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ABSTRACT 

Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to 

pattern energy and selectively sinter powder particles to build 3D geometries.  However, this 

printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, 

and high overhead expense. In this research, a new 3D printing method is proposed to overcome 

these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed 

selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively 

sintering materials. Using microheaters offers significant power savings, significantly reduced 

overhead cost, and increased printing speed scalability. The objective of this thesis is to obtain a 

proof of concept of this new method. To achieve this objective, we first designed a microheater 

to operate at temperatures of 600⁰C, with a thermal response time of ~1 ms, and even heat 

distribution. A packaging device with electrical interconnects was also designed, fabricated, and 

assembled with necessary electrical components. Finally, a z-stage was designed to control the 

airgap between the printhead and the powder particles. The whole system was tested using two 

different scenarios. Simulations were also conducted to determine the feasibility of the printing 

method. We were able to successfully operate the fabricated microheater array at a power 

consumption of 1.1W providing significant power savings over lasers. Experimental proof of 

concept was unsuccessful due to the lack of precise control of the experimental conditions, but 

simulation results suggested that selectivity sintering nanoparticles with the microheater array 

was a viable process. 

 

Based on our current results that the microheater can be operated at ~1ms timescale to sinter 

powder particles, it is believed this new process can potentially be significantly quicker than 



 

 

selective laser sintering by increasing the number of microheater elements in the array. The low 

cost of a microheater array printhead will also make this new process affordable. This thesis 

presented a pioneering study on the feasibility of the proposed SRS process, which could 

potentially enable the development of a much more affordable and efficient alternative to SLS.  

 

Keywords: 3-D printing, Resistive sintering, Microheater 
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Chapter 1 INTRODUCTION 

Manufacturing is a method in which raw materials are transformed into goods. Manufacturing 

methods generally fall into three categories: subtractive processes, deformative processes, or 

additive processes. Subtractive processes work by taking a bulk supply of some material, and 

then removing the undesired parts of the bulk piece of material. This has been seen in many of 

the standard machining processes such as etching, lathing, milling, grinding, sawing, and torch 

cutting,. Deformative processes are another very popular method of manufacturing, in which 

materials are deformed into shapes, such as forging, casting, or molding.   

The third manufacturing method, additive manufacturing, is a quickly emerging technology for 

manufacturing. ASTM has defined the term for additive manufacturing (AM) as a group of 

technologies capable of combining materials to manufacture complex products in a single 

process [1]. 

Additive manufacturing is commonly known as 3D printing, which is becoming more popular in 

current manufacturing, due to its ability to almost form any shape desired, offering a wide range 

of customizable products without having to adjust the manufacturing method. It has been 

adopted for many applications but is still not considered a mainstream method of manufacturing 

due to its limitations in production cost for volume production. Many limitations, such as speed, 

cost, and product quality, have prolonged the development and widespread adoption of this 

technology.  

Conformity to use additive manufacturing is being fostered by technological innovations such as 

the one developed in this research. The overall motivation is to be able to provide a “mass 

customization” of manufacturing, which means providing a manufacturing method where all the 

customization of 3D printing can be obtained with manufacturing speeds comparable to current 
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mass production methods. This concept is not easily proven and must be taken in smaller more 

quantifiable steps towards the ultimate goal. For this reason, a new technology, selective resistive 

sintering (SRS), is investigated in this thesis. To introduce the new method of additive 

manufacturing, we will first provide background to similar technologies and their limitations, 

such as selective laser sintering (SLS), aerosol printing, and selective heat sintering. 

 

1.1 Technologies and Limitations 

In this section, an introduction to SLS and other similar technologies to the proposed SRS 

process will be discussed.  

 

1.1.1 Selective Laser Sintering 

SLS is a popular AM process that enables the creation of 3D objects by sintering powders 

together. A laser is used as the energy source, which selectively fuses the powder particles where 

the laser is applied to form a 3D structure. This process is shown in Figure 1.  
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Figure 1-Schematic of How Selective Laser Sintering Works [2] 

 

Additional layers can be successively added in order to build the geometry in the vertical 

direction, while the remaining non-sintered powders act as a support structure. In this method, 

the laser has high power consumption and resolution is limited by the laser size. This limits its 

scalability, and thus making the technology limited in speed and efficiency. For example, a 

commercially available SLS printer EOSINT P100, for printing polymers, uses 30 W which is 

standard for a low-temperature operation and has a build rate of 3.04cm
3
/h [3]. Another example 

is the Optomec LENS 750 which uses a 1 kW powered Nd:YAG laser and can exceed 

temperatures of 2500⁰C at a scanning speed of 16.9 mm/s [4]. This technology is advantageous 

due its ability to reach liquefying temperatures of most materials which enable it to create 3D 
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structures out of a wide range of materials with relatively low porosity, but consumes a 

significant amount of power and has extremely slow build speeds.  

 

1.1.2 Aerosol Printing 

Another commercial additive manufacturing method is Aerosol printing. Aerosol printing is a 

maskless non-contact printing system from Optomec Inc. In this process, an aerosol is formed by 

pneumatic atomizing or ultrasonic. This aerosol then travels to the print head. In the print head, 

the material never touches the sides of the print head due to a flow of gas in the nozzle which 

focuses the aerosol. This lets the material easily transfer from the aerosol process to the head of 

the printer. This can be seen in Figure 2. 

 

Figure 2-Diagram of How Aerosol Printing Works [5] 

The material is then ejected by a nozzle. Due to the method of operation, parameters can easily 

be adjusted to change the resolution like the gas flow and nozzle size [6]. The highest resolution 

from these printers is ~1 µm, although the printing speed decreases at higher resolution [7]. The 
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maximum speed in an aerosol printer is ~100 mm/s with resolution of 25 µm [8]. This 

technology is primarily focused on the development of electronic technology, low production 

electronics, and repairing electronics [8]. It does not operate at the speeds needed to be used as a 

mass production method. This process also requires post processing to sinter printed materials.  

Though this is a commercialized method of 3D printing it still lacks effectiveness due to the 

multiple steps involved in post processing the prints.  

 

1.1.3 Selective Heat Sintering 

Selective heat sintering is a method of 3D printing where resistive heating elements come into 

contact with particles to sinter them. It is most popularly defined by the commercially available 

Blueprinter. This printer depends on a powder deposition method to lay down layers, and then a 

heating element to move over the powders, bringing the heat source into contact with the 

powders. In this system, materials have to be previously heated to only a few degrees below their 

sintering temperature [3]. It offers build speeds at 2-3 mm/hr [9]. The build rate speed is 

competitive with other sintering methods, and the printer is one of the most cost-effective 

printers on the market. Currently, only one material is being printed by the printer. The influence 

from the actual heating source also has little impact, due to most of the heat being lost through 

the print head, due to a protective layer between the heater and material being sintered. For that 

reason, it is much more inefficient than it could be and the patterned heat can only contribute 

~10ºC temperature change.  
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1.1.4 Summary 

The previous section shows the current progress in additive manufacturing technologies. Aerosol 

printing, selective heat sintering, and SLS, are all well-known forms of 3D printing. These 

technologies are not typically effective for use in industry because their various complexities 

disable them from being a mass production method. For this reason, a new 3D printing method 

needs to be innovated which surpasses the current level of technology. 

 

1.2 Problem Formulation 

The SRS process proposed in this thesis is expected to have an increased manufacturing speed 

and an overall cost reduction allowing for widespread adoption by industries to use for mass 

production. Therefore, the goal of this thesis is to determine the viability of the proposed SRS 

process. This technology will be more narrowly focused to provide a sintering method that can 

selectively sinter a 100 μm area within 1 ms, and has lower energy consumption than other 

existing sintering technologies.   

 

1.3 SRS Method 

The proposed SRS method uses a MEMS microheater to transfer heat via conduction to a 

previously lain layer of material to be sintered.  The first step in this method is to lay a layer of 

nano/micron particles or nano/micron-particle inks. The methodology requires repeating a new 

layer each time much like most selective sintering processes to create a true 3D structure. 

However, the goal in this thesis is to create only a 2D structure for a proof of concept. In the next 

steps lies the primary differences to distinguish this method from selective heat sintering and 

SLS. To sinter materials, a microheater moves over the top of the previously layer of nano-



7 

 

particles and selectively sinters the area desired without making contact with the particles. This 

process is shown in Figure 3. Here, the heater moves over the top, conducting heat through air to 

particles being sintered. The solid areas are sintered and the remaining spherical shapes are the 

unsintered particles leftover. These unsintered particles act as support structures.  

 

 
 

Figure 3-Overview of Selective Sintering Operation  

 

1.4 Advantages over Existing Technology 

Microheaters were chosen for this printer as the energy source. Microheaters offer a small area of 

heat application, low power consumption, low cost fabrication, fast thermal response times, and 

capability to operate at high temperatures in excess of 600ºC. Using microheaters that are small 

in size, offers high-resolution printing while also providing adequate heat to sinter the particles. 

Quick thermal response enables the ability to sinter materials.  

Technologies for comparison in this research are all sintering based methods. This technology 

has the potential to outperform other technologies previously mentioned such as Optomec’s 

Aerosol printer, SLS, and selective heat sintering. SLS suffers from many issues in comparison 

to the newly proposed method: 1) consumes more power, 2) not a scalable technology, 3) slow 

build speeds. Aerosol printing is limited in speed and the fact that they require additional 

sintering steps to have a functional device. Aerosol printing is only a 2D printing process. 
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Selective heat sintering is a very similar process to the one proposed here. The printheads are 

very similar in that they use resistive heaters to provide sintering. Due to this similarity, both are 

extremely affordable methods of printing. The difference lies in the method of operation. SRS 

does not come into contact with the materials. In selective heat sintering, protective layers are 

used to protect the heaters from being damaged. This makes it inefficient compared to SRS. The 

temperature obtained in these printers is also drastically different. The operation of SRS provides 

a heat source which can sinter materials up to ~600°C, whereas SHS can only provide a few 

degrees difference in heat and never reaches a temperature above 140°C. Contact can possibly 

cause possible damage to the print and puts wear on the printer. Its speed is also limited by the 

way it prints.  

The proposed SRS method, which rivals methods like selective laser sintering, have a 

technological advantage of being potentially at least 10x better in terms of speed and power 

consumption. Peter Theil describes this as the estimated general trend representing a true 

technological competitive advantage [10]. In this research, numerical simulations and 

experiments were performed to investigate the viability of this proposed method.  

 

1.5 Potential Applications 

SRS can be potentially used in variety of industry applications, overall transforming the use of 

3D printing in industry. A particular field of application that this technology excels in is 

production of printable electronics. These electronics are formed by a single layer-technically 2D 

printing process, but it can create these custom 2D shapes at rapid speeds.  The field of radio 

frequency identification (RFID) technology shows a promising future in using this method of 

production with limited application with this process being both fast and cost efficient. This 



9 

 

technology could potentially lower the production cost to a range that is competitive with the 

current bar coding method now utilized.  Wide consumer use is also viable due to the low cost of 

this technology. The system has the capability to be entirely digitalized to make it user friendly 

while still being powerful enough to create a user’s designs. Since all the power is essentially 

contained within a computer system, this makes it user-friendly for customers. The MEMS 

microheaters are also relatively safe due to the small amount of heat being produced. 

Nanoparticle solutions such as the popularly used NovaCentrix paste are also relatively safe 

compared to non-diluted particles. This prevents hazardous nanoparticles from becoming 

airborne. A combination of an efficient cleaning system with this technology could make this 

printing method widely available to the “Average Joe” buyer with interested in another cool toy 

to add to his/her garage.   

 

1.6 Outline of Thesis 

Chapter 2 is a literature review of microheater technology, fabrication, packaging, calibration, 

and high precision control systems that are important for the SRS technology. In the review of 

the literature, microheaters are first reviewed for different design aspects. Microheaters were 

evaluated for many different design aspects such as materials, shapes, and operational 

parameters. Fabrication was evaluated for its aspects on the overall operation as well as 

contributions to design factors. To ensure the functionality of the heater for our intended uses, 

different packaging design was evaluated along with calibration. Many different calibration 

methods were assessed to help define parameters for control systems as well as numerical 

models. Lastly, high precision control systems were reviewed. During the modeling of the 

microheater for the purposes of SRS, it was found that high precision control was needed to 
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achieve the desired heat transfer for sintering. These systems were reviewed for their actuation 

methods, sensors, and overall control systems.  

Chapter 3 consist of the design, optimization, fabrication, and packaging of the microheater. 

Multiple different designs are evaluated and optimized using a constrained particle swarm 

optimization algorithm for the geometry of the microheater. This device must then be fabricated. 

Fabrication of the microheater is based on methods that are well-known and established at the 

University of Arkansas HiDEC. The packaging of the MEMS microheater device is a critical 

design for this implementation of SRS and is detailed as to the specifications required for the 

new printing method.  

In chapter 4, the SRS process is evaluated. The validated numerical models used previously in 

the design of the microheater are used to validate that this method is, in fact, feasible. Different 

material properties and their sintering temperatures are provided to show the viability of the 

materials reaching a sufficient temperature to be sintered. It also defines other aspects of the 

operation such as the selectivity of the print, material parameters, power supply required, and 

special requirements between the heater and the materials to be sintered. 

Chapter 5 is the design of a microheater based on the operation of the SRS system. Though many 

papers have been written on MEMS microheater design, none have been designed for conducting 

heat through a medium.  In this chapter, the design of the geometry of the resistive heating 

element was kept from chapter 3. The remaining design aspects of the heater were changed along 

with operational parameters. This new design for the heater led to a power reduction of 2x. The 

parameters of operation for this heater were laid out so that the airgap between the heater and 

materials being sintering were defined, the power of the heater, and duration of the power supply 
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to the heater. In the final remarks of this chapter, fabrication was laid out for this method to be 

completed by equipment available at HiDEC.  

In chapter 6, the foundation for future work is laid out. This technology is far from being a 

mature product ready for commercialization. It is the groundwork of a new method of printing 

through which only validity of the process was proven. This work will spark many various 

projects to make the operating conditions more optimal based on a variety of operating scenarios. 

Such recommendations for future work will include. Optimization of microheater design by use 

of anonymous geometries, material optimization, redefining modeling to tune control 

parameters, and an overall more complex digitalization of the system for wide consumer use. 

Then this chapter is followed by concluding remarks. 
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Chapter 2 LITERATURE REVIEW 

In this chapter, a literature review is provided of technology and research that aids in the design 

and fabrication of microheaters and micropositioning systems as well as sintering behavior. 

These were identified as the critical aspects of providing a proof of concept for the SRS system. 

Now that a background has been provided on the overall technology, literature will be reviewed 

to identify the technological limits of the technology being used in this SRS design. The 

components of this system are the microheater device, packaging, electrical interconnects, micro 

positioning actuators, micro positioning sensors, and sintering behavior. These subjects will be 

individually discussed in detail below. Definitions critical to understanding the technology are 

first established so readers are not lost. The definitions are provided below: 

Microheater: A microelectromechanical system (MEMS) that emits heat from Joule heating. 

These devices to be considered microheaters have a dimension of 1 mm or smaller. 

Packaging: A group of things that are boxed and offered as a unit. In MEMS they contain 

electrical and mechanical components [11]. In the context of this paper, packaging is the device 

which encloses and protects a MEMS die. It also provides the necessary environment needed for 

the MEMS device and provides electrical connection to the device. 

High Precision Linear Control System: Precision systems are such that can be generally defined 

by manufacturing to tolerances which are better than one part in 10
5 

[12]. Typically this system 

has a resolution of a few hundred nanometers to multiple microns. 

Sintering: A diffusion process through which material boundaries are combined [13]. 
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2.1 Microheater Design 

The microheater plays a critical role in SRS. In this section, the state of the art microheater 

technology is assessed to determine the research gap for basis in the SRS design. Many different 

aspects of microheater design have been previously studied in literature. Geometry is a critical 

aspect of the design that has significant impact on the operation, power consumption, and heat 

transfer of a microheater. Materials are another critical aspect that plays a significant role in 

microheater design. Common design objectives for microheaters are the need for even heat 

distribution and minimizing stresses in suspended membranes. Other design considerations 

include power consumption, ease of fabrication, chemical stability, etc.  

 

2.1.1 History 

James Prescott Joule initiated the first research conducted in resistive heating in 1841 which was 

later followed by Hienrich Lenz in 1842. However, this method of heating was not accepted by 

the Royal Society in London until 1849 when Michael Farraday sponsored the findings, which 

soon after led to James Joule’s acceptance in the Royal Society [14]. Since then resistive heating 

has miniaturized into a technology known as MEMS microheaters, and this technology has 

gained a wide range of applications. Among the many applications includes various sensors, 

micro ignition of micro-propulsion systems, micro-explosive boiling, and inkjet printing [15, 

16]. Their first debut in printing came in 1984 with the invention of HP’s dot matrix printer 

which revolutionized inkjet printing technology [17]. This printer uses a microheater to vaporize 

the liquid inks and create vapor bubbles which supplies sufficient pressure to push liquid out a 

nozzle. HP’s new dot-matrix printer miniaturized inkjet technology with higher quality, lower 

power, and quieter operation [17]. The dot matrix was only the first application into printing 
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technology. Currently, they are being utilized for multiple printing technologies such as inkjet 

[18], selective heat sintering [3], and thermal printing commonly used in a Point-of-Sale (POS) 

printer [19]. In the later printing versions, these technologies have evolved from the 2D printing 

in the dot matrix, to the 3D aspects of ink jetting and SHS.    

 

2.1.2 Materials 

Typical microheaters consist of four main elements [20]: 1.) substrate, 2.) conductive leads, 3.) 

resistive heating element, 4.) dielectric layers. Many materials have been researched in literature 

for the four components used in a typical microheater configuration shown in Figure 4.  

 

 

Figure 4-Microheater Configuration Showing 4 Main Components 

 

However, the final design of these devices is ultimately determined by the parameters and 

objectives trying to be reached with a particular design. Of these components, only materials that 

can withstand ~600⁰C are mentioned. 
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 Substrate 2.1.2.1

The substrate provides the foundation for the microheater. Typical materials used are glass [16], 

silicon [21], ceramics [22], and stainless steel [23]. Silicon and ceramics typically can handle 

higher ranges of temperatures than steel and glass. Ceramics like alumina typically have a high 

thermal conductivity creating high power consumption as compared to Low-Temperature Co-

fired Ceramics (LTCC) and glass [23]. LTCC is a composite ceramic/glass material typically 

offering much lower thermal conductivity enabling power savings [22]. Stainless steel has higher 

thermal conductivity but is often chosen because it is inert, robust, and has many well-defined 

microfabrication techniques [23]. Silicon is a frequently chosen material used for substrates due 

to its ability to operate at 1000ºC temperatures for prolonged periods of time and high thermal 

conductivity enabling quick thermal response times [21]. The high thermal conductivity, 

however, typically makes the heaters extremely power inefficient. Stainless steel is a conductor, 

making it a poor candidate for implementations where electronics need to be placed directly on 

top of the substrate without further manufacturing processes. A table of common materials and 

their properties is reviewed below in Table 1. 
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Table 1-Common Substrate Materials and the Properties for Microheaters 

       

 

Stainless Steel 

(Type 304) Alumina Silicon 

Silicon 

Carbide 

Pyrex-

7740 

LTCC  

(DuPont 

951) 

References [24] [22] [25] [25, 26] [16] [27] 

Electrical Resistivity 

(ohm*m) @ 20°C 7.20E-02 >10E+18 

dopant 

dependent 

dopant 

dependent 1.26E+06 

> 

10E+12 

Thermal Expansion 

Coefficient (1/K) 1.73E-05 6.50E-06 2.60E-06 4.00E-06 8.60E-06 5.8 

Thermal Conductivity 

(W/m*K) 16.2 25 1.30E+02 120 1.18 3.3 

Specific Heat 

(J/kg*K) 500 800 129 750 753.12 - 

Density (kg/m^3) 8000 3780 2329 3100 2230 3100 

Young's Modulus (Pa) 1.93E+11 4.00E+11 1.50E+11 4.10E+11 1.16E+11 1.20E+11 

Melting Point (⁰C) 1.40E+03 - 1.41E+03 2.73E+03 ~550 - 

Poisson's ratio (1) 0.29 1 0.27 0.14 0.321 0.24 

Purpose Substrate Substrate Substrate Substrate Substrate Substrate 

 

 Resistive Material 2.1.2.2

The resistive layer is where the main source of resistive heating occurs. Resistive materials that 

can operate at temperatures above 600°C are needed for high-temperature microheaters. Some of 

the studied materials include Platinum (Pt) [22, 28, 29], Titanium (Ti) [16], Titanium Nitride 

(TiN) [16], SnO2:Sb (Sb-doped in SnO2) [21], Si:B [23], Si:P [23], Tungsten [30], and 

Molybdenum [31, 32]. The maximum operating temperatures of Pt and Ti/TiN are 600°C [23] 

and 700°C [16, 20]. Another consideration for choosing materials is the linearity of resistivity 

dependence on temperature. Pt has a fairly linear resistivity with respect to temperature while 



17 

 

Ti/TiN is generally non-linear [16, 20]. SnO2:Sb and poly-silicon materials have temperature 

limits up to 1000°C, but require high voltage input due to their high resistivity, which is also 

non-linear with respect to temperature [21]. Tungsten has a high-temperature operation range of 

1200°C, however, tungsten is only stable in an oxygen-enriched environment up to 400°C [23]. 

Molybdenum like Tungsten suffers significant oxidation at temperatures of 300°C, which 

becomes volatile at 700°C, but has capabilities of reaching temperatures of 850°C in a shielded 

environment [32]. The general rule of thumb, for which a material’s grain boundaries start to 

diffuse, or agglomerate, is around one-third of its melting temperature [20]. This gives an 

approximation of what the operating temperatures of thin-film material will be. Experimental 

results of the operating temperatures for different materials are listed in Table 2. Agglomeration 

is the main failure method of Pt thin-film heaters. However, in materials like Ti, the main failure 

method is due to shear stress causing delamination from the substrate [16, 20].  Some material 

properties in the resistive layer also change with geometry, but the impacts of geometry on 

resistivity have been shown to be minimal within thin films [33, 34]. Sondheimer theory states 

that the change in the thickness of the material results in a minimal difference in material 

properties unless the material thickness is less than 8% of its mean-free-path for thin-film metals 

[35]. This has also been demonstrated experimentally [36]. Experiments have been performed to 

determine the values of resistive material properties at different temperatures [16]. Resistivity is 

a material property of particular importance due to its critical role in Joule heating. Materials 

have a tendency to increase resistivity as temperature increases [37]. This is associated with the 

temperature coefficient of resistance.  
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Table 2-Resistive Heater Material Properties 

Thin-Film Resistor Material 

Properties 

      

Material Platinum TiN 

Titaniu

m 

SnO2:S

b Tungsten 

Molybdenu

m Si:B/Si:P 

Reference [25, 38] 

[20, 

39] [16, 40] [21, 41] 

[30, 42, 

43] [32, 44] [23] 

Resistivity 

(ohm*m) @ 20°C 1.06E-07 

5.70E-

07 

1.54E-

06 10-4E-5 5.60E-08 1.6E-7-6E-8 5.00E-05 

Conductivity 

(W/m*K) 6.91E+01 

2.38E+

01 

5.94E+0

0 - 

1.77E+0

2 1.38E+02 1.30E+02 

Temperature 

Coefficient α per 

°C 3.93E-03 

1.40E-

03 

non-

linear 

non-

linear 2.05E-03 2.31E-03 1.20E-03 

Melting Temp. (°C) 1.77E+03 

2.95E+

03 

3.42E+0

3 

1.63E+0

3 

3.41E+0

3 2.69E+03 - 

Specific Heat 

(J/kg*K) 

 

- 

1.29E+0

2 - 

1.40E+0

2 - 129 

Thermal Expansion 

(1/K) 9.10E-06 - 

8.60E-

06 - 4.30E-06 5.35E-06 2.60E-06 

Max Temp. (⁰C) 6.00E+02 

7.00E+

02 

7.00E+0

2 

9.50E+0

2 >1000 1.00E+03 >800 

Density (kg/m^3) 

 

5.43E+

03 

4.51E+0

3 

6.95E+0

3 

1.93E+0

4 1.03E+04 2329 

Young's Modulus 

(Pa) 1.68E+11 

6.00E+

11 

1.14E+1

1 - 

4.11E+1

1 3.30E+11 1.50E+11 

Poison's Ratio 3.80E-01 

2.50E-

01 

3.42E-

01 - 2.84E-01 3.80E-01 2.70E-01 

Stable Yes Yes Yes Yes No No Yes 
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 Adhesive Layers 2.1.2.3

Another material, not shown in the typical configuration, is adhesive materials. Use of adhesives 

to bond resistors to substrates or oxidative layers is a common practice. In Figure 5 the typical 

configuration of a MEMS microheater from Figure 4 is shown with the added adhesive layer in 

yellow.  

 

Figure 5-Typical Schematic of a Microheater Showing the Adhesive Layer 

 

Adhesive forces play a critical role in MEMS, or microscopic bodies. These forces are known as 

Casimir forces and is associated with van der Waals forces, due to interactions of dipoles. The 

Tabor number is a dimensionless co-efficient which includes the surface roughness as a 

parameter in the calculation determining the adhesive force between surfaces in contact.  

Common calculations of this adhesion force can be calculated by the Tabor number using the 

equivalent radius between molecules and their surface energies of the molecules [45].  

Typical adhesion materials include Ti, Ta, and Zr [28]. However, at temperatures above 700°C, 

Ti normally will suffer from adhesion issues, failing due to the high shear stresses, or oxidation 

causing the materials to peel off from the resistor or the substrate [46]. Ti adhesion layers also 

will cause an increase in resistance due to oxidation at high temperatures [23, 47]. A better 

adhesion material would be Ta or Zr.  They are able to maintain their electrical properties and 

oxidation is not as prevalent in these materials [23, 47]. Zr and Ta can minimize interlayer 
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diffusion which is another cause of failure to heaters [23, 47]. Zr and Ta are also low-stress 

options as compared to Ti, which is a predominantly a result of their lower Young’s modulus 

[23, 45]. However, Ti is the most commonly used material because it is abundant in supply. To 

combat high-stress issues from the commonly used Ti, the effects of stress can be minimized by 

using intermediate layers such as Silicon Nitride so that the thermal stress between layers isn’t as 

substantial [48].  

 

 Dielectric Layers 2.1.2.4

Dielectric layers can be used for structural integrity [49], thermal insulation [50], electrical 

insulation [51], and most commonly a sacrificial layer [52]. Often times, in microheater 

applications, these dielectric layers will be suspended. This exposes the layers to air and enables 

the layers to utilize the excellent insulating properties of air in the design.[49]. These materials, 

in MEMS fabrication, are typically formed through oxidation or a form of chemical vapor 

deposition [53, 54]. 

Materials used for dielectric layers are SiO2, Si3N4, TiO2, and Al2O3 [23]. All these materials 

have been known to cause high stresses in microheaters [55]. High stresses in dielectric layers 

can cause early failure of devices. These stresses are intrinsic stresses typically formed during 

fabrication, and they can vary based on the method used for fabrication. Fabrication methods can 

also create a large variance in material properties. TiO2 and Al2O3 do not have as well-defined 

fabrication processes, standards, or definition of properties, but have shown oxidation growth 

rates of 1 nm/s and intrinsic stress of 200-400 MPa [56]. This is comparable to SiO2 and Si3N4 

making it as ideal as other materials, but lacking the fabrication capabilities in typical 

manufacturing facilities [56].  
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Of all these materials SiO2 and Si3N4 are the most commonly used in microheaters [20, 32, 49, 

50, 53]. PECVD Si3N4 intrinsic stresses range from -300 MPa to 850 MPa, and PECVD SiO2 are 

typical between -50 to -400MPa depending on the temperature and pressure of the process [55, 

57]. A similar higher quality oxide fabrication method is LPCVD. It has also been shown in 

LPCVD Si3N4 the thermal conductivity can vary from 8 W/m*K to 25 W/m*K [48, 58], whereas 

SiO2 generally, has a thermal conductivity of 1.4 W/m*K independent of other factors [59]. 

Typically, the material properties follow a trend that SiO2 has lower thermal conductivity than 

Si3N4. By comparing the same materials and their properties with different fabrication 

techniques, dielectric layers made by PECVD typically has a higher quality when compared to 

that made by LPCVD. Additionally, thermal oxidation of PECVD films is lower than LPCVD 

films due to the lower porosity and intrinsic stresses [53]. A review of the most commonly used 

material properties of materials in microheaters are listed in Table 3 and Table 4. 
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Table 3-Silicon Dioxide Material Properties 

SiO2 

     PECVD LPCVD Thermal Oxidation 

Thermal Conductivity 

(W/m*K) 1.4 .95 1.1 to 1.4 

Intrinsic Stress (Mpa) -450 210 to 420 - 

Density (kg/m^3) 2.3 2.16 2.18 to 2.27 

Specific Heat (J/kg) 730 730 1 

Poison ratio  .25 .17 .17 

Deposition Temperature 

(degC) 300 700 to 800 920 to 1100 

Thermal Expansion (10E-

6C^-1) .5 .5 .56 

Young's Modulus (Gpa) 85 46 to 75 66 

Dielectric Constant  5 3.9 to 4.5 3. to 3.9 

Source [58, 60] [61] [62, 63] 

 

Table 4-Silicon Nitride Material Properties 

Si3N4 

    PECVD LPCVD 

Thermal Conductivity 

(W/m*K) 1.18 to 4.5 8 to 25 

Intrinsic Stress (Mpa) 600 to 1200 -200 to 2000 

Density (g/cm^3) 2.22 2.3-3.1 

Specific Heat (J/kg*K) 700 700 

Poison ratio  .25 .25 

Deposition Temperature 

(degC) 300 700 to 800 

Thermal Expansion (10E-

6C^-1) - 1.5 

Young's Modulus (Gpa) 85 to 210 260 to 330 

Dielectric Constant  6 to 9 6 to 7 

Source [53] [48, 53, 58] 
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2.1.3  Design and Modeling Factors 

Microheaters have many other design and modeling factors that affect the operations of the 

devices. These factors include geometry, calibration/characterization of material properties, 

thermal response, heat distribution, etc., which play critical roles in the functionality and 

accurate prediction of the microheater operation.  

Experiments have been performed to evaluate the effects of heat transfer on microheaters. 

Microheaters are affected by three types of heat transfer which are conduction, convection, and 

radiation [64]. It was shown that the effects of conduction and convection can have a significant 

impact on the heat transfer while radiation is negligible for Ti and Pt materials at temperatures of 

less than ~700°C [16, 29, 64]. Heat transfer has been assessed experimentally and used 

extensively in modeling. Modeling has been used to select materials by evaluating the maximum 

temperature and power savings of microheaters with different insulating layers [22].  

Geometry is another critical factor of a microheater. The thickness of dielectric layers was 

optimized for heat uniformity showing results with much-improved uniformity [65]. The 

dielectric thickness has been studied alongside different material fabrication techniques to 

evaluate the yield stresses of suspended membranes [48]. Suspended membranes also can offer 

reduced power consumption [48, 49]. Various geometries were assessed by S.M. Lee et al. as 

shown in Figure 6 [34]. The drive wheel design was found to be the optimal design for saving 

power.  

 

Figure 6-Microheater Shapes for Comparison by S.M. Lee [34] 
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Another study used a spiral pattern, and the effects of heat transfer by varying geometric 

parameters such as the filament width and spacing between the filaments to find an optimal 

spiral pattern [59]. It showed that power savings could be achieved by using a double spiral, s-

shape, and fan-shaped designs. This work was later optimized to enhance the double spiral 

design even further for heat uniformity.  

 

Figure 7-Shapes for Comparison and Optimization by Inderjit and Mohan [59] 

 

In another study by L. Sujatha et al. [66], COMSOL was used to find optimal designs by creating 

random geometries. The optimal design for heat uniformity in this work was the square design 

with randomly subtracted squares to ensure the heat uniformity.  

 

Figure 8-Shapes for Comparison and Optimization by Comsol [66] 
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The objective often achieved by heater geometry of having even heat distribution has been 

shown to have many corresponding affects. Even heat distribution often strongly correlates to 

providing power savings by being more efficient and also creates better responses times in 

microheaters [34]. The membrane to heater ratio, MHR, is an important parameter to creating a 

power efficient design as well preventing early failure from stresses [67]. Membrane heater ratio 

is the area of the suspended membrane relative to the area of the heating element.  If this ratio is 

not balanced, this imbalance can lead to premature failure from yield stresses. [68, 69].  

An overall accumulation of different factors including materials, geometry, and power supply 

have been used to increase the thermal response time of microheaters. The thermal response time 

serves to be a critical aspect of the operation of the heater, particularly in the SRS printer 

application. In previous studies, thermal response time reached 2ms for high-temperature designs 

of 600°C for Tungsten microheaters with low power consumption of 12mW [30]. A time 

response of 1 ms was achieved in a Pt/Ti heater reaching a temperature of 400°C using only 

9mW of power [70].  

There are many different design aspects that have been investigated and optimized in 

microheater technology. Some of the main focal points evaluated in literature are the heat 

transfer aspects, geometry, and thermal response time. The results of the design optimization 

varies in its effective heat transfer based on application and material. Therein lies the difficulty 

of multi-objective design for a complex mechanism such as the MEMS microheater. 

 

2.2 Microheater Fabrication  

Microheaters are typically fabricated through a combination of surface and bulk fabrication 

methods. These processes have been well established in IC and CMOS fabrication processes for 
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most modern computing electronic systems [71]. These methods of fabrication will be discussed 

in 4 broad fabrication areas which are: etching, deposition, assembly, and photolithography. 

Each section will offer a review of specific processes commonly used in microheater fabrication 

and their impacts on design. In considering design for MEMS microheaters devices, two main 

considerations are given to fabrication. One is the feasibility of fabrication and the other is the 

impact of different fabrication methods on the design. As stated in section 2.1.2, fabrication 

method can have a significant impact on the properties of the materials. Figure 9 shows a 

simplified fabrication process flow utilizing the 4 broad categorizations of fabrication methods 

on a silicon substrate using silicon-based manufacturing methods. Silicon is used as the example 

due to it being the most commonly used substrate for MEMS microheaters [21, 34, 49, 59, 72].   

  

Figure 9-Typical Simplified Fabrication Process Flow for a MEMS Microheater 

 

The assembly is a large part in the process of fabrication, but discussion regarding this topic is 

reserved for the packaging and electrical connections sections.  
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2.2.1 Etching 

Etching is a process that removes material by physical or chemical means, which typically falls 

into the category of dry etching or wet etching. Etching is very commonly used in MEMS 

microheater fabrication. Figure 9 shows two different uses of etching for MEMS microheaters. 

One method is for creating a sacrificial mask. In the first etching process step (3), a dielectric 

layer was removed within the photoresist pattern by dry etching. This leaves a pattern for the 

next sequential process. This patterned dielectric mask enables the remaining parts of the silicon 

wafer to be protected from etching in the following step. In the following process, a wet etch is 

performed with a KOH or TMAH solution, which enables an angle of 54.7º to be formed in 

silicon. The etch process is most commonly performed by etching along the <111> in an (100) 

oriented wafer as shown in Figure 10. This is common in microheaters. It plays a critical role in 

the design to isolate the heating device from the silicon. The isolation enables air to act as an 

insulator. This saves much power as compared to being adjacent to silicon which has a thermal 

conductivity of ~130 W/m*K [73].   

 

Figure 10-KOH and TMAH Etching of (100) Silicon Wafers [74, 75] 

 

2.2.2 Deposition 

Deposition processes in MEMS are additive processes that typically occur in one of the forms: 

Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD), Thermal Oxidation, or 
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Plating. Evaporation, a PVD process, is commonly used in microheater fabrication, is typically 

performed by either, electron beam evaporation or thermal evaporation. The main purposes of 

deposition in microheaters, as seen in Figure 9, is primarily to create the initial dielectric layer or 

to create a metallization. Dielectric layers are formed through thermal oxidation or some form of 

CVD. In microheaters, these materials act as electrical insulators, structural support, and masking 

materials. LPCVD silicon nitride is often desired as the initial foundation layers because it can 

offer protection to silicon from commonly used etching processes like KOH. This is due to the 

selectivity of KOH to silicon and silicon dioxide over silicon nitride. It also offers tunable 

stresses to prevent early stress failures [49]. Microheaters use this fabrication method to promote 

desired heat transfer properties and create protective layers from oxidation [65]. Due to the low 

operational temperatures, layers can be deposited on top of metallizations that will agglomerate 

at low temperatures. Depending on their use, different methods may be desired for each method. 

Metallization is typically created by a form of physical vapor deposition. Electron beam (E-

beam) evaporation is the most commonly used method in microheaters [16, 34]. E-beam 

evaporation uses large voltages from 20-30kV to form an electron gun which evaporates metals 

by accelerating electrons into a crucible containing the materials to be evaporated. This process 

can take place with wafer temperatures as low as 200⁰C. Due to the low-temperature operation, 

polymers, like photoresist, can be used during the fabrication process. This makes it favored in 

microheater fabrication due to ease of patterning microheater resistive elements and conductive 

pads. 
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2.2.3 Photolithography 

Photolithography is a critical process in all of MEMS manufacturing. This is the primary method 

used for creating patterns on devices and is also the main workhorse in the industry and creating 

any pattern of microheaters. Microheater resolution, or the smallest feature possible, for this 

process using proximity and contact methods is 2-3 µm [76]. Photolithography resolution can 

also be improved by using projection photolithography. This is the process where unique lenses 

and excimer lasers are used to focus light creating resolutions down to 37 nm [77]. Other specific 

photolithography methods popular in microheater fabrication, are image reversal techniques and 

hard baking.  

An important part of photoresist patterning is the removal process after successive deposition or 

etching methods. There are many methods in which this material can be removed. The most 

popular method is by placing the wafer with photoresist into a solution which will dissolve 

polymers. Examples of these solutions are acetone, PRS 1000, acetone, and piranha. Lift-off is a 

wet process commonly used in microheater patterning after metal materials are E-beam 

evaporated into patterned areas. This is favorable due to the easy of patterning without having to 

use specific etchants or masking materials to create a pattern in the resistive element or 

conductive leads of a microheater [34].   A substitute to wet removal is a dry method called, 

ashing. Ashing is quicker than wet methods and typically is non-invasive to other materials 

making it usable for a wide range of materials. The critical aspect that makes this method 

favorable is the ability to avoid stiction issues where surface tension forces can pull small 

features together.  
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2.2.4 Summary of Fabrication with Example and Rationale 

Fabrication techniques play a very crucial role in microheater fabrication. A standard fabrication 

process flow for a microheater based on the design and fabrication issues mentioned above is 

shown in Figure 11.  

 

Figure 11. (1) Silicon (100) (2) Silicon dioxide deposited on substrate using LPCVD (3) Metal 

resistive heater is electron beam evaporated on (4) Second layer of silicon nitride is deposited by 

PECVD (5) Openings are etched away using hot phosphoric acid (6) RIE of LPCVD silicon 

nitride (7) Backside is etched away using TMAH 

 

Much rationale has been provided for this type of process flow. The initial layer, as shown 

deposited in step (2) of Figure 11, is an electrically insulating layer that protects the semi-

conductive silicon from coming into contact with metallization. It is also was used as the main 

structural member in microheaters, and to form a mask for the final etch in Step (7). The 

suspended membrane is a common design used to separate the high thermally conductive silicon, 
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from the heater to enable greater thermal efficiency. Often materials of LPCVD silicon nitride 

are used so that the intrinsic stress levels can be tuned in this suspended layer. The higher quality 

of materials used in LPCVD allows for higher reliability as compared to PECVD materials. Step 

(3) is a metallization. This is typically done by electron beam evaporation which easily forms 

patterns by photolithography and lift-off. Step (4) of the fabrication process entails deposition of 

another dielectric layer. This layer serves many purposes. This layer adds protection to help 

prevent oxidation of the resistive material, and it also provides thermal insulation. This layer is 

PECVD silicon nitride. It is necessary to have this layer as a protective layer, to insulate the 

heater to create power savings, and for protection during the final etch. Silicon nitride as 

compared to silicon dioxide offers higher conductivity, creating more even heat distribution. 

PECVD has higher stress and oxidation than LPCVD but is not typically used due to the 

temperatures during the fabrication exceeding the eutectic temperatures of the metals and 

causing agglomeration. Step (5) is a hot phosphoric acid wet etch of silicon nitride. This is done 

to make openings for the conductive leads to contact the resistive element and for the pattern on 

the backside for the TMAH etch. Step (6) is another metallization. Again, the electron beam is 

chosen due to the ease of patterning with photolithography and lift-off. Then the final process, 

Step (7), is a backside TMAH etch. This etch provides an opening isolating the heater. This 

isolation creates power savings by preventing the heat from escaping through the highly 

thermally conductive silicon substrate. This similar process and rationale can be found in S. M. 

Lee et al., Velmathi et al., and sources [34, 59]. 
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2.3 Microheater Packaging and Electrical Connections 

Many common engineering practices in packaging design and electronic connection can be 

found in literature. Generally speaking, the design of these devices entails: protection from harsh 

environments, provides an electrical communication with other parts of the circuit, facilitates 

thermal dissipation, and imparts mechanical strength to the die. No printed standards for these 

devices were found in the literature. Packaging and electrical connections are closely coupled 

with the device itself and how it operates. For this reason, multiple different packaging devices 

may be required for the exact same die, making this part of the technology very hard to 

standardize. Packaging is complex and often more costly than the chip that it encompasses. 

Packaging and interconnects can cost from 40%-90% of the entire device [63]. Most of the 

unique applications and packaging of the devices are being utilized in an industry where the 

details of how to fabricate these devices are buried within proprietary details companies won’t 

disclose [78, 79]. It often contains complex circuitry, mechanical design, and fabrication 

techniques.  

 

2.3.1 Packaging 

Packaging is a container for a MEMS device. This packaging is designed around the MEMS 

device to ensure the MEMS operates correctly. This configuration for a microheater can be seen 

in Figure 12 [80]. 
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Figure 12-Microheater with Packaging and Electrical Connections [80] 

 

2.3.2 Packaging Materials 

Common materials used for packaging of microheaters are metals, ceramics, silicon, and plastics 

[80]. The material of the packaging device is chosen to withstand the operating conditions. High 

temperature operation, high pressure, chemical resistance, mechanical and thermal shock, and 

vibration [81, 82] are typical operational conditions the packaging may encounter.  

Metal packaging is often used for the quick turnarounds for prototyping. This packaging material 

is robust and easy to assemble and meets the pin count requirement for most MEMS technology 

[80]. The mechanical integrity and chemically inertness of metals are key features that make this 

material favorable for applications in harsh environments [83]. Stainless steel is a commonly 

used metal packaging material used for microheaters due to its ability to stay chemically inert at 

high temperatures [23].  
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Ceramics packaging is the most popular material used due to its ease in shaping and material 

properties (e.g. electrical insulating, hermetic sealing, thermal conductivity, chemically 

inertness) [80, 83]. Ceramics decrease the complexity of designs by integrating the packaging in 

to the MEMS. Fabricating them as one integrate piece eliminates many steps and reduces the 

fabrication time. This was done for thick film microheaters where the same LTCC substrate, 

containing the microheater, could be dually used as the packaging device and its circuitry 

components [84]. 

Plastic packaging is primarily fabricated from three different methods. These methods are plastic 

molding, plastic embossing, and more recently 3D printing. Plastic molding and embossing are 

favorable for its ease of mass production once an initial mold is created. These materials are even 

starting to be integrated into fully assembly design where circuitry will be created by making 

polymers conductive [85]. Plastic packaging typically has a temperature limitation of 250⁰C, but 

depending on the polymers, the specific polymer used can have many different susceptibilities to 

chemicals. 3D printing makes development easy due to the ability to create a minimal number of 

packaging devices without spending the overhead for an additional cost of fabrication. Another 

idea for 3D printed packaging is a printer by Donald Hays et al. which was created to rival mass 

production methods. This printer eliminates all packaging and electrical connections into a 1 

step, hit print, process. Here they printed the packaging for micromirros out of polymers, and 

electrical connections out of soldering paste to form electrical connections using ink jetting 

technology [86].  

Multichip packaging is a common process used that utilizes the same MEMS/IC fabrication that 

the initial die is typically built. Studies have shown that many industries are pushing to 

modularize their technologies [79]. In multichip fabrication, different silicon based 
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manufacturing methods using etching, deposition, and photolithography processes are used to 

create the packaging structure. Anodic and fusion bonding are surface micromachining methods 

that are also commonly used for this type of packaging device. This bonding method enables the 

combination of the wafer containing the initial die to another glass or silicon wafer containing 

any additional circuitry, enclosure, or necessary components of operation. Integration of MEMS 

systems into MCMs offers reduced size, electronic noise, and system power [87].  

 

2.3.3 Electrical Interconnects 

Electrical interconnects are the means by which the die is connected to the packaging device. 

This is an essential part of providing power and creating feedback temperature controllers in 

microheaters. Electrical interconnects take the microheater device and give it a macroscopic 

connection enabling it to be controlled and easily connected without the use of microscopes and 

high dollar equipment. As devices get smaller and more complex so does the means of 

fabrication and cost rises; so it’s essential for developmental stages for this technology to be 

scaled up. Wire and tape bonding, flip chip technologies, soldering, and printing are some of the 

more common methods of creating interconnects. Often times these connections are protected by 

high temperature epoxies in microheaters to ensure they don’t melt during operation [16]. 

Wire and tape bonding are very popular and well-established methods of creating an electrical 

connection from the die to the packaging device [79]. This method is commonly called 

thermosonic bonding or ball bonding. Heat, pressure, and ultrasonic energy are used to bond the 

area on a contact pad to a wire, but some processes don’t use all three forms of energy to create 

the bond. The term ball bonding comes from the spherical shape created by the wire connection 

to the initial pad. Gold and aluminum are the most common materials used in wire bonding. 
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Aluminum is preferred for higher current operations, but gold tends to bond easier than 

aluminum [87].  

Flip is a bonding technology where the die, containing conductive connections on the top side is 

placed face down on another substrate with conductive connections on its surface. Plated solder 

bumps are used on pads to bond the pads together. This technology is ideal for tight spacing. 

Gaps between the die and package are 50 µm – 200 µm. Flip chip has a unique advantage over 

wire bonding in that (I/O) connections can be placed anywhere on the die without having to 

worry about crossing wire connections.  

Printed conductive leads is a new and quickly evolving field. Sawyer B. Fuller et al. used 3D 

printing to fully fabricate a MEMS device by ink jetting metal nano-particles and sintering them 

together. This method was used with 5 µm accuracy and the sintered ink had twice the 

resisitivity of the material in its bulk form [88]. Another popular device being used to print 

conductive leads is the Optomec Aerosol printer. This device can print leads with +/- 10 µm 

accuracy, and has shown to be an excellent tool to repair MEMS devices and other electronics [7, 

8].  

 

2.4 Calibration and Testing of Microheaters 

Testing and fabrication are necessary for almost all circumstances due to the differences that 

arise in the microstructures from variations in parameters of the fabrication method [16, 89]. 

Without testing and calibration, the control and feedback systems cannot be developed. Also, 

microelectronic circuits are commonly tested before being diced by probing stations and 

different automated electronic test equipment to provide initial testing on their behavior [63, 90].  
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Microheaters are typically tested before being diced to ensure they function before money and 

time are spent packaging the devices [91]. Through initial testing continuity and the room, 

temperature coefficient of resistance is measured which is also an essential component of control 

and feedback systems.  In a secondary testing process that often occurs after packaging and 

electrical connections, the electrical and thermal properties of the device can also be checked and 

calibrated over a temperature range. A typical calibration process was described by K.L. Zhang 

et al. [16] where the device was placed in a furnace and the different material properties, 

primarily the resistivity, were calculated over a range of temperatures. To ensure data was 

accurate, thermocouples were placed in the furnace close to the heater to know the exact 

temperature at the location of the heater. This was shown to be an accurate method of calibration 

in Glod et al. [89]. 

Having found the material properties enables capabilities of calibrating sensor technology to 

accurately monitor the temperature of a heater as well as control the amount of power required to 

reach the desired temperature [89, 92]. Important properties used in calibration are the resistivity, 

temperature coefficient of resistance [93], emissivity, specific heat, and thermal conductivity 

[16]. 

 

2.5 Precision Linear Control Systems 

Control of a precise gap, ~1 µm - 100 µm, is a critical aspect of the SRS process. This is due to a 

microgap required between the heating device and the material to be sintered. For this reason, a 

review of technology and relevant subjects is needed to create a micro precision gap. Control 

systems for this device need to have the resolution of 1 µm and range of motion of at least 100 
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µm which was determined from modeling results as part of the operational parameters of this 

method of printing.  

 

2.5.1 Introduction 

Precision control systems can be generally defined by manufacturing tolerances which are better 

than one part in 10
5 

[12]. To obtain these tolerances, actuation methods need to be within a 

micron to submicron range. Common industries in which these technologies are used are in 

semiconductor manufacturing, magnetic and optical memory manufacturing, high-resolution 

imaging, and precision metrology. Depending on the operation of the system, many different 

methods of actuation are used to achieve this precise control. Overall, these systems can be 

divided up in two critical elements of precision control which is sensor technology and actuation 

methods. 

 

2.5.2 Actuation Methods 

Common challenges in the field of precision actuation methods are found in providing long 

ranges of motion with a precise resolution for an economical price. However, some of these 

systems have achieved these objectives and found their way into commercial applications. 

 One such device is part of the read/write system of computer hard drives. This system utilizes a 

voice coil motor to provide long range of motion, but the precision of the technology is limited to 

~1 µm [94]. This lack of precision has been under development, and one of the emerging areas 

of technology addressing this resolution issue is to have a dual stage actuation device. In this 

dual staging, common applications have been to add a piezo actuation system. Piezo actuation is 

a favorable system for rapid response and ultra-high resolution [95], but the motion of the 
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systems is often drastically reduced to ranges of 100 µm [96, 97]. However, for fine precision 

systems, PZT piezo actuation systems offer the most precise control at 10 pm [96]. Piezo 

actuators have been manipulated to achieve 200 mm ranges of operation by using an inch worm 

technique where different piezo actuators move a worm shaft [98].  

A newly evolving field of actuators popular in MEMS devices is shape memory alloys (SMA). 

These alloys are able to retain their exact shape after being deformed. At high temperatures, 

these devices can exhibit large deformations extending into the super elastic regions of the 

material. This makes them ideal for usage as a thermal actuator. Thermal actuator actuation 

length is dependent on the thermal expansion between materials but is commonly used in MEMS 

to achieve actuation of ~100 µm [99]. 

One of the most commonly used systems is a stepper motor or DC motor coupled to a precision 

screw and nut set to create a linear pusher. This is a popular and well known method of actuation 

that has been used for ~100 years. Current systems have been recorded with resolutions of 49 nm 

with motion range up to 5 cm by Applicable Electronics [96]. An evolution of the stepper motor 

is the permanent magnet linear motor. This motor is naturally akin to applications requiring high 

speed and precision. Precisions as high as 5 nm have been recorded from these linear translation 

systems [100]. In addition, these systems have been recorded to have translation speeds of 3-5 

m/s [101]. The downsides of the permanent magnet linear motors are: 1) they cost nearly $500 

for 100 mm of travel length; 2) the force is proportional to the cross sectional area; 3) suffers 

from resistive heating losses [101].  
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2.5.3 Sensor Technology 

Closely related to actuation method is the sensing technology that determines the position of the 

device. In most cases, high precision control is difficult or costly to obtain without some form of 

feedback. In addition, it is nearly impossible to know the relative position of the actuation device 

on micro scale movement systems without some form of sensor measurement. Often times these 

devices are integrated into the systems, making them dually purposed devices. This is commonly 

seen in piezo actuation and stepper motors.  Noise and resolution of a sensor are some of the 

most misreported aspects to sensor technology due to the failure to mention bandwidths of the 

device operation and lack of statistically verified information [102]. Position sensors are 

designed to produce an output that is directly proportional to the measured position, however, all 

position sensors, in reality, have an unknown offset, sensitivity, and nonlinearity to some extent. 

This creates uncertainty in the actual position being measured and is often taken into account in 

the control aspects of the systems [102].  

Resistive strain gauges are low cost, simple, and widely used for nano and micro positioning 

sensors. They’re most commonly used in piezo actuators, and can be integrated into the actuator 

itself or bonded to the actuator surface. This offers a closed feedback system to help increased 

accuracy of piezo actuators [103].  

Capacitive position sensors are another type of sensing devices that can achieve nano to micron 

scale sensing. These devices are commonly used in combination with electrostatic 

microactuators due to their ability to be used as an open or closed loop control setup. The 

capacitance variation of this sensor to measure on this small scale is ~100fF/µm [104]. The 

advantage of this sensing system is that it’s a non-contact method with very high resolution.  
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Eddy-current sensors work on the principle of electromagnetic induction [105]. Like capacitive 

sensors, this is a non-contact method of sensing. They also work in a similar method to 

capacitive sensors in that they require an oscillator and a demodulator to derive the resistance 

[106]. These sensors use a method of shielding to prevent magnetic interference from 

interrupting signals, but this also significantly limits the range of the sensors. This continues to 

be a critical limitation of this type of sensing device. A similar device is the inductance 

proximity sensor. This sensor uses an inductive target instead of a conductive target, but all 

operational equipment for the devices is the same. Typically these sensors operate between 100 

µm - 500 µm. These sensors are not as popularly used due to the susceptibility to temperature 

and magnetic interferences [102].  

Linear variable displacement transformers (LVDT) have been used in some of the harshest 

environments due to its rugged properties. This sensor is popular due to its contactless sensing, 

linearity, virtually infinite resolution, low temperature sensitivity, robustness, and ease of 

implementing its radiation harness [107].  

A popular laser positioning system, laser triangulation, works by sending a source light towards 

an object whose position is desired to be measured. The light reflects off of the surface. This 

reflection is picked up by a detector which measures the angle between the original light source 

and the returning light to determine the vertical position of the object. The disadvantage of this 

systems is often the reflectiveness of the surface [108]. Other types of lasers have been used for 

position measurement such as the laser interferometer providing accuracy of a few parts in 10
11 

[109]. These systems are typically more expensive than other precise measurement systems and 

are sensitive to interference such as dust. However, they have the greatest range of any nano to 

micro positioning system at ranges of meters [102].    
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Linear encoders are also commonly used micro positioning sensors. Linear encoders work by 

optical encoding, magnetic, capacitive, and inductive. Optical encoders have the highest 

resolution of all the various methods of encoders. However, optical encoders suffer from 

interference such as dust. Other encoders tend to be more reliable than optical, but do not have as 

high of resolution [102].    

 

2.6 Sintering of Micro and Nano Particles 

Millisecond sintering of micro and nano particle by use of a resistive microheater via conduction 

through the air is the ultimate objective of this thesis. Sintering is the process that will enable 3D 

geometries to be formed by the diffusion of the grain boundaries to form a singular solid. 

Sintering is a complex behavior through which many of the modeling aspects are 

computationally expensive. In attempts to reduce the computational expense many people have 

come up with simplified models. Research has also proven that this is a feasible and 

advantageous method of forming 3D geometries in processes such as the popular SLS, SHS, and 

photonic sintering methods of printing. In this section, we will review the current developments 

in sintering micro and nano sized particles. Through this review, the feasible limits of this 

technology and process will be defined.  

 

2.6.1 Sintering Behavior 

Materials behave differently on the microscopic level. This is the beneficial aspect of using 

micron and nano sized particles to create sintering. It enables particles with high melting 

temperatures to be sintered much below their melting temperatures. Nano particles can sinter at 

temperatures ranging from (.2 - .3)*Tm, where Tm is the melting temperature of the material. In 
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micron sized particles this typically occurs in the range of (.5 - .8) *Tm. Nano-scale sintering 

processes have been shown to create higher densities at above 95% but are more difficult to 

control due to particle agglomeration, high reactivity, inherent contamination, grain coarsening, 

and loss of nanofeatures [110]. Sintering of nano and micron particles of Ag has commonly been 

done at low temperatures with drying and sintering durations of 5 minutes for drying at 160ºC 

and curing for 30 minutes at 160ºC [111]. It has been recorded that for low temperature materials 

like Ag and Au that sintering can often occur at temperatures as low as 150 ºC [112]. However, 

to increase the speed of sintering to as desired rate in the SRS system for 1 ms thermal response, 

temperatures at which the material is sintered must be increased. This phenomenon has been 

proven in the NovaCentrix Pulse Forge machine. In this process, materials of a couple microns 

or less are sintered in milliseconds of time. This is done by heating the surface of the material up 

to temperatures in the range of 400ºC - 1100 ºC, thus proving that sintering can be done in the 

1ms response time [113]. Sintering can be performed with these high temperatures on mostly any 

substrate which can withstand ~150 ºC. Due to the quick application of heat, the material 

properties of substrates below the material being sintered do not have time to change. This makes 

sintering with temperatures of above 1000 ºC possible on polymer substrates [114]. Quick 

applications of heat for sintering has limitations. These limitations include: exceeding the 

gasification temperature of the substrate can cause the film to lift off, materials can be too 

porous, have too much solvent, or binders may be volatile. Most of these issues can be remedied 

by ensuring your material is not too porous and offering a low temperature quick pulse of heat 

for drying before sintering [114]. 
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2.6.2 Prediction through Simplified Models 

An important part of establishing operating parameters of the SRS printer is identifying 

simplified methods of the heat transfer involved with millisecond sintering processes. Different 

thermal conductivities of materials can create a wide range of operational constraints on the heat 

transfer of this device. A popular method of modeling is by assuming the material to be sintered 

is in bulk form. This has been proven in the modeling software developed by NovaCentrix for 

millisecond sintering of thin film materials [115], and again in a study on modeling of laser 

powder bed fusion [116]. In these processes, an accurate representation of the thermal 

conductivity and density of the powder beds is a necessary component of the modeling of heat 

transfer. The Zenhner-Schlunder’s model [117], later improved by Samuel Sih et al. [118] has 

been commonly used for the prediction of the thermal conductivity with 30% relative errors 

when compared to the experimentally measured values. This expression is shown by: 
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For an overview of the equation: 

Ratio of thermal conductivity=Free fluid* [Core heat transfer (incomplete solid contact) + 

(Complete solid contact)] 

Where, 

k=effective thermal conductivity of the powder bed, W/m-K; 

kg= thermal conductivity of the gas inside the pores of the powder bed, W/m-K; 

ks=thermal conductivity of the skeletal solid, W/m-K; 

ε=porosity of the powder bed; 
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kr=thermal conductivity part of the powder bed owing to radiation, denoted by the Damkoler’s 

equation below, W/m-K; 

𝜑 =flattened surface fraction of particle in contact with another particle; 𝜑=0 when there is no 

contact for the particles; 𝜑=1 when there is complete particle contact; and 

B=deformation parameter of the particle; B=0 is the z-axis, B=1 for spherical particles, and 

B=inf for a cylinder 

𝑘𝑟 = 𝜉𝑠𝑑𝑝𝑒𝜎(𝑇𝑏
2 + 𝑇𝑙

2)(𝑇𝑏 + 𝑇𝑙) = 4𝜉𝑠𝑑𝑝𝑒𝜎𝑇𝑏
3 

( 2) 

Where, 

𝜉=the area fraction occupied by the canals for the radiation per total unit area, 

s= a numerical factor about 1, s𝜉=1/3  

dp=the diameter of the powder particle  

e=emissivity, 

σ=Stefan-Boltzmann constant=5.67E-8 W/m
2
-K

4 

Tb=temperature of the powder bed, and 

Tl=temperature of the surrounding assumed to be near to Tb 

Using this equation, the thermal conductivity of powders in bulk form can be calculated for 

modeling purposes. The thermal conductivity relationship in Equation (1) and Equation (2) has 

also been proven by Stephen U. S. Choi et al. [119] using similar equations. The bulk density or 

porosity of the material is also an important factor for the thermal conductivity and heat transfer. 

The effects of this have been shown in different packing densities for powders where thermal 

conductivity ranged .05 W/m-K - .25 W/m-K in different Cu, Ni and SUS 316L metal powders 

[120].  
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Chapter 3 MICROHEATER DESIGN, PACKAGING DESIGN, AND FABRICATION 

Microheater design, fabrication, and packaging are essential to the selective resistive sintering 

process. In this section, the methodology and results for the design and optimization of the 

microheater are provided. This is followed by a specifically defined and detailed fabrication 

plan, the design of the packaging, and prototyping. The results of the microheater design, 

fabrication, and packaging will be assessed at different intervals during the fabrication to ensure 

the device functions as intended. The prototype will be tested using a unique test setup prior to 

its actual functioning assembly discussed in the next chapter.  

 

3.1 Microheater Design 

As defined in the problem formulation, a heater needs to be designed that can operate at 

temperatures of 600⁰C or above in a time span of 1 ms or less with low power consumption. In 

this chapter, we develop an understanding about the order of magnitude in the different scenarios 

through the evaluation of analytical models. The designs are then, further evaluated using 

numerical modeling. In the numerical modeling, an optimization code is developed using particle 

swarm optimization (PSO).  

 

3.1.1 Numerical and Analytical Modeling 

The design of the microheater can be improved by two methods of modeling. These two methods 

include analytical modeling and numerical modeling.  
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 Analytical Modeling  3.1.1.1

Analytical modeling is a mathematical model with a closed form solution. Analytical models are 

used to gather information relative to the order of magnitude of a solution and to understand the 

governing physics and variables effecting the design. They also provide a simplified model for a 

basis to the understanding of the physics. This enables us to find solutions for problems based on 

parameterized inputs describing the changes in a system. Electrical, heat transfer, structural 

mechanics, and electro-thermal characterizations are all used to help predict solutions 

analytically. 

 

 Electrical Characterization  3.1.1.2

Electrical characterization is defined by the circuitry of the heater. In this scenario the heater 

circuitry can be treated much like a basic resistor such that: 

 

𝑅 = 𝜌𝑟 (
𝐴

𝑙
) 

( 3 ) 

 &  

𝑃 = 𝐼2𝑅 

( 4 ) 
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Figure 13-Description of Geometric Entities used in Resistance Calculations 

 

where R is the resistance, 𝜌 is the intrinsic property, resistivity, A is the cross sectional area of a 

resistor, l is the length of the resistor as illustrated in Figure 13, I is the current in the circuit, and 

P is the power loss from resistive losses in a circuit. Power lost due to resistive losses is 

transferred into mostly thermal losses. In this way, the electrical power is coupled to heat 

transfer. 

 

 Heat Transfer 3.1.1.3

The most significant forms of heat transfer in microheaters, conduction, and convection, are 

critical to understanding the key parameters of heat transfer through a medium to sinter an 

object. This can be analytically described by: 

 

𝑄 =
𝑘𝐴∆𝑇

𝐿
+ ℎ𝐴∆𝑇 

𝑄 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 

( 5 ) 
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where k is the thermal conductivity of the material the heat is being transferred through, A is the 

cross sectional area, ∆𝑇 is the temperature difference, L is the length, and h is the convection 

coefficient. 

 

 Electro-thermal Response 3.1.1.4

The electro-thermal response is an equation derived from the time taken to heat a material based 

on its intrinsic thermal and electrical properties. The two were coupled together by relating the 

electrical energy loss from ( 4 to the thermal response of the energy absorbed from the heaters 

heat capacity. This is shown by: 

 

𝑉 = √
𝐶𝑝𝜌0𝜌𝑟  𝑙2∆𝑇

𝑡
  

( 6 ) 

 

where Cp is the specific heat, 𝜌0 is the density, 𝜌𝑟 is the resistivity, l is the length of the element, t 

is the time it takes to heat the element, V is the voltage, and ∆T is the temperature difference to 

achieve.  
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 Structural Mechanics 3.1.1.5

Thermal stresses are resultant from the difference in thermal expansion of different materials and 

are predicted by: 

 

𝜎𝑠 = −𝛼∆𝑇𝐸 

( 7 ) 

 

where 𝜎𝑠 is the stress in the material, ∆𝑇 is the temperature difference, and E is the Young’s 

modulus of the material.  

 

 Summary of Analytical Characterization 3.1.1.6

Microheaters are governed by electrical, heat transfer, and structural physics. All three physics 

are coupled together in this modeling by ∆𝑇.  It can be seen in ( 6 that the power consumed is 

significantly dependent on the thermal response desired. This also is related to the heat transfer, 

where if a specific material has a  high thermal conductivity more power will be required for the 

heater due to heat transferring away more readily as shown in ( 5.  

Analytical solutions were used to provide an initial guess for the amount of power that would be 

required to heat the microheater to 600 ºC. ( 6 displays that the temperature difference has a 

significant impact on the amount of power input into the microheater. Using ( 6 again, it was 

found that a .603V voltage supply would be required to have enough heat to heat just the 

resistive element alone. During the actual usage of the heater, the heater would also have 
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convection and conduction transferring heat away from the heater into other materials, as shown 

in ( 5. This causes the power required to increase significantly. Using the information above the 

analytical solution was calculated providing a lower bound for the amount of power required for 

this heater. The results of the temperature, thermal response time, and the voltage applied are 

listed below.   

 

Table 5-Electro-thermal response Results Based on Analytical Modeling 

Temperature Time Voltage 

600 ºC 1. ms .603 V 

 

3.1.2 Numerical Modeling 

Numerical modeling of a microheater involves multiple coupling physics. The physical 

phenomenon experienced in a microheater is that of Joule heating. Joule heating consists of 

electric currents and heat transfer. In this simulation the structural mechanics involved were also 

considered which were coupled with heat transfer by thermal expansion. In this section, a model 

for microheater operation is developed. This section walks through the governing equations used 

to predict the electrical, thermal, and mechanical response of a microheater. A grid study 

analysis is included in final remarks in this section, to ensure the results are independent of the 

numerical meshes.  
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 Current conservation 3.1.2.1

Joule heating is created by running current through a resistive material. The constitutive 

relationship for the resistive material is described by Ohm’s Law: 

 

𝑱 = 𝜎𝑬 

( 8 ) 

 

 J is the current density, E is the electric field strength, and σ is the electrical conductivity: 

 

𝜎 =
1

𝑝𝑟
=

1

𝑝𝑟,0[1+𝛼(𝑇−𝑇0)]
 

( 9 ) 

 

where 𝑝𝑟 represents the electrical resistivity, α is the temperature coefficient of resistivity with 

the assumption that the resistivity changes linearly with temperature, and (𝑇 − 𝑇0) is the change 

in temperature of the resistive material. 

Based on charge conservation and equation of continuity, the electric potential throughout the 

microheater can be described by:  

 

−∇𝑡 ∙ 𝑑(𝜎∇𝑡𝑉) = 0   

( 10 ) 
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where 𝑑 is the layer thickness, V is the electrical potential applied, and ∇𝑡 denotes the gradient 

operator in the tangential direction of the electric field. Resistive heating is induced from the 

resistivity in the circuit opposing electron flow. This opposition creates heat that can be shown 

by: 

 

𝑄 = 𝜎|∇𝑡𝑉|2 

( 11 ) 

 

where Q is the heat being generated. The equations are coupled together based on the governing 

equations dependent on other physical phenomena. 

 

 Heat Transfer 3.1.2.2

Heat transfer follows the law of thermodynamics. In microheaters, heat produced by Joule 

heating is primarily transferred away by conduction and convection for temperature below 700 

˚C. Since only these forms of heat transfer are present, the first law of thermodynamics 

ultimately reduces to the governing equation for heat transfer: 

 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
) − ∇ ∙ (𝑘∇𝑇) − ℎ∇𝑇 = 𝑄 

( 12 ) 

 

The unknown variables are the heat source Q and 
𝜕𝑇

𝜕𝑡
 represents the change of temperature with 

respect to time and ∇ is the gradient operator.   
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 Structural Mechanics  3.1.2.3

Stress is induced in microheaters as a result of thermal expansion when materials 

experience a rise in temperature. The governing equation for the structural mechanics is: 

 

𝜌(𝜕2𝒖)

𝜕𝑡2
= ∇ ∙ 𝑠 + 𝑭v 

( 13 ) 

 

where s is the stress tensor, 𝐮 is material displacement,  and Fv is the volume force vector.  

 

The computational cost of modeling microheaters can be extensive due to the large ratio of the 

thickness of the resistive material layer (typically ~200 nm) to that of the substrate (~ 25 µm), 

and could cause significant meshing issues. One way to simplify is by using the shell theory. 

Structural mechanics shell theory is different from three dimensional structural mechanics in that 

the models are formulated by using the Lagrange continuum mechanics with mixed interpolation 

of tensor components. This reduces computations to consider only plane stress since other 

stresses will have minimal impact.  The mechanical stress is formulated as: 

 

ρ(∂2𝐮2)

∂t2
= ∇ ∙ σ + Fv +

6(Mv×n)z

d2
 & 

( 14 ) 

 

σz = 0 

( 15 ) 
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where σ is the in plane stress, (Mv × n) is the volume moment vector, z is the vertical direction, 

and d is the overall thickness of the shell. The stresses induced in the design are all resultants of 

thermal expansion which is shown from the thermal strain as: 

 

εth = αth(T − T0) & 

( 16 ) 

 

xth =
αth(T − T0)

d
 

( 17 ) 

 

where 𝑥𝑡ℎ corresponds to the strain subject to the bending stress in the shell from thermal 

expansion, 𝜀𝑡ℎis the strain in the entire domain from thermal expansion, and 𝛼𝑡ℎ is the thermal 

coefficient of expansion. The thermal expansion can be coupled to ( 13 ) and ( 14 ) using the 

stress-strain relationship of materials  

 

 Grid Study 3.1.2.4

The critical, or smallest, dimension in the model determines the largest grid size that can be used 

to create the elements for modeling. In a numerical model, the angle between nodes needs to be 

greater than 10º or the model may result in singularities. Using the critical length the smallest 

element length can be predicted by simple geometry from: 
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𝑦

𝑥
= tan(10°) 

( 18 ) 

 

where y is the smallest dimension and x is the smallest element length. Default settings in 

COMSOL provided meshing smaller than this dimension which resulted in no change in the 

solution when decreasing mesh size. It was noticed that when using default settings in 

COMSOL, the extremely fine settings had a smaller mesh size than what was predicted. The 

solutions from the mesh found using ( 18 ) were compared with the solutions from the default 

settings and findings were conclusive that there were no differences in the solutions. The 

extremely fine default settings were used for the remainder of simulations.  

 

 Validation of the Numerical Model 3.1.2.5

The numerical model was implemented using COMSOL 5.1. A multiphysics model was 

developed for a Pt microheater on an alumina composite substrate by coupling the three physics 

involved (i.e., electrical, mechanical, and thermal). This study evaluated the temperature change 

in the microheater and substrate. To form a solution the numerical model was evaluated 

transiently.  
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Figure 14-Heater Geometry and Boundary Conditions 

 

Table 6-Material Properties for the 1st Numerical Validation 

Summary Pt Al2O3  

Specific Heat (J/kg*K) 133 800 

Thermal conductivity (W/m*K) 71.6 25 

Coefficient of Thermal Expansion (1/K) 8.80E-06 6.50E-06 

Density (kg/m^3) 21450 3780 

Temperature Coefficient of Resistance 

(1/K) 
3.93E-03 

- 

Resistivity (Ω*m) 8.33E-07 - 

Young's Modulus (Pa) 1.68E+11 4.00E+11 

Poisson's Ratio 0.38 0.22 

Function resistor substrate 

Thickness (µm) 0.6 1000 

 

Figure 14 and Table 6 shows the initial setup of the numerical model, where the shell boundaries 

of the Pt resistor were centrally located on the substrate. The open boundary condition was 

placed on the boundary where the domain would be continuous. This assumes 𝑞|𝑥=𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  = 0  

so the temperatures of the un-modeled part have continuous temperature change at the boundary. 

The convective heat loss coefficient applied to all other sides was 5W/m*K, which has been 

commonly used in literature [16, 22].Table 6 shows the material properties.  
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The model was validated by comparing the simulation results with the experimental data 

obtained from literature [22], which are shown in Figure 15. The change of temperature at the 

center of the microheater after 200 ms with respect to input voltage was compared. As we can 

see, the results have an excellent agreement between our numerical simulations and the 

experimental data from the literature. 

 
Figure 15-Temperature Change with Voltage Input Comparing Numerical Modeling with 

Experimental Data 

 

A second validation was also performed on the transient response of the microheater over time 

because of the importance of transient behavior of a microheater. Simulations of a Ti/Au resistor 

on a 7740-Pyrex glass substrate were performed to compare with experimental results and other 

modeling results from literature [16].To simplify this model, the conductor layer composed of 

Au/Ti was modeled as two resistors in parallel. This was assumed due to the parallel orientation 

in which the materials were stacked and current was supplied through the conductive layer. The 
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convection coefficient used in this model was 100W/m*K to be accurate with experimental 

setups [16].  The simulation configuration and material properties are shown in Figure 16 and 

Table 7 respectively.  

 

 
Figure 16-Geometry and Boundary Conditions for 2nd Validation 

 

Table 7-Materials Properties used for 2nd Validation 

 

Summary  Pyrex-7740 Au Ti 

Electrical Resistivity (Ω*m) 1.26E+06 3.99E-08 1.54E-06 

Thermal Conductivity 

(W/m*K) 1.18 1.76E+02 5.8 

Specific Heat (J/kg*K) 753.12 0.3 131 

Density (kg/m^3) 2230 19320 4507 

Temperature Coefficient of 

Resistance (1/K) - 3.40E-03 1.30E-03 

Young's Modulus (Pa) 1.16E+11 6.40E+10 7.00E+10 

Poisson's ratio (1) 0.321 0.2 0.44 

Thermal Expansion Coefficient 

(1/K) 8.60E-06 3.25E-06 1.42E-05 

Function Substrate Conductor  Resistor 

Thickness (µm) 550 0.077 0.206 
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Having setup the numerical model, solutions were then created to form a validation. A 3V 

potential difference was placed on the resistor, and then the maximum temperature recorded over 

the entire microheater configuration was extracted at each time step. The transient temperature 

change over time was compared to previous experimental and modeling results shown in Figure 

17 [16]. From the comparison, we can see a good agreement. The model being validated agrees 

more closely with the experimental data as it approaches a steady state than the results from the 

previous model [16].   

 
Figure 17-Comparison of Numerical Model to Data Obtained from previous Numerical Work 

and Experimental Validation 
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 Summary of Numerical Modeling 3.1.2.6

In this section, a numerical model was developed, the grid size was defined, and appropriate 

boundary conditions and material properties were applied to the model to validate the model. 

Simulations were performed to compare with two different experiments. Results show good 

agreements, which validates the developed numerical model.   

 

3.1.3 Microheater Design Optimization  

To optimize the design of the microheater, particle swarm optimization (PSO) method was used. 

PSO was initially a method of predicting social behavior in animals [121]. This method has been 

adopted for an extensive amount of applications [122], such as array failure correction for 

antennas, predictive and tuning controls, design optimization, etc. This method stochastically 

searches for the optimal solution [123]. The method evaluates the fitness of a current set of 

solutions and identifies new design parameters based on a fitness evaluation for minimizing an 

objective function. Each solution generated moves the parameters closer to the optimal solution 

at which the numerical problem reaches convergence [124]. One recent publication utilized 

particle swarm optimization in design of microheaters to create power savings for microheaters 

[65]. This application used analytical models and no numerical models. The parameters used 

were the oxide layer thickness, temperature, and active area. No attention was given to 

optimizing for stress nor was the actual geometry of the microheater changed. They also did not 

consider any constraints, or utilize a finite element model. 
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 Initial Design and Variables 3.1.3.1

Based on our literature review, an initial design of the microheater was chosen as follows. An 

Ultra-thin Glass (type AF 32*eco from Schott Inc.) was used as the substrate to support the 

resistive filament and conductive pads. This material was chosen due to its low thermal 

conductivity making it power efficient [16]. It also has a transition temperature of 717ºC making 

it capable of reaching the desired operating temperature range before reaching the transition 

temperature. Titanium was chosen as the resistive material because of its capability of reaching 

temperatures in excess of 600°C. Its failure from thermal stress is often a limiting factor, but not 

until temperatures are in excess of 700°C. Gold was also chosen as a resistive material due to its 

high electrical conductivity. Gold also has a low coefficient of thermal expansion, when 

compared to other popular conductors like silver, which induces less stress in the design. The 

material properties are listed in Table 8. 

Table 8-Material Properties of Initial Model for Optimization 

 Summary 

Titanium 

(Ti) Ultra-thin Glass Gold( Au) 

Electrical Resistivity (Ω*m) @ 20°C 1.54E-06 - 2.77E-08 

Temperature Coefficient of Resistance (1/°C) 3.50E-03 - 0.0034 

Thermal Expansion Coefficient (1/K) 8.60E-06 3.2E-06 1.42E-05 

Thermal Conductivity (W/m*K) 21.9 1.16 3.17E+02 

Specific Heat (J/kg*K) 522 820 129 

Density (kg/m^3) 4507 2430 19300 

Young's Modulus (Pa) 1.16E+11 7.29E+10 7.00E+10 

Poisson's ratio (1) 0.321 0.208 0.44 

Thickness (µm) 0.2 50 0.2 

Purpose  Resistor Substrate Conductor 

 

The initial geometric design established was obtained from [34]. It was demonstrated to be 

capable of creating a minimal temperature deviation across the design space. Figure 18 shows 
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the initial design. The outer radius determines the size of the microheater and was chosen to be 

50um for this study. The initial values of the rest of the design parameters are listed in Table 9. 

 

 
Figure 18-Design Parameters Describing Topology of the Resistor 

 

Table 9-Initial Values of the Design Parameters 

Parameter Value Unit Description 

Fil_wid 12.5 Um Filament Width 

Outer_s 27.5 Um Outer Spacing 

Vert_cut 25 Um Vertical Cut 

Horz_cut 12.5 Um Horizontal Cut 

Inner_s 10 Um Inner Spacing 

Fil_thick 200 Nm Filament Thickness 

 

 Particle Swarm Optimization 3.1.3.2

With the six design parameters chosen, we needed to determine the optimal combination of the 

design parameters in the six parameter design space. Because it was impossible to test every 

design in the design space, an efficient method was needed to search for the optimal design. We 

developed a unique method for constraining particle swarm algorithms as well as using complex 
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numerical models within the algorithms. In this section, we will use constrained particle swarm 

optimization to search for optimal geometric design using the variables initially established in 

the geometry. 

 In this algorithm, each particle is a design with a set of design parameters (i.e., the six design 

parameters in Table 9). The lower bound and upper bound of the design parameters determine 

the boundaries of the design space. Each particle has its own unique position and velocity in the 

design space. The velocity is determined by the particle’s personal best and the global best of all 

particles and used to updates the particle’s current position based on: 

 

 𝑣 = 𝑣𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑( ) ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑( ) ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) 

( 19) 

Where c1 and c2 are arbitrary constants, pbest is the personal best of the particle, rand is a 

random number from [0,1], gbest is the overall best is the algorithm, the present is the present 

solution, and vi is the current velocity.   

The validated finite element model was used to evaluate the fitness of each particle with respect 

to the design objectives. The algorithm randomly generates initial particles and moves the 

particles in the design space based on their velocities. This stochastic search enables the 

convergence of optimization algorithms for complex problems such as a microheater design. 

Certain designs are undesirable for the microheater, which was accounted for by placing 

constraints on the particles. One constraint was that the total resistance of the microheater was to 

be above 100 Ω so that the heat concentrates on the microheater instead of on the external 

circuit. The constraints are applied using the following procedure.  First, the overall resistance of 

the device is calculated using initially established material properties and the geometry defined 

by the design parameters. If the calculated resistance is not within the defined constraint, the set 
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of design parameters is discarded and a new set of design parameters will be generated until the 

calculated resistance satisfies the constraint. Another constraint is used to ensure geometric 

continuity in the design. Continuity is enforced to ensure that electricity has a free path to flow 

from the terminal to ground. A break in geometry would disrupt the current flow. This continuity 

is also calculated from the geometry defined by the input design parameters (Fil_wid, Outer_s, 

Vert_cut, Horz_cut, Inner_s, Fil_thick). With the stochastic search, the algorithm outputs the 

optimal design, 𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙, and minimized objective function, 𝑓𝑚𝑖𝑛.  

 

The pseudo code of the particle swarm algorithm is presented below.  

 

1 Initialize function [𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 , 𝑓𝑚𝑖𝑛] defining the boundary of the design parameters 

2 Randomly generate initial particles    // each particle is a design  

3   Check Resistance of the design   //initial constraint 

4    If Resistance>100Ω; continue 

5   If geometry is continuous; continue 

6    Else; go to step 2 

7 Evaluate the generated particles using COMSOL  

8 Find the best particle from initially generated particles  

9 For i= 1: # of iterations 

10   Move the particles based on their velocities calculated from ( 19 ) 

 𝑥𝑛+1 =  𝑥𝑛 + 𝑣 where xn is the position of the particle 

11   Check resistance (updated particles) 

12    If R>100; continue 

13   If geometry is continuous; continue 

14    Else; go to step 9 

15   Evaluate updated particles using COMSOL  

16    If; objective function value< previous objective function value, update  

                        particle position 

17    Else; keep previous particles  

18   Keep best particle 

19   Update the velocities for each particle  

20   Evaluate iteration number 

21    If  i>max iteration; go to step 23 

22    Else keep the best value; go to step 7 

23 Solution=[𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 , 𝑓𝑚𝑖𝑛] 

24 End  
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 Results and Discussion 3.1.3.3

Boundaries of each design parameter are defined in Table 10. The first objective function was to 

minimize the maximum stress over the entire microheater. Only thermal stresses in the substrate 

are accounted for in this design. Stress is sometimes induced in the devices from fabrication 

methods and exist in other parts of the microheater (i.e. filament, adhesive interface), but are not 

taken into account here. The second objective function was to create even heat distribution by 

minimizing the standard deviation of temperature within 121 evenly distributed sample points 

over the entire microheater. The amount of sample points used to evaluate the model was 

determined to be sufficient in this study because increased number of points above the 121 points 

didn’t change the standard deviation. Even heat distribution was accomplished within the sample 

space by optimizing variables input to the optimization algorithm. For the simulations, power 

was supplied at 1W for 1 ms. The simulation creates a temperature of ~600ºC within the design 

for both objectives. Results from optimization are in  

Table 11 and Table 12. 

 

Table 10-Upper and Lower Bounds of Design Parameters used for Optimization 

x values in 

µm 
Fil_wid Outer_s Vert_cut Horz_cut Inner_s Fil_thick 

Lower 

bound 
4 7 7 7 10 0.15 

Upper 

bound 
4.25 10 11 11 17 0.2 

 

Table 11-Initial and Optimal Design Parameters 

x values in µm Fil_wid Outer_s Vert_cut Horz_cut Inner_s Fil_thick 

Initial 4 7 11 10 13 0.2 

Optimal Stress 4.1 8.5 11 10 17 0.2 

Optimal Heat Distribution 4.2 8.9 10 10.7 14.9 0.2 
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Table 12-Values Obtained for the Initial and Optimal Design 

Values Optimal Stress (MPa) Optimal Heat Distribution (degC) 

Initial  96.6 90.6 

Optimal 93.5 89.7 

 

The stress resulting from the difference in thermal expansion in the materials was reduced from 

92.1 MPa to 88.7 MPa. This is within the yield strength of the Ultra-thin glass making this a 

feasible design. For even heat distribution, the initial design had a standard deviation of 92.2ºC 

and was reduced to 90ºC. Results from the single objective optimization problems were 

compared as shown below Figure 19. Differences in the geometry can be seen from  

Table 11, but the values obtained for the solutions show a little difference compared to the initial 

design. This may suggest that a larger design space should be used. This will enable a greater 

variation in results by adding or redefining the design parameters. 

 

Figure 19-Comparing Optimal Solution of Minimizing Stress with Even Heat Distribution 
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The six design parameters, Fil_wid, Outer_s, Vert_cut, Horz_cut, Inner_s, Fil_thick, all have a 

limited range that they can move to vary the geometry. However, for the optimization presented, 

Inner_s (spacing between sections of filament closer to the center of design) must be larger than 

Outer_s (spacing between sections of filament closest to the outer radius of design) due to the 

trivial observation that heat will tend to be concentrated more at the center of the heater. Both of 

these parameters are also constraining the diameter of the center section of the filament. When 

the sum of the parameters Inner_s and Outer_s becomes large enough it will cause a stress 

concentration in the center. This is due to the heat concentrations and stress concentration from 

the small radius of the center section of the filament. The parameter Horz_cut (parameter along 

the horizontal axis of symmetry) will always be greater than Vert_cut (parameter along the 

vertical axis of symmetry). Again this is due to the heat concentrating at the center.  As Fil_wid 

(width of the filament) increases it will cause a heat/stress concentration. This is due to the fact 

that more heat is squeezed into a predetermined diameter of the microheater. However, if this 

value is too small, it will also increase stress due to the large temperature gradient from a smaller 

heating source.  

A particular point of interest in this study was the convergence and solve time of the algorithm. 

The algorithm used 5 particles and 50 iterations, which takes around 12.5 hours to run. The best 

solution at each iteration was recorded and plotted against the iteration number. As shown in 

Figure 20, the algorithm had converged around 10 iterations and 26 iterations for minimizing 

temperature variation and stress respectively. From this, we learn that this algorithm not only 

converges but that it converges quickly.    
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Figure 20-Convergence of Optimization Problems 

 

3.1.4 Scaling to an Array 

The optimized design of the microheater was used in a 4-heater array in the final design of the 

microheater printing system. A 4-heater array was chosen to prove that multiple heaters could 

operate in unison while providing only minimal additional cost, which would arise from the 

additional power consumption. The fabrication cost, however, would remain, for the most part, 

the same. Additionally, using multiple heaters helps to digitalize the printing process rather than 

raster a moving print. This operates by firing a heater in a different location, or firing multiple 

heaters at one time, instead of physically rastering heaters to the desired location. Two features 

were changed from the optimized design. The filament width, parameter fil_wid, was switched to 

5 µm due to the lack of impact on design and desire to have whole numbers during fabrication. 

The thickness of the filament, fil_thick, was also changed to 150 nm to save material cost and 

time during fabrication. From these changes, the power consumption was slightly affected 

requiring 1.1 W of power per heater to have a thermal response time of 1 ms. This change of 

power is primarily caused by the reduction in thickness of 25%.  The following final 

configuration used for this experiment is shown in Figure 21 and is used for all modeling for the 

remainder of this dissertation. 
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Figure 21-Final Design of Microheater Printing Array 

 

The 4-heater array shown above was further evaluated for using the previously validated 

modeling. In this modeling, power consumption, heat distribution, and lead temperatures were all 

considered. This was to examine the effects of multiple heaters on these areas as compared to the 

previously optimized heater. The lead temperatures were approximated to ensure that they would 

not fail from agglomeration during usage of the device. The hypothesis of this work is that, if 

multiple heaters are working in unison they can have less uniformity, but generate power 

savings. Upon preliminary modeling, it was observed that the leads will not be subject to heat 

greater than 250⁰C, that power consumption remains the same per heater, and uniformity is 

impossible to maintain across heaters of this geometry and spacing. 25 µm spacing was left for 

each lead in this study. This and the temperatures which the gold leads can withstand are the 

limitations preventing this design from being further optimized. 4.4 W total were required to heat 
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all 4 heaters in the array to 600⁰C in 1 ms. The results of heating distribution for the final model 

and the temperature ramp up to 600⁰C in 1 ms are shown below in Figure 22 and Figure 23. 

 

Figure 22-Time vs. Temperature Ramp of Scaled Heaters 



72 

 

 

Figure 23-Simulation of Final Design of Four Microheater Array 

 

3.1.5 Summary of Microheater Modeling 

During this section, a numerical model was developed for modeling the operation of 

microheaters. A design was proposed, and it was optimized using a newly developed constrained 

particle swarm optimization algorithm. Stress and heat uniformity were reduced to 93.5 MPa and 

89.7⁰C. With the optimization results, an array of four microheaters was designed to show the 

scalability of this printing method. Each individual heater consumes 1.1 W of electrical power to 

reach a temperature of 600⁰C in 1 ms, which achieved all of our design objectives set in the 

beginning of this chapter.  
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3.2 Fabrication of the Microheater Array 

To fabricate the designed microheater array, established MEMS fabrication techniques were used 

with the equipment in the high density electronic center (HiDEC) at the University of Arkansas. 

Creating the microheater consisted of two uniquely designed masks. One of which was used for 

the resistive heating element fabrication and the other was used in the evaporation of conductive 

leads. Sixteen heating arrays were fabricated from these mask on a 4-inch diameter glass wafer 

supplied by Schott. Each array contains 4 heaters, an exploded view is provided in Figure 25. 

The design of the two masks are shown in Figure 25 and Figure 27 and the fabricated masks are 

shown in Figure 26 and Figure 28 respectively. Other features outside the arrays and leads are 

features used for alignment. All details of equipment operation and fabrication parameters are 

shown in Table 13 and a process flow of the entire process is shown in Figure 24. 

 

Figure 24-Process Flow for Fabrication of the Microheater Array 
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Figure 25- Digital Design of PhotoMask for Microheater Arrays 

 

Figure 26-Microheater Array Photomask Pattern 
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Figure 27-Digital Design of Photomask for Conductive Leads 

 

Figure 28-Leads Photomask Pattern 

 

First, a wafer is cleaned before the fabrication starts. Cleaning was done by rinsing in DI water 

then quickly followed by a spin dry which will prevent water residues from being left on the 
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wafer. One hundred percent acetone is spun on the wafer next to promote adhesion of the 

photoresist used. AZ series 5214E photoresist was then spun on at 4000 rpm for the 30s to create 

a 2 µm thick layer of resist. To ensure the resist is dry, an initial bake is performed at 88 °C for 

45 seconds. The resist is then exposed for 6 seconds under UV light with the first photomask for 

heaters. To reverse the image of the positive photoresist and additional bake is done at 106⁰C for 

45 seconds followed by another exposure. Image reversal was used to create negatively sloped 

side walls to prevent peeling during liftoff stages of fabrication This second exposure uses a 

completely clear glass mask so that the entire wafer is equally exposed to the light for 45 

seconds. The photoresist is then developed using AZ series 300 MIF developer. The pattern 

remaining on the wafer should be a reverse image of the microheater resistive element. Ti then 

evaporated onto the surface of the wafer using electron beam evaporation until a layer of 1500 

Angstroms was formed. Finally, a lift-off process was used to remove the photoresist and metal 

on top of photoresist. Success of this step is heavily dependent on the type of photoresist 

removed. Positive photoresist was never successfully used in this fabrication. Positive resist 

enabled the metal patterns to connect with metals on top of the photoresist from depositions on 

the positively sloped sidewalls. To perform the lift-off of materials from the wafer, the wafer was 

submerged in acetone inside an ultrasonic vibration generator. The final product is a resistive 

element made of Ti on top of the glass wafer in Figure 29 where the image on the left is the 

digital design and the right is the actual fabricated device.  
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Figure 29-Ti Resistive Element or Heater on top of Glass Digital Design (Left) Physical Image 

(Right) 
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Table 13-Heating Element Fabrication Process Details 

Heating Element 

Step Machinery Process Process 

Description 

Details  

1 Semitool Dryer Clean Rinse wafer in DI 

water followed by 

spin dry 

Speed: 2500 rpm spin 

Time: 3min 

 

2 Specialty Coating 

Systems 

G3P-8 Desktop 

Coater 

 

Spin 

Coat 

Spin on Acetone 

(100%) 

Speed: 500 rpm  

Dwell: 10s 

Ramp: 500 rpm/s 

3 Specialty Coating 

Systems 

G3P-8 Desktop 

Coater 

Spin 

Coat 

Spin on 

photoresist AZ 

5214-E 

Photo resist AZ5214-E 

Step 1) Speed:1000  

              Time: 10s 

               Ramp: 1000 

rpm/s 

Step 2) Speed:4000 rpm  

              Time: 30s  

              Ramp: 1000 

rpm/s 

 

4 Electronic Micro 

Systems Ltd 

Model 1000-1 

 

Bake  Hotplate Bake 

88C 

Temperature: 88C 

Time: 45 seconds 

5 Suss Microtec 

MA150  

Expose Exposure from 

contact aligner w/ 

no aligns using 

heater mask 

 1000W UV Light 

Tower 

Time: 6 second 

exposure 

Energy: 60 W 

Intensity: 10 

Power: 275W 

 

6 Electronic Micro 

Systems Ltd 

Model 1000-1 

Bake  Hotplate Bake 

106C 

Temperature: 106C 

Time: 45 seconds 

 

7 Suss Microtec 

MA150  

Expose Exposure from 

contact aligner w/ 

no aligns using a 

clear mask 

  1000W UV Light 

Tower 

Time: 45 second 

exposure 

Energy: 450 W 

Intensity: 10 

Power: 275W 
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Table 13-Heating Element Fabrication Process Details (Cont’d) 

Step Machinery Process Process 

Description 

Details  

8 

 

AmeriTrade Wet 

Bench 

Develop Submerge wafer in 

developer of AZ 

MIF 300 and 

immediately rinse 

and dry 

 

Time: 45 seconds 

9 TeleMark/Edwards E-beam Evaporate Ti Thickness 1500 

angstroms 

Deposition Rate ~1.2 

A/s 

Final Temp. 30⁰C 

 

10 Branson 1800 

Ultrasonic Bath 

Model CPX1800H 

Lift-off Submerge wafer in 

acetone and place 

in ultrasonic bath 

to run agitation 

Time: 5 min  

Agitation: Sonic 

 

The same process described above was used to create the conductive leads with a few minor 

exceptions. These were: 100 Angstroms of Ti for adhesion and the conductive element was 1000 

Angstroms of Au. In addition, a mask for the conductive leads was used and aligned with the 

existing heater geometries. The final result of these processes is in Figure 30 where the figure on 

the left is the digital image and the right side shows the actual fabricated device. The process 

details are in Table 14. 
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Table 14-Conductive Lead Fabrication Process Details 

Conductive Leads 

Step Machinery Process Process Description Parameters 

11 Semitool Dryer Clean Rinse wafer in DI 

water followed by 

spin dry 

 

Speed: 3600 rpm spin 

Time: 3min 

 

12 Specialty Coating 

Systems 

G3P-8 Desktop 

Coater 

 

Spin 

Coat 

Spin on Acetone 

(100%) 

Speed: 500 rpm  

Dwell: 10s 

Ramp: 500 rpm/s 

 

13 

 

Specialty Coating 

Systems 

G3P-8 Desktop 

Coater 

 

Spin 

Coat 

 

Spin on photoresist 

AZ5214-E 

 

Photo resist AZ5214-E 

Step 1) Speed:1000  

              Time: 10s 

               Ramp: 1000 

rpm/s 

Step 2) Speed:4000 rpm  

              Time: 30s  

              Ramp: 1000 

rpm/s 

 

14 Electronic Micro 

Systems Ltd 

Model 1000-1 

 

Bake  Hotplate Bake 88C Temperature: 88C 

Time: 45 seconds 

15 Suss Microtec 

MA150  

Expose Align and exposure 

with  leads mask 

 1000W UV Light Tower 

Time: 6 second exposure 

Energy: 60 W 

Intensity: 10 

Power: 275W 

 

16 Electronic Micro 

Systems Ltd 

Model 1000-1 

Bake  Hotplate Bake 

106C 

Temperature: 106C 

Time: 45 seconds 

 

17 Suss Microtec 

MA150  

Expose Exposure from 

contact aligner w/ 

no aligns using a 

clear mask 

  1000W UV Light 

Tower 

Time: 45 second 

exposure 

Energy: 450 W 

Intensity: 10 

Power: 275W 
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Table 14-Conductive Lead Fabrication Process Details (Cont’d) 

Step Machinery Process Process Description Parameters 

18 AmeriTrade Wet 

Bench 

Develop Submerge wafer in 

developer of AZ 

MIF 300 followed 

by immediate rinse 

and dry 

Time: 45 seconds 

 

19 TeleMark/Edwards E-beam Evaporate Ti+Au Thickness 1500 

angstroms 

Deposition Rate ~1.2 A/s 

Final Temp. 30⁰C 

 

20 Branson 1800 

Ultrasonic Bath 

Model CPX1800H 

Lift-off Submerge wafer in 

acetone and place 

in ultrasonic bath to 

run agitation 

Time: 5 min  

Agitation: Sonic 

 

 

Figure 30-View of Heaters with Conductive Leads Digital Image (Left) and Image from 

Microscope (Right) 

 

3.3 Packaging Design and Prototyping 

Packaging design includes how the array of microheaters are attached to external circuitries and 

serves as a structural device for housing the microheater array. The design and fabrication of the 

packaging and electrical connections of the microheater in this section utilized a non-typical 

method of fabrication because of funding and time limitations. This non-typical method was 

necessary because of the close proximity of the SRS system to the objects to be sintered. The 
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non-typical fabrication also eliminated additional fabrication steps to save time and money. It is 

not ideal but is sufficient for low production numbers for proof of concept. In the design, a PCB 

was used as the main packaging housing with no protection from the external environment. The 

PCB was used to create surface mount device (SMD) pads to mount the heating array. Wire 

bonding and conductive epoxy are used to form the electrical connections between the SMD 

pads and the microheater leads. With the entire packaging design completed, this section will 

then go into the prototyping of this device. The prototype of the packaging is also, for the 

purposes of this printer, considered the main printhead device.  

 

3.3.1  PCB Design 

The PCB packaging offers essential components to provide digital control of the microheaters 

from a microcontroller with a serial connection. The resistance of heaters is estimated from the 

geometry defined in the optimization above and existing literature to be ~213 ohms. This was 

found using ( 3. To ensure heating and resistive losses are focused on the heater, the resistance of 

the external circuitry is desired to be much lower than the heater resistance. A PCB was used 

with copper traces and electroless nickel immersion gold (ENIG) surface mounting pads. Using 

these materials with a thickness of 10 mil traces makes the resistance less than 1 ohm making the 

impacts nearly negligible on the power losses and with no external heating. This design is a 

device which utilizes screw mounts which can be used for preliminary testing of the heater 

functionality as well as full incorporation into the printing system. The design of the packaging 

device is seen in Figure 31. 
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Figure 31-PCB Microheater Packaging with Front (Left) and Backside (right) Views 

 

The devices and features which will be made operational on this board are as follows: 

 M2 mounting screws for mounting the PCB to the print head and other testing setups 

 a1, a2, a3, a4 are power connections to the 4 heater array 

 GND is the ground pin 

 HX is the surface mount pads and heater location 

 

3.3.2 Electrical Connections 

There are two essential components to the electrical connections. One is the conductive paste 

which combines the wire to the conductive leads on the heater and the other is the wire bonding 

which enables connection to the PCB.  Conductive paste was used because the conductive leads 

were too thin to allow for wire bond attachment.  A schematic is provided in Figure 32 for a 

visual representation of the design. In this design, heaters are connected to the evaporated part on 

conductive leads, conductive leads are epoxied to a 5 mil aluminum wire, and the aluminum wire 

is wired bonded to the ENIG layer on a PCB shown in Figure 32. 
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Figure 32-Configuration of Electrical Connections 

 

The evaporated leads made of gold in the previous design is a layer of 1000 Angstroms thick 

gold on top of a 100 Angstrom Ti base for adhesion. This design was chosen primarily for 

fabrication purposes which will be discussed in the device fabrication, and also by the fact that it 

offered low resistance. Table  shows the resistivity of the materials used, which result in a 

negligible electrical loss from these designs and materials. 

 

Table 15-Review of Resistivity for Electrical Connection Materials 

Material  Resistivity Units 

Epoxy 4.00E-05 

ohm-

cm 

Al Wire 2.65E-05 

ohm-

cm 

ENIG 6.00E-08 

ohm-

cm 
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3.3.3 Prototyping 

Fabrication of the prototype is described in two main steps. The first step is creating the 

microheater based on micromachining methods. Then the microheater was used in the overall 

assembly and packaging of the heater and its components. In this process, equipment was used 

specifically by the equipment available in HiDEC at the University of Arkansas.  

Assembly and packaging are performed by standardized processes in the exception of the 

attachment of the wire bonded aluminum wires to the microheater device. The first step in the 

assembly was dicing the wafers. Sixteen different arrays were fabricated on the glass substrate 

initially, but only 1 array can be used in each PCB packaged assembly. This was performed by 

using a 4 mil dicing saw. Once the heaters were cut out, they could be super glued to the PCB. 

Loctite super glue was used and heaters were placed so that glue was only under the part of the 

heater suspended by the ENIG is shown in Figure 32. Next ultra-sonic bonding is used to bond a 

5 mil aluminum wire to the ENIG pads on the PCB, and the leads are extended 1 mm above the 

pads straight into the air. Then, the wires are manually folded onto the conductive leads and 

conductive epoxy is manually applied from the wires to the heaters under the vision of a 

microscope to ensure accuracy in placement. The final process is a curing process which dries 

the epoxy and ensures conduction is achieved in the epoxy. This was done in an air tight oven at 

160⁰C for 5 minutes. To ensure the material is cured, a test drop of epoxy is placed on the PCB 

in the oven with the microheater and packaging devices. The test drop was probed to ensure the 

material was hardened and conductive before removing. A final view of the fully assembled 

microheater to PCB with electrical connections is in Figure 33. Detailed steps and relevant 

parameters are listed in Table . 
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Figure 33-Final Assembled Microheater, Packaging, and Electrical Connections Digital Design 

(Left) Physical Image (Right) 

 

Table 16-Assembly and Packaging Fabrication Process Details 

Assembly and Packaging 

Step Machinery Process Process 

Description 

Parameters 

21 Kulicke and 

Soffa Industries 

Model 928-10 

Dicing Dicing wafer w/ 

dicing saw 

Spindle Speed: 25K 

rpm 

Blade Size: 4 mil 

thickness  

Single Cuts 

 

22 Manual Super 

Glue 

Die 

Glue and align 

die leads w/ 

heater 

Brand: Loctite  

23 Orthodyne 

Model 10  

Wire 

bond  

1mm vertical 

wire bond to PCB 

Diameter: 5 mil 

Material: Aluminum 

24 Manual Fold 

Wires 

Manually fold 

wires under 

microscope with 

tweezers 

 

25 Manual Epoxy 

Leads 

Use sharp needle 

to apply fine 

amounts of epoxy 

Brand: Epo-Tek Epoxy 

Technology  

Type: P1011/ 1 oz 

 

26 Fisher Isotemp 

Vacuum Oven 

Model 282 

Cure  160C 5 min 

checking cure 

check 

Vacuum level: 

15mmHg 

Time: 5 min 

Temperature: 160 C 

Purge gas: N2 
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3.3.4 Summary of Packaging Design and Prototyping  

Packaging is a highly studied area of development, as was shown in Chapter 2. Packaging is part 

art and part intensive understanding of physics. In this design, all designs were made out of 

simplicity to offer as little resistance losses as possible while also being economically affordable. 

The PCB structure also offers ease of integration into many different operational scenarios. 

Having a flexible PCB design lets us use the same design for testing the heater as will be 

implemented in the print head of the new SRS printer.  

 

3.4 Testing and Characterization 

Testing is an essential part of the fabrication process as well as quantifying the operation after 

the entire device is fabricated. Testing was broken down in to two main sections. The first 

section is in-situ testing during fabrication, and the second is post-testing after fabrication. 

During the in-situ testing, testing will be performed after each step of the fabrication process. 

This is a necessary method of testing to ensure each fabrication process worked as intended. 

During the post testing, the heater needs to be tested to ensure its functionality. The various 

methods for both of these sections will be discussed in the following sections. 

 

3.4.1 In-Situ Testing 

At multiple steps in the fabrication process, different techniques were used to evaluate whether 

the fabrication process was successful. During the microheater fabrication, all photolithography 

processes were always checked under a microscope. In this process, under close inspection, there 

is a clear boundary which exists to differentiate between what is photoresist and the other 

materials. This ensured that the photoresist was not over/under developed, that all features 
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existed, and alignment was correct. This took place in between steps 8 and 9 and between steps 

18 and 19 from Table 13 and Table  for fabrication of the heater and the conductive leads 

respectively. Below in Figure 34 is a photo confirming that the shapes fully developed and were 

to the specified size. 

 

Figure 34-Confirming Photoresist 

 

 This same visual inspection method was used after steps 10 and 20 in Table 13 and Table  

respectively. After the lift-off process is performed, it is important to check to make sure the 

geometries formed as you intended. There is the possibility of adhesion issues and peeling which 

could occur, but have not been experienced in this method of fabrication discussed above. For 

steps 10 (in Table 13) and step 20 (in Table ), additional testing also needed to be performed. 

Microheaters are electronic devices, and it is important to check their conductivity as well as the 

resistance of the devices in the circuit. The process of checking the resistive elements for 

continuity tended to damage the heaters, so this process was only performed for two heaters in 

two different arrays. Once the larger conductive leads were added after step 20 (in Table ),  
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electrical characterization could be obtained by measuring the resistance of the heaters without 

damaging the heaters. The Au evaporated conductive leads provided negligible, less than 1 ohm, 

of resistance making this measurement accurate even with the additional materials through which 

the measurement is made. Five microheater arrays (out of 16 arrays on one wafer) were 

successfully obtained. The yield rate is 31.25%.  Design specific details were that the micro 

heaters were structurally intact and the resistance was within 10% of the estimated 213 Ω 

resistance.  

 

3.4.2 Prototype Testing 

Post testing after fabrication enables us to determine whether or not the entire device will be 

functional during the printing operation. During this operation, the heat should travel upwards 

due to convection arising in the air. This eliminates the possibility of overheating any equipment 

below the resistive element, such as the packaging. It also creates ease of setup, due to the ability 

to plug the electrical connections straight into a breadboard and form the remaining testing setup 

around it. An enclosure was used which encompassed the entire setup to prevent forced 

convection which could arise from the various movement of people, AC system, etc. The 

external circuitry requires an external power supply to power the microheater and an additional 

sensing device. Power is provided by a 12V variable DC power supply and an Arduino Mega 

2560 microcontroller was used to precisely control the power supply.   
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 Camera Testing 3.4.2.1

Initial post fabrication testing was performed using a 12V power supply and Arduino controls. 

The circuitry used is shown in Figure 35. 

 

Figure 35-Testing Control Circuit to a Single Heater 

 

During this test, a 10 second electrical pulse was applied to the heater to ensure it reached its 

maximum temperature. The VCC was set to the maximum 12 V. A ME320 series AmScope 

microscope was used to visualize the heat being applied to the heater. This microscope has a 

frame rate of 30 Hz. This rate corresponds to a 33 ms thermal response time of the heater. Based 

on this applied voltage the camera could not capture the heating as intended. However, this is not 

unexpected to be due to the frame rate. The heater was expected to heat to 600⁰C in less than 1 

ms. This would not have been capable of being captured during 1 frame. The inability to record 

data was likely due to a lag in the serial connection updating to the computer. The inability to 

record data was observed through a noticeable delay in the images put on the screen when 

moving the microscope. However, failure was observed in the heater, which previously has only 
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been observed happening at temperatures in excess of 650⁰C according to literature [16], from 

blistering of the filament. This can be seen from the top left heater in Figure 36.  

 

Figure 36-Burnt Out Heater 

 

 Thermocouple Testing 3.4.2.2

A second test was conducted to see if the thermocouple could measure a change in temperature 

from the heater. In this test, a voltage supply was applied directly to the heater without any other 

devices in the system. There also would be no feedback, nor any controls determining when and 

how long the DC voltage would be applied. This was a test intended to destruct the heater in 

order to determine the temperature limits of its operation by use of an external measurement 

system. The thermocouple used was much larger than the microheater, roughly 200um in 

diameter at the tip, which was known to likely cause problems with the heat transfer and delay 

the thermal response time.  
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In this setup, Figure 38, a MAX6675 IC device was used to measure the temperature. This 

provided direct feedback from the thermocouple to the Arduino serial feed. This system was only 

used for monitoring and did not get used for feedback controls. The thermocouple is denoted as 

TC+ and TC-. The outputs SO, CS, SCK, VCC, and GND are all outputs to Arduino which are 

used in the programming of the microcontroller. The SO, CS, and SCK are digital outputs 

required for the device to be functional. The circuitry can be seen in Figure 37. This device uses 

temperature change to drive a thermoelectric effect where the voltage change can be measured. 

 

Figure 37-Thermocouple Setup 

 

To accurately place the thermocouple close to the microheater, the Type K thermocouple was 

attached to a micrometer and a camera was used to accurately place the device, approximately 5 

um away from the heater. A picture of this setup is shown in Figure 38.  
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Figure 38-Thermocouple and Camera Setup for Test 3 

It was predicted that 8V would cause the heater to heat up with 10 ms from simulation, but is not 

entirely accurate for this scenario due to most of the heat being transferred into the highly 

conductive metals of the thermocouple. This system setup resulted in temperature measurements 

of up to 44.5⁰C from the thermocouple, and temperatures were gradually increasing when the 

heater ceased operation.  
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Figure 39-Plot of Temperature vs. Time Measured by Thermocouple 

 

From these results, it can be interpreted that the heater increases in temperature much quicker 

than the thermocouple can measure. It is confirmed that heat is being transferred away from the 

heater, but cannot be accurately measured using this particular thermocouple.   

 

 Internal Circuitry Feedback Testing 3.4.2.3

A third heating test was performed using circuitry that can also be used in the printing scenario. 

This setup required a device to be able to serially communicate with the heater. To accomplish 

this, Arduino was used with a series of MOSFET transistors that only would supply power to the 

heater when a voltage was applied to the gate of the transistor. This circuitry can be seen in 

Figure 40.   
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Figure 40-MOSFET Power Supply Control 

 

A feedback system was also implemented to protect the microheater from reaching over 600 °C 

based on the change of the resistance of the microheater. The heater will be turned off if the 

resistance of the microheater indicates that the microheater temperature has gone above 600 °C 

based on a pre-calibrated temperature-resistance relationship. This relationship works by using 

an analog input which corresponds to the resistance to calculate the temperature change. The 

circuitry utilized a LM741 op-amp setup in a unity gain. This prevented excessive currents from 

damaging the Arduino because of the analog input. The setup of the circuitry was shown in 

Figure 41. Small capacitors in the system enable quick ramp up times <<1 ms, but most of the 

time delay is in the Arduino serially communicating the signal from the Arduino to the computer 

which operated on a time scale of 40 ms – 80 ms. 
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Figure 41-Feedback Circuitry w/ LM741 Op Amp  

In addition to this circuit, the thermocouple which was used in “ 3.4.2.2 Internal Circuitry 

Feedback Testing” was used again for this circuit with a faster analog sampling rate to have 

additional validation. The full setup can be seen in Figure 42. Here a camera was added to the 

circuit providing visual recognition of the heater and the thermocouple placement.  
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Figure 42-Full Circuitry Setup 

 

The results of this testing were done by setting the DC voltage output to 5V supplied directly to 

the heater. Resistance was recorded to determine the temperature. The initial resistance of the 

heater was 195.6 Ω and the maximum resistance was 313.2 Ω. It was found that the resistance 

did not lower back to its original resistance. The resistance returned to 266.8 Ω instead of 195.6 

Ω. The temperature was found by post processing the resistance data and using the temperature 

coefficient of resistance (TCR) of Titanium. The temperature was found to have reached a 

maximum of 693.74⁰C. A corresponding resistance versus time plot was created for this test. 

However, it appears that the feedback system from serial communication is not quick enough to 

capture much data. This is due to the heater ramping up to the maximum temperature quicker 
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than the analog signal can be fed to a computer. In the test, a delay is noticeable from when the 

system is started to when the heater ramps up in temperature. The heater then immediately ramps 

up to its intended temperature. This is shown in Figure 43. 

 

 

Figure 43-Resistance vs. Time of the Microheater Feedback System 

 

In this testing, a thermocouple and the internal feedback circuitry were used to measure the 

temperature of the microheater. However, the thermocouple did not work in this testing. Though 

it wasn’t stated in literature on the device, the MAX 6675 was not capable of recording 

temperatures faster than 300 milliseconds. The sampling rate in this testing was set at 50 – 80 
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milliseconds, which is the fastest the Arduino could serially communicate.  For this reason, data 

was recorded for the internal circuitry feedback, but results did not exist for the thermocouple 

measurements.  

 

3.4.3 Summary of Testing and Characterization 

During Prototype Testing, heaters were tested individually to see if they operated the way the 

numerical modeling predicted. Based on analog feedback, which enabled us to interpret the 

resistance of the heaters, the heaters reach high temperatures of greater than 600⁰C. The 

equipment used, however, was not capable of measuring the thermal reponse sufficiently fast. It 

is only known that the resistance change should be equivalent to a system which is operating at 

the predicted high temperatures. A thermal couple was also used in the testing of the system. It 

was confirmed that the microheater provided substantial amout of heat to heat a thermocouple 

which was much larger in size than the microheater. The temperature was reported rising from 

room temperature up to 44.5⁰C. Results of testing confirm that the heater does work 

successfully, and this should be an adequate device to add to the prototype of the overall printing 

system.   
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Chapter 4 SELECTIVE RESISTIVE SINTERING PRINTING SYSTEM 

Selective resistive sintering as a printing system will be discussed in this chapter. Relevant 

parameters of the printing system will be evaluated by numerical modeling. Numerical modeling 

gives insight to whether the method is a viable method, and what operational parameters 

(temperature, air gap, material properties, etc.) are required to for it to be viable. A focus will 

then be given to necessary equipment design to enable the printing system to be a viable method.  

 

4.1 Numerical Proof of Concept 

In this section, we focus on two primary materials for sintering. The first is a polymer based 

Nylon 12 from 3D Systems, and the other is a silver nano particle solution by NovaCentrix (JS-

B40G). The ultimate objective is to numerically validate that the resistive heating source 

previously designed can provide an adequate heat to elevate temperatures to sintering 

temperature in one millisecond. Temperatures will be measured at the surface of particles being 

sintered to make this determination. In this validation, we will feature a series of different 

numerical simulations which will define the details of operation. Upon definition of materials, 

boundaries, and meshes, simulations can then be performed to assess the validity and define the 

operation parameters. Relevant parameters that will be investigated in this study, will be the air 

gap, temperature on the surface, and sintering resolution based on a 1 ms heater ramp and 2.1 W 

power operation.  

 

4.1.1 Initial Setup for Simulations 

The numerical model of the microheater previously described in Chapter 3, is used again for 

simulation for the proof of concept of the printing system. This design includes a Schott’s glass 
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substrate with a Titanium resistive element and gold conductive leads. The model is a 3D model 

which models the resistive element as a shell. In this study, a convection coefficient is not 

assumed as was previously done in Chapter 3. This is accounted for by modeling the medium of 

air as a fluid which heat conducts between the heater and the material being sintered. The 

material being sintered is a thin layer of material placed on a glass substrate. The overview of 

this setup can be seen in Figure 44.  

 

Figure 44-Modeling Setup for Proof of Concept 

 

This system would create an extensively large model if modeled in its entirety. To simplify the 

numerical model, open boundaries have been used where boundaries would be continuous. The 

initial room temperature in the simulation is 20⁰C.  Material properties are the same for the 

microheater part of the simulation. Air has material properties that are temperature dependent, 
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which are modeled based on known relationships  [119]. The glass substrate being printed on is 

Pyrex 7740 glass. The additional material properties used at room temperature are in Table  .  

Table 17-Material Properties Used for Simulation 

Summary  Pyrex-7740 Air 

Electrical Resistivity (Ω*m) 1.26E+06 - 

Thermal Conductivity (W/m*K) 1.18 .0257 or > 

Specific Heat (J/kg*K) 753.12 1.005 or > 

Density (kg/m^3) 2230 1.225 or > 

Temperature Coefficient of Resistance (1/K) - - 

Young's Modulus (Pa) 1.16E+11 - 

Poisson's ratio (1) 0.321 - 

Thermal Expansion Coefficient (1/K) 8.60E-06 - 

Function Substrate Conducting Medium 

Thickness (µm) 550 0 to 50 

 

4.1.2 Sintering Conditions 

Sintering is an Arrhenius thermal process and the sintering rate is exponentially related to the 

sintering temperature. In traditional oven-sintering of silver nanoparticles, it usually takes 

minutes to sinter at 150 °C. To achieve our objective of millisecond sintering, the sintering 

temperature needs to be significantly higher. K. A. Schroder from NCC Nano LLC have studied 

the sintering conditions for achieving millisecond sintering in a photonic sintering process of 

silver nanoparticles [115]. In the photonic sintering process, a strong pulse of light is applied and 

the energy is absorbed by the silver nanoparticles and the substrate, which leads to the 

temperature rise of both the silver nanoparticles and the substrate as shown in Figure 45 [114]. 

The surface temperature reaches over 1000 °C in less than 1 millisecond and quickly cools down. 

Their results show good sintering quality can be achieved under this condition. It is not clear 

from their study whether good sintering quality can be achieved at a lower temperature (e.g., our 
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target temperature of 600 °C) in 1 millisecond. Without a clear target on the required sintering 

time for our proposed SRS process, we will use 10 milliseconds as a target in our evaluation.  

  

Figure 45- Temperature Change of Silver Nano-Particles and Substrate in Photonic Curing [114] 

 

 Effective Thermal Conductivity 4.1.2.1

Modeling the thermal conductivity of the powder particles is an essential aspect of accurate 

prediction. The combination of densely populated nano-particles and air can be treated as a bulk 

thin film material with an effective bulk thermal conductivity, which has been shown to be 

accurate in simulations [116-118, 125]. Equation (1) can be used to calculate an effective thermal 

conductivity of the silver nanoparticles. To ensure the materials were being modeled properly 

Equation (1) was used to calculate the thermal conductivity of the material being sintered. In 

Figure 46 data is recorded from experimental and analytical calculation of data. 
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Figure 46-Temperature Dependent Thermal Conductivity of Powders 

 

Model Samuel Sih et al. Improved is the improved replication of data performed by Samuel Sih 

et al. which is an improved version of the Zehner-Schlunder equation, and the exact parameters 

were used with changes to the thermal conductivity of the powders [117]. The powder in this 

case was Ag, which has a thermal conductivity of 406 W/m*K. This same equation will be used 

to predict the bulk thermal conductivity of silver nano-particles in air to replicate the heat 

transfer in the printing scenario. The thermal conductivity of the silver particles based on this 

equation is shown in Figure 47. 
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Figure 47-Thermal Conductivity of Silver Nano-Particles 

 

This shows that the thermal conductivity of silver nano-particles approximated as a bulk material 

with air is reduced by two orders of magnitude. This model will be used to calculate the effective 

thermal conductivity of the silver nanoparticles.  

 

 Simulation Results 4.1.2.2

With the calculated effective thermal conductivity, a 3D simulation is performed to evaluate the 

sintering of the silver nanoparticles using the SRS process and the results are illustrated in Figure 

48. Simulation results show that it takes a power input of 2.1 W for the microheater to reach 600 
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°C in 1 millisecond (in contrast to 1.1 W shown in Chapter 3). This change is due to the different 

treatment of the air. This was determined to be more accurate due to the accurate representation 

of the convection of air.  

 

Figure 48-Temperature Rendering From Proof of Concept Simulation design from Figure 42  

 

In this initial simulation, a 5 µm airgap was used to determine the temperature on the surface of 

the silver nanoparticles. Previous studies suggest that 1000⁰C surface temperature is required for 

1 ms operations. In this simulation, surface of the particles reached a temperature of 292⁰C in 1 

ms. From this evaluation, the heater temperature must maintain 600⁰C for a prolonged period of 

time. This was accomplished by creating a temperature ramp, based on the time and temperature 

correlation, established in the initial model.  This temperature ramp can be seen in Figure 48. 
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Figure 49-Temperature Ramp for a 2.1W Microheater 

 

Since 1 ms was determined to be an insufficient amount of time to provide a high enough 

equilibrium temperature based on previous research, a new thermal response time was changed 

to 10 ms. The heater in the following results ramps up to 600⁰C in 1 ms and then it is maintained 

for 9 ms. Using these exact parameters, the next goal is to see how the temperature on the surface 

of the nano-particles will be affected by varying the airgap from 1 µm - 30 µm.  These results are 

provided in Figure 50. 
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Figure 50-Temperature on the Surface of Particles with Varying Airgap 

 

It can be seen that the temperature quickly drops off with increases in the airgap. This suggests 

that for a 10ms duration, the heat provided by a microheater quickly becomes negligible at 

distances of greater than 30 µm. Another parameter to observe was the printing resolution. This 

was evaluated by observing the temperature distribution on the surface of the nanoparticles. The 

temperature was sampled every 1 µm along the centerline of the microheater as illustrated in 

Figure 51 by the dotted line labeled x-axis, and extending 50 µm outside the heater. The 

temperature distribution on the surface of silver nanoparticles at 10 ms are shown in Figure 52.  
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Figure 51-Line Sampled for Temperature Plot to Show Selectivity 

 

 

Figure 52-Temperature across the Microheater to Show Selectivity 

 

From the simulations presented here, the SRS printing system is a viable method of providing 

selective sintering with close proximity operations. Based on previous work, it is likely that an 
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extended heating time will be required to achieve good sintering quality However, this concept is 

new and requires experimental confirmation to determine whether sintering can actually be 

achieved. From surface temperature evaluation in numerical modeling, this method appears 

feasible.  

 

4.1.3 Particle Simulation 

SRS is also capable of printing different materials. To prove the versatility, we have also 

evaluated printing of polymer materials using SRS. In the evaluation,  Nylon 12 was used and 

the particle size ranges from 25-92 µm in diameter. Its melting point is 184⁰C. In a typical SLS 

3D printer from 3D Systems, the surface temperature of the Nylon particles is raised to a 

temperature ~180⁰C with a laser scanning speed of 4000 mm/s - 5000 mm/s [126], which 

suggests a sintering time scale of less than 1 millisecond. To achieve millisecond sintering of 

Nylon particles with SRS, we need to be able to raise the surface temperature to above ~180⁰C 

on a millisecond timescale. To test the feasibility of this goal, a numerical model was developed 

to simulate the SRS process with an air gap of 5 µm. The results are shown in Figure 53, which 

show the temperature on a Nylon particle surface have gone well above 180 ⁰C at 1.5 ms (Note 

this image is upside down as compared to all the previous images). 
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Figure 53-Thermal Contours of a Nylon 50 µm Particle Exposed to a Microheater for 1.5 ms 

 

4.1.4 Improved Operation 

The key to improving the SRS process is to keep the heat in the particles to be sintered, which 

means to maximize the heat flux into the particles and minimize the heat flux out of the particles. 

Heat flux is determined by thermal conductivity and temperature gradient as shown in ( 20. 

𝑞𝑠 = −
𝑘𝜕𝑇

𝜕𝑥
 

( 20 ) 

 

In this equation qs is the heat flux out of the surface of the particles. Therefore, to minimize the 

heat flux out of the particles, the objective is to reduce the thermal conductivity of the printing 
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substrate (i.e., the substrate to be printed on) and to minimize the temperature gradient 
𝜕𝑇

𝜕𝑥
 

between the surface of the printing substrate and the particles to be sintered. On the other hand, 

to maximize the heat flux into the powder particles, the thermal conductivity of the medium 

(currently air) needs to be increased and the temperature gradient between the heater and the 

particles to be sintered needs to be maximized. Figure 54 shows the areas being evaluated to 

improve operations. Here the domain flux is the transfer of heat through the air into the particles 

being sintered, and the boundary flux is the flux out of the particles and into the substrate.  

 

Figure 54-Operational Improvement Sections of Printing System 

 

To numerically prove these concepts, four different cases were setup where materials with 

different thermal conductivities were used to evaluate the max temperature with consistent  

power consumption. The four scenarios each change the parameters that will enable a more 

optimal operation of the printer. These cases are as follows: 
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Case 1: 

Substrate printed on is Silicon 

 Medium to conduct is air 

Initial surrounding temperature is 20 °C 

Case 2:  

 Substrate printed on is glass 

 Medium to conducti is air 

 Initial temperature is 20 °C 

Case 3: 

 Substrate printed on is glass  

 Medium to conduct is Helium 

 Initial temperature is 20 °C 

Case 4: 

 Substrate printed on is glass  

 Medium to conduct is helium 

 Initial temperature is 100 °C 

 

Each case reveals that when these three parameters are changing, this can have a significant 

impact on the operations of the printer as shown in Table .  Another observation was that the heat 

flux in and out of the particles being sintered was generally close to one another. The reason is 

because the majority of the heat being directly transferred in and out which is caused by the layer 

of particles being relatively thin, 1 μm in size. 

 

Table 18-Characteristics of Heater Based on Different Cases 

 

Power 

(W) 

Max Temperature 

(⁰C) 

Case 1 2.1 27 

Case 2 2.1 239.65 
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Case 3 2.1 411.86 

Case 4 2.1 442.58 

 

 

It is demonstrated that the SRS process can be improved with a larger thermal conductivity of the 

medium gas, a smaller thermal conductivity of the printing substrate, and a smaller air gap. The 

larger the gap, the more air could absorb the heat and energy and the smaller the temperature 

gradient. This gap allows waste, as the heat and energy are being dispensed into the air instead of 

into the nano-particles to be sintered.  

 

4.1.5 Comparison to SLS 

In comparison to SLS, SRS outperforms SLS in multiple facets. The SRS printer was compared 

to a commercially-available low-cost Prodways SLS printer. It was found that the SRS consumes 

14x less power, has a greater operation temperature, and over 4x greater resolution [127].  

Table 19-Table Comparing Characteristics of Two Types of Printers [127] 

Brand Model Type Power Max Temp Scan Size 

ProdWays P1000 SLS 30 W 200C 450 um 

- - 

SRS (New 

Method) 2.1 W 450C 

100 um 

 

In addition, the SRS printer is a scalable printer. The process can theoretically use a large 

number of microheaters in an array much bigger than the 2x2 heater array used in this thesis. 

This can significantly increase speeds and digitalize the printing process.  
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4.2 Overall System Design 

To complete the overall printing system, the printer requires external circuitry to power and 

control the heater and a high-precision linear motion system to control the air gap. The circuitry 

used an Arduino Mega 2560 microcontroller to control power to the heater and to record the 

feedback in the system. The design of the linear motion system provides 500 nm resolution with 

a unique contact sensing method designed for this system to create a reference point. This system 

was tested in two different setups, but was not successful.  

 

4.2.1 Circuitry and Control 

The external circuitry requires an external power supply to power the microheater and an 

additional sensing device. Power is provided by a Dr. Meter Hy3005M-S variable DC power 

supply, use of an Arduino Mega 2560 microcontroller to provide the control systems, and a 12V 

computer power supply. The circuitry is the same setup as was used in 3.4.2.3 of the microheater 

testing with additional logic provided in Arduino to prevent the heater from burning out.  

 

4.2.2 High Precision Linear Motion System 

The high precision linear motion system was necessary as determined by the operational 

parameters. As was shown in Figure 50, little heat will be transferred from the heater to the 

particles if the operation is not within close proximity. These results show that the motion control 

system will need to be able to maintain a ~1 μm gap to achieve the desired heat transfer. To 

accomplish this goal, a device was designed that utilized a high precision Thorlabs motor with 50 

nm resolution and 800 nm repeatability, an OptoSigma micrometer (WGP-13R) with 500 nm 

resolution, and a contact sensor.  
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The full assembly of the motion system and its main components are shown in Figure 55. Here 

the system shows the two different components: the main assembly and a ThorLabs motor. The 

main assembly consists of a manual micrometer, a linear rail system, return springs, and a holder 

for the printhead (i.e., the packaging of the microheater array), which is used to adjust the Z-

position of the printhead.   

 

 

Figure 55-Motion System Design of Actuators and Structural Assembly 

 

This device works by using the Thorlabs as part of a roughing motor to move the entire assembly 

vertically. Once the assembly is in a position close to the contact sensor, the micrometer can then 

be used to further adjust the Z-position of the printhead. 
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A compact affordable sensing mechanism with a millimeter range of motion was required for the 

high-precision motion in Z axis, which put many constraints on the choice of sensors for the SRS 

printing system. Because the objective of this thesis is to obtain a proof of concept rather than to 

develop a fully functional SRS printing system, a simple method was developed to help locate 

the printhead in very close proximity of the substrate. First, we integrate a contact sensor on the 

printing substrate to detect the contact between the microheater and the printing substrate. In 

reference to this contact position, the micrometer is then used adjust the Z-position of the 

microheater at a resolution of 500 nm. The contact sensor is part of a circuit that is completed 

upon contact with the microheater as shown in Figure 56. The sensor was fabricated by 

evaporating a layer of 100 Angstrom of Ti and 1000 Angstrom Au layer onto the printing 

substrate. Once the contact sensor are manually aligned under a microscope and brought into 

contact with the conductive leads of the microheaters, the circuit is complete and the continuity 

can be measured. A schematic of this operation is shown below in Figure 56.  

 

Figure 56-Contact Sensor Operation 

 

Fabrication of this high precision system did not require high tolerances. The method of using 

the linear sliders and a surface mount heater in the system alleviated much of the margin of 
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errors. This made fabrication of 3D printing of the parts possible.  The idea behind this system 

was to mount the device to a smooth surface which would not deviate more than a few 

nanometers, and the linear sliders would then ensure that the platform that the heater traveled on 

was always level. A tolerance analysis was performed to evaluate the tolerances for the critical 

parts of the system. The final tolerance would be associated with the assembly. The attachment 

to the linear sliders in combination with the screw attached PCB and heaters had a maximum 

tolerance of .4239mm of variance. This will ensure that the heater will not be allowed to deviate 

more than 1 um from the surface due to a tilt in the overall assembly. An example of the 

tolerance demanded with assembly is in Figure 57 and Figure 58 with the tolerance labeled as 

Tol. is found below. 

 

Figure 57-Tolerance for Final Assembly of Critical Parts 
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This tolerance was formulated by making sure the microheater could not deviate more than 1 µm 

from one edge of the microheater die to the other side. This can be seen in Figure 58 . From this 

assumption, an angle can be found and extrapolated out to the entire structure to determine the 

maximum angle or the maximum tolerance as shown in Figure 57. 

 

  

 

Figure 58-Tolerancing Determination from Heater Die Size and 1 μm Tolerance 

 

Fabrication is an essential component to ensuring the proper operation of the SRS prototype. 

From the evaluation of the tolerance, the critical component this affected was the linear rail 

system. For this part, a tolerance was determined to ensure the micrometer could not be more 

than 1 μm higher on one side of the die from the other. A majority of the parts were ordered from 

commercially available vendors. Others were fabricated through 3D printing, machining, and 

manual assembly. Below is a list of the parts and how they were obtained or fabricated based on 

the parts listed in Figure 55.  

 

Thorlabs Motor 

Commercially available from Thorlabs. 

  

Specifications 
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Resolution: 50 nm 

Repeatability: 800 nm 

 

Micrometer 

WGP-13 R commercially available form OptoSigma 

 

Specifications 

Resolution: 500 nm 

 

Assembly Attachment to Thorlabs/Heater to Assembly/Rail Limit 

3D printed  

Tolerance: +/- 100 um 

 

Linear Rail System 

 

 

 

Sensor Substrate 

 E-beam Evaporated Ti: 100 Angstroms thick and Au: 1000 Angstroms thick on top of Ti. Ti acts 

as the adhesive layer for bonding to a glass substrate.  

 

Miscellaneous Parts 
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Parts such as rail guides, nuts, screws, etc. were all ordered from commercial vendors and have 

not been included due to the extent of the list of each individual part. The PCB and Microheater 

are part of another study not included as part of the precision motion system.  

 

Assembly is the final step in fabrication. The rail system consisted of the most parts. In the rail 

system, the top side of the rails required a tight slip fit into holes connecting the rails to the 

Thorlabs connector and half an inch 6-32 screws where used to hold the rails in place. A press fit 

was used to hold the bottom side of the rails into the rail system limit. The linear bearings had to 

be press fit into the 3D printed structure connecting the heater to the rail system. Snap rings were 

then put in place to ensure the bearings did not slip. Due to limited funds and time, the final 

assembly did not consist of the Thorlabs motor. Instead, an additional setup stand was created to 

enable testing of the sensing system and motion using the micrometer. This system used the 

same connection features as were provided on the Thorlabs motor and a solid bottom surface that 

could be used to control the distance between the overall structure and the print area. This device 

was 3D printed. The final assembly is shown in Figure 59. In the final device shown in Figure 

59, wires can be seen which provide connections to the microheaters. These wires were manually 

connected. This connection is vital to the operation of the high precision contact sensing device. 

The sensor was fabricated by electron beam evaporation using Kapton tape as a mask to create 

the pattern shown in Figure 59. This sensor which also serves as the substrate is then manually 

placed in the overall system. The sensor is shown in the right side of Figure 59 and the overall 

system of how it will be used is on the left in Figure 59. 
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Figure 59-Sensor and Sensor System Setup 
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With a final product fabricated the device can now be tested. Testing was limited to a system 

with only a micrometer and an attachment to a stationary fixation system as was previously 

mentioned. The system was tested by manually placing the sensor and its metal conductive strips 

beneath the microheaters. The heaters were then lowered until the heaters made contact with the 

sensor. When the sensor was in contact with the heaters continuity could be measured.  The 

position of the sensors will be as shown in the digital image in Figure 60. 

 

Figure 60-Showing the Placement of the Sensors Relative to the Heaters When in Contact 

 

In Figure 60, the conductive metal strips will be laying across two separate heaters on both sides 

of the microheater array as shown by the dashed lines. This enables continuity to be measured 

between each of the heaters. A test setup is shown in Figure 61. In Figure 61 you can also see the 

resistance being measured from making this connection.  
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Figure 61-Testing of Continuity between Heaters Due to Sensor Contact 

 

The resistance measurement proves that a conductive path between heaters can be measured 

between heaters. This test is also confirms that the system is functional and a viable solution for 

detecting the contact between the microheater and the printing substrate. By using this contact 
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sensor, a reference position of the microheater to the substrate is known. The micrometer can 

then be used to adjust the heater to the position desired relative to the previously found reference.  

 

4.3 Testing of SRS Concept 

With the developed printhead and the precision motion system for air gap control, the concept of 

SRS is put to test experimentally in this section.  To avoid the complications of sintering real 

powder particles, which would require additional powder spreading system, two alternative 

materials (thermal paper and a photoresist) were tested in an attempt to demonstrate 

experimentally that the SRS concept can be used to pattern heat.  

 

4.3.1 Testing with Thermal Paper 

The first test was on a piece of 10 µm thick thermal paper, which was placed on the substrate as 

shown in Figure 62. The objective is to test whether it is possible to transfer a pattern onto the 

thermal paper from the microheater array without contact. When heat is applied at temperatures 

greater than 60°C, the heat should transfer ink onto the substrate below the tape. This would 

provide a preliminary proof of concept for the SRS process. The experimental setup is shown in 

Figure 63. 
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Figure 62-Testing Setup of Thermal Tape to be Heated on the Sensing Substrate 

 

 

Figure 63-Full SRS Setup for Test of SRS Concept using a Thermal Paper 

 

The testing results were inconclusive. The temperature ramped up to 600⁰C as was shown by the 

resistance feedback system. Once this temperature measurement was made, the heater was 

programmed to turn off. The thermal tape was inspected after the test with no conclusive results 

to show any pattern transfer.  This is likely due to the possibility of not being able to accurately 
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position the heater with a micrometer and contact sensor or due to inadequate heat transfer from 

the heater to the thermal tape.  

 

4.3.2 Testing with Photoresist 

In a second test, the sintering process was tested by using a thin layer of AZ series 4110 

photoresist. This material was chosen due to its low thermal conductivity being similar to that of 

the silver nanoparticles used in the modeling, and ease in manufacturing a 1 µm thick layer. The 

idea of using photoresist is that when exposed to the heat of the microheater, a blemish would be 

left in the photoresist. 

To create this setup the 4110 photoresist was spun onto the substrate with the contact sensors. 

The photoresist was spun at 6000 rpms for 45 seconds, which was a recipe proven to have been 

successfully create a 1 µm thickness of photoresist. Once the layer of photoresist was spun on, 

the heater was placed by using the contact sensor as a zero reference after contact was made. It 

was then slightly raised to 5um height above the substrate and manually moved to where the 

photoresist would be directly below the heater. The heater was tested multiple times by applying 

5V to the heater for ~10 seconds, in which the heater was recorded to reach temperatures greater 

than 600°C by the internal circuitry feedback. The photoresist was then evaluated underneath a 

microscope. There was no visual evidence of any heat having reached the photoresist. It is 

possible that the system is not being accurately positioned, and this is likely the reason for 

inconclusive results. This may also be due to distortion from the heat that is not visible. There 

are no results as to the appearance change that would occur when heating photoresist.  
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Chapter 5 HEATER DESIGN IMPROVEMENTS BASED ON SRS PRINTING PARAMETERS 

5.1 Introduction 

From literature, it is known that the previously evaluated design of a Ti heater on a glass 

substrate is not optimal for our purposes, which was kept due to its ease of fabrication to provide 

a proof of concept. In this chapter, a new design of the microheater is presented, which is 

demonstrated to perform better base on numerical simulations.  

 

5.2 New Design  

There are a few issues with the current design of the Ti microheater. First, the heat generated by 

the microheater can dissipate through the backside of the heater, which leads to a waste of 

energy and high power consumption. Second, titanium can oxide at high temperature, which may 

fail the microheater. One popular method of insulating the backside of the microheater is to use a 

suspended membrane, that is, to etch the backside of the microheater and use air as an insulator 

as illustrated in Figure 9 or Figure 11, because air has a lower thermal conductivity (.0257 

W/m*K) than most of the substrate materials. To prevent the microheater from oxidation at high 

temperature, platinum is chosen as the resistive material to replace titanium. In addition, a 

protective layer will also be used to protect the microheater from oxidation.   

There are a number of considerations for choosing the material for the suspended membrane. 

First, it needs to have a moderate thermal conductivity, which should not be too high to increase 

power consumption and should not be too low to cause non-uniformity of temperature in the 

microheater region. In addition, it needs to be able to stand the stress from the operation of the 

microheater. Silicon nitride has been a popular choice for the suspended membrane for these 

considerations [48].  
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Based on previous studies from literature, a design of an 800 µm x 800 µm suspended membrane 

with materials and geometric dimensions are illustrated in Figure 64 and Figure 65. In this 

design, a PECVD silicon nitride layer is used on the front side to conduct heat outward to the 

printing substrate and protect platinum from oxidation and a LPCVD silicon nitride layer is used 

on the backside for insulation. This is not ideal because the thermal conductivity of LPCVD 

silicon nitride (~8W/m*K) [48] is higher than that of the PECVD silicon nitride (~4.5 W/m*K) 

[128].  The reason for this choice is because the front side silicon nitride has to be deposited after 

the platinum, titanium, and gold layers, which requires a low process temperature to avoid 

agglomeration and failure of the metals. PECVD has a lower process temperature than LPCVD, 

making it compatible with the fabrication process.  

In addition, suspended membranes of this nature are susceptible to early failure due to stresses. 

Stresses are observed in the form of residual stresses from fabrication methods as well as from 

thermal stresses. Experimental studies [49] have previously performed optimization of 

suspended membranes for microheaters. In literature, stresses from thermal expansion were 

accounted for and residual stresses were offset to obtain longer life out of the membrane. For a 

square membrane with a side length of 800 µm, a maximum deflection of 20 µm was observed 

before rupturing. In our design, LPCVD silicon nitride with the low tensile stress of ~177MPa 

and a thickness of 3000 angstroms was used as a base layer of the suspended membrane. Then a 

platinum microheater was patterned on the LPCVD silicon nitride layer, and followed by an 

enclosing layer of PECVD silicon nitride with a thickness of 3500 angstrom and a compressive 

stresses of -1GPa.  
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Figure 64-Suspended Silicon Nitride Membrane 

 

 

Figure 65-Cross Sectional View of the Suspended Membrane Microheater 

 

5.3 Numerical Modeling 

To evaluate the performance of the new microheater design, the previous numerical model was 

used to simulate the SRS process with a few minor changes. The configuration of the numerical 

model is shown in Figure 66. 
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Figure 66-Initial and Boundary Conditions 

 

First, the open boundary condition was replaced with a temperature boundary, which resembles a 

common practice in some of the SLS printers to maintain a constant powder bed temperature to 

avoid the side effects from rapid cooling of materials. Structural mechanics were accounted for 

in this modeling by fixing all four edges to simulate the fixed edges of a suspended silicon 

membrane. Each layer was also fixed to its adjacent layer as a rigid connection.  

This model includes the glass printing substrate, the silver nanoparticles, the microheater array, 

the suspended membrane, air on both front side and backside of the membrane, and the silicon 

substrate used to support the suspended membrane. Figure 67 displays a zoomed in view of the 

configuration. The silicon substrate used as the base for the heater was later considered 

negligible. The final geometries used for modeling are in Figure 21, Figure 65, and Figure 69. A 

list of the materials used for the modeling and their corresponding properties are given in Table .  
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Figure 67-Zoomed in View of Modeling Configuration 

 

Table 20-Material Properties used for Heater Design 

 

 

5.4 Evaluation of the New Design 

This section is to evaluate some of the critical aspects to improve the operation of the 

microheater for the SRS printing system. The membrane size, electro thermal response, heat 

transfer through air, heat uniformity, and structural integrity are discussed.  

Materials for Heater Design

Titanium (Ti) Silicon Gold( Au) Si3N4 Pyrex-7740

Electrical Resistivity 

(ohm*m) @ 20°C 1.54E-06 - 2.77E-08 - -

Temperature 

Coefficient of 

Resistance (1/°C) 3.50E-03 - 0.0034 - -

Thermal Expansion 

Coefficient (1/K) 8.60E-06 3.25E-06 1.42E-05 2.30E-06 5.50E-07

Thermal Conductivity 

(W/m*K) 21.9 130 3.17E+02 8 1.18

Specific Heat (J/kg*K) 522 700 129 700 753.12

Density (kg/m^3) 4507 2329 19300 3100 2230

Young's Modulus (Pa) 1.16E+11 1.70E+11 7.00E+10 2.50E+11 7.31E+10

Poisson's ratio (1) 0.321 0.28 0.44 0.23 0.17

Thickness (µm) 0.2 500 0.2 .3 &.35 inf

Purpose Adhessive Substrate Conductor Membrane Printing Substrate
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5.4.1 Membrane Size 

Membrane size has been shown to be a critical aspect of design for power consumption [129, 

130]. The substrate used as a base for the microheater in this design is silicon which has a 

thermal conductivity of 130 W/m*K. This is a relatively high thermal conductivity when 

compared to other materials in the design. To ensure heat transfers onto the substrate being 

printed on, the suspended silicon nitride membrane needs to be designed large enough that heat 

from the microheater does not reach the silicon substrate. To make sure no heat was lost through 

the substrate an axisymmetric model was used to survey the effects of heat transfer on the size of 

the membrane.  Only heat transfer was accounted for in this model. A temperature boundary 

condition of 600ºC was used to simulate the heater instead of incorporating all electrical 

characterization and Joule heating phenomenon. This was assumed an accurate assumption. An 

initial design of a membrane 800 µm by 800 µm was used initially and iteratively reduced in 

size. Using this simulation, the membrane was iteratively reduced from the square 800 µm 

membrane to a square 600 µm membrane. Figure 68 shows a square 600 µm membrane with a 

heater at the center and heat is back to its initial operational temperature of 100 °C before 

reaching the silicon substrate. This new design and its dimensions are also shown in Figure 69. 
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Figure 68-Axisymmetrical Modeling Results of Heat Distribution on Membrane Size 

 

 

Figure 69-New Dimensions of Suspended Membrane 

 

5.4.2 Electro-thermal Design 

Analytical solutions, presented in Table 5, provided an initial guess for the amount of power 

required to heat the microheater to 600 ºC. An important factor in this calculation was the initial 

process temperature of the printing process. ( 6 displays that the temperature difference has a 

significant impact on the amount of power input into the microheater. By increasing the printing 
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process temperature to 100 ºC less power is required to heat the microheater. This change in 

process temperature was accounted for in modeling by assuming an initial condition of 100 °C in 

the simulation. The goal of reaching 600ºC in 2ms was accomplished by an iterative search for 

the amount of power supply would be required to accomplish this goal. From numerical 

simulations, it was found that using a 2W power terminal could provide the heating in ~1.5 ms.  

Using ( 6 again, it was found that a .259 voltage supply would be required to accomplish this 

goal. The results of the temperature, thermal response time, and the voltage applied are listed 

below.   

Table 21-Electro-thermal response Results Based on Numerical and Analytical Modeling 

Temperature Time Voltage 

600 ºC 1.5 ms .259 V 

 

5.4.3 Heat Transfer through a Medium 

Modeling was used to prove that a microheater could provide heat to a substrate through a 

medium that would selectively sinter the desired areas. The design was specifically focused 

towards this goal. Evaluation of ( 5 ) and ( 12 ) reveal the parameters governing the magnitude of 

the heat flux in and out of a material.  Thermal conductivity and distance between the heat source 

and the target, and are two variables that can be changed in favor of design needs. The area was 

determined by the size of the print and the temperature difference was also a design parameter. 

From those same equations, we can also observe that a low heat flux is needed on the surface of 

the printing substrate. This enables heat to be concentrated on the area being sintered. The Pyrex 

glass chosen achieves this objective.  
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Using the dimensions from Figure 64 and Figure 65, simulations were performed to see the 

impact of heat transfer on the distance between the heater and the substrate. To monitor the 

temperature versus the distance between the heater and substrate, a point was monitored at the 

center of the array on the bottom side of the silver nano-particles. This was the coolest point in 

the simulation, which corresponds to the last point to be sintered in a real time print scenario. A 

plot of temperature of the silver nanoparticles versus airgap is shown from a 1.5 ms transient 

evaluation in Figure 70. It can be seen that the NovaCentrix silver nano-particles can be sintered 

using this microheater and up to a 23 µm gap.   

 

 

Figure 70-Temperature on Printing Substrate vs. Airgap 

 

Another parameter in printing is the feasibility of being able to selectively sinter the desired 

areas of material. To observe the uniformity of heat, the temperature was measured for a single 

transient solution evaluated at 1.5 ms. The temperature distribution of the nano-particles on the 
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printing substrate along the line shown in Figure 71 is plotted in Figure 72. It can be observed 

that there is a steep decline in temperature outside the area of the heaters, which is a good 

indicator that the sintering process can be performed selectively so that only the desired areas are 

sintered. 

 

 

Figure 71-Line of Sample Points to Determine Selectivity of Printing 

 

 

Figure 72-Heat Distribution of Microheater with a 5 um Airgap 
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From the results shown in Figure 72, two things can be determined. One, adequate heat can be 

supplied to sinter the materials upon close proximity operation between the heat source and the 

materials being sintered. Two, the selectivity of materials to be printed can be achieved.  

 

5.4.4 Temperature Uniformity 

To ensure the same quality of sintering throughout a print, the temperature must be as uniform as 

possible. Uniformity can be optimized by use of a particle swarm optimization algorithm. The 

design objective was to have a maximum temperature difference of 50ºC over the sample space. 

To optimize the uniformity, a sample space of 400 µm x 400 µm was used. The design 

parameters used were L and L1 and the objective was to minimize the standard deviation of 

temperatures taken from 4000 evenly distributed points within the sample space. Figure 73 

shows the sample space and design parameters to be solved.  
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Figure 73-Design Space and Parameters for Optimization 

 

The results of this optimization were not successful in achieving the intended objective. The 

optimal solution resulted in the heaters being too close together to print conductive leads in-

between the heaters. As shown from Figure 72, this could have also been a trivial assumption 

when analyzation of the impact of membrane size on the distance the heat would transfer through 

the membrane to the substrate was made. The final temperature difference over the heaters was 

found by taking the standard deviation and the maximum and minimum temperature difference 

of the temperatures of the 4000 points. The results show a standard deviation of 89.1 ºC and a 

maximum temperature difference of 187 ºC from the final design used with 200 μm spacing from 

center to center of the microheaters. These results were found from a 5 μm airgap between the 

heater and substrate. A larger airgap leaves more opportunity for heat uniformity, but has a 

significant impact on the maximum achievable temperature as seen in Figure 70. These results 
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show that more research is needed in improving the uniformity of temperature distribution on the 

printing substrate.  

 

5.4.5 Structural Integrity 

A MEMS microheater is subject to many structural integrity issues. The main structural focal 

point of this design is the suspended membrane and its resultant stresses and deflection from 

thermal expansion. The design must not exceed the yield strength of silicon nitride of ~430 MPa 

[131] in thin film PECVD silicon nitride. There must also not be enough displacement of the 

membrane that it could interfere with the print. Thermal stresses can result in up to 300MPa 

which can be calculated analytically from ( 7 and the corresponding material properties of Si3N4. 

Stress concentrations were found in this design near the center of the design of the drivewheels. 

This is likely due to the smaller geometry of the heaters in this section and heat concentration. 

This new design resulted in a .16 µm deflection downward in the direction of the substrate being 

printed on, which is not significant enough to impact the printing based on simulation results. 

The results of the stress and deflection are shown in Figure 74 and Figure 75. These numerical 

results were found using ( 8 ) through ( 17 ). 
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Figure 74-Total Displacement from Numerical Simulation 

 

 

Figure 75-Stress in Silicon Nitride Membrane from Thermal Expansion 

 

5.4.6 Proposed Fabrication of New Design 

Fabrication has been proposed for the previous microheater design. This design can be fully 

fabricated in HiDEC by ordering silicon wafers with LPCVD silicon nitride to start fabrication. 

A list of the necessary steps are shown below: 

1. Start with Silicon wafer (100) –  

a. 100mm P(100) 1-10 ohm-cm SSP 500um  

b. Two sides coated (Si3N4 3000 angstroms LPCVD 200MPa +/- 50 MPa tensile) 

2. RCA cleans 

3. Spin on HMDS to promote adhesion of resist to the wafer 
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4. Spin on photoresist 4110 

Speed: 2500 rpm 

Time: 30 seconds 

Ramp: 1000 rpm/s 

5. Bake Photoresist  

Temp: 100C  

Time: 1 minute 

6. Exposure using backside etch mask 

Energy= constant of material/thickness;  

Time(s) =energy/intensity 

Align Backside Etch mask with wafer flat 

7. Develop 

Developer: AZ400K developer 1:3 DI water dilution 

Time: 1min immersion with mild agitation 

8. Rinse wafer with DI water 

9. Post bake-bake for 30 min at 120C  

10. Reactive Ion Etch (RIE) 

Depth: 3000  

Etchant Gas: CF4/O2  

Rate: ~.1um/min  

Time: 3 min 

11. Strip Resist 

Temp: 85C  

Solution: PRS1000  

Time: 10-20 min 

12. followed with a dump rinse in DI water and spin rinse dry 

13. KOH etch 

 

Rate: ~1.4um/min 

Temp: 85C with agitation 

Time: 6-8 hrs 

14. Piranha clean and dry in oven for 5-10 min 

15. Spin on Acetone to promote adhesion  

Speed: 500 rpm 

Time: 10s 

16. Spin on photoresist 5214-E  

Speed: 4000 rpm (Spread: 1000 rpm) 
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Time: 30s (Spread: 10s) 

Ramp: 1000 rpm/s 

17. Exposure 

Mask: Heater mask aligns w/ backside etch 

Time: 6s 

18. Bake  

Temp: 88C 

Time: 45s 

19. Exposure 

Mask: none 

Time: 45s 

20. Bake 

Temp: 106C 

Time: 45s 

21. Develop- AZ 300 MIF  

Time: 1 min 30s immersion with mild agitation 

22. Rinse-Rinse wafer with DI water 

23. E-beam evaporation 

Material: Pt/Ti 

Thickness: 50 Angstroms Ti; 1500 Angstroms Pt  

24. Lift off  

Material: Fully immerse in acetone until removed completely 

25. Repeat Steps 15-24 with leads mask 

26. PECVD 

Material: Silicon Nitride 

Thickness: 3500 Angstroms 

27. 1hr-dice wafer into 16 microheater arrays 

 

5.4.7 Summary of Model Based Design  

This section provides modeling of a microheater which was designed specifically for the SRS 

system. The previously optimized heater geometry, was kept for this design, and focus was 

centered towards parameters such as material optimization of the heater to improve the heat 

transfer. As was shown in the modeling, temperatures on the particle surface of 200⁰C up to 

500⁰C could be maintained with airgaps of  1 µm - 25 µm. Heating was provided solely during 

the ramp up for a duration time of 1.5 ms. The power consumed by this heater was significantly 



144 

 

less, at 2 W of power. Overall, this design is better than the Ti microheater on the glass substrate 

design. To continue this work, a fabrication method has been proposed at the end of this chapter.   
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Chapter 6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1.1 Summary of Thesis 

3D printing technology is a quickly evolving field of technological innovation. The technological 

development has been progressing rapidly in this field, but it doesn’t compete with traditional 

mass manufacturing methods. 3D printing is still widely known for its ability to create low-

volume customized products and prototypes. In this thesis, a novel method of printing, selective 

resistive sintering has been evaluated to show its feasibility based on numerical modeling and 

experimental validation. This was an innovative concept based on non-contact, millisecond 

sintering process using a MEMS microheater array as its heat source for rapid sintering.  

Critical components of the SRS system were designed and prototyped for evaluation of this 

novel process. Based on previous research in the literature, a heater was successfully designed to 

ramp up to 600⁰C in 1 ms. Optimization was performed on a single microheater geometry with 

objectives to minimize the non-uniformity of temperature distribution and the thermal stress 

respectively using a constrained particle swarm optimization algorithm. It was found that 

optimizations with respect to both objectives resulted in similar designs. This is because heat 

uniformity generally leads to smaller temperature gradient and thus lower thermal stress. From 

the results of the optimization for a single heater, the heaters were then placed into a 4-heater 

array. The array was prototyped to demonstrate the scalability of the microheater array. 

To operate the microheater array, packaging and electrical connections were designed and 

prototyped. A printed circuit board offers a cheap solution for packaging of MEMS microheater 

array. In this design, one was chosen for the low resistance in connections, affordability, and 

ease of implementation. PCB design files were created in KiCad and then the design was sent out 

to be fabricated in two weeks by OSH Park, enabling the project to quickly continue. Electrical 
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connections were designed for non-conventional fabrication methods. This fabrication was 

manually intensive, but for small production proved to be quick and affordable. Creating these 

leads showed some variation in the resistances. Conductive epoxies and wire bonding were used 

to connect the conductive leads of the microheater array to the PCB board. The conductive epoxy 

measured less than 1 Ω of resistance on test samples. Some of the microheater samples showed a 

large variation in electrical resistance, which was due to bad connections of wire bonds to the 

heater leads by the epoxy. Overall, three successful microheater packagings were created with 5 

successful heaters. The microheaters were tested and evidences suggest temperature was able to 

reach over 600⁰C.  

The proof of concept proved to be an extensive part of the modeling. Multiple parameters define 

the operation of this new printing system. The temperatures were evaluated on the surface of the 

particles to show whether the materials would sinter during the few milliseconds of heating time. 

Two materials were used to prove the capabilities of sintering. The first was an Ag nano-particle 

paste and the second was Nylon 12 which reached adequate temperatures of 450⁰C and 180⁰C 

which would provide enough heat to either sinter the materials or melt the materials to form a 

solid object. Different parameters can be used in this system as previously mentioned. A few of 

those parameters were reviewed and characterized in this thesis. The overall heat flux, 

temperature gradient, initial temperature, and material properties have all been identified as 

significantly contributing factors to the feasibility of a print. Different parameters were modeled 

to show the improved printing system in this work. The printing system was successfully 

improved from a max temperature of 27⁰C with a 5 µm airgap to 422⁰C by changing 4 different 

parameters evaluated in cases 1-4 in section 4.1.4 to test the overall concept of selective resistive 

sintering, a high precision linear motion system and sensor were designed to be able to locate the 
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printing substrate and accurately position the microheater within 500 nm of the printing 

substrate. The system was combined with the circuitry and heating system that had been 

previously tested, to test whether heat could be conducted through a medium to the particles. 

Thermal tape and photoresist 4110 were used in the preliminary experimentation, but the results 

were inconclusive. It appears there may not have been accurate enough control of the airgap 

through which the heat was conducted. Future research is needed.  

In Chapter 5, a new microheater design was proposed to overcome some recognized issues with 

the previous microheater design. In this new design, the initial geometry of the optimized 

resistive element was kept due to its ability to maintain uniform heating. A glass substrate which 

was previously used for design was switched to a silicon substrate. Silicon enables a vast amount 

of fabrication techniques to enable unique designs. A suspended membrane was used as the 

microheater base for better insulation and power savings. This design was improved so that the 

thermal response time improved to 1.5 ms. The heat could be conducted to the particles to be 

sintered on the initial ramp up instead of the heater having to be maintained for several 

milliseconds. The power consumption was reduced in this design to 2 W, and temperatures of 

slightly greater than 500⁰C could be achieved at airgaps of 1 µm. This new design was found to 

have significant improvements over the previous design.  

 

6.1.2 Evaluation of Hypothesis 

The main hypothesis of this work was that 1 ms sintering could occur with a 600 ˚C microheater. 

This method was only partially proven numerically and lacks experimental validation. A 

microheater capable of ramping up to 600 ˚C in 1 ms was successfully designed and optimized. It 

was tested up to 600 ˚C, but the thermal response time has not been experimentally validated. 
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Temperatures adequate to provide millisecond sintering of materials modeled in this thesis were 

partially proven numerically. The 1 ms ramp time was shown capable, but the heat could not 

reach the substrate being printed on from just the ramp up. In this study, the heat was maintained 

for 10 ms at 600 ˚C. This provided adequate heating to reach the substrate so that the process 

could be proven valid based on a surface temperature measurement. A new design was created 

which enabled 1.5 ms of total thermal response time. In this design, the operational parameters 

were significantly improved but could not achieve the thermal response of 1 ms desired in this 

paper.  

 

6.1.3 Contributions 

Much work has been put into improving the speeds of 3D printing while remaining an 

economical option of manufacturing. Though much research has been done, there has not been 

wide spread adoption of 3D printing as a viable manufacturing method for mass production. This 

thesis strives to help progress this larger vision. To accomplish the task, a novel SRS 3D printing 

method was proposed. To evaluate this new method, a microheater array, serving as the 

printhead of the SRS method, was designed, optimized, fabricated, packaged, and tested. In 

addition, another critical component, i.e., the Z-stage for precision airgap control, was designed 

and prototyped. Although an experimental proof of concept was not successful, numerical 

simulations have been performed to evaluate the SRS printing process and different printing 

parameters, which shows the SRS to be a viable printing method. In comparison to existing SLS 

method, the new method was shown that it could be potentially at least 10x better than SLS in 

terms of power consumption, cost, and speed.  
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6.1.4 Future Work Recommendations 

Much work is still to be continued on this project. Control systems which can accurately provide 

heat in the thermal response desired is required. A rastering system which can CNC navigate the 

surface of a substrate through all three axes is required to prove it can be an actual 3D printing 

system.  

The heater used in this research is adequate for proof of concept, but it still needs to be 

improved. Higher temperature operations of 1000C have been shown possible in SnO2:Sb 

heaters [21]. A new higher temperature heater needs to be used in this printing process to have 

more control over the heating process. This can also reduce thermal response time and enables 

higher temperature to sinter the materials which are an interrelated behavior. The overall 

geometry of the heater needs to be redesigned for close proximity operations with more 

geometric freedom. Fabrication was limited in this experiment by equipment available by 

HiDEC. It is recommended that a packaging and external lead device be created from thin film 

manufacturing that can enable micron or nano meter tolerances. This could also be accomplished 

by using backside connections from through vias provided by DRIE.  

The heater needs to be optimized for operations in a large scale array. The heaters need to be 

used to provide uniform heating that can be controlled digitally. The entire digitalization of the 

heating array is one area of research that needs to be investigated.  

 

6.1.5 Closing Remarks 

Creating a completely new printing system involves numerous aspects of pushing technological 

limits and unique implementations of existing engineering principles. The characterizing physics 

in the system have been well defined, with the exception of the sintering process. The inability to 
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efficiently prove sintering could occur at the speeds is the primary concern for the feasibility of 

this new method. Sintering by use of a MEMS microheater is an efficient method of printing if 

proven viable. This could possibly enable greater adoption of sintering technology for consumers 

as well as being applicable to mass production manufacturing. There are many aspects of the 

printing system which have been evaluated numerically, but there are still many obstacles to 

achieving the large impact that the new printing system could have. This solution is an 

innovation due to the application of existing technology. In these efforts, foundation and 

innovation have been paved for a promising technology. 
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