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Abstract 

Organizations belonging to the government, commercial, and non-profit industries collect 

and store large amounts of sensitive data, which include medical, financial, and personal 

information. They use data mining methods to formulate business strategies that yield high long- 

term and short-term financial benefits. While analyzing such data, the private information of the 

individuals present in the data must be protected for moral and legal reasons. Current practices 

such as redacting sensitive attributes, releasing only the aggregate values, and query auditing do 

not provide sufficient protection against an adversary armed with auxiliary information. In the 

presence of additional background information, the privacy protection framework, differential 

privacy, provides mathematical guarantees against adversarial attacks. 

Existing platforms for differential privacy employ specific mechanisms for limited 

applications of data mining. Additionally, widely used data mining tools do not contain 

differentially private data mining algorithms. As a result, for analyzing sensitive data, the 

cognizance of differentially private methods is currently limited outside the research community.   

This thesis examines various mechanisms to realize differential privacy in practice and 

investigates methods to integrate them with a popular machine learning toolkit, WEKA. We 

present DPWeka, a package that provides differential privacy capabilities to WEKA, for 

practical data mining. DPWeka includes a suite of differential privacy preserving algorithms 

which support a variety of data mining tasks including attribute selection and regression analysis. 

It has provisions for users to control privacy and model parameters, such as privacy mechanism, 

privacy budget, and other algorithm specific variables. We evaluate private algorithms on real-

world datasets, such as genetic data and census data, to demonstrate the practical applicability of 

DPWeka. 
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I. INTRODUCTION 

A. Overview  

The affordability of digital storage space has prompted organizations across several 

industries to collect and store users’ information with the intention of unveiling interesting 

patterns within the data. The users’ sensitive information present in these datasets can be 

misused by an ill-intentioned adversary. This fear of privacy breach can prevent people from 

providing true answers to the data collection systems, which in turn affects the systems’ utility. 

However, with many companies collecting customers’ data, an individual’s information can be 

expected to be available in several independent sources. The information that can be obtained 

from external sources, including social media, alternate databases or even general observations, 

is called auxiliary information. Incidents such as re-identification of individuals from the 

“anonymized” Netflix dataset [1] and AOL’s web search dataset [2] stand as classic examples to 

depict that simply anonymizing the data does not ensure privacy when auxiliary information is 

taken into account. 

Additionally, to protect the privacy of the dataset, data curators may only release the models 

to make predictions, or to draw inferences. However, when the models are built on the sensitive 

dataset, privacy breach can occur. An adversary with auxiliary knowledge can infer the sensitive 

attributes of the individual with enough brute force attempts on the model [3].  

Hence, methods that protect against privacy breach, even when auxiliary information is 

available, are necessary while working with sensitive data. This can be achieved by the 

differential privacy framework, which provides strong privacy guarantees by randomizing the 

results. Publications such as [4]–[18] indicate an actively growing interest in the differentially 

private methods for data mining. Some works proposed approaches to enforce differential 
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privacy at the initial stages of data mining, such as attribute selection [6]–[8] and dimensionality 

reduction [4], [5]. Some others such as [9]–[13], [16], concentrated on building differentially 

private learning schemes, including decision trees, classification, regression and deep learning. 

Others developed approaches to achieve differentially private diagnostic methods [14]. Some 

authors concentrated on achieving differential privacy in graph generation [17] and spectral 

graph analysis [18]. Works such as [13] have also proved that embracing a differentially private 

algorithm can yield utility comparable to non-private methods with fewer training samples, when 

the mechanism is carefully chosen. 

Although differential privacy provides strong privacy guarantees, there are only a few 

platforms to support practical differentially private data mining. They employ specific 

differentially private mechanisms for limited applications of data mining. Additionally, popular 

data mining tools do not contain differentially private data mining algorithms. As a result, the 

cognizance of differentially private methods for analyzing sensitive data is currently limited 

outside the research community. We address this gap by implementing DPWeka, a package 

containing several differentially private algorithms for the open source machine learning tool, 

WEKA. DPWeka can be considered as a privacy preserving layer that provides access to the 

sensitive database through a query interface. This concept, as illustrated in Figure 1, is similar to 

Privacy Integrated Queries (PINQ) platform [19] and the privacy layer proposed in [13].  

B. Thesis Statement 

This thesis consists of two parts: (1) Study the various mechanisms to achieve differential 

privacy for data mining tasks and (2) Realize these mechanisms through DPWeka, a plugin 

designed to provide comprehensive differential privacy capabilities to the machine learning 

platform, WEKA.  
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Figure 1 Differential Privacy Layer for Data Mining 

C. Contributions 

The main contribution of this work is the development of DPWeka, which can be used either 

independently or as an extension to a popular data mining tool, WEKA. DPWeka can be 

considered as an interface that allows users to query datasets in a differentially private manner. It 

is a package that provides comprehensive differential privacy capabilities to WEKA for practical 

data mining purposes. Currently, DPWeka includes a suite of differential privacy preserving 

algorithms which support data mining tasks such as attribute selection and classification.  

However, it can be easily extended to include other data mining tasks such as clustering and 

association rule mining. DPWeka has provisions for users to control various privacy and model 

parameters, such as privacy mechanism, privacy budget, and other algorithm specific variables. 

It allows users to perform privacy preserving data mining using a graphical interface, which does 

not require users to be programmers or privacy experts. It enforces privacy while providing users 

with wide range of implementation choices. 

Currently, DPWeka consists of two components. The PrivStats component is designed to 

perform differentially private attribute selection. As an example, we have implemented 

differentially private methods to identify relevant attributes based on the significance statistics 
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such as χ2 values, p-values, and odds ratio. The PrivClassifier component within DPWeka is 

designed to perform differentially private classification. As an example, we have implemented 

methods to perform logistic regression using various differential privacy mechanisms.  

D. Organization of the Thesis 

The remainder of this thesis is organized as follows: 

 In Chapter II, we discuss differential privacy and its motivation. We also survey the 

mechanisms for realizing differential privacy in practice. We later discuss the tools to 

achieve differential privacy and compare them with DPWeka. 

 In Chapter III, we explore WEKA and its features to perform end-to-end data mining. We 

then discuss the methods to build and configure new modular capabilities for WEKA. 

Finally, we discuss development of DPWeka and illustrate the steps to integrate it with 

WEKA. 

 In Chapter IV, we study the motivations for privacy in attribute selection and examine 

differentially private methods to achieve it. As an example, we examine the motivations and 

methods to achieve privacy in Genetic Wide Association Studies (GWAS). We then discuss 

the implementation of some of the differentially private methods in PrivStats component of 

DPWeka. Further, we demonstrate their applicability on a genetic dataset. 

 In Chapter V, we focus on achieving differential privacy in learning schemes. While 

considering logistic regression model as an example, we explore various methods to build 

differentially private regression models. We then discuss their implementation in 

PrivClassifier component of DPWeka and evaluate how well the methods preserve statistical 

utility while preserving privacy.   

 In Chapter VI, we conclude the work and identify the areas for future work.  
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II. DIFFERENTIAL PRIVACY 

A. Motivation  

 Data mining is performed to extract the underlying information of a dataset. On the other 

hand, data privacy is enforced to prevent an adversary from inferring anything significant about 

the individuals present in the dataset. Although these exercises seem to contradict one another, it 

is not quite so. The aim of data mining is to find the general trends and not directed at identifying 

any single individual’s behavior. Data mining tasks generate models to emulate the commonly 

occurring patterns in the dataset. However, when sensitive data is involved, the models may 

become vulnerable to attacks and cause privacy leakage.  

Anonymizing the sensitive data before constructing the model seems like an obvious solution 

to prevent privacy leaks. In fact, current guidelines enforce that data containing any of the listed 

categories of personally identifiable information (PII) must be appropriately redacted before 

being published for research purposes. In spite of such regulations, researchers were able to 

identify Massachusetts governor’s personal health information. The redacted health data was re-

identified by taking the voter registry data into account. Such linkage attacks highlight the 

limitation of anonymization methods when the adversary has auxiliary information [20].  

Various methods including k-anonymity [20], l-diversity, [21] and t-closeness [22] have been 

proposed to combat linkage attacks for data publishing tasks. In these methods, samples 

containing similar values of sensitive data are grouped together and released only if the sample 

size is sufficiently large. However, an adversary with knowledge of all but one individual of the 

dataset can still infer the individual’s data based on the query result [23]. Alternatively, query 

auditing methods can be used, in which every query presented to the database is evaluated. If a 

query response in combination with past responses is found to disclose private information, then 
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the query is refused.  However, the denial of the request can then reveal information about the 

dataset. Moreover, for large datasets that are queried frequently, auditing every query may be 

computationally infeasible. These challenges call for a more robust definition of privacy that is 

not affected by the auxiliary information.  

B. Introduction to Differential Privacy 

Privacy is guaranteed if after querying the dataset, an adversary’s posterior knowledge of any 

individual in a dataset is no more than his prior knowledge of the same individual.  Differential 

privacy provides strong privacy guarantees for an individual who has participated in the dataset 

while allowing the data miner to learn general trends presented by the data. Differential privacy 

relies on the idea that privacy is ensured when a query mechanism is resilient to changes in even 

a single instance of the dataset.  Formally, it is defined as  

Definition 1 ( ɛ-differential privacy [24]): A randomized mechanism  ℳ: 𝐷𝑛 → ℝ𝑑 is said to 

be ɛ-differentially private, if for any two neighboring datasets 𝐷 and 𝐷′ differing by a single 

element, and for all the outcomes 𝑆 ⊆ ℝ𝑑,  

Pr[ℳ(𝐷) ∈ 𝑆] ≤ 𝑒ɛ Pr[ℳ(𝐷′) ∈ 𝑆]                                       (1) 

 Here, the output distribution of ℳ (D) depends on the actual query output distribution. The 

parameter ɛ quantifies the privacy leak. Small value of ɛ indicates that the mechanism is more 

private. It implies that for all pairs of neighboring datasets, the differentially private 

mechanism’s output distributions are approximately same. Due to similar output distributions, an 

adversary, who even has information about all but one individual of the dataset, cannot infer 

anything about the individual from the query output. The constraint (1) ensures that the 

randomized mechanism is insensitive to the presence of an individual, and hence provides opt-

out option, i.e., a participant can choose to either participate or not participate in a data analysis 
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without significantly affecting the outcome of the analysis. This guarantees that a differentially 

private computation also obscures the information about the presence of an individual in the 

dataset.  However, privacy guarantee does not mean that the participating individual is not 

affected by the decisions made using the query results. On the other hand, ensuring privacy 

means that the effect of the business decision on an individual present in the dataset is no 

different than on a similar individual who is not present in that dataset. However, it should be 

noted that differential privacy does not provide absolute privacy guarantees as any non-trivial 

utility implies compromised privacy [25].  

A weaker privacy guarantee is given by  (ɛ-δ)-differential privacy [26].   

Definition 2:  A randomized mechanism  ℳ: 𝐷𝑛 → ℝ𝑑 is said to satisfy (ɛ -δ)-differentially 

privacy for two non-negative numbers ɛ and δ iff for all neighboring datasets where 

𝑑(𝐷, 𝐷′) = 1, and all subset outcomes 𝑆 ⊆ ℝ𝑑 ,  

                                Pr[ℳ(𝐷) ∈ 𝑆] ≤ 𝛿 + 𝑒ɛ Pr[ℳ(𝐷′) ∈ 𝑆]                                    (2) 

Here, δ denotes the probability by which the mechanism’s outputs vary by a factor of  𝑒ɛ  for 

any two neighboring datasets.  In other words, an (ɛ - δ)-differentially private algorithm ensures 

that for neighboring datasets, the privacy loss is bound by ɛ with a probability of at least (1- δ) 

[26]. Lower values of δ signify greater confidence that the neighboring datasets vary only by a 

factor of 𝑒ɛ. Conversely, for a sufficiently large δ value, the mechanism can breach privacy even 

at smaller ɛ values. Hence, δ is chosen heuristically to be δ ∈  𝑜 (
1

𝑛
), where n indicates the size 

of the dataset [27].  

Two datasets are neighboring datasets if they differ by a single entry. The difference can be 

due to the replacement of an entry with another value while maintaining the same data size 

among the neighbors. Another interpretation is that an entry is either added into or deleted from 
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the neighboring dataset, thus varying the dataset size. The difference in interpretation leads to the 

variation in calculations of sensitivity.  

C. Properties of Differential Privacy  

Differentially private mechanisms are immune to post-processing [26]. That is, processing a 

differentially private output using a data independent mechanism does not incur additional 

privacy loss. Formally, 

Property 1: If ℳ: 𝐷𝑛 → ℝ𝑑 is an ɛ-differentially private mechanism, and 𝑓: ℝ𝑑 → 𝑅′ is an 

arbitrary randomized mapping, then their composition 𝑓 ( ℳ(𝐷𝑛)) is ɛ-differentially private.  

Differentially private mechanisms exhibit sequential composition [28]. When multiple 

differentially private mechanisms, each having its own privacy parameter, access the same 

database, then the privacy of the overall operation degrades equivalent to the sum of all privacy 

parameters.    

Property 2: Given two randomized mechanisms, 𝑓1 and 𝑓2, which are ɛ1and ɛ2-differentially 

private respectively, a mechanism 𝑓 = 𝑔(𝑓1(𝐷), 𝑓2(𝐷, 𝑓1(𝐷)),  is (ɛ1 + ɛ2)-differentially private.  

When the sequential property is applied repeatedly, the overall privacy budget of the 

resultant mechanism is the sum of privacy budgets consumed by each mechanism. In general, 

both the properties can be extended to (ɛ - δ)-differentially private algorithms. 

D. Achieving Differential Privacy 

Differential privacy describes the behavior of a mechanism and is not the algorithm itself. 

Nevertheless, a query can be made differentially private by randomizing it. However, while 

randomization preserves the privacy, it can also adversely affect the utility. Hence, although a 

data mining algorithm may have several mechanisms to achieve ɛ differential privacy, the 
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challenge is to find a mechanism that yields higher utility for smaller values of ɛ [26]. Some of 

the mechanisms to achieve differential privacy are discussed below. 

Output perturbation methods add noise to the query output to preserve privacy. The added 

noise is such that it masks the impact any single individual can have. Hence, whenever the 

contribution of any individual is lost in the noise, their private information, that is not generally 

known, cannot be revealed. Output perturbation methods are often used for queries that yield 

numerical results, such as aggregate functions. For an output perturbation method, the amount of 

added noise is dependent on the sensitivity of the query. The sensitivity [26] of a function is the 

maximum value by which the function’s output can vary for any pair of neighboring datasets. It 

is a measure of the largest change a single participant of the dataset can have on the query 

output.  

Definition 3: For a function 𝑓: 𝐷𝑛 → ℝ𝑑 , sensitivity is defined as  

                                                  Δ𝑓 = max ||𝑓(𝐷) − 𝑓(𝐷′)||                                                  (3) 

where 𝐷 and 𝐷′ are neighboring datasets differing by one tuple and ||. || is the ℓ1 norm. 

Laplace mechanism [28], the most popular of noise adding mechanisms, involves adding 

independently generated noise sampled from Laplace distribution with mean 0 and scale Δ𝑓/ɛ, 

to maintain ɛ-differential privacy. The noise distribution is then given by  

                                               𝑓(𝑥 | ɛ, 𝛥𝑓) =  
ɛ

2𝛥𝑓
𝑒𝑥𝑝 (−

ɛ|𝑥|

 𝛥𝑓
 )                                                       (4) 

The magnitude of the noise added depends on the desired privacy levels and the query type. 

A query with higher sensitivity requires more noise to attain same privacy levels as a query with 

lower sensitivity. 
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Adding noise sampled from Gaussian distribution may need the privacy definitions to be 

relaxed to obtain similar utility [29]. Geometric mechanism [30], a discrete variant of Laplace 

mechanism, can be used for count queries. An α-differentially private geometric mechanism adds 

random noise based on a two-sided geometric distribution centered over 0. Its probability 

distribution function is given by    

                 𝑝(𝑥| α) =   
1−α

1+α
 α|𝑥|                                                          (5)   

where α ∈ [0, 1] indicates the privacy level. 

Another noise adding mechanism, the staircase mechanism [31], [32], can be viewed as 

geometric mixture of random variables and adds noise with probability distribution given by  

𝑝γ(𝑥|ɛ, Δ) =
1− α

2 Δ  √α
𝑒−ɛ(k+[x]γ)                                                      (6) 

 [𝑥]γ =  {
0,                    |𝑥| ∈ [𝑘Δ,   (k + γ)Δ )

1,             |𝑥| ∈ [(k + γ)Δ,   (k + 1)Δ]
                             (7) 

where k ∈ ℕ, γ ∈ [0,1] controls the shape of the staircase and [𝑥]γ is the rounding function.   

For larger values of ε, i.e., at medium to low privacy regimes, staircase mechanism performs 

significantly better than Laplace mechanism [31], [32].  

The output perturbation mechanisms consider only the query function and its sensitivity to 

derive the degree of noise. However, for certain queries, such as median calculation and cluster 

center calculation, the large noise magnitude due to the global sensitivity can render the query 

results useless. For such queries, Nissim et. al [33] proposed sample and aggregate framework, 

which adds query-based noise as well as instance based noise to the result being released. To 

ensure that the noise magnitude does not adversely affect the utility, smooth sensitivity, which 

smoothens the local sensitivity bounds, is considered. The sample and aggregate framework 
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treats the query function as a black box and uses a smooth sensitivity framework for ensuring 

differential privacy. The mechanism consists of two steps. In the sample step, the query, f, is 

evaluated on random samples that are the subset of the private dataset. The query results of the 

subsets are then combined by an aggregation function, assuming that the desired result can be 

measured well with samples. The output of the aggregation function, 𝑓,̅ is then perturbed with 

the noise calibrated to smooth sensitivity of aggregate function ( Figure 2) [33]. The main 

challenge in this framework is to find an efficient aggregation function. 

  

 Figure 2 Sample and Aggregate Framework [33] 

The output perturbation and sample and aggregate framework mechanisms are employed 

when the query results are numerical and continuous values. However, for queries yielding non-

continuous output, adding noise destroys the value of the output. Exponential mechanism [34] 

can be employed for queries whose output space is non-continuous. If 𝑅 is the set of all possible 

responses to a query on dataset 𝐷, then the exponential mechanism involves defining a quality 

score function 𝑞, which assigns scores to each possible response 𝑟 ∈ 𝑅. The optimal scoring 

function is the one that assigns the scores proportional to the probability of their being the correct 

solution to the query. Exponential mechanism, 𝜉𝑞,Δ𝑞
ɛ , then has the output distribution  
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                                                       Pr[𝜉𝑞,𝛥𝑞
ɛ (𝐷) = 𝑟] ∝ 𝑒𝑞(𝑟,𝐷)ɛ/2𝛥𝑞                                            (8) 

where Δ𝑞 is the sensitivity of the scoring function given by  

     Δ𝑞 = 𝑚𝑎𝑥 ||𝑞(𝐷) − 𝑞(𝐷′)||                                             (9) 

where 𝐷 and 𝐷′ are neighboring datasets.  

Since the probability assigned reduces exponentially for each less probable result, the method 

is called exponential mechanism [26]. This method has been applied for building differentially 

private models including support vector machines [35], auction mechanisms [36] and ID3 

decision trees [13]. In some cases, such as differentially private ID3 [13], the private mechanism 

was shown to perform better than the non-private mechanism for fewer training tuples. 

Besides aggregation queries, data mining procedures also comprise model generation 

techniques for prediction and inference purposes. Objective perturbation method [9] can be used 

to release the model parameters within a differentially private framework. In this method, noise 

is added to the objective function, which is then optimized to obtain the private model 

parameters. This method has been used to achieve differentially private logistic regression and 

linear regression [10], [12], [15].    

E. Tools to Achieve Differential Privacy 

Systems such as PINQ [37], Airavat [38], and GUPT [39] have been developed to realize 

differential privacy. Although the motivation behind building the systems is same, they are 

designed to enforce differential privacy using different frameworks. Privacy Integrated Queries 

(PINQ) is an application program interface (API) built upon C#’s LINQ (Language Integrated 

Query). It contains differentially private functional blocks, such as Where, Groupby, Join, and 

Partition transformations, which provide basic data access functionalities. These blocks can be 

used by a data miner to develop differentially private programs. The private data is wrapped in a 
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PINQueriable object, which acts as the privacy layer to access the data. The PINQueriable object 

evaluates the amount of privacy budget available after each operation involving the private data 

and denies further access once the budget is exhausted. Apart from being built only for Windows 

platform, PINQ cannot calculate the amount of privacy budget required for the entire program in 

advance, which may cause the privacy budget to be exhausted before the program is completed.   

Airavat executes unmodified programs in Map-Reduce programming paradigm with an 

untrusted mapper computation and a differentially private reduce computation. To estimate the 

sensitivity and the amount of random noise to be added at the reducer, the range of the mapper 

outputs must be declared initially. Since the range of mapper outputs can be estimated only for 

specific data analysis tasks, Airavat supports only limited types of data mining operations.  

GUPT enforces differential privacy using sample and aggregate framework. To reduce the 

amount of perturbation at the aggregate step, GUPT uses an aging model of data sensitivity to 

select the sample size. Moreover, GUPT automatically distributes the privacy budget among the 

queries of a data mining task to maximize the overall accuracy of the task. However, GUPT 

assumes that the dimensions of the query results are known in advance, which may not always 

hold true. Moreover, when the query range is non-numerical, adding noise to the aggregated 

result will destroy the results’ value. Due to these limitations, the range of data mining 

operations supported by GUPT are limited.      

Our DPWeka provides a platform for users to select the desired differentially private 

mechanism for a data mining task. Unlike the other platforms that enforce privacy at the 

programming level or at the aggregation step, DPWeka enforces privacy within the data mining 

task. It also supports more complex data mining tasks than simple aggregate functions. DPWeka 

allows users to control privacy budget and other model parameters. It also offers facilities to 
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compare the performance of various mechanisms simultaneously. As compared to PINQ and 

Airavat, DPWeka does not require data miners to be privacy experts or programmers.  

F. Summary 

 To summarize, differential privacy framework provides mathematical guarantees that an 

adversary cannot infer the presence/absence of an individual in the dataset. Mechanisms such as 

Laplace mechanism, exponential mechanism, objective function perturbation, and sample and 

aggregate framework can be used to design a differentially private algorithm. However, not all 

mechanisms can ensure high accuracy for every data analysis algorithm. The challenge is to 

identify a differentially private mechanism which maintains the utility of the algorithm. Several 

tools have been developed to achieve differential privacy. However, they are designed to enforce 

differential privacy using specific mechanisms. Moreover, some of these tools require users to 

have prior programming knowledge. On the other hand, DPWeka is designed to support a wide 

range of differential privacy mechanisms and does not require users to be programmers or 

privacy experts.  
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III. WEKA 

A. Introduction  

Data mining is an elaborate and experimental process of finding patterns within data. It 

involves performing one or many steps, including cleaning up the data using domain specific 

metrics, performing data transformation and feature selection, applying learning schemes and 

evaluating them to find suitable parameters. With the evolution in the nature of the data, 

advanced analytical techniques are being developed constantly. This in turn has led to the 

emergence of an assortment of tools designed to perform either a specific data mining task or 

comprehensive data mining. These tools are available in a wide range of formats including 

licensed software such as SAS; libraries for existing programming languages, such as Pandas and 

Deeplearning4j; and open source toolkits, such as WEKA. In this chapter, we discuss WEKA 

and its exhaustive range of data mining features. We also examine the techniques to develop 

WEKA packages for installing new features into WEKA. Finally, we describe the elements of 

DPWeka package and illustrate the steps to integrate DPWeka with WEKA. 

The WEKA workbench [40] is a collection of machine learning and data preprocessing tools, 

distributed under GNU General Public License. WEKA, which is an acronym for Waikato 

Environment for Knowledge Analysis, was developed at the University of Waikato in New 

Zealand. It is written in Java and can run on Linux, Windows, and Macintosh operating systems. 

The current stable version, 3.8.0, is compatible with Java 1.7 or later [41]. 

WEKA provides comprehensive support for the entire data mining process, including 

methods for preparing the input data using data transformation and preprocessing, analyzing the 

data using learning schemes, and visualizing the data. All these features are accessed by an 

interactive interface, which does not require users to possess any programming knowledge. The 
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tunable parameters of the methods are presented as forms to be filled by users. For ease of use, 

the default values are already filled, and users can examine the methods by varying the values. 

Advanced users can access the learning schemes and other preprocessing methods available in 

WEKA to reduce their programming effort when developing their own algorithms.   

B. Interfaces in WEKA 

WEKA’s initial screen, the GUI Chooser panel, serves as a gateway to access its five 

interfaces: Explorer, Experimenter, Knowledge Flow, Workbench, and SimpleCLI as shown in  

Figure 3. The first four are interactive interfaces, which contain menus to select the desired 

methods. The tunable parameters of the methods can be assigned values through a property sheet 

or object editor.  

To be processed by any of the interfaces, data must be in the form of a single relational table. 

Data can be read from a file on the local machine, or from a remote location, or generated from a 

database query. Each row of the data is referred as an instance and each column as an attribute. 

The attributes of the data must belong to numeric, nominal, string, or date types, and the missing 

values must be denoted by ‘?’. Although WEKA can process data in Attribute Relation File 

Format (ARFF), facilities exist to convert other file formats to ARFF format. This support exists 

for files of CSV format, C4.5 format, LIBSVM format, XML Relation File Format (XRFF),  

JSON based ARFF format, and MATLAB files [41]. 

The five interfaces of WEKA are designed to accommodate different styles of data mining 

process. The Workbench interface combines all the interfaces into a single application, whereas 

the command line interface, SimpleCLI, is used to directly access WEKA’s basic functionalities 

by calling its required Java classes and providing appropriate arguments. 
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Figure 3 GUI Chooser Panel 

The Experimenter interface has facilities to identify the optimal learning methods and 

parameters by setting up experiments involving multiple learning methods and datasets 

simultaneously. Once the desired set up is arranged, the large scale experiments can run without 

requiring any further human intervention. Their results can be saved as ARFF files which can be 

analyzed at later time. The Experimenter interface also contains facilities to distribute the 

computing loads across multiple machines, thus reducing the run time. 

The Knowledge Flow interface is used to set up step-by-step workflow for the data to pass 

through. It presents facilities to define a data flow procedure by connecting various data mining 

methods. The procedure can be saved as model and used whenever required. It also allows for 

incremental learning, provided that the methods have capabilities to process incremental data. 

Thus, this interface can be used for processing streaming data and large data files that cannot fit 

in the memory.  

WEKA’s main graphical interface, the Explorer, has panels corresponding to various data 

mining tasks supported by WEKA, such as preprocessing, classification and regression, 

clustering, attribute selection, association rule mining, and data visualization (Figure 4). The 

panels can be accessed by selecting the appropriate tabs. Each panel contains menus to select the 
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desired methods (Figure 5). Furthermore, each method has property form (or object editor) to 

assign values to method specific parameters (Figure 6). The facilities provided by the panels can 

also be accessed from other interfaces. Therefore, although DPWeka is developed with the 

intentions of using in Explorer interface, DPWeka can also be accessed by other interfaces.     

In the initial screen of Explorer interface, the Preprocess panel, appropriate buttons can be 

clicked to load data files either located on the local machine, from a website, or from a database. 

The Preprocess panel provides access to data preprocessing algorithms including imputation, 

normalizing, randomizing, resampling, and removing selected instances and attributes, which are 

all bundled as Filters. A desired filter can be selected from the menu and its tuning parameters 

can be modified as required. The transformed data can then be saved and/or used for further data 

mining activities such as classification, clustering, or association analysis. Provisions are also 

available for generating artificial data suitable for classification, regression, and clustering 

purposes. 

 
Figure 4 Preprocess Panel in Explorer Interface 
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Figure 5 Menu for Filter Methods in Preprocess Panel 

 

Figure 6 Property Form for AttributeSelection Method 

The Classify and Cluster panels provide options to choose from various classification and 

clustering algorithms respectively. In Classify panel, various classification methods such as rule-

based, tree-based, Bayes, regressions, and meta classifiers are available from the drop-down 
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menu. Similarly, in Cluster panel, methods including k-means, hierarchical clustering, and 

canopy clustering are available from the menu for unsupervised learning purposes. For each of 

the methods, users can assign method-specific parameters as well as select the general settings, 

such as training and testing data files, percentage split, and cross validation values. 

The Select Attributes panel offers methods to evaluate and identify the most relevant 

attributes based on characteristics such as principle components, subset evaluations, correlation 

analysis and gain ratio. Furthermore, features to rank or select the best attributes are also 

available.  

The Associate panel has methods for association rule learning. Finally, the Visualize panel 

can be used to visualize the data and the results of learning methods. 

C. Anatomy of Source Code 

WEKA heavily adopts Object Oriented Programming (OOP) concepts of Java in its 

implementation. Algorithms belonging to a specific data mining task are implemented within the 

same Java package (a Java package is physically represented as a folder). Hence, data mining 

algorithms associated with each panel of the Explorer interface are implemented in their 

respective Java packages as shown in Figure 7. Moreover, the algorithms adopting similar 

techniques to solve a task may be further grouped into subpackages. The directory structure seen 

within the packages is reflected in WEKA’s graphical interface. Figure 8 depicts the similarities 

in the hierarchy within WEKA’s physical directory structure and the graphical interface for 

classifiers. For each data mining task, WEKA provides an abstract class. Every algorithm 

inherits from its task specific abstract class and then implements the available abstract methods. 

In addition, the algorithms also import and inherit from classes and interfaces of weka.core 

package, which provides commonly used features for data mining tasks supported by WEKA. 
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Figure 7 WEKA Source Code Directory 

 

 

Figure 8 Similarities in WEKA’s Directory Structure and Graphical Interface   

For example, all the classification algorithms are available in weka.classifiers package. 

Further, the classification algorithms solved using different techniques are implemented in 

different subpackages within the weka.classifiers package. For instance, an objective function 
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based classification such as logistic regression is implemented in weka.classifiers.functions 

package. Moreover, all the classifiers inherit from weka.classifiers.AbstractClassifier abstract 

class.   

Similarly, all the algorithms for performing attribute selection are available in 

weka.attributeSelection package. Since attribute selection involves evaluating the attributes and 

then selecting them, two abstract classes are provided by WEKA. Algorithms for calculating the 

metrics inherit from weka.attributeSelection.AttributeEvaluator abstract class, while the 

algorithms for selection inherit from weka.attributeSelection.ASSearch abstract class. These 

algorithms can also inherit from appropriate Java interfaces provided by WEKA.  

Additionally, the features that are specific to Knowledge Flow and Experimenter interfaces 

are implemented in weka.knowledgeflow  and weka.experiment packages. Furthermore, WEKA’s 

graphical user interface features, such as click, change of tabs, and select actions, are 

implemented in weka.gui package. 

D. Development in WEKA  

WEKA can be used for performing data mining tasks by invoking appropriate methods from 

its graphical interface or command line. This approach does not require users to have any 

programming knowledge. WEKA’s data mining algorithms can also be used as components of a 

development project by including WEKA’s source files, weka.jar and weka-src.jar, into the 

project library. In order to contribute an algorithm that is not available in WEKA’s collection, 

the algorithm’s implementation design must conform to the general design structure of WEKA. 

The algorithm must inherit from WEKA’s abstract class for the data mining task that the 

algorithm aims to solve. It may also inherit from WEKA’s Java interfaces for additional features 

that are applicable to the algorithm. For example, a new classifier must extend from the abstract 
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class, weka.classifier.AbstractClassifier. The abstract class has abstract methods, such as 

getCapabilities() for defining the scope of the classifier, buildClassifier() for describing the 

procedure to build the model, and classifyInstance() for defining the procedure to make 

predictions. The new classifier must update the implementation details for these methods as per 

its algorithm.  The classifier can optionally inherit from interfaces, such as 

weka.core.TechnicalInformationHandler , weka.classifier.Randomizable, and 

weka.core.OptionHandler. The classifier inheriting from Randomizable interface defines the 

method to randomize the data before constructing the model. Similarly, the classifier can define 

the parameters for its properties form using the OptionHandler interface and display the 

bibliographic references using the TechnicalInformationHandler interface.  

For other data mining tasks, such as attribute selection, clustering, and data preprocessing, 

new algorithms can be developed similarly by inheriting from the task-specific classes and 

relevant interfaces. 

E. WEKA Package 

The newly implemented algorithm must be deployed as a WEKA package to be integrated 

with WEKA. A WEKA package is a zipped archive containing the implementation’s Java 

binaries compiled into JAR (Java Archive) file, Description.props file, and other property files. 

The package, which can optionally contain source files and other user documentation files, 

should unpack to the current active directory. The Description.props file contains the metadata 

of the package, such as the package name, version, brief description and category of the 

implementation, maintainer’s name and contact, and the link for the availability of the source 

code. For the algorithm to be accessible from the WEKA menus (Figure 5), the 

GUIObjectEditor.props file must be updated with each Java package name and included in the 
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WEKA package. Further, the algorithm can be made available as an option in the WEKA 

property forms’ (Figure 6), by adding the algorithm’s class or its parent class to the 

GUIEditors.props file, which must then be included in the WEKA package. 

The package can be officially made available to the community by supplying 

the Description.props file to the WEKA admin team, which will deploy the package on WEKA’s 

central package repository after performing tests on the package. Alternatively, authors can make 

the package available unofficially and avoid the wait time, by uploading the package on public 

repositories, such as GitHub, for the community to download. Users can then integrate the 

WEKA package through WEKA’s Package Manager interface, which is accessed from the Tools 

menu in GUI Chooser panel. Multiple Java packages can be bundled under the same WEKA 

package for the ease of deployment, making a WEKA package different from the regular Java 

package.  

F. Development and Installation of DPWeka 

DPWeka is designed to provide comprehensive differential privacy capabilities for end-to- 

end data mining in WEKA. Figure 9 shows the contents of our DPWeka package. The package 

contains the DPWEKA.jar file, which is the archive of the application; the property files; the 

source code; and the user instruction README.md file. An excerpt of Description.props file 

containing the metadata of DPWeka is shown in Figure 10. The GUIObjectEditor.props file 

contains an entry for DPWeka.PrivStats package under weka.attributeSelection.ASEvaluation  

and an entry for DPWeka.PrivClassifier.Logistic package under weka.classifiers.Classifier. 

Similarly, to make the various metrics available in the properties form, the GUIEditors.props file 

contains an entry DPWeka.PrivStats.CalculateStats mapping to weka.gui.GenericObjectEditor. 

Since DPWeka is currently being deployed as an unofficial package, it can be installed by 
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clicking the button at the top right corner of the package manager and then browsing to the local 

folder path containing the package or by providing the URL of the package. After its successful 

installation, the features of the package become available upon the restart of WEKA. The steps 

for installation are shown in Figure 11 and Figure 12.     

 

Figure 9 Contents of DPWeka Package 

 

Figure 10 Excerpt from Description.props File 
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Figure 11 WEKA Package Manager Graphical Interface   

 

Figure 12 WEKA Unofficial Package Installation Steps 

G. Summary  

To summarize, WEKA is an open-source, comprehensive machine learning toolkit 

implemented in Java. New features can be deployed into WEKA in the form of plugins, which 
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are also called WEKA packages. However, for successful integration with WEKA, the 

implementation details of the new algorithms must adhere to WEKA’s design. Then, the 

application is compiled into a JAR file. The zipped archive of the JAR file along with the 

property files is the WEKA package. The package is then imported from the Package Manager 

graphical interface. DPWeka is deployed as one such package containing methods belonging to 

Attribute Selector and Classify categories. 
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IV. IMPLEMENTATION OF DIFFERENTIALLY PRIVATE STATISTICS 

A. Introduction 

The data collected for data mining purposes may contain redundant and irrelevant attributes, 

which impact the accuracy of the prediction models by introducing noise. Hence, selecting 

relevant attributes is imperative to building more accurate models. Additionally, when 

processing high dimensional data, employing attribute selection methods avoids the curse of 

dimensionality, reduces the training time, and avoids overfitting. Based on the selection methods 

and learning algorithms used in the data mining process, attribute selection can be performed 

using filter method, wrapper method, or embedded method. In the filter method, general metrics 

such as association and correlation are used to select the relevant attributes. The wrapper method 

is used for evaluating subset of attributes by detecting possible interactions between them. In the 

embedded method, the learning algorithm performs the selection and classification 

simultaneously. 

For high dimensional datasets, filter methods are used to identify relevant attributes. 

Typically, metrics of independence tests such as χ2-values and p-values, correlation statistics 

such as Pearson r correlation and Spearman rank correlation, and association statistics such as 

odds ratio, are used to identify the attributes related to the predicted variable. To account for the 

reproducibility, the aggregate values (metric values) of the relevant attributes are released. 

However, these values may be used by an adversary to identify the entities of the dataset, leading 

to privacy breach.  

In the following sections, we consider genetic data analysis as an example and study the 

privacy violations due to published aggregate values. Furthermore, we examine various 

differentially private algorithms for publishing the aggregate values. We then discuss the 
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implementation details of some of these algorithms within PrivStats component of DPWeka and 

finally evaluate them on a genetic dataset.        

B. Genome Wide Association Studies  

Genome Wide Association Studies (GWAS) are performed to identify the associations 

between genetic variants and traits in organisms. The human genome is encoded as 3 billion 

DNA (Deoxyribonucleic acid) base pairs within 23 chromosome pairs in the cell nuclei. Genome 

is the genetic sequence of an organism containing information about its growth, development, 

and health. In fact, it is a sequence of protein molecules, each of which could be made up of one 

of the four chemical bases: Cytosine (C), Adenine (A), Guanine (G) or Thymine (T), also called 

allele. The genome sequence varies by less than 0.1% between any two persons in the world. The 

smallest possible variation involving just one allele is called Single Nucleotide Polymorphism 

(SNP). Generally, the variation is in the form of the presence of an alternate allele at the SNP 

location. The allele that occurs in minority of the population is minor allele, while the one that is 

more frequently prevalent is called major allele. Scientists believe that these polymorphisms 

affect the characteristics in terms of appearance, personality, and physiology, and their study 

may reveal interesting facts about organisms [42][43]. 

GWAS is a type of case-control study, which examines the associations between the SNP 

variations (genotypes) and traits, characteristics, or diseases (collectively called phenotypes). A 

case-control study compares the subjects exhibiting the trait condition (called case group) with 

the subjects not exhibiting the condition (called control group). The applications of these studies 

range from genome mapping to screening for genetic diseases to forensic technologies, such as 

DNA fingerprinting diseases. Additionally, the genetic variations are thought to contribute to 

complex traits such as personality, weight, body mass index, and susceptibility to cancer and 
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heart diseases. Identifying the associated SNPs could provide better understanding in developing 

effective treatments for such conditions.  

The progress in genotyping technology and the reduced cost of sequencing has motivated 

many researchers to contribute to these studies [43]. For each of the studies, the aggregate 

statistical values such as minor allele frequencies, p-values, and χ2 statistics for all the SNP-

phenotype combinations were released. Due to the sensitive nature of genome data, policies for 

data sharing, such as anonymizing, were enforced. In spite of the privacy measures, researches 

proved that it is not only possible to re-identify the redacted subjects, but also do it with a 

surprisingly small number of SNPs [44]. In 2008, Homer et al. [45] devised an attack where an 

adversary with auxiliary knowledge about the target’s genetic profile would be able to determine 

if the target belonged to the case group or control group using the aggregated frequencies. This 

attack approach compares the target’s allele with the minor allele frequency distributions, and 

uses T-test to determine the target’s group. In response, National Institutes of Health (NIH) 

limited the access to the statistics of only a few significant SNPs in GWAS catalog for public 

use. Any research group now interested in accessing all the details has to undergo tedious 

bureaucratic processes explaining the committee of their altruistic intentions in conducting 

experiments with the genome data. Only after the committee is convinced that the data will not 

be abused, the research group can access it [46].  Moreover, [47]–[49] studied methods to 

construct Bayesian networks for inference using the publicly available GWAS statistics and 

evaluated the potential risk of the released GWAS statistics on individual privacy. We refer to 

[50] to survey the risks and protection methods of human genetic privacy. 
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C. Significance Statistics 

In GWAS analysis, χ2 test of significance is performed to identify the SNPs that are 

associated with a phenotype. χ2 tests are designed to verify the independence of the variables by 

comparing their observed distribution with expected distribution under the independence 

assumption. If the distributions do not match, then the null hypothesis is rejected. In GWAS 

context, the null hypothesis H0, is that the SNP is independent of the phenotype, and the alternate 

hypothesis Ha, is that the SNP is associated with the phenotype. The match in the distributions is 

quantitatively determined using the p-value and a predefined significance level. The significance 

level, denoted by α, indicates the probability of rejecting the null hypothesis when it is true. The 

p-value is the probability of obtaining an effect at least as extreme as the sample data, assuming 

that the null hypothesis is true. Thus, if the p-value for the sample is less than the significance 

level, the null hypothesis can be rejected and an alternate hypothesis can be entertained. 

Otherwise, the test is considered inconclusive.  

The p-values for χ2 tests are calculated based on the degree of freedom (df) and χ2 values, 

which are calculated using the observed and expected distributions of the attributes whose 

association is being determined. A contingency table is used to display the observed distribution 

of the attributes and represents the first attribute as rows and the second attribute as columns. 

Each cell of the expected distribution table is then calculated by 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑟𝑜𝑤𝑡𝑜𝑡𝑎𝑙 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛𝑡𝑜𝑡𝑎𝑙

𝑁
                                                          (10) 

where 𝑟𝑜𝑤𝑡𝑜𝑡𝑎𝑙 is the sum of elements in the cell’s corresponding row in the observed 

distribution (contingency table), 𝑐𝑜𝑙𝑢𝑚𝑛𝑡𝑜𝑡𝑎𝑙 is the sum of elements in the cell’s corresponding 

column in the observed distribution, and 𝑁 represents the total number of records. 
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 The degree of freedom (df) is then given by equation (11), and the 𝜒2 value is calculated 

using equation (12).  

 df = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑟𝑜𝑤𝑠 − 1)(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1)          (11) 

𝜒2 = ∑
(𝑂𝑏𝑠ⅇ𝑟𝑣ⅇ𝑑−𝐸𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑)2

𝐸𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑𝑖
                                                          (12)                      

Odds ratio (OR) is used to determine the strength of association between two attributes. In 

the context of GWAS, OR is employed to determine if a SNP is associated with the trait. When 

the SNP allele distribution is of the form given in Table 1, OR is given by equation (13) 

 Case Control Total 

Allele 1 𝑎 𝑏 𝑎 + 𝑏 

Allele 2 𝑐 𝑑 𝑐 + 𝑑 

Table 1 2x2 Contingency Table for SNP 

                       𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 (𝑂𝑅) =
𝑂𝑑𝑑𝑠 𝑡ℎ𝑎𝑡 𝑎𝑙𝑙ⅇ𝑙ⅇ 1 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑎 𝑐𝑎𝑠ⅇ

𝑂𝑑𝑑𝑠 𝑡ℎ𝑎𝑡 𝑎𝑙𝑙ⅇ𝑙ⅇ 2 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑎 𝑐𝑎𝑠ⅇ
=

(𝑎/𝑏)

(𝑐/𝑑)
 =

𝑎𝑑 

𝑏𝑐
         (13) 

OR = 1 indicates that there is no association between the SNP and the trait, whereas  𝑂𝑅 >1 

indicates that the risk of the trait occurring is higher if allele 1 occurs while 𝑂𝑅 < 1 indicates 

that the risk of the trait is higher if allele 2 occurs.  

D. Literature Review 

NIH’s decision to limit the access to genome data motivated researchers to formulate 

methods for sharing the aggregate values without violating privacy [6]–[8], [51]–[55]. Some of 

these works developed methods highly motivated by differential privacy. 

Fienberg et al. [6] proposed methods to release the minor allele frequencies, p-values, and  χ2 

values in an ε-differentially private manner by employing output perturbation mechanism. Their 
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approach is to add randomly generated Laplace noise of scale 2𝑀/𝜖 to minor allele frequencies,  

4𝑀𝜖(
4𝑁

𝑁+2
)   to  χ2 values, and 4𝑀𝜖 (𝑒−

2

3) to p-values, where M represents the number of 

significant SNPs to be released and N indicates the number of records (population size). The M 

most relevant SNPs are then selected based on the perturbed values. However, they assume that 

the size of the case and control groups are same which may not always hold true in the real 

world.  

Johnson and Shmatikov [7] and Yu et al. [8] proposed methods to release p-values by 

employing exponential mechanism and without limitations on the case and control group size. 

While [8] and [6] assumed that the number of most significant SNPs was already known, [7] 

proposed a framework for the exploration of GWAS data in differentially private manner. [7] 

proposed algorithms to find the count of most significant SNPs associated with the phenotype, 

compute the location of these SNPs, identify the longest block of correlated SNPs, release the p-

values, and detect the correlation between a pair of SNPs using exponential mechanism. The 

scores for exponential mechanism are assigned using a distance score function, which counts the 

minimum number of alleles to be altered for the SNP’s significance to change. Since finding the 

nearest neighbor where the significance of the SNP flips is a NP-hard problem (non-

deterministic polynomial-time hard), works such as [8] proposed heuristics for its approximation. 

By assuming that the control group size is already known, [8] weakens the privacy constraints to 

obtain better results. 

E. Implementation in WEKA 

We design the PrivStats component of DPWeka to calculate the attribute selection metrics in 

a differentially private manner. As an example, we implement methods to evaluate the attributes 
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based on significance statistics, in both non-private and differentially private manners. However, 

PrivStats can be easily extended to include other statistics. PrivStats is available as an Attribute 

Evaluator under the Select Attributes panel (Figure 13). It is also available as a Filter by 

navigating to weka> filter> supervised >attribute > AttributeSelection in the Preprocess panel 

of WEKA’s graphical interface. In both panels, PrivStats can be used along with the Ranker of 

Search Method to select the desired number of relevant attributes for further analysis. 

 

Figure 13 Access PrivStats from Select Attributes Panel 

 The PrivStats component contains PrivateStatistics method, which is implemented as a Java 

class that inherits from WEKA’s ASEvaluation, ASEvaluator, and OptionHandler. From the 

property sheet of PrivateStatistics method, users can select the desired statistic for evaluation, as 

depicted in Figure 14. As an example, we implement methods to calculate χ2
 values, p-values, 

and odds ratio based on the 3x2 contingency matrix of each SNP and the trait. However, 

PrivStats can be easily extended to include other metrics (statistics). The statistic must be 

implemented as a Java class, which inherits from CalculateStats and StatisticsToBeMeasured 
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Java classes. Furthermore, from the property sheet of each statistic, users can select the desired 

privacy mechanism, control the privacy budget (𝜀), and assign the number of relevant attributes 

to be selected (k). For evaluating p-value using exponential mechanism, users can also assign the 

threshold of p-value (or significance value) (τ) to calculate the distance scores. 

 

Figure 14 Property Sheet of PrivateStatistics Method 

In our implementation, users can choose to evaluate the attributes based on χ2
 values using 

non-private or Laplace mechanisms as shown in Figure 15. We employ WEKA’s Statistics class 

to calculate the true (non-private value) χ2 value of each attribute. However, to calculate 

differentially private χ2 values, we implement the approach proposed in [8]. In this approach, 

randomly generated Laplace noise of scale 4𝑘𝑡/𝜀 is added to the true χ2 values, where 𝑡 is the 

sensitivity given by  
𝑁2

𝑅𝑆
 ( 1 −

1

max(𝑅,𝑆)+1
), where 𝑁 is the number of records, 𝑅 is the control 

group size, and 𝑆 is the case group size. The k most relevant attributes are selected based on the 
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perturbed χ2 values. Laplace noise of 2𝑘𝑡/𝜀 is added to the true χ2 values of these selected 

attributes before releasing them. This algorithm is formally presented in Appendix VIII. 

 

Figure 15 Property Sheet of χ2 values 

Furthermore, for evaluating attributes using p-values, users can choose from non-private, 

Laplace, or exponential mechanisms (Figure 16). We use WEKA’s Statistics class to calculate p-

values non-privately. However, we implement the Laplace mechanism for p-value based on the 

approach proposed in [6]. In this technique, the original p-values of all the attributes are 

perturbed by Laplace noise of scale 
4𝑘

ɛ
𝑒−

2

3. Based on the perturbed values, k most relevant 

attributes are selected. Laplace noise of scale 
2𝑘

ɛ
𝑒−

2

3 is then added to the true p-values of the 

selected attributes before releasing the selected attributes. This algorithm is formally presented in 

Appendix B. 

 For exponential mechanism, we implement the algorithm proposed in [7]. In this approach, 

each attribute is assigned a score based on smallest distance, d, to its neighboring contingency 

matrix where the significance of p-value changes. The significance is dependent on the threshold 

value assigned by the user (τ). The k most relevant attributes are then selected using exponential 

mechanism. Mathematically, the distance function [7], d, is given by  
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𝑑(𝐷) =  {
𝑚𝑎𝑥 {𝑟: |{𝑗: 𝐷𝑗 ≠ 𝐷́𝑗}| < 𝑟 ⇨ 𝑝( 𝐷)́ ≥  𝜏}                 𝑖𝑓 𝑝(𝐷) ≥  𝜏

−𝑚𝑎𝑥 {𝑟: |{𝑗: 𝐷𝑗 ≠ 𝐷́𝑗}| < 𝑟 ⇨  𝑝( 𝐷)́ ≥  𝜏}           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
                  (14) 

where the sign of d indicates the significance of the attribute. 𝐷 is the actual contingency matrix 

of the attribute,  𝐷́ is the neighboring contingency matrix where the significance flips, 𝑝() is a 

function that calculates the p-value. Formally, the scoring function [7], q, of sensitivity 1 is then 

given by  

𝑞(𝐷) =  {
−𝑑(𝐷) − 1                     𝑖𝑓 𝑝(𝐷) < 𝜏

−𝑑𝑖(𝐷)                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
                                               (15)   

Appendix C presents the algorithm to evaluate the attributes based on differentially private p-

values using exponential mechanism.  

 

Figure 16 Property Sheet of p-values 

These statistics can also be calculated independent of WEKA by passing the selection 

parameters to the Java class, callStatistics, provided in the source code. However, users must 

then include appropriate methods if filtering is needed.  

The PrivStats component contains a Java class, NoiseDistributions, which can be employed 

to generate random numbers from Laplace and exponential distributions. This class can also be 

easily extended to include other distributions.   
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F. Datasets 

The GWAS dataset for each phenotype gives a list of subjects associated with the case and 

control group of the phenotype. Each subject has a text file containing their rsids (chromosome 

ID) and the allele values. Since a single flat file containing the SNP details of all the subjects 

must be loaded for processing in WEKA, we develop a Java package, SNPDataPreProcessing, 

with functions to parse through the files, filter the SNPs and subjects as per the quality control 

procedures, and generate a master ARFF file for the phenotype. Each individual’s genome 

sequence is considered as an instance of the dataset and each SNP is considered as an attribute. 

For our experiments, we choose the subject files from openSNP database [56] for tongue 

roller phenotype. We identify over 1,750,000 unique SNPs among the 330 subjects belonging to 

the case and control groups of this study. The SNPs with call rate less than 95 % are filtered. Call 

rate is the percentage of subjects in whom the SNPs are present. Thus, any SNP not present in 

more than 95% of population is removed. Further, subjects with more than 5% of missing data 

are not considered in the experiment. Finally, SNPs with minor allele frequency less than 0.01, 

and SNPs with any of the alleles occurring in less than 10 subjects are filtered out.  After these 

pre-processing tasks, our dataset has 300 instances and 262,622 SNPs.  

G. Evaluation 

We evaluate the accuracy of the differentially private mechanisms by comparing the 

privately identified SNPs with the true (non-privately identified) relevant SNPs. Experiments are 

conducted by varying the privacy budget values (ε) and the number of relevant SNPs to be 

identified (k). Each experiment is executed for 100 times, and the number of relevant SNPs 

correctly identified are averaged. We plot the privacy budget on X-axis, and on Y-axis we plot 

the percentage of relevant SNPs that are correctly identified. The percentage is calculated by 
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dividing the average number of SNPs correctly identified by the number of relevant SNPs to be 

identified and multiplying the ratio with 100. For example, when k=3 and ε = 50, if on average, 1 

out of 3 most relevant SNPs is identified, the percentage is calculated as (1/3*100) = 33.33%. 

Since in GWAS research, the relevant SNPs will be processed further, we do not take the order 

or ranks of SNPs into account. 

 

Figure 17 Evaluation of Laplace Mechanism for χ2-values 

Figure 17 depicts the evaluation of Laplace mechanism for χ2 values. As expected, for larger 

privacy budget, and thus weaker privacy guarantees, the chance of identifying the truly relevant 

SNPs is higher. Also, for smaller selection count values (k), the relevant SNPs are accurately 

identified at smaller privacy budgets. This can be attributed to the sequential property of 

differential privacy. When the selection count is smaller, privacy budget assigned for each SNP 

is larger. For example, for an overall budget of 100, when the number of SNPs to be released is 

10, the privacy budget of 10 is assigned for each SNP to be identified and released, whereas 

when the number of SNPs to be released is 5, each SNP gets a budget of 20 for the same. 

We evaluate the exponential mechanism for p-values similarly. Figure 19 depicts the trend 

when the threshold p-value (τ) is 10-5. The graph follows similar patterns as that in Figure 17. 
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The percentage of SNPs that are correctly identified increases as the privacy budget is increased, 

and when the k values are smaller, the SNPs are accurately identified at smaller privacy budget. 

However, when k = 5, there seems to be no improvement in the identification despite increasing 

the privacy budget. This can be explained by considering the graph in Figure 18, which plots the 

true p-values of SNPs in increasing order and has sharp increase at SNP numbers 3 and 10. At 

these points, the probabilities assigned to the SNPs can be distinguished clearly from their 

neighbors; thus the accuracy of exponential mechanism is better. However, at other points such 

as k = 5, the neighboring SNPs have approximately similar p-values, and hence the scores 

assigned are similar, which in turn makes it difficult for the mechanism to distinguish between 

the neighboring SNPs. When we relax the SNP identification constraint by identifying any 5 of 

the 10 most relevant SNPs, the accuracy improves. This is shown in the k = 5 weak plot in 

Figure 19. The plot depicts that when ɛ =80, all the 5 identified SNPs are among the top 10 

relevant SNPs. The accuracy of this method depends on how closely the distance trend follows 

the p-value trend. 

 

Figure 18 Unperturbed Top p-values in Ascending Order 
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Figure 19 Evaluation of Exponential Mechanism for p-values  

Since the assumption for calculating p-values using Laplace mechanism is equal number of 

subjects in the case and control groups, we modify our dataset to meet the condition. We find in 

our evaluations that this mechanism does not perform as well as other mechanisms.  

H. Summary 

To summarize, attribute selection is performed in data mining to identify the relevant 

attributes of the dataset. It reduces the training time for generating data models and improves the 

accuracy of the models. In this chapter, we present PrivStats component, which is designed to 

calculate the metrics for attribute selection in differentially private manner. The component has 

methods to calculate the χ2 values, and p-values, and it provides user support to control various 

privacy and method-specific parameters. We consider a genetic dataset to demonstrate that the 

performance of the private algorithms depends on the privacy budget and the method parameters. 
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V. IMPLEMENTATION OF DIFFERENTIALLY PRIVATE LOGISTIC 

REGRESSION 

A. Introduction 

One of the primary tasks in data mining is generating models using learning algorithms. 

Input data, also called training data, are presented to the learning algorithms to construct models 

that fit the training data. In supervised learning, the learning algorithms use labelled data to infer 

the mapping function for model construction, whereas in unsupervised learning, the learning 

algorithms construct the models with unlabeled data. Classification and regression are examples 

for supervised learning methods, whereas clustering and association rule mining are examples 

for unsupervised learning.  

The training data presented to a supervised learning algorithm consists of predictor attributes 

(also called predictors) denoted by X and response attributes (also called labels) denoted by Y. 

Typically, a regression model is used when the response attribute is continuous, whereas a 

classification model is used when the response attribute is categorical. However, when a 

classification problem is solved by assigning probabilities for each category, it can be considered 

as a special form of regression.  

Models generated by a supervised learning algorithm can be employed to analyze the 

simultaneous effect of multiple predictor attributes on labels. Supervised learning models are 

primarily used for inference and prediction purposes. Under an inference paradigm, the model 

parameters are used to identify the predictors related to the labels and determine the nature of 

their relationship. On the other hand, under a prediction paradigm, models are used to determine 

the label when the predictor attributes are given.  
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When data curators release the model parameters, an adversary with access to the model can 

abuse it to extract private sensitive information of the individuals in training data. The technique 

used to compromise the privacy of training data using model parameters is called model 

inversion attack [57]. Models constructed employing the sensitive data, such as healthcare data, 

are particularly vulnerable to these attacks and can compromise the privacy of individuals 

present in the dataset. Thus, privacy preserving methods are imperative while constructing the 

models involving sensitive data. 

In the following sections, we examine how differential privacy mechanisms can be applied to 

preserve the model’s privacy. As an example, we study logistic regression and examine methods 

to release differentially private parameters of logistic regression models. Furthermore, we 

discuss implementation details of some of these methods within PrivClassifier component of 

DPWeka. Finally, we present the evaluations of these mechanisms on multiple census and 

marketing datasets. 

B. Logistic Regression 

Logistic Regression is commonly used to model datasets containing binary responses such as 

yes or no; pass or fail. Its prediction function, given by logistic function (also sigmoid function), 

depicts the curvilinear relationship between the inputs and outputs (Figure 20). Thus, the 

probability of response for logistic regression is then given by  

 Pr(𝑦𝑖 = 1|𝒙𝒊) =
1

1+exp (−𝒙𝒊
𝑇𝛚)

   and  

  Pr(𝑦𝑖 = 0|𝒙𝒊) =
1

1+exp (𝒙𝒊
𝑇𝛚)

                                   (16) 

where the predictor attributes (features) are denoted by 𝒙𝒊, and the predicted label is denoted by 

𝑦𝑖. The parameter vector 𝝎 is selected such that the cost function (also referred as objective 
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function or loss function), which evaluates how well the model fits the data, is minimized. The 

cost function for logistic regression is given in equation (17), and its derivation is discussed in 

Appendix D.  

    ∑ 𝑓𝑛
𝑖=1 ( 𝝎) = ∑ 𝑙𝑛(

𝑛

𝑖=1
1 +  exp(𝒙𝒊

𝑻𝝎)) − 𝑦𝑖𝒙𝒊
𝑻𝝎.                      (17) 

 

Figure 20 Logistic Mapping of Single Variable Input and Output 

Fitting the model to the training data can sometimes cause overfitting, which leads to poor 

prediction performance. Regularization is one of the techniques to reduce overfitting. It improves 

the generalization of the model by adding controlled noise to the cost function. Some common 

forms of regularization include L1- regularization (also called Lasso), L2-regularization (also 

called ridge), and elastic net regularization. In L1-regularization, noise equivalent to the sum of 

parameters is added to the cost function. On the other hand, in L2-regularization, noise 

equivalent to the sum of the square of parameters is added to the cost function. In elastic net 

regularization method, a combination of both L1 and L2 noise is added to the cost function. 

Mathematically, L1-regularization is given by   

                            ∑ 𝑙𝑛(
𝑛

𝑖=1
1 +  exp(𝒙𝒊

𝑻𝝎)) − 𝑦𝑖𝒙𝒊
𝑻𝝎 + 𝜆1 ∑ |𝜔𝑗|

𝑛

𝑗=1
                                    (18) 

and L2-regularization is given by  
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                         ∑ 𝑙𝑛(
𝑛

𝑖=1
1 +  exp(𝒙𝒊

𝑻𝝎)) − 𝑦𝑖𝒙𝒊
𝑻𝝎 + 𝜆2 ∑ 𝜔𝑗

2
𝑛

𝑗=1
                                     (19)  

where 𝜆1and  𝜆2 control the amount of regularization. 

The regularized cost function is then optimized to obtain the optimal model parameters, which 

can be used for prediction or inference purposes.  

C. Literature Review  

Chapter II of this thesis discusses various mechanisms for achieving differential privacy in 

practice. To directly apply Laplace mechanism to the regression model parameters, the 

mechanism’s sensitivities must be calculated. However, due to the complex correlations of the 

labels and predictors, the computations of the sensitivities become complicated, which in turn 

deteriorates the differentially private model’s performance. Hence, direct application of Laplace 

mechanism for regression models is disadvantageous.  

Chaudhuri et al. [9] proposed the objective perturbation method which entails adding noise to 

the objective function before solving for optimal 𝝎 values. However, this approach requires that 

the regularization and the loss functions satisfy specific differentiability and convexity 

properties. Kifer et al. [10] later improved this approach to include non-differentiable 

regularization methods. Yu et al. [55] combined the improved approach in [10] with elastic net 

regularization to perform privacy-preserving penalized logistic regression.  

In functional mechanism approach [12], Zhang et al. enforced differential privacy by 

perturbing the approximate objective function of regression analysis with Laplace noise.  The 

sensitivity for the Laplace noise is obtained as  
𝑑2

4
+ 3𝑑 , where 𝑑 is the number of attributes in 

dataset. Thus, the noise is dependent only on the number of attributes and independent of the size 
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of dataset. Wang et al. [15] improved the approach by adding more noise to sensitive attributes 

than non-sensitive attributes, while maintaining the accuracy under model inversion attacks.  

In the PrivGene method [11], Zhang et al. proposed to optimize the objective function in a 

differentially private manner. In this approach, a differentially private genetic algorithm is used 

for selecting the optimal parameters. To enforce privacy, a variation of exponential mechanism 

called enhanced exponential mechanism is used in selecting the optimal parameter vector.     

D. Implementation in WEKA 

     The PrivClassifier component in DPWeka is designed to implement differentially private 

classification and regression models. As an example, we implement methods to perform logistic 

regression using functional mechanism [12] and enhanced exponential mechanism (based on 

PrivGene) [11] . Both the methods inherit from WEKA’s AbstractClassifier and OptionHandler 

classes to be accessible from Classify panel of the graphical interface (Figure 21). 

 

Figure 21 Access PrivClassifier from Classify Panel 
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The functional mechanism algorithm is implemented as FunctionalMechanism Java class in 

PrivClassifier.  The FunctionalMechanism method allows users to control the privacy budget (ɛ) 

and the number of iterations (t) through its property sheet (Figure 22). In this approach, the cost 

function of the logistic regression is approximated to polynomial form of the second degree 

based on Taylor expansions. The approximated cost function is given by 

 𝑓𝐷(𝜔) =  ∑ (𝑙𝑜𝑔2) ∗ (𝑥𝑖
𝑇𝜔 )2 +

1

2
 𝑥𝑖

𝑇𝜔 +
1

8
 

𝑛

𝑖=1
− ∑ 𝑦𝑖 𝑥𝑖

𝑇𝑛

𝑖=1
𝜔                                           (20) 

Then, we perturb coefficients of the parameter vector with Laplace noise of scale (
𝑑2

4
+𝑑

ε
),  where 

d is the number of attributes in the dataset. The matrix representation of the noisy quadratic cost 

function is then of the form       

                             𝑓𝐷̅(𝜔) =  𝜔𝑇𝑀∗𝜔 + 𝛼∗𝜔 + 𝛽∗
                                                                                   (21) 

   To obtain a bounded cost function, L2 regularization and spectral trimming are performed. The 

regularized cost function transforms to  

 𝑓𝐷(𝜔) =  𝜔𝑇(𝑀∗ + 𝜆𝐼) 𝜔 + 𝛼∗𝜔 + 𝛽∗
                                                                  (22) 

where 𝜆 denotes the regularization term.  

For spectral trimming, the eigen decomposition of coefficient matrix, (𝑀∗ + 𝜆𝐼), is 

performed to obtain eigenvalue matrix (Λ) and eigenvector matrix (Q). Then, from the eigenvalue 

matrix, the rows containing non-positive eigenvalues in the diagonal are removed to obtain a 

modified diagonal matrix (Λ′). The corresponding rows from the eigenvector matrix are deleted 

to obtain a modified matrix Q′. The equation is then rearranged to obtain the cost function as 

                                  𝑔̂𝐷(𝑄′𝜔) =  (𝑄′𝜔)𝑇Λ′(𝑄′𝜔) + 𝛼∗𝑄′𝑇(𝑄′𝜔) + 𝛽∗                        (23) 

This resultant function is optimized to find  𝑄′𝜔  using WEKA’s Active-sets method with BFGS 

update optimizer. The optimization runs for t iterations or until the optimal values are found, 
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whichever is earlier. The optimal values are then post-processed to obtain the differentially 

private model parameters. The algorithm is presented in Appendix E. 

 

Figure 22 Property Sheet of FunctionalMechanism 

The PrivGene algorithm is implemented as EMGeneticAlgorithm Java class in PrivClassifier. 

This method employs differentially private genetic algorithm for optimization. A genetic 

algorithm involves initializing a set of 𝑚′ random vectors. These vectors are then crossed over to 

create offspring parameter vectors, which are then mutated to generate a candidate set of 𝑚 

mutations denoted by Ωm. From this set, 𝑚′ mutations which best fit the cost function are 

selected to form the selected set, Ωm′
′ . The crossover and mutation operations are performed on 

the selected set to form new candidate set, from which a new selected set is generated. This 

process is performed for desired number of iterations or till the optimal parameter vector is 

obtained. Differential privacy is enforced by employing a variation of exponential mechanism, 

called enhanced exponential mechanism, for generating the selected set Ωm′
′  in each iteration. 
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Enhanced exponential mechanism can be applied for applications whose fitting functions can be 

expressed as containing a component independent of sensitive data and another data dependent 

component. It differs from exponential mechanism only in the computation of sensitivity for 

scoring functions; the scoring methods and the selection methods for enhanced exponential 

mechanism is same as exponential mechanism. For logistic regression, when the selected set size 

𝑚′ is 1, the sensitivity of scoring function for enhanced exponential mechanism, is bound to 4 

times the mutation scale [11].  

In the EMGeneticAlgorithm method, we provide users the ability to control the privacy 

budget (ε), the mutation scale (σ) and the mutation resize value (s) through the property sheet 

(Figure 23). In the implementation, we generate a random vector of size d, where d is the number 

of attributes of the dataset. Mutation operation is performed by adding a noise of + σ and – σ to a 

single element at a time, generating a total of 2d vectors in the candidate set. Each candidate 

vector 𝝎′ is then assigned scores based on the scoring function given by 

 𝑞(𝝎′) =  ∑ 𝑦𝑖𝒙𝒊
𝑻𝝎′ − 𝑙𝑛(

𝑛

𝑖=1
1 +  𝑒𝑥𝑝(𝒙𝒊

𝑻𝝎′))                                    (24) 

The sensitivity of the scoring function is given by 4𝜎. Exponential mechanism is then used to 

select a single vector based on the scores. The selected vector then undergoes mutation, and the 

process is repeated for a given number of iterations. However, in each iteration, the noise added 

in the mutation operation varies by a factor of resize value (s), i.e., 𝜎 ∗ 𝑠 amount of noise is 

added in the second iteration, and noise of 𝜎 ∗ 𝑠2 is added in third iteration, and so on. Similarly, 

the sensitivity for each iteration varies by a factor of s. The parameter vector selected in the final 

iteration is released as the model parameter. The algorithm is presented in Appendix F.   
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To employ these methods, each predictor attribute of the dataset must be normalized to [-

1,1], and the response attribute must be a binary attribute containing either 0 or 1 values. A 

dataset can be easily transformed to meet these criteria using WEKA filters. 

 

Figure 23 Property Sheet of EMGeneticAlgorithm 

E. Datasets 

For evaluating our implementation, we use five data sets: (i) Adult dataset [58], which 

contains data from 1994 household census to predict if the annual household income is greater 

than $50,000. (ii) Banking dataset [59], which contains marketing data from banking institution  

to predict if a customer subscribes to a term deposit. (iii) Three datasets from Integrated Public 

Use Microdata Series (IPUMS) [60], for US and Brazil containing census records for years 2000 

and 2009 to predict if the annual income of an individual is greater than a predefined threshold 

value.  
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These datasets contain both numerical and categorical attributes. Each categorical 

attribute, containing l distinct values, is transformed into l binary attributes. Each predictor 

attribute is then normalized to range [-1, 1]. The response attribute is set to be a binary attribute. 

Table 2 summarizes the properties of each of these datasets. We use the datasets preprocessed by 

Zhang et al. in [12] and [11]. 

S no.   Dataset Number of tuples dimensions 

1 Adult dataset 48,842 14 (Original)   

124 (Converted)   

2 Banking 45,211 17 (Original)    

33 (Converted)  

3 IPUMS- US -2009 370044 14  

4 IPUMS-BR2000 38,000 53  

5 IPUMS-US2000 40,000 58  

Table 2 Datasets properties 

F. Evaluation 

We evaluate the performance of the differentially private logistic regression by plotting the 

graph of misclassification rate for varying values of privacy budget (ε). For each experiment, the 

dataset is split into 80 percent training data and 20 percent test data. The misclassification rates 

of 500 such experiments are then averaged. Figure 24 and Figure 25 plot the misclassification 

rates of FunctionalMechanism and EMGeneticAlgorithm for all the five datasets. As expected, 

the rate of misclassification reduces as the privacy budget is increased.  

For the evaluation of EMGeneticAlgorithm, we follow the authors’ convention in [11] and set 

the number of iterations to 0.125 ∗ 𝜀 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠. The slight increase in the 

misclassification rate can be attributed to the tuning parameters associated with the mutation 
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parameters. We demonstrate that the EMGeneticAlgorithm achieves similar accuracy values for 

lower privacy budgets as compared to Functional Mechanism. 

 

Figure 24 Evaluation of FunctionalMechanism for Varying Privacy Budget 

 

Figure 25 Evaluation of EMGeneticAlgorithm for Varying Privacy Budget 

G. Summary 

To summarize this chapter, the models built by learning algorithms using sensitive data are 

vulnerable to privacy leaks. Hence, various approaches have been proposed to make the learning 
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algorithms differentially private. In this chapter, we discuss the implementation of PrivClassifier 

component of DPWeka. The PrivClassifier contains differentially private logistic regression 

methods FunctionalMechanism and EMGeneticAlgorithm, which are based on objective function 

perturbation and exponential mechanism respectively. The FunctionalMechanism method 

ensures privacy by perturbing the approximated cost function, whereas the EMGeneticAlgorithm 

method ensures privacy by making the optimization process differentially private. These 

methods provide support to control the privacy budget and model parameters such as the number 

of iterations. We evaluate these methods on several datasets and demonstrate that their 

performance is determined by the privacy budget and the model parameters.  
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VI. CONCLUSIONS AND FUTURE WORK  

The implementations discussed in this thesis are based on current research in differential 

privacy. Hence, much of the richness of the differentially private solutions to machine learning 

problems is left unexplored. In this chapter, we first summarize the entirety of the thesis. Then 

we discuss the scope of extending this work to provide exhaustive support for privacy-preserving 

data mining tasks. 

A. Conclusions 

In this thesis, we discussed differential privacy and various mechanisms to achieve it in 

practice (Chapter II). Differential privacy provides formal privacy guarantees against an 

adversary with arbitrary background knowledge. Typically, differential privacy is achieved 

through randomization, which restricts the adversary from inferring private information of the 

individual present in the dataset. Output perturbation, exponential mechanism, sample and 

aggregate framework, and objective function perturbation are some of the mechanisms to realize 

differential privacy. Tools that ensure differential privacy in data mining methods, including 

PINQ, GUPT, and Airavat, employ only certain mechanisms in their design which limits their 

scope to a few data mining tasks. Some of these tools need users to possess programming skills 

for operational purposes. On the other hand, DPWeka, an extension to WEKA, is a 

comprehensive GUI based tool with options to select various differentially private mechanisms 

for data mining tasks. The graphical interface caters to non-programmers and non-privacy 

experts to perform privacy preserving data mining.  

In Chapter III, we discussed the features available within WEKA, an open source machine 

learning tool, to perform comprehensive data mining tasks. New features can be integrated with 

WEKA by creating WEKA packages. A WEKA package is an archive containing the application 
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JAR file along with the property files. The application design must adhere to WEKA 

implementation structure to be accessible within WEKA. DPWeka is designed conforming to 

WEKA’s implementation standards.  

In data mining, attribute selection is performed to identify the most relevant attributes of the 

dataset. Metrics such as significance statistics and correlation statistics are used to perform 

attribute selection. In Chapter IV, we discussed DPWeka’s PrivStats component, which is 

designed to calculate the metrics for attribute selection methods. As an example, we developed 

methods to calculate significance statistics such as χ2 values and p-values in differentially private 

manner. The PrivStats component provides support to select the desired mechanism, and control 

the privacy budget and other model parameters. 

In Chapter V, we discussed DPWeka’s PrivClassifier component, which is designed to 

perform classification in differentially private manner. As an example, we implemented methods 

to perform logistic regression employing two different mechanisms. The FunctionalMechanism 

method is based on the functional mechanism, which ensures differential privacy by perturbing 

the approximated cost function. The EMGeneticAlgorithm method ensures privacy by making 

the optimization process of the cost function differentially private. The optimization process is 

based on a genetic algorithm, which mimics the process of evolution. The PrivClassifier 

component provides support to select the desired mechanism, and control the privacy budget and 

other model parameters.  

We evaluated the differentially private methods on various real world datasets, such as 

genetic data, census data, and banking data. In our evaluations, we demonstrated that the 

performance of private methods depends on the model parameters as well as the privacy budget.  



56 

 

B. Future Work 

This work offers several future directions. One direction is to implement additional 

differentially private methods to support comprehensive privacy preserving data mining process. 

It includes implementing an exhaustive range of differentially private pre-processing methods, 

learning schemes, and diagnostics methods. The extensive tool would then support users to set 

privacy budget for the entire data mining process or for each component. Based on the user 

setting, DPWeka will then allocate the budget for each component automatically or estimate the 

overall privacy budget. 

Another direction is to extend DPWeka as a dedicated tool for specific application such as 

genetic data analysis. In this approach, differentially private methods designed particularly for 

each step of application’s analysis are implemented within the tool. The package being 

application specific allows users to focus on the functional aspects of the application.  
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VIII. APPENDIX 

A. Algorithm to Release Significant Attributes Using Laplace Mechanism for χ2 values 

Input: k: the number of attributes to release, ɛ: the privacy budget, R: number of instances with 

predictor value 1, S: number of instances with predictor value 0, N: total number of instances = 

R+S 

Output: k attributes and their noisy statistics  

1. calculate sensitivity t = 
𝑁2

𝑅𝑆
 ( 1 −

1

max(𝑅,𝑆)+1
)  

2. add random noise with Laplace distribution (Laplace noise) with mean zero and scale 

4𝑘𝑡

ɛ
 to the true χ2 values 

3. pick the top k attributes with respect to the perturbed values 

4. add new Laplace noise with mean zero and scale 
2𝑘𝑡

ɛ
 to the true statistics of k selected 

attributes in step 3 

5. return k attributes with values calculated in step 4 

B. Algorithm to Release Significant Attributes Using Laplace Mechanism for p-values 

Input: k: number of attributes to release, ɛ: the privacy budget  

Output: k attributes and their noisy statistics  

1. add Laplace noise with mean zero and scale 
4𝑘

ɛ
𝑒−

2

3 to the true p-values 

2.  pick the top k attributes with respect to the perturbed statistics  

3. add new Laplace noise with mean zero and scale 
2𝑘

ɛ
𝑒−

2

3 to the true statistics of k selected 

attributes in step 2 

4. return the k attributes with values calculated in step 3 
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C. Algorithm to Release Significant Attributes Using Exponential Mechanism for p-

values 

Input: k: number of attributes to release, ɛ: privacy budget, τ: threshold p-value to calculate the 

distance score, selectedAttribute: empty array of size k to hold the selected attributes 

Output: array selectedAttribute containing k relevant attributes  

1. for each attribute, m: 

calculate the distance, d, for the attribute to flip its significance based on the 

threshold value, τ  

2.  for each attribute, m: 

score is,  

      𝑞[𝑚] = −𝑑  𝑖𝑓  𝑝 <  τ  and  

                           𝑞[𝑚] = −𝑑 − 1  𝑖𝑓   𝑝 >  τ 

3.  for each attribute, m: 

   weight based on score, 𝑤[𝑚] = 𝑒𝑥𝑝(
ɛ.𝑞[𝑚]

𝑘
) 

4. for j :1 to k 

a. for each attribute, m: 

    probability assigned ,  𝑝[𝑚] = 𝑤[𝑚]/𝛴𝑖𝑤[𝑖] 

b. selectedAttribute[j] =   select an attribute based on the probability 

c. 𝑤[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒[𝑗]] =   0 

d. 𝑝[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒[𝑗]] = 0 

5. return selectedAttribute containing k relevant attributes 

D. Cost Function of Logistic Regression 

For logistic regression, the probability that the response is true is given by  ℎ𝜃(𝒙𝒊) =

 Pr(𝑦𝑖 = 1|𝒙𝒊) =
1

1+exp (−𝒙𝒊
𝑇ω)

. For a binary model, the probability of response being false is then 
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given by   (1 − ℎ𝜃(𝒙𝒊)) =  
1

1+exp (𝒙𝒊
𝑇ω)

 ,  where the independent variables vector (features) are 

represented by 𝒙𝒊, and the categorical label predicted by the model is represented by 𝒚𝒊. The 

parameter vector 𝜔 must be selected such that data fits the model. One approach is to identify a 

cost function which satisfies the below conditions. The parameters that minimizes the cost 

function will fit the data.   

𝑎𝑐𝑡𝑢𝑎𝑙 𝑦𝑖  = 1 and ℎ𝜃(𝒙𝒊) → 0 𝑡ℎ𝑒𝑛  𝐶𝑜𝑠𝑡 →  ∞     

𝑎𝑐𝑡𝑢𝑎𝑙 𝑦𝑖  = 0 and  ℎ𝜃(𝒙𝒊) → 1 𝑡ℎ𝑒𝑛 𝐶𝑜𝑠𝑡 →  ∞      

𝑎𝑐𝑡𝑢𝑎𝑙 𝑦𝑖  = ℎ𝜃(𝒙𝒊) 𝑡ℎ𝑒𝑛 𝐶𝑜𝑠𝑡 = 0 

This can be attained by considering  

 𝐶𝑜𝑠𝑡 =  {
− ln(ℎ𝜃(𝒙𝒊))  𝑤ℎ𝑒𝑛 𝑦𝑖 = 1

       − ln(1 − ℎ𝜃(𝒙𝒊))  𝑤ℎ𝑒𝑛 𝑦𝑖 = 0
    

Combining them over all the training set, the cost function can be written as  

𝐶𝑜𝑠𝑡 =  ∑ −yi(ln(ℎ𝜃(𝒙𝒊)) − (1 − 𝑦𝑖)(ln(1 − ℎ𝜃(𝒙𝒊))) 

𝑛

𝑖=1

   

Replacing ℎ𝜃(𝒙𝒊) 

𝐶𝑜𝑠𝑡 =  ∑ −yi(ln (
1

1 + exp(−𝒙𝒊
𝑇ω)

)) − (1 − 𝑦𝑖)(ln (
1

1 + exp (𝒙𝒊
𝑇ω)

)) 

𝑛

𝑖=1

 

 ⇨ 𝐶𝑜𝑠𝑡 =  ∑ 𝑙𝑛(
𝑛

𝑖=1
1 +  exp(𝑥𝑖

𝑇𝜔)) − 𝑦𝑖𝑥𝑖
𝑇𝜔 

E. Algorithm to Build Logistic Regression Model Using Functional Mechanism 

Input: D: Sensitive dataset, ɛ: privacy budget, d: number of attributes of dataset 

Output: 𝜔̅, the parameter vector for logistic regression as identified by functional mechanism 

1. build the approximate objective function  
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 f̃D(ω) =  ∑ (log2) ∗ (xi
Tω )

2
+ (yi − 0.5) xi

Tω +
1

8
 

n

i=1
  

2.  set sensitivity, Δ =
𝑑2

4
+ 𝑑 

3.  for each coefficient of  𝜔 , λ𝜑: 

set  λ𝜑 =  ∑ λ𝜑𝑡𝑖𝑡𝑖ϵD
+ 𝐿𝑎𝑝 (0,

Δ

ɛ
)            

4. perform regularization and spectral trimming to make 𝑓𝐷(𝜔) positive definite 

5. compute   𝜔̅ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜔𝑓𝐷(𝜔)  

6. return 𝜔̅ 

F. Algorithm to Build Logistic Regression Model Using Exponential Mechanism 

Input: D: Sensitive dataset, d: number of attributes and instances of sensitive dataset, n: number 

of instances of sensitive dataset respectively, ɛ:  privacy budget, σ: the mutation scale, s: the 

mutation resize value, Ω : candidate set, 𝜔: intermittent selected vector 

Output: 𝜔̅, the parameter vector for logistic regression as identified by PrivGene 

1. initialize 𝜔 with a randomly generated vector  

2. set the number of iterations 𝑗 = 0.125 ∗ 𝑛 ∗ ɛ  

3. set privacy budget per iteration ɛ𝑠 =  ɛ/j 

4. for j iterations: 

a. generate candidate set, Ω, of 2d vectors such that it contains 

d mutations of 𝜔 by adding σ noise to each element of 𝜔 one at a time 

 d mutations of 𝜔 by adding -σ noise to each element of 𝜔 one at a time 

b. set sensitivity, Δ = 4 ∗ σ 

c. set 𝜔 = DP_Select(D, f, Ω, ɛ𝑠, Δ)  
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d. σ = σ*s 

end for  

5. set 𝜔̅ = 𝜔 

6. return 𝜔̅ 

DP_Select(D, f, Ω, εs, , Δ)  

Input: D: Sensitive dataset, f: fitting function of logistic regression, Ω: candidate set of parameter 

vectors, εs: privacy budget 

Output: 𝜔∗: selected parameter vector  

1. for each mutation, 𝜔̈ ∈ Ω : 

score, 𝑞[𝜔̈] = − 𝑓(𝐷, 𝜔̈)  

2. for each mutation, 𝜔̈: 

        weight based on score, 𝑤[𝜔̈] = 𝑒𝑥𝑝(
ɛs∗𝑞[𝜔̈]

 Δ
) 

3. for each mutation, 𝜔̈: 

         probability assigned ,  𝑝[𝜔̈] = 𝑤[𝜔̈]/𝛴𝑖𝑤[𝑖] 

4. 𝜔∗ = select a mutation based on the probability 

 

5. return 𝜔∗ 

G. Access DPWeka  

The DPWeka package implemented for this thesis is available at 

https://github.com/NidhiKat/DPWeka. For further details on the project, please refer to 

http://csce.uark.edu/~xintaowu/DPWeka/index.htm.   

https://github.com/NidhiKat/DPWeka
http://csce.uark.edu/~xintaowu/DPWeka/index.htm
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