = 𝒙 − 𝑷𝒙. 

Given the linear system 

𝑬�̇� = 𝑨𝒙 + 𝒃𝑢, 

𝑦 = 𝑪𝒙 

and the matrices V being basis for the subspace 𝓜 and W basis for the subspace 𝓛, the projection 

techniques find an approximate solution 𝒛 that is element of the subspace 𝓜 and a residual vector 

𝒓 orthogonal to the subspace 𝓛 (Petrov-Galerki condition) as follows [17]  

𝒙 = 𝑽𝒛. 

The residual of the system is then defined as  

𝒓 = 𝒃 + (𝑨 − 𝒔𝑬)𝒙, 

𝑾𝑻𝒓 = 𝑾𝑻𝒃 + 𝑾𝑻(𝑨 − 𝒔𝑬)𝑽𝒛 = 𝟎. 

The matrices of the system projected on 𝓜 and orthogonal to 𝓛 are  

𝑾𝑻𝑬𝑽,  𝑾𝑻𝑨𝑽,  𝑾𝑻𝒃,  𝑪𝑽. 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

(2-7) 

(2-8) 
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The problem of model order reduction methods based on projection is then summarized as 

finding the reduced basis matrices 𝑾𝑻 and 𝑽 that project the original system onto a smaller 

subspace. Two of these methods, Krylov subspace and Balanced Truncation, are presented next. 

 

2.4 Krylov subspace-based model order reduction 

The Krylov subspace-based model order reduction methods are moment matching 

methods. The priciple in these methods is to replicate the moments of the original system on the 

moments of the reduced system. The moments of a system are defined as the coefficients of the 

Taylor series expansion of its transfer function [10], [18]–[20] as follows, borrowing the notation 

from [18]:  

Given the transfer function of a system, where B  is the input matrix for the cases of 

multiple inputs, be defined as  

𝑮(𝑠) = 𝑪(𝑠𝑬 − 𝑨)−𝟏𝑩  

the moments of the system around the interpolation point s=0 are  

𝑴𝑖 = 𝑪(𝑨−1𝑬)𝑖𝑨−𝟏𝑩   𝑖 = 0,1…  

The moments or the coefficients of the Taylor series can be calculated around different 

values of s, or in other words, can be calculated around different interpolation points. Using the 

moments of the system calculated around s=0 will tend to emulate the original system at low 

frequencies [18], and using the moments calculated around s=∞ will tend to emulate the original 

system at high frequencies [21].  

(2-9) 

(2-10) 
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The moments of the system around s=0 can be approximated from the Krylov subspace by 

using the appropriate initial vectors. This is desired since using the Krylov subspace, instead of  

using the explicit Taylor series elements, results in a more mathematically stable procedure [19]. 

Before continuing is appropriate to state the definition of Krylov subspace as follows  

𝐾(𝑻, 𝑹) = 𝑠𝑝𝑎𝑛(𝑻, 𝑻𝑹, 𝑻𝟐𝑹… . 𝑻𝒓−𝟏𝑹).  

By choosing  𝑻 = 𝑨−𝟏𝑬 and 𝑹 = 𝑨−𝟏𝑩, where r is the desired dimension of the reduced 

model, the elements of the Krylov subspace will reproduce the  information of the first r elements 

of the Taylor series [19].  

An orthonormal basis for 𝐾(𝑻, 𝑹) is required for an effective model order reduction 

because the columns in the Krylov subspace tent to point the same direction after a considerable 

amount of recurrences. These bases are defined in equation (2-8) as the orthonormal matrices 𝑾 

and 𝑽. In the case of the system (2-4), the projection of the original system can be one-sided or 

two-sided projections. In one-sided projections, the matrix  𝑽 is calculated so that constitutes the 

basis of the subspace 𝐾(𝑨−𝟏𝑬, 𝑨−𝟏𝑩) while 𝑾  is just selected to allow the reduced matrix to be 

reversible; meanwhile, in two-sided projections, the matrix  𝑾 is additionally calculated so that 

constitutes the basis of the subspace 𝐾(𝑨−𝑻𝑬𝑻, 𝑨−𝑻𝑪𝑻) [18], [19]. The one-sides projections can 

reproduce r moments of the original systems; in contrast, the two-sided projections reproduces 2r 

moments. 

The resulting projection would be represented as follows  

𝑬𝒓 = 𝑾𝑻𝑬𝑽,𝑨𝒓 = 𝑾𝑻𝑨𝑽 , 𝑩𝒓 = 𝑾𝑻𝑩 , 𝑪𝒓 = 𝑪𝑽. 

(2-11) 

(2-12) 
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There are two commonly used process to compute the orthonormal basis for the Krylov 

subspace: Arnoldi-based and Lanczos-based. The Lanczos-based algorithms are suitable for two-

sided projections since the algorithms compute the orthogonal matrices  𝑾 and 𝑽 simultaneously 

[19]. [22] suggests that Lanczos algorithms are especially useful for the case of non-symmetric 

system matrix. [18], on the other hand, proposes to use twice an Arnoldi-based algorithm to 

compute the basis corresponding to the input and output Krylov subspace. 

The Arnoldi-based algorithm is described next since the algorithm developed for model 

reduction implemented in this work is based on this type of algorithms. A comprehensive 

explanation of Lanczos-based algorithms can be found in [19], [22]. 

2.4.1 Arnoldi algorithm 

As mention before, after selecting the suitable vectors that form the Krylov subspace, an 

orthonormal basis of this subspace should be computed. The need for this orthonormal basis 

underlies in the fact that the vectors in the Krylov subspace conserve a certain level of dependency 

[19]. Arnoldi algorithms compute orthonormal bases by decomposing the system matrix, in the 

case of system (2-4) 𝑻 = 𝑨−𝟏𝑬, into an orthonormal matrix 𝑸 and an upper Hessenberg 𝑯 matrix 

as follows [23] 

𝑻𝑸𝒓 = 𝑸𝒓+𝟏𝑯 

where r is the number of column of the matrix 𝑸𝒓 and the order of the reduced system.  

The matrix 𝑸𝒓+𝟏 requires an extra calculation; however, this matrix is not required for the 

sake of model reduction since the matrix 𝑸𝒓 works as the orthonormal basis of rth order reduced 

systems. 

(2-13) 
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The decomposition process in the classic Arnoldi algorithm is executed using Gram-

Schmidt process [22], [23] which is often referred as QR decomposition. Borrowing notation from 

[23], the steps of the Arnoldi algorithm can be stated as follows: 

Considering the columns of the basis matrix 𝑹 = 𝑨−𝟏𝑩 = (𝒓𝟏𝒓𝟐𝒓𝟑 …𝒓𝒓) 

𝒒𝟏 =
𝒓𝟏

‖𝒓𝟏‖2
 , 

𝒒𝒊+𝟏̅̅ ̅̅ ̅̅ = 𝑻𝒒𝒊 − ∑ 𝒒𝒋ℎ𝑗𝑖
𝒊
𝒋=𝟏   

where ℎ𝑗𝑖 is the inner product of the vectors 𝒒𝒋 and 𝑻𝒒𝒊 and elements of the matrix 𝑯  

ℎ𝑗𝑖 = 𝒒𝒋𝑻𝒒𝒊 , 

normalizing the rest of the elements of 𝑸𝒓  

𝒒𝒊+𝟏 =
𝒒𝒊+𝟏̅̅ ̅̅ ̅̅

‖𝒒𝒊+𝟏̅̅ ̅̅ ̅̅ ‖2
. 

The steps presented up to equation (2-17) provide the required basis for the projection of 

the original system and the consequent model reduction. The rest of the steps for the completion 

of the Arnoldi decomposition of the matrix 𝑻 are stated in [23].  

The Arnoldi algorithm can be implemented in MATLAB™ code editor taking advantage 

of some predefined functions in this software. 

 

2.5 Balanced truncation based model order reduction 

The main idea of the model order reduction methods based on balanced truncation is to re-

arrange the system in its balanced realization form. This means that the states of the system are 

(2-14) 

(2-15) 

(2-16) 

(2-17) 
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arranged such that, the more controllable and observable modes of the system are at the beginning 

of the system’s realization. Consequently, the original system can be truncated where its modes 

become irrelevant for representing its behavior. 

Borrowing the notation from [21], given a system of the form (2-18)  

�̇� = 𝑨𝒙 + 𝑩𝒖 , 𝒚 = 𝑪𝒙. 

A system is in its balanced realization form if its controllability Wc and observability Wo 

Gramians are equal; however, most likely, this is not the case of the original system (2-18). Thus, 

the balanced realization theory establishes that there exists a similarity transformation x=Tz such 

that the condition above is met. Moreover, the eigenvalues of the product Wc Wo does not change 

over any coordinate change [13]. This means that these values, called Hankel values, have the 

same meaning for the original and transformed system. 

The problem of balanced truncation model reduction is narrow to the calculation of the 

matrix T, and this calculation can be carry out as follows [17]. 

The controllability and observability Gramians can be computed from the Lyapunov 

equations (2-19) and (2-20) respectively.  

𝑨𝑾𝒄 + 𝑾𝒄𝑨
𝑻 + 𝑩𝑩𝑻 = 𝟎, 

𝑨𝑻𝑾𝒐 + 𝑾𝒐𝑨 + 𝑪𝑻𝑪 = 𝟎. 

The Cholesky factor of Wc and Wo are computed 

𝑾𝒄 = 𝑳𝒄𝑳𝒄
𝑻, 

𝑾𝒐 = 𝑳𝒐
𝑻𝑳𝒐. 

(2-18) 

(2-19) 

(2-20) 

(2-21) 

(2-22) 
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The singular value decomposition of the product 𝑳𝒐
𝑻𝑳𝒄 is calculated.  

𝑳𝒐
𝑻𝑳𝒄 = 𝑼𝚺𝑽𝑻 

where 𝚺 is a diagonal matrix containing the invariant Hankel values of the system. 

 Finally, the matrix T can be computed as  

𝑻 = 𝑳𝒄
𝑻𝑼𝚺−𝟏/𝟐. 

The balanced realization of the system (2-18) can be obtained by projection:  

�̂� = 𝑻−𝟏𝑨𝑻 , �̂� = 𝑻−𝟏𝑩 , �̂� = 𝑪𝑻. 

The matrices of the balanced system above can be decomposed as follows 

�̂� = [
�̂�𝟏𝟏 �̂�𝟏𝟐

�̂�𝟐𝟏 �̂�𝟐𝟐

], �̂� = [
𝑩𝟏

𝑩𝟐
], �̂� = [𝑪𝟏 𝑪𝟐] 

where the first blocks of the matrices are related with the first rth more controllable and observable 

states. The reduced system can be established by extracting the matrices from (2-26) or by 

projecting the original system over the first rth columns of the matrix T.  

𝑨𝒓 = 𝑻𝒓
𝑻𝑨𝑻𝒓 , 𝑩𝒓 = 𝑻𝒓𝑩 , 𝑪𝒓 = 𝑪𝑻𝒓

𝑻. 

The balance truncation method preserves the original modes of the system that have not 

been truncated; therefore, the reduced model presents a good representation of the original system 

in a wide variety of frequencies [20], [21]. However, the calculation of 𝚺 and the two Lyapunov is 

computationally demanding since requires computing the singular value decomposition of the 

system, and is even more difficult for high order systems [21] as distribution level power systems. 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

(2-27) 
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2.6 Conclusion 

The applications of model order reduction methods are spread over many disciplines. 

Power systems is one of these disciplines since the dynamic representation of power system often 

requires systems of high order.  

Model order reduction methods can be classified considering the domain they are applied 

or their mathematical foundations. However, several of these methods work by projecting the 

original system onto a smaller subspace. Two of these projection-based methods are Krylov 

subspace-based and Balanced truncation.  

Krylov subspace seeks to replicate the rth moments of the original system on the moments 

of the reduced system. Balanced truncation, on the other hand, rearranges the system in its balanced 

realization form in order to truncate the modes of the system that are less controllable and less 

observable. 
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CHAPTER 3  

SIMULATION OF DISTRIBUTION-LEVEL NETWORK USING KRYLOV SUBSPACE 

MODEL ORDER REDUCTION 

 

This chapter presents the application of a model order reduction method based on Krylov 

subspace on a distribution level network. The reduction is applied to the IEEE-123 Node Test 

Feeder. In order to perform the model reduction, a Modified State Space representation is adopted 

from [3], [7], and the results are compared with an equivalent MATLAB/SIMULINK™ model. 

Next, the model order reduction is carried out by implementing an Arnoldi algorithm, as presented 

in the previous chapter. The model order reduction produced using the approach presented in [7] 

is further improved by using a two-sided Arnoldi algorithm. The reduced model is used to simulate 

the transient of a PV sources connected to the system. 

 

3.1 Test Feeder selection criteria 

The IEEE-123 Node Test Feeder has been selected on this study as a distribution network 

benchmark for demonstrating the application of model order reduction methods. This test feeder, 

together with other test feeders, was presented by the IEEE Distribution Test Feeder Working 

Group as a benchmark for software developers who needed to test power flow algorithms. The 

IEEE-123 Node Test Feeder was selected considering that includes characteristics of typical 

distribution level feeders: 

• Three- and single-phase branches. 
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• Three- and single-phase loads. 

• Considerable unbalance in power flow. 

• Undervoltage issues.  

The size of the test feeder was also considered. The test feeder has an appropriate number 

of nodes, which facilitates both the implementation and the evaluation of model order reduction 

methods. The topology of the test feeder was considered as well. The topology of the IEEE 123 

nodes test feeder includes large three-phase trunk branches suitable for simulating the addition of 

many medium-voltage generation, and clusters of short single-phase branches adequate for 

simulating residential-level distributed generation. 

The information required to create the test feeder is presented in [24]. Fig. 3-1 shows the 

layout of the test feeder as presented in [2]. The information about the spot loads, line segments’ 

configuration, and capacitor banks is organized in tables like those shown in Fig. 3-2.  

 

Fig.  3-1.  IEEE-123 Node Test Feeder [2]. 
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Fig.  3-2. Sample of table presented in [2]. 

 

Fig.  3-3. RLC Line Parameter Tool graphical interface. 
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In [24] a guidance for interpreting the information presented in [2] is available. For 

example, the spacing for each line segment configuration is presented in [24], as well as 

information regarding the type of spot loads.   

The impedance of each line segment configuration was calculated using the RLC Line 

Parameter Tool. The RLC Line Parameter Tool is part of the software package SimPower 

System™ of MATLAB/SIMULINK™, and can be found inside the block “powergui” or be called 

using the MATLAB™ command “power_lineparam”. The graphical interface of the RLC Line 

Parameter Tool is shown in Fig. 3-3. The entries for this tool are separated in three main sections: 

General, Line geometry, and Conductor and Bundle characteristics. In the General section, a 

frequency of 60Hz and a ground resistivity of 100ohms was used, as can be observed in Fig. 3-3. 

For the Line geometry, the distance between conductors was retrieved from [24], per each line 

segment configuration. Finally, the Conductors and Bundles characteristics were adopted from 

[25], and the conductor internal inductance is calculated from the geometric mean radius, since 

this is the information available in [25]. No conductor skin effect was considered.  

 

Fig.  3-4. Matrices resulting from RLC Line Parameter Tool. 
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The outcome of this tool is a series of square matrices containing the value of resistance, 

capacitance and inductance for each line segment configuration. Fig. 3-4 shows an example of 

resistance, inductance and capacitance matrices calculated using the RLC Line Parameter Tool 

corresponding to the line segment configuration #2. The matrices of resistance, inductance and 

capacitance for all line segment configurations, in per distance unit of feet, are compiled in 

Appendix A.1. 

3.1.1 Assumptions adopted for simplification 

 Some assumptions were adopted for the sake of simplification when comparing the 

MATLAB/SIMULINK™ model discussed in this section and the state-space model developed in 

later sections. These assumptions seek to avoid interactions that may be neglected for the case of 

distribution-level feeders or interactions that may be complex to represent in a mathematical 

model. For instance, the line segments’ mutual inductances are neglected since this phenomenon 

is insignificant in short lines like distribution lines. To disregard the mutual inductance, the 

elements off the main diagonal of the resistance, inductance and capacitance matrices are set to 

zero, as can be observed in Appendix A.1. In terms of modeling complexity, for instance, all loads 

are considered constant impedance, although the original test feeder combines constant power and 

constant current loads as well. The reason for this assumption will be clearer when discussing the 

process of creating a mathematical model of the system in the following sections.  

A summary of assumptions and simplification are listed below: 

• The model is simulated from the 4.16kV side; therefore, the power transformer connected 

between node 150 and 149 is neglected. 

• No voltage regulator is included. 
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• Line segments are assumed with no mutual inductance. 

• Capacitor banks are considered as constant impedances. 

• All loads were simulated using series three- or single-phase load blocks. 

• All loads were modeled as constant impedances. 

The resulting circuit in MATLAB/SIMULINK™ is shown in Fig. 3-5. Three-phase loads 

are colored blue, single phase loads are colored orange and yellow, capacitor banks are colored 

sky blue, and the voltage source is colored magenta. A load flow report was generated using the 

Load Flow Tool provided in the “powergui” block. The summary of the report is shown in Table 

3-1. The numbers in this report are not expected to replicate the original load flow reported in [2] 

because several assumptions were adopted as mentioned before. However, the most loaded phase 

is phase A followed by Phase C and then Phase B, which agrees with the order presented in [2]. 

This behavior is reasonable since no change in the topology has been made. 

The voltage profiles for each phase was also analyzed, and they are shown in Fig. 3-6 to 3-

8. The voltage is higher for those nodes nearer the source; as it moves away from the source, the 

voltage decreases. Slight increments can be observed where capacitor banks are connected; for 

instance, in node 83 a three-phase capacitor bank is connected and this is reflected in the three 

phases. In addition, the overall voltage profile is higher for phase-B. This behavior is expected 

since phase-B is the least loaded as was indicated before. 

Table 3-1. Summary of load flow report. 

 Phase A Phase B Phase C Total 

V (pu deg.) 1.0436      -0.02       1.0437    -120.02       1.0436     119.98         

Gen (kW kvar) 1399.01     688.94       912.63     454.00      1133.30     516.02      3444.94    1658.96        
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Fig.  3-5. MATLAB/SIMULINK™ model of IEEE-123 Node Test Feeder. 

2
1
 



22 

 

 

Fig.  3-6. Voltage profile three-phase nodes phase C.  
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Fig.  3-7. Voltage profile three-phase nodes of phase A.  
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Fig.  3-8. Voltage profile three-phase nodes of phase B. 
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Although the model of the test feeder simulated cannot be directly compared with the 

results presented in [2] due to the assumptions made, the results of the load flow and voltage profile 

suggest the model is being simulated appropriately and is behaving as expected for a radial 

distribution-level feeder. 

 

3.2 Modified State Space model formulation 

In this section, the method adopted for formulating the dynamic representation of the IEEE-

123 Node Test Feeder is presented.  

In [7], a Modified State Space representation is developed. This representation uses the so-

called node incidence matrix to gather information related to the topology of the system. In 

addition, a general branch model is presented to simulate the voltage-current expression of each 

branch. The representation proposed in [3] is better adapted for power system implementation in 

[7]. In [7], this adapted representation is also applied to the IEEE-123 Node Test Feeder. We are 

going to adopt this representation for the sake of this study and a brief description of its 

mathematical foundation is presented next. 

As mentioned before, Modified State Space representation involves the establishment of 

the node incidence matrix. In order to build this matrix, a row in the matrix is designated per each 

node in the system; this can apply for any number of phases. Thus, if the node is a three-phase 

node, three rows should be designated, one per each phase. A column in the matrix is designated 

per each branch in the system. Like in the case of nodes, if the branch is a three-phase branch, 

three columns should be designated. As a matter of example the node incidence matrix for the 

circuit shown in Fig. 3-9 is developed next. 
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Fig.  3-9. Circuit for node incidence matrix sample. 

 In the circuit shown in Fig. 3-9, the nodes are assigned letters while the branches are 

numbered. In addition, the assumed polarity is marked for each branch. The resulting incidence 

matrix is shown below; the notations are borrowed from [3] 

𝑨𝒄 =
𝑎
𝑏
𝑐
𝑑

1 2 3 4 5 6

[

1 0 0 1 0 0
−1 1 0 0 1 0

0 −1 1 0 0 1
0 0 −1 −1 −1 −1

]
. 

A positive one is allocated in the row corresponding to the node where the polarity mark 

of the branch in connected; a negative one is allocated in the row corresponding to the node where 

the non-polarity terminal of the branch is connected. Thus, each column can have just one positive 

one and one negative one. The rows of 𝑨𝒄 represent the Kirchhoff’s current law for each node. 

The matrix 𝑨𝒄 can be re-ordered into its reduced row Echelon form [3]  

�̂�𝒄 = [𝑰 �̂�
𝟎 𝟎

] 

where 𝑰 is the identity matrix whose dimensions are n-1 x n-1, n being the number of nodes. �̂� is 

the resulting matrix after the re-arrangement of 𝑨𝒄 and its dimensions are n-1 x b-n +1, where b is 

the number of branches. The zero row at the bottom of matrix �̂�𝒄 must appear after the 

1 2 3

65

a b

d

4

c

+

+ + +

++

(3-1) 

(3-2) 
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manipulation of 𝑨𝒄, a non-zero row at the bottom may means that there is an error in the elements 

of 𝑨𝒄; for instance, one branch may be represented as connected in three nodes. 

The reduced row Echelon form of  𝑨𝒄 can be computed using the MATLAB™ command 

“rref”. The command “rref” perform the re-arrangement using Gauss-Jordan row elimination with 

partial pivoting [26]. The resulting matrix after applying “rref” is shown in equation (3-3) 

�̂�𝒄 = [

1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 1 1 1
0 0 0 0 0 0

]. 

The re-ordering of 𝑨𝒄 is important since it allows for separation of independent currents 

from the dependent currents, and a first reduction is accomplished up to this point; in contrast, 

Modified Nodal Analysis does not include this reduction, resulting in a bigger system 

representation.  

Separating the matrix �̂�𝒄, and multiplying by a vector containing the current of each branch  

�̂�𝒌𝒄𝒍 = [
1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 1 1 1

]

[
 
 
 
 
 
𝑖1
𝑖2
𝑖3
𝑖4
𝑖5
𝑖6]

 
 
 
 
 

. 

 From equation (3-4), it is evident that 𝑖1, 𝑖2 and 𝑖3can be expressed by a combination of 𝑖4, 

𝑖5 or 𝑖6. Extracting the non-identity matrix from �̂�𝒄  

�̂� =  [
1 0 0
1 1 0
1 1 1

]. 

Filling in with the corresponding identity matrix and changing the sign of �̂�  

(3-3) 

(3-4) 

(3-5) 
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𝑩𝒃
𝑻 = 

[
 
 
 
 
 
−1 0 0
−1 −1 0
−1 −1 −1

1 0 0
0 1 0
0 0 1]

 
 
 
 
 

 

where the superscript “ 𝑻” indicates the transpose of the matrix. If 𝑩𝒃
𝑻 is multiplied by the 

independent currents 𝑖4, 𝑖5 or 𝑖6 , the resulting vector is the vector of all the branch currents as is 

shown in equation (3-6) 

𝑩𝒃
𝑇𝒊𝒙 = 𝒊𝒃𝒓. 

The non-transposed matrix 𝑩𝒃, known as basic loop matrix, contains the information of 

the mesh analysis of the network. In other word, if this matrix is multiplied by a vector containing 

the voltages of the branches, it would be the equivalent to the Kirchhoff’s Voltage Law. This can 

be better visualized in equation (3-8)  

�̂�𝒌𝒗𝒍 = [
−1 −1 −1 1 0 0

0 −1 −1 0 1 0
0 0 −1 0 0 1

]

[
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6]
 
 
 
 
 

= 𝟎. 

From equation (3-6), it is evident that the circuit can be analyzed using three meshes or 

loops. These loops are shown in Fig. 3-10. 

Equation (3-6) can be re-written as  

𝑩𝒃𝒗𝒃𝒓 = 𝟎. 

 The next step for building the Modified State Space model is to stablish the equation that 

represent the voltage-current expression of each branch. The general branch presented in [3] is 

(3-6) 

(3-7) 

(3-8) 

(3-9) 
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shown in Fig. 3-11. In contrast, [7] simplifies the branch model not including switches and current 

sources since, in [7], all the circuit breakers are considered to be in a fixed position and no current 

sources are included. The same assumptions are adopted in this work. 

 If the simplification presented in [7] is applied to the circuit in Fig. 3-10, the equation that 

represents the branch voltage-current expression would be as follows [7]  

𝑣𝑏𝑟_𝑖 = 𝑟𝑖 𝑖𝑏𝑟_𝑖 + 𝐿𝑖
𝑑𝑖𝑏𝑟_𝑖

𝑑𝑡
+ 𝑣𝐶𝑏𝑟_𝑖 + 𝑒𝑖. 

Substituting (3-7) into (3-10) and multiplying by 𝑩𝒃 

𝑩𝒃𝒗𝒃𝒓 = 𝑩𝒃𝑹 𝑩𝒃
𝑻𝒊𝒙 + 𝑩𝒃𝑳𝑩𝒃

𝑻 𝑑𝒊𝒙
𝑑𝑡

+ 𝑩𝒃𝒗𝑪𝒃𝒓 + 𝑩𝒃𝒆 

𝟎 = 𝑩𝒃𝑹 𝑩𝒃
𝑻𝒊𝒙 + 𝑩𝒃𝑳𝑩𝒃

𝑻 𝑑𝒊𝒙

𝑑𝑡
+ 𝑩𝒃𝒗𝑪𝒃𝒓 + 𝑩𝒃𝒆.  

The following quantities are going to be defined as in [7]. A matrix 𝑾 is defined to related 

the voltage and current in the branches with the inputs and outputs of the model’s representation. 

The dimensions of this matrix are N x b, where N is the number of ports and b the number of 

branches. 𝑊𝑖𝑗 is equal to 1 if the branch 𝑗𝑡ℎ is connected to the 𝑖𝑡ℎ port; if not, 𝑊𝑖𝑗 is equal to 0 

[3], [7]. Thus, equations (3-12) and (3-13) can be written:  

𝒆 = 𝑾𝑇𝒗𝒑, 

𝒊𝒑 = −𝑾𝒊𝒃𝒓. 

 

(3-10) 

(3-12) 

(3-13) 

 

(3-11a) 

(3-11b) 
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Fig.  3-10. Loops in the circuit sample. 

The matrix 𝑴 is introduced to establish the connection of capacitors in the system. The 

dimensions of this matrix are b x nc, where nc is the number of capacitors connected to the system. 

When the 𝑗𝑡ℎ capacitor is connected to 𝑖𝑡ℎ branch, a 1 is written in the element 𝑀𝑖𝑗; if not, 𝑀𝑖𝑗is 

equal to 0  [3], [7]. Thus, equation (3-14) can be written: 

𝒗𝑪𝒃𝒓 = 𝑴𝒗𝑪. 

Where 𝒗𝑪𝒃𝒓 is the vector of the capacitor voltage in all the branches, and its dimensions 

are equal to the number of branches b. In contrast, 𝒗𝑪 is the vector containing the values of the 

voltage of the capacitors connected, and its dimension is equal to the number of capacitors 

connected in the system. 

 

Fig.  3-11. General branch configuration [3].  

(3-14) 
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Substituting equations (3-12) and (3-14) in (3-11) and re-ordering [7]:  

𝑩𝒃𝑹 𝑩𝒃
𝑻𝒊𝒙 + 𝑩𝒃𝑳𝑩𝒃

𝑻 𝑑𝒊𝒙

𝑑𝑡
+ 𝑩𝒃𝑴𝒗𝑪 = −𝑩𝒃𝑾

𝑇𝒗𝒑. 

The next equation can be derived from the equation for the capacitor charge.  

𝑞𝐶 = 𝐶𝑢𝐶 . 

In order to introduce equation (3-16) in the system of equations, it needs to be modified as 

in equation (3-17):  

𝒒𝑪 = 𝑴𝑇𝑪𝑴𝒗𝑪. 

The charge of the capacitor can also be expressed in terms of the branch current as follows: 

𝒒𝒄 = 𝑴𝑇𝑩𝒃
𝑻 ∫ 𝒊𝒙. 

Substituting equation (3-17) into (3-18) and deriving:  

𝑴𝑇𝑪𝑴
𝒅𝒗𝑪

𝒅𝒕
− 𝑴𝑇𝑩𝒃

𝑻𝒊𝒙 = 𝟎. 

Equations (3-15) and (3-19) constitutes the Modified State Space representation of the 

system. Thus, the system is defined as follows:  

[
𝑴𝑇𝑪𝑴 𝟎

𝟎 𝑩𝒃𝑳𝑩𝒃
𝑻] [

�̇�𝑐

�̇��̇�
] + [

𝟎 −𝑴𝑇𝑩𝒃
𝑻

𝑩𝒃𝑴 𝑩𝒃𝑹 𝑩𝒃
𝑻] [

𝒗𝑐

𝒊𝑥
] = [

𝟎
−𝑩𝒃𝑾

𝑇] 𝒗𝒑. 

The number of nodes that usually contains distribution systems requires to automate the 

process for implementing equation (3-20). In the next section an algorithm for this purpose is 

presented. 

(3-15) 

(3-16) 

(3-17) 

(3-18) 

(3-19) 

(3-20) 
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3.3 Implementation of the Modified State Space representation using MATLAB™ 

In the later section, the Modified State Space representation presented in [3], [7] was 

described. However, the elaboration of this model for the IEEE-123 Node Test Feeder requires a 

level of automation; otherwise, the process would imply an unacceptable amount of time and 

may also be exposed to typing errors. Therefore, an algorithm for developing the Modified State 

Space representation of the IEEE-123 Node Test Feeder is required.  

The algorithm is elaborated using MATLAB™ code editor. The algorithm has two main 

routines: the first routine is dedicated to build the node incidence matrix, and the second routine 

manipulates the node incidence matrix to create matrix 𝑩𝒃 as was shown in equations (3-2) to (3-

6). The second routine also gathers the computed matrices to condense them in the form of 

equation (3-20). 

3.3.1 First routine: Node incidence matrix construction 

The construction of the node incidence matrix is divided into four sub-node-incidence 

matrices: line segments, loads, capacitors, and sources. This subdivision is convenient since the 

information for each of these elements is presented in different tables, and the information in 

these tables is arranged slightly different. The resulting matrices are then merged into one node 

incident matrix for the overall system. 

The information of the line segments presented in [2] is first charged into a variable named 

“SegLine”. A section of this table was presented in Fig. 3-2 as a matter of sample and is repeated 

in Table 3-2 for convenience of the reader.  
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The five matrices shown in Fig. 3-12 are declared. These matrices correspond to the non-

three-phase line segment configuration, and they are going to be used to place the elements of the 

node incident matrix in the right position.  

Next, the names of all nodes are extracted from the first and second column of “SegLine” 

and storage in the variable named “Nname”. This step is necessary since the nodes are not 

numbered following a specific pattern.  Then, a position number is assigned to each node.  

The positions are spaced 3 digits apart because all the nodes, at this point, are treated as 

three-phase nodes. For instance, the first node will be assigned the position 1, and the second node 

will be assigned the position 4. The names of the nodes and their position are merged in the matrix 

named “Npos”. 

The next portion of the algorithm reads the number of nodes where the line segment is 

connected. Then, the position of these nodes is extracted from “Npos”. Next, the configurations of 

the line segments are evaluated, if the configuration corresponds to a three-, two- or single-phase 

node, a matrix of configuration, similar to the ones shown in Fig. 3-12, is allocated in the position 

determined by the extracted position number.  

Table 3-2. Line Segment Data sample table [2]. 

Node 
A 

Node 
B 

Length 
(ft.) Config. 

1 2 175 10 

1 3 250 11 

1 7 300 1 

3 4 200 11 
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A flow chart of the algorithm described above is shown in Fig. 3-13. The output of the 

algorithm is the matrix named “A1”. This matrix corresponds to the portion of the overall node 

incidence matrix, contributed by the line segments in the distribution system.  

Similar approaches are used to build the matrices corresponding to the portion of the node 

incidence matrices contributed by the load and the capacitor banks. In addition, together with these 

matrices, the matrices of resistance, inductance and capacitance are built using the same 

algorithms. The script of the algorithm in MATLAB™, with detailed commentaries, is presented 

in Appendix B.1. 

The last portion of the algorithm merges the node incidence matrices contributed by line 

segments, load, capacitor and sources into one over-all incidence matrix. Once this matrix is built, 

it is required to delete all-zero rows and columns. These all-zero rows and columns are present in 

the matrix since, at the beginning, all nodes were considered three-phase nodes, and the nodes that 

are in fact non-three-phase will add zeros to the matrix. The algorithm takes advantage of the 

MATLAB™ command “any” which suppresses the all-zero rows or columns. The main output of 

the algorithm is the node incidence matrix of the system.  

 

Fig.  3-12. Non-three-phase configuration matrices. 
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Fig.  3-13. Flow chart of the algorithm for node incident matrix corresponding to line segments. 

Dec lare:

Conf ig7, Conf ig8, 

Conf ig9, Conf ig10, 

Conf ig11, SegL ine
b=1

Nname=unique( SegLine);

n=rows(SegLine);
n2=rows(Nname);

a=[1,4,7,10 ..n2*3];

Npos=[ Nname a ];

A1=n2*3 x n2*3;

For i=1 to n

x=f irst node of ith L ine segment

y=second node of ith L ine segment

z=conf iguration of  ith Line segment
Px=posit ion of x;

Ps=posit ion of y;

If z<=6 or z=12

c=3x3 Identity 

matrix
c=Config z

A1( px,b)=c;

A1(py ,b) =-c;

b=b+3;

End

Start
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Up to this point, the dimension of the system can be known from the dimension of the 

resulting node incident matrix. The output of the algorithm described in this section condensed all 

the matrices required to proceed with the composition of equation (3-20), and the process is 

explained in the following section. 

3.3.2 Second routine: State space matrices construction 

This second routine manipulates the node incidence matrix resulting from the first routine 

to create the basic loop matrix 𝑩𝒃. Once this is completed, all the components for putting together 

the Modified State Space representation can be accommodated in the form of equation (3-20). 

After all the matrices in equation (3-20) are created, the MATLAB™ command “dss” is used to 

create a linear time invariant system out of these matrices. The script of the algorithm in 

MATLAB™, with detailed commentaries, is presented in Appendix B.2. 

 

3.4 Comparison between the MATLAB/SIMULINK™ SimPower System™ model and the 

Modified State Space representation 

The resulting Modified State Space model was implemented in MATLAB/SIMULINK™ 

using a linear time invariant block (LTI block). The SimPower System™ model developed in 

previous sections and the Modified State Space model are set in the same 

MATLAB/SIMULINK™ file. Fig. 3-14 shows the setup of the simulation. The input of the LTI 

block is the same voltage source connected to the same node as in the SimPower System™ model 

developed in section 3.1. The output of the LTI block is the three-phase current of the voltage 

source. The currents are plotted using the same scope.  
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Fig. 3-15 to 3-17 show the current waveforms of phase-A, phase-B and phase-C 

respectively. The currents are overlapping, which indicates there is a match between the two 

models. It can be concluded that the Modified State Space representation and the procedure applied 

to implement it are correct. 

 

3.5 Krylov subspace-based model order reduction implementation in MATLAB™ 

Before describing the procedure, is pertinent to state that, the selected model order 

reduction method consists of a Block Krylov subspace method with the implementation of the 

Block Arnoldi algorithm for computing the basis of the subspace. The mathematical foundation of 

this method was presented in the previous chapter section 2.4; however, some of the equation are 

repeated here using the notation adopted during the derivation of the Modified State Space model 

in section 3.4. 

 
Fig.  3-14. SimPower System™ model and Modified state space model simulation setup. 
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Fig.  3-15. SimPower System™ and MSS current waveforms corresponding to phase A. 

 

Fig.  3-16. SimPower System™ and MSS current waveforms corresponding to phase B. 

 

Fig.  3-17. SimPower System™ and MSS current waveforms corresponding to phase C. 
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The selected method is implemented to reduce the system (3-20). To avoid confusion, the 

system is re-stated with the nomenclature used in MATLAB™ script:  

𝑪�̇� + 𝑮𝒙 = 𝑩𝒖 ; 𝒚 = 𝑳𝑻𝒙. 

The steps in the algorithm are described as follows: 

• Calculating the starting vector in the Krylov subspace 

R=G^-1*B; 

V0=orth(R); 

The MATLAB™ function “orth” calculated the orthonormal basis of 𝑹. 

• The desired order of the reduced model is stated 

q=30; 

[row,col]=size(B); 

n=q/col; 

The integer q is required to be a multiple of the number of column of the input or 

output matrices [18]. In this case, the number of columns of both matrices are equal. 

Thus, the resulting basis matrix is constituted by n matrices which dimensions are 

N x col. 

• The matrix 𝑻𝒒𝒊 is calculated 

for k=1:n 

    eval(['X=C*V',int2str(k-1),';']); 

    eval(['V0',int2str(k),'=G^-1*X;']); 

 

This step is equivalent to:  

𝑽𝟎𝒌 = 𝑮−𝟏𝑪𝒒𝒌−𝟏. 

• The inner product of the vectors 𝒒𝒋 and 𝑻𝒒𝒊, and the matrix ∑ 𝒒𝒋ℎ𝑗𝑖
𝒊
𝒋=𝟏   are 

calculated: 

for j=1:k 

(3-21) 

(3-22) 
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        eval(['H=transpose(V',int2str(k-j),')*V',int2str(j-

1),int2str(k),';']); 

        eval(['V',int2str(j),int2str(k),'=V',int2str(j-

1),int2str(k),'-V',int2str(k-j),'*H;']); 

end 

 

This step is equivalent to a Gram-Schmidt orthogonalization of the new columns 

with respect to all the previous ones 

ℎ = 𝑽𝒌−𝟏
𝑻 𝑽𝒋−𝟏,𝒌, 

𝑽𝒋,𝒌 = 𝑽𝒋−𝟏,𝒌 − 𝑽𝒌−𝒋ℎ. 

• Normalizing the rest of the elements of 𝑽𝒋,𝒌 

eval(['V',int2str(k),'=orth(V',int2str(k),int2str(k),');']); 

 

This step is equivalent to  

𝑽𝒌 =
𝑽𝒌𝒌

‖𝑽𝒌𝒌‖2
.  

• Finally, the basis matrix is built from the calculated matrices 𝑽𝒌 (k=1, 2, 3…n) 

V=V(:,1:q); 

• The matrices of the reduced system are computed: 

Cr30=V'*C*V; 

Gr30=V'*G*V; 

Br30=V'*B; 

Lr30=V'*L; 

sys_dred2_1=dss(-Gr30,Br30,Lr30',[0],Cr30); 

[Asysred,Bsysred,Csysred,Dsysred]=ssdata(sys_dred2_1); 

 

The complete MATLAB™ script can be found in Appendix B.3.  

 

3.6 Model order reduction of the IEEE-123 Nodes Test Feeder 

The reduced model resulting from the implementation of the MATLAB™ script described 

in the previous section was simulated in MATLAB/SIMULINK™. The output waveforms 

corresponding to the original and reduced systems were compared. Fig. 3-18 shows the setup used 

(3-23) 

(3-24) 

(3-25) 
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for the simulation. The original system was reduced to three sizes: 30-, 24- and 12-order.  Each of 

these reduced systems were computed from the original system and not in cascade. Fig. 3-18 

simultaneously shows the output current of phase-A of the original system and the three reduced 

systems. In a first glance, the reduced systems seem to accurately follow the behavior of the 

original; however, the box in the upper right corner of Fig. 3-19 shows a zoom-in of the first peak 

of the waveform.  

The deviated lines correspond to the waveforms of the smaller 24- and 12-order systems. 

This higher deviation is expected since the smaller the size of the reduced system, the less moments 

of the original system are emulated by the reduced system. 

Fig. 3-20 shows a deeper zoom-in of Fig. 3-19. In this figure, the deviation of the 30-order 

systems is better appreciated.  

 

Fig.  3-18. MATLAB/SIMULINK™ setup for comparing reduced models. 
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Fig.  3-19. Waveform of output Current of Phase A of full and reduced systems. 

The waveform of the 30-order system closely follows the waveform of the full order 

system. Similar behavior can be observed for the case of phase-B and C. The corresponding 

waveforms can be found in Appendix C.1. 

 

Fig.  3-20. Waveform of output Current of Phase A of full- and 30-order systems. 
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Fig.  3-21. Absolut value of error between full-order system and 30- and 24-order systems. 

Table 3-3 shows the reduction in the computation time for the full-order, 30-order and the 

12-order system. The simulation was ran using a fixed step of 1e-5s time step and the ode23 solver. 

 The absolute value of the errors of the 30- and 24-order models is shown in Fig. 3-21. As 

can be observed in this figure, the error from the 30-order system is in the range of 10-6, and the 

error from the 24-order system is in the range 0.1Amps, as mention before. For both reduced 

systems, the error starts decreasing while the system reaches steady state values. This behavior is 

expected since the simulation was run with initial conditions set to zero; therefore, the oscillations 

of the waveforms in the firsts cycles of the simulation. Once the storage elements in the system 

are charged, the oscillations decrease and the reduced system follows closer the pure sinusoidal 

behavior of the full-order system. 

Table 3-3. Computation time reduction with ideal voltage source. 

Order Full-order 30-order 12-order 

Computation time (s) 31.21 27.61 26.58 

Reduction (%) - 11.53 14.83 
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Another interesting behavior of the reduced systems is their frequency response. The 

magnitude response of the full and reduced systems are shown in Fig. 3-22. Because the systems 

are multiple inputs multiple outputs (MIMO), the transfer function of one input against one output 

should the used to plot the magnitude response. In the case of Fig. 3-22, the magnitude response 

of phase A voltage, as input, against phase A current, as output, is shown. 

It is evident that the 12-order system poorly performs since it continues decreasing in a 

straight line missing the resonant mode around 6000 rad/s present in the full-order system. The 

magnitude response of the ratio between the transfer function of the full-order system and the 

transfer functions of the reduced order systems is presented in Fig. 3-23. This figure helps to 

visualize the deviation of the reduced systems with respect to the full-order system over a range of 

frequencies. It can be observed that all reduced systems deviate from the full-order system about 

6000 rad/s where a resonant mode is present, and, as mentioned before, the 12-order system is the 

lest accurate. 

 

Fig.  3-22. Magnitude response of full and reduced systems for Phase A. 
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Fig.  3-23. Magnitude response difference between full- order and reduced systems. 

The deficient performance of the reduced systems at high frequencies is expected since, 

during the derivation of the Krylov subspace basis, the moments of the system were calculated 

around s=0 rad/s. Thus, the performance of the reduced systems is expected to be better at low 

frequencies than at high frequencies. In addition, the smaller reduced systems deviate more 

because they do not match as much moments as with bigger reduced systems. These two 

phenomena can be observed comparing the eigenvalues of the 24-order and 12-order system listed 

in Table. 3-4. 

The eigenvalues of the 24-order system are shown on the left of Table 3-4. The 24-order 

system has six eigenvalues about 6000 rad/s (highlighted in yellow) that the 12-order system 

derived around s=0 rad/s (on the right top of Table 3-4) does not have. 

On the other hand, the 12-order reduced system was calculated, this time around s=6000 

rad/s. This new derivation is calculated replacing 𝑮 by (𝑮 − 𝑠𝑪) when calculating the starting 

vector R. The eigenvalues of this new 12-order system are listed in the right bottom of Table 3-4. 

Now the system contains high frequency eigenvalues (highlighted in yellow). 
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Table 3-4. Eigenvalues of the 24-order and 12-order around s=0 rad/s and s= 6000rad/s. 

Eigenvalues of 24-order system 

Phase-A (1x103) 

Eigenvalues of 12-order system 

Phase-A (1x103) 
 

  -0.0994 + 5.8856i 

  -0.0994 - 5.8856i 

  -0.1120 + 1.8770i 

  -0.1120 - 1.8770i 

  -0.7385 + 0.0000i 

  -0.6711 + 0.0000i 

  -0.5146 + 0.0000i 

  -0.4820 + 0.0000i 

  -0.1018 + 5.5698i 

  -0.1018 - 5.5698i 

  -0.1083 + 1.8611i 

  -0.1083 - 1.8611i 

  -0.7636 + 0.0000i 

  -0.6942 + 0.0000i 

  -0.5261 + 0.0000i 

  -0.5090 + 0.0000i 

  -0.1024 + 5.3151i 

  -0.1024 - 5.3151i 

  -0.1136 + 1.8836i 

  -0.1136 - 1.8836i 

  -0.7512 + 0.0000i 

  -0.6880 + 0.0000i 

  -0.5599 + 0.0000i 

  -0.5081 + 0.0000i 

 

  -0.1134 + 1.8824i 

  -0.1134 - 1.8824i 

  -0.6754 + 0.0000i 

  -0.4901 + 0.0000i 

  -0.1082 + 1.8705i 

  -0.1082 - 1.8705i 

  -0.7025 + 0.0000i 

  -0.5094 + 0.0000i 

  -0.1124 + 1.8927i 

  -0.1124 - 1.8927i 

  -0.7004 + 0.0000i 

  -0.5085 + 0.0000i 

Eigenvalues of 12-order system 

Phase-A (1x103) around s=6000 rad/s 
  -0.0732 + 4.7106i 

  -0.0732 - 4.7106i 

  -0.3581 + 0.8420i 

  -0.3581 - 0.8420i 

  -0.0832 + 4.3820i 

  -0.0832 - 4.3820i 

  -0.3210 + 1.0484i 

  -0.3210 - 1.0484i 

  -0.0816 + 3.9471i 

  -0.0816 - 3.9471i 

  -0.3529 + 0.9044i 

  -0.3529 - 0.9044i 

 

The magnitude response of the 12-order system derived around s=6000 rad/s, the 12-order 

system derived around s=0 rad/s, and the full-order system are presented in Fig. 3-24. The 

magnitude response of the 12-order system derived around 6000 rad/s begins to follow the 

behavior of the full-order system. Nevertheless, the deviation is still considerable around 6000 

rad/s. It is noticeable that the deviation after 6000 rad/s is reduced compared with the 12-order 

system derived around s=0 rad/s. 
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Fig.  3-24. Magnitude response of full-system and 12-order systems around s=0 rad/s and s=6000 

rad/s. 

However, moving the interpolation point to 6000 rad/s compromises the behavior of the 

reduced system at low frequencies as can be observed below 250 rad/s in Fig. 3-24. Thus, the point 

around which the moments of the system are derived will depend of the application and the 

frequency characteristic of the phenomena of interest. In the case of power system, the moments 

are usually derived around s=0 rad/s since low frequency modes of the original system are sought 

to be reproduced in the reduced system [20]. 

 

3.7 Model order reduction by using two-sided Arnoldi 

In the previous section, the model order reduction of the test feeder was carried out using 

an one-sided Arnoldi algorithm similar to the one presented in [27] with the difference that the 

interpolation point is fixed to zero. This algorithm uses only the input Krylov subspace 

𝐾(𝑨−𝟏𝑬,𝑨−𝟏𝑩) for the formulation of the basis.  
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However, further improvement in the accuracy of the reduced system, over a range of 

orders, can be obtained by using a two-sided Arnoldi including the output Krylov subspace 

𝐾(𝑨−𝑻𝑬𝑻, 𝑨−𝑻𝑪𝑻) [18]. The basis of the output Krylov subspace will be the left-side projection 

𝑾 for the reduced system, as was mention in chapter 2 and repeated here for convenience.  

𝑬𝒓 = 𝑾𝑻𝑬𝑽; 𝑨𝒓 = 𝑾𝑻𝑨𝑽 ;  𝑩𝒓 = 𝑾𝑻𝑩 ; 𝑪𝒓 = 𝑪𝑽. 

The construction of the basis 𝑾 is performed by using the algorithm described in section 

3.5. Fig. 3-25 shows the error corresponding to the one-sided 30-order and the two-sided 30-order 

reduced systems. The error presents a considerable reduction compared with the error obtained 

using the approach presented in  [7], [27]. 

 

Fig.  3-25. Absolut error of the 30-order one sided and two-sided reduced systems 

 

Fig.  3-26. Absolut error of 30-order two-sided reduced system. 

(3-26) 



49 

 

3.8 Reduced order model for PV source transient simulation. 

Similar to [7], a transient in a PV source connected to the system is simulated using the 

reduced order model. The PV source is adopted from the MATLAB/SIMULINK™ sample “250-

kW Grid-Connected PV Array” in the samples library. The output voltage of the PV source was 

change from the original 25kV to 4.16kV to match the voltage of the test feeder. The source is 

connected to the node-450 on the test feeder. In order to include this new source to the reduced 

system, the number of the node is added to the entry “source_n” containing the source node in the 

algorithm for the Modified State Space in Appendix B.1. Fig. 3-27 shows the specific section of 

the algorithm.  

The irradiance is varied to produce the transient in the system. The irradiance is dropped 

from 1000W/m2 to 500W/m2 at the time 0.5s and is increased again to 1000 W/m2 at time 0.8s. 

The line segment between node-100 and 450 is used as tie line in order to simulate the reduced 

order system LTI block with the SimPower System™ PV source model.  

The two systems required to be connected in a double feedback configuration as is shown 

in Fig. 3-28. The voltage at node-100 produced by the reduced order LTI block is fed into the PV 

model while the voltage at node-450 produced by the PV model in fed into the LTI block.  

 

Fig.  3-27. Scrip for the generation of the node incidence matrix corresponding to sources. 

 

file:///C:/Program%20Files/MATLAB/R2016b/help/physmod/sps/examples/250-kw-grid-connected-pv-array.html
file:///C:/Program%20Files/MATLAB/R2016b/help/physmod/sps/examples/250-kw-grid-connected-pv-array.html
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Since the output of the LTI block are the currents of the sources (ideal source at node-149 

and the PV source at node-450), the voltage at the node-100 should be calculated as a combination 

of the branches voltage. Another option is to connect a small capacitor to the node-100.  

The voltage of the node-100 is computed by applying the first option combining equations 

(3-27), (3-28) and (3-29), and selecting and adding the voltage of the branches between node-100 

and ground with the use of constant matrix 𝑪200 as follows  

𝑩𝒃𝒗𝒃𝒓 = 𝑩𝒃𝑹 𝑩𝒃
𝑻𝒊𝒙 + 𝑩𝒃𝑳𝑩𝒃

𝑻 𝑑𝒊𝒙

𝑑𝑡
+ 𝑩𝒃𝒗𝑪𝒃𝒓 + 𝑩𝒃𝒆, 

𝑩𝒃𝑳𝑩𝒃
𝑻 

𝑑𝒊𝒙

𝑑𝑡
+  𝑩𝒃𝑴𝒗𝑐 +  𝑩𝒃𝑹 𝑩𝒃

𝑻 𝒊𝑥 = −𝑩𝒃𝑾
𝑇 𝒗𝒑, 

𝒚 = 𝑪200 ∗ 𝒗𝒃𝒓 = 𝑪200 ∗ (𝑪𝒚 [
𝒗𝑐

𝒊𝑥
] + 𝑫𝒚𝒗𝒑), 

 where 𝑪200 is of the form 

[0𝒃𝒓1 0𝒃𝒓2 … 𝑰𝒃𝒓𝒊 … 𝑰𝒃𝒓𝒋 …]. 

The resulting setup is presented in Fig. 3-28 and 3-29. In this configuration, the output of 

the reduced system and the full-order system is compared, and the resulting waveforms,  

 

Fig.  3-28. Double feedback configuration for the simulation of the PV source. 

(3-27) 

(3-28) 

(3-29) 

(3-30) 
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corresponding to the current of phase-A, is shown in Fig. 3-30. The deviation of the reduced system 

is better appreciated in Fig. 3-31.  

The current of the PV source decreases once the irradiance drops. This behavior can be 

considered as the effect shading may have over the power out of the PV source. At the time 0.8, 

the irradiance is increased to its original value. During this transient, the reduced model 

approximately matches waveform of the original system. However, the small deviation of the 

reduced system is better appreciated in Fig. 3-29. 

However, with this configuration, the error between the reduced model and the SimPower 

System™ model is drastically increased. This error is shown in Fig. 3-32. The error approximately 

oscillates between 0 and 1.5 Amp during steady-state operation. This represents 1.67% of the 

magnitude of the current. Several tests were performed with this setup; however, the root cause of 

this deviation was not determined. Further work is required for this matter. 

 

Fig.  3-29. PV source output current of the full- and 30-order system. 
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Fig.  3-30. Double feedback configuration for the simulation of the PV source in MATLAB/SIMULINK™.

5
2
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Fig.  3-31. Zoom-in of the PV source output current of the full- and 30-order system. 

An interesting result is obtained when the order of the system was increased to 60. Fig. 3-

33 shows the absolute value of the error between the full order and the 60-order system simulated 

with the setup presented in Fig. 3-29. The deviation of the systems starts with a low value, and at 

approximately 0.1413s, the deviation suddenly increases. A zoom-in of this section is presented in 

Fig. 3-34. It can be observed that the deviation before the increment is of the order of 10-4A, and 

after oscillates between zero and 1.5A approximately. Some modifications to the simulation setup 

were implemented: 

 

Fig.  3-32. Error between 30-order reduced model and SimPower System™ model. 
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Fig.  3-33. Error between the 60-order reduced model and SimPower System™ model. 

• Decreasing of the unit delay in the algebraic loop containing 𝑫𝒚. 

• Fix step solver. 

• Changing the tolerance of the solver. 

• Increasing the order of the system. 

However, the root cause of this behavior is not clear since none of these modifications 

correct the increment in the deviation. 

Table 3-5 shows the reduction in computation time when using the reduced order models. 

A 58.16% reduction is obtained with the 30-order model and 46.87% with the 60-order model. 

The reduction in the computation time also means a reduction in the computation power required 

for the simulation. 

 

Fig.  3-34. Zoom-in of inflection point in Fig. 3-33. 
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Table 3-5. Reduction in computation time with PV source connected 

Order SimPower  30-order 60-order 

Computation time (s) 992 415 527 

Reduction (%) - 58.16 46.87 

 

3.9 Conclusion 

The Modified State Space network formulation presented in [3], [7] was applied to the 

IEEE-123 Nodes Test Feeder using a MATLAB™ code editor. The code corresponding to the 

Modified State Space formulation can be found in Appendix B.1 and B.2. A Krylov subspace-

based model order reduction algorithm was presented in Appendix B.3. The original system was 

reduced to 30- 24- and 12-order. It was found that once the system is reduced to 12-order, it losses 

some of the original high frequency behavior. The high frequency behavior was improved by 

shifting the interpolation point from s=0 to s=6000 rad/s; however, the low frequency behavior is 

affected.  

A 11.23% reduction in the computation time was obtained by using the 30-order system 

while keeping a maximum deviation of approximately 3e-6 Amps between the original model and 

the reduced model. 

In addition, a two-sided Arnoldi was implemented to improve the accuracy of the reduced 

model. Fig. 3-25 shows the errors of the one-sided and two-sided 30-order reduced systems, and 

this result validate the improvement in the performance of the reduced system using the propose 

method. 
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In Fig. 3-28 and 3-29 a set up in MATLAB/SIMULINK™ for simulating a PV source is 

presented. A transient in the power output of the PV source was simulated using the arrangement 

in Fig. 3-29. This set up can be extended to other nonlinear sources or devices as STACOMs to 

study their impact in a distribution level network. However, an increment in the error between this 

setup and the SimPower System™ model was found when the order of the system was increase 

from 30 to 60.  
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CHAPTER 4  

POWER SYSTEMS CONTROLLER DESIGN USING BALANCED TRUNCATION 

MODEL ORDER REDUCTION 

 

This chapter presents the application of a Balanced Truncation-based model order 

reduction in the context of generation- and transmission-level power systems. The system selected 

for this application is the 3-Machine 9-Bus presented in  [9]. A stable dynamic representation of 

the system is obtained by computing the matrices that constitute the differential algebraic equations 

of the system. The linearized small-signal model is obtained considering the power flow results 

presented in [28]. A reduced state feedback is designed based on the reduced system. The 

performance of the closed- and open-loop systems are compared.  

4.1 3-Machine 9-Bus system parameters 

The one-line diagram of the 3-Machine 9-Bus [9] is shown in Fig. 4-1. The system is 

constituted of three synchronous generators with three step-up transformers, six transmission lines, 

and three balanced three-phase loads, all arranged in a ring configuration. In this study, the loads 

are considered constant-power loads.  

The following information, required to model the system, is available in Appendix D.1: 

• Voltage of each bus obtained from the power flow study results presented in [28]. 

• Generators’ parameters. 

• Admittance of the network. All impedance in Fig. 4-1 are converted to admittance 

and added at each bus. 
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Fig.  4-1. 3-Machine 9-Bus system one line diagram. 

A linear time-invariant dynamic representation of this system is required to applied model 

order reduction. The following sections describe the methodology implemented for this end.  

 

4.2 Dynamic representation of the system 

The representation of power system networks at generation- and transmission-level 

involves a set of differential algebraic equations of the form (4-1) [9], [14], [29], [30]. In this 

representation, the dynamic of the generator is represented by the set of state-space variable while 

the set algebraic equations introduce the interaction of the network, borrowing notation from [14] 
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{

�̇� = 𝒇(𝒙, 𝒛, 𝒖, 𝒕)
𝟎 = 𝒈(𝒙, 𝒛, 𝒖, 𝒕)
𝒚 = 𝒉(𝒙, 𝒛, 𝒖, 𝒕)

  

in which the vector 𝒙 comprises the state variables, the vector 𝒛 comprises dependent voltages and 

currents that were not adopted as state variables, and 𝒖 includes the inputs to the system. Since the 

variables in 𝒛 can be expressed in terms of 𝒙 and 𝒖, the matrix of the system can be obtained as 

𝑨 = 𝑭𝒙 − 𝑭𝒛𝑮𝒛
−𝟏𝑮𝒙, 𝑩 = 𝑭𝒖 − 𝑭𝒛𝑮𝒛

−𝟏𝑮𝒖, 

𝑪 = 𝑯𝒙 − 𝑯𝒛𝑮𝒛
−𝟏𝑮𝒙, 𝑫 = 𝑯𝒖 − 𝑯𝒛𝑮𝒛

−𝟏𝑮𝒖 

where the matrices 𝑭𝒙,𝒛,𝒖, 𝑮𝒙,𝒛,𝒖, and 𝑯𝒙,𝒛,𝒖 are the coefficient matrices obtained after linearization. 

The formulation of the system in (4-1) and the following linearization is carried out based 

on the procedure presented in [28], and it is described in the following sections. 

4.2.1 Synchronous machine two-axis model 

The two-axis model of synchronous generator was adopted for this study. Four state space 

variables are introduced by this model 𝒙𝒊 = [𝛿𝑖 𝜔𝑖 𝐸𝑞𝑖 𝐸𝑑𝑖] for i=1, 2 … m in which m is the 

number of generators in the system. The derivation of this model involves the following 

assumptions [9], [28], [31]: 

• The generator consists of six windings: three-phase windings in the stator, one field 

winding, and two damping windings over the direct and quadrature axis 

respectively.  

• The change in the stator fluxes are neglected (�̇�𝑑 = 0, �̇�𝑞 = 0). 

(4-1) 

(4-2b) 

(4-2a) 
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• The rotor speed during transient state is approximately synchronous speed (𝜔 ≅

𝜔𝑠). As a result, the power through the airgap is equal to the electromagnetic torque 

[28]. 

• The effect of the damping windings during transient state is neglected.  

The resulting differential equations describing the generator are  

𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔𝑠, 

𝑑𝜔

𝑑𝑡
=

𝑇𝑀

𝑀
−

(𝐸′𝑞−𝑋′𝑑𝐼𝑑)𝐼𝑞

𝑀
−

(𝐸′𝑑+𝑋′𝑞𝐼𝑞)𝐼𝑑

𝑀
, 

𝑑𝐸′𝑞

𝑑𝑡
= −

𝐸′𝑞

𝜏′𝑑𝑜
−

(𝑋𝑑−𝑋′𝑑)𝐼𝑑

𝜏′𝑑𝑜
+

𝐸𝑓𝑑

𝜏′𝑑𝑜
, 

𝑑𝐸′𝑑

𝑑𝑡
= −

𝐸′𝑑

𝜏′𝑞𝑜
−

(𝑋𝑞−𝑋′𝑞)𝐼𝑞

𝜏′𝑞𝑜
  

where:  

𝛿 is the torque angle, 

𝜔 and 𝜔𝑠 are the rotor speed and the synchronous speed,  

𝑇𝑀 is the mechanic torque input to the rotor shaft,  

𝐸′𝑞 and 𝐸′𝑑 are the emfs over the q-axis and d-axis respectively,  

𝐼𝑞 and 𝐼𝑑 are the q-axis and d-axis currents, 

𝑋𝑑 and 𝑋𝑞 are the d-axis and q-axis reactance, while 𝑋′𝑑and 𝑋′𝑞 are the transient reactance 

corresponding to q- and d-axis, 

𝐸𝑓𝑑 is the emf across the field winding, 

𝜏′𝑑𝑜 and 𝜏′𝑞𝑜 are the time constants for the d- and q-axis, 

𝑀 is the inertia coefficient. 

 

The above quantities are given in per unit system, except for 𝛿 𝜔 𝜏′𝑑𝑜 and 𝜏′𝑞𝑜, which are 

given in rad, rad/s, respectively, and the two time constants are given in seconds.  

(4-3) 

(4-4) 

(4-5) 

(4-6) 



61 

 

    

Fig.  4-2. D- and q-axis equivalent two-axis generator model. 

The two-axis generator model can be considered as two emf, 𝐸′𝑞 and 𝐸′𝑑, behind the 

transient reactance 𝑋′𝑞and 𝑋′𝑑, respectively [31], as is shown in Fig. 4-2. 

The differential equations (4-3) – (4-6) are then augmented by the inclusion of auxiliary 

equipment and other elements that constitute the plant such as: turbine, actuators, automatic 

voltage regulators, and exciter control loops. For this study, just the latter two are additionally 

included in the model, and its behavior is briefly described next. 

4.2.2 Synchronous generator exciter 

The function of the exciter is to provide the dc current to the field winding of the rotor. The 

exciter controls the terminal voltage magnitude by varying the current injected to this winding.  

The input to the exciter is modulated by a voltage regulator consisting on a transducer and 

amplifying stage. The transducer processes the terminal voltage and transforms it into a dc 

component to be compared with a reference signal and amplified it [30]. Exciter systems can be 

classified as: dc systems, ac systems, and static excitation systems. The excitation system selected 

in for this study is the IEEE-Type I exciter consisting on the IEEE-DC1A excitation system 

presented in [32]. The block diagram of this exciter is shown in Fig. 4-3 [28]. The input of the 

system is the reference voltage 𝑉𝑟𝑒𝑓 and an additional signal often designated for the inclusion of 

a power system stabilizer.  

E d

r X d

E q

r X q
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Fig.  4-3. IEEE-Type I exciter block diagram. 

The exciter is, as can be observed in Fig. 4-3, a combination of three first-order sub-

systems. Thus, the addition of the exciter to the previous model described by (4-3)-(4-6) increases 

the order of the system from four to seven state variables. This means that each generator will 

contribute with seven variables to make a total, in the cases of the system under study here, of a 

21-order system realization. The differential equation corresponding to the three states of the 

IEEE-Type I exciter are defined as follows [28] 

𝑑𝐸𝑓𝑑

𝑑𝑡
= −

(𝐾𝐸+𝑆𝐸(𝐸𝑓𝑑))𝐸𝑓𝑑

𝑇𝐸
+

𝑉𝑅

𝑇𝐸
, 

𝑑𝑉𝑅

𝑑𝑡
=

𝐾𝐴𝑅𝐹

𝑇𝐴
+

𝐾𝐴𝐾𝐹𝐸𝑓𝑑

𝑇𝐹𝑇𝐴
−

𝑉𝑅

𝑇𝐴
+

𝐾𝐴(𝑉𝑟𝑒𝑓−𝑉+𝑉𝑠)

𝑇𝐴
,  

𝑑𝑅𝐹

𝑑𝑡
= −

𝑅𝐹

𝑇𝐹
+

𝐾𝐹

𝑇𝐹
2 𝐸𝑓𝑑. 

In the system without the exciter, the emf applied to the field winding 𝐸𝑓𝑑 was an input to 

the system; however, with the inclusion of the exciter, 𝐸𝑓𝑑 is now a state variable and the voltage 

reference voltage 𝑉𝑟𝑒𝑓, then, is the new input to the system. 

(4-7) 

(4-8) 

(4-9) 
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4.2.3 Algebraic equations  

In the system of equations (4-3) to (4-9), there are remaining algebraic variables that should 

be expressed in terms of the state variables. These algebraic variables are stated based on three set 

of algebraic equations: stator algebraic equations, network equation regarding the generator buses, 

and the network equations regarding the load buses. The linearized matrix representation of these 

are expressed as follows [28], [29] 

• Stator algebraic equation:  

𝟎 = 𝑪𝟏∆𝑿 + 𝑫𝟏∆𝑰𝒈 + 𝑫𝟐∆𝑽𝒈. 

• Network equation regarding generator buses:  

𝟎 = 𝑪𝟐∆𝑿 + 𝑫𝟑∆𝑰𝒈 + 𝑫𝟒∆𝑽𝒈 + 𝑫𝟓∆𝑽𝟏. 

• Network equation regarding load buses:  

𝟎 = 𝑫𝟔∆𝑽𝒈 + 𝑫𝟕∆𝑽𝟏 

in which ∆𝑿, ∆𝑰𝒈, ∆𝑽𝒈, and ∆𝑽𝟏 are the linearized vectors of state variables, generator bus 

currents, generator bus voltages, and non-generator bus voltages respectively. For a detail 

description of the calculation of these matrices refers to [28], [29]. 

The state-space representation of the system can then be computed from the combination 

of the above coefficient matrices as follows [28], [29]  

𝑨 = 𝑨′ − 𝑩′ [
𝑲𝟏 𝑫𝟓

𝑫𝟔 𝑫𝟕
]
−1

[
𝑲𝟐

𝟎
], 

(4-10) 

(4-11) 

(4-12) 

(4-13) 
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𝑬𝒊𝒊 = [
0

1

𝑀𝑖
0 0 0 0 0

0 0 0 0 0 −
𝐾𝐴𝑖

𝑇𝐴𝑖
0
]

𝑇

, 

𝑬 = [
𝑬𝟏𝟏 𝟎 𝟎
𝟎 𝑬𝟐𝟐 𝟎
𝟎 𝟎 𝑬𝟑𝟑

], 

∆�̇� = 𝑨∆𝑋 + 𝑬∆𝑈 

where  

𝑲𝟏 = [𝑫𝟒 − 𝑫𝟑𝑫𝟏
−𝟏𝑫𝟐], 

𝑲𝟐 = [𝑪𝟐 − 𝑫𝟑𝑫𝟏
−𝟏𝑪𝟏], 

𝑨′ = [𝑨𝟏 − 𝑩𝟏𝑫𝟏
−𝟏𝑪𝟏], 

𝑩′ = [𝑩𝟐 − 𝑩𝟏𝑫𝟏
−𝟏𝑫𝟐    𝟎]. 

The process described above results in the linearized small-signal representation (4-16). 

These steps are implemented by using a MATLAB™ script. The code of this script can be found 

in Appendix D.1.  

 

4.3 3-Machine 9-Bus small signal model 

The small-signal representation of the 3-Machine 9-Bus system developed in the previous 

section is tested by using MATLAB/SIMULINK™. The setup for the simulation is shown in Fig. 

4-4.  

 

(4-14) 

(4-15) 

(4-16) 

(4-17) 

(4-18) 

(4-19) 

(4-20) 
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Fig.  4-4. MATLAB/SIMULINK™ simulation set-up for 3-Machine 9-Bus system. 

 

 

Fig.  4-5. Torque angle (𝛿) for each generator. 

Fig. 4-5 shows the change in the torque angle (𝛿) of each generator after a 10% step input 

in the mechanic torque is applied to generator-1 𝑇𝑀1. The torque angle of the generator-1 increases 

as the positive step in the mechanic torque means more input power. On the contrary, the torque 

angle of the two other generators decrease also decreasing their output power since there is  
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Fig.  4-6. Speed (𝜔) for each generator. 

additional power coming from generator-1. The change in the speed of the generator is shown in 

Fig. 4-6. Similar behavior is observed for this case. The speed in the generator-1 rises to increase 

the torque angle, and the speed of generators- 2 and -3 decreases to reduce their torque angle. It is 

worth to notice that generator-2 presents higher oscillation than the two others. The linear model 

is, thus, properly simulating the behavior of the 3-Machines 9-Bus system. 

 

4.4 3-Machine 9-Bus model order reduction 

The model reduction of the system was performed applying a Balanced Truncation-based 

method. The Krylov subspace-based reduction presented in the previous chapter was not 

implemented for this model since the stability is not preserved for all conditions of the system 

matrices [20]. The stability can be preserved if the original system is passive meeting the following 

conditions [7]: 

Given the original system of the form:  

𝑪�̇� + 𝑮𝒙 = 𝑩𝒖 ; 𝒚 = 𝑳𝑻𝒙 

• 𝑪 should be non-positive definite 

(4-21) 
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• 𝑮 + 𝑮𝑻 should be non-positive definite 

• 𝑩 = 𝑳 

The reduction of the system was applied by using the MATLAB™ function “balred”. This 

function implements the Balanced Truncation method described in chapter 2. The resulting output 

signals of the reduced and full-order system corresponding to the speed of the generators is shown 

in Fig. 4-7 to 4-9.  

 

Fig.  4-7. Full- and 12-order Generator-1 speed. 

 

 

Fig.  4-8. Full- and 12-order Generator-2 speed. 
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Fig.  4-9. Full- and 12-order Generator-3 speed. 

The system reduced to 12-order follows the behavior of the full-order system after the first 

peak in the signal stars to settles. This performance reflects a loss of information in the reduced 

system. This immediate loss of information is expected because the original system is 21-order 

and a considerable amount of information is lost when reducing to 12-order. However, in the 

following section will be demonstrated that the performance of the 12-order reduced is system is 

enough to design a state feedback-based controller for the full-order system. 

4.5 Linear Quadratic Regulator (LQR) design based on reduced order model 

The reduced order model dynamic can be used to design a LQR controller to improve the 

performance of the system over a small-signal disturbance. The linear quadratic regulator method 

finds an optimal gain K based on the energy constraints imposed by the weighting matrices, 𝑸 and 

𝑹, for the state variables and the inputs signals, respectively. This method requires the solution of 

the cost function  

𝐽 = ∫ (𝒙𝑻𝑸𝒙 + 𝒖𝑻𝑹𝒖)
𝑡1

𝑡0
 

which also implies the solution of the Riccati equation 

(4-21) 
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𝑨𝑻𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 + 𝑸 = 𝟎. 

Thus, the design of the controller is summarized in the selection of the elements the 

diagonal weighting matrices 𝑸 and 𝑹. Different approaches are presented in the literature for this 

end. One approach is to select these elements based on trial and error, and use the step response of 

the system to check the performance during each trail. Another approach is to calculate the 

weighting matrices as follows 

𝑸 = 𝑪𝑻𝑪         𝑹 = 𝑰𝒏𝒙𝒏. 

 The approach presented in [1] for the selection of 𝑸 and 𝑹 is adopted in this study, and a 

description of the method is presented next. 

4.5.1 Construction of the 𝑸 matrix 

The elements of the diagonal 𝑸 matrix [q1 q2 …qn] are an indication of the “amount of 

energy” allowed to be spent by the state variables during the control of the system. The higher 

values of qn indicates that state variable is more constrained than the others. The main idea of the 

approach presented in [1] is to constraint the state variables based on how observable and 

controllable they are. The first step in this method is to rearrange the system in its balanced form 

such that its controllability and observability Gramians are equal. Then the Hankel values 𝜎𝑛 are 

computed. Finally, the elements of the 𝑸 matrix are calculated as 

𝑸 = 𝑑𝑖𝑎𝑔(1 
𝜎1

𝜎2
 
𝜎1

𝜎3
…

𝜎1

𝜎𝑚
 0 0 0). 

Since the Hankel values are defined such that 𝜎1 > 𝜎2 > 𝜎3 … > 𝜎𝑛, the nth element in the 

𝑸 matrix will be higher than the n-1th element, the nth state variable will be more constraint that 

the n-1th element.  

(4-22) 

(4-23) 

(4-24) 
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The balanced transformation required for the method described above was already 

performed when reducing the system as mentioned in the previous section. In fact, the Hankel 

singular values are calculated during the process of reducing the model when using Balanced 

Truncation methods, therefore, the convenience of using this approach for calculating the elements 

of the 𝑸 matrix. 

In the approach presented in [1], the last elements of the 𝑸 were set to zero because they 

do not influence the behavior of the system as the first elements do. However, in this study all the 

elements of the matrix were computed considering the fact that the LQR controller is designed 

based on a reduced system, and the information contained in it was previously truncated. 

A similar method is used for the construction of the 𝑹 matrix. The Hankel singular value 

of the system are calculated considering one input signal at a time. The system is described in the 

form 

�̇� = 𝑨𝒙 + 𝒃𝒊𝒖 ,  𝒚 = 𝑰𝒏𝒙𝒏𝒙. 

The summation of the Hankel values corresponding to ith system is then calculated, and 

the elements of the of the 𝑹 matrix are obtained as follows 

𝑤𝑖 = (∑ 𝜎𝑗
𝑛
𝑗=1 )

𝑖
, 

𝑹 = 𝛾 (𝑑𝑖𝑎𝑔(1 
𝑤1

𝑤2
 
𝑤1

𝑤3
…

𝑤1

𝑤𝑖
 )) 

where 𝛾 is calculate as 

𝛾 = ( 
𝑤1

𝜎2
  ) 

(4-25) 

(4-26) 

(4-27) 

(4-28) 
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this in order to create a ratio between the constraints in the state variables and the input signals. 

The above procedure was implemented using a MATLAB™ code editor, the resulting 𝑸 and 𝑹 

matrices are shown in Fig. 4-10.  

The design of the LQR controller is carried out using the MATLAB™ command “lqr” 

based on the reduced model. Is important to note that a state feedback based on the full-order 

model would result in a gain of the same order. Hence, the used of the reduced model provide a 

way to avoid complex, and in some cases, non-realizable controller designs. The implementation 

of the reduced LQR controller and its results are reported next. 

 

  

Fig.  4-10. Resulting 𝑸 and 𝑹 matrices. 

 

. 
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Fig.  4-11. MATLAB/SIMULINK™ set-up for the implementation of the reduced LQR controller

7
2
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4.6 Performance of the 3-Machine 9-Bus system with reduced order LQR controller 

In the previous section, the procedure for the design of a state feedback LQR controller 

was presented. Since in a state feedback the gain requires the signal of all the states, the use of a 

state observer may be one option. However, in this study the use of the explicit representation of 

the reduced system is proposed. This implementation can be accomplished using digital devices 

 It is important to note that because the controller was designed based on the reduced 

system, the state required by it are the states of the reduced model, which are no longer physical 

quantities. The proposed setup for the implementation of the controller is shown in Fig. 4-10. The 

states generated by the reduced system feed the controller gain, and the control signal is introduced 

to the full order system.  

Fig. 4-12 to 4-14 show the behavior of the speed of generator 1, 2, and 3 to a step of 10% 

in the mechanical torque of generator 1. 

 

Fig.  4-12. Generator 1 speed for the close and open loop system. 
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Fig.  4-13. Generator 2 speed for the close and open loop system. 

 

Fig.  4-14. Generator 3 speed for the close and open loop system. 

The speed oscillations are damped for the three generators, as observed in Fig. 4-11 to 4-

13.  

The main disadvantage of this approach is that is a centralized controller. In the classic 

power system stabilizer (CPSS) approach, the designed stabilizer receives local signals, and the 

physical implementation of the device is distributed on each machine. Therefore, the CPSS 

approach is reliable since the malfunctioning of one PSS does not imply the unavailability of the 
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others. In contrast, a centralized controller relies in a robust communication system since requires 

of several input signals to generate the control signals.   

In the literature, an output feedback approach is often reported. For instance, in [33] a 

dynamic output feedback is designed based on the concept that the input signal can be represented 

by a reduced vector xr, where xr is associated just with the state variables with higher participation 

factor. Similar to the case proposed in this study, the resulting controller consists of a reduced 

closed-loop dynamic system providing control signals to a bigger full-order system. Another 

approach to power system controller design is presented in [34]. A power system stabilizer is 

design based on H∞ method. However, the authors apply the method to a reduced-order model 

since the H∞ method produces a dynamic feedback system of the same order of the plant where is 

applied. The previous approaches, as the one presented in this study, are based on centralized 

controllers; however, [6] presents a coordinated procedure to design decentralized power system 

controllers. The procedure is called coordinated because seeks the optimal parameters of all 

controllers at the same time. The parameters are obtained by minimizing a cost function based on 

the desired eigenvalues of the closed-loop system. This optimization requires the calculation of 

the eigenvalues, and the authors implements a Cross-Gramian-based model reduction to decrease 

the burden of calculating the eigenvalues of the full-order system.  

 

4.7 Conclusion 

A linearized small signal model of the 3-Machine 9-Bus was obtained. The Balanced 

Truncation model reduction was implemented to generate a reduced model for the 3-Machine 9-

Bus. A LQR controller was designed using the reduced order model. The selection of the elements 

of the 𝑸 and 𝑹 was based on the procedure presented in [1]. The used of this procedure was proved 
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to be convenient when a Balanced Truncation method is selected for reducing the model. The 

explicit representation of the reduced system is proposed to be implemented to produce the reduced 

states for the feedback gain instead of using a reduced observer. The proposed controller improves 

the damping of the system as can be observed in Fig. 4-11 to 4-13. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

Two applications of model order reduction in power systems have been discussed in this 

thesis. Specifically, Krylov subspace-based model order reduction was applied in the context of 

distribution level power systems simulation, and Balanced Truncation-based model reduction was 

implemented for designing a power system controller in the context of generation- and 

transmission-level power systems. 

The theory background regarding these two model order reduction methods was presented 

in chapter 2. Krylov subspace-based model reduction creates the projection bases based on the 

moments of the original system, so the reduced system emulates these moments. On the other 

hand, Balanced Truncation-based model reduction is based on re-arranging the system in its 

balanced form. In this form, the firsts states of the system are the most controllable and observable. 

Thus, the system can be truncated, so the less controllable and observable states are discarded. 

Although the two model reduction methods are based on different mathematical concepts, they 

produce the reduced model by projecting the original system onto bases of smaller size. 

In chapter 3, the Krylov subspace-based reduction was implemented for the reduction of 

the IEEE-123 Node Test Feeder. Before the reduction was applied, a Modified State Space model 

of the test feeder was developed, adopting the procedure presented in [7]. The derivation of this 

model was implemented using MATLAB™ code editor, and the corresponding code is presented 

in the algorithms 1 and 2 in Appendix B.1 and B.2, respectively. The resulting model was 
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demonstrated to match the behavior of a SimPower System™-based model of the same test feeder. 

The reduction of the resulting state-space model was performed by using an approach adopted 

from [7], which is based on the one-sided Arnoldi algorithm. In addition, the use of two-sided 

Arnoldi algorithm was proved to improve the performance of the reduced model. The deviation 

between the reduced and original model was further decreased with the two-sided Arnoldi 

algorithm, as can be observed in Fig. 3-25. The transient produced by a PV source connected to 

the system was simulated using a reduced model and the setup shown in Fig. 3-29. However, the 

deviation between the results obtained with this setup and the results from a SimPower System™-

based model was higher than expected. The deviation with no PV source is approximately 1e-6 

Amps during steady-state. The error with PV source approximately oscillates between 0 and 1.5 

Amps during steady-state operation. This represents 1.67% of the magnitude of the current. Further 

trails are required for the improvement of this simulation. 

In chapter 4, the Balanced Truncation method was implemented for designing a power 

system controller for the 3-Machine 9-Bus power system. The controller design was based on the 

reduced model. A linearized small signal model of the system was developed following the 

procedure presented in [28], [29]. The procedure was implemented using MATLAB™ code editor, 

and the code is presented in Appendix D.1. The “lqr” command available in MATLAB™ was used 

to design the controller. The choice of the matrix 𝑸 and 𝑹 was based on the procedure presented 

in [1]. The convenience of using this procedure when the reduced model is obtained through 

Balanced Truncation methods was demonstrated. The resulting controller was implemented using 

the explicit representation of the reduced model in order to retrieve the reduced state variables, as 

is shown in Fig. 4-10. The designed controller properly damps the oscillation present in the open-

loop system, as can be observed in Fig. 4-11 to 4-13. 
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5.2 Future work 

The following are suggestions for future work and improvement opportunities regarding 

the application of Krylov subspace-based model order reduction in the context of distribution level 

power systems presented in chapter 3: 

• Scale up the model of the distribution system: the algorithms for the development of a 

modified state space model and the reduction of the model can be extended to bigger 

distribution test feeders. 

• Inclusion of D-FACTS: in this study, the reduced model was used to simulate the 

transient of a PV source connected to the test feeder. The reduced model can also be 

used for the inclusion of distribution level FACTS equipment.  

• Real-time simulation: the reduced model can be applied for real-time simulation of 

transients in distribution systems. Since the reduced introduces a deviation with 

respect to full model, the study of the decrement of the order and its effect over the 

accuracy of the simulation is of interest. If the order of the system is smaller, a 

smaller time step can be used. 

• Improvement of the current deviation between the reduced model and the SimPower 

System™ model: in chapter 3, the set up in Fig. 3-29 was proposed for simulating the 

transient in a PV source using the reduced model. However, a deviation was found 

between the resulting current using the setup in Fig. 3-29 and using a SimPower 

System™-based model. After several tests, no evident root cause was found. Thus, 

further work is required to address this issue. 
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The following are suggestions for future work and improvement opportunities regarding 

the application of Balanced Truncation model order reduction in the context of power system 

controller design discussed in chapter 4: 

• Comparison with other schemes: the application of optimization algorithms for tuning 

the parameter of the controller is gaining attention in the literature. Comparing the 

proposed controller with controllers designed using these algorithms may be 

pertinent.  

• Implementation of the controller in real-time simulation: because the proposed 

controller scheme is centralized, it requires a stable communication infrastructure to 

carry the signals produced by Phasor Measurement Units. A real-time simulation 

setup can be implemented to study the vulnerability of the control to communication 

outage and bad data issues. 
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APPENDIX A.1 

LINE SEGMENTS’ RESISTANCE AND INDUCTANCE MATRICES 

 The values of resistance are in ohms/ft and inductance in H/ft 

Table A-1. Resistance and inductance matrices corresponding to configuration #1. 

Configuration 1 

R1  0.2841 
 

   
0.2897     

0.2865 

L1 0.0018 
 

   
0.0017     

0.0018 

 

Table A-2. Resistance and inductance matrices corresponding to configuration #2. 

Configuration 2 

R2 0.2897 
 

   
0.2865     

0.2841 

L2 0.0017 
 

   
0.0018     

0.0018 

 

Table A-3. Resistance and inductance matrices corresponding to configuration #3. 

Configuration 3 

R3 0.2865 
 

   
0.2841     

0.2897 

L3 0.0018 
 

   
0.0018     

0.0017 
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Table A-4. Resistance and inductance matrices corresponding to configuration #4. 

Configuration 4 

R4 0.2865 
 

   
0.2897     

0.2841 

L4 0.0018 
 

   
0.0017     

0.0018 

 

Table A-5. Resistance and inductance matrices corresponding to configuration #5. 

Configuration 5 

R5 0.2897 
 

   
0.2841     

0.2865 

L5 0.0017 
 

   
0.0018     

0.0018 

 

Table A-6. Resistance and inductance matrices corresponding to configuration #6. 

Configuration 6 

R6 0.2841 
 

   
0.2865     

0.2897 

L6 0.0018 
 

   
0.0018     

0.0017 

 

Table A-7. Resistance and inductance matrices corresponding to configuration #7. 

Configuration 7 

R7 0.2841 
 

    
    

0.2865 

L7 0.0018 
 

    
    

0.0018 

 

  



86 

 

Table A-8. Resistance and inductance matrices corresponding to configuration #8. 

Configuration 8 

R8 

0.2841     

  0.2865   

      

L8 

0.0018     

  0.0018   

      

 

Table A-9. Resistance and inductance matrices corresponding to configuration #9, #10, 

and #11. 

Configuration 9 

R9 0.8257 
 

    
    
  

L9 0.0022 
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APPENDIX B.1 

ALGORITHM 1: NODE INCIDENCE MATRIX FORMULATION 

 File name: 

%NODE INCIDENCE MATRIX LINE SEGMENTS 

  

Conf7=[1 0 0;0 0 0;0 0 1];  %Configuration 7 Phase_ACN 

Conf8=[1 0 0;0 1 0;0 0 0];  %Configuration 8 Phase_ABN 

Conf9=[1 0 0;0 0 0;0 0 0];  %Configuration 9 Phase_AN 

Conf10=[0 0 0;0 1 0;0 0 0]; %Configuration 10 Phase_BN 

Conf11=[0 0 0;0 0 0;0 0 1]; %Configuration 11 Phase_CN 

Nname=unique([SegLine(:,1);SegLine(:,2)]);  %Extracting the names of the 

nodes 

n=length(SegLine);  %Rows of SegLine=Number of line segments 

n2=length(Nname);   %Number of nodes in the system 

a=1:3:n2*3;         %Position of nodes spaced by 3  

b=1;                %To indicate the number of column 

A1=zeros(n2*3);     %Initiating matrix to contain Node incidence matrix 

Rline=zeros(n*3);   %Initiating matrix to contain resistance values 

Lline=zeros(n*3);   %Initiating matrix to contain inductance values 

Npos=[Nname a'];    %Matrix to relate node and its position in the Node 

incidence matrix 

  

%Loop to read the values in Line Segment matrix 

for r=1:n 

    x=SegLine(r,1); %Node connected to terminal #1 

    y=SegLine(r,2); %Node connected to terminal #2 

    z=SegLine(r,4); %Configuration number of the line segment 

    l=SegLine(r,3); %length in ft 

    px=Npos((Npos(:,1)==x),2);  %position of Node x 

    p2=Npos((Npos(:,1)==y),2);  %position of Node y 

    %Choosing the matrix depending on the line segment configuration 

    if z<=6||z==12  %Three-phase configuration 

        c=eye(3);   %Identity matrix to add positive "1" 

        eval(['Rline1=l*R',int2str(z),';']); %Resistance matrix of line 

segment 

        eval(['Lline1=l*L',int2str(z),';']); %Inductance matrix of line 

segment 

    else            %Non-three-phase configuration 

        eval(['c=Conf',int2str(z),';']);     %Assign configuration number 

Conf_z 

        eval(['Rline1=l*R',int2str(z),';']); %Resistance matrix of line 

segment 

        eval(['Lline1=l*L',int2str(z),';']); %Inductance matrix of line 

segment 

    end 

    A1(px:px+2,b:b+2)=c;    %Writing positive "1" in the node incidence 

matrix 

    A1(p2:p2+2,b:b+2)=-c;   %Writing negative "-1" in the node incidence 

matrix 

    Rline(b:b+2,b:b+2)=Rline1; %Writing in the resistance matrix 

    Lline(b:b+2,b:b+2)=Lline1; %Writing in the inductance matrix 
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    b=b+3;  %augmenting to move to the next columns 

end 

%% 

%NODE INCIDENCE MATRIX FOR LOAD 

  

n3=length(Load);        %Number of loas in the system 

A2=zeros(n2*3+1,n3*3);  %Initiating matrix to contatin node incidence 

matrix 

Rload=zeros(n3*3);      %Load resistance matrix 

Lload=zeros(n3*3);      %Load inductance matrix 

b2=1;                   %Indicates the number of column 

%Loop for reading the values in the matrix Load 

for r=1:n3 

    x2=Load(r,1);   %Name of the node where is connected 

    px2=Npos((Npos(:,1)==x2),2);    %Position of the Node x2 

    if Load(r,2)==0 && Load(r,4)==0  

        %"0" in columns 2 and 4 indicate load connected at phase C 

        c2=Conf11; 

        cn=[0 0 -1]; 

        Rload1=Load_Imp(r,6)*Conf11; %Resistance matrix of the load 

        Lload1=Load_Imp(r,7)*Conf11; %Inductance matrix of the load 

    elseif Load(r,2)==0 && Load(r,6)==0 

        %"0" in columns 2 and 6 indicates load conneceted at phase B 

        c2=Conf10; 

        cn=[0 -1 0]; 

        Rload1=Load_Imp(r,4)*Conf10; 

        Lload1=Load_Imp(r,5)*Conf10; 

    elseif Load(r,4)==0 && Load(r,6)==0 

        %"0" in columns 4 and 6 indicates load connected at phase A  

        c2=Conf9; 

        cn=[-1 0 0]; 

        Rload1=Load_Imp(r,2)*Conf9; 

        Lload1=Load_Imp(r,3)*Conf9; 

    else 

        %The remaining cases are three-phase loads 

        c2=eye(3); 

        cn=[-1 -1 -1]; 

        Rload1=[Load_Imp(r,2) 0 0;0 Load_Imp(r,4) 0; 0 0 Load_Imp(r,6)]; 

        Lload1=[Load_Imp(r,3) 0 0;0 Load_Imp(r,5) 0; 0 0 Load_Imp(r,7)]; 

    end 

    A2(px2:px2+2,b2:b2+2)=c2; %Writing positive "1" in the node incidence 

matrix 

    A2(n2*3+1,b2:b2+2)=cn;    %Writing negative "-1" in the node incidence 

matrix 

    Rload(b2:b2+2,b2:b2+2)=Rload1; %Writing in Load resisance matrix 

    Lload(b2:b2+2,b2:b2+2)=Lload1; %Writing in Load inductance matrix 

    b2=b2+3; %Augmenting to move to the next columns 

end 

%% 

%NODE INCIDENCE MATRIX FOR CAPACITOR 

  

n4=length(Cload); %Number of capacitors connected in the system 

A3=zeros(n2*3+1,n4*3); %Initiating node incidence matrix for capacitors 

Craw=zeros(n4*3,n4*3); %Initiating capacitance matrix 

b3=1;                  %Indicates the number of columns 

%Loop for reading the values in Cload 

for r=1:n4 
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    x3=Cload(r,1); %Name of node where is connected 

    px3=Npos((Npos(:,1)==x3),2); %Position of the node x3 

    %Identifying the configuration 

    if Cload(r,2)==0 && Cload(r,3)==0 

        %"0" in columns 2 and 3 indicates capacitor connected to phase C 

        c3=Conf11; 

        cn=[0 0 -1]; 

        Cload1=Cload(r,4)*Conf11; %Capacitance matrix of the capacitor 

    elseif Cload(r,2)==0 && Cload(r,4)==0 

        %"0" in columns 2 and 4 indicates capacitor connected to phase B 

        c3=Conf10; 

        cn=[0 -1 0]; 

        Cload1=Cload(r,3)*Conf10; 

    elseif Cload(r,3)==0 && Cload(r,4)==0 

        %"0" in columns 3 and 4 indicates capacitor connected to phase A 

        c3=Conf9; 

        cn=[-1 0 0]; 

        Cload1=Cload(r,2)*Conf9; 

    else 

        %The remaning are three-phase configurations 

        c3=eye(3); 

        cn=[-1 -1 -1]; 

        Cload1=[Cload(r,2) 0 0;0 Cload(r,3) 0; 0 0 Cload(r,4)]; 

    end 

    A3(px3:px3+2,b3:b3+2)=c3; %Writing positive "1" in node incidence 

matrix 

    A3(n2*3+1,b3:b3+2)=cn;    %Writing negative "-1" in node incidence 

matrix  

    Craw(b3:b3+2,b3:b3+2)=Cload1; %Writing the capacitance matrix 

    b3=b3+3; %Augmented to move to the next columns 

end 

Craw = Craw(any(Craw,2),:); %Removing all-zero rows from capacitance 

matrix 

Craw= Craw(:,any(Craw,1));  %Removing all-zero columns from capacitance 

matrix 

%% 

%NODE INCIDENCE MATRIX FOR VOLTAGE SOURCE 

  

source_n=149; %Node where the source is connected 

Wn=zeros(n*3+1,3); %Initiation matrix 

px=Npos((Npos(:,1)==source_n),2); %Position of the node source_n 

    Wn(px:px+2,1:3)=eye(3); %Writing positive "1" in the node incidence 

matrix 

    Wn(n2*3+1,1:3)=[-1 -1 -1]; %Writing negative"-1" in the node 

incidence matrix 

     

%%  

% ELIMINATION OF ALL-ZERO ROWS AND COLUMNS 

  

%Merging all node incidence matrix 

Araw=[[A1;zeros(1,size(A1,2))] A2 A3 Wn];  

  

%Merging loads and line segments resistance and inductance matrices 

Rraw=[Rline zeros(length(Rline),length(Rload)); 

zeros(length(Rload),length(Rline)) Rload]; 

Lraw=[Lline zeros(length(Lline),length(Lload)); 

zeros(length(Lload),length(Lline)) Lload]; 
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%Eliminating all-zero rows and columns from matrices 

Araw2 = Araw(any(Araw,2),:); 

A= Araw2(:,any(Araw2,1)); %FINAL NODE INCIDENCE MATRIX 

Rraw2 = Rraw(any(Rraw,2),:); 

Rbr= Rraw2(:,any(Rraw2,1));  

Lraw2 = Lraw(any(Lraw,2),:); 

Lbr= Lraw2(:,any(Lraw2,1));  

  

%Equating the dimension of the matrices 

Rbr=[Rbr [zeros(size(Rbr,1),(size(A,2)-size(Rbr,2)))]; 

[zeros((size(A,2)-size(Rbr,1)),size(A,2))]]; 

Lbr=[Lbr [zeros(size(Lbr,1),(size(A,2)-size(Lbr,2)))]; 

[zeros((size(A,2)-size(Lbr,1)),size(A,2))]]; 

Cbr=zeros(size(A,2)); 

Cbr(size(Rraw2,1)+1:size(Rraw2,1)+size(Craw,1),size(Rraw2,1)+1:size(Rra

w2,1)+size(Craw,1))=Craw; 

  

%Creating matrix for capacitor connection 

M=zeros(size(A,2),size(Craw,1)); 

M(size(M,1)-size(Craw,1)-nx*3+1:size(M,1)-

nx*3,1:size(Craw,1))=eye(size(Craw,1)); 

  

%Creating Matrix for input connection 

W=zeros(size(A,2),3*nx); 

W(size(W,1)-nx*3+1:size(W,1),1:nx*3)=eye(nx*3); 

W=W'; 
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APPENDIX B.2 

ALGORITHM 2: MODIFIED STATE SPACE MODEL FORMULATION 

 
 

%MODIFIED STATE SPACE MODEL CONSTRUCTION 

  

Ahat=rref(A);           %Node incidence matrix in echelon form 

[row,col]=size(Ahat);   %Extracting dimension of the matrix 

BbT=[-Ahat(1:row-1,row:col);eye(col-row+1)]; %creatin Bt from non-

identity part 

Bb=[BbT]'; 

a=size(Bb,2); 

  

%Creating matrix C 

C22=[Bb*Lbr*BbT]; 

C11=[M'*Cbr*M]; 

C=[[C11] [zeros(size(C11,1),size(C22,2))]; 

[zeros(size(C22,1),size(C11,2))], C22]; 

  

%Creating matrix G 

G12=[-M'*BbT]; 

G21=[Bb*M]; 

G22=[Bb*Rbr*BbT]; 

G=[[zeros(size(Craw,1))] G12;G21 G22]; 

  

%Creating input and output matrix 

B12=[-Bb*W']; 

B=[zeros(size(Craw,1),3);B12]; 

L_12=[-Bb*W']; 

L=[zeros(size(Craw,1),3);L_12]; 

  

%Modified state space model 

sys_d=dss(-G,B,L',[0],C); 
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APPENDIX B.3 

ALGORITHM 3: ARNOLDI ALGORIHTM 

R=G^-1*B; 

V0=orth(R); 

q=30; 

[row,col]=size(B); 

n=q/col; 

V=zeros(row,q); 

V(:,1:col)=V0; 

b=col+1; 

for k=1:n 

    eval(['X=C*V',int2str(k-1),';']); 

    eval(['V0',int2str(k),'=G^-1*X;']); 

    for j=1:k 

eval(['H=transpose(V',int2str(k-j),')*V',int2str(j-

1),int2str(k),';']); 

eval(['V',int2str(j),int2str(k),'=V',int2str(j-1),int2str(k),'-

V',int2str(k-j),'*H;']); 

    end 

    eval(['V',int2str(k),'=orth(V',int2str(k),int2str(k),');']); 

     

    eval(['V(:,b:b+col-1)=V',int2str(k),';']); 

    b=b+col; 

end 

 

V=V(:,1:q); 

Cr30=V'*C*V; 

Gr30=V'*G*V; 

Br30=V'*B; 

Lr30=V'*L; 

sys_dred2=dss(-Gr30,Br30,Lr30',[0],Cr30); 
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APPENDIX C.1 

REDUCED MODEL CURRENT WAVEFORMS 

Fig C.1-1. Waveform of output Current of Phase A of full and reduced systems. 

Fig. C.1-2. Waveform of output Current of Phase B of full and reduced systems. 

Fig. C.1-3. Waveform of output Current of Phase C of full and reduced systems. 
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APPENDIX D.1 

3-MACHINE 9-BUS LINEARIZED SYSTEM 

%System Parameters 

%Generators Parameters 

f=60; 

%Generator#1 

Rs1=0.0; 

H1=23.64; 

M1=2*H1/(2*pi*f); 

D1=1; 

xd1=0.269; 

xdp1=0.0608; 

xq1=0.0969; 

xqp1=0.0969; 

Tdo1=8.96; 

Tqo1=0.31; 

  

%Generator#2 

Rs2=0.0; 

H2=6.4; 

M2=2*H2/(2*pi*f); 

D2=1; 

xd2=0.8958; 

xdp2=0.1198; 

xq2=0.8645; 

xqp2=0.8645; 

Tdo2=6; 

Tqo2=0.535; 

  

%Generator#3 

Rs3=0.0; 

H3=3.01; 

M3=2*H3/(2*pi*f); 

D3=1; 

xd3=1.998; 

xdp3=0.1813; 

xq3=1.2578; 

xqp3=0.2578; 

Tdo3=5.89; 

Tqo3=0.6; 

  

%Exciter Data 

%Type I  

Ka=40; 

Ta=0.2; 

Ke=1; 

Te=0.314; 

Kf=0.063; 

Tf=0.35; 

Ae=0.0039; 

Be=1.555; 

  

  

%Load Flow Data 

  

Sbase=100; %MVA 

  

%Generators 
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V1=1.04; 

P1=71.6; 

Q1=27; 

  

V2=1.025*exp((9.48*pi/180)*1i); 

P2=163; 

Q2=6.7; 

  

V3=1.025*exp((4.77*pi/180)*1i); 

P3=85; 

Q3=-10.9; 

  

V4=1.10*exp((-2.26*pi/180)*1i); 

V4abs=abs(V4); 

V4ang=angle(V4); 

  

V5=0.972*exp((-4.06*pi/180)*1i); 

V5abs=abs(V5); 

V5ang=angle(V5); 

  

V6=0.989*exp((-3.7*pi/180)*1i); 

V6abs=abs(V6); 

V6ang=angle(V6); 

  

V7=1.011*exp((3.84*pi/180)*1i); 

V7abs=abs(V7); 

V7ang=angle(V7); 

  

V8=0.997*exp((0.78*pi/180)*1i); 

V8abs=abs(V8); 

V8ang=angle(V8); 

  

V9=1.018*exp((2.03*pi/180)*1i); 

V9abs=abs(V9); 

V9ang=angle(V9); 

  

%NETWORK ADMINATANCE 

Y11=-8.4459*1i; 

Y11abs=abs(Y11); 

Y11ang=angle(Y11); 

  

Y22=-5.4855*1i; 

Y22abs=abs(Y22); 

Y22ang=angle(Y22); 

  

Y33=-4.1684*1i; 

Y33abs=abs(Y33); 

Y33ang=angle(Y33); 

  

Y44=3.3074-30.3937*1i; 

Y44abs=abs(Y44); 

Y44ang=angle(Y44); 

  

Y55=3.8138-17.8426*1i; 

Y55abs=abs(Y55); 

Y55ang=angle(Y55); 

  

Y66=4.1019-16.1335*1i; 

Y66abs=abs(Y66); 

Y66ang=angle(Y66); 

  

Y77=2.8047-24.9311*1i; 

Y77abs=abs(Y77); 
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Y77ang=angle(Y77); 

  

Y88=3.7412-23.6424*1i; 

Y88abs=abs(Y88); 

Y88ang=angle(Y88); 

  

Y99=2.4371-19.2574*1i; 

Y99abs=abs(Y99); 

Y99ang=angle(Y99); 

  

Y14=8.4459*1i; 

Y14abs=abs(Y14); 

Y14ang=angle(Y14); 

  

Y41=8.4459*1i; 

Y41abs=abs(Y41); 

Y41ang=angle(Y41); 

  

Y72=5.4855*1i; 

Y72abs=abs(Y72); 

Y72ang=angle(Y72); 

  

Y27=5.4855*1i; 

Y27abs=abs(Y27); 

Y27ang=angle(Y27); 

  

Y93=4.1684*1i; 

Y93abs=abs(Y93); 

Y93ang=angle(Y93); 

  

Y39=4.1684*1i; 

Y39abs=abs(Y39); 

Y39ang=angle(Y39); 

  

Y54=-1.3652+11.6041*1i; 

Y54abs=abs(Y54); 

Y54ang=angle(Y54); 

  

Y45=-1.3652+11.6041*1i; 

Y45abs=abs(Y45); 

Y45ang=angle(Y45); 

  

Y64=-1.9422+10.5107*1i; 

Y64abs=abs(Y64); 

Y64ang=angle(Y64); 

  

Y46=-1.9422+10.5107*1i; 

Y46abs=abs(Y46); 

Y46ang=angle(Y46); 

  

Y75=-1.1876+5.9751*1i; 

Y75abs=abs(Y75); 

Y75ang=angle(Y75); 

  

Y57=-1.1876+5.9751*1i; 

Y57abs=abs(Y57); 

Y57ang=angle(Y57); 

  

Y96=-1.2820+5.5882*1i; 

Y96abs=abs(Y96); 

Y96ang=angle(Y96); 

  

Y69=-1.2820+5.5882*1i; 
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Y69abs=abs(Y69); 

Y69ang=angle(Y69); 

  

Y87=-1.6171+13.6980*1i; 

Y87abs=abs(Y87); 

Y87ang=angle(Y87); 

  

Y78=-1.6171+13.6980*1i; 

Y78abs=abs(Y78); 

Y78ang=angle(Y78); 

  

Y98=-1.1551+9.7843*1i; 

Y98abs=abs(Y98); 

Y98ang=angle(Y98); 

  

Y89=-1.1551+9.7843*1i; 

Y89abs=abs(Y98); 

Y89ang=angle(Y98); 

  

%INITIAL STATES CALCULATION 

  

Ig10=((P1-Q1*1i)/Sbase)/conj(V1); 

d10=angle(V1+Ig10*(Rs1+xqp1*1i)); 

Ig10ang=angle(Ig10); 

Ig10ab=abs(Ig10); 

Id10=Ig10ab*cos(-d10+Ig10ang+pi/2); 

Iq10=Ig10ab*sin(-d10+Ig10ang+pi/2); 

  

V1abs=abs(V1); 

V1ang=angle(V1); 

Vd10=V1abs*cos(V1ang-d10+pi/2); 

Vq10=V1abs*sin(V1ang-d10+pi/2); 

  

Ed10=(xq1-xqp1)*Iq10; 

  

Eq10=Vq10+Rs1*Iq10+xdp1*Id10; 

  

Efd10=Eq10+(xd1-xdp1)*Id10; 

  

Se1=Ae*exp(Be*Efd10); 

fe1=(Ke+Efd10*Be*Se1+Se1)/Te; 

  

Vr10=(Ke+Se1)*Efd10; 

  

Rf10=(Kf/Tf)*Efd10; 

  

Vref1=V1abs+(Vr10/Ka); 

  

Tm10=Ed10*Id10+Eq10*Iq10+(xqp1-xdp1)*Iq10*Id10; 

  

% 

  

Ig20=((P2-Q2*1i)/Sbase)/conj(V2); 

d20=angle(V2+Ig20*(Rs2+xqp2*1i)); 

Ig20ang=angle(Ig20); 

Ig20ab=abs(Ig20); 

Id20=Ig20ab*cos(-d20+Ig20ang+pi/2); 

Iq20=Ig20ab*sin(-d20+Ig20ang+pi/2); 

  

V2abs=abs(V2); 

V2ang=angle(V2); 

Vd20=V2abs*cos(V2ang-d20+pi/2); 

Vq20=V2abs*sin(V2ang-d20+pi/2); 
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Ed20=(xq2-xqp2)*Iq20; 

  

Eq20=Vq20+Rs2*Iq20+xdp2*Id20; 

  

Efd20=Eq20+(xd2-xdp2)*Id20; 

  

Se2=Ae*exp(Be*Efd20); 

fe2=(Ke+Efd20*Be*Se2+Se2)/Te; 

  

Vr20=(Ke+Se2)*Efd20; 

  

Rf20=(Kf/Tf)*Efd20; 

  

Vref2=V2abs+(Vr20/Ka); 

  

Tm20=Ed20*Id20+Eq20*Iq20+(xqp2-xdp2)*Iq20*Id20; 

  

% 

  

Ig30=((P3-Q3*1i)/Sbase)/conj(V3); 

d30=angle(V3+Ig30*(Rs3+xqp3*1i)); 

Ig30ang=angle(Ig30); 

Ig30ab=abs(Ig30); 

Id30=Ig30ab*cos(-d30+Ig30ang+pi/2); 

Iq30=Ig30ab*sin(-d30+Ig30ang+pi/2); 

  

V3abs=abs(V3); 

V3ang=angle(V3); 

Vd30=V3abs*cos(V3ang-d30+pi/2); 

Vq30=V3abs*sin(V3ang-d30+pi/2); 

  

Ed30=(xq3-xqp3)*Iq30; 

  

Eq30=Vq30+Rs3*Iq30+xdp3*Id30; 

  

Efd30=Eq30+(xd3-xdp3)*Id30; 

  

Se3=Ae*exp(Be*Efd30); 

fe3=(Ke+Efd30*Be*Se3+Se3)/Te; 

  

Vr30=(Ke+Se3)*Efd30; 

  

Rf30=(Kf/Tf)*Efd30; 

  

Vref3=V3abs+(Vr30/Ka); 

  

Tm30=Ed30*Id30+Eq30*Iq30+(xqp3-xdp3)*Iq30*Id30; 

  

%A matrix formation 

  

A11=[0 1 0 0 0 0 0 ;0 -D1/M1 -Iq10/M1 -Id10/M1 0 0 0; 0 0 -1/Tdo1 0 1/Tdo1 0 0; 0 0 0 -

1/Tqo1 0 0 0; 0 0 0 0 fe1 1/Te 0; 0 0 0 0 -(Ka*Kf)/(Ta*Tf) -1/Ta Ka/Ta; 0 0 0 0 Kf/(Tf^2) 

0 -1/Tf]; 

A12=[0 1 0 0 0 0 0 ;0 -D2/M2 -Iq20/M2 -Id20/M2 0 0 0; 0 0 -1/Tdo2 0 1/Tdo2 0 0; 0 0 0 -

1/Tqo2 0 0 0; 0 0 0 0 fe2 1/Te 0; 0 0 0 0 -(Ka*Kf)/(Ta*Tf) -1/Ta Ka/Ta; 0 0 0 0 Kf/(Tf^2) 

0 -1/Tf]; 

A13=[0 1 0 0 0 0 0 ;0 -D3/M3 -Iq30/M3 -Id30/M3 0 0 0; 0 0 -1/Tdo3 0 1/Tdo3 0 0; 0 0 0 -

1/Tqo3 0 0 0; 0 0 0 0 fe3 1/Te 0; 0 0 0 0 -(Ka*Kf)/(Ta*Tf) -1/Ta Ka/Ta; 0 0 0 0 Kf/(Tf^2) 

0 -1/Tf]; 

A1=blkdiag(A11,A12,A13); 
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B11=[0 0;(Iq10*(xdp1-xqp1)-Ed10)/M1 Id10*(xdp1-xqp1)-Eq10/M1; -(xd1-xdp1)/Tdo1 0; 0 

(xq1-xqp1)/Tqo1; 0 0; 0 0; 0 0]; 

B12=[0 0;(Iq20*(xdp2-xqp2)-Ed20)/M1 Id20*(xdp2-xqp2)-Eq20/M2; -(xd2-xdp2)/Tdo2 0; 0 

(xq2-xqp2)/Tqo2; 0 0; 0 0; 0 0]; 

B13=[0 0;(Iq30*(xdp3-xqp3)-Ed30)/M3 Id30*(xdp3-xqp3)-Eq30/M3; -(xd3-xdp3)/Tdo3 0; 0 

(xq3-xqp3)/Tqo3; 0 0; 0 0; 0 0]; 

B1=blkdiag(B11,B12,B13); 

  

B21=[zeros(5,2);0 -Ka/Ta; 0 0]; 

B22=[zeros(5,2);0 -Ka/Ta; 0 0]; 

B23=[zeros(5,2);0 -Ka/Ta; 0 0]; 

B2=blkdiag(B21,B22,B23); 

  

E11=[0 0; 1/M1 0; 0 0; 0 0;0 0; 0 Ka/Ta; 0 0]; 

E12=[0 0; 1/M2 0; 0 0; 0 0;0 0; 0 Ka/Ta; 0 0]; 

E13=[0 0; 1/M3 0; 0 0; 0 0;0 0; 0 Ka/Ta; 0 0]; 

E1=blkdiag(E11,E12,E13); 

  

C11=[-V1abs*cos(d10-V1ang) 0 0 1 0 0 0; V1abs*sin(d10-V1ang) 0 1 0 0 0 0]; 

C12=[-V2abs*cos(d20-V2ang) 0 0 1 0 0 0; V2abs*sin(d20-V2ang) 0 1 0 0 0 0]; 

C13=[-V3abs*cos(d30-V3ang) 0 0 1 0 0 0; V3abs*sin(d30-V3ang) 0 1 0 0 0 0]; 

C1=blkdiag(C11,C12,C13); 

  

D11=[-Rs1 xqp1;-xdp1 -Rs1]; 

D12=[-Rs2 xqp2;-xdp2 -Rs2]; 

D13=[-Rs3 xqp3;-xdp3 -Rs3]; 

D1=blkdiag(D11,D12,D13); 

  

D21=[V1abs*cos(d10-V1ang) -sin(d10-V1ang); -V1abs*sin(d10-V1ang) -cos(d10-V1ang)]; 

D22=[V2abs*cos(d20-V2ang) -sin(d20-V2ang); -V2abs*sin(d20-V2ang) -cos(d20-V2ang)]; 

D23=[V3abs*cos(d30-V3ang) -sin(d30-V3ang); -V3abs*sin(d30-V3ang) -cos(d30-V3ang)]; 

D2=blkdiag(D21,D22,D23); 

  

C21=[((Id10*V1abs*cos(d10-V1ang))-(Iq10*V1abs*sin(d10-V1ang))) 0 0 0 0 0 0;((-

Id10*V1abs*sin(d10-V1ang))-(Iq10*V1abs*cos(d10-V1ang))) 0 0 0 0 0 0]; 

C22=[((Id20*V2abs*cos(d20-V2ang))-(Iq20*V2abs*sin(d20-V2ang))) 0 0 0 0 0 0;((-

Id20*V2abs*sin(d20-V2ang))-(Iq20*V2abs*cos(d20-V2ang))) 0 0 0 0 0 0]; 

C23=[((Id30*V3abs*cos(d30-V1ang))-(Iq30*V3abs*sin(d30-V3ang))) 0 0 0 0 0 0;((-

Id30*V3abs*sin(d30-V3ang))-(Iq30*V1abs*cos(d30-V3ang))) 0 0 0 0 0 0]; 

C2=blkdiag(C21,C22,C23); 

  

D31=[V1abs*sin(d10-V1ang) V1abs*cos(d10-V1ang); V1abs*cos(d10-V1ang) -V1abs*sin(d10-

V1ang)]; 

D32=[V2abs*sin(d20-V2ang) V2abs*cos(d20-V2ang); V2abs*cos(d20-V2ang) -V2abs*sin(d20-

V2ang)]; 

D33=[V3abs*sin(d30-V3ang) V3abs*cos(d30-V3ang); V3abs*cos(d30-V3ang) -V3abs*sin(d30-

V3ang)]; 

D3=blkdiag(D31,D32,D33); 

 

%D4 MATRIX 

D4111=-Id10*V1abs*cos(d10-V1ang)+Iq10*V1abs*sin(d10-

V1ang)+V1abs*V4abs*Y14abs*sin(V1ang-V4ang-Y14ang);  

D4112=Id10*sin(d10-V1ang)+Iq10*cos(d10-V1ang)-V1abs*Y11abs*cos(V1ang-V1ang-Y11ang)-

V4abs*Y14abs*cos(V1ang-V4ang-Y14ang)-V1abs*Y11abs*cos(V1ang-V1ang-Y11ang); 

D4121=Id10*V1abs*sin(d10-V1ang)+Iq10*V1abs*cos(d10-V1ang)-

V1abs*V4abs*Y14abs*cos(V1ang-V4ang-Y14ang);  

D4122=Id10*cos(d10-V1ang)-Iq10*sin(d10-V1ang)-V1abs*Y11abs*sin(V1ang-V1ang-Y11ang)-

V4abs*Y14abs*sin(V1ang-V4ang-Y14ang)-V1abs*Y11abs*sin(V1ang-V1ang-Y11ang); 
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D4213=-Id20*V2abs*cos(d20-V2ang)+Iq20*V2abs*sin(d20-

V2ang)+V2abs*V7abs*Y27abs*sin(V2ang-V7ang-Y27ang);  

D4214=Id20*sin(d20-V2ang)+Iq20*cos(d20-V2ang)-V2abs*Y22abs*cos(V2ang-V2ang-Y22ang)-

V7abs*Y27abs*cos(V2ang-V7ang-Y27ang)-V2abs*Y22abs*cos(V2ang-V2ang-Y22ang); 

D4223=Id20*V2abs*sin(d20-V2ang)+Iq20*V2abs*cos(d20-V2ang)-

V2abs*V7abs*Y27abs*cos(V2ang-V7ang-Y27ang);  

D4224=Id20*cos(d20-V2ang)-Iq20*sin(d20-V2ang)-V2abs*Y22abs*sin(V2ang-V2ang-Y22ang)-

V7abs*Y27abs*sin(V2ang-V7ang-Y27ang)-V2abs*Y22abs*sin(V2ang-V2ang-Y22ang); 

  

 

D4315=-Id30*V3abs*cos(d30-V3ang)+Iq30*V3abs*sin(d30-

V3ang)+V3abs*V9abs*Y39abs*sin(V3ang-V9ang-Y39ang);  

D4316=Id30*sin(d30-V3ang)+Iq30*cos(d30-V3ang)-V3abs*Y33abs*cos(V3ang-V3ang-Y33ang)-

V9abs*Y39abs*cos(V3ang-V9ang-Y39ang)-V3abs*Y33abs*cos(V3ang-V3ang-Y33ang); 

D4325=Id30*V3abs*sin(d30-V3ang)+Iq30*V3abs*cos(d30-V3ang)-

V3abs*V9abs*Y39abs*cos(V3ang-V9ang-Y39ang);  

D4326=Id30*cos(d30-V3ang)-Iq30*sin(d30-V3ang)-V3abs*Y33abs*sin(V3ang-V3ang-Y33ang)-

V9abs*Y39abs*sin(V3ang-V9ang-Y39ang)-V3abs*Y33abs*sin(V3ang-V3ang-Y33ang); 

  

D41=[D4111 D4112;D4121 D4122]; 

D42=[D4213 D4214;D4223 D4224]; 

D43=[D4315 D4316;D4325 D4326]; 

D4=blkdiag(D41,D42,D43); 

  

%D5 MATRIX 

D5111=-V1abs*V4abs*Y14abs*sin(V1ang-V4ang-Y14ang); 

D5112=-V1abs*Y14abs*cos(V1ang-V4ang-Y14ang); 

D5121=V1abs*V4abs*Y14abs*cos(V1ang-V4ang-Y14ang); 

D5122=-V1abs*Y14abs*sin(V1ang-V4ang-Y14ang); 

D51=[D5111 D5112;D5121 D5122]; 

  

D5211=-V2abs*V7abs*Y27abs*sin(V2ang-V7ang-Y27ang); 

D5212=-V2abs*Y27abs*cos(V2ang-V7ang-Y27ang); 

D5221=V2abs*V7abs*Y27abs*cos(V2ang-V7ang-Y27ang); 

D5222=-V2abs*Y27abs*sin(V2ang-V7ang-Y27ang); 

D52=[D5211 D5212;D5221 D5222]; 

  

D5311=-V3abs*V9abs*Y39abs*sin(V3ang-V9ang-Y39ang); 

D5312=-V3abs*Y39abs*cos(V3ang-V9ang-Y39ang); 

D5321=V3abs*V9abs*Y39abs*cos(V3ang-V9ang-Y39ang); 

D5322=-V3abs*Y39abs*sin(V3ang-V9ang-Y39ang); 

D53=[D5311 D5312;D5321 D5322]; 

  

D5=[D51 zeros(2,10);zeros(2,6) D52 zeros(2,4); zeros(2,10) D53]; 

  

%D6 MATRIX 

D6111=-V4abs*V1abs*Y41abs*sin(V4ang-V1ang-Y41ang);  

D6112=-V4abs*Y41abs*cos(V4ang-V1ang-Y41ang); 

D6121=V4abs*V1abs*Y41abs*cos(V4ang-V1ang-Y41ang); 

D6122=-V4abs*Y41abs*sin(V4ang-V1ang-Y41ang); 

D61=[D6111 D6112;D6121 D6122]; 

  

D6211=-V7abs*V2abs*Y72abs*sin(V7ang-V2ang-Y72ang);  

D6212=-V7abs*Y72abs*cos(V7ang-V2ang-Y72ang); 

D6221=V7abs*V2abs*Y72abs*cos(V7ang-V2ang-Y72ang); 

D6222=-V7abs*Y72abs*sin(V7ang-V2ang-Y72ang); 

D62=[D6211 D6212; D6221 D6222]; 

  

D6311=-V3abs*V3abs*Y33abs*sin(V3ang-V3ang-Y33ang);  

D6312=-V3abs*Y33abs*cos(V3ang-V3ang-Y33ang); 

D6321=V3abs*V3abs*Y33abs*cos(V3ang-V3ang-Y33ang); 

D6322=-V3abs*Y33abs*sin(V3ang-V3ang-Y33ang); 
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D63=[D6311 D6312; D6321 D6322]; 

  

D6=[D61 zeros(2,4); zeros(4,6);zeros(2,2) D62 zeros(2,2);zeros(2,6);zeros(2,4) D63]; 

  

%D7 MATRIX 

D7411=V4abs*V5abs*Y45abs*sin(V4ang-V5ang-Y45ang)+V4abs*V6abs*Y46abs*sin(V4ang-V6ang-

Y46ang); 

D7412=-V4abs*V4abs*Y44abs*cos(V4ang-V4ang-Y44ang)-V4abs*V5abs*Y45abs*cos(V4ang-V5ang-

Y45ang)-V4abs*V6abs*Y46abs*cos(V4ang-V6ang-Y46ang)-V4abs*V4abs*Y44abs*cos(V4ang-V4ang-

Y44ang); 

D7421=-V4abs*V5abs*Y45abs*cos(V4ang-V5ang-Y45ang)-V4abs*V6abs*Y46abs*cos(V4ang-V6ang-

Y46ang); 

D7422=-V4abs*V4abs*Y44abs*sin(V4ang-V4ang-Y44ang)-V4abs*V5abs*Y45abs*sin(V4ang-V5ang-

Y45ang)-V4abs*V6abs*Y46abs*sin(V4ang-V6ang-Y46ang)-V4abs*V4abs*Y44abs*sin(V4ang-V4ang-

Y44ang); 

D711=[D7411 D7412;D7421 D7422]; 

  

D7413=-V4abs*V5abs*Y45abs*sin(V4ang-V5ang-Y45ang);  

D7414=-V4abs*Y45abs*cos(V4ang-V5ang-Y45ang); 

D7423=V4abs*V5abs*Y45abs*cos(V4ang-V5ang-Y45ang); 

D7424=-V4abs*Y45abs*sin(V4ang-V5ang-Y45ang); 

D712=[D7413 D7414;D7423 D7424]; 

  

D7415=-V4abs*V6abs*Y46abs*sin(V4ang-V6ang-Y46ang);  

D7416=-V4abs*Y46abs*cos(V4ang-V6ang-Y46ang); 

D7425=V4abs*V6abs*Y46abs*cos(V4ang-V6ang-Y46ang); 

D7426=-V4abs*Y46abs*sin(V4ang-V6ang-Y46ang); 

D713=[D7415 D7416;D7425 D7426]; 

  

D7511=-V5abs*V4abs*Y54abs*sin(V5ang-V4ang-Y54ang);  

D7512=-V5abs*Y54abs*cos(V5ang-V4ang-Y54ang); 

D7521=V5abs*V4abs*Y54abs*cos(V5ang-V4ang-Y54ang); 

D7522=-V5abs*Y54abs*sin(V5ang-V4ang-Y54ang); 

D721=[D7511 D7512;D7521 D7522]; 

  

D7513=V4abs*V5abs*Y54abs*sin(V5ang-V4ang-Y54ang)+V5abs*V7abs*Y57abs*sin(V5ang-V7ang-

Y57ang); 

D7514=-V5abs*V5abs*Y55abs*cos(V5ang-V5ang-Y55ang)-V4abs*V5abs*Y54abs*cos(V5ang-V4ang-

Y54ang)-V5abs*V7abs*Y57abs*cos(V5ang-V7ang-Y57ang)-V5abs*V5abs*Y55abs*cos(V5ang-V5ang-

Y55ang); 

D7523=-V4abs*V5abs*Y54abs*cos(V5ang-V4ang-Y54ang)-V5abs*V7abs*Y57abs*cos(V5ang-V7ang-

Y57ang); 

D7524=-V5abs*V5abs*Y55abs*sin(V5ang-V5ang-Y55ang)-V4abs*V5abs*Y54abs*sin(V5ang-V4ang-

Y54ang)-V5abs*V7abs*Y57abs*sin(V5ang-V7ang-Y57ang)-V5abs*V5abs*Y55abs*sin(V5ang-V5ang-

Y55ang); 

D722=[D7513 D7514;D7523 D7524]; 

  

D7517=-V5abs*V7abs*Y57abs*sin(V5ang-V7ang-Y57ang);  

D7518=-V5abs*Y57abs*cos(V5ang-V7ang-Y57ang); 

D7527=V5abs*V7abs*Y57abs*cos(V5ang-V7ang-Y57ang); 

D7528=-V5abs*Y57abs*sin(V5ang-V7ang-Y57ang); 

D724=[D7517 D7518;D7527 D7528]; 

  

D7611=-V6abs*V4abs*Y64abs*sin(V6ang-V4ang-Y64ang);  

D7612=-V6abs*Y64abs*cos(V6ang-V4ang-Y64ang); 

D7621=V6abs*V4abs*Y64abs*cos(V6ang-V4ang-Y64ang); 

D7622=-V6abs*Y64abs*sin(V6ang-V4ang-Y64ang); 

D731=[D7611 D7612;D7621 D7622]; 

  

D7615=V6abs*V4abs*Y64abs*sin(V6ang-V4ang-Y64ang)+V6abs*V9abs*Y69abs*sin(V6ang-V9ang-

Y69ang); 
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D7616=-V6abs*V6abs*Y66abs*cos(V6ang-V6ang-Y66ang)-V6abs*V4abs*Y64abs*cos(V6ang-V4ang-

Y64ang)-V6abs*V9abs*Y69abs*cos(V6ang-V9ang-Y69ang)-V6abs*V6abs*Y66abs*cos(V6ang-V6ang-

Y66ang); 

D7625=-V4abs*V5abs*Y54abs*cos(V6ang-V4ang-Y64ang)-V6abs*V9abs*Y69abs*cos(V6ang-V9ang-

Y69ang); 

D7626=-V5abs*V5abs*Y55abs*sin(V6ang-V6ang-Y66ang)-V4abs*V6abs*Y64abs*sin(V6ang-V4ang-

Y64ang)-V6abs*V9abs*Y69abs*sin(V6ang-V9ang-Y69ang)-V6abs*V6abs*Y66abs*sin(V6ang-V6ang-

Y66ang); 

D733=[D7615 D7616;D7625 D7626]; 

  

D76111=-V6abs*V9abs*Y69abs*sin(V6ang-V9ang-Y69ang);  

D76112=-V6abs*Y69abs*cos(V6ang-V9ang-Y69ang); 

D76211=V6abs*V9abs*Y69abs*cos(V6ang-V9ang-Y69ang); 

D76212=-V6abs*Y69abs*sin(V6ang-V9ang-Y69ang); 

D736=[D76111 D76112;D76211 D76212]; 

  

D7713=-V7abs*V5abs*Y75abs*sin(V7ang-V5ang-Y75ang);  

D7714=-V7abs*Y75abs*cos(V7ang-V5ang-Y75ang); 

D7723=V7abs*V5abs*Y75abs*cos(V7ang-V5ang-Y75ang); 

D7724=-V7abs*Y75abs*sin(V7ang-V5ang-Y75ang); 

D742=[D7713 D7714;D7723 D7724]; 

  

D7717=V7abs*V2abs*Y72abs*sin(V7ang-V2ang-Y72ang)+V7abs*V8abs*Y78abs*sin(V7ang-V8ang-

Y78ang); 

D7718=-V7abs*V7abs*Y77abs*cos(V7ang-V7ang-Y77ang)-V7abs*V2abs*Y72abs*cos(V7ang-V2ang-

Y72ang)-V7abs*V8abs*Y78abs*cos(V7ang-V8ang-Y78ang)-V7abs*V7abs*Y77abs*cos(V7ang-V7ang-

Y77ang); 

D7727=-V7abs*V2abs*Y72abs*cos(V7ang-V2ang-Y72ang)-V7abs*V8abs*Y78abs*cos(V7ang-V8ang-

Y78ang); 

D7728=-V7abs*V7abs*Y77abs*sin(V7ang-V7ang-Y77ang)-V7abs*V2abs*Y72abs*sin(V7ang-V8ang-

Y72ang)-V7abs*V8abs*Y78abs*sin(V7ang-V8ang-Y78ang)-V7abs*V7abs*Y77abs*sin(V7ang-V7ang-

Y77ang); 

D744=[D7717 D7718;D7727 D7728]; 

  

D7719=-V7abs*V8abs*Y78abs*sin(V7ang-V8ang-Y78ang);  

D77110=-V7abs*Y78abs*cos(V7ang-V8ang-Y78ang); 

D7729=V7abs*V8abs*Y78abs*cos(V7ang-V8ang-Y78ang); 

D77210=-V7abs*Y78abs*sin(V7ang-V8ang-Y78ang); 

D745=[D7719 D77110;D7729 D77210]; 

  

D7817=-V7abs*V8abs*Y87abs*sin(V8ang-V7ang-Y87ang);  

D7818=-V8abs*Y87abs*cos(V8ang-V7ang-Y87ang); 

D7827=V8abs*V7abs*Y87abs*cos(V8ang-V7ang-Y87ang); 

D7828=-V8abs*Y87abs*sin(V8ang-V7ang-Y87ang); 

D754=[D7817 D7818;D7827 D7828]; 

  

D7819=V8abs*V7abs*Y87abs*sin(V8ang-V7ang-Y87ang)+V8abs*V9abs*Y89abs*sin(V8ang-V9ang-

Y89ang); 

D78110=-V8abs*V8abs*Y88abs*cos(V8ang-V8ang-Y88ang)-V8abs*V7abs*Y87abs*cos(V8ang-V7ang-

Y87ang)-V8abs*V9abs*Y89abs*cos(V8ang-V9ang-Y89ang)-V8abs*V8abs*Y88abs*cos(V8ang-V8ang-

Y88ang); 

D7829=-V8abs*V7abs*Y87abs*cos(V8ang-V7ang-Y87ang)-V8abs*V9abs*Y89abs*cos(V8ang-V9ang-

Y89ang); 

D78210=-V8abs*V8abs*Y88abs*sin(V8ang-V8ang-Y88ang)-V8abs*V7abs*Y87abs*sin(V8ang-V7ang-

Y87ang)-V8abs*V9abs*Y89abs*sin(V8ang-V9ang-Y89ang)-V8abs*V8abs*Y88abs*sin(V8ang-V8ang-

Y88ang); 

D755=[D7819 D78110;D7829 D78210]; 

  

D78111=-V8abs*V9abs*Y89abs*sin(V8ang-V9ang-Y89ang);  

D78112=-V8abs*Y89abs*cos(V8ang-V9ang-Y89ang); 

D78211=V8abs*V9abs*Y89abs*cos(V8ang-V9ang-Y89ang); 

D78212=-V8abs*Y89abs*sin(V8ang-V9ang-Y89ang); 

D756=[D78111 D78112;D78211 D78212]; 
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D7915=-V9abs*V6abs*Y96abs*sin(V9ang-V6ang-Y96ang);  

D7916=-V9abs*Y96abs*cos(V9ang-V6ang-Y96ang); 

D7925=V9abs*V6abs*Y96abs*cos(V9ang-V6ang-Y96ang); 

D7926=-V9abs*Y96abs*sin(V9ang-V6ang-Y96ang); 

D763=[D7915 D7916;D7925 D7926]; 

  

D7919=-V8abs*V9abs*Y98abs*sin(V9ang-V8ang-Y98ang);  

D79110=-V8abs*Y98abs*cos(V9ang-V8ang-Y98ang); 

D7929=V9abs*V8abs*Y98abs*cos(V9ang-V8ang-Y98ang); 

D79210=-V8abs*Y98abs*sin(V9ang-V8ang-Y98ang); 

D765=[D7919 D79110;D7929 D79210]; 

  

D79111=V9abs*V6abs*Y96abs*sin(V9ang-V6ang-Y96ang)+V8abs*V9abs*Y98abs*sin(V9ang-V8ang-

Y98ang); 

D79112=-V9abs*V9abs*Y99abs*cos(V9ang-V9ang-Y99ang)-V9abs*V6abs*Y96abs*cos(V9ang-V6ang-

Y96ang)-V9abs*V8abs*Y98abs*cos(V9ang-V8ang-Y98ang)-V9abs*V9abs*Y99abs*cos(V9ang-V9ang-

Y99ang); 

D79211=-V9abs*V6abs*Y96abs*cos(V9ang-V6ang-Y96ang)-V8abs*V9abs*Y98abs*cos(V9ang-V8ang-

Y98ang); 

D79212=-V9abs*V9abs*Y99abs*sin(V9ang-V9ang-Y99ang)-V9abs*V6abs*Y96abs*sin(V9ang-V6ang-

Y96ang)-V8abs*V9abs*Y98abs*sin(V9ang-V8ang-Y98ang)-V9abs*V9abs*Y99abs*sin(V9ang-V9ang-

Y99ang); 

D766=[D79111 D79112;D79211 D79212]; 

  

D7=[D711 D712 D713 zeros(2,6);D721 D722 zeros(2,2) D724 zeros(2,4);D731 zeros(2,2) D733 

zeros(2,4) D736;zeros(2,2) D742 zeros(2,2) D744 D745 zeros(2,2);zeros(2,6) D754 D755 

D756; zeros(2,4) D763 zeros(2,2) D765 D766]; 

  

  

  

  

 

Ap=A1-B1*D1^-1*C1; 

K1=D4-D3*D1^-1*D2; 

K2=C2-D3*D1^-1*C1; 

B1p=B2-B1*D1^-1*D2; 

Jae=[[K1; D6] [D5 ;D7]]; 

J1=Jae^-1*[K2;zeros(12,21)]; 

A=Ap-[B1p zeros(21,12)]*Jae^-1*[K2;zeros(12,21)]; 

C=[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 

   0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0; 

   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]; 

 

sys1=ss(A,E1,C,[0]); 
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APPENDIX D.2 

3-MACHINE 9-BUS LQR CONTROLLER DESIGN AND MODEL REDUCTION 

sys1_red=ss(Ar12,Br12,Cr12,[0]); 

[Ared,Bred,Cred,Dred]=ssdata(sys1_red); 

hsv=hsvd(sys1); 

sigma=[1 hsv(1)/hsv(2) hsv(1)/hsv(3) hsv(1)/hsv(4) hsv(1)/hsv(5) hsv(1)/hsv(6) 

hsv(1)/hsv(7) hsv(1)/hsv(8) hsv(1)/hsv(9) hsv(1)/hsv(10) hsv(1)/hsv(11) 

hsv(1)/hsv(12)]; 

%sigma=[1 hsv(2)/hsv(1) hsv(3)/hsv(1) hsv(4)/hsv(1) hsv(5)/hsv(1) hsv(6)/hsv(1) 

hsv(7)/hsv(1) hsv(8)/hsv(1) hsv(9)/hsv(1) hsv(10)/hsv(1) hsv(11)/hsv(1) 

hsv(12)/hsv(1)]; 

Q=diag(sigma); 

opt = balredOptions('StateElimMethod','Truncate'); 

sys2_redBal=balred(sys1,12); 

[AredBal,BredBal,CredBal,DredBal]=ssdata(sys2_redBal); 

Qfull=diag([1 10 0 0 0 0 0 1 10 0 0 0 0 0 1 10 0 0 0 0 0] ); 

Rfull=eye(6); 

Kfull=lqr(sys1,Qfull,Rfull); 

%% 

sys1_1=ss(A,E1(:,1),eye(21),[0]); 

hsv1_1=hsvd(sys1_1); 

w1=trace(diag(hsv1_1)); 

 

sys1_2=ss(A,E1(:,2),eye(21),[0]); 

hsv1_2=hsvd(sys1_2); 

w2=trace(diag(hsv1_2)); 

 

sys1_3=ss(A,E1(:,3),eye(21),[0]); 

hsv1_3=hsvd(sys1_3); 

w3=trace(diag(hsv1_3)); 

 

sys1_4=ss(A,E1(:,4),eye(21),[0]); 

hsv1_4=hsvd(sys1_4); 

w4=trace(diag(hsv1_4)); 

 

sys1_5=ss(A,E1(:,5),eye(21),[0]); 

hsv1_5=hsvd(sys1_5); 

w5=trace(diag(hsv1_5)); 

 

sys1_6=ss(A,E1(:,6),eye(21),[0]); 

hsv1_6=hsvd(sys1_6); 

w6=trace(diag(hsv1_6)); 

 

gamma=w1/hsv(1); 

 

r=gamma.*[1 w2/w1 w3/w1 w4/w1 w5/w1 w6/w1]; 

R=diag(r); 

 

Kred=lqr(sys2_redBal,Q,R); 
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