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Abstract 

 Interactions between herbicides and insecticides in crop production have been 

documented for a number of years. Research has shown that applications of some 

organophosphate insecticides at planting can reduce cotton injury following applications of the 

soil-applied herbicide clomazone.  Additionally, recent research has shown that, when applied as 

seed treatments prior to planting, some neonicotinoid insecticides can safen rice to drift from 

both glyphosate and imazethapyr. Since insecticide seed treatments are commonly used in many 

crop production systems throughout the Midsouth, exploring their ability to reduce injury from 

herbicides in other crops besides rice is of great interest. Presently no research exists examining 

the potential for insecticide seed treatments to reduce herbicide injury in soybean or grain 

sorghum, important rotational crops in Arkansas. Research contained herein investigates the 

possibility for commonly-used neonicotinoid insecticide seed treatments to reduce injury from 

herbicides via drift and soil application in both crops, in addition to applications of 

postemergence herbicides in soybean that typically cause injury. Results from these studies 

indicate that injury from herbicide drift may be reduced through the use of insecticide seed 

treatments in both crops. Injury from seven of the eight herbicides evaluated in soybean, and 

three of three herbicides in grain sorghum, was reduced in at least one of four site years. 

Additionally, safening to soil-applied herbicides was seen in five of nine herbicides evaluated in 

soybean in one or more site years. Injury from soil-applied herbicides in grain sorghum was not 

reduced in any of the four herbicides evaluated, nor was a safening effect seen in applications of 

postemergence herbicides in soybean. The amount of injury reduction varied substantially among 

site years, indicating a strong environmental effect on level of safening. However, based on the 

fact that insecticide seed treatments are incorporated across a wide array of environmental 



conditions each spring, it seems likely that some growers will see the benefits of reduced injury 

following herbicide exposure. 
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Chapter 1 

General Introduction and Review of Relevant Literature 

 

Soybean Production 

 On a global scale, soybean (Glycine max (L.) Merr) is one of the most important 

agricultural commodities. Soybean is an excellent source of both protein and oil and, as such, can 

be consumed directly by humans, fed to animals, or processed to make fuel. According to the 

USDA-WASDE (2017), soybean production in 2016 totaled 314 million metric tons globally, 

with the three largest producers being the United States (US), Brazil, and Argentina. In the US, 

soybean was planted on over 33 million hectares in 2016 and will account for around $35 billion 

of income for American growers (USDA-NASS 2016b). In Arkansas, soybean is grown on 1.3 

million hectares and provides the state 1.7 billion dollars of income annually (USDA-NASS 

2015c). Average national soybean yields are typically around 3,000 kg ha
-1

, with Arkansas 

averaging slightly higher at 3,300 kg ha
-1

 in 2015. Planting soybean in Arkansas is typically 

recommended whenever soil temperatures reach 13 C for three consecutive days, resulting in 

initial planting in April for much of the state (Ross et al. 2015). Based on a number of factors 

such as planting date and latitude, growers across Arkansas choose from cultivars that range 

from mid-maturity group (MG) IV to early-MG V to take full advantage of growing conditions 

for the daylength-dependent crop (Purcell et al. 2014). Factors such as drainage and soil texture 

result in a variety of different planting practices for soybean, ranging from drill planting in 19 cm 

rows to bedded systems, where rows are typically 76 to 97 cm wide. In Arkansas, soybean 

damage from early season insect pests, such as three-cornered alfalfa hoppers, grape colaspis, 

and wireworms, can result in yield loss at the end of the season (Lorenz et al. 2014). A common 

method for controlling these pests is the use of neonicotinoid insecticide seed treatments, which 
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is practiced on approximately 75 percent of soybean planted in Arkansas (G.M. Lorenz, personal 

communication). 

 

Grain Sorghum Production 

 Grain sorghum (Sorghum bicolor L.) is an important cultivated crop, which accounted for 

2.6 million planted hectares in the US in 2016 (USDA-NASS 2016a). Grain sorghum is used for 

animal feed, direct human consumption, and biofuel production (McGeeney 2015). Following 

trends based on global demand, grain sorghum area planted in Arkansas typically fluctuates 

annually. In 2015, over 200,000 hectares were planted to grain sorghum in the state, but in 2016 

that number fell to about 68,000 hectares (USDA-NASS 2016c).  In 2015, the average yield in 

Arkansas was 6,400 kg ha
-1

, resulting in over $187 million of producer income (USDA-NASS 

2016c). Grain sorghum prefers warmer soils and planting is usually not initiated until soil 

temperatures reach 18 C for three consecutive days. This usually occurs during mid-May to early 

June in Arkansas and once the conditions are met, sorghum is planted in 19- up to 102 cm-wide 

rows; albeit, wide rows are more typical (Espinosa and Kelley 2004). Protection against early-

season insect pests is important for maintaining grain sorghum yields in Arkansas. Aphids, 

chinch bugs, cutworms, white grubs, and wireworms are all pests that attack seedling grain 

sorghum and often require management (McLeod and Greene 2004). Similarly to soybean 

production, control of early-season pests is often achieved through the use of neonicotinoid 

insecticide seed treatment prior to planting. In Arkansas, this results in approximately 60 percent 

of grain sorghum planted receiving an insecticide seed treatment each year (G.M. Lorenz, 

personal communication). 
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General Weed Control   

While insect control, and water and nutrient management are important for maximizing 

crop yields, competition from weeds for these resources can cause significant reductions in 

productivity. Without management, Oerke (2006) estimated that weeds alone can reduce yields 

nearly 50% in certain crops. Weed control is primarily achieved via mechanical methods, such as 

tillage or cultivation, or by chemical control using herbicides (Oerke 2006). The use of 

herbicides plays a key role in weed control, with over 95% of US corn (Zea mays L.), cotton 

(Gossypium hirsutum L.), and soybean acreage receiving at least one chemical application per 

year (Gianessi 2005). This widespread adoption of chemical weed control results in significant 

economic benefits for producers, as it provides the labor equivalence of approximately 70 

million workers (Gianessi and Reigner 2007).  

In the US, the widespread adoption of herbicide-resistant (HR) crops has had a profound 

impact on weed control. In 2016, approximately 94% of all soybean hectares in the US were 

planted to crops having a HR trait (USDA-ERS 2016). The two most common HR traits are 

RoundupReady
®

 (Monsanto Company, St. Louis, MO) and LibertyLink
®
 (Bayer Crop Science, 

Research Triangle Park, NC), which provides a crop resistance to the herbicides glyphosate and 

glufosinate, respectively. These technologies allowed for applications of broad-spectrum, 

postemergence herbicides with no damage to the crop, and since their introduction, have 

improved farmer profits by over $28 billion (Brookes and Barfoot 2012).  

 

Weed Control in Soybean 

 Since soybean is a dicot, it follows that some of the most problematic and difficult-to-

control weeds in soybean cropping systems are also dicots. A survey of weeds in the US and 
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Canada showed dicots make up more than 90% of the list of most troublesome weeds in soybean 

production (Van Wychen  2016). Some of the most frequently-appearing weeds in the same 

survey were amaranths (Amaranthus spp.) and morningglories (Ipomoea spp.). Amaranths, or 

‘pigweeds’, such as redroot pigweed (Amaranthus retroflexus L.), waterhemp (Amaranthus rudis 

L.), and Palmer amaranth (Amaranthus palmeri L. Wats.) are especially problematic in soybean, 

with Palmer amaranth being the most competitive among the three. Bensch et al. (2003) reported 

that at a density of 8 plants m
-1

 row of soybean, Palmer amaranth reduced yield by as much as 

78%. The same study also demonstrated that yield loss can be lessened but not eliminated if 

weed control is effective during the early part of the growing season, highlighting the importance 

of season-long weed management. 

In order to achieve season-long control, a number of herbicide programs exist.   

Herbicidal recommendations usually include a burndown application to remove weeds before 

planting, a herbicide with residual activity applied very close to when the crop is planted, and a 

selective postemergence herbicide to remove any plants that survive previous applications and 

tillage (Scott et al. 2017). Commonly included in these recommendations for soybean production 

is an application of glyphosate or glufosinate. As previously mentioned, crops with traits that 

express resistance to these chemicals (Roundup Ready
®
 and LibertyLink

®
) are popular and they 

allow producers to kill weeds in a given field without damaging the crop. However, one issue 

that accompanies the use of these herbicides is the evolution of herbicide-resistant weeds. 

Contrary to information presented by Bradshaw et al. (1997), which suggested that a glyphosate-

only control program in Roundup Ready
®

 crops would not lead to resistant weed populations, 

resistance to the herbicide occurred and rapidly became widespread within the first ten years of 

its introduction. Current reports list 37 species worldwide that are resistant to glyphosate alone, 
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and nearly another 150 resistant weed species span 23 of the 26 known sites of action (SOAs), 

including many that are resistant to more than one of these sites (Heap 2017). 

The widespread evolution of resistant weeds presents obvious challenges for growers. As 

the frequency of resistant weeds increases, the need for more diverse forms of control becomes 

exceedingly more important. Norsworthy et al. (2012) concluded that best management practices 

(BMPs) that mitigate the evolution of herbicide-resistant weeds must be widely implemented to 

ensure the continued effectiveness of herbicides. Among these recommended BMPs was the use 

of multiple effective herbicide sites of action in conjunction with non-chemical weed control 

methods. Powles (2008) also puts forth many of the practices promoted by Norsworthy et al. 

(2012), including diversification of weed management programs and a focus on reducing the soil 

seedbank. 

 As herbicide programs become more diverse and incorporate multiple application timings 

and SOAs, the risk of crop damage to adjacent crops from misapplication, drift events, or via 

carryover inherently increases. For example, this increased risk can be seen in non-transgenic 

crops such as conventional soybean. These varieties have no tolerance to non-selective 

herbicides, like glyphosate and glufosinate; thus, they are susceptible to drift from nearby fields 

that utilize these herbicides. Additionally, attempts to deter herbicide resistance have resulted in 

movement toward using more soil-applied herbicides with residual activity. Injury from soil-

applied herbicides essentially comes from two sources: carryover from herbicide applications 

made in a previous crop/burndown program and injury to emerging seedlings from preemergence 

herbicides. 
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Weed Control in Grain Sorghum 

Although grain sorghum is a member of the grass (Poaceae) family, both grass and 

broadleaf weeds pose significant yield-reducing threats to the crop. Grain sorghum is affected by 

a wide range of weeds due in large part to a lack of labeled herbicides available compared to 

corn and soybean (Scott et al. 2017). Some particularly troublesome weeds in grain sorghum 

include Palmer amaranth, johnsongrass (Sorghum halepense L.), and morningglories (Espinosa 

and Kelley 2004). Of particular interest among these weeds is johnsongrass. Due to its high level 

of genetic similarity to grain sorghum, there is a relatively high potential for crop/weed 

hybridization. It has been observed that viable sorghum/johnsongrass hybrids could be found at 

distances up to 100 m, depending on wind and other weather conditions (Schmidt 2013). For this 

reason, among others, no transgenic HR varieties of grain sorghum currently exist.  

The lack of HR traits in grain sorghum creates a number of challenges for growers and 

eliminates the use of glyphosate or glufosinate as viable weed control options other than a pre-

plant burndown application. While a number of effective chemical control options still exist, the 

lack of broad-spectrum, postemergence options, such as glyphosate and glufosinate, makes early 

season weed control more important in grain sorghum than in soybean and corn. Early season 

weed control is typically achieved with a preemergence (PRE) application of atrazine in 

combination with a chloroacetamide, such as S-metolachlor (Dual II Magnum
®
 Syngenta Crop 

Protection, Greensboro, NC) (Smith and Scott 2004). Unfortunately, the use of chloroacetamides 

in grain sorghum can result in subsequent crop injury.  However, through the use of a safener 

that is added in combination with the herbicide, this injury can be reduced to acceptable levels in 

order to avoid yield loss as a result of crop injury (Spotanski and Burnside 1973; Nielsen 2008). 

With the necessity for reducing crop injury to grain sorghum, a common practice is to use a 
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safener applied as a seed treatment. Two of the most common safeners added to seed to aid 

against chloroacetamide damage in grain sorghum are Screen
®
 and Concep

®
 (Monsanto 

Company, St. Louis, MO and Syngenta Crop Protection, Greensboro, NC, respectively).  

Since seed treatment safeners are already commonly used in grain sorghum production, 

examining the potential for insecticide seed treatments to provide increased crop tolerance to 

herbicides could provide substantial benefits for growers. If their use reduces crop injury from 

herbicides, commercially available insecticide seed treatments would further benefit producers. 

Improved herbicide tolerance, decreased insect pressure, and suppression of soil-borne fungi can 

improve crop stands, ultimately resulting in increased yield at the end of the growing season 

(Sharma et al. 2015). With these benefits, particularly in improved tolerance to herbicide 

applications, additional herbicides that are not currently labeled for use in grain sorghum 

production could potentially be applied.  

 

Crop Risks Associated with Chemical Weed Control 

While the use of herbicides in agriculture has proven to be a vital resource for producers, 

a major drawback is the potential for crop injury associated with the application of chemicals. 

Crop injury due to herbicide application can take on a number of forms, including stunting, 

chlorosis, epinasty, leaf cupping, root malformation, and necrosis. These symptoms come from a 

variety of herbicide classes and are typically representative of specific SOAs (Boerboom 2005). 

Some common reasons for crop injury due to herbicides include sprayer misapplication, 

chemical persistence in the soil, off-target drift to sensitive crops, and varietal sensitivity to some 

herbicides. With an increased prevalence of weeds that are resistant to postemergence herbicides, 

soil-applied herbicides will become increasingly popular among growers (Hager et al. 2011). 
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With an increase in soil-applied herbicide treatments, reducing crop injury associated with these 

applications appears to be of great importance to growers. Additionally, with the introduction of 

crops with resistance to drift-prone herbicides such as 2,4-D and dicamba, it can reasonably be 

assumed that an increase in prevalence of drift-related crop injury will be seen in the near future.  

Although potential exists for herbicide-related crop injury, a number of methods exist for 

mitigating these risks. One such method includes labeling HR traits in the field through use of 

flags (Scott
 
et al. 2015), which helps to reduce risk of misapplication and bring awareness to 

potential off-target herbicide movement. When applying drift-prone herbicides, following best 

management practices such as those appearing on the Enlist Duo label (Anonymous 2016) can 

greatly reduce damage to susceptible crops and off-target plants. In addition, observing and 

understanding plant-back restrictions such as those presented by Barber et al. (2015) is critical 

for reducing injury caused by soil-applied herbicides. Aside from the above listed methods, the 

use of safeners has proven to be highly effective in some situations for improving crop tolerance 

to herbicides. 

 

Plant Metabolism of Herbicides 

The success and widespread adoption of herbicides is mainly due to their selective nature, 

which destroys susceptible plants and leaves crops intact. Current research suggests that 

herbicidal selectivity is due in large part to a lack of the specific enzymes needed for 

metabolism, such as cytochrome P450 monooxygenases (P450s) and glutathione S-transferase 

enzymes (GSTs) (Riechers et al. 2010). Additionally, selectivity is dependent upon two critical 

components: plant uptake and plant metabolism, and is affected by variations in physiology from 

plant to plant (Cobb and Reade 2010). Cobb and Reade (2010) describe three generalized phases 
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of chemical metabolism once a herbicide has penetrated the waxy leaf surface of plants: 

metabolic attack, conjugation, and sequestration. In metabolic attack, plant enzymes known as 

P450s help to hydroxylate the chemically active parts of herbicidal compounds (eg. aromatic 

rings and alkyl groups). This P450-mediated hydroxylation is an important mechanism of plant 

metabolism of a number of herbicide families such as sulfonylureas, chloroacetamides, and 

imidazolinones (Cobb and Reade 2010).  As such, the importance of this class of enzymes 

cannot be understated.  

Conjugation describes the joining of the hydroxylated product from metabolic attack to 

other cell metabolites such as amino acids and sugars. This step forms a conjugate with higher 

solubility and less phytotoxicity compared to the original herbicidal molecule. A well-understood 

conjugation reaction is the pairing of herbicidal compounds to the antioxidant glutathione via 

GSTs. This pairing helps plants transition to phase three of metabolism, sequestration, as the 

pairing with glutathione directs the herbicidal compound towards the plant vacuole for storage. 

Once in the vacuole, the compound can be stored for long periods of time and presents a much 

smaller phytotoxic risk to the plant. 

 

Herbicide Safeners 

Chemicals that can amplify a crop’s ability to metabolize herbicides without 

compromising efficacy in target weeds are referred to as “antidotes” or “safeners”, and are of 

great interest from a commercial standpoint. While the mechanisms responsible for reducing 

crop injury have proven to be very complex on a cellular level, two of the best-understood 

reasons for the success of crop safeners are their structural similarity to herbicides and their 

ability to increase plant metabolism of the chemicals (Davies and Caseley 1999). Safeners with 
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structural similarity to herbicidal compounds can aid in the prevention of crop damage by 

competitively binding to target enzymes, preventing the herbicide from binding to its active site. 

Alternatively, safener molecules that are structurally dissimilar to the chemicals they protect 

against help to improve the three phases of metabolism described by Cobb and Reade (2010). 

Some safeners have been shown to cause an increased production of P450s and other enzymes 

associated with Phase 1 of metabolism, further increasing the crop’s ability to detoxify the 

herbicide and reduce overall injury. In Phase 2 of metabolism, some safener molecules act by 

inducing production of enzymes that promote herbicide conjugation to glutathione, glucose, and 

other endogenous molecules (Davies and Caseley 1999). The result from improving Phase 2 

reactions is an overall loss of phytotoxicity of the herbicide, as the conjugated molecule does not 

bind to the original active site of the chemical. 

 Herbicide safening activity is most commonly seen in monocot crops such as grain 

sorghum, corn, rice, and winter cereals; however, a few examples exist in dicots such as cotton 

(Jablonkai 2013).  In the grass crops, commercial safeners effectively protect against applications 

of chloroacetamides, thiocarbamates, sulfonylureas, imidazolinones, and 

aryloxyphenoxypropionate herbicides. These safeners can be applied to seeds of the crops or are 

sprayed in conjunction with the herbicidal compound and act as mediators that only allow sub-

lethal amounts of herbicide to reach the target site (Hatzios and Wu 1996). A widely studied 

safening effect in dicots can be seen with the use of clomazone and some organophosphate 

insecticides in cotton. Clomazone is a soil-applied, preemergence herbicide that is labeled for use 

in a number of crops, including cotton; however, in order to ensure adequate crop tolerance in 

cotton, an insecticidal compound must be applied with the herbicide to reduce injury (Ferhatoglu 

et al. 2005). Riechers et al. (2010) reinforced that safening activity is not as prevalent in dicots, 
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and DeRidder and Goldsbrough (2006) suggest that this may be due to the organ-specific nature 

of production of metabolic enzymes. As mentioned by Nielsen (2008), the use of safeners in 

grain sorghum production is vital for reducing crop injury to commercially acceptable levels 

when using chloroacetamide herbicides. If an effective safening method could be consistently 

displayed in dicots such as soybean, similar utility could be expected and could potentially result 

in more herbicides labeled for use in soybean production. 

 

Insecticides as Potential Safeners 

Because of broad-spectrum insect pest control, the neonicotinoid class of insecticide seed 

treatments has rapidly expanded since introduction in 1991 (Elbert et al. 2008). Neonicotinoids 

are highly effective, even at low use rates, and are translocated systemically throughout the plant 

(Elbert et al. 2008). As such, neonicotinoids are often applied as seed treatments to protect plants 

from early-season pests. The use of insecticide seed treatments has increased significantly since 

the early-2000s, and in 2011, nearly 80% of all US corn acreage and over a third of the soybean 

acreage utilized insecticide seed treatments (LaJeunesse 2015).  While use of these seed 

treatments has improved yield due to insect control, Miller et al. (2016) discovered an additional 

benefit in rice production. Field trials in 2013 and 2014 confirmed that conventional rice 

varieties having a CruiserMaxx® insecticide/fungicide seed treatment had both lower visible 

crop injury and higher yield compared to non-treated seeds following applications of drift rates 

of both glyphosate and imazethapyr. Although the mechanisms behind this particular safening 

effect are not yet understood, similar instances where applications of insecticides altered crop 

tolerance to herbicide application have been reported (Clarkson 2014; Kreuz and Fonne-Pfister 

1992; York et al. 1991).  



 

12 
 

Interactions between herbicides and insecticides can cause unexpected outcomes when 

the two are used in combination with one another. For instance, it has been noted that tolerance 

to primsulfuron (a sulfonylurea herbicide) was reduced in corn when the plants were sprayed 

with malathion (an organophosphate insecticide) (Kreuz and Fonne-Pfister 1992). Conversely, in 

cotton, York et al. (1991) found that when disulfoton and phorate (both organophosphate 

insecticides) were applied in-furrow at planting, in combination with clomazone, injury and 

death to cotton seedlings was greatly reduced compared to applications of clomazone alone. 

Culpepper et al. (2001) sought to explain this herbicide/insecticide interaction in cotton and 

ultimately found that the insecticide reduced overall metabolism of clomazone, meaning a 

product of clomazone metabolism is likely the cause of crop injury in cotton. Further 

understanding of these interactions and how specific herbicides cause phytotoxicity, coupled 

with greater knowledge of plant metabolism of insecticides, may improve the utility of 

insecticides for use as safeners. 

As seed treatments continue to remain popular in both grain sorghum and soybean 

production systems, providing the extra utility of acting as a safener could be a significant 

additional benefit to growers, particularly as drift-prone herbicides such as dicamba and 2,4-D 

become increasingly popular. From an industry standpoint, seed treatments are already labeled 

for use in a wide variety of crops; for this reason, little additional product labeling would be 

needed to further increase adoption of the products as safeners. It can be reasoned that this 

combination, if proven to be effective, would provide an added economic benefit for producers 

and chemical companies alike.  Thus, field trials were conducted as part of a two-year study to 

evaluate the potential safening effect to herbicides of insecticide seed treatments in soybean and 

grain sorghum.  
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Chapter 2 

Use of Insecticide Seed Treatments as Safeners to Drift Rates of Herbicides in Soybean and 

Grain Sorghum 

 

Abstract 

Previous research has shown that some insecticide seed treatments provide safening effects in 

rice following exposure to drift rates of the herbicides glyphosate and imazethapyr. However, no 

such research has been conducted to determine whether a similar effect may be seen in soybean 

or grain sorghum, two important rotational crops in Arkansas, and across the Midsouth. In order 

to evaluate a similar result in these two crops, field trials were conducted in Marianna, Arkansas 

in 2015 and 2016, and in Keiser, Arkansas and near Colt, Arkansas in 2016. In soybean, 

glyphosate, glufosinate, 2,4-D, dicamba, halosulfuron, mesotrione, tembotrione, and propanil 

were applied at low rates to simulate drift events, in combination with the insecticide seed 

treatments thiamethoxam and clothianidin, at labeled rates. In grain sorghum, glyphosate, 

imazethapyr, and quizalofop were applied at low rates in combination with the insecticide seed 

treatments thiamethoxam, clothianidin, and imidacloprid, at labeled rates. In soybean, a safening 

effect was seen at one or more site years for all herbicides evaluated, except for propanil. Injury 

reduction was seen at one site year for 2,4-D, dicamba, mesotrione, and tembotrione, at two site 

years for both glyphosate and glufosinate, and at three of four site years for halosulfuron. At one 

site year, the successful safening in halosulfuron resulted in increases in both crop height and 

yield in plots with seed treatments. In some instances a main effect of seed treatment was 

observed, in which case the inclusion of an insecticide seed treatment reduced overall soybean 

injury across all herbicides evaluated. In grain sorghum, reducing injury via seed treatments was 
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generally more successful. All three herbicides applied in sorghum displayed instances of  injury 

reduction at one or more site years, including reducing injury upwards of 40% in the case of 

quizalofop + clothianidin at Marianna in 2016.  For two site years, substantial injury reduction 

through the use of insecticides resulted in increases in crop height, as well as yield in sorghum 

compared to when no insecticide was used. Although degree of safening seen varied depending 

on site year in both crops, growers who use insecticide seed treatments on an annual basis may 

expect to see a safening effect from drift events of most herbicides evaluated in both soybean and 

grain sorghum.  

Nomenclature: 2,4-D; clothianidin; dicamba; glyphosate; glufosinate; halosulfuron; 

imazethapyr; imidacloprid; mesotrione; propanil; quizalofop; tembotrione; thiamethoxam; 

soybean, Glycine max (L.) Merr; grain sorghum, Sorghum bicolor L. 

Key words: Herbicide drift, herbicide safeners 
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Introduction 

 Herbicide-resistant weeds pose a significant threat to crop production in Arkansas and 

throughout the United States. Palmer amaranth (Amaranthus palmeri S. Wats.) and 

barnyardgrass (Echinochloa crus-galli L. Beauv.) are among the most troublesome weeds 

encountered in agricultural production in the midsouthern United States (Webster 2013). These 

two weeds are particularly difficult to control due to the existence of biotypes that are resistant to 

multiple herbicide sites of action (SOAs), including 5-enolpyruvylshikimate-3-phostphate 

(EPSPS)- and acetolactate synthase (ALS)-inhibitors (Heap 2017). In order to combat these 

herbicide-resistant weeds, diversifying management strategies to include multiple effective 

SOAs is recommended (Norsworthy et al. 2012). As part of this diversification, adoption of 

crops with resistance to a number of herbicides, including glufosinate, 2,4-D, dicamba, 

isoxafluotole, and mesotrione is expected to increase in the near future (Riar et al. 2013). With 

the expanding diversity of herbicides used, protecting sensitive crop species from off-target 

herbicide movement will become increasingly important. In Arkansas, both soybean and grain 

sorghum are important rotational crops and are often grown in close proximity to rice, cotton 

(Gossypium hirsutum L.), and crops with herbicide-resistance traits. As a result, the potential 

exists for both crops to be exposed to off-target applications of herbicide via both physical and 

vapor drift. For example, in 2016, over 120,000 ha of soybean across the Midsouth were 

damaged via dicamba drift (J.K. Norsworthy, personal communication). 

Responses of both soybean and grain sorghum to herbicide drift events have been well 

documented, and vary greatly depending upon herbicide and rate. In order to study crop response 

to drift, applications ranging from 1/10 to 1/100x of labeled rates are often made (Al Katib et al. 

2003; Roider et al. 2007; Webster et al. 2016).  According to Wolf et al. (1993), applications 
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within these ranges are consistent with in-crop exposure to a drift event, allowing for accurate 

estimations of crop response. Previous research has shown that grain sorghum exposure to 1/10x 

labeled rates of imazethapyr, glyphosate, and glufosinate can cause 20, 78, and 77% crop injury, 

respectively (Al Khatib et al. 2003). Additionally, Ellis and Griffin (2002) showed that similar 

drift rates of glyphosate and glufosinate resulted in 29 and 40% crop injury in soybean. Injury 

response can differ greatly depending upon type of herbicide and can manifest itself in a number 

of ways including stunting, chlorosis, and necrosis, among others. These symptoms are 

sometimes transient in nature, but can greatly impact yields if injury is severe. As demonstrated 

by Al-Khatib and Peterson (1999), soybean are capable of recovering from V2 to V3 

applications of drift rates as high as 1/3x of labeled rates of both glyphosate and glufosinate by 

30 days after application (DAA), but similar rates of dicamba, prosulfuron, rimsulfuron, and 

thifensulfuron caused prolonged injury, resulting in yield loss. In addition to type of herbicide 

and drift rate received, growth stage of crop during drift exposure can result in variations in yield 

response. Auch and Arnold (1978) showed that exposure of soybean at vegetative growth stages 

to dicamba at 5.6 g ae ha
-1

 caused no reduction in yield, but applications of the same rate to 

reproductive growth stages resulted in yield loss. Due to the damage associated with drift events, 

methods for reducing the risk of crop damage could provide great benefits for growers in 

situations where drift is a concern. 

 One area of interest that could significantly reduce the risk of off-target herbicide injury 

is the use of in-crop safeners. Safeners were discovered in the late 1940’s and allow for reduced 

crop injury from herbicide applications, without sacrificing control of target weeds (Davies and 

Caseley 1999). The use of safening compounds has proven to be effective in a number of 

monocotyledonous crops such as corn (Zea mays L.), rice (Oryza sativa L.), and sorghum 
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(Riechers et al. 2010).  Safeners are commonly used in grain sorghum production and can 

effectively reduce injury from applications of both preemergence (PRE) and postemergence 

(POST) herbicides (Spotanski and Burnside 1973; Barrett 1989).  In contrast, the lack of success 

of herbicide safeners in dicot crops, such as soybean, has been noted on numerous occasions 

(Hatzios 1989; Riechers et al. 2010). Continued research to expand the use of safeners may help 

broaden the number of herbicides available across crops, providing a valuable tool to help fight 

herbicide resistance and reduce economic losses associated with weed competition. 

 Recent research by Miller et al. (2016) showed evidence of a novel method of herbicide 

safening. Rice injury following applications of drift rates of both glyphosate and imazethapyr 

were reduced through the use of the neonicotinoid insecticide seed treatment thiamethoxam. 

Neonicotinoids are the most common class of insecticides used globally, and a vast majority of 

applications comes in the form of crop seed treatments (Douglas and Tooker 2015). 

Neonicotinoid seed treatments are most commonly used in corn, soybean, and cotton, but are 

also used in rice, wheat (Triticum aestivum L.), and other cereals to a lesser extent (Douglas and 

Tooker 2015). The positive impacts associated with these insecticide seed treatments, including 

improved early-season stand and protection against a wide range of insect pests, can often 

provide growers with economic benefits when compared to planting non-treated seed (North et 

al. 2016). Thanks in part to the agronomic and economic benefits of seed treatments, adoption in 

the state of Arkansas has also increased in recent years, with approximately 60 and 75% of grain 

sorghum and soybean, respectively, receiving insecticide seed treatments (G.M. Lorenz, personal 

communication). With the widespread popularity of insecticide seed treatments, a large number 

of growers stand to benefit from potential safening effects associated with neonicotinoids. 

Although research has shown the potential for insecticides to reduce herbicide injury in both 
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cotton (York et al. 1991) and rice, research on safening effects conferred via insecticide seed 

treatments in soybean and grain sorghum are lacking. Thus, the objectives of this research were 

to determine (1) whether thiamethoxam or clothianidin seed treatments safen young soybean 

plants to low rates of dicamba, 2,4-D, glyphosate, glufosinate, halosulfuron, mesotrione, 

tembotrione, or propanil, and (2) whether thiamethoxam, clothianidin, or imidacloprid seed 

treatments safen young grain sorghum plants to low rates of glyphosate, imazethapyr, or 

quizalofop. 

 

Materials and Methods 

Soybean Field Study. A field study was conducted in 2015 at the Lon Mann Cotton Research 

Station (LMCRS) in Marianna, AR, to determine the feasibility of using insecticide seed 

treatments as herbicide safeners in soybean. Following the 2015 field trial, research was repeated 

in 2016 at the LMCRS, in addition to the Pine Tree Research Station (PTRS) near Colt, AR, and 

at the Northeast Research and Extension Center (NEREC) in Keiser, AR. According the USDA 

Web Soil Survey website (Anonymous 2016), the soil series at each location were: Convent silt 

loam (fine-silty, mixed, active thermic Typic Glossaqualf) at LMCRS, Calhoun silt loam 

(Coarse-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) at PTRS, and 

Sharkey silty clay (very-fine, smectitic, thermic Chromic Epiaquerts) at NEREC. At each 

location, UA-5213C, a non-STS, non-herbicide-resistant soybean variety from the University of 

Arkansas, was planted at a seeding rate of 340,000 seeds ha
-1

 to a 2.5- to 3-cm depth. All plots 

consisted of four rows, 7.2 m in length. Row spacing was 96 cm at both LMCRS and NEREC, 

and 76 cm at PTRS. Experiments were established as randomized complete block factorials with 

four replications and two factors: insecticide seed treatment and herbicide applied. Plots were 
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managed using agronomic recommendations provided in the University of Arkansas Soybean 

Production Handbook (Purcell et al. 2014). 

Prior to planting, seeds received a seed treatment with either no insecticide, 

thiamethoxam (Cruiser 5FS, Syngenta Crop Protection, LLC, Greensboro, NC), or clothianidin 

(NipsIt Inside, Valent U.S.A. Corporation, Walnut Creek, CA), applied via a water-based slurry. 

Labeled use rates for soybean (0.5 g ai kg
-1

 seed) were used for both insecticides. Because 

insecticide seed treatments are rarely used without a co-application of fungicides, all treatments 

included the fungicide combination of mefenoxam, fludioxonil, and sedaxane (CruiserMaxx 

Vibrance, Syngenta Crop Protection, LLC, Greensboro, NC) to protect against early-season 

diseases. Labeled use rates of mefenoxam at 0.075 g kg
-1

 seed, fludioxonil at 0.025 g kg
-1

 seed, 

and sedaxane at 0.025 g kg
-1

 seed were applied using the same procedure as treating seeds with 

insecticide. 

 Herbicide drift events were simulated by applying low rates of eight herbicides, none of 

which are labeled in conventional soybean. Dicamba (9 g ae ha
-1

), 2,4-D ester (84 g ae ha
-1

), 

glyphosate (126 g ae ha
-1

), glufosinate (61 g ai ha
-1

), halosulfuron (4 g ai ha
-1

), mesotrione (11 g 

ai ha
-1

), tembotrione (9 g ai ha
-1

), and propanil (560 g ai ha
-1

) were applied using a CO2-

pressurized backpack sprayer calibrated to deliver a continuous carrier volume of 143 L ha
-1

 at 

276 kPa. Applications were made 3 weeks after planting (WAP), corresponding to V2 or V3 

soybean at all locations (Table 1). In order to maintain weed-free plots, a PRE application of 

flumioxazin at 71 g ai ha
-1

 (Valor SX, Valent U.S.A. Corporation, Walnut Creek, CA) was made, 

and late season escapes were controlled via hand removal.  

Visual crop injury ratings were taken weekly following application. Injury ratings were 

on a scale of 0 to 100%, where 0% equals no injury and 100% equals plant death. In 2015, crop 
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height (cm) was taken prior to harvest by measuring the average of five representative plants 

from each four-row plot. In 2016, in an attempt to see variations in crop height closer to 

herbicide application, height measurements were taken two to three weeks after application 

(WAA). Soybean yield data were collected by machine harvesting the two center rows of each 

plot and adjusting grain moisture to 13%.  

Data collected were subjected to two-way analysis of variance (ANOVA) using JMP 

(JMP Pro 12, SAS Institute Inc., Cary, NC), with significant means separated using Fisher’s 

protected LSD (α = 0.05). Site-years were analyzed separately due to considerable variation in 

environmental conditions at each location (Tables 2-5).  For responses that did not produce a 

significant herbicide by insecticide seed treatment interaction, seed treatment main effects were 

evaluated. At evaluation timings where no measurable injury was observed for one or more 

herbicide treatments, the assumptions for ANOVA were not met. When either no interaction was 

identified, or the response did not meet the assumptions for ANOVA, t-tests were conducted to 

compare treatments with no insecticide to each insecticide seed treatment within a herbicide.  

 

Grain Sorghum Study. Similar to the soybean study, an experiment was conducted at the 

LMCRS in 2015 followed by additional studies at LMCRS, PTRS, and NEREC in 2016. DeKalb 

DK-54-00 grain sorghum (Monsanto Company, St. Louis, MO)  was planted at a density of 

222,000 seeds ha
-1

 at a 2.5-cm depth at all locations. All plots measured four rows by 7.2 m in 

length. Row spacing at both LMCRS and NEREC were 96 cm and row spacing at PTRS was 76 

cm. Similarly to soybean trials, University of Arkansas agronomic recommendations for grain 

sorghum production were followed to maintain all plots (Espinosa and Kelley 2004). 
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 Three insecticide seed treatments plus a nontreated check were included as part of a two 

factor factorial (insecticide seed treatment x herbicide). Thiamethoxam, clothianidin, and 

imidacloprid (Gaucho, Bayer CropScience, Research Triangle Park, NC) were applied via water-

based slurry prior to planting at 2, 2, and 2.5 g ai kg
-1

 seed, respectively. Similarly to soybean 

trials, all treatments contained fungicides commonly co-applied with insecticides. Combinations 

of the fungicides mefenoxam (Apron XL, Syngenta Crop Protection, LLC, Greensboro, NC), 

azostrobin (Dyanasty, Syngenta Crop Protection, LLC, Greensboro, NC), and fludioxonil 

(Maxim 4FS, Syngenta Crop Protection, LLC, Greensboro, NC) were applied at 0.075, 0.02, and 

0.05 g ai kg
-1

 seed, respectively. 

 Herbicides were applied identical to soybean trials using a backpack sprayer. Glyphosate 

(157 g ae ha
-1

), imazethapyr (17.5 g ai ha
-1

), and quizalofop (77 g ai ha
-1

) were applied at 

sublethal rates 3 WAP, when sorghum plants were at three- to four-leaf growth stage. These rates 

are likely higher than what would typically occur in a drift event, but were chosen to more 

adequately determine whether safening would occur when using the insecticide seed treatments. 

A broadcast application of S-metolachlor plus atrazine, at 1.06 and 1.12 kg ai ha
-1

, respectively, 

was made at planting to maintain weed-free conditions and late-season weed escapes were 

removed by hand as needed. 

 Data collection timings and analysis were the same as for the soybean experiment, with 

visual injury, crop height, and yield collected and subjected to ANOVA using JMP. For 

responses that did not produce a significant herbicide by insecticide seed treatment interaction, 

seed treatment main effects were evaluated. At evaluation timings where no measurable injury 

was observed for one or more herbicide treatments, the assumptions for ANOVA were not met. 

When either no interaction was identified or the response did not meet the assumptions for 
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ANOVA, t-tests were conducted to compare treatments with no insecticide to each insecticide 

seed treatment within an herbicide. 

 

Results and Discussion 

Soybean Study.  Significant injury reduction through the use of insecticide seed treatments was 

seen in at least one site year for all herbicides evaluated, with the exception of propanil (Tables 

6-9). Injury reduction from halosulfuron drift was the most successful, with safening effects seen 

at three of four site years evaluated, indicated by significant (α=0.05) seed treatment by herbicide 

interactions. At LMCRS (2015), injury from halosulfuron was reduced at all evaluation timings 

by both insecticides (Table 6). Maximum halosulfuron injury reduction was seen at 4 WAA, 

where injury was reduced from 43% to 13% and 3% using thiamethoxam and clothianidin, 

respectively, with similar levels of safening seen at both 1 and 2 WAA (Table 6). The safening 

seen at LMCRS in 2015 also caused a resultant increase in soybean height in both seed 

treatments, and increased grain yield from 3000 kg ha
-1

 in the nontreated plot to 3400 kg ha
-1

 in 

the clothianidin treatment. At LMCRS (2016), injury from halosulfuron was reduced from 16% 

with no insecticide seed treatment to 6% in both clothianidin and thiamethoxam treatments, with 

the thiamethoxam treatment also resulting in increased crop height of 7 cm and a 640 kg ha
-1

 

increase in yield, compared to the nontreated (Table 7). Additional halosulfuron safening was 

seen at NEREC 1 WAA, where a thiamethoxam seed treatment reduced injury form 23% to 

13%, but did not cause an increase in crop height or yield (Table 8).  

 Injury from both glyphosate and glufosinate was reduced via insecticide seed treatments 

at two of four site years evaluated. Following exposure to glyphosate, a significant herbicide by 

insecticide interaction was seen at NEREC, where clothianidin treatments reduced injury from 
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34% to 18% 1 WAA and from 30% to 23% 2 WAA (Table 8). At LMCRS (2016), no significant 

two-way interaction was seen. However, when comparing treatments with and without seed 

treatments via individual t-tests within herbicides, injury was reduced by using thiamethoxam at 

2 and 4 WAA and by using clothianidin 4 WAA following an application of glyphosate (Table 

7). Following a low rate of glufosinate, no significant two-way interaction was seen; however, 

when subjected to individual t-tests, injury was reduced at LMCRS (2016) at 2 and 4 WAA and 

at PTRS 1 WAA. At LMCRS (2016), injury 2 WAA was reduced from 13% to 7% using 

thiamethoxam, and injury 4 WAA was reduced from 12% to 4% and 6%, using thiamethoxam 

and clothianidin, respectively (Table 7). At PTRS, injury 1 WAA was reduced from 15% to 6% 

using thiamethoxam. For both glyphosate and glufosinate, height and yield were not improved as 

a result of the safening effects seen (Table 9). 

  In addition to herbicides that were safened at multiple locations, 2,4-D, dicamba, 

mesotrione, and tembotrione all saw significant injury reductions at one of the site years 

evaluated. With 2,4-D, injury 1 WAA at LMCRS (2015) was reduced from 23% to 9% when 

seed received a thiamethoxam treatment (Table 6). Following dicamba exposure, a significant 

reduction in injury both 2 and 4 WAA at LMCRS (2016) occurred. At 2 WAA, injury was 

reduced from 20% to 13% using thiamethoxam, and 4 WAA injury was reduced from 20% to 

12% with the same seed treatment. In mesotrione treatments at PTRS, reduction in injury was 

seen at 1 and 2 WAA. Injury from mesotrione was reduced from 34% to 28% using both 

thiamethoxam and clothianidin at 1 WAA, and at 2 WAA, injury was reduced from 49% to 34% 

via a thiamethoxam seed treatment (Table 9). For tembotrione, injury 4 WAA at PTRS was 

reduced 8 percentage points by the thiamethoxam seed treatment (Table 9).  
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Overall, this research indicates that safening soybean to herbicide drift may be possible 

through the use of both thiamethoxam and clothianidin seed treatments. Although, with the 

exception of halosulfuron, degrees of safening seen were not comparable to commercially-

available safeners in other crops, the possibility of successfully safening crop injury in soybean 

is a novel concept and would likely aid speed of recovery following a drift event.  Likewise, any 

reduction in injury would also aid the ability of soybean to compete with weeds present within a 

field, a critical component of successful weed management.  Examples of effective herbicide 

safening to sulfonylurea herbicides is documented in corn (Zea mays L.), rice, grain sorghum and 

wheat (Triticum aestivum L.), but not in any dicotyledonous species (Davies and Caseley 1999).  

More in-depth exploration of the safening effects seen in soybean in this study may prove that 

many potential safening options can exist in dicots. 

Due to the wide variation in consistency and degree of injury reduction seen among site 

years, use of insecticide seed treatments solely as safeners in soybean is unlikely from a grower 

perspective. However, because insecticide seed treatments are used on a vast area, under 

differing environmental conditions, there is a high possibility that at least some of the producers 

who use them will see the benefits of potential safening. Injury reduction of 10 to 15% may seem 

negligible, but protecting seedling soybean is of vital importance. Reducing injury to seedlings 

decreases time to canopy closure, which in turn decreases weed interference, and can increase 

crop yields. Since insecticide seed treatments appear to be able to provide this benefit, in 

addition to protecting against early-season insect pests, adoption of insecticide seed treatments in 

the future is likely to increase among soybean growers. 
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Grain Sorghum Study. Compared to the soybean study, use of insecticide seed treatments as 

safeners appears to have even more potential in grain sorghum. Of the three herbicides evaluated, 

all were effectively safened in at least one site year. Injury from glyphosate, imazethapyr, and 

quizalofop were reduced at three, two, and one site year, respectively. Following glyphosate 

exposure, a significant two-way interaction was seen at both LMCRS (2016) and PTRS, and 

individual t-tests showed a reduction in injury at NEREC as well. Glyphosate injury to grain 

sorghum was reduced at all evaluation timings at PTRS through the use of clothianidin and 

imidacloprid. The most effective instance of safening could be seen at 4 WAA, where injury was 

reduced from 48% to 25%, 5%, and 6% through the use of thiamethoxam, clothianidin, and 

imidacloprid, respectively (Table 10). These safening effects from all three insecticide seed 

treatments provided an increase in yield compared to the treatments with no insecticide 

following glyphosate exposure at PTRS. Yield increases of 1710, 2000, and 1410 kg ha
-1

were 

seen in the thiamethoxam, clothianidin, and imidacloprid plots, respectively (Table 10). At 

LMCRS (2016), injury was reduced at both the 2 and 4 WAA evaluation timing with 

thiamethoxam and imidacloprid. At 2 WAA, injury was reduced from 84% to 54% and 70% 

using thiamethoxam and imidacloprid, respectively, and similarly at 4 WAA, where injury was 

reduced from 86% to 48% and 65% (Table 11). Similarly to results at PTRS, the safening seen at 

LMCRS (2016) resulted in increases in both crop height and yield compared to treatments with 

no insecticide seed treatment. Plots with thiamethoxam and imidacloprid seed treatments were 

18 and 6 cm taller, and had yields 2520 and 1330 kg ha
-1

 higher, respectively, compared to the 

nontreated (Table 11). At NEREC, while no significant insecticide by herbicide interaction was 

seen, when treatments with each insecticide were compared to those without insecticides, 
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glyphosate injury was reduced 1 WAA by 7 percentage points, from 78% to 71% via clothianidin 

(Table 12). 

 Injury following exposure to imazethapyr was reduced at both LMCRS (2016) and PTRS 

via insecticide seed treatments. At LMCRS (2016), reduction in injury was seen at all rating 

timings using thiamethoxam, and at the 1 and 4 WAA timings using clothianidin. Injury 4 WAA 

was reduced from 33% to 19% and 7% via thiamethoxam and clothianidin, respectively (Table 

11). An increase in height was seen as a result of this safening, where clothianidin treated plots 

were 5 cm taller compared to the nontreated plots; however, yield was not increased as a result of 

injury reduction. At PTRS, grain sorghum was safened against imazethapyr injury 1 WAA using 

clothianidin, where injury was reduced from 16% to 6% (Table 10). Unlike in instances of 

glyphosate safening, yields were not increased through the use of insecticide seed treatments 

following exposure to imazethapyr. 

 Of the three herbicides evaluated, quizalofop was the least successful in terms of safening 

seen with only one site year showing a reduction in injury through the use of insecticide seed 

treatments. Following exposure to drift rates of quizalofop, injury was reduced at 2 and 4 WAA 

at LMCRS (2016) using clothianidin. Maximum safening was seen at 4 WAA, where injury was 

reduced from 99% to 53% (Table 11). This drastic reduction in injury resulted in both increases 

in crop height (23 cm), as well as yield (4,020 kg ha
-1

) compared to the treatment with no 

insecticide that also received a low rate of quizalofop. 

 Results from the grain sorghum studies are similar to those seen by Miller et al. (2016) 

for rice, where thiamethoxam seed treatments effectively reduced crop injury to reduced rates of 

glyphosate and imazethapyr. In addition to thiamethoxam, it appears that both clothianidin and 

imidacloprid provide similar safening benefits to seedling grass crops like grain sorghum. Since 
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no herbicide-resistance traits are currently used in grain sorghum production, protecting 

seedlings from herbicide drift is particularly important. In the state of Arkansas, grain sorghum is 

often grown in close proximity to glyphosate-resistant soybean, corn, and cotton, and 

imazethapyr-resistant rice. In addition, in 2018, quizalofop-resistant rice will be grown for the 

first time on widespread acreage. Fortunately, for grain sorghum producers, incorporating seed 

treatments that include thiamethoxam, clothianidin, or imidacloprid may alleviate some of the 

concerns associated with drift of these herbicides. 

Herbicide safening is a complex process and can occur through competitive inhibition of 

a target site, chemical antagonism, and increased herbicidal metabolism (Davies and Caseley 

1999). Since the insecticides evaluated in this experiment were not analogous to herbicides 

applied, nor were they tank-mixed with herbicides, the most likely explanation is that herbicide 

metabolism was increased when safening effects were observed. Plant metabolism is a dynamic 

process primarily controlled by enzymatic function (Hatzios and Burgos 2004). The production 

of two of the most important enzymes involved in metabolism of xenobiotic compounds, 

cytochrome P450s (P450s) and glutathione S-transferases (GSTs), can be influenced by various 

environmental conditions (Droog 1997; Durst 1997; Marrs 1996). As such, temperature and 

rainfall likely played a significant role in variability of results from these studies. In this study, 

propanil was the only herbicide not safened in at least one location. Propanil is not metabolized 

via P450s or GSTs; rather it is metabolized by aryl acylamidase in tolerant plants (Hoagland 

1987; Hoagland et al. 2004). The fact that it was not safened through the use of these insecticide 

seed treatments, while other herbicides were, lends more credibility to the assumption that the 

safening effect is a result of increased production of P450s and GSTs.  
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Aside from traditionally-understood herbicide safening, another possible explanation for 

injury reduction could be generalized increases in plant defense mechanisms caused by plant 

uptake of the insecticidal compounds. Research conducted by Ford et al. (2010) showed that 

plant uptake of clothianidin and imidacloprid (both neonicotinoids) leads to production of 

salicylic acid (SA), and SA mimics. Salicylic acid is an important activator molecule that triggers 

widespread plant defense mechanisms, which allow plants to cope with both biotic and abiotic 

stresses (Durrant and Dong 2004; Ryals et al. 1996; Vlot et al. 2009). These SA-triggered 

defense mechanisms are known to promote improved disease tolerance and increase vigor in 

plants, but the exact ways in which they could improve tolerance to herbicides is currently not 

well-understood (Yuan and Lin 2007). A more detailed investigation of these processes could, 

however, show more promise for the potential exploitation of neonicotinoid insecticides as 

herbicide safeners.  

 Instances where injury reduction was not seen may have been due to the fact that in-plant 

concentrations of insecticidal compounds were too low at the time of herbicide application to 

have an effect. According to Bailey et al. (2015), the concentration of neonicotinoid insecticides 

present in a plant is greatly diminished three weeks after planting. Some applications were made 

as late as 31 days after planting (both soybean and grain sorghum studies at NEREC), meaning 

any insecticide still remaining in the plant would have been present at very low levels. Because 

of the short-lived presence of insecticides in crops, safening effects can only be expected for 

early-season drift events. Aside from mitigating risks associated with herbicide drift, more 

research is needed to examine whether safening effects may be seen following applications of 

PRE herbicides where crop injury is a concern. 
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Table 1. General description of experimental sites.
a 

Location Year Planting date Application date Sand Silt Clay pH 

     
--------------%---------------  

LMCRS 2015 5/14/2015 6/8/2015 0.8 90.5 8.7 7.5 

LMCRS 2016 5/5/2016 5/26/2016 0.8 90.5 8.7 7.5 

NEREC 2016 4/19/2016 5/20/2016 22 25 53 6.7 

PTRS 2016 5/19/2016 6/8/2016 0.4 78.1 21.5 7.8 
a 
Abbreviations: LMCRS, Lon Mann Cotton Research Station in Marianna, AR; NEREC, Northeast  

Research and Extension Center in Keiser, AR; PTRS, Pine Tree Research Station near Colt, AR 
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Table 2. Environmental conditions at the Lon Mann Cotton Research Station in Marianna, AR in 2015 beginning at planting (May 

14), with herbicide application date marked with an asterisk. 

 
 

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

30

35

40

P
re

ci
p

it
a
ti

o
n

 (
cm

) 

T
em

p
er

a
tu

re
 (

C
) 

Date 

Precipitation Hi Temp Low Temp

* 

 



 

 
 

3
8
 

 

Table 3. Environmental conditions at the Lon Mann Cotton Research Station in Marianna, AR in 2016 beginning at planting (May 5), 

with herbicide application date marked with an asterisk. 
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Table 4. Environmental conditions at the Northeast Research and Extension Center in Keiser, AR in 2016 beginning at planting date 

(April 19), with herbicide application date marked with an asterisk. 
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Table 5. Environmental conditions at the Pine Tree Research Station near Colt, AR in 2016 beginning at planting date (May 19), with 

herbicide application date marked with an asterisk. 
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Table 6. Soybean injury, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2015.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA 2 WAA  4 WAA Height
c 

Yield
d 

  
--------------------------- % ------------------------------ cm kg ha

-1 

None None 0 0 0 71 3770  

Thiamethoxam 0 0 0 70 3170  

Clothianidin 0 0 0 71 3380 

Dicamba None 24 38  15 60 3360 

Thiamethoxam 21 46  16 54 3000  

Clothianidin 28 35  19 56 3340 

2,4-D None 23  9  1 68 3520 

Thiamethoxam   9* 9  2 72 3400 

Clothianidin 14  8  1 71 3390 

Glyphosate None 9  15  1 66 3570 

Thiamethoxam 6  10  2 67 3250  

Clothianidin 8  14  1 67 3540 

Glufosinate None 13  14  12 66 3300 

Thiamethoxam 13  9  6 65 3380 

Clothianidin 11  8  3 72 3360 

Halosulfuron None 40  46  41 58 3170 

Thiamethoxam  19* 16* 13* 67* 3000 

Clothianidin  10*   6*   3* 71*   3400* 

Mesotrione None 8 9 3 71 3460  

Thiamethoxam 11 4 1 71 3710 

Clothianidin 10  9  3 70 3580 

Tembotrione None 8  5  1 72 3360 

Thiamethoxam 10  8  1 70 3490 

Clothianidin 6  5  3 71 3580  
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Table 6 (Cont.) Soybean injury, height, and yield at LMCRS in Marianna, AR in 2015.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA 2 WAA  4 WAA Height
c 

Yield
d 

  
--------------------------- % ------------------------------ cm kg ha

-1
 

Propanil None 13 16 5 71 3310 

Thiamethoxam 18 16 8 67 3090 

Clothianidin 6 8 1 73 3260 
a 
Abbreviations: LMCRS, Lon Mann Cotton Research Station; WAA, weeks after application; NS, non-significant

 

b 
Means followed by an asterisk indicate significant reduction in injury compared to no insecticide seed treatment within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). 
c 
Means followed by an asterisk indicate significant increase in crop height compared to no insecticide seed treatment within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). 
d 

No significant differences were seen among seed treatments within herbicide treatments according to Fisher’s protected LSD 

(α=0.05). 
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Table 7. Soybean injury, height, and yield at LMCRS in Marianna, AR in 2016.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA 2 WAA
c 

 4 WAA Height
d 

Yield
e 

  
--------------------------- % ------------------------------ cm kg ha

-1
 

None None 0  0 0 42 2590 

Thiamethoxam 0 0 0 46 2460 

Clothianidin 0 0 0 46 2490 

Dicamba None 16  20 20  33 2700 

Thiamethoxam 13    13‡   12‡ 36 2720 

Clothianidin 16  16 16  34 1910 

2,4-D None 2  3  5  40 2380 

Thiamethoxam 0 1  4  43 2530 

Clothianidin 0 0 3  42 2760 

Glyphosate None 23 13  12   36 2870 

Thiamethoxam 20   7‡   4‡ 38 2450 

Clothianidin 18  11    6‡ 36 2930 

Glufosinate None 33  14  13 33 2840 

Thiamethoxam 35    9‡   7‡ 37 2660 

Clothianidin 28  11 9  36 2660 

Halosulfuron None 19  5  5  38 2010 

Thiamethoxam 6* 0  0 43‡  2650‡ 

Clothianidin 6* 1  2  40 2600 

Mesotrione None 20 1  1  40 2730 

Thiamethoxam 25 2  1  41 2720 

Clothianidin 21 1  2  41 2940 

Tembotrione None 9 1  2  41 2760 

Thiamethoxam 9  0 0 45 2660 

Clothianidin 15 1  1  41 2690 
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Table 7 (Cont.) Soybean injury, height, and yield at LMCRS in Marianna, AR in 2016.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA 2 WAA
c 

 4 WAA Height
d 

Yield
e 

  
--------------------------- % ------------------------------ cm kg ha

-1
 

Propanil None 8  4  4  39 2890 

Thiamethoxam 9  2  1  40 2680 

Clothianidin 7  3  2  40 2730 

 None  7 7 38 NS 

Main effect Thiamethoxam    6† 6† 39 NS 

 Clothianidin    4† 4† 41† NS 
a 
Abbreviations: LMCRS, Lon Mann Cotton Research Station;WAA, weeks after application; NS, non-significant

  

b 
Means followed by an asterisk indicate significant reduction in injury, compared to no insecticide seed treatment, within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). Means followed by a single dagger indicate a significant seed 

treatment main effect using the same criteria. 
c,d,e 

For responses that did not produce a herbicide by insecticide seed treatment interaction, a t-test was conducted to compare 

treatments with no insecticide to each insecticide seed treatment within an herbicide. Where use of an insecticide seed treatment 

reduced injury or increased height or yield compared to no insecticide, means are marked with a double dagger (‡) 
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Table 8. Soybean injury, height, and yield at NEREC in Keiser, AR in 2016.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA 2 WAA  4 WAA
 

Height
c 

Yield
 

  
--------------------------- % ------------------------------ cm kg ha

-1 

None None 0 0 0 31 3940 

Thiamethoxam 0 0 0 33 3800 

Clothianidin 0 0 0 33 3850 

Dicamba None 41  40  20  14 3500 

Thiamethoxam 38  36 14  28‡ 3670 

Clothianidin 44  41 8  25‡ 3920 

2,4-D None 11  4 0 26 3890 

Thiamethoxam 10  6 0 27 4030 

Clothianidin 10  4  0 28 3840 

Glyphosate None 34  36 5  25 3740 

Thiamethoxam 34  30 6  25 3560 

Clothianidin   18*   23* 5  24 3530 

Glufosinate None 15 15 8  29 3810 

Thiamethoxam 13 9  0 29 3710 

Clothianidin 13  9  0 31 3500 

Halosulfuron None 23  20  2  24 4120 

Thiamethoxam   13* 13  0 24 4230 

Clothianidin 24  27  0 25 3920 

Mesotrione None 16  13  0 27 3720 

Thiamethoxam 16  11  0 28 3700 

Clothianidin 13  9 0 29 3870 

Tembotrione None 18  16  0 28 3910 

Thiamethoxam 19 15  0 28 3650 

Clothianidin 19 17  0 28 3840 
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Table 8 (Cont.) Soybean injury, height, and yield at NEREC in Keiser, AR in 2016.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA 2 WAA
c 

 4 WAA Height
c 

Yield
 

  
--------------------------- % ------------------------------ cm kg ha

-1 

Propanil None 14 10  0 28 3860 

Thiamethoxam 6 4  0 29 3910 

Clothianidin 10  6  0 29 3930 

 None   NS 27 NS 

Main effect Thiamethoxam   NS 28† NS 

 Clothianidin   NS 28† NS 
a 
Abbreviations: NEREC, Northeast Research and Extension Center; WAA, weeks after application; NS, non-significant

  

b 
Means followed by an asterisk indicate significant reduction in injury, compared to no insecticide seed treatment, within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). Means followed by a cross indicate a significant seed treatment 

main effect using the same criteria. 
c 
For responses that did not produce a herbicide by insecticide seed treatment interaction, a t-test was conducted to compare treatments 

with no insecticide to each insecticide seed treatment within an herbicide. Where use of an insecticide seed treatment reduced injury or 

increased height or yield compared to no insecticide, means are marked with a double dagger (‡) 
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Table 9. Soybean injury, height, and yield at PTRS near Colt, AR in 2016.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA
d 

2 WAA  4 WAA
e 

Height
 

Yield
c 

  
--------------------------- % ------------------------------ cm kg ha

-1 

None None 0 0 0 19 2500 

Thiamethoxam 0 0 0 19 2080 

Clothianidin 0 0 0 21 2670 

Dicamba None 17  45  36  16 2300 

Thiamethoxam 16  45 30  16 2230 

Clothianidin 18  46  30  16 2550 

2,4-D None 21  40  26  16 2160 

Thiamethoxam 18  46  31  14 2120 

Clothianidin 13  40  24  16 2610 

Glyphosate None 17  20  19  17 2550 

Thiamethoxam 18  28  25  17 2180 

Clothianidin 14  28  23  17 2780 

Glufosinate None 15  18  14  19 2360 

Thiamethoxam    6‡ 21  24  20 2300 

Clothianidin 8  15  11  18   3000* 

Halosulfuron None 25 40  30  14 2350 

Thiamethoxam 26 48  42  16 1970 

Clothianidin 26 46 26  17 2420 

Mesotrione None 34  49 31  16 2520 

Thiamethoxam   28‡   34*  30  18 2640 

Clothianidin   28‡ 51  34  17 2510 

Tembotrione None 26  35  26  18 2550 

Thiamethoxam 20  30    18‡ 18 2290 

Clothianidin 33  32  31  16 2350 
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Table 9 (Cont.) Soybean injury, height, and yield at PTRS near Colt, AR in 2016.
a
 

    Injury
b 

        

Herbicide Seed treatment 1 WAA
d 

2 WAA
 

 4 WAA
c 

Height
 

Yield
e 

  
--------------------------- % ------------------------------ cm kg ha

-1 

Propanil None 18  44 23  17 2660 

Thiamethoxam 21 41  23  18 2420 

Clothianidin 17  39  30  18 2580 

 None 22  NS 27 NS 

Main effect Thiamethoxam 21  NS 28† NS 

 Clothianidin  19†  NS 28† NS 
 

a  
Abbreviations: PTRS, Pine Tree Research Station; WAA, weeks after application; NS, non-significant

  

b,c 
Means followed by an asterisk indicate significant reduction in injury, compared to no insecticide seed treatment, within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). Means followed by a cross indicate a significant seed treatment 

main effect using the same criteria. 
d,e 

For responses that did not produce a herbicide by insecticide seed treatment interaction, a t-test was conducted to compare 

treatments with no insecticide to each insecticide seed treatment within an herbicide. Where use of an insecticide seed treatment 

reduced injury or increased height or yield compared to no insecticide, means are marked with a double dagger (‡) 
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Table 10. Grain sorghum injury, height, and yield at PTRS near Colt, AR in 2016.
a 

    Injury
b 

    

Herbicide Seed treatment  1 WAA 2 WAA 4 WAA Yield
c 

  
--------------------------- % ------------------------------ kg ha

-1 

None  None 0 0 0 4040  

Thiamethoxam 0 0 0   5750* 

Clothianidin 0 0 0   6040* 

Imidacloprid 0 0 0   5450* 

Glyphosate None 76 65 48  1760  

Thiamethoxam 76 59 28*  4380* 

Clothianidin 24* 9* 5*   4710*  

Imidacloprid 21* 11* 6*   5450*  

Imazethapyr  None 16 5 0 4800  

Thiamethoxam 6* 2 0 4550 

Clothianidin 10 3 0 5130 

Imidacloprid 11 3 0 5310 

Quizalofop  None 36 20 8 3320 

Thiamethoxam 28 15 5 3320 

Clothianidin 35 24 4 3980 

Imidacloprid 30 22 1   5420*  
a 
Abbreviation: PTRS, Pine Tree Research Station; WAA, weeks after application

  

b 
Means followed by an asterisk indicate significant reduction in injury compared to no insecticide seed treatment within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). 
c 
Means followed by an asterisk indicate increase in yield compared to no insecticide seed treatment within the same herbicide 

treatment according to Fisher’s protected LSD (α=0.05). 
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Table 11. Grain sorghum injury, height, and yield at LMCRS at Marianna, AR in 2016
a
. 

    Injury
b 

        

Herbicide Seed treatment  1 WAA 2 WAA 4 WAA Height
c 

Yield
e 

  
-------------------------------- % ------------------------------ cm kg ha

-1 

None  None 0 0 0 27 4780  

Thiamethoxam 0 0 0 29 3920 

Clothianidin 0 0 0 29 4480 

Imidacloprid 0 0 0 28 4350 

Glyphosate None 60 84 86 10 1910 

Thiamethoxam 62   54*   48*   28*  4430* 

Clothianidin 59 83 85 11 1950 

Imidacloprid 51 70*   65*   16*   3240* 

Imazethapyr  None 43 29 33 25 4060  

Thiamethoxam   31*   19*   19* 24 4570 

Clothianidin   28* 26    7*   30* 4010 

Imidacloprid 46 32 36 22 4440 

Quizalofop  None 80 96 99 6 520 

Thiamethoxam 80 99 99 8 440 

Clothianidin 74   68*   53*   29*   4540* 

Imidacloprid 81 99 99 3 380  
a 
Abbreviation: LMCRS, Lon Mann Cotton Research Station; WAA, weeks after application

  

b 
Means followed by an asterisk indicate significant reduction in injury compared to no insecticide seed treatment within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). 
c 
Means followed by an asterisk indicate significant increase in height compared to no insecticide seed treatment within the same 

herbicide treatment according to Fisher’s protected LSD (α=0.05). 
d 

Means followed by an asterisk indicate increase in yield compared to no insecticide seed treatment within the same herbicide 

treatment according to Fisher’s protected LSD (α=0.05). 
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Table 12. Grain sorghum injury, height, and yield at Northeast Research and Extension Center at Keiser, AR in 2016.
a 

    Injury
 

        

Herbicide Seed treatment  1 WAA
b 

2 WAA Height
c 

Yield
b 

  
------------------- % ------------------ cm kg ha

-1 

None  None 0 0 62 5590 

Thiamethoxam 0 0 61 6390 

Clothianidin 0 0 63 5460 

Imidacloprid 0 0 63 4670 

Glyphosate None 78 90 17 1090 

Thiamethoxam 74 90 17 100 

Clothianidin   71‡ 88 18 280 

Imidacloprid 75 90 17 130 

Imazethapyr  None 64 58 19 4480 

Thiamethoxam 61 60 21 3970 

Clothianidin 63 59 17 3360 

Imidacloprid 63 64 19 5240 

Quizalofop  None 78 63 20 2530 

Thiamethoxam 81 68 17 1460 

Clothianidin 74 66 17 3360 

Imidacloprid 79 70 19 1900 

Main effect 

None  NS NS NS 

Thiamethoxam  NS NS NS 

Clothianidin  NS NS NS 

Imidacloprid  NS NS NS 
a 
Abbreviation: WAA, weeks after application; NS, non-significant

  

b,
 For responses that did not produce a herbicide by insecticide seed treatment interaction (α=0.05), a t-test was conducted to compare 

treatments with no insecticide to each insecticide seed treatment within an herbicide. Where use of an insecticide seed treatment 

reduced injury or increased height or yield compared to no insecticide, means are marked with a double dagger (‡) 
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Table 13. Grain sorghum injury, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2015.
a,b

 

    Injury
b 

        

Herbicide Seed treatment  1 WAA 2 WAA 4 WAA Height
 

Yield
c 

  
--------------------------- % ------------------------------ cm kg ha

-1 

None  None 0 0 0 139 6120 

Thiamethoxam 0 0 0 141 6850 

Clothianidin 0 0 0 140 7430 

Imidacloprid 0 0 0 146 6710 

Glyphosate None 60 49 9 133 4980 

Thiamethoxam 63 48 15 131 3790 

Clothianidin 65 49 7 125 5740 

Imidacloprid 66 48 15 121 3560 

Imazethapyr  None 15 18 0 130 4730 

Thiamethoxam 13 14 0 142 5620 

Clothianidin 15 11 0 141 5720 

Imidacloprid 13 11 0 137 6010 

Quizalofop  None 97 94 76 112 2440 

Thiamethoxam 97 98 83 101 1540 

Clothianidin 96 93 76 100 2170 

Imidacloprid 95 93 81 100 1490 

Main effect 

None NS NS NS NS  NS 

Thiamethoxam NS NS NS NS NS 

Clothianidin NS NS NS NS NS 

Imidacloprid NS NS NS NS  NS 
a 
Abbreviation: WAA, weeks after application; NS, non-significant

  

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides.
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Chapter 3 

Use of Insecticide Seed Treatments as Safeners to Applications of Residual Herbicides in 

Soybean and Grain Sorghum 

 

Abstract 

With increased instances of weed resistance to applications of postemergence herbicides, 

applying soil-applied herbicides that offer residual activity is becoming popular. Unfortunately, 

under some conditions, the use of residual herbicides can result in unintentional injury to crops. 

However, there are a number of ways to reduce the risks associated with these herbicides, 

including the use of in-crop herbicide safeners. Based on previous research conducted in rice, the 

potential may exist for seeds treated with insecticides to be successfully safened to certain 

herbicides, including those applied to the soil. Field trials were conducted in Marianna, Arkansas 

in 2015 and 2016 and in Keiser and near Colt, Arkansas in 2016 to explore this possibility in 

soybean and grain sorghum. In soybean, seeds were treated with the insecticide thiamethoxam 

and subsequently the herbicides metribuzin, saflufenacil, pyroxasulfone, sulfentrazone, 

chlorimuron, flumioxazin, mesotrione, chlorsulfuron, and 

flumioxazin+pyroxasulfone+chlorimuron were applied immediately after planting. Of the nine 

herbicides evaluated, successful safening was observed in six, including saflufenacil, 

pyroxasulfone, sulfentrazone, flumioxazin, and flumioxazin+pyroxasulfone+chlorimuron.  The 

highest degree of safening was seen 1 WAE at Keiser, where injury from 

flumioxazin+pyroxasulfone+chlorimuron was reduced from 44% to 29%. Results indicate that 

although a thiamethoxam seed treatment may reduce phytotoxicity from some herbicides in 

soybean, these benefits do not correspond to increased crop height, density, or yield compared to 
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non-treated seed. In grain sorghum, seeds were treated with thiamethoxam and the herbicides 

fomesafen, imazethapyr, and quizalofop applied preemergence. Injury in grain sorghum was 

≤4% in all site-years, except for one. This low injury may have been a function of the herbicides 

not being incorporated into the soil profile for uptake by the seedling grain sorghum. Based on 

the results from this study, not enough crop injury was produced in grain sorghum to detect a 

safening response; as a result, more research is needed to definitively prove or disprove the 

utility of insecticide seed treatments as effective safeners. 

Nomenclature: chlorsulfuron; clomazone; fomesafen; fluxofenin; imazethapyr; mesotrione; 

metribuzin; metolachlor; pyroxasulfone; quizalofop; saflufenacil; sulfentrazone; thiamethoxam; 

soybean, Glycine max (L.) Merr; grain sorghum, Sorghum bicolor (L.) Moensch ssp. Bicolor. 

Key words: Residual herbicides, herbicide safeners 
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Introduction 

 Herbicide use in the U.S. is a vital component of agriculture production. Gianessi and 

Reigner (2007) estimate that herbicide use provides a labor equivalent of 70 million hand 

laborers, and increases crop yields as much as 20%. The introduction of herbicide-resistant (HR) 

crops has also significantly improved the efficiency of crop production, both in the U.S. and 

globally (Brookes and Barfoot 2012). Beginning with the introduction of glyphosate-resistant 

soybean in 1996, the widespread adoption of HR crops provided growers with the ability to 

effectively control a broad spectrum of weeds by utilizing just one or two postemergence (POST) 

applications of a herbicide with a single mode of action (Young 2006). Unfortunately, this 

reduction in diversity of chemical weed control practices resulted in the evolution of weed 

populations with resistance to herbicides that were once highly effective (Vencill et al. 2012). 

For example, overreliance upon glyphosate has resulted in glyphosate-resistance in 37 individual 

weed species since 2000 (Heap 2017). In order to effectively combat herbicide resistance, the use 

of herbicides with residual activity is recommended (Norsworthy et al. 2012; Owen et al. 2011). 

 Residual herbicides are applied to the soil surface and their use offers a number of 

benefits to crop producers. They typically control a broad spectrum of weeds, including both 

grasses and broadleaves, and can offer several weeks of residual weed control (DeWerff et al. 

2015; Meyer et al. 2016). Although the application of a residual herbicide alone is seldom 

adequate for season-long weed control, when used as a component of a sequential herbicide 

program, high levels of weed control can be achieved, resulting in increased crop yields 

compared to programs that do not include residual herbicides (Aulakh and Jhala 2015; Loux et 

al. 2011). The residual activity provided by these herbicides typically allows for later 

applications of POST-applied herbicides and, thus, improved flexibility for crop producers (Ellis 
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and Griffin 2002).  Apart from being applied by themselves, residual herbicides can be tank-

mixed with a number of POST-applied herbicides. In these instances, the POST herbicide 

controls weeds that have already emerged, whereas the residual herbicide provides lasting 

control of weeds that have not yet germinated at the time of application. This approach results in 

high levels of weed control, which can consequently improve crop yield (Aulakh and Jhala 

2015).   

In addition to providing the obvious benefit of successfully controlling weeds, residual 

herbicides are also important herbicide-resistance management tools. Because residual herbicides 

greatly decrease the number of weeds present early in the season, there is decreased resistance 

selection on POST herbicides in subsequent applications. Reduced selection results in less 

likelihood for herbicide resistance, which in turn increases the potential lifespan of a given 

herbicide (Beckie 2006; Norsworthy et al. 2012). Including residual herbicides as part of a tank 

mixture with POST herbicides results in an increased number of herbicide modes of action 

(MOA) applied to weeds. Applications of multiple, effective herbicide MOAs is one of the most 

important methods for delaying the onset of herbicide resistance (Norsworthy et al. 2012). 

 Unfortunately, one main drawback associated with the use of residual herbicides is crop 

injury following application. In some cases, herbicides that are labeled for use in-crop can cause 

injury to young plants. Flumioxazin, sulfentrazone, chlorimuron, S-metolachlor, and 

pyroxasulfone are some examples in soybean production (McNaughton et al. 2014; Talyor-

Lovell 2001; Whitaker et al. 2010). Crop response to these preemergence (PRE) herbicides can 

be greatly variable depending upon both soil and environmental conditions, with cool, wet, and 

low pH conditions causing the most crop injury in soybean following applications of flumioxazin 

and sulfentrazone (Taylor-Lovell et al. 2001). In addition to temperature, moisture, and pH, soil 
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organic matter (SOM) and texture can impact the activity of herbicides to varying degrees, 

depending upon the herbicide (Eberlein 1984; Gannon 2014).  Aside from environmental effects, 

varietal selection can cause substantial variation in response to soil-applied herbicides (Swantek 

et al. 1998).  Early-season injury from herbicides typically dissipates quickly with no adverse 

effects on crop yield, but in some cases, more severe injury symptoms and stand loss can cause 

reduced yields (McNaughton et al. 2014; Taylor-Lovell et al. 2001).  

Another concern with residual herbicides is injury to successive crops. Due to their 

relatively long half-lives, plant-back restrictions are needed for many soil-applied herbicides in 

order to protect crops in replant situations following crop failure, as well as crops grown the next 

season (Barber et al. 2014). These plant-back restrictions can greatly limit rotational options and 

can drive growers’ decisions on what to plant the following year. One notable example of where 

crop rotation is directly influenced by herbicide use in the state of Arkansas can be seen in 

imidazolinone-resistant (Clearfield®, BASF Corporation, Research Triangle Park, NC) rice 

(Oryza sativa L.). Imidazolinone-resistant rice is tolerant to applications of the herbicide 

imazethapyr, an acetolactate synthase (ALS)-inhibiting imidazolinone. According to Renner et 

al. (1998), imidazolinones can persist in the soil as long as two years after their initial 

application. Grain sorghum, cotton, and conventional rice all have a rotational restriction of 18 

months following imazethapyr applications, meaning rice producers in Arkansas are limited to 

planting soybean, corn (Zea mays L.), or imidazolinone-resistant rice the following season 

(Barber et al 2014).  

A possible solution to preventing or reducing the effects of crop injury when using 

residual herbicides is the use of herbicide safeners. Safeners typically act by increasing a plants’ 

ability to metabolize herbicides.  Through the use of safeners, crop injury can be reduced such 
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that a herbicide can be used in crops where it causes unacceptable levels of injury when applied 

without a safener (Davies and Caseley 1999). The herbicide safener fluxofenin (Concep III, 

Syngenta Crop Protection, LLC, Greensboro, NC) is already used extensively in grain sorghum 

production to prevent injury from PRE herbicides. Without a fluxofenin seed treatment, 

chloroacetamide herbicides such as S-metolachlor and alachlor cannot be applied in sorghum 

production (Espinosa and Kelley 2004).  

The benefits of applying herbicide safeners as seed treatments are twofold: injury from 

herbicides is greatly decreased, and the safener is selectively applied to the crop (Davies and 

Caseley 1999). Applying the safener only to the crop ensures that safening effects are not 

conferred to the weeds present in a field, maintaining herbicidal efficacy. This property is highly 

desirable, and thus, seed-applied safeners have great value. Recently, Miller et al. (2016) 

reported that the insecticide seed treatment thiamethoxam (Cruiser 5S, Syngenta Crop 

Protection, LLC, Greensboro, NC), in addition to protecting seedling rice from early-season 

insect damage, also provided a reduction in crop injury following application of some POST 

herbicides. Although in-plant concentrations of insecticides decrease substantially 3 to 4 weeks 

after planting (Bailey et al. 2015), enough insecticidal material was still present in the rice at this 

time to produce a safening effect. Since safening effects were seen even in the case of low 

thiamethoxam presence, it was hypothesized that similar effects may be seen at crop emergence, 

when thiamethoxam concentration is much higher in the plant. Thus, research was conducted to 

determine whether thiamethoxam could be used to reduce crop injury from select soil-residual 

herbicides in soybean and grain sorghum.  
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Materials and Methods 

Soybean Study.  A soybean experiment was conducted at the Lon Mann Cotton Research 

Station (LMCRS) in Marianna, AR, in 2015 to assess potential safening effects to residual 

herbicides conferred via insecticide seed treatments. In 2016, experiments were repeated at 

LMCRS, in addition to at the Northeast Research and Extension Center (NEREC) in Keiser, AR, 

and at the Pine Tree Research Station (PTRS) near Colt, AR.  DG5067LL (Delta Grow Seed 

Company Inc., England, AR), a glufosinate-resistant, non-STS, maturity group 5.2 soybean, was 

planted at a seeding rate of 340,000 seeds ha
-1

 to an approximate 2.5-cm depth. Four-row plots 

were established utilizing a randomized complete block design with four replications. Row 

spacings were 96 cm at LMCRS and NEREC, and 76 cm at PTRS, with plot length at all 

locations of 7.2 m. Plots were managed using agronomic recommendations provided in the 

University of Arkansas Soybean Production Handbook (Purcell et al. 2014).The soils at LMCRS, 

NEREC, and PTRS were a Convent silt loam (fine-silty, mixed, active thermic Typic 

Glossaqualf), Sharkey silty clay (very-fine, smectitic, thermic Chromic Epiaquert), and Calhoun 

silt loam (coarse-silty, mixed, superactive, nonacid, thermic, Fluvaquentic Endaquept), 

respectively (Anonymous 2016). Prior to planting, all seeds received a fungicide seed treatment 

of mefenoxam+fludioxonil+sedaxane (Cruiser plus Vibrance, Syngenta Crop Protection, LLC, 

Greensboro, NC) at a rate of 0.075+0.025+0.025 g ai kg
-1

 seed. In addition to fungicides, seeds 

were treated with either no insecticide or thiamethoxam (Cruiser 5S, Syngenta Crop Protection, 

LLC, Greensboro, NC) at 0.5 g ai kg
-1

 seed. Both fungicide and insecticide seed treatments were 

made using a water-based slurry. Herbicide applications were made at planting, using a CO2-

pressurized backpack sprayer calibrated to deliver 143 L ha
-1

 at 276 kPa (Table 1). Seven 

herbicides that are labeled for use in soybean were applied at, or slightly above, their 

recommended PRE rates to encourage injurious symptomology. These herbicides included: 
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metribuzin (841 g ha
-1

), saflufenacil (75 g ha
-1

), pyroxasulfone (268 g ha
-1

), sulfentrazone (533 g 

ha
-1

), chlorimuron (79 g ha
-1

), flumioxazin (107 g ha
-1

), and 

chlorimuron+flumioxazin+pyroxasulfone (29+108+136 g ha
-1

).  In addition, two herbicides that 

commonly cause injury to soybean via carryover - mesotrione (42 g ha
-1

) and chlorsulfuron (1.8 

g ha
-1

) - were applied at reduced rates to simulate amounts that may be present following 

applications the previous growing season.  

Following application, visual injury ratings were collected weekly on a 0 to 100% scale, 

where 0% = no injury and 100% = soybean death. In addition, crop density and height 

measurements were made three weeks after application to allow for adequate germination across 

the test. Yield data were collected by harvesting the center two rows of each plot and correcting 

seed moisture to 13%. Data were subjected to analysis of variance, and significant means were 

separated using Fisher’s protected LSD (α=0.05). Site-years were analyzed separately due to 

considerable variation in environmental conditions at each location (Tables 2-5) and differing 

responses at each of the sites. For responses that did not produce a significant herbicide by 

insecticide seed treatment interaction, seed treatment main effects were evaluated. At evaluation 

timings where no measurable injury was observed for one or more herbicide treatments, the 

assumptions for ANOVA were not met. When either no interaction was identified or the 

response did not meet the assumptions for ANOVA, t-tests were conducted to compare 

treatments with no insecticide to each insecticide seed treatment within a herbicide. 

Grain Sorghum Study. Trials were initiated at LMCRS in 2015, and repeated in 2016 at 

LMCRS, NEREC, and PTRS. Plots established were four rows wide by 7.2 m in length. Row 

spacing at both LMCRS and NEREC was 96 cm, and row spacing at PTRS was 76 cm. DK-54-

00 (Monsanto Company, St. Louis, MO) grain sorghum was planted to a 2.5-cm depth at a 
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density of 222,000 seeds ha
-1

. Seeds were treated with either no insecticide or thiamethoxam at 2 

g ai kg
-1 

seed to produce a two-factor factorial (insecticide by herbicide). In addition to 

insecticide seed treatments, all seeds included a fungicide seed treatment of mefenoxam (Apron 

XL, Syngenta Crop Protection, LLC, Greensboro, NC) at 0.075 g ai kg
-1

 seed
 
, plus azostrobin 

(Dyanasty, Syngenta Crop Protection, LLC, Greensboro, NC) at 0.02 g ai kg
-1

 seed, plus 

fludioxonil (Maxim 4FS, Syngenta Crop Protection, LLC, Greensboro, NC) at 0.05 g ai kg
-1

 

seed. Three herbicides that commonly cause carryover injury in the state of Arkansas were 

applied PRE to assess whether a safening effect would occur. Fomesafen was applied at 18 and 

70 g ai ha
-1

, in addition to imazethapyr at 13 g ai ha
-1

. Quizalafop, which is labeled for 

application in quizalofop-resistant Provisia rice (BASF Corporation, Research Triangle Park, 

NC), was also applied at 159 g ai ha
-1

 to simulate planting grain sorghum following a rice crop 

failure. Plots were managed consistently with University of Arkansas agronomic 

recommendations for grain sorghum production in the state (Espinosa and Kelley 2004). 

All herbicides were applied using a CO2-pressurized backpack sprayer calibrated to 

deliver 143 L ha
-1

 at 276 kPa.  Following application, visual crop injury ratings were made on a 0 

to 100% scale, with 0 corresponding to no crop injury and 100 corresponding to sorghum death. 

Sorghum height and stand density were collected three weeks after application. Plant height was 

measured by randomly selecting five plants within the two center rows of each plot and 

measuring distance from soil surface to apical meristem and averaging the five heights. Stand 

was collected by measuring emerged plants in a meter-long section of each of the two center 

rows for each plot, with the average of the two numbers representing plot density. Yield was 

collected by machine harvesting the two center rows from each plot and correcting grain 

moisture to 13%. Data were subjected to analysis of variance, and means separated using 
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Fisher’s protected LSD (α=0.05). Site-years were analyzed separately due to considerable 

variation in environmental conditions at each location (Tables 2-5). For responses that did not 

produce a significant herbicide by insecticide seed treatment interaction, seed treatment main 

effects were evaluated. At evaluation timings where no measurable injury was observed for one 

or more herbicide treatments, the assumptions for ANOVA were not met. When either no 

interaction was identified or the response did not meet the assumptions for ANOVA, t-tests were 

conducted to compare treatments with no insecticide to each insecticide seed treatment within a 

herbicide. 

 

Results and Discussion  

 

Soybean Study. Of the nine herbicides evaluated, six showed reductions in injury in at least one 

site year. Injury reduction was seen at two site years for saflufenacil, flumioxazin, chlorsulfuron, 

and flumioxazin+pyroxasulfone+chlorimuron, and at one site year in pyroxasulfone and 

sulfentrazone. The highest level of safening was for flumioxazin+pyroxasulfone+chlorimuron at 

NEREC where injury 1 WAE was reduced from 44% to 29% via thiamethoxam seed treatment 

(Table 6). Similar safening occurred at LMCRS (2016), where injury was reduced 1 WAE from 

15% to 5% when treated with thiamethoxam (Table 7). Additionally, injury from 

flumioxazin+pyroxasulfone+chlorimuron at NEREC 4 WAE was reduced via clothianidin when 

compared to no insecticide treatment (Table 6). At this particular timing, injury was reduced 

from 24% to 13%. Injury from saflufenacil was reduced at NEREC 1 and 4 WAE where injury 

decreased from 56% to 45% and from 67% to 55%, respectively. Soybean was also safened to 

saflufenacil at PTRS 2 WAE, where injury was reduced from 22% to 15%. Injury from 

flumioxazin was reduced at LMCRS (2016) at 1 and 2 WAE, where thiamethoxam reduced 
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injury from 13% at both evaluation timings to 8% and 5% at 1 and 2 WAE, respectively (Table 

7). Additionally, at PTRS, injury caused by flumioxazin at 2 WAE was reduced from 15% to 8% 

(Table 4). Chlorsulfuron injury was reduced 1 WAE at LMCRS (2016) from 7% to 3%, and at 

NEREC 1 WAE from 61% to 53% via thiamethoxam seed treatment (Tables 6 and 7). 

 Both pyroxasulfone and sulfentrazone were safened at only one of four locations 

evaluated. Injury from pyroxasulfone was reduced at PTRS 1 and 2 WAE, where injury was 

reduced from 13% to 4% and from 14% to 5%, respectively. Following applications of 

sulfentrazone, safening was seen at PTRS 1 WAA, where injury was reduced from 8% to 2% via 

thiamethoxam seed treatment. 

Injury from metribuzin, chlorimuron, and mesotrione was not reduced at any evaluation 

timing at each of the four locations (Tables 6-9). Similar to studies by McNaughton et al. (2014), 

soybean injury from chlorimuron, flumioxazin, or pyroxasulfone alone was less than injury seen 

when the three were combined. Aside from a significant seed treatment main effect at LMCRS 

(2016), where crop height was increased from 47 cm to 50 cm when treated with thiamethoxam, 

plant height was not affected by seed treatment (Tables 6-9). Additionally, while safening effects 

were seen in a number of herbicide-insecticide combinations, crop yield relative to a nontreated 

check was not increased in these situations (Tables 6-9).  

All herbicides evaluated, except for chlorsulfuron and mesotrione, are labeled for use in 

soybean. As a result, overall soybean injury was low in many cases. Additionally, based on the 

low levels of injury following application of both metribuzin and sulfentrazone, it is likely that 

the variety chosen for these studies was tolerant to these herbicides. Choosing a susceptible 

variety would likely increase crop injury response to these herbicides, which may make the 

safening benefits associated with insecticide seed treatments more obvious than in this study. In 
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future research, variety selection should be heavily scrutinized in order to select crops that will 

exhibit high levels of injury.   

 

Grain Sorghum Study. Overall, crop injury in grain sorghum trials was low compared to the 

soybean trials, with the exception of LMCRS in 2015 (Table 10). In 2016 at LMCRS and 

NEREC, injury was ≤4% for all herbicide-insecticide combinations at all evaluation timings 

(Tables 11 and 12). Sorghum injury generally peaked 2 WAE, and dissipated by 4 WAE.  With 

the exception of imazethapyr (20%), injury at PTRS at all evaluation timings was ≤7% (Table 

13). Peak injury from quizalofop was similar to that seen by Lancaster et al. (2014), except at 

LMCRS in 2015. Research by Lancaster et al. (2014) showed an increase in sorghum injury 

following applications of select graminicides, such as quizalofop, to the soil following activation 

by a rainfall event. In 2015, LMCRS received 3.1 cm of precipitation the day after herbicide 

application (Table 2). Similar rainfall events did not occur at any of the other locations, and this 

difference may help to explain at least some of the increase in injury seen at LMCRS in 2015 

compared to the other locations. In future research attempting to simulate herbicide carryover, 

incorporating the herbicides into the soil profile via a rainfall or irrigation event is recommended 

in order to produce a crop response. 

Similar to findings by Walsh et al. (1993), sorghum injury increased as rate of fomesafen 

increased. Injury from both rates of fomesafen was lower than that of imazethapyr, indicating 

sorghum is more sensitive to imazethapyr, consistent with 10- and 18-month plant-back 

restrictions following applications of fomesafen and imazethapyr, respectively. Regardless of 

injury, no safening effects were seen through the use of a thiamethoxam seed treatment at any 
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location or evaluation timing in grain sorghum, nor were there any statistical differences in crop 

density, height, or yield. 

Practical Implications. Although injury from saflufenacil, flumioxazin, chlorsulfuron, 

pyroxasulfone, sulfentrazone, and flumioxazin+pyroxasulfone+chlorimuron was reduced at some 

locations/evaluation timings in soybean, most combinations did not provide a safening effect. 

Additionally, even in cases where injury was reduced, yield did not differ among seed treatments 

within a herbicide. This is consistent with research by Johnson et al. (2002) that determined 

early-season crop injury is not always a good indicator of end-of-season crop yield. Rather, 

according to Hagood et al. (1980) and Geier et al. (2009), stand loss is a more predictive 

measure. Since no significant differences in stand in either crop were seen, it is logical that yield 

would not differ as well.  

In these experiments, overall injury was too low to easily distinguish a safening effect 

associated with insecticide seed treatments in most cases. However, the fact that insecticide seed 

treatments caused significant safening, in some cases, under these circumstances may indicate 

that safening effects will be more discernable in instances of high levels of injury. Future 

research examining safening effects under cases of higher levels of injury may prove more 

definitively that these insecticides can provide a safening effect in both soybean and grain 

sorghum following applications of some soil-applied herbicides.   
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Table 1. General description of experimental sites.
a 

Location Year Planting date Application date Sand Silt Clay pH 

     ---------------%---------------  

LMCRS 2015 5/14/2015 5/14//2015 0.8 90.5 8.7 7.5 

LMCRS 2016 5/5/2016 5/5/2016 0.8 90.5 8.7 7.5 

NEREC 2016 4/19/2016 4/19/2016 22 25 53 6.7 

PTRS 2016 5/19/2016 5/19/2016 0.4 78.1 21.5 7.8 
a 
Abbreviations: LMCRS, Lon Mann Cotton Research Station in Marianna, AR; NEREC, Northeast  

Research and Extension Center in Keiser, AR; PTRS, Pine Tree Research Station near Colt, AR 
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Table 2. Environmental conditions at the Lon Mann Cotton Research Station in Marianna, AR in 2015 beginning at planting (May 

14). 
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Table 3. Environmental conditions at the Lon Mann Cotton Research Station in Marianna, AR in 2016 beginning at planting (May 5).  
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Table 4. Environmental conditions at the Northeast Research and Extension Center in Keiser, AR in 2016 beginning at planting (April 

19). 
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Table 5. Environmental conditions at the Pine Tree Research Station near Colt, AR in 2016 beginning at planting date (May 19). 
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Table 6. Visible soybean injury, height, and yield at NEREC at Keiser, AR in 2016.
a,b

 

    Injury
         

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Height
 

Yield
 

  
--------------------------- % ----------------------------- cm kg ha

-1 

None None 0 0 0 15 2930 

Thiamethoxam 0 0 0 16 3110 

Metribuzin None 9  5 2 16 3330 

Thiamethoxam 5  6  1 15 3170 

Saflufenacil None 56  67 61 8 2830 

Thiamethoxam  45* 55‡ 55 10 2700 

Pyroxasulfone None 5   6 1 16 2930 

Thiamethoxam 3   2 0 16 2660 

Sulfentrazone None 13  6 3  16 2870 

Thiamethoxam 11   5 4 16 3230 

Chlorimuron None 4 6 7 15 2770 

Thiamethoxam 1 6 7 15 2820 

Flumioxazin None 25  15 5 16 2820 

Thiamethoxam 23  8 0 16 2650 

Chl+Flu+Pyr None 44  35 24 14 3790 

Thiamethoxam  29* 25 13‡ 15 2640 

Mesotrione None 14 11 6 16 2770 

Thiamethoxam 12 9  3 15 3180 

Chlorsulfuron None 61 91 95 3 280 

Thiamethoxam  53* 87 90  4 100 

Main effect
c None 

 

26 23 NS NS 

Thiamethoxam 

 

22† 19† NS NS 
a 
Abbreviations: NEREC, Northeast Research and Extension Center; WAE, weeks after emergence; NS, non-significant; Chl+Flu+Pyr, 

Chlorimuron + Flumioxazin + Pyroxasulfone
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b 
Means followed by an asterisk indicate a significant herbicide by insecticide interaction (α=0.05) or a significant injury reduction via 

insecticide seed treatment, within the same herbicide, compared to no insecticide. Where no significant interaction is present, 

insecticide seed treatment main effect is given below. For responses that did not produce a herbicide by insecticide seed treatment 

interaction, a t-test was conducted to compare treatments with no insecticide to each insecticide seed treatment within an herbicide. 

Where use of an insecticide seed treatment reduced injury or increased height or yield compared to no insecticide, means are marked 

with a double dagger (‡) 
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Table 7. Visible soybean injury, density, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2016.
a,b

 

    Injury
 

            

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Density
 

Height
 

Yield
 

  
------------------- % ---------------- plants m

-1
 row cm kg ha

-1 

None None 0 0 0 27 8 2520 

Thiamethoxam 0 0 0 27 9 2550 

Metribuzin None 1 2 1  25 8 2540 

Thiamethoxam 1 0 0 26 9 2460 

Saflufenacil None 3  14 6  24 8 2400 

Thiamethoxam 1  14  1  26 8 2730 

Pyroxasulfone None 4  2 0 27 9 2630 

Thiamethoxam 1 3  0 26 8 2610 

Sulfentrazone None 1 14 4  25 8 2650 

Thiamethoxam 1 14  3  25 9 2460 

Chlorimuron None 4  5  6  27 8 2380 

Thiamethoxam 3  4  1  25 9 2540 

Flumioxazin None 13 13  5 24 8 2600 

Thiamethoxam 5* 8* 1 24 8 2480 

Chl+Flu+Pyr None 15  17 6  27 8 2620 

Thiamethoxam 5* 12* 1 25 8 2710 

Mesotrione None 10 4  3  25 8 2740 

Thiamethoxam 7 4 0 26 8 2470 

Chlorsulfuron None 5 7  8  27 8 2690 

Thiamethoxam 2  3* 4  27 8 2480 

Main effect
e None 

  

4 NS NS NS 

Thiamethoxam 

  

1† NS NS NS 
a 
Abbreviations: WAE, weeks after emergence; NS, non-significant; Chl+Flu+Pyr, Chlorimuron + Flumioxazin + Pyroxasulfone
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b 
Means followed by an asterisk indicate a significant herbicide by insecticide interaction (α=0.05) or a significant injury reduction via 

insecticide seed treatment, within the same herbicide, compared to no insecticide. Where no significant interaction is present, 

insecticide seed treatment main effect is given below. For responses that did not produce a herbicide by insecticide seed treatment 

interaction, a t-test was conducted to compare treatments with no insecticide to each insecticide seed treatment within an herbicide. 

Where use of an insecticide seed treatment reduced injury or increased height or yield compared to no insecticide, means are marked 

with a double dagger (‡) 
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Table 8. Visible soybean injury, density, and yield at the Pine Tree Research Station near Colt, AR in 2016
a
. 

    Injury
b 

        

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Density
 

Yield
 

  
--------------------------- % ----------------------------- plants m

-1
 row kg ha

-1 

None None 0 0 0 16 2770 

Thiamethoxam 0 0 0 20 2930 

Metribuzin None 6  9  7  19 2700 

Thiamethoxam 0 6  0 18 3130 

Saflufenacil None 12  22 5  17 2950 

Thiamethoxam 9 15‡ 6  18 2780 

Pyroxasulfone None 13  14  6  18 3000 

Thiamethoxam 4‡ 5‡ 5  17 3210 

Sulfentrazone None 8  13  0 18 3180 

Thiamethoxam 2‡ 8   3  19 3040 

Chlorimuron None 8  10 1  17 2300 

Thiamethoxam 8  7  3  15 2810 

Flumioxazin None 9  15  10  19 3090 

Thiamethoxam 5  8‡ 5  19 3170 

Chl+Flu+Pyr None  18 19 6  19 2850 

Thiamethoxam 15 15 5  19 2930 

Mesotrione None 9 9  5  20 2970 

Thiamethoxam 8 5  6  19 3050 

Chlorsulfuron None 3 10  8  20 2860 

Thiamethoxam 6 5  5  19 2730 

Main effect
 None 9 13 NS NS NS 

Thiamethoxam 6† 8† NS NS NS 
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a 
Abbreviations: WAE, weeks after emergence; NS, non-significant; Chl+Flu+Pyr, Chlorimuron + Flumioxazin + Pyroxasulfone

  

b
 Where no significant interaction (α=0.05) is present, insecticide seed treatment main effect is given below. For responses that did not 

produce a herbicide by insecticide seed treatment interaction, a t-test was conducted to compare treatments with no insecticide to each 

insecticide seed treatment within an herbicide. Where use of an insecticide seed treatment reduced injury or increased height or yield 

compared to no insecticide, means are marked with a double dagger (‡) 
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Table 9. Visible soybean injury, density, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2015.
a 

    Injury
b 

            

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Density
 

Height
c 

Yield
 

  
------------------ % ---------------- plants m

-1
 row cm kg ha

-1 

None None 0 0 0 21 57 3890 

Thiamethoxam 0 0 0 23 58 3740 

Metribuzin None 2  5  3  19 59 3900 

Thiamethoxam 0 6  3  22 62 3720 

Saflufenacil None 15 29 13 17 51 4040 

Thiamethoxam 14 24  15  18 57 3640 

Pyroxasulfone None 14 24  14  19 53 3650 

Thiamethoxam 10  25   11  22 53 3800 

Sulfentrazone None 24  43  24 15 47 3740 

Thiamethoxam 21  40  21  17 48 3500 

Chlorimuron None 3  6  4 20 38 3790 

Thiamethoxam 1  4  3  23 45 3820 

Flumioxazin None 2  1  3  21 57 3700 

Thiamethoxam 1  0 1  22 61 3770 

Chl+Flu+Pyr None 28 49 39 15 39 3250 

Thiamethoxam 26 48  41 13 41 3290 

Mesotrione None 1 13 3 20 57 3880 

Thiamethoxam 1  9  3  20 58 4050 

Chlorsulfuron None 18  53  83 21 12 1870 

Thiamethoxam 13  51 81 21 12 1350 

Main effect
 None 12 NS NS NS 47 NS 

Thiamethoxam 10† NS NS NS 50† NS 
a 
Abbreviation: WAE, weeks after emergence; NS, non-significant; Chl+Flu+Pyr, Chlorimuron + Flumioxazin + Pyroxasulfone
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b
 Where no significant interaction (α=0.05) is present, insecticide seed treatment main effect is given below and a significant main 

effect is denoted with a cross (†)
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Table 10. Grain sorghum injury, density, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2015.
a 

    Injury
 

            

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Density
 

Height
 

Yield
 

  
--------------------% -------------------- plants m

-1
 row cm kg ha

-1 

None None 0 0 0 20 144 6720 

Thiamethoxam 0 0 0 21 144 6000 

Fomesafen Lo None 8  18  16  20 144 6500 

Thiamethoxam 6  15  8  20 145 6120 

Fomesafen Hi None 20  29  21 18 144 5540 

Thiamethoxam 20  24 16 19 148 5800 

Imazethapyr None 10  30  21  21 143 5810 

Thiamethoxam 10  28  20  22 137 5450 

Quizalofop None 95  92  92  2 127 2180 

Thiamethoxam 92  90  87  2 120 1800 

Main effect 
None NS NS NS NS NS NS 

Thiamethoxam NS NS NS NS NS NS 
a 
Abbreviations: WAE, weeks after emergence; NS, non-significant; Lo, low; Hi, High

 
 

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides.  
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Table 11. Grain sorghum injury, density, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2016.
a,b 

    Injury
a 

            

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Density
 

Height
 

Yield
 

  --------------------% ------------------- 

plants m
-1

 

row  cm kg ha
-1

 

None None 0 0 0 14 9 4270 

Thiamethoxam 0 0 0 17 9 4590 

Fomesafen Lo None 0 0 0 14 9 4210 

Thiamethoxam 0 0 0 17 9 4190 

Fomesafen Hi None 4  0 1 16 9 3350 

Thiamethoxam 0 0 0 15 9 4000 

Imazethapyr None 14 4  1  14 8 4200 

Thiamethoxam 0 0 0 17 9 3780 

Quizalofop None 0 0 0 17 9 4130 

Thiamethoxam 0 0 0 19 9 4350 

Main effect 
None NS NS NS NS NS NS 

Thiamethoxam NS NS NS NS NS NS 
a 
Abbreviations: WAE, weeks after emergence; NS, non-significant; Lo, low; Hi, High

  

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides.  
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Table 12. Grain sorghum injury, density, height, and yield at the Northeast Research and Extension Center in Keiser, AR in 2016.
a,b 

    Injury
a 

            

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Density
 

Height
 

Yield
 

  -----------------------------% ----------------------- 

plants m
-1

 

row cm kg ha
-1

 

None None 0 0 0 24 10 4670 

Thiamethoxam 0 0 0 24 10 4970 

Fomesafen Lo None 0 0 0 23 10 4670 

Thiamethoxam 1  0 0 25 11 3820 

Fomesafen Hi None 1 0 0 25 10 5480 

Thiamethoxam 0 1  0 25 10 5130 

Imazethapyr None 2  2 1  25 10 5310 

Thiamethoxam 0 0 0 25 10 5520 

Quizalofop None 2 1  1  25 10 5710 

Thiamethoxam 0 0 0 24 9 5790 

Main effect 
None NS NS NS NS NS NS 

Thiamethoxam NS NS NS NS NS NS 
a 
Abbreviations: WAE, weeks after emergence; NS, non-significant; Lo, low; Hi, High

  

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides. 
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Table 13. Grain sorghum injury, density, height, and yield at the Pine Tree Research Station near Colt, AR in 2016.
a,b 

    Injury
a 

            

Herbicide Seed treatment 1 WAE 2 WAE  4 WAE Density
 

Height
 

Yield
 

       ----------------------------% ----------------------- 

plants m
-1

 

row cm kg ha
-1

 

None None 0 0 0 22 8 5710 

Thiamethoxam 0 0 0 22 10 5890 

Fomesafen Lo None 0 3 0 19 8 4120 

Thiamethoxam 0 3  0 23 8 5050 

Fomesafen Hi None 0 6 1 18 8 5310 

Thiamethoxam 0 1  0 20 8 4830 

Imazethapyr None 10 20  13  18 7 4870 

Thiamethoxam 3  11  6  20 9 4860 

Quizalofop None 5 7  3 18 7 5080 

Thiamethoxam 3 6  0 21 8 4760 

Main effect 
None NS NS NS NS NS NS 

Thiamethoxam NS NS NS NS NS NS 
a 
Abbreviations: WAE, weeks after emergence; NS, non-significant; Lo, low; Hi, High

  

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides. 
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Chapter 4 

Use of Insecticide Seed Treatments as Safeners to Injurious 

Postemergence Herbicides in Soybean 

Abstract 

Applications of postemergence (POST) herbicides are an important part of weed control in 

soybean; however, some crop injury can accompany these applications. While uncommon, this 

injury can result in yield loss depending upon the severity and timing of application. Herbicide 

safeners may offer a potential solution to this issue, but currently no effective safeners exist for 

use in soybean production. Field trials were conducted in Arkansas in 2015 and 2016 to 

determine whether a safening effect could be seen using thiamethoxam in soybean following 

applications of POST herbicides that commonly cause crop injury. Chlorimuron, fomesafen, and 

2,4-DB were applied 21 days after planting.  In Marianna in 2016, injury from chlorimuron and 

fomesafen was reduced 8 and 7 percentage points, respectively, in thiamethoxam-treated seed. 

At the same location and evaluation timing, clothianidin-treated seed reduced injury from 2,4-

DB by 8 percentage points 1 week after application (WAA). Additionally, a seed treatment main 

effect was seen at Marianna in 2016 both 2 WAA and 4 WAA, where a thiamethoxam seed 

treatment reduced injury 5 and 6 percentage points, respectively, averaged across all herbicides. 

Aside from Marianna in 2016, visible injury was not reduced at any location or evaluation 

timing. Height was not affected by seed treatment at any location, nor was yield. Based on the 

results from these experiments, the insecticides clothianidin and thiamethoxam, applied as a seed 

treatment, are unlikely to successfully safen the evaluated POST-applied herbicides that are often 

injurious to soybean.  
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Nomenclature: 2,4-DB; clothianidin; chlorimuron; fomesafen; imidacloprid; thiamethoxam; 

soybean, Glycine max (L.) Merr.  

Key words: Postemergence herbicides, herbicide safeners 
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Introduction 

 Weed control in soybean production is a vital part of producing a high-yielding crop. 

Krausz et al. (2001) found that season-long competition from weeds reduced grain yield 68% in 

a glyphosate-resistant soybean cultivar. Since 94% of soybean hectares in the U.S. contain a 

herbicide resistance trait, and the vast majority of that percentage is resistant to glyphosate, the 

need for effective weed management strategies is clear (USDA-NASS 2016). A survey of crop 

consultants across the Midsouth showed that production practices in the state of Arkansas follow 

these national trends, with 95% of soybean planted in the state containing a herbicide resistance 

trait, 88% of which is resistant to glyphosate (Riar et al. 2013). The same study indicates that 

Palmer amaranth (Amaranthus palmeri S. Wats.) and morningglories (Ipomoea spp) are the two 

most problematic weeds for soybean producers in the state. Historically, one or two POST 

glyphosate applications have been sufficient for control of most weeds in glyphosate-resistant 

cropping systems; however, these two weeds present unique challenges to growers wishing to 

continue this practice (Bradshaw et al. 2007; Culpepper and York 1998). Repeated applications 

of glyphosate in Midsouthern states have resulted in widespread resistance to the herbicide in 

Palmer amaranth populations, rendering it ineffective (Nichols et al. 2009). In addition, 

glyphosate efficacy on morningglories is generally marginal, and can differ based on species and 

population (Jordan et al. 1997; Scott et al. 2017; Stephenson 2007). Due to this limited control of 

the two most problematic weeds offered via POST applications of glyphosate, more effective 

herbicide options are needed for soybean production. 

 Fomesafen, chlorimuron, and 2,4-DB are herbicides that are labeled for use in soybean, 

and have the potential to control some problematic weeds, including Palmer amaranth and 

morningglories. Fomesafen (Reflex, Flexstar, Syngenta Crop Protection, Greensboro, NC) is a 
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protoporphyrinogen oxidase (PPO)-inhibiting, diphenylether herbicide labeled for both 

preemergence (PRE) and POST applications in soybean (Anonymous 2016). Fomesafen offers 

excellent control of both Palmer amaranth and morningglories, in addition to a number of other 

broadleaf weeds (Scott et al. 2017). Chlorimuron (Classic, DuPont Crop Protection, Wilmington, 

DE) is an acetolactate synthase (ALS)-inhibiting, sulfonylurea herbicide that is also labeled for 

PRE and POST applications in soybean (Anonymous 2012). Although acetolactate synthase 

(ALS)-resistant Palmer amaranth populations exist in much of the Midsouth, chlorimuron does 

provide some control of susceptible populations (Heap 2017; Scott et al. 2017). However, 

chlorimuron is most notably known for its efficacy on morningglory populations, often providing 

greater than 90% control (Stephenson et al. 2007). 2,4-DB (Butyrac 200, Albaugh, LLC, 

Ankeny, IA ) is a phenoxy herbicide labeled for POST application in soybean that also provides 

excellent control of morningglories (Anonymous 2016; Scott et al. 2017). 

 While these three herbicides are labeled for use in soybean, crop injury can result 

following application. Vidrine et al. (2002) reported soybean injury as high as 30% in herbicide 

mixtures containing chlorimuron. Johnson et al. (2002) and Harris et al. (1991) reported that 

15% soybean injury from fomesafen is common. Soybean injury potential is relatively high 

following applications of 2,4-DB, and Culpepper et al. (2001) found that injury ranged from 7% 

to 27% following POST applications. Although injury from early-season herbicide applications 

may not be an entirely dependable predictor, yield loss can be expected from all three herbicides 

if symptomology persists (Hagood et al. 1980). 

 One possible method for reducing herbicide injury and subsequent yield loss is the use of 

herbicide safeners. Safeners typically increase a plant’s ability to metabolize a herbicide, and 

their utility can be maximized when applied as treatments to seeds prior to planting (Abu-Qare 
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and Duncan; Davies and Caseley 1999 Hatzios and Burgos 2004). Miller et al. (2016) showed 

that neonicotinoid insecticide seed treatments provided a safening effect from drift of some 

POST herbicides in rice. Exploiting a similar effect in soybean could provide an added benefit to 

soybean producers with concerns for injury following POST applications. Hence, the objective 

of this research was to determine whether soybean injury from chlorimuron, fomesafen, and 2,4-

DB could be reduced through the use of clothianidin and thiamethoxam seed treatments. 

   

Materials and Methods 

A field trial was conducted at the Lon Mann Cotton Research Station (LMCRS) in 

Marianna, Arkansas, in 2015. The experiment was repeated in 2016 at LMCRS, in addition to 

the Northeast Research and Extension Center (NEREC) in Keiser, Arkansas, and the Pine Tree 

Research Station (PTRS) near Colt, Arkansas. The soil was a Convent silt loam (fine-silty, 

mixed, active thermic Typic Glossaqualf) at LMCRS, Calhoun silt loam (Coarse-silty, mixed, 

superactive, nonacid, thermic Fluvaquentic Endoaquepts) at PTRS, and Sharkey silty clay (very-

fine, smectitic, thermic Chromic Epiaquerts) at NEREC (Anonymous 2016). Plots were 

established at each location as two-factor (herbicide x insecticide), randomized complete block 

designs with four replications. Plots were four rows wide and measured 11 m in length. Row 

width at both LMCRS and NEREC were 96 cm, and 78 cm at PTRS, consistent with cultural 

production practices at each location. DG5067LL (Delta Grow Seed Company Inc., England, 

AR), a maturity group 5.2, glufosinate-resistant, non-STS soybean, was planted at a seeding rate 

of 340,000 seeds ha
-1

 at a 2.5-cm depth. Plots were maintained weed-free by making an 

application of flumioxazin at 71 g ai ha
-1

 (Valor SX, Valent U.S.A. Corporation, Walnut Creek, 

CA), with later escapes controlled with glufosinate at 0.53 g ai ha
-1

 and via hand removal.   
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Prior to planting, all soybean seeds were treated with a fungicide combination of 

mefenoxam+fludioxonil+sedaxane (0.075+0.025+0.025 g ai kg
-1

 seed) via a water-based slurry. 

In addition, seeds were either treated with thiamethoxam (0.5 g ai kg
-1

 seed), clothianidin (0.5 g 

ai kg
-1

 seed), or no insecticide. Herbicide applications were made 21 days after planting (DAP) 

using a CO2-pressurized backpack sprayer calibrated to deliver 143 L ha
-1

 at 276 kPa (Table 1). 

Three herbicides that commonly cause phytotoxicity in soybean following application, 

chlorimuron, fomesafen, and 2,4-DB, were applied. In an effort to promote soybean injury, 

herbicides were applied at 13 g ai ha
-1

, 1186 g ai ha
-1

, and 505 g ae ha
-1

 for chlorimuron, 

fomesafen, and 2,4-DB, respectively. These application rates correspond with the highest 

recommended use rate in soybean for chlorimuron, and approximately 1.5x and 2x rates for 

fomesafen and 2,4-DB, respectively.  

Following application, visible injury ratings were collected weekly for four weeks. Injury 

was rated on a 0 to 100% scale, where 0% equals no injury and 100% equals crop death.  

Distance from soil surface to the apical meristem of five randomly selected soybean plants was 

measured from the center rows of each plot at harvest in 2015 and at 2 WAA in 2016. Grain 

yield was collected at the end of the growing season by harvesting the middle two rows and 

correcting moisture to 13%. Data collected were subjected to analysis of variance (ANOVA) 

using JMP 12.1 (SAS Institute, Cary, NC) with site-years analyzed separately due to variation in 

environmental conditions at each location (Tables 2-5).  Means were separated using Fisher’s 

protected LSD (α=0.05).   
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Results and Discussion 

A significant (p=0.029) seed treatment by herbicide interaction was seen 1 WAA at 

LMCRS in 2016. Soybean injury from chlorimuron and fomesafen was reduced 8 and 7 

percentage points, respectively, when seeds were treated with thiamethoxam, and 8 percentage 

points when treated with clothianidin at this evaluation timing (Table 6). At 2 and 4 WAA, no 

interaction was present, but an insecticide main effect did occur. Injury, averaged across all 

herbicides, was reduced 5 percentage points 2 WAA and 6 percentage points 4 WAA in 

thiamethoxam-treated seed. With the exception of injury reduction at LMCRS in 2016, no other 

safening effects were seen (Tables 7, 8, 9).  

Neither crop height nor yield was affected by seed treatment at any location (Tables 2-5). 

However, a significant (p<0.001) herbicide main effect was seen at LMCRS in 2015 and at 

PTRS in 2016. At these locations, applications of 2,4-DB resulted in lower yields compared to 

the no herbicide treatments, averaged across all seed treatments. In contrast, yields following 

applications of fomesafen and chlorimuron were not reduced. This can likely be attributed to the 

numerically higher injury ratings following 2,4-DB applications, which generally persisted at 

higher levels, even at the 4 WAA evaluation timing.  

  Based on the fact that injury reduction, although statistically significant, was minimal, 

and that neither crop height nor yield was increased when seed treatments were included, it is 

unlikely that the insecticide seed treatments thiamethoxam or clothianidin can be used as 

effective safeners in soybean for POST application of the three herbicides evaluated. The lack of 

safening may be partly attributed to the fact that in-plant concentrations of insecticides are 

greatly diminished at the time of typical POST applications.  However, in general, the lack of 

utility of herbicide safeners in dicots has been noted previously (Bailey et al. 2015; Davies and 
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Caseley 1999; Hatzios 1989; Hatzios and Burgos 2004; Hatzios and Wu 1996; Riechers 2010). 

The majority of literature available indicates that the effective use of safeners is primarily limited 

to monocotyledonous crops, and that the use of safeners in soybean is unlikely. Findings from 

this experiment supports an overall lack of safening in soybean. 
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Table 1. General description of experimental sites.
a 

Location Year Planting date Application date Sand Silt Clay pH 

     

---------------%---------------  

LMCRS 2015 5/14/2015 6/8/2015 0.8 90.5 8.7 7.5 

LMCRS 2016 5/5/2016 5/26/2016 0.8 90.5 8.7 7.5 

NEREC 2016 4/19/2016 5/20/2016 22 25 53 6.7 

PTRS 2016 5/19/2016 6/8/2016 0.4 78.1 21.5 7.8 
a 
Abbreviations: LMCRS, Lon Mann Cotton Research Station in Marianna, AR; NEREC, Northeast 

Research and Extension Center in Keiser, AR; PTRS, Pine Tree Research Station near Colt, AR 
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Table 2. Environmental conditions at the Lon Mann Cotton Research Station in Marianna, AR in 2015 beginning at planting (May 

14), with herbicide application date marked with an asterisk. 
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Table 3. Environmental conditions at Lon Mann Cotton research Station  in Marianna, AR in 2016 beginning at planting  (May, 5), 

with herbicide application date marked with an asterisk. 
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Table 4. Environmental conditions at the Northeast Research and Extension Center in Keiser, AR in 2016 beginning at planting (April 

19), with herbicide application date marked with an asterisk. 
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Table 5. Environmental conditions at the Pine Tree Research Station near Colt, AR in 2016 beginning at planting (May 19), with 

herbicide application date marked with an asterisk. 
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Table 6. Soybean injury, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2016.
a,b

  

    Injury         

Herbicide Seed treatment 1 WAA 2 WAA  4 WAA Height Yield 

  
--------------------------- % ----------------------------- cm   kg ha

-1 

None None 0 0 0 15 2310 

Thiamethoxam 0 0 0 14 2550 

Clothianidin 0 0 0 15 2530 

Chlorimuron None 18 13  8  13 2310 

Thiamethoxam 10* 5  2  13 2590 

Clothianidin 16 8  4  13 2610 

Fomesafen None 39 15 11 12 2420 

Thiamethoxam 38  10 6  13 2490 

Clothianidin 31* 15  10  13 2430 

2,4-DB None 31 24  20  13 2480 

Thiamethoxam 23* 20 13  12 2480 

Clothianidin 34 24 21  12 2610 

Main effect 

None 

 

17 13 NS NS 

Thiamethoxam 

 

12† 7† NS NS 

Clothianidin 

 

15 12 NS NS 
a 
Abbreviations: WAA, weeks after application; NS, non-significant

  

b 
Means followed by an asterisk indicate a significant herbicide by insecticide interaction or a significant injury reduction via 

insecticide seed treatment, within the same herbicide, compared to no insecticide according to Fisher’s protected LSD (α = 0.05). 

Where no significant interaction is present, insecticide seed treatment main effect is given below, with a cross indicating a significant 

main effect using the same criteria. 
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Table 7. Soybean injury, height, and yield at the Lon Mann Cotton Research Station in Marianna, AR in 2015.
a,b

 

    Injury
 

        

Herbicide Seed treatment 1 WAA 2 WAA  4 WAA Height
 

 Yield 

  
--------------------------- % ----------------------------- cm     kg ha

-1
 

None None 0 0 0 51 3700 

Thiamethoxam 0 0 0 53 4060 

Clothianidin 0 0 0 52 3690 

Chlorimuron None 21  11  6  47 3710 

Thiamethoxam 26  15  10 49 3750 

Clothianidin 27  11  3 47 3820 

Fomesafen None 16   4  0 55 3750 

Thiamethoxam 20  6  0 55 3580 

Clothianidin 18  7 3  55 3670 

2,4-DB None 34  48  35 38 2530 

Thiamethoxam 33  48  35  36 2660 

Clothianidin 32 47 34  41 2400 

Main effect 

None NS NS NS NS NS 

Thiamethoxam NS NS NS NS NS 

Clothianidin NS NS NS NS NS 
a 
Abbreviations: WAA, weeks after application; NS, non-significant

  

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides.  
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Table 8. Soybean injury, height, and yield at the Northeast Research and Extension Center in Keiser, AR in 2016.
a,b

  

    Injury         

Herbicide Seed treatment 1 WAA 2 WAA Height Yield 

  
------------------- % ------------------- cm      kg ha

-1
 

None None 0 0 30 2650 

Thiamethoxam 0 0 31 2950 

Clothianidin 0 0 32 2970 

Chlorimuron None 14  9  31 2710 

Thiamethoxam 13  8  31 2820 

Clothianidin 14  8 30 3080 

Fomesafen None 15   9   29 2610 

Thiamethoxam 15  8  31 2820 

Clothianidin 20  10  29 3000 

2,4-DB None 41  55   24 3100 

Thiamethoxam 40  58  23 2970 

Clothianidin 40  53  22 2880 

Main effect 

None NS NS NS NS 

Thiamethoxam NS NS NS NS 

Clothianidin NS NS NS NS 
a 
Abbreviations: WAA, weeks after application; NS, non-significant

  

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides.  
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Table 9. Soybean injury and yield at the Pine Tree Research Station near Colt, AR in 2016.
a,b

 

    Injury     

Herbicide Seed treatment 1 WAA 2 WAA  4 WAA Yield 

  
-------------------------- % -------------------------         kg ha

-1
 

None None 0 0 0 3180 

Thiamethoxam 0 0 0 3620 

Clothianidin 0 0 0 3300 

Chlorimuron None 26  18  9  3360 

Thiamethoxam 21  15  13  2890 

Clothianidin 21  16  9  2620 

Fomesafen None 13  1  0 3650 

Thiamethoxam 13  3  0 3530 

Clothianidin 13  5  1  3380 

2,4-DB None 28  30 30  2820 

Thiamethoxam 27  29  30  2640 

Clothianidin 30  30  35  1960 

Main effect 

None NS NS NS NS 

Thiamethoxam NS NS NS NS 

Clothianidin NS NS NS NS 
a 
Abbreviations: WAA, weeks after application; NS, non-significant

  

b 
Mean separation showed no significant difference at the α = 0.05 level for injury, height, or yield among insecticide seed treatments, 

within herbicides.
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General Conclusions 

 Insect pest management early in the growing season is vital to producing a successful 

crop in the Midsouth region. Neonicotinoid seed treatments play an important role in controlling 

insect pests, and their continued use is inevitable in future years. Based on the evaluation of 

thiamethoxam, clothianidin, and imidacloprid, neonicotinoid seed treatments appear to also have 

a limited fit as herbicide safeners in soybean and grain sorghum. Although the insecticides 

evaluated in this study did not appear to adequately safen soybean or grain sorghum against soil-

applied and postemergence herbicides, or to injurious POST-applied herbicides in soybean, 

significant reductions in injury from low rates of herbicides were seen in both crops. This finding 

is of particular interest due to recent concerns of herbicide drift in the Midsouth, where, in 2016, 

over 100,000 ha of soybean were damage by off-target herbicide movement. 

 Compared to commercially available safeners, the degree of safening, as well as 

consistency of injury reduction provided via insecticide seed treatments is relatively low. 

However, based on the widespread use of insecticide seed treatment, the potential for growers 

who use these insecticide seed treatments to see some of the safening effects may be relatively 

high. This safening may be viewed as a low-cost form of insurance to growers who already 

incorporate insecticide seed treatments and have concerns of herbicide drift. As a result, the 

adoption of neonicotinoid insecticide seed treatments, including thiamethoxam, clothianidin, and 

imidacloprid, is likely to increase in coming years, especially if off-target herbicide movement 

continues to be an issue for crop producers across the Midsouth. 
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