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Abstract

This thesis first describes the general idea behind Bayes Inference, various sampling methods

based on Bayes theorem and many examples. Then a Bayes approach to model selection, called

Stochastic Search Variable Selection (SSVS) is discussed. It was originally proposed by George

and McCulloch (1993). In a normal regression model where the number of covariates is large,

only a small subset tend to be significant most of the times. This Bayes procedure specifies a

mixture prior for each of the unknown regression coefficient, the mixture prior was originally

proposed by Geweke (1996). This mixture prior will be updated as data becomes available to

generate a posterior distribution that assigns higher posterior probabilities to coefficients that are

significant in explaining the response. Spatial modeling method is described in this thesis. Prior

distribution for all unknown parameters and latent variables are specified. Simulated studies

under different models have been implemented to test the efficiency of SSVS. A real dataset taken

by choosing a small region from the Cape Floristic Region in South Africa is used to analyze the

plants distribution in that region. The original multi-cateogory response is transformed into a

presence and absence (binary) response for simpler analysis. First, SSVS is used on this dataset to

select the subset of significant covariates. Then a spatial model is fitted using the chosen

covariates and, post-estimation, predictive map of posterior probabilities of presence and absence

are obtained for the study region. Posterior estimates for the true regression coefficients are also

provided along with map for spatial random effects.
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1 Bayesian Inference

Suppose, we are given an observed dataset D with n observations x1,x2, · · · ,xn from a density

f (x|θ). The prior distribution of θ is π(θ). To find the posterior distribution of θ after observing

the data. We simply multiply the likelihood of the data and prior distribution of the parameter of

interest. This process represented as

π(θ |D) ∝
n

∏
i=1

( f (xi|θ))∗π(θ) (1)

This was proved using the classic Bayes formula

π(θ |D,η) =
f (D|θ)g(θ |η)

∫

f (D|u)g(u|η)du
(2)

Where η is the hyper-parameter for θ , we assume it is a known constant. The denominator of

Bayes formula gives the marginal distribution of D.

To explore properties of the parameter such as mean, variance, quantiles etc., we need to

analyze its posterior distribution. For example, suppose a local government is interest in bringing

manufacturing jobs into its city. But it is not sure what is a good place to build a manufacturing

facility. The government send sociologists to do research on all zip codes around the city. And

these sociologists send questionaries online and through mail to residents across all zip codes

around the city. Suppose we let the percentage of people willing to work in manufacturing across

all zip codes be our parameter of interest. We are interested in which zip code has the highest

posterior percentage. The prior distribution in this example can be explained as, in areas where it

is mostly non-college educated and highly unemployed, the percentage will be big. And in areas

where it is mostly college graduates and upper middle class, the prior percentage will be small.

After observing the response from questionnaires, we can get a posterior distribution of the

percentage by combining our assumption and the actual questionnaire response.
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We have discussed what prior and posterior each means above. Now we are interested in

learning how to sample from the posterior. If the posterior is in standard form (a Gaussian or

t-distribution for example), finding its analytical properties is relatively simpler. However, most of

the time, it is in non-standard form, making those computations intractable. For example, suppose

we have a posterior distribution

f (θ |D) = e((−θ 2)+2sin(θ))/log(1+tan(θ)) (3)

In this case, the posterior distribution is not in any known form, it is analytically challenging

to compute any integral involving this density. Ordinary Monte Carlo says that instead of

computing such integrals by exact method, an alternative approach is to simulate N samples of θ

from the posterior, θ1, · · · ,θN , when our simulated sample size is large enough, meaning N → ∞ .

The chain of simulated samples from this posterior will converge to our target posterior density,

we can then make inference on the target posterior based on these simulated samples. For

example, by take the average of these samples 1/N ∑
N
i=1 θi ,when N is large, it will converge to

true target posterior mean based on law of large numbers. When it is hard to sample from the

target posterior density, Ordinary Monte Carlo will become not useful. In this case, Monte Carlo

Markov Chain(MCMC) suggests that an alternative approach is to sample from the target

posterior one parameter at a time. The algorithm looks like this: Supposed we propose a θ1 based

on our target posterior, we want to generate θ(2), · · · ,θ(N) so that we can compute the empirical

mean of the target posterior. The Markov Chain Monte Carlo method that we are going to discuss

are M-H sampling and Gibbs Sampling methods

1.1 METROPOLIS-HASTINGS METHOD:

This method, abbreviated as MH, provides an acceptance ratio that can be used to decided

whether θ new can be used as θ (2) when the chain of simulated samples is at state θ (1) (Hastings,
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1970). The general form for the acceptance ratio is written as following

pa =
g(θ c)

g(θ o)
∗ q(θ o|θ c)

q(θ c|θ o)
∧1 (4)

The g function in the M−H acceptance ratio is the target posterior density, the density that

we know how to derive and evaluate but do not know how to sample from. The q function is the

proposed conditional density. It represents the probability that a candidate θ c is going to be

proposed given the current value θ o. In M−H sampling method, the proposal density is used to

generate samples for the candidate parameters, one at a time. Since this algorithm won’t start on

itself, we need to come up with a starting candidate θ 0 so that it can be used to generate θ 1. The

choice for θ 0 is flexible, under the law of large number the chain will converge to the true θ no

matter what the initial choice is. However, a choice of θ0 from the tail of the target distribution

may cause the chain to converge slowly. This can be avoided by using some point estimate such

as MLE based on the data as a starting value for θ0. Eventually, we will have a Markov chain

θ0, ...,θN where N represents the number of iterations and it is generally chosen to be large. After

some initial iterations, the chain is expected to converge to its stationary distribution. We call the

initial runs as burn in period. We will ignore these burn in samples. We will explore our interest

among the rest of samples. There has been many discussions on choosing appropriate proposal

density. Generally speaking, a good proposal density will significantly reduce the time for the

chain to converge. We will typically choose a proposal such that it matches the shape of the target

posterior as much as possible.

There are two common ways of choosing proposals: random walk and independence sampler.

We will first discuss random walk MH. Suppose the support of θ is the entire real line, the

proposal for θ is approriately assumed to come from a normal distribution. A random walk

Metropolis Hastings proposal suggests that an appropriate mean for θ c to follow is θ o (Chib and

Greenberg, 1995). In other words, the mean of each candidate is proposed to be the mean of the
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previous value

π(θ c) = N(θ o,τ2)

The variance for the proposal density τ2 needs to be carefully chosen. When τ2 is too small, the

candidate parameter is going to be extremely close to the current value of the parameter on the

chain. Thus the algorithm would take long time to traverse the entire parameter domain resulting

in poor mixing and slow convergence. So, we will need to run a extremely large of iterations for

the parameter to converge to the target distribution, which is extremely inefficient and time

consuming. When c2 is chosen to be too large, θ c may drift far away from θ o, thus potentially

resulting the ratio between g(θ c) and g(θ o) to be too small, which lowers the acceptance rate. A

good choice for variance is a value that is not either too small or too large and result in between

20% and 40% acceptance rate. One can tweak the proposal variance to achieve an acceptance rate

within this region. When the proposal density is normally distributed, the second part of this

acceptance ratio is always 1. This can be shown by the following mathematical proof

q(θ o|θ c)

q(θ c|θ o)
=

exp{−1

2

(θ c −θ o)2

c2
}

exp{−1

2

(θ o −θ c)2

c2
}

=
exp{−1

2

(θ c −θ o)2

c2
}

exp{−1

2

(θ c −θ o)2

c2
}

= 1

Therefore, due to the insignificance of the second part of the ratio, whether pa is big or small

is highly dependent on the first part
g(θ c)

g(θ o)
. We call this importance ratio. The decision rule says

that accept θ c as θ (new) when a uniform random number u < pa. Otherwise, set θ (c) = θ o. When

pa is close to 1, chance of acceptance is high. When pa is small, θ is more likely to not move

from its previous position. Therefore, by its nature, the acceptance ratio encourages movement

where g(θ c) is high and discourages movement where g(θ c) is low.
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Another way of choosing proposal is independence sampler where π(θ c|θ o) = π(θ c). In

other words, the proposed distribution of the current state is independent of the distribution of

previous state. Gibbs sampler is a special case of independence sampling. We will talk more on

that in later sections.

We have discussed cases when the true θ ranges the entire real line. However, there are cases

when the true θ ranges the positive real line, choosing a normal proposal density thus will not be

appropriate. In that case, the proposal density is typically chosen to be gamma, inverse gamma or

log normal distribution. For example, suppose the true θ ranges entire positive real line, then

assuming assigning a gamma proposal would be appropriate

q(θ c|θ o)∼ Γ(α,λ ) (5)

The mean of this gamma proposal is set to be θ o using random walk Metropolis Hastings.

The variance can be set to any pre-specified constant c using following equations:

α

λ
= θ o,

α

λ 2
= c

Remember previously in the normal proposal the second part of the acceptance ratio is

exactly one using random walk MH. It may not be the same for non-normal proposals. For

example, in a log-normal proposal it would depend on the ratio of θ c and θ o as:

q(θ o|θ c)

q(θ c|θ o)
∝

θ c

θ o

exp− (θ o−θ c)2

2c2

exp− (θ c−θ o)2

2c2

=
θ c

θ o

1.2 GIBBS SAMPLING

Gibbs sampling method, or Gibbs Sampler which what most people would call it, is a special case

of Metropolis Hastings sampling method. We will first discuss the history of Gibbs sampler and

then we will look at the relationship between Gibbs sampler and the more general Metropolis
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Hastings, finally we will discuss the its running algorithm.

The idea was originally used in physics using conditional probability to explain temperature

and pressure. It hasn’t entered mainstream statistics circle until the 1990s, after Gelfand and

Smith 1990 paper (Gelfand and Smith, 1990). It was a revolutionary invention in the field of

statistics and Gibbs sampler is frequently used today.

Gibbs sampler is a special case of the independence MH proposal we discussed previous

section, which is part of the more general Metropolis Hastings sampling method. In Gibbs

sampler, the proposal density is set to be equal to the target posterior of the parameter of interest.

That is, g(θ c) = q(θ c|θ o). The will result in the acceptance ratio always being one

pa =
g(θ c)

g(θ o)
∗ q(θ o|θ c)

q(θ c|θ o)

=
g(θ c)

g(θ o)
∗ g(θ o)

g(θ c)

= 1

Therefore, by using Gibbs sampler, all the candidate parameters are automatically accepted,

which makes the algorithm simpler than Metropolis Hastings.

Suppose there are n unknown parameters, θ1,θ2 · · ·θn, and D is the observed dataset. The

posterior joint density for all n parameters given the observed data can be represented as

π(θ1 · · ·θn|D). We are interested in various properties about this target posterior such as mean and

quantiles. When its density is not in standard form, sampling from it would be intractable.

Suppose we have a joint density that is in the following form

π(θ1,θ2|D) =
2ysin(θ1)exp{−θ 2

2 }
(2sin(θ1)+3θ2)

There is no known way to sample from this joint density. However, we do konw how to

sample from full conditional densities for each of θ1...θn individually by treating all other
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elements in the density, including all other parameters other than θi, where i is the index for the

current parameter whose full conditional we are trying to sample from, and the observed data as

fixed constants.So, we sequentially sample the following n posterior full conditionals

θ1 ∼ π(θ1|θ2,θ3, ...,θn,D)

θ2 ∼ π(θ2|θ1,θ3, ..,θn,D)

...
...

θn ∼ π(θn|θ1,θ2, ..,θn−1,D)

As you notice that each time we are only sampling one unknown parameter, the name full

conditional means everything else other than the parameter of interest is given.

1.3 AN EXAMPLE FOR GIBBS SAMPLING ALGORITHM

Suppose there is a dataset D with n observations X1 · · ·Xn ∼ N(µ,σ2), the prior distribution for µ

is π(µ)∼ N(m,c2), and the prior distribution for σ2 is π(σ2) = IG(a,b), and we want to explore

various properties on the posterior π(µ,σ2|D). Finding the joint posterior density for µ and σ2 is

a straight forward process

π(µ,σ2|D) ∝ L(D|µ,σ2)π(σ2)π(µ)

= (
1√

2πσ2
)nexp(

−∑
n
i=1 (xi −µ)2

2σ2
)(σ2)−a−1exp(− b

σ2
)

exp(−(µ −m)2

2c2
)

∝ (σ2)−a−1− n
2 exp(

−∑
n
i=1 (xi −µ)2

2σ2
− b

σ2
− (µ −m)2

2c2
)

After finding the joint posterior density. We need to compute the full conditional density

individually for µ and σ2 so that we can easily draw samples from each of these 2 densities. We
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are going to start with σ2, we do this by treating µ as a given constant

π(σ2|µ,D) ∝ (σ2)−a−1− n
2 × exp(

−∑
n
i=1 (xi −µ)2

2σ2
− b

σ2
)

∝ (σ2)−(a+1)− n
2 × exp(− 1

σ2
(
∑

n
i=1 (xi −µ)2

2
+b))

∼ IG(a+
n

2
,
∑

n
i=1 (xi −µ)2

2
+b)

The visualization of the distribution of the simulated samples of σ2 is given in figure 1.1
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Figure 1.1: Posterior Density estimation for σ2 with (L) 40 samples and (R) 4000 samples.
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Now we find the full conditional density for µ , we do this by treating σ2 as given constant.

π(µ|σ2,D) ∝ exp(
−∑

n
i=1 (xi −µ)2

2σ2
− (µ −m)2

2c2
)

= exp− 1

2
(
∑

n
i=1(x

2
i +µ2 −2xiµ)

σ2
+

µ2 +m2 −2mu

c2
)

= exp− 1

2
(
nx2

i +nµ2 −2µ(nx̄)

σ2
+

µ2 +m2 −2mu

c2
)

∝ exp− 1

2
(
nµ2 −2µ(nx̄)

σ2
+

µ2 −2mµ

c2
)

= exp− 1

2
(µ2(

n

σ2
+

1

c2
)−2µ(

nx̄

σ2
+

m

c2
))

= exp(−1

2
(

n

σ2
+

1

c2
)(µ2 −

2µ( nx̄
σ2 +

m
c2 )

n
σ2 +

1
c2

))

∝ exp(−1

2
(

n

σ2
+

1

c2
)(µ2 −

2µ( nx̄
σ2 +

m
c2 )

n
σ2 +

1
c2

+(
nx̄
σ2 +

m
c2

n
σ2 +

1
c2

)))

= exp(−1

2
(

n

σ2
+

1

c2
)(µ −

nx̄
σ2 +

m
c2

n
σ2 +

1
c2

)2)

∼ N(
nx̄
σ2 +

m
c2

n
σ2 +

1
c2

,
1

n
σ2 +

1
c2

)

The visualization of the distribution of the simulated samples of µ is given in figure 1.2

Our original goal was to explore various properties on the posterior π(µ,σ2|D). We have

found the full conditional densities for each of µ and σ2, Monte Carlo method is going to be used

to simulate large number of samples from each of these 2 distributions. As you can see from the

graph above, as the number of simulations become larger, samples of σ2 are looking more like an

inverse gamma distribution, samples of µ are looking more like a normal distribution, and when

the number of samples becomes extremely large, we expect them to converge fully to our target

distribution.
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Figure 1.2: Posterior Density estimation for µ with (L) 300 simulations and (R) 30000 simulations.

2 A method for Bayesian variable selection

First of all, since adding covariates to a model will only have more of the response explained, why

are we wanting to select covariates? The answer can be explained in a few points. First of all,

generally in a large raw data set there will be a large number of covariates, and many of these

covariates are correlated to each other. Collinearity will highly lower the model efficiency.

Secondly, more covariates means that you need to spend money and time to observe them, which

are unnecessary most of the time.

There are many examples on how model selection has benefited different areas of research.

For example, In the famous Barley data (Tinker et al., 1996) which was taken from the North

American Genome Mapping project. Statisticians was given a dataset with one response and 127

binary covariates. A classic data set is the pollution data set. It is studying mortality rates given

15 continuous covariates, including rainfall, January Temperature, July Temperature, population

density etc.(O’Hara et al., 2009) In a paper about model selection with high dimensional
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data(Tadesse et al., 2005), the classic Iris dataset is being analyzed. This dataset contains 50

samples from three species, Iris setosa, Iris versicolor and Iris virginica. By applying Bayesian

clustering model selection method, the samples are efficiently clustered into its own category. In

the same paper, a data set is simulated with 15 responses and 20 covariates from 4 different

normal densities. Additional noisy covariates are generated as well. The purpose was to study

whether the covariates will stay important under increasing number of unimportant noisy

covariates. In the end, a total number of around 35 covariates is reduced to 15-20 covariates using

clustering and Bayesian variable selection(Tadesse et al., 2005). In a gene dataset with a binary

response BRCA1 or BRAC2. Bayesian variable selection was used to identify strong significant

genes for the classification of BRCA1 or BRCA2. Between 5-27 covariates are selected to be

significant, with the most significant ones being keratin 8, TOB1 etc. The method significantly

reduced the genes selected comparing with most methods used in other papers, which typically

end up more than 55 significant genes (Lee et al., 2003). In the epidemiology study (Walter and

Tiemeier, 2009), a regression model was fitted using a conditional logistic model, 17 categorical

covariates were used. 2 or 3(depending on the interpretation) were selected to be influential.

The examples above have shown the power of variable selection. Many methods have been

developed to find a way to select a subset of ”best” covariates from a larger pool of covariates.

Since the rise of computing power in the 1990s, Bayesian variable selection methods have

gradually come into popularity because sampling from the posterior distribution became easier

than ever. In a Bayesian approach, instead of comparing several models and choose the best one,

marginal posterior probability of each covariate that should be in the model is computed, which

means we will choose the covariates with the highest posterior probability. More practically

speaking, dummy variables are assigned to each of the potential covariates, and the ”best”

covariates are those will yield high posterior probabilities of their corresponding dummy

variables. Below, we start with MCMC scheme for linear regression and later modify it to

accommodate variable selection.
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2.1 MCMC FOR LINEAR MODEL

In a regression problem with n observations and p covariates, consider it to be a dataset with very

large p. The response Y is often represented as Y = Xβ + ε , where ε ∼ N(0,σ2I),

Y ∼ N(xT β ,σ2I) The unknown parameters of which we want to sample from are β and σ2. By

assigning a prior onto β and σ2 individually, we will be able combine these priors with the data to

produce posterior densities. The regression coefficients

β1 . . .βp

are conveniently modeled to follow a multivariate normal distribution. Let β ∼ MV N(m,c2), An

appropriate distribution for the residual variance to follow is an Inverse Gamma distribution,

σ2 ∼ IG(a,b). First of all we are to find out the joint posterior of β and σ2 given the observed

data

π(β ,σ2|D) ∝ (σ2)−n/2 exp{−1

2

(y− xβ )T (y− xβ )

σ2
} 1

(c2)p/2

×exp{−1

2

(β −m)T (β −m)

c2
}(σ2)−a−1 exp− b

σ2

∝ (σ2)−n/2−a−1 exp(−1

2

(y− xβ )T (y− xβ )

σ2
− 1

2

(β −m)T (β −m)

c2
− b

σ2
)

To find out the posterior full conditional densities for them, all we need to do is assuming the
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parameter other than the one we want to sample from as constant

π(β |σ2,D) ∝ exp−1

2
(
−2β T xT y+β T xT xβ

σ2
+

β T β −2β T m

c2
)

= exp−1

2
(β T (

xT x

σ2
+

I

c2
)β −2β T (

xT y

σ2
+

m

c2
))

∝ exp−1

2
(β T (

xT x

σ2
+

I

c2
)β −2β T (

xT y

σ2
+

m

c2
))

∼ N((
xT x

σ2
+

I

c2
)−1(

xT y

σ2
+

m

c2
),(

xT x

σ2
+

I

c2
)−1)

And,

π(σ2|β ,D) ∝ (σ2)−n/2−a−1 exp−1

2
(
(y− xβ )T (y− xβ )+2b

σ2
)

∼ IG(a+
n

2
,
(y− xβ )T (y− xβ )+2b

2
)

After successfully finding posterior full conditional densities for β and σ2, all we need to do

is to simulate large amount samples from each density by applying Monte Carlo method. And

figure 2.1 shows a scatterplot of 2000 simulated samples from full conditional density for β

2.2 STOCHASTIC SEARCH VARIABLE SELECTION

In the last section, we introduced how to apply Bayesian method in a typical regression problem,

where we are discovering the relationship between an observed response variable y and a set of

covariates x1 . . .xp. The problem arises when, since β1 . . .βp follows a multivariate normal with

mean m and variance σ2Ip, where m is a px1 vector and σ2Ip is a pxp matrix. That gives

p(β j = 0) = 0 where j = 0,1 . . . p because the integral of β equal to any specific point is zero.

That means the corresponding x j has important effect on the response y. By following the same

logic for each of the p parameters we would have to conclude that all xs are important on y.

Therefore, variable selection has no more meaning in this case. This problem can be solved in

many different ways by assigning a different prior on β . In this paper, we do it by mixing
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Figure 2.1: Plot of 2000 samples for full conditional density of β

probability measures p into the prior for β , where a new prior for β is formed (Geweke et al.,

1996)

π(β j) = δ Iβ j=0 +(1−δ )N(m j,c
2) =

j=2

∑
j=1

p j f j(x)

A new prior density for β is introduced in hopes of assigning non-zero probability for it to be

insignificant. In this new prior, the indicator has point mass at zero, when β j is not equal to zero,

it has a normal distribution with probability δ . Test this prior when β j = 0,

P(β j = 0) = δ ∗1+(1−δ )∗0 = δ , which means not every x is important on the response. Goal

of assigning non-zero probabilities for β j is now accomplished.

Bayesian statistics is about discovering the properties of full conditional posterior of each

unknown parameters, we did it for ordinary observations. The only difference is now we are

doing in a variable selection setting. Suppose we have covariates {x1 · · ·xp} each with n
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observations {y1 · · ·yn}. The joint posterior for β and σ2 is

π(β ,σ2|D) ∝
n

∏
i=1

π(yi|xT
i β ,σ2)

p

∏
j=1

π(β j)π(σ
2)

The prior for β j is in the form of a sum, thus making calculating ∏
p
j=1 π(β j) extremely

difficult. Therefore, dummy variables z1 · · ·zp are introduced in hopes of getting rid of the sum,

these dummy variables are appropriately set to follow a Bernoulli distribution

z j =















0 when x j is not important

1 when x j is important

It can also be written in a more compact way

f (z) =
p

∏
i=1

(1−δ )z jδ 1−z j (6)

Therefore,z j = 0 implies β j = 0,z j = 1 implies β j follows N(m,c2). Suppose there is one

observation y with one covariate x, and y = βx+ ε with ε ∼ N(0,1). In the simplest case, to find

the conditional posterior for β , we multiply the likelihood of the data and the new prior for β

π(β |D,σ2) ∝ L(D|β ,σ2)π(β )

∝ e
−

1

2
∑i(yi−xT

i β )2 p

∏
j=1

[δ Iβ j=0 +(1−δ )
1√

2πc2
e
−

1

2

(β j −m)2

c2 ]

=
p

∏
j=1

[δe
−

1

2
∑i(yi−xT

i β )2

Iβ j=0 +(1−δ )e
−

1

2
∑i(yi−xT

i β )2 1√
2πc2

e
−

1

2

(β j −m)2

c2 ]

= δ ′
jIβ j=0 +(1−δ j)N(m′

j,c j
′2)

From here it is obvious to see that the posterior and prior of β have exactly the same form
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except the details are different, thus it proves the conjugacy in Bayesian statistics.This kind of

relationship between posterior and prior applies not just to β , but can be generalized to any

parameters. Another interesting property which can be intuitively explained, is that when z is

zero, β is also zero and it implies y has mean zero. When z is not zero,y has mean xβ . This means

when y is large, there is evidence against y with mean zero, therefore there is evidence against β

equal to 0, which means π(β = 0) is going smaller as y become larger. After some messy

computation like we did in the non-regression posterior, we eventually have

δ ′
j =

δ

δ +(1−δ )κ
; (1−δ ′

j) =
(1−δ )κ

δ +(1−δ )κ
,

with

κ =
1√
c2A

exp[0.5∗ (B2

A
− m2

c2
)],

where A = 1
c2 +

∑i x2
i j

σ2 and B = m
c2 +

∑i xi jy
(− j)
i

σ2 . We use y
(− j)
i to denote the residual for i-th

observation after subtracting effect of all covariates except j-th covariate. So,

y
(− j)
i = yi −β0 −∑l 6= j xilβl .

The continuous component of posterior mixture distribution of β j is given by

N(m′
j =

B
A
,c j

′2 = 1
A
). The posterior density for β j can therefore be expressed as

δ ′
jIβ j=0 +(1−δ ′

j)N(m′
j,c j

′2) with δ ′
j,(1−δ ′

j),m
′
j,c j

′2 given above.

2.3 OTHER METHODS

SSVS is among many other methods for variable selection. To name a few : Lasso and Ridge

regression, where regression coefficients are shrinked to 0 to decrease the variance of estimates.

A tuning parameter λ is added to penalize any large number of β . Indicator model selection,

where β can either have some effects or no effect at all depending on how big the posterior

probability of inclusion suggest; Adaptive Shrinkage, this is when the middleman I j disappears

and we directly choose a prior for β j|τ2 where τ2 is the variance for β j. The word shrinkage is
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used because the goal is to choose a prior such that the probability of β is reduced to nearly zero

when evidence suggests that it shouldn’t be in the model; Model space approach, this is an

entirely different method than above. In this approach, instead of putting priors on all possible

covariates, we only put prior on those covariates that are already selected. Overall, there is no

guarantee which model selection method is the best. Each has its own advantages and

disadvantages depending on the data given. A lot of times it is useful to apply all variable

selection methods and compare the results.
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3 Spatial Modeling

Many data are presented in longitudinal and latitudinal forms, these types of geography

referenced data are considered spatial data. For example, the most common type of representation

of spatial data is heat index map. It gives different levels of heat index by presenting the map in

various colors. A lot of times, spatial data maps are very colorful and better looking than typical

black and white statistical graphs.

Most of the times a given spatial data set can be classified into one of the three basic types.

(Banerjee et al., 2014) First type is point-referenced data, which is often referred to as geocoded

or geostatistical data. This is a type of spatial data when the response at one point location y(s) is

the random variable. Given a point location s, where s is continuously varying among a bigger

region, a value of response corresponds to it. The second type of spatial data is Areal data. This

type of data is similar to point-referenced data in the sense that responses are the random

variables. The difference is that Areal data responses corresponds to an area A among a bigger

region, instead of continuous points. This means, given an area A, the response y(A) specifically

correspond to A. The third type of spatial data is point pattern data. Unlike the previous two

spatial data types, here the location is the random variable. In other words, given a set of observed

responses y(s), we want to know what each response corresponds to which location.(Banerjee

et al., 2014) Below we will see some examples for each type of spatial data.

Figure 3.1 is taken from (http://gothos.info/tag/maps/). This is a point-referenced spatial data

map. It shows the distribution of all 16700 libraries in the US. The data was collected by the

IMLS Public Library Survey in 2009. On the map, it is obvious to see that libraries are extremely

concentrated in the Northeast and Midwest. It is not surprising that Northeast has the most

concentrated libraries because in addition to the dense population in many Northeastern states,

that is where the country started, and therefore culturally it is very rich. Contrary to the popular

belief that dense population implies more libraies, the Midwest and the South is identical in terms

of population density. However, the density of libraries in the Midwest overwhelms those in the
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Figure 3.1: Distribution of all 16700 US libraries

South. It is also surprising that in Arkansas, libraries are almost uniformly distributed. We are

expecting a skewed distribution where more libraries are concentrated in NWA and Little Rock,

which in reality is not the case.

Figure 3.2 is from (https://www.maxmasnick.com/2011/11/15/obesity by county/). This is an

areal spatial data map. It shows Age-Adjusted obesity rates by US county in 2008. The data was

collected by CDC in 2008. On the map, we see a clear pattern that US South as a whole has the

most counties with obese people. Overall, the map consolidates the popular belief that poverty

leads to obese and wealth leads to a healthy lifestyle by showing that wealthy coastal counties,

such as those in Massachusetts, New Jersey, Florida and California, are less influenced by obesity.

Figure 3.3 is taken from (EPA.gov). It was measured in 2007. This is a point referenced data

map. The map shows ozone levels at monitoring stations measured across the US. From the map,

it is obvious that the mountain region of the US has the high ozone levels compare to other states.

The states with large populations such as the Northeast and California have lower background
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Figure 3.2: Age-Adjusted obesity rates by US county in 2008

Figure 3.3: Average U.S. background ozone levels at monitoring stations across the U.S. in 2007

ozone levels. Which is not surprising because emissions are higher in those states and therefore

the emission disrupt the background ozone level.

20



When building statistical model on a geography reference data set, standard regression often

does not work well because the covariates are inefficient in explaining the response.Therefore a

latent variable w is introduced in hopes of adding the information that is missed by using just

covariates

y(s) = x(s)T β +w(s)+ ε(s)

This model resembles much of the standard regression model except a new latent variable (w(s))

is added. In this model, s is a symbol for space and s = {s1 · · ·sn}. Where n represents the number

of space(locations) where we collected our samples from. w(s) is column vector consists of

random spatial effect at each location, w(s) = {w(s1) · · ·w(sn)} and it is our main interest in

spatial modeling. ε(s) is a column vector of errors at each location s j, j = 1 · · ·n. β is a column

vector of covariate effects for all covariates of interest, β = {β1 · · ·βp}. Where p represents the

number of covariates in the model. y(s) is a column vector of response at each s j, j = 1 · · ·n. We

build our spatial model based on the following assumptions

ε(si) ∼ N(0,1)

w(si) ∼ MV N(0n,τ
2r(θ))

β ∼ MV N(m,c2Ip+1)

τ2 ∼ IG(a,b)

θ ∼ uni f orm(θmin,θmax)

Recall

Corr(w(si),w(s j)) =
Cov(w(si),w(s j))

√

Var(w(si))Var(w(s j))
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This implies

Cov(w(si),w(s j)) =Corr(w(si),w(s j))∗
√

Var(w(si))Var(w(s j))

=Corr(w(si),w(s j))∗ τ2

Since τ2 is a constant, we are essentially modeling exp− ‖ si − s j ‖ θ based on

Corr(w(si),w(s j)). It can be represented as

r(w(si),w(s j)) = exp− ‖ si − s j ‖ θ

m and c2Ip+1 are the mean and variance matrices for βs which are given. r(θ) is a nxn correlation

matrix for the spatial random effect variable w(s). Commonly speaking, when the distance

between two locations is close, the connections between these two locations will be stronger than

when they are further apart. In mathematical terms, it means when ‖ si − s j ‖ is small, r(θ) is

expected to be big. In other words, r(θ)i j is said to be a decreasing function of ‖ si − s j ‖. θ is a

parameter we use to represent this rate of decay. τ is a scalar.

To obtain the posterior of β ,σ2, use Gibbs-sampling

π(β |σ2,τ2,θ ,D) ∝ π(β )L(D)

∝
1

(σ2)n/2|Φ|1/2
e
−

1

2
{
(y− xβ )T Φ−1(y− xβ )

σ2
+
(β −m)T (β −m)

c2
}

∝
1

|Φ|1/2
exp−1

2
{β T Aβ −2β T b}

Where A = (c2I)−1 =
xT Φ−1x

σ2
+

I

c2
, and b = (c2I)−1m =

xT Φ−1y

σ2
+

m

c2
. After computation, the
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posterior of β is found to follow a normal distribution with mean A−1b and variance A−1

π(σ2|β ,τ2,θ ,D) ∝
1

(σ2)n/2|Φ|1/2
exp−1

2
{(y− xβ )T Φ−1(y− xβ )

σ2
}(σ2)−a−1e

−
b

σ2

∝ (σ2)−n/2−a−1 1

|Φ|1/2
exp−1

2
{(y− xβ )T Φ−1(y− xβ )+2b

σ2
}

It is obvious to see that the posterior of σ2 is an inverse gamma distribution with shape a+
n

2
, and

scale
1

2
[(y− xβ )T Φ−1(y− xβ )+2b]. Next, to find the posterior of τ,θ , M-H sampling method is

preferred

π(θ |σ2,τ2,β ,D) ∝ π(θ)L(D)

∝
1

(σ2)n/2|Φ|1/2
exp−1

2
{(y− xβ )T Φ−1(y− xβ )

σ2
} 1

θmax −θmin

I[θmin,θmax]

At this point, it is very hard to tell which distribution does this posterior come from. Therefore,

M-H sampling is to be used. To get started, take one sample from the prior of θ and say it is θ (0),

which is uniformly distributed between (θmin,θmax). Then take a sample from the proposed

density of θ and compare it to θ (0), and θ new can either be θ (0) or the θ sampled from the

proposed density. Do it until 10000 samples of θs is reached and use all of them to generate

statistics about the true posterior of θ

The posterior of τ2 is also in non standard form, therefore M-H is needed again to explore the

properties of it. By looking at the acceptance ratio

P =
π(τ2(proposed))

π(τ2(i))
∗ q(τ2(i)|τ2(proposed))

q(τ2(proposed)|τ2(i))

Where τ2(i) is the current sample of τ2.Since the prior of τ2 is restricted on the positive line,

therefore it is inappropriate to assume τ2(proposed) to come from a normal distribution. Let
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log(τ2(proposed))∼ N(τ2(i),ρ2), then τ2(proposed) ∼ LogN(log(τ2(i)),σ2). The proposed ratio of

densities is equal to
τ2(proposed)

τ2(i)
because

q(τ2(i)|τ2(proposed)) ∝
1

τ2(i)
exp−1

2
{(log(τ2(i))− log(τ2(proposed)))2

σ2
}

q(τ2(proposed)|τ2(i)) ∝
1

τ2(proposed)
exp−1

2
{(log(τ2(proposed))− log(τ2(i)))2

σ2
}

q(τ2(i)|τ2(proposed))

q(τ2(proposed)|τ2(i))
∝

τ2(proposed)

τ2(i)
exp−1

2

{ [log(τ2(i))− log(τ2(proposed))]2 − [log(τ2(proposed))− log(τ2(i))]2

σ2
}

∝
τ2(proposed)

τ2(i)

Now, we explore the posterior predictive distribution of the response at new locations. Let y

be a vector of observations at locations s1 · · ·sn, and y∗ be new responses that we are trying to

predict at locations s∗1 · · ·s∗t . The joint distribution of y,y∗ can be written as







y

y∗






∼ MV N(







x

x∗






β ,σ2







Φ Φc

ΦT
c Φ∗






)

Therefore, the marginal distribution of y∗ given y is,

y∗|y ∼ MV N(µy∗|y,Σy∗|y)

Where

µy∗|y = µy∗+ΦT
c Φ−1(y−µy)

Σy∗|y = Φ∗−ΦT
c Φ−1Φc

24



4 Applications

4.1 AN EXAMPLE OF SSVS WITH SIMULATED DATA

Before applying SSVS to real world dataset, an appropriate step to take is to try this method with

simulated dataset. This way, we will actually know whether this method is capable of identifying

the significance of each covariates without running any risk of getting wrong results for real world

dataset. We will run the SSVS method on 4 different datasets to minimize inaccuracy from the

results. This verifies our purpose of doing research, which is to explore whether a method works

or not under different conditions. To start with, we first simulate 15 covariates independently each

from a uniform distribution between 0 and 1. We can select any combination of these 15

covariates to use in our model. In the first model that we use, 6 covariates will be used

Y = 2.5+0.464X3 +0.005X4 +0.298X5 +0.833X7 +0.475X8 +0.516X13 + ε,

ε ∼ N(0,0.152)

In R, I ran the code with the first dataset to see if the code gives higher posterior probabilities

on those covariate effects that are important. I ran the SSVS method with 20000 iterations thinned

at every 5th sample to reduce correlation between simulated samples. The code took about 2

minutes and 30 seconds to run, and the output is given in Table 1

Table 1: Posterior Proportion of non-zero covariate effects

0.00025 0.00075 1 0.00050 1

0.00075 1 1 0.00025 0.00025

0.00025 0 1 0.00025 0.00025

In this table, the posterior proportions of non-zero covariate effects(βs) are given for all 15

covariates. The true model has 6 covariates included, they are X3,X4,X5,X7,X8,X13. So, in the

table, we are expecting to see that for these 6 covariates, the posterior proportion of their

corresponding covariate effects is going to be high, and we are also expecting that for those 9
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covariates that are not included, their corresponding posterior proportion of non-zero covariate

effects is going to be low. After checking them one by one, we see that our SSVS method is doing

a efficient job of identifying covariates with significant effects. For example, X3 is in the true

model, and its corresponding posterior proportion of non-zero covariate effect is 1. X1 is not in

the true model, and its corresponding posterior proportion of non-zero covariate effect is almost

extremely small at 0.00025. The only thing in the table that doesn’t match with the true model is

X4. This is not a big issue because we don’t expect our SSVS method to be perfect, moreover, if

we look at the coefficient for X4 in the true model, it is extremely small at 0.005, this accounts for

our SSVS method not being able to identify it as significant.

Next, for the ones that match with the true model, we want to know whether the posterior

means is a good estimate for the true model coefficients. An appropriate way to set it up is to

build a 95 percent credible interval for these posterior means and see whether the true model

coefficient is included in the credible interval (Table 2)

Table 2: Point estimate and 95% credible intervals for posterior means of significant βs

Quantiles X3 X5 X7 X8 X13

2.5% 0.44 0.26 0.82 0.46 0.5

50% 0.46 0.28 0.84 0.49 0.52

97.5% 0.49 0.31 0.86 0.51 0.54

We see that the posterior means are a good estimate for the true model coefficient. For

example, the true coefficient for X3 in the model is 0.464, and from the table, we can see that the

point estimate for X3 is 0.46, and 95 percent confidence interval for X3 is between 0.44 and 0.49,

where the true coefficient for X3 is well included. Also, another example, the true model

coefficient for X7 is 0.833, and from the table, we see that the posterior mean from SSVS method

for X7 is 0.84, and 95 percent confidence interval for this mean is between 0.82 and 0.86, where

0.84 is well included. This proves that our SSVS method is not only capable of identifying the

important covariates, but also it can provide an accurate estimate for the true effect of these

covariates’ impact on this specific model.
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Now we present R plot result in figure 4.1
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Figure 4.1: Plot of posterior proportions of non-zero βs

From the plot, it is obvious to see that among the 15 covariates, 5 covariates stand out from

the rest by having higher posterior proportions of non-zero covariate effects, they are

X3,X5,X7,X8,X13. Which again proves our findings previously to be right.

This time we run the algorithm on 4th dataset. The second model that we use is identical to

the first model, except that we added more noise in the error term. In fact, we have increased the

variance of error term 100 times comparing to the first model. Our goal is to see if the increase of

noise in the model would have an impact our SSVS method’s ability to identify the important

covariates appropriately, the model is

Y = 2.5+0.464X3 +0.005X4 +0.298X5 +0.833X7 +0.475X8 +0.516X13 + ε,

ε ∼ N(0,1.52)
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In R, we do the same thing like we did with the first model. Except we are using a different

dataset. We first run the code with the fourth dataset to see if our SSVS method gives higher

posterior proportions on those covariate effects that are important. I ran the SSVS method with

20000 iterations thinned at every 5th sample to reduce correlation between simulated samples.

The code took about 2 minutes and 30 seconds to run, which is about the same time as the first

model, and the proportions are given in Table 3

Table 3: Posterior Proportion of non-zero covariate effects

0.001 0.004 0.2045 0.0025 0.60775

0.00175 1 0.04225 0.00325 0.0005

0.00125 0.001 0.1225 0.00075 0.001

Not surprisingly, our SSVS method is not performing well in identifying the important

covariates. We see that the significance of X7 is still well captured because the posterior

proportion of non-zero covariate effects is around 1. For X5, the same proportion is roughly 0.6.

For X3 and X13, of which whose proportion should be high, it turns out that the proportion is very

low. Therefore, our conclusion is that the ability of our SSVS method to detect significance of

covariates is considerably reduced when the noise in the model is high, which is expected because

in fact, any model fitting is inappropriate when there is a lot of noise in the model.

Another way we can explore the relationship between the proportions and the model

coefficient is that, if the SSVS method works perfectly, it would end up with higher posterior

proportions on coefficients whose corresponding covariate has greater true model coefficient. For

example, even though X5 is identified to be important, we observed that the coefficient for X5 in

the true model is smaller than that of X3. This is strange because despite having higher true model

coefficient than X5, X5 is selected and X3 is not selected. This is again showing that SSVS method

does not perform efficiently when noise is adding in the model. Another possible research on this

topic that we are not going to discuss in this paper, however, which might be interesting, is that

the relationship between efficiency of our SSVS method and the amount of noise added to the
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model. Our assumption is that the noise is added to the model, the less efficient our SSVS method

would be.

Next, for the covariates that have posterior proportions that are big enough for us to consider

to be significant, we want to know whether the posterior means is a good estimate for the true

model coefficients. We will do it the same way as we did for the first model, that is to build a 95

percent credible interval for these posterior sample means of βs. This time, however, we are not

expecting the confidence intervals to accurately contain the true value of model coefficient

because we already know that SSVS doesn’t work well with noise in the model, the results are

given in Table 4

Table 4: 95% credible intervals for posterior means of significant βs

Quantiles X5 X7

2.5% 0.22 0.54

50% 0.46 0.77

97.5% 0.69 1

We see that the credible intervals do in fact contain the true coefficients. However, they are

extremely wide and can be not as informative as the confidence intervals from the previous

example. Next we present plot from R in figure 4.2

Then we apply our SSVS method on the second dataset. The model corresponding to this

dataset is a non-linear model, our goal is to explore whether SSVS method is capable of

identifying significant covariates when the model is non-linear, the full model can be represented

as

Y = 2.5+0.23X2 +0.15X7 −0.1log(X15)+ ε,ε ∼ N(0,0.152)

In this model, log function is applied to one of the covariates. We perform the SSVS method in R

by running 20000 iterations thinned at every 5th sample. We burned the first 10000 samples

before thinning. We ended up with 2000 samples for each coefficient of the covariates. The

algorithm took about 2 minutes and 10 seconds to run, and the results are given in Table 5
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Figure 4.2: Plot of posterior proportions of non-zero βs

Table 5: Posterior Proportion of non-zero covariate effects

0.000 1 0.00025 0.0000 0.0005

0.00025 1 0.00025 0.00025 0

0.0005 0.0005 0.00025 0.0000 1

By looking at the R output, we observed that X2, X7,X15 stand out from the rest by having

higher posterior proportion of non-zero covariate effects. Then we look back at the original model

to check and see if the same covariates were used. It turned out to be a perfect match. We then

conclude that nonlinearity in a model doesn’t affect SSVS method ability to select the significant

covariates.

We then look at the other way like we did in the previous example. That is to explore the

relationship between posterior proportions and true model coefficients for selected covariates. We

observe that despite both being selected by the algorithm. X2 has greater true model coefficient

than X15. Then we go to the table and observe that both posterior proportions of the coefficient of
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these two covariates are 1. Which is not our ideal result. We could further discussing improving

the algorithm to make it sensitive enough to show the difference of true model coefficients by

giving different values of their corresponding posterior proportions of non-zero covariate effects.

We will not discuss it in this paper.

Next, we are going to look at 95% credible intervals for the posterior means to see if they

contain the true covariate coefficients, based on the previous conclusion. We incline to think that

the credible interval is going to contain the true covariate coefficients,they are given in Table 6

Table 6: 95% credible intervals for posterior means of significant βs

Quantiles X2 X7 X15

2.5% 0.21 0.12 -0.34

50% 0.23 0.14 -0.32

97.5% 0.26 0.17 -0.29

To check the accuracy of the table, we go back to the original model and look at true model

coefficients for these 3 covariates and see if they are included in the confidence intervals. It turns

out X2 and X7 are matches but X15 is not. So we conclude that despite our SSVS method is

unaffected when it comes to identify the important covariates when nonlinearity exists, its ability

to find the covariate effect for the nonlinear term is affected. The scatterplot is given in figure 4.3

In the R plot, X2, X7,X15 stand out from the rest just like what happened in the table. This

validated our conclusion that SSVS works well in identifying important variables when

nonlinearity is present in the model.

Next we apply our SSVS method on the third dataset. The model corresponding to this

dataset has an interaction effect between variables X5 and X8. Our goal is to explore whether

SSVS method is suitable for models with interaction terms, the full model is represented as

Y = 2.0−0.23X2 +0.15X5 +1.06X8 +0.45X5X8 + ε,ε ∼ N(0,0.152)

We ran the SSVS algorithm in R on the third dataset for 30000 iterations and burn the first 10000.
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Figure 4.3: Plot of posterior proportions of non-zero βs

We thinned at every 5th sample after the burning. The algorithm took about 5 minutes to run,

which is slightly longer than the previous experiments. One possibility is that the multiplication

effect between 2 covariates consumes more time in R. We ended up with 4000 samples for each

of the 15 covariate effects. The R output is given in table 7

Table 7: Posterior Proportion of non-zero covariate effects

0.0025 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 1.0000 0.0000 0.0000

0.000 0.000 0.0000 0.0000 0.0000

We observed that the only high posterior proportion comes from covariate effect for X5 and

X8. If our SSVS method was efficient, it would identify all covariates used in the model including

X2. This implies that our SSVS method does not perform efficiently when interaction effect is

present in the model.
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The R plot for chosen covariates given in figure 4.4 From the R plot of posterior proportions
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Figure 4.4: Plot of posterior proportions of non-zero βs

of non-zero covariate effects, we clearly observed only X5 and X8 stands out to have high

posterior proportion of non-zero βs, while X2 missing.

4.2 REAL DATA ANALYSIS

4.2.1 Data discription

The spatial dataset that we are using is Protea Atlas dataset. The data is taken from a very

biodiverse region in South Africa. It is called Cape Florist Region (CFR). Figure 4.5 displays the

map of the region as taken from Chakraborty et al. (2010).

The region is in the most southern end of South Africa and encompasses about 90000 km2 in

area. It is considered to be one of the most biodiverse place in the world. 69 % of species found

here exclusive to this region. Thus, with cooperated effort from ecologists in this local region, we
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Figure 4.5: Map of Cape Florist Region(In shaded gray)

will be able to discover a lot of opportunities to develop models to identity patterns between

biodiversity and environmental factors. For the convenience of statistical analysis, the entire CFR

region is uniformed divided into 36,907 1 minute grid cells for the convenience of modeling, we

will treat each cell as one observation so our entire dataset will have 36,907 rows. The ecologists

have only taken samples from less than a third of total number of cells. That means our training

data is very small comparing to the testing data. Due to the high complexity of building a spatial

model with too large a number of cells, we will only use 1440 cells in [19◦E, 20◦E] × [33.6◦S,

34◦S ]. There were 602 cells where the surveyors visited at least once and remaining 838 cells

were never visited. So, the goal of the project is to predict at those unsampled cells.

The response is prevalence of Protea repens. For each grid cell, its abundance is categorized

into 5 categories(0-4). And each category represents a certain number of this species, in

ascending order. Table 8 details the categories:

For a cell which was not visited, all five categories of the response are 0. For cells which are

visited, but no plants were observed, category 0 will be non-zero, all other 4 categories will be

zero. To make this dataset possible for analyzing, we conveniently change this ordinal categorical
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Table 8: Categories of response variable

Category # of Plants

0 0

1 1−10

2 10−100

3 100−1000

4 1000 or more

data into binary data by allocating 1 to any cell where at least 1 site was found in category 1−4,

and allocating 0 if only the 0 category is non-zero. Hence, after this transformation, the data

resembles a presence/absence dataset for plants. Hence, the response y(s) will become binary. To

make this transition possible, we use the latent variable approach for probit regression from

Albert and Chib (1993) and introduce z(si) such that z(si) is 1 when y(si) is positive and z(si) is 0

when y(si) is negative.

z(si) = I(y(si)>0)

We included 18 covariates which reflect environmental and soil related information for that

region. The description of these covariates is provided in Table 9

Soil texture level 1 indicates fine soil texture, level 4 indicates coarse soil texture. Soil fertility

level 1 indicates low level fertility, level 3 indicates high level fertility. Soil pH level 1 indicates

low Alkalinity concentration in soil, level 3 indicates high Alkalinity concentration in soil.

4.2.2 SSVS on real data

We apply the SSVS algorithm on this data set in hopes of selecting a few important covariates out

of a large number of covariates. We ran the algorithm with 30000 iterations and burn the first

10000 iterations. We thinned them at everything 5th iteration and we finally ended up with 4000

samples. The code took about 40 minutes to run and the result of the output is given in the Table

10

The table gives posterior proportions of non-zero variable effects for all 18 potential
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Table 9: Description of covariates

Variable Description

FROST.DURT Frost duration

MIN07 Minimum temp in July

HTUNT Heat units

MEAN.AN.PR Mean annual precipitation

MAX01 Maximum temp in January

NDVI Enhanced vegetation index

RAIN.CONCE Rainfall concentration

FERT1 Soil fertility level 1

SMDSUM Summer soil moisture days

FERT2 Soil fertility level 2

SMDWIN Winter soil moisture days

TEXT1 Soil texture level 1

TEXT3 Soil texture level 3

TEXT4 Soil texture level 4

FERT3 Soil fertility level 3

pH1 Soil pH level 1

pH3 Soil pH level 3

PPTCV Inner annual coefficient of

variation of precipitation

variables. We choose the variables for which the effects were chosen at least 50% of the time.

These variables are given in Table 11

Next we want to learn about the point estimates and 95% credible intervals from the posterior

distributions of each covariate effect. They are given in Table 12

We first look at the variable FROST.DURT , the 50% quantile (median) for its posterior

samples is 1, and the same 95% credible interval is between 0.83 and 1.18. So it is appropriate to

conclude the variable effect for FROST.DURT to be 1. Following this logic, it is appropriate to

set the variable effect for each of the 8 selected variables to be its posterior median of βs.

Then we generate a scatterplot (figure 4.6) to have a visualization of the selected variables. In

the plot, we see that 8 covariate effects stand out from the rest to have higher proportions of

non-zero values being selected. And the 7th variable(FERT3) appears to have lower such

proportions than the other 7 variables.
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Table 10: Posterior Proportion of non-zero covariate effects

PPTCV FROST.DURT HTUNT MAX01 MIN07

0.0095 1.0000 1.0000 1.0000 0.0020

NDVI RAIN.CONCE SMDSUM SMDWIN FERT1

0.0005 1.0000 1.0000 1.0000 0.0005

FERT3 TEXT1 TEXT3 TEXT4 PH1

0.7295 .00025 0.2260 .01425 1.0000

MEAN.AN.PR FERT2 PH3

.00375 0.0010 0.0025

Table 11: Covariates Selected from SSVS

FROST.DURT HTUNT MAX01 RAIN.CONCE

SMDSUM SMDWIN FERT3 PH1
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Figure 4.6: Plot of posterior proportions of non-zero βs
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Table 12: 95% credible intervals for posterior means of significant βs

Quantiles 2.5% 50% 97.5%

FROST.DURT 0.8320627 1.0094178 1.1795773

HTUNT -2.155948 -1.725745 -1.324397

MAX01 0.7902833 1.2747306 1.8328562

RAIN.CONCE -4.523954 -4.228110 -3.932714

SMDSUM -4.115252 -3.746278 -3.405547

SMDWIN 4.315590 4.620328 4.935613

FERT3 0.1753409 0.3377581 0.4879755

PH1 0.3106712 0.4437057 0.5444190

4.2.3 Spatial Model Building

In the previous section, we applied SSVS method in identifying the important covariates. In this

section, we will use these covariates to build a spatial model for this dataset. The goal is for each

grid cell, we shall obtain a posterior probability of presence and absence of plants across that

region. For the convenience of analysis, we will not take samples from the entire CFR, instead we

take a small portion of it. Since the researchers haven’t been to all grids cells, we will be able to

predict presence/absence of plants for each grid cell based on the posterior probabilities of the

responses produced by the spatial model. The general form for this model can be seen in the last

section. We run the algorithm for 7000 iterations and burned the first 2000, and we thinned the

rest of 5000 samples at every 5th sample, the code took over 6 hours to run. And we ended up

with 1000 samples for each of β , τ2, θ , w(s), y(s). First, we present the posterior summaries of

covariate effects in Table 13. We see from the table that SMDWIN( Winter Soil Moisture Days)

has the most positive significant impact on the response(Presence/Absence of plants). And

HUNT( Heat Unit) has the most negative impact on the response. We will also construct 95%

credible intervals for these βs. The intervals are given in Table 13.

We observed from the results that the 50% quantile(median) of these 8 covariates are not

good point estimates for the true model coefficients. For example, the true model coefficient for

the covariate FROST.DURT is 7.31, it is included in the credible interval for this covariate,
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Table 13: 95% credible intervals for posterior means of 8 covariates

Quantiles 2.5% 50% 97.5%

FROST.DURT -6.7208304 -0.6486006 13.5733754

HTUNT -20.371268 -4.879984 1.223927

MAX01 -12.5849263 0.7025249 28.9037163

RAIN.CONCE -21.468516 -11.704067 -4.809063

SMDSUM -28.814310 -13.017411 -3.343195

SMDWIN 6.988709 16.180462 38.269132

FERT3 1.470543 5.483995 13.291347

PH1 0.4330384 2.9543393 7.6421285

however, the posterior median of samples for it is -0.648, which has significant difference than the

true model coefficient 7.31.

Next, the presence and absence maps( the visual version of average of 1000 simulated

samples of response y(s) in each of 1440 grid cells) produced by R are shown in figure 4.7 There
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Figure 4.7: Map of probablity of presence (L) and absence (R) of plants in the region

is an inverse relationship between probability of presence and probability of absence since

P[presence] = 1−P[absence]. We see this relationship clearly from the map when, the black

region in the presence map corresponds to the red region in the absence map, and vice versa.
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Since we have 1440 grid cells in total, which means w(s) will be a 1440x1 column vector, we

won’t list all of them here. Instead , we will look at the spatial effect map generated in R provided

in figure 4.8

spatial random effect
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Figure 4.8: Map for spatial random effect

On the map, each grid cell takes the average of 1000 posterior samples of w(s) . Since we

only have 1440 grid cells, we can still see the rough square patterns on the map. In the region

where the spatial effect (w(s)) is positive, it implies the probability of presence is observed to be

higher than what we could predict only using those 8 covariates. Similarly, in the region where

w(s) is negative, probability of absence is observed to be higher than we could predict only using

those covariates. The effect for each of the 8 covariates (posterior means of βs) is given in the

following table.
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5 Future Work

In this thesis, I described and applied SSVS treating many hyperparameters as fixed. A lot of

times we can get more precise results by assigning a probability distribution to these

hyperparameters. For example, a lot of literature can be discussed in choosing a and b, the

hyperparameters for variance. I will also develop more simulation studies, cover a wider range of

models so we can see clearly whether SSVS is efficient or not in identifying the significant

covariates under those models. For example, I can increase the variance of the error term and

research on how will each unit increase in variance influence the SSVS efficiency. And also, there

are many other variable selection methods out there besides SSVS: Shrinkage based methods

(Lasso, ridge), Bayesian Lasso, Adaptive Shrinkage etc. I will learn how other variable selection

methods work and apply them on this CFR dataset, and many other datasets. Then I will be able

to compare under what kind of dataset should a particular method be used. For example, in a high

dimensional case, if we use SSVS we would have 2p ways of choosing the set of regression

coefficients. That is very inefficient in terms of computation. Last but not least, I am planning on

developing a spatial model that gives more information about the distribution of plants in CFR.

That is, instead of transforming the response into a presence and absence (binary) one. I will let

the response stay multicategory. That way we will be able to know how the density of plant

prevalence varies throughout the region.
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