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Abstract 

This dissertation reports the development of synthetic methods concerning rationally-

designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet 

chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic 

chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid 

nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble 

metal nanocrystals and expands into the challenging realm of the more reactive first row 

transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-

SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that 

can be used for catalysis. This microemulsion sol-gel method was modified to synthesize an 

aqueous suspension of oxidation-resistant Cu-SiO2 core-shell nanoparticles that can be used for 

sensing and catalysis. A thermal decomposition approach was developed, wherein zero-valence 

metal precursor complexes in the presence of seed nanoparticles produced metal-metal oxide 

core-shell structures with well-controlled shell thickness. This method was demonstrated on 

AuCu3-Fe3O4, AuCu3-NiO, and AuCu3-MnO core-shell systems. Switching the core from AuCu3 

alloy to pure Cu, this method could extend to Cu-Fe3O4 and Cu-MnO systems. Further etching 

the Cu core in these core-shell structures led to the formation of the hollow metal oxides which 

provides a versatile route to hollow nanostructures of metal oxides.  This work develops the 

synthetic library of tools for the production of hybrid nanostructures with multiple 

functionalities.   
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1. Introduction 

1.1 Noble Metal Nanostructures 

1.1.1 Advantages of Nanomaterials 

Nanostructures, also referred to as nanoparticles, are solid structures with at least one 

dimension between 1 and 100 nanometers (nm) in length.
1
  In this work, metal and metal-oxide 

nanostructures are produced using wet-chemical methods familiar to synthetic chemistry.  These 

nanostructures are a small portion of a great body of contemporary research across all divisions 

of the physical and life sciences.
2-5

  The potential rewards for controlling matter at the nanoscale 

are difficult to overstate; as described by the famous Richard P Feynman, “There is plenty of 

room at the bottom”; meaning firstly, that even after the revolutionary advances in physics and 

chemistry in the first half 20
th

 century, the amount of productive and exciting research from the 

study of the extremely small is enough to keep scientists busy well into the 21
st
 century. 

Secondly, moving to the nanoscale is not simply a matter of incremental scaling down of familiar 

physics from the macroscale, but that new emergent properties of matter will provide fruitful 

study.
6
 

Nanoparticles find applications in virtually every discipline: Semiconducting nanoparticles 

have been incorporated into light emitting diodes for televisions and computer monitors
7
, used as 

fluorescence imaging tools
8
, and explored as a data storage medium to enhance data storage 

capacity in computer memory
9
.  Metallic nanostructures have been used since antiquity as 

coloring agents in transparent solids.  For instance, the stained glass in gothic era churches, the 

famous Lycurgus Cup, and Michael Faraday’s curious gold colloid all derive their remarkable 

properties from the optical effect of metallic nanostructures interacting with visible light.
10

  The 
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remarkable optical properties of metal nanoparticles are used today in Surface Enhanced Raman 

Spectroscopy (SERS) to amplify the analyte signal so dramatically that single molecules and 

their constituent covalent bonds can be spectroscopically probed and imaged.
11

  In fact, optically 

active nanoparticles can outperform many conventional organic dyes by enhancing the 

absorption efficiency and operate at many different wavelengths of light.
12

  Ag and Cu 

nanoparticles are used as extremely efficient antimicrobial agents.
13

  Magnetic nanoparticles of a 

specific small size range, known as superparamagnetic nanostructures, can be used to enhance 

the contrast of medical MRI imaging, resulting in superior imaging of malignant tissues, leading 

to improved chances of diagnosis and detection of cancer.
14

  Additionally, nanostructures offer 

an exciting and promising platform as a drug delivery vehicle, inspiring new classes of 

antibiotics and anti-cancer drugs in which nanoparticles are injected into a patient, where they 

are designed to travel to a tumor or damaged tissue site and release their payload of cancer 

therapy drug or antibiotics.
15,16

   

Precise control over  the fabrication of materials at the nanoscale offers a route to implement 

myriad  improvements over materials produced with conventional processing techniques: A 

direct result of working at the nanoscale is the savings in the volume of materials required, 

indeed, the amount of material that can be conserved by converting conventional materials to 

nanoscale size regime is difficult to overstate.
17

  Because of the high costs of many materials 

used in the chemical industries, microprocessors, or in precious metal catalysis, many product 

designs that would otherwise function exceptionally well are never pursued because of the 

volume of prohibitively expensive of materials required.
18
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Figure 1: Illustration of cost and material savings from reducing particle size to the nanoscale.  1 

cubic centimeter of platinum exhibits 6 cm
2
 surface area as a single piece, but divided into 10 nm 

cubes, the same amount of platinum exhibits 60,000 cm
2
. 

 

Using the precious metal platinum as an example in a thought experiment shown in Figure 1, a 

piece of platinum is first presented as a solid cube, 1 cm on a side.  Continuing the experiment, 

the same cube of platinum has been divided into cubes that are 10 um on a side.  Now, with the 

same amount of platinum, the cost per square area has decreased one thousand fold, and by the 

time the cubes are divided again to be 10 nm on a side, the cost has decreased 1 million fold.  In 

this way, the cost can be driven down orders of magnitude by increasing the surface area of the 

platinum for a static mass of metal; because the surface is where the chemistry happens, any 

internal volume of platinum is wasted, coupled with the cubic relationship of volume to edge 

length, the amount of available surface area increases 1 million times as the edge length 

decreases from 1 cm to 10 nm, and the normalized cost per surface area decreases from 1 million 

dollars, to 1 dollar per square meter.  Of course, producing large quantities of nanometer scale 

particles is easier done in this thought experiment than in practice.  As the size of metals is 

reduced to the nanoscale, in addition to increasing the surface area, many interesting properties 

begin to emerge that are not manifest in the bulk material, making nanoscience an exciting field 
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to study.
19

  These emergent properties most germane to the materials herein are introduced 

below. 

 

1.1.2 Localized Surface Plasmon Resonance 

 

 

Figure 2 Schematic illustration of the electron cloud of a metallic nanoparticle interacting with 

the electromagnetic field of visible light.  (Reproduced by permission from reference 21 

Copyright © 2003 American Chemical Society.) 

 

𝐶𝑒𝑥𝑡 =
24𝜋2𝑅3𝜀𝑚

3/2

𝜆

𝜀′′

(𝜀′+2𝜀𝑚)2+𝜀′′2
                  (1) 

 

In equation (1), R is the radius of the sphere, λ is the wavelength of light, 𝜀𝑚 is the surrounding 

dielectric medium, and 𝜀′(λ) + iε′′(λ) is the wavelength dependent complex dielectric function 

of the material.
10

  The mean free path for electron in metals near room temperature is 10-100 

nm.
20

  Resultantly, something very interesting happens when the size of the metal particle is in 

the 10-100 nm size range; localized surface plasmon resonance (LSPR) occurs, and is the 

phenomenon where conduction electrons oscillate sympathetically with incident electromagnetic 

radiation as shown above in Figure 2.
21

  The optical spectra of colloidal nanoparticles, occurring 

in the visible spectral range for particles made of Au, Cu, and Ag, are defined by both absorption 
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and scattering of light.  Mie’s solution to Maxwell’s equations for metallic spheres provides an 

excellent explanation for the LSPR effect contributing to the absorption component.
22

  Au and 

Ag are the most dependable materials to prepare such nanoparticles due to their resistance to 

oxidation, or ‘noble’ character.  Although examples of Cu nanoparticles exhibiting LSPR exist, 

they are exceedingly rare due to the susceptibility of Cu to oxidize in ambient, and especially 

aqueous, conditions.
23

  As discussed below, the absorption arising from LSPR combines with the 

light scattering effect to produce the net extinction spectrum, which has advantages over 

conventional organic dyes.
12

 

Figure 3: Calculated spectra of the efficiency of absorption Qabs (red dashed), scattering Qsca 

(black dotted), and extinction Qext (green solid) for gold nanospheres (a) D ) 20 nm, (b) D ) 40 

nm, (c) D ) 80 nm, and polystyrene nanospheres (d) D ) 300 nm.  (Reproduced by permission 

from  reference.24   Copyright © 2006  American Chemical Society.) 
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    The scattering and absorption components of Au nanoparticles combine to produce the 

effective extinction spectrum as shown in Figure 3, the black dotted line is the scattering 

component, and increases drastically in efficiency, Qext, as the Au nanoparticles increase in size 

from 20, to 80 nm.  The absorption efficiency, Qabs, also increased with the Au nanoparticle size, 

although for the 20 nm particles, the extinction spectrum is produced by absorption only.  When 

the LSPR active particles are replaced by polystyrene particles, the extinction efficiency, Qext, is 

derived entirely from the scattering component.  The absorption efficiency is approximately five 

time greater than conventional dyes, and the scattering of larger, ~80 nm Au, particles exhibit 

higher scattering than other dark field imaging particles, such as polystyrene microparticles.
24

   

 

Figure 4: Aqueous suspensions of 4 nm gold nanospheres (vial 0) and progressively higher 

aspect ratio gold nanorods, as shown in TEM images 1-5.  The extinction spectra are shown at 

top right corresponding to 1-5.  (Reproduced by permission from reference 20. Copyright © 

2008 Royal Society of Chemistry.) 
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In addition to the dielectric environment and metal comprising the nanostructure, the shape 

of the nanostructure affects the mean free path of the oscillating conduction electrons and alters 

the energy of maximum absorption from the LSPR.
25

  By carefully controlling of the reaction 

conditions that generate the nanostructure, the length of Au and Ag nanorods have been 

produced to extend the LSPR as far as 1600 nm, well into the near infrared region (NIR).
26

  This 

has practical value for sensing applications, such as Raman spectroscopy, as the nanorods aspect 

ratio’s effect on the LSPR profile provides a route to match common laser wavelengths with the 

maximum LSPR absorption for optimized signal strength.
27

  Furthermore, the spectral NIR 

region is necessary for applications inside biological systems, referred to as the biological 

transparent window due to the high penetration into tissue.
16

  As shown in Figure 4, increasing 

the aspect ratio of Au nanorods changes the color of the solution, and the lambda max, from 520 

nm for spherical Au particles, to 800 nm for 100 nm Au nanorods.  Also shown in the spectra, 

are the two modes of the plasmon, the longitudinal arising from the wave propagating the length 

of the rod, and the transverse originating from the width of the rod, allowing for multiple 

wavelengths of excitation. 

1.1.3 Metal Nanostructure Synthesis 

1.1.3.1 Synthetic Strategies 

Approaches to manufacturing nanostructures can be broadly grouped into two categories: 

The top-down and bottom-up approaches comprise all nanostructure production techniques.
28

  As 

depicted in Figure 5, the Top-Down approach starts with the bulk, or macroscale, material and 

mechanically converts the material to the nanoscale through grinding, cutting, or other means.  

This strategy has the advantage of scalability which suits it well for industrial settings, but has 
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disadvantages when the material is very rare or expensive, such as platinum or gold, or if fine 

shape control is necessary.   

 

Figure 5: Representation of Top-Down and Bottom-Up approaches to generating nanostructures.  

(Reproduced by permission from reference  29.  Copyright © 2009 Royal Society of Chemistry.) 
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Figure 6: (A) Schematic of a typical solution phase nucleation and growth of crystals using (B) 

an illustration of a setup used to produce nanocrystals.  (Reproduced by permission from 

reference 30.  Copyright © 2000 Annual Reviews.) 

 

The bottom-up approach, as the name suggests, is essentially the reverse of the top-down 

approach; rather than breaking apart matter, nanostructures are formed by building the structure 

from atoms.  This latter approach takes a que from nature, and relies largely on nucleation and 

crystal growth to produce uniform and shapeable nanostructures.
31

  The advantage of the bottom-

up approaches is uniformity, shape control, and very little material requirements.  The 

disadvantages are the low yields produced, potential for scalability, high temperatures required, 

and purification of the products.  For example, the precipitation of snow or rain, beginning with 

humid air, followed by condensation and eventual precipitation is an example of a colloidal 

bottom up approach to produce water particles as solid crystals or liquid drops, respectively.
32

  

To contrast with a bottom up approach, the thought experiment depicted in Figure 1 would be 
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considered a Top-Down method, where a solid block is sequentially, broken into many smaller 

pieces of the same material.  

The nanostructures described herein were produced using a bottom-up wet-chemical 

approach, utilizing a set up as depicted in Figure 6B, consisting of a solution of precursors under 

inert gas inside a round bottom flask, magnetically stirred.  Metallic nanocrystal precursors can 

be injected using air free techniques as shown; by taking advantage of the physics of colloidal 

crystal growth, complex heteronanostructures can be produced.  As shown in Figure 6A, the 

initial nanoparticle nucleation occurs after a critically high concentration of nuclei are present in 

solution, after which the first crystals are formed, which quickly, acting as seeds for further 

nanoparticle growth, deplete the remaining nuclei from the solution.
33

  As will be discussed 

below, if multiple metals are present in the solution, a seeded co-reduction occurs, which has 

implications for the final composition and shape.
34

  After the growth phase, secondary and 

tertiary metals can be added to alloy with the seeds or undergo heterogeneous growth, forming a 

shell on the first material.  Through selection of temperature, reaction rate, and use of 

surfactants, a precise shape can be selected; resultantly, the overall reaction can be complex, and 

the key points germane to the following chapters are outlined below. 
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1.1.3.2 Shape Controlled Synthesis 

 

Figure 7: Cube of fcc material exhibiting 6 faces of (100), and truncated corner of a (111) 

surface facet.   
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Through careful selection of surfactant, oxidizing environment, and reducing environment, 

the relative growth rates on the surface of a nanocrystal can be promoted relative to others, 

controlling the final crystal shape.  Herein, ‘growth’ of nanocrystals refers to the addition of 

atoms to a crystal surface, becoming incorporated into the nanocrystal.  For Au, Cu, and Ag, 

which are typical nanocrystal materials due to their optical and catalytic activity, the atoms 

arrange themselves as face centered cubic or fcc. For an fcc single crystal, if growth on the 

<100> direction proceeds faster than <111>, a truncated octahedron or perfect octahedron will be 

produced as the (111) facet, shown as the brown surface in Figure 7, increases in surface area.  

Conversely, if the growth rates are reversed, such that atoms are added faster to the <111> 

surfaces than the <100>, the truncated surfaces will disappear, producing truncated cubes, or 

ultimately perfect cubes of 6 (100) faces if the growth proceeds to completion.
35

 

As mentioned above, the conversion of a cube into an octahedral structure and vice versa, is 

true for single crystal particles; introducing crystals with stacking faults referred to as “twinned” 

or “multiply twinned” seeds can have a dramatic effect on the potential shapes of the final crystal 

or alloy.
36

  Twinning can be minimized by introducing an etchant, or oxidant, into the reaction 

during the early formation of crystal nuclei, during the period between reduction of ions into 

atoms and crystal seed growth as shown in Figure 6, to chemically attack the twin boundaries of 

the formed crystal seeds.  Alternatively, Twining can be enhanced by adding reagents, such as 

NaBr in the case of Ag, and makes the difference between singly twined bipyramids and single 

crystal cubes.
37
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Figure 8: Table of nanocrystalline shapes resulting from fcc metals of single crystal, singly 

twinned, and multiply twinned seeds.  (Reproduced by permission from reference
38

.  Copyright 

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.) 
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The seeds with twinning are more susceptible to oxidative etching due to the high surface energy 

of the facet boundary and are etched slightly more often than the seeds that survive the oxidizing 

environment in greater numbers.
39

  In a properly designed reaction, the seeds return to 

constituent atoms and then re reduce many times. As this process is repeated in the presence of 

an etchant, the colloid will ‘evolve’ only single crystal nuclei that can mature into nanoparticles 

of single crystal character.  Conversely, as shown in Figure 8, there are additional shapes 

possible when the particles are twinned, and this requires an environment with little etching 

activity.
38

 

As discussed below in section 1.2, alloyed nanostructures can offer advantages over 

monometallic nanostructures.  The successful of shape control of monometallic nanostructures 

does not translate perfectly to the shape control of alloyed nanostructures; however, the change 

in activity of the constituent metals provides an opportunity to introduce varying shapes and 

compositions of metal.  For example, a seeded co-reduction approach can produce a variety of 

nanostructures of noble metals.  Multiply twinned Au nano particles take on a decahedral form as 

shown in Figure 8, were found to produce AuxCu1-x nanorods as shown in Figure 9 when Au 

and Cu atoms were present in the reaction solution with the Au seeds.
40

  The five-fold twinned 

surface were found to be critical to the final shape; the reactive twin crystal boundaries seeded 

the growth of Cu atoms, producing a Cu rich side of the Au particle. This Cu portion 

simultaneously alloys with the Au, and continues to grow as Cu and Au atoms are added.  This 

co-reduction approach grows the decahedra into a nanorod, through co addition of Cu and Au 

atoms in the direction of the five-fold twin axis until the reagents Au and Cu are depleted.  These 

types of reactions follow the experimental set up described in Figure 6, but include a second 

injection of crystal growth material, in this case Cu, to initiate the co-reduction and produce the 
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rods.  This approach is significant because it first introduced and then amplified anisotropy in the 

seed crystal by targeting the twinned surface, and exploited the twinning to yield AuCu3 

nanorods.   

 

Figure 9: Seed mediated co-reduction process to produce CuxM1-x nanorods through anisotropic 

growth of Cu and Au.  (Reproduced by permission from reference 40. Copyright © 2013 

American Chemical Society.)  

 

The seeded co-reduction takes advantage of the fact that the energetic barrier to add atoms 

onto a crystal surface is typically much lower than the energy barrier to homogeneous nucleation 

of atoms to form crystal seeds.  This effect can be exploited to produce a variety of 

nanostructures from a single reaction mixture, as shown in Figure 10.
41

  As a demonstration of 

the effect that reaction rate has on the shapes produced through seeded co-reduction methods, Pd 

tipped octapods were produced when Au and Pd were reduced simultaneously at a fast rate; the 

shape was produced by the competition for crystal growth between the two metals.  When the 

reduction was slowed, the shape was thermodynamically driven, rather than kinetically driven, 

and the final shape acted to minimize the surface energy of the particle by forming an octahedron 

and maximizing the internal volume.   
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Figure 10: Au-Pd shape controlled alloyed nanostructures.  (Reprinted by permission from  

reference 41.  Copyright © 2012 American Chemical Society)  

 

 

Silica can be introduced into nanostructures to physically protect the particles from 

aggregation and dramatically slow or even stop unwanted chemical reactions such as dissolution 

or oxidation. Silica, SiO2, has been incorporated into nanostructures to improve the colloidal 

stability and chemically protect the inner metallic or semiconductor core.  SiO2 and similar 

materials, such as TiO2, serve as a protective barrier against agglomeration and Ostwald ripening 

of the core particles, acting as solid barrier around the particle in place of surfactants.  The silica 

itself is can be stabilized as a suspension via electrostatic repulsion between the silica shells.
42

  

The shells also chemically protect the cores, by slowing the diffusion of oxidants to the core in 

the case of porous SiO2, or completely preventing interaction with the solution when the SiO2 is 

dense enough.  SiO2 shells have successfully been employed into core-shell structures using 

quantum dots
43

, and transition metal oxides such as Fe3O4
44

, as well Au, and Ag metals
45

, 

although the other metal exhibiting visible LSPR, Cu, has had significant challenges 
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incorporating into silica due to the reactivity of the Cu and the susceptibility to oxidize in 

aqueous conditions.  For this reason, nano sized Cu LSPR effects have garnered very little study. 

 

1.1.3.3 Total Synthesis of Nanostructures 

 

 

Figure 11: Illustration of the increasing complexity and multifunctionality of nanostructures as 

primitive isotropic structures are compared with core-shell, Janus particles, and heterodimer 

Janus particles.   (Reproduced by permission from Reference 46. Copyright © 2014 Beilstein-

Institut) 

Janus nanoparticles, also referred to as ‘two-faced’ particles, are of special interest due to 

their multifunctionality, as well as the synthetic challenge of producing two or more distinct 

surfaces on a single nanoparticle.  As shown in Figure 11, Janus nanoparticles can combine two 

surfaces and/or materials into a single particle such as plasmonic activity and magnetism, 

catalytic activity and self-assembly, etc.
46

  Anisotropic nanostructures such as Janus particles and 

related heteronanostructures allow for an opportunity to design the rational and sequential 

synthesis of increasingly complex nanostructures with applications in a wide range of fields.
48

  

This approach can be compared to the approach taken in organic synthesis, where “text book 

reactions” such as oxidation, addition, substitution, condensation, and ring opening exist as 

chemical tools because of their dependability and ubiquity.
47

  These reactions are derived from 
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the predictable reactivities of molecules and functional groups and are studied and catalogued, 

providing a roadmap to produce natural products or new materials.  As shown in Figure 12, 

parallel to the conventional chemical strategies such as utilizing protecting groups, 

chemoselectivity, and separation techniques, a corresponding nanostructure strategy can be 

employed.  For example, in protein sequencing, c-terminal amino acids are protected and de-

protected to produce the desired protein structure; in colloidal total synthesis, epitaxial growth of 

metals can be used to direct heterogeneous nucleation onto a metal, Ag onto Au for example, 

rather than onto an oxide surface.   

 

 

Figure 12: Comparison of traditional stepwise chemical synthesis to the analogous 

heteronanostructures stepwise approaches.  (Reproduced by permission from reference 47. 

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.) 
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1.2 Multifunctional Applications 

1.2.1 Catalytic Applications 

Combining the high surface area of nanoparticles with the enhanced activity of alloyed 

metal-noble metal nanostructures makes the shape controlled synthesis of alloyed metals, 

especially the seeded co-reduction approach, a significant area of study as heterogeneous 

catalysis.
49

  The problem of CO poisoning serves as an illustration of how alloyed nanostructures 

can solve a critical engineering problem.  The use of platinum nanoparticles as catalysts, as in a 

polymer exchange fuel cell for instance, suffer from decreased activity over time due to CO 

adsorption.
50

   Elimination of CO is also a concern as a common intermediate in direct alcohol 

fuel cells, and is produced at the anode of a fuel cell can cross over to the cathode and 

deactivates the Pt catalyst used in the oxygen reduction reaction (ORR).   Modification of the 

metal electronic d-band, through allowing with transition metals(TM)  and through TM-N and 

TM-P bonds leads to a lowering of catalyst surface poisoning  by intermediates.
51

  Although 

some ambiguity in the literature exists, the electrochemical community has accepted the “bi-

functional mechanism” to rationalize the effect a second element imparts on Pt based catalytic 

surfaces.
52

  As proposed by Watanabe and Motoo, the two metals together exhibit a combined 

catalytic activity greater than either one of the metals alone.
53

  This bi-functional mechanism is 

depicted below in equations 2 and 3, and schematically in Figure 13. 

Ru+H2ORu(OH)ads+H
+
e

-      
                               (2) 

Pt(CO)ads+Ru(OH)adsCO2+Pt+Ru+H
+
+e

-
             (3) 

Although the deactivation of Pd is less will understood than Pt as the exact poisoning 

mechanisms are not characterized, alloying has still shown to increase activity.
54

  A general 

strategy to alloy the primary metal to maximize the effects of the bi-functional mechanism is to 



20 
 

choose an oxophilic secondary metal that readily forms a bond with the unwanted intermediate, 

such as (OH)ads for Pt, preferentially compared to the primary metal.  The second mechanism, 

which can arise from alloying as well as metallic layering, e.g. core-shell structures, is the 

modification in the electronic character of the primary catalyst (Pt, Pd, etc.).  When the Pt or Pd 

is grown over or alloyed with a second metal, the electronic properties of the metal d-orbital 

change, reducing the interaction strength of reaction intermediates. In the case of CO and Pt, the 

synergistic interaction responsible for poisoning between the 5d-2ᴨ* orbitals between the metal 

and CO becomes weaker when Pt d bands energy is altered.  Much of Pd loss of activity is 

believed to be from loss agglomeration of the particles together and dissolution of the metal into 

solution, especially in acidic solutions, during use.
55

  Alloying of the Pd particles has shown 

some evidence of resisting this effect.  Thus alloying of metals provides an additional synthetic 

handle to improve catalytic activity of traditionally catalytic metals. 
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1.2.2 Magnetic Nanoparticles 

 

Figure 13: The different magnetic effects occurring in magnetic nanoparticles.  (a) a ferromagnet 

(b) antiferromagnet, D is the diameter, Dc is the critical diameter.  (c) hard magnet. (d) 

supermagnetic material. (e) an exchange bias effect when a ferromagnet is interfaces an 

anfiferromagnet. (f) weak ferromagnetism arising from uncompensated surface spins.  

(Reproduced From Reference 56.  Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim) 

 

As described above, the properties of nanoparticles are often quite distinct from the bulk 

material’s characteristics.  In addition to chemical reactivity and optical activity, the magnetic 

behavior of ferromagnetic materials changes when the size of the nanoparticle is equal to the 

magnetic domain size, typically 10-20nm.
56

  When this condition is met, the material is said to 

be superparamagnetic, meaning that the particles exhibit no remanence or coercivity, or that 

there is a lack of hysteresis in a magnetization curve, as shown in Figure 13 (d).  This is a 
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desirable and necessary quality for magnetic nanoparticles as a colloid of permanent magnets 

will be unable to resist magnetically driven aggregation that would render them incompatible 

with biological systems.
57

  The superparamagnetic nanoparticles however can behave as an ideal 

colloidal suspension, while also exhibiting strong magnetic susceptibility, allowing them to be 

used as designed for magnetic imaging techniques.
58

  Combining the superparamagnetism of 

nanoscale magnetite, Fe3O4, with the tunable LSPR of noble metal nanostructures is of great 

interest as a synthetic challenge and for biomedical and theranostic applications. 

 

1.2.3 Theranostic Applications 

Many nanostructures, such as the hollow gold nanocage, have been adapted for use in both 

diagnosis and treatment of cancer.  The ability of LSPR active nanoparticles to absorb light at the 

tissue transparent NIR window, as well as their high extinction cross section which is often as 

much as five times greater than conventional organic dyes
59

 , have made such structures an 

active area of research in biomedicine.  As depicted in Figure 14, theranostic nanostructures 

offer multiple functions, such as photo acoustic imaging, drug delivery, and cancer diagnosis.
58,59

  

These therapies benefit from dynamic and multiplexed nanoscale platforms, and are a primary 

driver behind the demand for complex anisotropic and multifunctional nanostructures.   The 

primary challenge however, is in the process of combining properties into a single particle, 

maintaining the desired properties such as maximum LSPR absorption, shape of nanostructure, 

surface chemistry, or magnetic character.  New synthetic tools are desired, as improving the 

ability to produce progressively complex heteronanostructures will improve their multifunctional 

utility.   

 



23 
 

Figure 14: Illustration of multifunctional nanostructures for theranostics.  (Reproduced by 

permission from reference 59. Copyright © 2011 American Chemical Society) 

 

1.3 Objectives 

Metal and metal hybrid nanostructures offer exciting prospects for spectroscopy, catalysis, and 

biology, among other applications.  Wet chemical techniques offer a convenient and scalable 

route to producing nanoparticles; introducing fine control of materials on the nanoscale using 

these techniques is an active area with many pay offs for further improvement.  In the following 

chapters, facile techniques for producing segmented nanostructures, novel Cu-SiO2 structures, 

and metal core-metal oxide shell hybrid nanostructures are reported.   

The following chapters are organized according to previously published articles or as soon to be 

published.  Chapter 2 encompasses the mask assisted seeded growth (MASG) of noble metal 

nanostructures to rapidly and easily produce segmented heteronanostructures.  Chapter 3 is 

focused on progress towards oxidation resistant Cu nanostructures stabilized with thin silica 

shells in water.  Chapter 4 includes a general approach to coat preformed metal nanostructures 

with transition metal oxides, and investigates their optical properties resulting from the 

procedure and the metal oxide shell.  This strategy can be used to produce plasmonically active 

nanorods with superparamagnetic character.  Chapter 5 serves as a conclusion. 
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Chapter II.  Mask-Assisted Seeded Growth of Segmented Metallic Heteronanostructures* 

 

Abstract 

Controlling the deposition of exotic metals in the seeded growth of multi-metal nanostructures is 

challenging. This work describes a seeded growth method assisted by a mask for synthesis of 

segmented binary or ternary metal nanostructures. Silica is used as a mask to partially block the 

surface of a seed and a second metal is subsequently deposited on the exposed area, forming a 

bimetallic heterodimer. The initial demonstration was carried out on a Au seed, followed by 

deposition of Pd or Pt on the seed. It was found that Pd tends to spread out laterally on the seed 

while Pt inclines to grow vertically into branched topology on Au. Without removal of the SiO2 

mask, Pt could be further deposited on the unblocked Pd of the Pd-Au dimer to form a Pt-Pd-Au 

trimer.  The mask-assisted seeded growth provides a general strategy to construct segmented 

metallic nanoarchitectures. 

 

*published: Mask-Assisted Seeded Growth of Segmented Metallic Heteronanostructures 

Cameron C. Crane, Jing Tao, Feng Wang, Yimei Zhu, and Jingyi Chen 

The Journal of Physical Chemistry C 2014 118 (48), 28134-28142  
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Introduction 

Heterostructures of two or more metals with interfaces at the nanoscale is of particular 

significance because they exhibit unique properties and multi-functions distinctly different from 

the individual components.
1-4

 The diverse surface chemistry of these heteronanostructures 

enables new applications that are not possible with each component alone. For example, multi-

segmented metal nanorods have been demonstrated for applications in synergistic heterogeneous 

catalysis,
5-6

 self-electrophoretic nanomotors/ nanobatteries,
7-8

  multifunctional biomedicine,
9-10

 

and multiplexed detections.
11-12

 To fabricate the heteronanostructures, sequential electrochemical 

deposition of metal ions into templates is the most common method since the 1990s.
13-14

 In this 

approach, commercially-available alumina or polycarbonate membranes with uniform pores are 

often used as templates, yielding segmented metal rods.
15

 This method could be further extended 

to selective growth of additional metals within the templates in solution after the initial 

electrochemical deposition of rod-shaped seeds.
16-17

 To generate heterostructures with other 

configurations, it is usually required to involve cost-intensive and time-consuming lithography 

techniques.
18

 In this work, a site-selective seeded growth method, termed mask-assisted seeded 

growth (MASG), is developed to expand the library of metal heterostructures with complex 

nanoarchitectures. 

Seeded growth has emerged as a compelling method to create a wide variety of novel metal 

nanostructures.
19-24

 Conditions that yield heteronanostructures depend on a number of factors 

such as the structural characteristics of constituent components, the reduction kinetics of metal 

precursors, and the capping agents. For example, a high degree of lattice mismatch between the 

seed and the second metal prevents conformal growth of core@shell structures and yields 

heteronanostructures of Au on CoPt3,
25

 Au rods on Pt cubes,
21

 and Cu on Au.
24

 Controlling the 
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reduction kinetics can selectively direct the nucleation and subsequent growth of the second 

metal on the seed to form dimers of Au on Pd
26

 or other non-conformal structures such as Ag/Au 

on Pd cubes
27-28

 and Ag on Au nanorods.
29

 On the other hand, blocking specific facets of the 

seeds by capping agents could lead to the growth of Rh on Pd heterostructures.
30

 Despite these 

advances, optimization of the growth conditions is largely material specific and it is beneficial to 

develop a general approach for the synthesis of multi-component heteronanostructures.  

In this work, the MASG method uses SiO2 as a mask in seeded growth to partially block the 

surface of the seed and thus direct the deposition of exotic metals on the exposed surface of the 

seed, forming heteronanostructures. The asymmetric coating of SiO2 was demonstrated in the 

classical Stöber synthesis by using a polymeric ligand to partially block the diffusion of the sol-

gel precursor to reach the surface of the nanoparticle.
31

 However, this method is only suitable for 

water-soluble nanoparticles. To overcome this limitation, the water-in-oil (W/O) microemulsion 

method is used to form the SiO2 mask. Unlike the classical Stöber synthesis of SiO2 coating,
31-34

 

the W/O microemulsion confines the sol-gel condensation within the water droplets in bulk oil, 

particularly useful for the formation of SiO2 coating on nanoparticles suspended in hydrophobic 

solvents.
35

  By reducing the concentration of sol-gel precursor in the W/O microemulsion, phase 

separation between the surface ligand and hydrolyzed precursor is created on the particle surface, 

leading to partial condensation of SiO2 on individual Au nanospheres to yield Au-SiO2 dumbbell 

structures. Sequential reduction of Pd and Pt precursors on these dumbbell structures generates 

heterodimers of Pd-Au and Pt-Au, and more complex Pt-Pd-Au heterotrimmers. The reaction 

mechanisms of the microemulsion for preparation of Au-SiO2 dumbbells and their subsequent 

use for synthesis of heteronanostructures are elucidated. These heteronanostructures exhibit 

tunable optical properties in the visible markedly different from the individual components.  
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Methods 

Chemicals. Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O, 99.99%), potassium 

tetrachloroplatinate (K2PtCl4, 99.9%), potassium tetrachloropalladate (K2PdCl4, 99.9%), and 

ammonium hydroxide (28-30% NH3·H2O) were purchased from Alfa Aesar.  Tetradecylamine 

(TDA, >95%) was purchased from TCI.  Tetraethoxysilane (TEOS, 98%), poly(oxyethylene) 

nonylphenyl ether (Igepal CO-520), and  polyvinylpyrrolidone (PVP, M.W. = 55,000) were 

purchased from Sigma-Aldrich.  Cyclohexane (ACS grade) was purchased from EMD.  All 

chemicals were used as received unless specified otherwise. 

Synthesis of Au-SiO2 Dumbbells. The Au-SiO2 dumbbells were synthesized by controlling 

the hydrolysis and condensation of the SiO2 precursor during the coating process using W/O 

microemulsions. Initially, 10-nm Au nanoparticles were prepared by reducing HAuCl4·3H2O 

(19.7 mg, 0.05 mmol) in 5 g of TDA at 160 
o
C for 20 min under argon. After the reaction, the 

product was cooled to 100 
o
C and purified with toluene and ethanol to remove unreacted 

precursor and excess TDA. The Au nanoparticles were then dispersed in cyclohexane for silica 

coating in W/O microemulsions. In a typical procedure, 1 mL of 200 nM Au nanoparticles was 

added to the mixture of 0.14 M Igepal CO-520 in 40 mL cyclohexane in a round-bottom flask 

equipped with a magnetic stirring bar. Various amounts of TEOS (20-200 mL) were added to the 

reaction mixture and allowed to mix for 30 min before the addition of 0.280 mL of NH3·H2O. 

The Au-SiO2 dumbbell structures were formed when less than 50 mL of TEOS was used. The 

reaction was allowed to proceed for 48 h and stopped by adding ethanol to interrupt the 

emulsion. The product was washed by ethanol and dispersed in 18 MΩ H2O for future use.  

Synthesis of Pd-Au Dimers. The Pd-Au dimers were synthesized by reducing the Pd 

precursor in the presence of Au-SiO2 dumbbells using ascorbic acid. In a typical procedure, 8 
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mL of K2PdCl4 was added, at a rate of 0.1 mL/min, to a 5 ml aqueous solution containing Au-

SiO2 dumbbells (~15 pmol) and PVP (1 mg/mL) at room temperature. Final concentrations of 

K2PdCl4 (0.06, 0.2, and 0.35 mM) in the reactions were used to yield Pd depositions with 

different thickness of ~4, ~7, and ~10 nm, respectively. The molar ratio of ascorbic acid to 

K2PdCl4 was kept at 10 to 1 for all three reactions. The product was washed by ethanol and 

dispersed in 18 MΩ H2O. The SiO2 component was then dissolved by mixing the Pd-Au-SiO2 

particles overnight in an aqueous solution containing excess NaOH and PVP (10 mg/mL). The 

product was washed with water and dispersed in 18 MΩ H2O. 

The thickness (xPd) of Pd deposition was estimated using a crude model which approximates 

the Pd layer is a semi-spherical shell interfacing with a spherical Au core. The radius of the semi-

shell (rPd) can be derived from the average volume of Pd (nm
3
 per particle): 










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4

3

4

2

1
AuPdPd

rrV  , where rAu is the radius of the Au core that can be measured from the 

transmission electron microscopy (TEM) image. The VPd was obtained from 
3

3

AuAu

PdPd

Au

Pd

aC

aC

V

V
 , 

where VAu is the average volume of Au (nm
3
 per particle) assuming spherical shape (

3

3

4
AuAu

rV 

); CPd and CAu are the concentration of Pd and Au (mol/L), respectively, which can be measured 

from the bulk sample; aPd and aAu are the lattice constant of Pd and Au (nm), respectively. The 

difference of the rPd and rAu gives the thickness of the Pd semi-shell: 
AuPdPd

rrx  . 

Synthesis of Pt-Au Dimers. The procedure for Pt-Au dimers was the same as that for Pd-Au 

dimers described above, with the exception that K2PtCl4 was used as the Pt precursor and final 

concentration of Pt in the reaction solution is 2.4mM. 
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Synthesis of Pt-Pd-Au Trimers. The Pt-Pd-Au trimmers were synthesized using a similar 

procedure as that for Pt-Au dimers except that the Au-SiO2 was replaced by the pre-synthesized 

Pd-Au-SiO2 described above. 

RESULTS 

The MASG method has been demonstrated to synthesize bimetallic and trimetallic 

heteronanostructures. Figure 1A illustrates the general strategy of the MASG method using a Au 

seed and a second metal Pd as an example to create heterodimers. This method involves SiO2 to 

mask one side of a spherical nanoparticle and expose the other side for deposition of successive 

metals. After deposition, the SiO2 mask can be removed to yield heterodimers, trimers, or 

oligomers depending on the number of repeating depositions performed during the seeded 

growth. As an initial demonstration, Au and Pd were used as the seed and the second metal, 

respectively. The Au seeds prepared by reducing chloroauric acid in tetradecylamine were 

spherical nanoparticles with diameter of 9.71.3 nm (Fig. 1B). High resolution TEM (HRTEM) 

analysis shows that the Au seeds adopted decahedral geometry consisting of five tetrahedral 

subunits (Fig. S1). The subunits were bounded by {111} crystal faces, arranging along a five-

fold rotation axis along the [110] zone.
36

  Silica was subsequently condensed on these seeds 

using a modified W/O microemulsion method to form Au-SiO2 dumbbells (Fig. 1C). The yield 

of dumbbells was close to 90% with half of the seed surface covered by SiO2. These SiO2-

masked seeds were used for the deposition of Pd. Upon reducing Pd precursors with ascorbic 

acid, Pd was selectively deposited on the unblocked Au surface of these dumbbells to generate 

heterostructures of Pd-Au-SiO2 (Fig. 1D). Removal of the SiO2 mask yielded Pd-Au 

heterodimers (Fig. 1E).  
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Figure 1. (A) Schematic illustration of the MASG method for synthesis of metallic 

heteronanostructures. TEM characterization of products from each step in the process using Pd-

Au as a demonstration: (B) Au spherical nanoparticles with a mean diameter of 9.71.3 nm; (C) 

Au-SiO2 dumbbell nanoparticles; (D) Pd-Au-SiO2 nanoparticles; and (E) Pd-Au heterodimers. 

TEM characterization of an individual Pd-Au heterodimer: (F) HRTEM image and (G) HAADF-

STEM image and EDX elemental mapping. 
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The Pd-Au dimers were further characterized by HRTEM, high angle annular dark field scanning 

transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray spectroscopy 

(EDX). The HRTEM image of individual Pd-Au dimers clearly shows that the two components 

were assembled into heterostructures (Fig. 1F). The Z-contrast HAADF-STEM image and EDX 

mapping indicate that the dimers adopted a mushroom configuration with a Au spherical stem 

and a Pd cap (Fig. 1G). Further analysis of the HRTEM image shows the continuation of lattice 

fringes from Au to Pd. The lattice spacing was measured to be 0.236 and 0.228 nm 

corresponding to the spacing of {111} planes of Au and Pd, respectively. This result suggests an 

epitaxial growth of Pd on the {111} facets of decahedral five-fold twinned Au nanoparticles, in 

agreed with the previous in situ TEM observations.
37

 Without the SiO2 mask, no Au-Pd 

dumbbells were found in the product under identical conditions (Fig. S2).  

The growth of Pd on Au-SiO2 dumbbells could be manipulated by varying the amount of Pd 

precursor introduced during the deposition onto the Au-SiO2 seeds. The amount of Au-SiO2 

seeds was kept constant and the concentration of Au-SiO2 was estimated using the extinction 

coefficient at 520 nm (
118

cmM10)01.055.1(



Au

 , Fig. S3). To maintain the same 

reaction volume, different concentrations of K2PdCl4 were added to the reaction containing 15 

pmol of Au-SiO2 at a rate of 0.1 mL/min. Because the underpotential deposition of Pd on Au 

favors heterogeneous nucleation of Pd on Au over Pd on Pd,
38-39

 Pd preferentially nucleates 

laterally on the Au surface to cover the entire area of the exposed Au prior to the growth on 

newly-deposited Pd. Increased concentration of K2PdCl4 from 0.06, to 0.20 and 0.35 mM 

resulted in thicker deposition of Pd, as shown in Figure 2A, 1D, and 2B, respectively. A crude 

model was established to calculate the deposition thickness of Pd by approximating the Pd layer 

as a semi-spherical shell interfacing with a spherical core of Au as described in the experimental 
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section. The deposition thickness of Pd was estimated to be 4, 7, 10 nm for the three samples, 

denoted as sPd-Au-SiO2, mPd-Au-SiO2, lPd-Au-SiO2, respectively.  

Careful control of the reduction rate of the second metal is important to ensure heterogeneous 

nucleation and subsequent growth. A mild reduction of Pd was maintained for the deposition of 

Pd on Au using ascorbic acid as a reducing agent. The correlation between the amount of Pd 

formed and the amount of Pd precursor added was plotted in Figure 2C. In this study, the 

amount of ascorbic acid was in excess, 10:1 equivalent to the Pd precursor. The amount of 

deposited Pd on Au was linearly proportional to the amount of Pd precursor added to the reaction 

in the range of molar ratios of Pd to Au less than 10. The slope of the linear fitting curve was 

0.900.04, suggesting that nearly all the Pd precursor was reduced under these reaction 

conditions. The XRD results also show an increase of the Pd-to-Au ratio from sPd-Au-SiO2, to 

mPd-Au-SiO2 and lPd-Au-SiO2 by comparing the ratio of (111) peaks of Pd to Au in Figure 2D. 

Diffusion between the two metals at the interface may occur,
40

 however, the rate could be rather 

slow at room temperature.
41-42
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Figure 2. TEM characterization of Pd-Au-SiO2 heteronanostructures with different thickness of 

Pd deposition: (A) 4; and (B) 10 nm. The insets show the corresponding TEM images of Pd-Au 

heterodimers after the removal of silica. (C) Plot of the relative quantities of Pd in the dimers 

versus that in the precursor. (D) XRD patterns of the Au-SiO2 dumbbell nanoparticles (Au-SiO2) 

and Pd-Au-SiO2 heteronanostructures with Pd deposition thickness of 4, 7, and 10 nm, denoted 

as sPd-Au-SiO2, mPd-Au-SiO2, lPd-Au-SiO2, respectively. 
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The deposition of Pd on Au could be monitored by the change of the optical properties of the 

resultant heteronanostructures. Figure 3A shows the UV-Vis spectra of sPd-Au-SiO2, mPd-Au-

SiO2 and lPd-Au-SiO2. Due to the damping effects of Pd on the surface plasmon resonance of 

Au,
43

 the extinction peak of Au nanoparticles at 520 nm was gradually flattened out as the 

deposition volume of Pd increased The optical spectra were further simulated using the discrete 

dipole approximation (DDA) method,
44

 based on our crudely modelled geometry shown in the 

insets of Figure 3, B-D. Due to small size of the particles, light absorption dominated over 

scattering for their surface plasmon resonances. The simulated spectra matched well with the 

empirical extinction spectra, showing a decrease in extinction efficiency of Au at 520 nm after 

deposition of Pd, from 0.652 (Fig. S4) to 0.420 (Fig. 3B), by about one third. As the size of Pd 

increases from a xPd of 4 nm to 7 nm and 10 nm, the extinction efficiency at 520 nm slightly 

increases from 0.420, to 0.470 and 0.550, respectively. The corresponding extinction cross 

sections of individual dimers increase from 0.75×10
-16

, to 1.40×10
-16

 and 2.50×10
-16

 m
2
. The 

optical spectra of another possible model of the Au-Pd dimer containing the same amount of Au 

and Pd by volume were also calculated. In this second model, the Au sphere is covered by a 

partial ellipsoid, as shown in Figure S5. The calculated spectra of the second model are very 

similar to the semi-spherical Pd shell model, suggesting that the optical spectra of the Au-Pd 

dimer are insensitive to certain details of the configuration such as the flat cutoff of a half-shell 

versus the curvature of an ellipsoid. By observing the change in the spectral shapes and intensity 

at 520 nm, the colorimetric method provides a simple and convenient means to track the 

deposition thickness of Pd in situ. 



40 
 

 
 

Figure 3. UV-Vis spectra of the Pd-Au-SiO2 heteronanostructures with a Pd deposition thickness 

of 4, 7, and 10 nm on Au nanoparticles with a diameter of 9.71.3 nm, denoted as sPd-Au-SiO2, 

mPd-Au-SiO2, and lPd-Au-SiO2, respectively. DDA simulation of the optical spectra of Pd-Au 

heterodimers with a Pd thick deposition of 4, 7, and 10 nm on a Au nanosphere with a diameter 

of 10 nm, denoted as sPd-Au (B), mPd-Au (C), lPd-Au (D), respectively. The insets show the 

geometries of the Pd-Au heterodimers used for the simulation. 
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To further evaluate the versatility of the MASG method, Pt was examined as a second metal 

for deposition on the Au-SiO2 dumbbells. Interestingly, Pt was deposited on Au as a dendritic 

configuration branching out vertically as opposed to the lateral growth of Pd on Au (Fig. 4). 

Further analysis of HRTEM images shows the lattice spacing was measured to be 0.236 and 

0.228 nm corresponding to the spacing of {111} planes of Au and Pt, respectively. It is 

suggested that Pt clusters could be deposited on Au seeds through either direct reduction or 

oriented attachment on the {111} facets of decahedral five-fold twinned Au nanoparticles.
45-46

 

After the initial epitaxial growth of Pt on Au, growth of Pt on Pt is more favorable than that on 

Au possibly due to the overpotential of Pt deposition on the Au surface. The slow reduction 

kinetics promotes the growth of Pt along the <111> direction into branched structures.
47

  The 

HAADF-STEM image and EDX elemental mapping verified the composition of Au and Pt 

heterodimer structures.  
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Figure 4. TEM characterization of Pt-Au-SiO2 heterostructures: (A) overview image; (B, C) 

HRTEM of individual particles; and (D) HAADF-STEM image and EDX elemental mapping.  
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The MASG method can be further extended to grow an additional component at a designated 

site of the heterodimers using the SiO2 masking strategy. As a demonstration, Pt was added with 

ascorbic acid to the suspension of Pd-Au-SiO2 heterostructures with Au protected by the SiO2 

coating. Dendritic Pt caps were formed on the Pd side of the Pd-Au dimers as shown in Figure 5, 

in contrast to equal deposition on both Pd and Au, which was observed on the unprotected 

dimers (Fig. S6). It is hard to differentiate Pd and Pt by comparing the lattice spacing of {111} 

facets because their lattice constant are almost identical (0.389 nm for Pd versus 0.392 for Pt).
48

 

However, the vertical growth pattern of Pt is distinctly different from the lateral one of Pd.  From 

the HRTEM analysis, it was found that epitaxial growth was extended from Pd on Au {111} 

faces to Pt on Pd {111} faces of Pd-Au. The composition of Au, Pd, and Pt of individual 

heterotrimers was further confirmed by the HAADF-STEM image and EDX elemental mapping. 
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Figure 5. TEM characterization of Pt-Pd-Au-SiO2 heteronanostructures: (A) overview image; 

(B) HRTEM of an individual particle; (C) HAADF-STEM image and EDX elemental mapping. 
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Discussion 

The formation of metal-SiO2 dumbbell nanoparticles is the key to the success of the MASG 

method. A high yield of Au-SiO2 dumbbells was accomplished by a modified W/O 

microemulsion method. In a typical W/O microemulsion, the silica coating on a nanoparticle is 

formed by hydrolysis and condensation of TEOS within a micrometer- or nanometer-sized 

droplet that is generated in a homogeneous mixture of water, organic solvent (oil), and 

surfactant. The conventional method often results in core@shell structures with minimal 

inhomogeneity in the coating.
35

 The modified W/O microemulsion was carried out by hydrolysis 

and condensation of TEOS on TDA-coated Au nanoparticles using ammonia in the presence of 

surfactant (Igepal CO-520) and organic solvent (cyclohexane). To increase the yield of Au-SiO2 

dumbbells, the concentration of TEOS was reduced to create phase separation between TDA and 

hydrolyzed TEOS on the surface of Au nanoparticles.  
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Figure 6. (A) Schematic illustration of the mechanism of silica coating via a micro-emulsion 

process. TEM characterization of the corresponding samples in the proposed mechanism using 

two different concentrations of TEOS under identical reaction conditions: (B) at low 

concentration (3.4 mM); and (C) at high concentration (22.4 mM).  
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The mechanism based on phase separation in the W/O microemulsion was illustrated in 

Figure 6A. Initially, TDA ligands on the nanoparticles were partially replaced by the hydrolyzed 

TEOS, resulting in phase segregation of hydrophobic oleylamine and hydrophilic TEOS.
49

 

Further condensation of TEOS was limited to the hydrophilic portion of the particle surface, 

yielding dumbbell structures of Au-SiO2 (Fig. 6B). As the concentration of TEOS increases, 

more TDA ligands are substituted by the hydrolyzed TEOS, leading to a gradual expansion of 

TEOS to encompass the entire surface of the Au nanoparticles and thus further condensation to 

form complete SiO2 shell (Fig. 6C). The resultant SiO2 is porous, allowing small molecules to 

diffuse in and out more easily as compared to crystalline materials. For example, water can 

diffuse through the pores of SiO2 to reach the surface of Au nanoparticles, resulting in a SiO2 

shell filled with water. Assuming that a simple mathematic average can be used to estimate the 

dielectric constant of a two-component mixture, the refractive index of porous SiO2 surrounding 

Au nanoparticles can be shown to be very similar to that of toluene. This was confirmed by 

measuring the extinction spectra of Au nanoparticles in toluene and Au-SiO2 in water. The 

spectra are very similar and consistent with our approximation (Fig. S7). Despite of its porous 

nature, the SiO2 mask can act as a protecting group and effectively reduce the surface 

accessibility of reactant molecules in a chemical reaction. To verify the protecting function of 

SiO2, the reactivity of Au in the dumbbells and the core@shell structures was compared using 

two model reactions: an etching experiment using excess KCN and the reduction of p-

nitrophenol by excess NaBH4.  

The reactivity of the Au cores in the dumbbells is markedly different from that of core-shell 

structures because SiO2 coating largely blocks the diffusion of reactants. The etching of Au 

involves the use of KCN in aqueous solution as follows: 4Au + 8CN
-
 + O2 + 2H2O  
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4[Au(CN)2]
-
 + 4OH

-
. The rate of the reaction is mainly limited by the diffusion of CN

-
 through 

the pores of SiO2 because the dissolved O2 and water molecules have covered the surface of Au.  

As the size of Au nanoparticles decreases during the etching process, the extinction efficiency 

reduces linearly while cross-section decreases exponentially (Fig. S6). The dissolution of Au 

could then be monitored by the diminished rate of extinction at 520 nm (Fig. 7A). It was found 

that the etching rate of Au in the dumbbell particles was faster than that in the core@shell 

structures. In the case of core@shell structures, the etching rate was further slowed down after 10 

min, possibly because the slower diffusion rate of the larger [Au(CN)2]
-
 anions further slows 

down the etching rate of Au. After dissolution of Au, the dumbbell particles yielded half shells of 

silica while complete silica shells were found as the product for core@shell particles (Fig. 7, B 

and C). The slight change of SiO2 morphology after etching could be possibly due to the 

structure reconstruction in the basic solution during etching process.
50
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Figure 7. Etching process of Au nanoparticles: (A) Plot of extinction at 520 nm as a function of 

etching time; TEM images of Au@SiO2 core@shell structures (B) and Au-SiO2 dimers (C) after 

etching. Kinetic study of 4-nitrophenol reduction on Au-SiO2 nanostructures: (D) plot of 

normalized absorbance (I/I0) of p-nitrophenolate ion at 400 nm as a function of time for different 

catalysts; and (E) plot of –ln(I/I0) as a function of time for different catalysts. The solid lines are 

the linear fits of the data and the slope gives kapp of the reaction. 
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The accessibility of SiO2-masked surface is much more difficult for the deposition of 

additional metals because the reduction typically involves two reactants: a relatively-large anion 

of transition metal complex and ascorbic acid. The assumption was examined by a model 

reaction involving two reactants, the reduction of p-nitrophenol by excess NaBH4. The same 

amounts of dumbbell particles and core@shell particles were used to catalyze the p-nitrophenol 

reduction. The reaction was monitored by decreased intensity of absorbance at 400 nm 

corresponding to the disappearance of p-nitrophenol (Fig. 7D).  The reduction could be treated as 

a pseudo first order reaction when NaBH4 was in large excess.
51

 The data were then plotted as 

first order with respect to p-nitrophenol (Fig. 7E). The rate constant of p-nitrophenol reduction 

on the dumbbell particles was found to be (4.640.01)×10
-3

 s
-1

, more than 10 fold faster compare 

to the core@shell structures (4.110.32)×10
-4

 s
-1

). In fact, the p-nitrophenol reduction on the 

core@shell particles deviates from the first order kinetics, suggesting that the concentration of 

NaBH4 is insufficient to assume pseudo first order reaction. This result, in turn, implies that the 

diffusion rates of reactants are significantly reduced. Both the etching reaction of Au and the p-

nitrophenol reduction have demonstrated that the SiO2 coating indeed serve as a mask to block 

chemical reactions. 

Conclusion 

The MASG method has been developed using SiO2 as a mask to partially protect the surface 

of seeds from further reaction and subsequently applied to synthesize Pd-Au and Pt-Au 

heterodimers and Pt-Pd-Au heterotrimers. The initial Au-SiO2 dumbbell structures could be 

readily synthesized by a modified W/O microemulsion due to the phase separation of 

hydrophobic surface ligands and hydrophilic hydrolyzed TEOS. Further epitaxial growth of Pd 

and Pt on Au was observed. Interestingly, Pd is apt to laterally grow on Au by capping the 
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unblocked Au surface while Pt prefers to grow vertically into branched structures after initial 

deposition on Au. Replacing the noble metal with a 3d transition metal as the second metal, the 

active metal could subsequently be oxidized or sulfurized to oxide or sulfide.
52-53

 Therefore, the 

MASG method is potentially a versatile strategy to generate hybrid heteronanostructures with 

multi-components for improving the existing applications and finding new uses in many areas 

related to energy conversion and human health.  

 

Supplemental Information 

Experimental details, TEM characterization of Au nanoparticles and Pt-Pd-Au 

heteronanostructures synthesized without protection of SiO2, UV-Vis spectra of Au nanoparticles 

and Au-SiO2 dumbbells, as well as DDA simulation of optical spectra of individual Au 

nanospheres with different diameters.  
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 Appendix A: Supplemental Information 

 

Experimental Details: 

Chemicals. Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O, 99.99%), potassium 

tetrachloroplatinate (K2PtCl4, 99.9%), potassium tetrachloropalladate (K2PdCl4, 99.9%), and 

ammonium hydroxide (28-30% NH3·H2O) were purchased from Alfa Aesar.  Tetradecylamine 

(TDA, >95%) was purchased from TCI.  Tetraethoxysilane (TEOS, 98%), poly(oxyethylene) 

nonylphenyl ether (Igepal CO-520), and  polyvinylpyrrolidone (PVP, M.W. = 55,000) were 

purchased from Sigma-Aldrich.  Cyclohexane (ACS grade) was purchased from EMD.  All 

chemicals were used as received unless specified otherwise. 

Synthesis of Au-SiO2 Dumbbells. The Au-SiO2 dumbbells were synthesized by controlling 

the hydrolysis and condensation of the SiO2 precursor during the coating process using W/O 

microemulsions. Initially, 10-nm Au nanoparticles were prepared by reducing HAuCl4·3H2O 

(19.7 mg, 0.05 mmol) in 5 g of TDA at 160 
o
C for 20 min under argon. After the reaction, the 

product was cooled to 100 
o
C and purified with toluene and ethanol to remove unreacted 

precursor and excess TDA. The Au nanoparticles were then dispersed in cyclohexane for silica 

coating in W/O microemulsions. In a typical procedure, 1 mL of 200 nM Au nanoparticles was 

added to the mixture of 0.14 M Igepal CO-520 in 40 mL cyclohexane in a round-bottom flask 

equipped with a magnetic stirring bar. Various amounts of TEOS (20-200 mL) were added to the 

reaction mixture and allowed to mix for 30 min before the addition of 0.280 mL of NH3·H2O. 

The Au-SiO2 dumbbell structures were formed when less than 50 mL of TEOS was used. The 

reaction was allowed to proceed for 48 h and stopped by adding ethanol to interrupt the 

emulsion. The product was washed by ethanol and dispersed in 18 MΩ H2O for future use.  
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Synthesis of Pd-Au Dimers. The Pd-Au dimers were synthesized by reducing the Pd 

precursor in the presence of Au-SiO2 dumbbells using ascorbic acid. In a typical procedure, 8 

mL of K2PdCl4 was added, at a rate of 0.1 mL/min, to a 5 ml aqueous solution containing Au-

SiO2 dumbbells (~15 pmol) and PVP (1 mg/mL) at room temperature. Final concentrations of 

K2PdCl4 (0.06, 0.2, and 0.35 mM) in the reactions were used to yield Pd depositions with 

different thickness of ~4, ~7, and ~10 nm, respectively. The molar ratio of ascorbic acid to 

K2PdCl4 was kept at 10 to 1 for all three reactions. The product was washed by ethanol and 

dispersed in 18 MΩ H2O. The SiO2 component was then dissolved by mixing the Pd-Au-SiO2 

particles overnight in an aqueous solution containing excess NaOH and PVP (10 mg/mL). The 

product was washed with water and dispersed in 18 MΩ H2O. 

The thickness (xPd) of Pd deposition was estimated using a crude model which approximates 

the Pd layer is a semi-spherical shell interfacing with a spherical Au core. The radius of the semi-

shell (rPd) can be derived from the average volume of Pd (nm
3
 per particle): 











33

3

4

3

4

2

1
AuPdPd

rrV  , where rAu is the radius of the Au core that can be measured from the 

transmission electron microscopy (TEM) image. The VPd was obtained from 
3

3

AuAu

PdPd

Au

Pd

aC

aC

V

V
 , 

where VAu is the average volume of Au (nm
3
 per particle) assuming spherical shape (

3

3

4
AuAu

rV 

); CPd and CAu are the concentration of Pd and Au (mol/L), respectively, which can be measured 

from the bulk sample; aPd and aAu are the lattice constant of Pd and Au (nm), respectively. The 

difference of the rPd and rAu gives the thickness of the Pd semi-shell: 
AuPdPd

rrx  .  

To examine the sensitivity of the optical spectra to the geometrical details of the model, a 

second plausible model of the Au-Pd dimer was constructed. In this model, the semi-spherical Pd 



59 
 

shell was replaced by an ellipsoidal shell with the same volume. The ellipsoidal Pd shell was 

constructed by carving an oblate ellipsoid to cover the Au sphere at the equator. The center of the 

ellipsoid was displaced from the center of Au sphere by a distance d, along the short axis of the 

oblate ellipsoid. It can be shown that the thickness of the ellipsoid when measure along the short-

axis can be calculated with the equation,  

Pd Pd Au
x c d r   ,     (1) 

where 
Pd

c is the length of the short axis of the oblate ellipsoid  

     
2 2 2

2 2 2
1

Pd Pd Pd

x y z

a a c
   . 

 In order to have the same thickness 
Pd

x  and VPd, the long and short axes for the partial 

ellipsoidal shells have to be 8.7 nm and 4.95 nm, 11.7 nm and 6.4 nm and 14.8 nm and 7.7 nm 

for the thickness of 4 nm, 7 nm, 10 nm models, respectively.  

Synthesis of Pt-Au Dimers. The procedure for Pt-Au dimers was the same as that for Pd-Au 

dimers described above, with the exception that K2PtCl4 was used as the Pt precursor and final 

concentration of Pt in the reaction solution is 2.4mM. 

Synthesis of Pt-Pd-Au Trimers. The Pt-Pd-Au trimmers were synthesized using a similar 

procedure as that for Pt-Au dimers except that the Au-SiO2 was replaced by the pre-synthesized 

Pd-Au-SiO2 described above. 

Etching of Au from Au-SiO2 Nanostructures. The Au nanoparticles were etched from the 

Au-SiO2 nanostructures by the KCN. Typically, KCN was added to a solution of Au-SiO2 

nanostructures at a molar ratio of 1:5 Au to KCN. The solution was allowed to etch overnight 

until a colorless product remained. 



60 
 

Catalytic Reaction on Au-SiO2 Nanostructures. Reduction of 4-nitrophenol on Au-SiO2 

nanostructures were carried out to mimic the reduction of second metal occurring on the surface 

of the seeds. In a typical measurement, aqueous solutions of p-nitrophenol (1.4 mM) and NaBH4 

(0.41 M) were freshly prepared as separate stock solutions. Deionized water (8.0 mL) was mixed 

with 1.0 mL of p-nitrophenol stock solution. The color of the solution changed from colorless to 

yellow as soon as 1.0 mL of NaBH4 stock solution was added. Then, 7.0 mL of catalysts was 

added into the system with a final concentration of 7.6×10
9
 particles/mL. Immediately after 

mixing, 2.0 mL of the reaction solution was quickly transferred into a quartz cuvette and the 

absorbance spectra were recorded using UV-vis spectrometer over a certain period of time.  

Calculation of Optical Properties. The optical properties were calculated according to the 

discrete dipole approximation (DDA) using the DDSCAT 7.3 program. In this formalism, the 

particles are represented by an array of dipole moments residing within the volume of the 

nanoparticles. The nanoparticles were represented as a dielectric continuum with the complex 

dielectric response function of the respective metals in water. The optical efficiency, Q, was 

reported as the ratio of the respective optical cross section to 
2

eff
a  , where the effective radius, 

aeff,,  is defined as the radius of a sphere whose volume is equal to that of the nanoparticle. The 

optical cross sections were averaged over two orthogonal polarization directions of the incident 

light. 

Characterization. Transmission electron microscopy (TEM) images were captured using a 

JEOL 100cx microscope with an accelerating voltage of 100 kV. High angle annular dark field 

scanning transmission electron microscopy (HAADF-STEM) images, high-resolution TEM 

(HRTEM) images, and energy-dispersive X-ray (EDX) mapping were obtained using a double 

Cs-corrected JEOL JEM-ARM200F microscope. X-ray diffraction (XRD) patterns were acquired 
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using a Rigaku MiniFlex X-  

30 kV/15 mA. The concentrations of metals were determined using a GBC 932 atomic 

absorption (AA) spectrometer. UV-vis spectra were taken on an HP 8453 UV-visible 

spectrophotometer. 

 

 
 

Figure S1. HRTEM analysis of individual Au nanoparticles synthesized by reducing chloroauric 

acid using TDA as capping ligands: (A) HRTEM image; and (B) Fourier fast transform (FFT) of 

(A). The indexes in (B) are corresponding to the domains in (A). Each crystal domain is at an 

orientation close to the [110] zone and contribute to four {111} reflections in pattern of the FFT 

circled in the red, suggesting a decahedral five-fold twined structure of the Au nanoparticle. 
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Figure S2. TEM image of Au-Pd nanoparticles synthesized using the identical conditions as Au-

Pd dumbbells except that the Au cores were unprotected by SiO2.  
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Figure S3. (A) UV-Vis spectrum of the Au nanoparticles suspended in toluene. (B) Plot of 

extinction at 520 nm as a function of particle concentration. The red line is the linear fitting of 

the data: 9996.0 ;10)01.055.1(
8

 Rxy . The extinction coefficient (
Au

 ) of the Au 

nanoparticle suspension at 520 nm is 
118

cmM10)01.055.1(


 . 
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Figure S4. DDA simulation of the optical spectra of a Au nanoparticle with a diameter of 10 nm 

in water. The inset shows the geometry of the Au nanoparticle. 
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Figure S5. DDA simulation of the optical spectra of Pd-Au heterodimers with a Pd thick 

deposition of 4, 7, and 10 nm on a Au nanosphere with a diameter of 10 nm, denoted as sPd-Au, 

mPd-Au, lPd-Au, respectively, using two models: (A) a semispherical Pd shell interfacing with a 

spherical Au core; and (B) an ellipsoidal Pd shell carving on a spherical Au core. The right panel 

shows the corresponding geometries used for the simulation.  
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Figure S6. TEM characterization of Pt-Pd-Au heterostructures synthesized by reducing Pt 

precursor on Pd-Au heterodimers after silica coating was removed under basic condition: (A) 

overview and (B-D) HRTEM of individual particles corresponding to a, b, and c in (A). Pt was 

found to grow on both Pd and Au of the dimers. 
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Figure S7. UV-Vis spectra of Au nanoparticles suspended in toluene and Au-SiO2 dumbbell 

nanoparticles suspended in water. 
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Figure S8. DDA simulation of optical spectra of individual Au nanospheres with different 

diameters: (A) 2 nm; (B) 4 nm; (C) 6 nm; and (D) 8 nm. (E) Plot of extinction efficiency at 520 

nm as a function of the diameter of a Au nanosphere. (F) Plot of extinction cross section at 520 

nm as a function of the diameter of a Au nanosphere. 
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Chapter III.  Synthesis of Copper-Silica Core-Shell Nanostructures with Sharp and 

Stable Localized Surface Plasmon Resonance* 

 

Abstract  

Copper nanoparticles exhibit intense and sharp localized surface plasmon resonance (LSPR) in 

the visible region; however, the LSPR peaks become weak and broad when exposed to air due to 

the oxidation of Cu. In this work, the Cu nanoparticles are successfully encapsulated in SiO2 by 

employing trioctyl-n-phosphine (TOP) capped Cu nanoparticles for the sol-gel reaction, yielding 

an aqueous Cu-SiO2 core-shell suspension with stable and well-preserved LSPR properties of the 

Cu cores. With the TOP capping, the oxidation of the Cu cores in the microemulsion was 

significantly reduced, thus allowing the Cu cores to sustain the sol-gel process used for coating 

the SiO2 protection layer.  It was found that the self-assembled TOP-capped Cu nanoparticles 

were spontaneously disassembled during the sol-gel reaction, thus recovering the LSPR of 

individual particles. During the disassembling progress, the extinction spectrum of the nanocube 

agglomerates evolved from a broad extinction profile to a narrow and sharp peak. For a mixture 

of nanocubes and nanorods, the spectra evolved to two distinct peaks during the dissembling 

process. The observed spectra match well with the numerical simulations. These Cu-SiO2 core-

shell nanoparticles with sharp and stable LSPR may greatly expand the utilization of Cu 

nanoparticles in aqueous environments. 

 

*Published:  Synthesis of Copper-Silica Core-Shell Nanostructures with Sharp and Stable 

Localized Surface Plasmon Resonance.  Cameron C. Crane, Feng Wang, Jun Li, Jing Tao, Yimei 

Zhu, and Jingyi Chen The Journal of Physical Chemistry C. 2017, 121 (10), 5684–5692 
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Introduction 

Plasmonic metal nanostructures have attracted considerable interests because of their 

superior ability to manipulate light at the nanoscale, which make them particularly useful for 

sensing, optical waveguiding, telecommunication, biomedicine, and plasmon-enhanced 

photocatalysis.
1-8

 Several metals, such as Ag, Au, and Cu, exhibit plasmonic resonances in the 

visible region.
9
 Compared to Ag and Au, Cu is more earth abundant, thus particularly appealing 

as a low-cost plasmonic metal for practical applications. While much effort has been devoted to 

the nanostructures made of noble metals Ag and Au,
1
 only limited success has been met with Cu. 

For example, Cu nanoparticles made by lithography on a substrate could display an intense 

localized surface plasmon resonance (LSPR) peak with a narrow band-width comparable to that 

of Ag and Au.
10

 By varying the geometry, the plasmonic resonance of Cu nanoshells can be 

tuned away from the interband transitions of Cu to the near infrared (NIR) region similar to that 

of the Au nanoshells.
11

 Similar to the Ag one-dimensional (1-D) array, a 1-D Cu array has been 

demonstrated to propagate surface plasmons at the Cu-silicon interface at infrared (IR) 

wavelengths which could offer a promising plasmonic interconnection in silicon-based integrated 

circuits.
12

 Moreover, Cu nanoparticles supported on graphene could excite energetic electrons 

under visible irradiation to enable a photocatalytic route for the production of azo compounds.
13

 

Despite these exciting applications of Cu, the superior plasmonic properties of Cu nanoparticles 

are often compromised by surface oxidation. Being a much more reactive metal than Au or Ag, 

when exposed to air, the oxidation significantly broadens the LSPR peak and decreases the peak 

intensity of Cu nanoparticles. The surface oxidation to form oxides (i.e., Cu2O, CuO, and 

CuO0.67) is difficult to prevent by the use of surface ligands, especially for long periods of 
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time.
10, 14

  The oxidation issue is a major challenge that has yet to be overcome for practical 

applications involving Cu nanostructures. 

Several strategies have been used to address the oxidation issue of Cu nanoparticles. One 

approach was to remove oxides post facto from the Cu nanostructures by oxide removal agents 

(e.g. acetic acid).
10, 15

 Alternatively, reducing agents (e.g. N2H4 or ascorbic acid) could be used to 

slow the formation of oxides during synthesis;
15-16

 however, the agents used with either approach 

could change the surface morphology of the nanostructures, especially for smaller particles, 

which may result in the change of their optical properties. Another commonly-used method 

relied on the choice of stabilizers during chemical synthesis. For example, polyvinylpyrrolidone 

(PVP) was used as a capping agent for Cu nanoparticles to limit oxidation.
17-19

 XRD results 

showed that these PVP-capped Cu nanoparticles were stable in a vial for fairly long time (e.g. 20 

days) under ambient conditions;
17

 however, large amount of PVP were required to reduce the 

oxidation rate.
19

 In oil-based synthesis, trioctylphosphine (TOP) was demonstrated as a good 

capping ligand that can prevent the oxidation of Cu nanostructures. 
20

 A similar method that 

employed TOP during particle growth has been shown to yield stable and uniform cubic Cu 

nanoparticles; however, the particles had to be suspended in organic solvents.
21

 It remains very 

challenging to synthesize stable Cu nanoparticles with controllable optical properties in aqueous 

solutions. Herein, we develop a SiO2 coating method to transfer TOP-capped Cu nanoparticles to 

aqueous solution and demonstrate that the LSPR properties of these Cu-SiO2 nanoparticles can 

be preserved for a long period of time.  

SiO2 has been widely used as an excellent protective material against corrosion.
22

 Many 

efforts have been made to coat metal nanoparticles with silica shells with controllable thickness; 

however, these studies were limited to noble metals (i.e., Au and Ag) using the modified Stöber 
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method. For example, Stöber growth of the silica shell mediated by a silane primer was 

developed to coat silica on citrate-coated Au nanoparticles or Ag colloids.
23-24

 A layer-by-layer 

technique was employed to form an intermediate layer prior to the Stöber method for coating 

silica on CTAB-stabilized Au nanorods.
25

 Methods were also developed to coat Au or Ag 

nanoparticles in one step without involving the primers.
26-27

 Combination of reduction and 

encapsulation of Cu in a one-pot synthesis has been demonstrated to produce ultrafine Cu 

nanoparticles inside thick SiO2 shells.
28

 Despite this progress, applying a Stöber approach to 

active metals was proven to be nontrivial due to their high reactivity with oxygen and 

ammonia.
24, 27

 To the best of our knowledge, no reports were found to successfully coat silica on 

the active metal Cu nanoparticles while still maintaining their optical properties, although 

thermal annealing of Cu nanoparticles in glass
29

 or in SiO2 matrices
30-31

 was demonstrated to 

embed small Cu nanoparticles in bulk SiO2 for optical measurements. The challenge in coating 

Cu nanoparticles with SiO2 shells arises from the high instability of Cu nanoparticles in the sol-

gel reactions. This work for the first time successfully overcomes the instability challenge of Cu 

nanoparticles in the sol-gel reactions and demonstrates the successful synthesis of stable Cu-SiO2 

core-shell nanoparticles with sharp and intense LSPR. It is accomplished by introducing the 

TOP-passivated Cu nanoparticles with controllable size and shape for the synthesis of Cu-SiO2 

core-shell structures using a sol-gel process in a water/oil (W/O) microemulsion. The use of TOP 

dramatically improves the stability of Cu nanoparticles in the sol-gel process, thereby preserving 

the optical properties of Cu nanoparticles after the synthesis. The thickness of the SiO2 shell 

increases with increased reaction time, but the shell remains accessible to solvent molecules such 

as water. Furthermore, the self-assembled TOP-capped nanoparticles suspended in toluene could 

be effectively disassembled during the sol-gel reaction to recover their optical properties of 
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individual nanoparticles in aqueous solution. This process was monitored by the optical spectra 

during the reaction and the results are compared with numerical simulations. This method may 

enable further use of plasmonic Cu nanoparticles in aqueous solution for biological and catalytic 

applications.  

 

Methods 

Chemicals. Copper (II) 2,4-pentanedionate (Cu(acac)2, 98%), 1-octadecene (ODE, 90%), 

tetraethoxysilane (TEOS, 98%), tri-n-octylphosphine (TOP, 90%), and sodium hydroxide 

(NaOH, 98%) were purchased from Alfa Aesar.  Oleylamine (OLAM, 70%) and poly- 

(oxyethylene) nonylphenyl ether (Igepal CO-520) were purchased from Sigma-Aldrich.  

Hexanes (ACS grade) and formic acid (99%) were purchased from EMD.  Sulfuric acid (ACS 

grade, 98%) was purchased from BDH. All experiments were performed using 18 MΩ H2O 

unless specified otherwise. All chemicals were used as received. 

Synthesis of Copper Nanoparticles. Cu nanoparticles were synthesized by reducing Cu 

precursor in a mixture of ODE and OLAM in the presence of CO and formic acid vapor. 

Typically, Cu(acac)2 (52.4 mg, 0.2 mmol) was added in the mixture of 4 mL ODE and 1 mL 

OLAM in a 25-mL 3-neck round bottom flask equipped with magnetic stirring and connected to 

a water-cooled condenser. Ar was used to displace air and protect the mixture in the reaction 

flask prior to the addition of 1 mL TOP. While maintaining the Ar protection, the reaction 

mixture was heated to 220 
o
C.  To produce cubes, a small amount of CO (~15 mL) generated 

from the dehydration of formic acid by sulfuric acid was flown over the hot reaction solution at 

200 
o
C. To produce mixtures of cubes and rods, CO was introduced by flowing the vapor over 

the reaction at 140 
o
C. After the reaction proceeded at 220 

o
C for another 20 min, the reaction 
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was quenched by removal of the heating mantle and was allowed to cool to room temperature. 

Ethanol/toluene at a 4:1 ratio (25 mL) was added to the reaction mixture prior to centrifugation at 

7800 rcf for 5 min to remove excess Cu precursor and surfactants. After discarding the 

supernatant, the pellet was dispersed in toluene for future use.   

Synthesis of Cu-SiO2 Core-Shell Nanostructures. The Cu-SiO2 core-shell nanostructures 

were synthesized by modifying our established W/O microemulsion method.
32

 Typically, 1.2 mL 

Igepal CO-520 was added to 20 mL hexane in a 50-mL round bottom flask, followed by addition 

of Cu nanoparticles (~8 pmol or ~1 mg) and 30 mL TEOS. The sol-gel reaction was catalyzed by 

adding 140 ml of 20 mM NaOH.  The reaction was then allowed to precede either ~24 h to 

produce thin silica shells or > 48 h for thicker silica shells. After the reaction completed, equal 

volume of ethanol was added the reaction mixture, followed by centrifuging at 12,000 rcf for 30 

min to collect the product. The product was further purified with 30 mL ethanol twice, and 

collected by centrifuging at 12,000 rcf for 30 min or until a solid pellet was formed. The pellet 

was dispersed in water for further use. 

Characterization. Transmission electron microscopy (TEM) images were captured using a 

transmission electron microscope (JEOL JEM-1011) with an accelerating voltage of 100 kV. X-

ray powder diffraction (XRD) was performed using a bench-top x-ray diffractometer (Rigaku 

Miniflex II). The hydrodynamic diameters of the products were measured using a dynamic light 

scattering (DLS) instrument (Brookhaven ZetaPALS). The concentration of Cu was determined 

using a flame atomic absorption (AA) spectrometer (GBC 932). UV-vis spectra were taken on a 

UV-vis spectrophotometer (Agilent Cary 50). 

Simulation. The optical properties were calculated according to the discrete dipole 

approximation (DDA) using the DDSCAT 7.3 program.
33-34

 In this formalism, the structure is 



75 
 

represented by an array of dipole moments residing within its volume. Each volume element is 

represented as a dielectric continuum with the complex dielectric response function of bulk Cu.
35

 

The optical cross sections were averaged over the two orthogonal polarization directions of the 

incident light. The optical efficiency, Q, is reported as the ratio of the respective optical cross 

section to 
2

eff
a  , where the effective radius, aeff,,  is defined as the radius of a sphere whose 

volume is equal to that of the structure. Optical spectra including extinction, absorption, and 

scattering were simulated for each structure in water.  

 

Results and Discussion 

The Cu cores were synthesized by reducing the Cu precursor, Cu(acac)2, in ODE at 220 
o
C in 

presence of TOP and OLAM. To improve the uniformity of the cores, a vapor of CO was 

generated in situ from the dehydration of formic acid by sulfuric acid and added to the reaction at 

200 
o
C. The vapor also contained formic acid due to its high vapor pressure. Figure 1A shows a 

representative TEM image of the cubic Cu cores. The size distribution of the nanocubes was 

plotted in the histogram (Fig. 1B), indicating an average edge length of 28±3 nm. The inset and 

Figure S1 shows the HRTEM of an individual nanoparticle with the lattice spacing 

corresponding to the d spacing of the {200} planes of the face-centered cubic (fcc) structure of 

Cu. To clarify the role of CO and formic acid in the synthesis, we performed the reaction under 

four different conditions: 1) no CO and formic acid, 2) CO alone, 3) formic acid vapor alone, and 

4) both CO and formic acid vapor present. TEM characterization of the products from these 

reactions clearly shows that the presence of both CO and formic acid is important to improve the 

yield of cubic shape nanoparticles (Fig. S2). The reaction kinetics was followed by UV-vis 

spectroscopy based on the extinction peak at ~580 nm, which is due to the formation of Cu 
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nanoparticles turning the solution slightly red. (Fig. S3). The rate and extent of this color change 

from yellowish to red can be used to follow Cu nanoparticle formation at different reaction 

conditions. At 220 
o
C, even without the addition of CO and formic acid, it takes approximately 

10 minutes for the reaction to turn red, the introduction of either CO or formic acid or both do 

not appreciably change the kinetics. At 200 °C, compared to the flow of formic acid vapor, the 

flow of CO dramatically slows down the formation of Cu nanoparticles (Fig. S4). Although we 

could not completely rule out the possibility of the role of CO being a reducing agent, this result 

suggests that the reducing power of formic acid is far stronger than CO for Cu reduction. This is 

consistent with a previously published electrochemical study,
36

 which  showed that the reduction 

of Cu
2+

 to Cu
+
 was very slow with CO under acidic conditions, indicating CO being a weak 

reducing agent for  Cu synthesis, thus it may only serve as a capping agent
37

.  

The SiO2 shells were then coated on the surface of the Cu cores by modifying our previously 

established W/O microemulsion method.
32

 To prevent the dissolution of Cu nanoparticles during 

the sol-gel reaction, the catalyst NH4OH used in our previous work was replaced by NaOH. The 

TOP capping is critical for passivating the surface of the Cu cores and protecting them from 

oxidation during the sol-gel process. The resulting core-shell nanostructures were imaged by 

TEM as shown in Figure 1C. The silica coating was uniform and the shell thickness was 

measured to be 4.6±0.8 nm. The optical spectra were measured before and after silica coating. 

Without the coating, the as-synthesized nanocubes were insoluble in water and therefore 

suspended in toluene, showing an LSPR peak at 581 nm with a shoulder at ~680 nm (Fig. 1D, 

black line). The shoulder could be attributed to the aggregation of the nanoparticles in toluene. 

In contrast, the optical spectrum of the core-shell nanoparticles suspended in aqueous solution 
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displays a sharp LSPR peak at 587 nm with no shoulder (Fig. 1D, red line), indicating the core-

shell nanoparticles  are well dispersed in aqueous solution.  

The LSPR of the Cu-SiO2 core-shell structures were further quantified by fitting to the Beer-

Lambert Law. The optical spectra of the core-shell structure aqueous suspensions were taken at a 

series of dilutions as shown in Figure 2A. The absorbance at the LSPR maximum (587 nm) was 

plotted as a function of particle concentration (the inset of Fig. 2A). Based on the Beer-Lambert 

Law, the extinction coefficient of the suspension was determined to be 4.77 × 10
9
 M

-1
cm

-1
 from 

the linear fit of the plot. From the extinction coefficient and the average size of the nanocubes 

(i.e. edge length of 28 nm), the extinction cross section of an individual nanocube was estimated 

to be 7.92 × 10
-16

 m
2
. To further analyze the optical properties, we calculated the optical spectra 

for individual nanoparticles suspended in water using the DDA method. Initially, the DDA 

simulation was performed using two geometries with the same volume: a cube with edge length 

of 30 nm and a sphere with diameter of 37 nm (Fig. 2, B and C). The cube exhibits an extinction 

peak at 600 nm while the sphere shows an extinction maximum at 560 nm. In both cases, the 

extinction spectra were dominated by the absorption component. Optical efficiency of the cube is 

approximately twice as high as the sphere with the simulated extinction cross section being 3.06 

× 10
-15

 m
2
 and 1.38 × 10

-15
 m

2
, for the cube and sphere, respectively. Although there is a small 

difference between the experimental and simulated peak position and cross section, the 

differences can be explained by the slightly different sizes, shape, and the approximate nature of 

the experimental concentration measurement.  
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Figure 1. (A) TEM image of Cu nanocubes with edge length of 28±3 nm. The inset is the 

HRTEM of an individual nanocube taken from the [100] zone axis. (B) Histogram of size 

distribution of the sample in (A). The average edge length is 28±3 nm. (C) TEM image of SiO2 

coated Cu nanoparticles with coating thickness of 4.6±0.8 nm. The inset is the HRTEM image of 

an individual particle with the scale bar of 10 nm.  (D) UV-vis spectra of sample (A) Cu 

nanocubes in toluene (black line) and sample (C) Cu-SiO2 core-shell nanoparticles in aqueous 

solution (red line).  

 

 

 

 

 

 

 

 



79 
 

We anticipate that the shape deviations of the synthesized nanocube from a perfect cube with 

sharp corners have a large influence on both peak position and intensity. According to TEM 

characterization (Fig. 1C), the synthesized nanocubes lost part of their mass from the corner 

regions, and thus do not have sharp corners as in a perfect cube. We performed DDA simulations 

also on rounded cubic targets by removing up to 2 % of the total mass from a perfect cube at the 

corner regions. The spectra of the rounded cubes are shown in Figure 2D. It can be seen the peak 

position shifted by 14 nm by removing the sharp corners. The rounded cube has an extinction 

maximum close to 586 nm and is thus in perfect agreement with experiments (Fig. 2A). The 

simulation result indicates that the plasmon peak red shifts for nanocubes of the same volume 

when compared to corresponding nanospheres. The same shape effects on the plasmon maxima 

were observed for Au and Ag in the simulated spectra as shown in Figure S5. These simulation 

results are in agreement of the previous experimental study showing that shapes of similar sizes 

but with sharp corners and edges tend to have red shifted plasmon resonance
38

. For Cu, the shape 

induced red shift associated with the nanocubes thus shifting the plasmon resonance away from 

the interband transition of Cu material, leading to sharper plasmon bands. 
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Figure 2. (A) UV-vis spectra of the Cu-SiO2 core-shell nanoparticles at different concentrations. 

The inset is the plot of the extinction at LSPR maxima as a function of concentration. The red 

line is the linear fit of the data (y = 4.77 × 10
9
 x, R

2
 = 0.9998). (B) DDA simulated spectra of an 

isolated Cu nanocube with an edge length of 30 nm. The inset is the schematic drawing of the 

cross section of the nanocube. (C) DDA simulated spectra of an isolated Cu nanosphere with the 

same volume as the nanocube in (B). The inset is the schematic drawing of the cross section of 

the nanosphere. (D) DDA simulated spectra of a rounded Cu nanocube with ~2% of the total 

mass of the nanocube in (B) removed from the corners. The inset shows the schematic drawing 

of the rounded nanocube viewed from the front. All simulated spectra were calculated using 

water as the medium.  
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We further examined the stability of the core-shell nanostructures in aqueous solution. The 

stability was assessed by both structural analysis using XRD and optical spectra using UV-vis. 

We obtained the XRD patterns of the core-shell nanoparticles before and after being stored for 

one month in aqueous solution as samples (a) and (b), respectively (Fig. 3A). The peaks at 43.3, 

50.4, and 74.0 degree were indexed to {111}, {200}, and {220} planes of the face-centered cubic 

(fcc) Cu, confirming that the core-shell nanostructures contain pure Cu. There is no change in the 

XRD patterns in sample (b) when compared to sample (a), suggesting that no obvious oxidation 

occurred in the core-shell nanostructures during the one month storage. The UV-vis spectra 

showed a sharp LSPR peak of Cu at 585 nm and remained unchanged before and after storage 

(Fig. 3B). These results indicate that the Cu cores are well protected by the SiO2 shell from 

oxidation and agglomeration. 
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Figure 3. (A, B) Characterization of the Cu-SiO2 core-shell nanostructures suspended in aqueous 

solution: (A) XRD patterns; and (B) UV-vis spectra. (C, D) Characterization of TOP-capped Cu 

nanocubes suspended in toluene: (C) XRD patterns; and (D) UV-vis spectra. In all panels, (a) 

and (b) represent the samples before and after 1-month storage, respectively.  
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The use of TOP-capped Cu nanoparticles is critically important for the successful synthesis 

of well-dispersed Cu-SiO2 core-shell nanoparticles with sharp and stable LSPR. TOP serves as a 

capping agent to protect Cu nanoparticles from oxidation during the sol-gel reactions. We 

examined the stability of TOP-capped nanoparticles of Cu by the XRD and UV-vis analysis 

before and after storage for a month in toluene. The XRD patterns before and after the storage 

were essentially the same, indexed to fcc Cu, showing no peaks from oxides (Fig. 3C). We also 

performed the XRD analysis on the solid sample after storage for six months. Compared to the 

XRD result prior to the storage, the XRD pattern essentially has no changes, indicating that no 

obvious oxidation after the solid sample has been stored for six months (Fig. S6). However, 

significant changes were found in the optical spectra of TOP-capped nanoparticles in toluene 

between before and after storage as shown in Figure 3D. The initial sharp extinction peak at 585 

nm red-shifted to ~600 nm with reduced intensity and a broad shoulder centered at 775 nm arose 

in the optical spectrum after the TOP-capped nanoparticles were stored for a month. Since the 

XRD results showed no sign of oxidation, the spectral change is likely due to the particle 

agglomeration in solution.  

It is known that the agglomeration of TOP-capped nanoparticles is much more severe 

without sonication. We monitored the spectral changes of TOP-capped nanoparticles in toluene 

over 15 min at a 100-fold dilution (~100 pM) compared to the typical concentration for storage 

(Fig. 4A). Two peaks, 595 and 700 nm, were observed in the initial spectrum, which was taken 1 

h after the reaction was completed. The 590-nm peak can be attributed to individual 

nanoparticles while the 700-nm peak belongs to the nanoparticle agglomerates. Over the course 

of 15 min after dilution, the 700-nm peak became broader and shifted to the red to ~800 nm, 

suggesting the increased numbers of agglomerates. These results were verified by the DLS 
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measurements on the corresponding time course samples (Fig. 4, B-D). Two populations with 

different hydrodynamic diameters (HD) were observed: the one with HD <100 nm assigned to 

individual nanoparticles and the other with HD between 300-500 nm assigned to nanoparticle 

agglomerates. By comparing Figure 4, B-D, the relative percentage of nanoparticle agglomerates 

increased over time. The nanoparticle agglomeration was further confirmed by TEM as shown in 

the inset of Figure 4D.  Each particle cluster seen in the TEM images contains about 10-20 TOP-

capped nanoparticles. The agglomeration of TOP-capped nanoparticles stems from the 

hydrophobic interaction among long carbon chains of the TOP molecules attached to the particle 

surface in toluene.
20

 

 

 
 

Figure 4. (A) Optical spectra of diluted Cu nanoparticles in toluene over time; and (B-D) DLS 

data of the corresponding sample in (A) measured at the time of initial, 5 min, and 15 min. 
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Although TOP can protect the capped Cu nanoparticles from oxidation, the TOP-capped 

nanoparticles tend to agglomerate in toluene. Once the agglomerates form in toluene, it is 

difficult to separate them into individual nanoparticles using mechanical methods, such as 

sonication. This tendency led us to investigate the effect of agglomeration on the formation of 

the core-shell nanostructures. The SiO2 coating process of the TOP-capped nanoparticle 

agglomerates was monitored over time using UV-vis spectroscopy. Figure 5 shows the 

extinction spectra of the aliquots taken from the reaction mixture during the sol-gel reaction. 

During the SiO2 coating, the broad peak at ~800 nm indicative of particle agglomeration 

gradually decreased and eventually disappeared as the reaction progresses to completion. The 

peak at 580 nm increased in intensity and became prominent as the reaction proceeded. This 

spectral evolution suggests that the agglomerates could be completely disassembled into 

individual particles and coated with  SiO2 during the sol-gel process in microemulsion. As a 

control experiment, we have performed the microemulsion in the absence of sol-gel precursor 

TEOS and found individual particles along with aggregates in the microemulsion as shown in the 

TEM images (Fig. S7) and DLS measurements (Fig. S8). With the silica precursors, the 

individual particles are coated and prevented from joining the aggregates, thus shifting the 

equilibrium. 
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Figure 5.  Spectral evolution of the time-course study on the SiO2 coating process of the Cu 

nanoparticles. 
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Our study shows that the TOP-mediated sol-gel process in a W/O microemulsion can be used 

to break apart particle assemblies and allow good dispersity of individual nanoparticles in 

aqueous solution, using the SiO2 coating as a physical barrier. The TOP-capped nanostructure 

samples often display a broad LPSR band between 600-900 nm which could be attributed to 

nanoparticle agglomeration or the size distribution (i.e. possibly containing rods). This silica 

coating method could be used to recover the spectral signatures of different nanostructures thus 

qualitatively determining composition of shapes (i.e. nanoparticle versus nanorod) in the sample 

without costly TEM imaging. It can provide us a rapid screening method of the product for 

shape-controlled synthesis. To demonstrate the feasibility, we applied the microemulsion method 

to coat SiO2 on a mixture sample containing nanorods. A mixture of Cu nanocubes and nanorods 

was synthesized  when in situ generated CO from the dehydration of formic acid by sulfuric acid 

was added to the reaction at a lower temperature. Based on the previous report by Murphy and 

co-workers
39

, rod growth is promoted in a relatively-weaker reducing environment. In our case, 

the slower reduction kinetics at lower temperature compared to that used for the cube synthesis 

increases the yield of nanorods. Figure 6A shows the TEM image of the mixture sample with the 

histogram plots in Figure S9, indicating a composition of ~80% nanocubes with an average edge 

length of ~40 nm and  ~20% nanorods with an average of 2.5 aspect ratio (~36 × 90 nm). The 

UV-vis spectrum shows a broad peak at 615 nm with a shoulder at 700 nm (Fig. 6B) which is 

similar to the spectrum of nanoparticle agglomerates (Fig. 4A). This particle suspension was 

then added into hexane, followed by the addition of Igepal CO-520, TEOS, and NaOH solution 

to create a microemulsion environment for the sol-gel process. After the sol-gel process, the 

nanostructures were coated by SiO2 as seen in the TEM image (Fig. 6C and S10) with a mostly 

uniform shell and the sample is well-dispersed in aqueous solution. As predicted, the UV-vis 



88 
 

spectrum of the sample in water exhibits two distinct peaks at 578 nm and 700 nm (Fig. 6D), 

corresponding to the rounded nanocubes and nanorods, respectively. When the reaction is 

monitored by UV-vis spectroscopy (Fig. 6E), the extinction peaks of the nanocubes and 

nanorods clearly arise as the coating process proceeds. During the coating process, the peak at 

700 nm was gradually recovered while the peak at 615 nm shifted to the blue, indicating that the 

nanostructure agglomerates were separated to yield individual nanostructures. After coating with 

SiO2, the nanorods could potentially be separated from the nanoparticles based on their 

difference in mass using centrifugation.
40-41
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Figure 6. (A, B) Characterization of the as-synthesized mixture of Cu nanocubes and nanorods: 

(A) TEM image; and (B) UV-vis spectrum of the particle suspension in toluene. (C, D) 

Characterization of the mixture sample after silica coating process: (C) TEM image with a 

magnified view in the inset; and (D) UV-vis spectrum of the particle suspension in water. (E) 

Spectral evolution of the mixture over time during the silica coating process. 
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The spectral shifts due to the nanorods with different aspect ratios were further analyzed by 

DDA simulations. The simulations were performed on nanorods with a diameter of 37 nm. As 

shown in Figure 7, A and B, the nanorods with aspect ratios of 2:1 and 3:1 possesses extinction 

peaks at 640 nm and 770 nm, respectively. The relative ratio of absorption to scattering was 

compared based on the optical efficiency which is the ratio of the optical cross-section to the 

physical cross-section of a nanoparticle. The efficiency of absorption is twice that of scattering 

for the nanorod with aspect ratio of 2:1, but becomes comparable to the scattering efficiency for 

the nanorod with aspect ratio of 3:1. Figure 7C shows the extinction peaks of nanospheres (1:1) 

and nanorods with aspect ratios from 2:1 to 3:1 and 4:1 increase from 560 nm to 641, 773, and 

931 nm. The extinction peaks of nanorods further increase to 1097 and 1263 nm for aspect ratios 

of 5:1 and 6:1, respectively. Similar to that of the Au and Cu3Au nanorods,
42-43

 the peak 

positions for the extinction spectra were proportional to aspect ratios of the nanorods, as plotted 

in Figure 7D. A linear least square fitting of the peak position and the aspect ratio gives a 

Pearson R
2
 of 0.997 showing good linearity (y = 313.8 + 156.8x). Such a good fit allows the 

aspect ratio of the synthesized nanorods to be determined by examining the position of the LSPR 

maximum. Our UV-vis shows the sharp peak at 700 nm, which is consistent with an aspect ratio 

of 2.5:1. This result agreed well with the aspect ratio of 2.5 estimated from analyzing the TEM 

image.  
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Figure 7. Simulated optical spectra of Cu nanorods with two different aspect ratios suspended in 

water: (A) 37 × 74 nm and (B) 37 × 112 nm. (C) Extinction spectra of Cu nanorods with a fixed 

width of 37 nm but different aspects: 1:1 (black), 2:1 (red), 3:1 (blue), and 4:1 (purple). (D) The 

position of the extinction peak as a function of the aspect ratio for the Cu nanorods shows 

excellent linearity. The red line (y = 313.8 + 156.8x, R
2
 = 0.997) is a linear least square fit of the 

simulated peak positions. 
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The SiO2 shell thickness could be varied by adjusting the reaction time of the sol-gel process. 

In our study, the sol-gel process is typically allowed to proceed for 24 h, yielding a shell 

thickness of ~5 nm. It is possible to coat the Cu cores with a shell thickness less than 5 nm; 

however, it would be difficult to image a thinner shell on the Cu core. Alternatively, the core-

shell nanoparticles could be treated by 0.3 mM FeCl3 for 10 min to etch the Cu cores, resulting in 

hollow SiO2 shell for imaging (Fig. S11). Thicker shells could be generated by increasing the 

sol-gel reaction time, as shown in Figure 8. The shell thickness was ~5 nm at 24 h and increased 

to ~10 nm at 72 h. increased shell thickness does not show appreciable changes on the LSPR 

peak. The HRTEM images show that both the thinner shell (inset of Fig. 8A) and the thicker 

shell (Fig. 8C) are mostly uniform and discrete. We note with the increased thickness the amount 

of excess silica also increases. The UV-vis spectra of the samples in aqueous solution depicts 

extinction maximum at ~580 nm (Fig. 8D). Thus the insensitivity of the optical spectra with 

thickness indicates that the excess silica does not influence the optical properties and the 

different thickness also have negligible effect on the peak locations due to the porous nature of 

the silica coating. The amount of red shift is within the margin of error. As shown previously by 

Liz-Marzán and co-worker with silica coating on Au and Ag,
23, 26

 it is indeed possible that a 

systematic red shift can be observed with even thicker coating which can be optimized for Cu in 

future studies. In this work, we demonstrate for the first time that Cu nanoparticles having 

superior optical properties can indeed be produced in aqueous solution. 
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Figure 8. (A-C) TEM characterization of the SiO2 coated Cu nanoparticles synthesized by 

different reaction time: (A) 24 h (HRTEM in the inset); (B) 72 h; and (C) HRTEM of an 

individual particle in the 72-h sample (B). (D) UV-vis spectra of the particles suspended in water 

corresponding to the sample (A) in black line and the sample (B) in red line. 
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Conclusions 

A TOP-mediated, sol-gel process in a microemulsion was successfully developed to produce 

Cu-SiO2 core-shell nanoparticles that were well dispersed in water. The SiO2 coating acts as a 

protective layer to prevent oxidation of Cu, thus preserving the superior LSPR properties of Cu 

nanoparticles in aqueous solution. The cubic nanoparticles synthesized in this work exhibit a 

narrow and intense LSPR peak at ~590 nm while the nanorods possess an LSPR peak at 700 nm 

and aspect ratio of 2.5:1. Unlike spherical nanoparticles, the LSPR of the nanocubes and the 

longitudinal mode of nanorods are narrow and intense due to the shape effect red shifting of the 

LSPR from the interband transitions of Cu. These experimental results match well with the DDA 

numerical simulations. These aqueous Cu-SiO2 core-shell nanostructures may find use in 

sensing, catalysis, and antimicrobial applications. The ligand-mediated microemulsion sol-gel 

method may provide a versatile approach to spontaneously disperse ligand-induced nanoparticle 

agglomerates and recover the individual particle dispersion for various applications in aqueous 

environments. 

 

SUPPLEMENTAL INFORMATION 

HRTEM image and analysis of the nanocubes; TEM images of the Cu nanoparticles synthesized 

at different conditions; UV-vis spectra and photographs of time course study for the Cu 

nanoparticle synthesis; DDA simulation of the extinction spectra of a cube, a rounded cube,  and 

a sphere for Cu, Au, and Ag; XRD pattern of the solid TOP-capped nanoparticles; TEM images, 

DLS and UV-vis measurements of the time course study for the microemulsion without TEOS; 

Histograms of the size distribution of the mixture sample of nanocubes and nanorods; the close-

up view of the core-shell nanostructures; and TEM image of the hollow SiO2 shells. 
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Appendix A: Supplemental Information: 

 

 
 

Figure S1. (A) HRTEM of a representative cubic nanoparticle; and (B) fast Fortier transform 

(FFT) of the HRTEM image in (A).  
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Figure S2. TEM characterization of the Cu nanoparticles synthesized by reducing Cu(acac)2 at 

220 
o
C at four different conditions: (A) no CO and formic acid; (B) CO alone (99.9% gas); (C) 

formic acid vapor alone (flown with Ar); (D) in the presence of both CO (99.9% gas) and formic 

acid vapor.  
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Figure S3. UV-vis spectra before (A) and after (B) Cu nanoparticles started to formed as 

indicating by the peak at ~580 nm corresponding to the LSPR of Cu nanoparticles. The insets 

show the color change of the reaction mixture from yellowish for the sample in (A) to slightly 

red for the sample in (B).  
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Figure S4. Photographs at different points for reactions of Cu nanoparticle synthesis at 200 
o
C 

under different conditions: (A) under the flow of CO (99.9%); and (B) under the flow of formic 

acid vapor in Ar. 
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Figure S5. DDA simulation of the extinction spectra of a cube (black), a rounded cube (red), and 

a sphere (green) with the same volume for different materials: (A) Cu; (B) Au; and (C) Ag, 

indicating the red shifts of the main LSPR peak position as a sphere turns into a cube. For Cu, 

the peak shifts from ~560 nm (sphere), to ~585 nm (rounded cube) and ~600 nm (cube). For Au, 

the peak shifts from ~530 nm (sphere), to ~560 nm (rounded cube) and ~590 nm (cube). For Ag, 

the peak shifts from ~400 nm (sphere), to ~447 nm (rounded cube) and ~481 nm (cube). 
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Figure S6. XRD patterns of the TOP-capped nanoparticle sample in Figure 3C in the solid state 

before (a) and after (b) storage of six months.  
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Figure S7. TEM images of the aliquots from the microemulsion in the absence of TEOS at 

different time points: (A) 6 h, (B) 15 h, (C) 24 h, and (D) 48 h.  
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Figure S8. DLS measurement of the aliquots from the microemulsion in the absence of TEOS at 

different time points: (A) 6 h, (B) 15 h, and (C) 24 h. (D) UV-vis spectra of the corresponding 

samples in (A)-(C). 
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Figure S9. Size distribution analysis of the sample in Figure 6A: (A) histogram of the size 

distribution of Cu cubes and rods; and (B) histogram of the aspect ratios of the Cu rods. 
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Figure S10. TEM image of close-up view of the sample in Figure 6C, showing the silica coating 

is mostly uniform and discrete.   
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Figure S11.  TEM image of the SiO2 shell after the Cu cores of the Cu-SiO2 core-shell structures 

were etched with 0.3 mM FeCl3 for 10 min. 
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Chapter IV:  Synthesis of Optical and Magnetic Bifunctional Core-Shell Nanostructures: 

Controlled Growth of Metal Oxides on Metal Nanoparticle Surfaces 

 

Abstract 

Metal and metal oxide hybrid nanostructures that couple optical and magnetic properties in one 

single nanostructure show a lot of promise for their use in various applications. While most 

methods are limited to producing noble metal coupled to metal oxide type structures, the 

application of these same methods to non-noble metals is quite challenging. In this work, we 

report a general synthetic route where zero valence transition metal precursors are decomposed 

onto seed particles containing active metals to synthesize metal core-metal oxide shell structures. 

This approach was initially applied to AuCu3 nanorod seeds to produce a Fe3O4 coating. The 

coating thickness is temperature-dependent within the limit that heterogeneous growth is 

dominant. At a relatively-low temperature, this approach could be extended to other metal oxides 

such as NiO and MnO and other metal seeds such as Cu. At this low temperature, it was found 

that the thickness of the metal oxide shell was thermodynamically limited, producing uniform 

thin shells, regardless the molar ratio of precursor to seed. By etching the core, these hybrid 

nanostructures were converted into hollow metal oxide structures. Both of these core-shell 

hybrid nanostructures retain properties from their initial nanoparticle seed, and the hollow metal 

oxides can find potential use in broader applications.     
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Introduction 

Nanostructures with distinct optical and magnetic properties have attracted a lot of research 

attention due to their ability to manipulate light and their response to magnetic fields at the 

nanoscale for various applications. Metal nanostructures plasmonic properties can strongly 

absorb and/or scatter light and be used for optical sensing, biomedicine, and plasmon-enhanced 

photocatalysis.
1-3

 The peak position and intensity of the localized surface plasmon resonance 

(LSPR) of metal nanostructures can be tuned by controlling the size, shape and composition of 

the nanocrystal.
4
  On the other hand, nanoscale ferrimagnetic or ferromagnetic particles whose 

size are equal to or smaller than the magnetic grain size become superparamagnetic; this 

superparamagnetic behavior allows for dispersion in solution without spontaneous aggregation, 

making them ideal for contrast enhancement in magnetic resonance imaging (MRI), magnetic-

guided drug delivery, magnetic separation and detection.
5-8

 Furthermore, these magnetic metal 

oxide nanostructures are also of notable interest due to the high surface area and reactivity, 

showing promise for use in energy conversion and storage, catalysis, and micrelectronics.
9-11

 In 

addition, the magnetic transition metal oxides, such as Fe3O4, NiO, and MnO, are of special 

interest for their use in supercapacitors and Li-ion batteries.
10,12,13

 Combining plasmonic and 

magnetic properties into a single nanostructure can enable dual functionality which is important 

for a broad range of multiplexed applications; yet the synthesis of hybrid nanostructures remains 

to be a challenge.
5,14

 Herein, this work develops a facile synthetic route to metal and metal oxide 

core-shell nanostructures through controlled deposition of the zero valence 3d transition metals 

on metal seeds, and thus fine control over the resulting optical properties and magnetic properties 

of the hybrid nanostructures. 
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A variety of methods have been developed for the synthesis of hybrid optical and magnetic 

nanoparticles. Depending on the combination of materials, plasmonic metals (e.g. Au and Ag) 

and magnetic metals (e.g. Ni, Fe, or Co) can form heterostructures with segmented/Janus 

configurations or alloys, while plasmonic metals and magnetic metal oxides can form core-

shell/yolk-shell or dimers.
15-18

 Some of these approaches may cause the loss of the plasmonic 

properties of the metal component due to the damping effects of the 3d transition metals in the 

process of incorporating the magnetic domain. For example, when Au alloys with Fe, the 

plasmonic characteristics of Au vanishes.
19

 Since the 3d transition metal is very easy to be 

oxidized and the plasmonic properties are lost in the alloy structures, synthesis of Au and Fe3O4 

hybrid nanostructures become a popular route to prepare the bi-functional materials with 

preserved plasmonic and magnetic properties. In general, there are two chemical routes to 

synthesize Au and Fe3O4 hybrid nanoparticles: one is to coat Au on the surface of the Fe3O4 or γ-

Fe2O3 nanoparticles; 
20

 and the other is to thermally decompose metal oxide precursors on the Au 

nanoparticles.
17,18

  Thermal decomposition to deposit Fe3O4 on premade Au nanoparticles allows 

for enhancement of the Fe3O4 nanoparticles, while also maintaining the small size for improved 

superparamagnetic properties. However, maintaining the shape of the nanocrystals at high 

temperature is very challenging. In this work, we develop a method with tight control over the 

reaction temperature during the deposition of metal oxide to synthesize metal-metal oxide core-

shell structures. The initial demonstration was carried out using AuCu3 nanorods as seeds for the 

deposition of Fe3O4. Thin and thick shells could be controlled by varying the reaction 

temperature between 200 to 280 
o
C. The optical and magnetic properties of these metal-metal 

oxide hybrid nanostructures were also studied. This approach could be extended to other metal 

oxide (i.e. NiO and MnO) and other seeds (i.e. Cu) to some extent. By using the active metal Cu 
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seeds, the core-shell structures could be hollowed out using ammonium hydroxide etching. These 

studies provide us a facile means to synthesize metal-metal oxide hybrid nanostructures with bi-

functionality towards different applications. 

 

Experimental Methods 

Chemicals. Ttetradecylamine (TDA, >95%), was purchased from T.C.I, Hydrogen 

tetrachloroaurate trihydrate (HAuCl4·3H2O), 1-octadecene (ODE, 90%), 

Bis(cyclooctadiene)nickel, dimanganese decacarbonyl (Mn2(CO)10), Ammonium hydroxide (28-

30% NH3 basis), and copper 2,4-pentanedionate (Cu(acac)2) were purchased from Alfa Aeser.  

Oleylamine (OLAM, 70%) was purchased from Sigma-Aldrich.  Iron(0) pentacarbonyl 

(Fe(CO)5) was purchased from Acros Organics.  

Synthesis of AuCu3 nanorod seeds.  AuCu3 nanorods were synthesized using our previously 

reported procedure.
21

 Briefly, tetradecylamine (20 mmol, 430 mg) and HAuCl4·3H2O (0.05 

mmol, 19.7 mg) were added to a 25 mL three-neck flask equipped with a magnetic stir bar. 

Argon was blown over the reaction mixture for 10 min to remove O2. The reaction mixture was 

heated directly to 160 °C and maintained for 20 min. Without separation, Cu(acac)2 (0.2 mmol, 

52.4 mg) in 1 mL of OLAM was injected to the reaction mixture, followed by heating the 

reaction directly to 210 °C and maintaining for another 20 min.  After the reaction, the product 

was purified by adding toluene and centrifuging at 3300 rpm for 2 min to remove excess 

reactants and surfactants. 

Synthesis of AuCu3@Fe3O4 core-shell structures. A thermal decomposition method of Fe(0) 

complex on the AuCu3 nanorods was applied to synthesize AuCu3@Fe3O4 core-shell structures. 

In a typical procedure, AuCu3 nanorods (1-10 mg) in toluene were dried under argon prior to 
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dispersing in 5 mL ODE and 0.2 mL OLAM via sonication. The AuCu3 nanorod suspension was 

added to a 25 mL three-neck flask equipped with a magnetic stir bar.  Argon was blown over the 

mixture for 20 min prior to the Fe3O4 encapsulation, and was used as a protective gas throughout 

the reaction. The temperature was raised directly to 110 
o
C and held for 10 min, followed by the 

addition of Fe(CO)5 (0.148 mmol, 20 L) and heating reaction mixture at a rate of <5 
o
C/min to 

200 
o
C for thin shells (1-2 nm), or to 280 

o
C for thick shells (5-6 nm).  The reaction temperature 

was then maintained for 60 min.  To ensure conversion to Fe3O4, the particle suspension was 

exposed to the atmosphere at 130
o
C for an additional hour.  After the reaction, the product was 

cooled to room temperature and purified by adding 25 mL of ethanol and centrifuging at 7800 rcf 

for 5 min, followed by dispersing in 20 mL toluene and 10 mL ethanol and centrifuging a second 

time at 3900 rcf to remove excess reactants, surfactants, and iron oxide nanoparticles. 

Synthesis of AuCu3@NiO core-shell structures. The Fe3O4 coating method was modified by 

replacing Fe(CO)5 with bis(cyclooctadiene)nickel  (0.148 mmol, 40 mg) dispersed in ODE. Only 

~2nm thick shells was successfully produced. 

Synthesis of AuCu3@MnO core-shell structures.  The Fe3O4 coating method was modified by 

replacing Fe(CO)5 with (Mn2(CO)10) (0.148 mmol, 58 mg) dispersed in ODE. Only ~2nm thick 

shells was successfully produced.   

Synthesis of Cu nanoparticles. Cu nanoparticles were produced by reducing Cu(acac)2 in the 

presence of OLAM, TOP, in situ generated CO using our previously reported procedure.
22

  Cu 

nanoparticles with a size of ~70 nm were produced by decreasing the volume of gas phase 

reducing agents added at 200 
o
C. 

Etching of Cu in the Cu containing core-shell structures. The Cu cores were dissolved by 

ammonium hydroxide to produce metal oxide shells. In a typical procedure, the core-shell 
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structure suspension of Cu@Fe3O4 and Cu@MnO were separated from the solvent toluene by 

centrifugation and then dispersed in ammonium hydroxide solution. The etching process was 

carried out in the presence of excess oxygen. After etching, the product was purified by 

centrifugation and suspended in ethanol or water. The completion of the etching process is 

indicated by a lack of blue copper aqua-ammonium complex color when ammonium hydroxide 

is added to the purified product. 

Characterization. Transmission electron microscopy (TEM) images were captured using a 

transmission electron microscope (JEOL JEM-1011) with an accelerating voltage of 100 kV. 

High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) 

images, high-resolution TEM (HRTEM) images, and energy-dispersive X-ray (EDX) mapping 

were obtained using a double Cs-corrected JEOL JEM-ARM200F microscope. X-ray powder 

diffraction (XRD) was performed using a bench-top x-ray diffractometer (Rigaku Miniflex II). 

The concentrations of metals were determined using a flame atomic absorption (AA) 

spectrometer (GBC 932). UV-vis spectra were taken on a UV-vis spectrophotometer (Agilent 

Cary 50). Magnetic properties were measured by a superconducting quantum interference device 

(SQUID). 

 

Results and Discussion: 

The AuCu3@Fe3O4 core-shell nanostructures were synthesized by thermally decomposing 

Fe(CO)5 in the presence of the pre-formed AuCu3 nanorods. The AuCu3 cores were synthesized 

by the use of our previously published approach.
21   

These nanorod cores have a dimension of 10 

× 30 nm as shown in Figure 1A. A fixed amount of these nanorod seeds was used for the 

deposition of Fe3O4 shells at different temperatures. At a low temperature (200
o
C ), a uniform 
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coating of thin iron oxide with an average of 1-2 nm thickness was deposited on the nanorods to 

form the AuCu3@Fe3O4 core-shell structures (Fig. 1B). Increasing the reaction temperature to 

280 
o
C produced 5-6 nm Fe3O4 shells on the AuCu3 seeds (Fig. 1C).  At the same time, the 

aspect ratio of the nanorod cores decreased due to the instability of AuCu3 at high temperature in 

the presence of the OLAM. This instability was also evidenced by the observation of the etched 

AuCu3 cores presented in the sample. Interestingly, some of the coating appeared to be thicker 

along the side of the nanorods compared to that of the ends of the nanorods possibly due to the 

curvature effects. However, continuing to increase the reaction temperature above 280 
o
C does 

not help to increase the coating thickness. Instead, the shell coating remained to be thin and the 

excess free iron oxide particles were formed as by-products, as shown in Figure 1D. These 

results clearly show that the temperature of 280 
o
C is the critical turning point from 

heterogeneous nucleation and homogeneous nucleation of Fe on AuCu3.  
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Figure 1. TEM images of controlled deposition of Fe3O4 shells on the AuCu3 nanorods: (A) 

AuCu3 nanorod seeds; (B) AuCu3@Fe3O4 core-shell structures with a thin shell of 1-2 nm 

prepared at 200 
o
C; (C) AuCu3@Fe3O4 core-shell structures with a thin shell of 6 nm prepared at 

280
o
C; and (D) a mixture of AuCu3@Fe3O4 core-shell structures and free iron oxide particles 

prepared at 315
o
C. 
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Figure 2 illustrates the temperature control of the Fe(CO)5 decomposition to deposit Fe3O4 

on AuCu3 nanorods to form AuCu3@Fe3O4 core-shell structures. Fe(CO)5 is a common precursor 

used to produce Fe3O4 nanoparticles and metal-Fe3O4 hybrid nanostructures.
17,23

 During the 

decomposition, the Fe(CO)5 complex decomposes at elevated temperatures to produce Fe atoms. 

These atoms can self-nucleate to form Fe nuclei or, when seeds are present, deposit on the seeds 

via heterogeneous growth.
24

 The heterogeneous growth has a lower activation barrier, therefore, 

at low temperature (i.e. below 280 
o
C), the deposition of Fe atoms on the AuCu3 nanorods is 

favored. When the temperature increases above this critical temperature, the concentration of Fe 

atoms dramatically increases to exceed the critical supersaturation concentration, and thus 

rapidly self-nucleates to form Fe clusters and then Fe3O4 nanoparticles. In order to form core-

shell structures, the temperature ramping rate (<5 
o
C/min) is important to avoid overshooting the 

critical temperature which may lead to shortening the AuCu3 nanorod cores and/or produce 

undesired Fe3O4 nanoparticles.     
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Figure 2. Schematic illustration of the controlled deposition of metal oxide coatings on the 

AuCu3 nanorods to produce AuCu3@Fe3O4 core-shell nanostructures through temperature 

control. 
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While the temperature is critical to control the Fe3O4 shell thickness, the ratio of the seeds to 

Fe precursor doesn’t seem to play a significant role to the coating thickness. At 200 
o
C, Fe(CO)5 

was increased by 3 times, from 0.15 to 0.6 mmol, at the fixed amount of nanorod seeds. The 

shell thickness remained similar at ~2 nm, but a large amount of Fe3O4 was found in the product 

as a result of excess Fe precursor (Fig. S1). At the same temperature (200 
o
C), the seed 

concentrations were varied from ~0.5 mg to 6 mg, while holding the concentration of the Fe 

precursor constant. Similarly, the shell thickness does not vary with the seed concentration and 

remains to be ~2 nm (Fig. S2). Considering the geometry and particle concentration, this amount 

of seed particles corresponds to an estimated change in seed surface area from 3×10
17

 to 3×10
18 

nm
2 

with no observed change in Fe3O4 thickness, suggesting that the Fe3O4 deposition is 

primarily governed thermodynamically, rather than kinetically limited.  This observation implies 

that the barrier for self-nucleation of the Fe3O4 is above 280 
o
C, indeed many procedures call for 

heating above 280 
o
C to produce Fe3O4 nanoparticles utilizing a hot injection approach

25
.  To 

minimize the by-product Fe3O4 nanoparticles, the reaction temperature and the precursor 

Fe(CO)5 should be kept below 280 
o
C and 28 mM, respectively. 

The AuCu3@Fe3O4 core-shell nanostructures were further analyzed by HRTEM and EDX 

elemental mapping. Figure 3A shows the TEM characterization of the AuCu3@Fe3O4 core-shell 

nanostructures with a thin shell. In the HRTEM, the Fe3O4 shell is measured to be ~2 nm thick 

and polycrystalline with very fine domains. The HAADF-STEM displays that a Fe3O4 shell 

uniformly coats the AuCu3 nanorod and the EDX mapping confirms the composition of a Fe-

containing shell on the Au-containing core.  Figure 3B shows the TEM characterization of the 

AuCu3@Fe3O4 core-shell nanostructures with a thick shell. In the HRTEM, the Fe3O4 shell is 

measured to be ~5 nm thick and also polycrystalline with relatively-large domains compared to 
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those in the thin shell; however, there seems to have a gap between the core and the shell. The 

HAADF-STEM and EDX mapping verifies the observation in the HRTEM indicating that the 

shell and core are indeed separate. The result of the gap can be attributed to the two factors: the 

oxidation of Fe to Fe3O4 and/or the etching of the AuCu3 core.  As can be seen, as the shell 

becomes thicker, the Fe3O4 coating becomes less uniform and deposits along the long side of the 

rods.  This change may result from the increased crystallinity of the Fe3O4 domain at a higher 

reaction temperature, and the Fe atoms or Fe3O4 small clusters rearranging to minimize surface 

energy in the same fashion as layer-island growth on areas where the curvature is minimal.
17,26,27
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Figure 3. TEM characterization of AuCu3@Fe3O4 core-shell nanostructures: (A) with a thin 

shell of 2 nm (HRTEM is on the left. HAADF-STEM and EDX elemental mapping is on the 

right); and (B) with a thick shell of 5 nm (HRTEM is on the left. HAADF-STEM and EDX 

elemental mapping is on the right).   
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The optical properties of these bi-functional AuCu3@Fe3O4 core-shell nanostructures were 

studied. Figure 4A shows the extinction spectra of AuCu3 nanorods before and after coating the 

thin and thick Fe3O4 shell, the samples labelled (a), (b), and (c), correspond to the samples shown 

in Figure 1, A-C, respectively. The longitudinal mode of the LSPR peak of AuCu3 nanorods 

suspended in toluene was red shifted from 647 nm to 710 nm due to the coating of the Fe3O4 on 

the nanorod surface. In contrast, the peak was blue shifted to 590 nm for the AuCu3 nanorods 

with a thick Fe3O4 shell because the effect of the change of the aspect ratio on the plasmonic 

properties of AuCu3 nanorods dominates the effect of Fe3O4 coating. The histograms of size 

distribution were plotted in Figure 4B, indicating that the average particle length decreased from   

18.7, 17.7, and 15.2, respectively. In addition to peak shift, the UV-vis spectra show the increase 

of the damping effect on the plasmonic peak as the Fe3O4 shell becomes thicker, which is 

consistent with the observations in a previous study.
28

  In our case, this damping effect is not 

purely the result of shell thickness of Fe3O4. The broadening of the spectra could be attributed to 

the other factors such as inhomogeneity of size (i.e. aspect ratio) changes.   
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Figure 4. (A) UV-vis spectra of the AuCu3 nanorods before (a) and after the coating of Fe3O4 

with a thin shell of ~2 nm (b), and a thick shell of ~5 nm (c). (B) Histograms of size distribution 

of the samples (a), (b), and (c).  
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The magnetic properties of these bi-functional AuCu3@Fe3O4 core-shell nanostructures were 

measured by SQUID and compared to that of the Fe3O4 nanoparticles with a size of 5 nm. 

Figure 5 plots the magnetization of different samples as a function of magnetic field strength. 

After synthesis, these samples were exposed to atmosphere at 130 
o
C for 60 min to ensure the 

complete oxidation of the Fe to iron oxide.
29

  Although all three samples exhibit a lack of 

hysteresis, indicating superparamagnetic behavior, the core-shell structure with a thin shell 

responses to the magnetic field slower that with a thick shell and Fe3O4 nanoparticles. Compared 

to Fe3O4 nanoparticles the magnitude of the magnetization of the core-shell structures decreases 

by half, possibly due to the crystallinity difference (i.e. polycrystalline vs. single crystalline). The 

domain wall in the polycrystalline Fe3O4 hampers the magnetic properties of the material.  

 

 
 

Figure 5. Magnetic measurements of (a) Fe3O4 nanoparticles with the size of 5 nm, (b) 

AuCu3@Fe3O4 with a thin shell of ~2 nm, and  (C) AuCu3@Fe3O4 with a thick shell of ~ 5 nm. 

 

 

The temperature controlled approach of thermal decomposition of a zero valence complex to 

coat Fe3O4 on AuCu3 seeds can be further expanded to other metal oxides such as Ni and Mn 

oxides. Ni oxides and Mn oxides are of interest as promising electrode materials and/or magnetic 
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resonance contrast materials for energy- or bio-related applications.
12,30

 When the metal 

precursor was replaced by bis(cyclooctadiene)nickel and dimanganese decacarbonyl, core-shell 

structures of  AuCu3@NiO and AuCu3@MnO were formed, respectively, at a reaction 

temperature of 200 
o
C. Similar to Fe3O4, thin layers of NiO and MnO were coated on the AuCu3 

seeds, as shown in the Figure 6, A and B. However, when the temperature was increased, 

thicker shells were not successfully produced. In the case of Ni, Ni atoms self-nucleate and form 

NiO nanoparticles at the temperature of 250 
o
C (Fig. S3), suggesting Ni undergoes homogenous 

growth at a lower temperature compared to Fe (i.e. homogeneous growth above 280 
o
C). For Mn, 

increasing temperature to 250 
o
C caused the dissolution of Cu from the AuCu3 alloy, resulting in 

the formation of the Au nanoparticles, as shown in TEM image and XRD pattern of Figure S4. 

This observation could be attributed to the ability of Mn that could alloy with copper at elevated 

temperatures and at a broad continuum of Cu-Mn ratios.
31

 Interestingly, the diffraction pattern of 

Cu-Mn alloy was not observed possibly due to the lack of crystallinity of the Cu-Mn alloy. The 

UV-vis spectrum of the AuCu3@NiO core-shell structure shows a blue shift from that of AuCu3 

seeds by 80 nm while the UV-vis spectrum of the AuCu3@MnO core-shell structure shows a red 

shift from that of AuCu3 seeds for the longitudinal mode by 60 nm. In both cases, the peak 

intensity was dampened due to the presence of the metal oxide shell. 
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Figure 6. (A, B) TEM images of different core-shell structures: (A) AuCu3@NiO; and (B) 

AuCu3@MnO. (C, D) UV-vis spectra of the samples suspended in toluene before (black line) 

and after coating (red line): (C) AuCu3@NiO; and (D) AuCu3@MnO. 

 

The core-shell structures of AuCu3@NiO and AuCu3@MnO were further confirmed by the 

HRTEM characterization and EDX elemental analysis. Figure 7A shows the TEM 

characterization of the AuCu3@NiO core-shell nanostructures. In the HRTEM, the NiO shell is 

measured to be ~2 nm thick. The HAADF-STEM displays that a NiO shell uniformly coats the 

AuCu3 nanorod and the EDX mapping confirms the composition of Ni-containing shell on the 

Au- and Cu-containing core.  Figure 7B shows the TEM characterization of the AuCu3@MnO 
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core-shell nanostructures. In the HRTEM, the MnO shell is measured to be ~2 nm thick. The 

HAADF-STEM displays that a MnO shell uniformly coats the AuCu3 nanorod and the EDX 

mapping confirms the composition of Mn-containing shell on the Au- and Cu-containing core.  

 

 

 

 

 

 
 

Figure 7. TEM characterization of different core-shell nanostructures: (A) AuCu3@NiO 

(HRTEM is on the left. HAADF-STEM and EDX elemental mapping is on the right); and (B) 

AuCu3@MnO (HRTEM is on the left. HAADF-STEM and EDX elemental mapping is on the 

right). 

 

The temperature controlled approach of thermal decomposition of zero valence complexes to 

coat metal oxides on AuCu3 seeds can be further expanded to other metals such as Cu. The Cu 

seeds were synthesized using our previously published Cu nanocubes.
22

 From the TEM image 

(Fig. S5), the size of these Cu seeds were measured to be ~70 nm. The same procedure of metal 

oxide coating at 200 
o
C was applied to these Cu seeds, followed by the ammonia hydroxide 

etching process to verify the success of the coating process. Figure 8A illustrates this procedure, 

suggesting this approach and the use of the Cu seeds provides a facile means to synthesize 
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hollow metal oxides. This approach could be applied to Fe3O4 and MnO to generate metal-metal 

oxide core-shell structures and then etched to form metal oxide hollow structures. Figure 8, B 

and C, shows TEM images of Cu@Fe3O4 core-shell structures and the Fe3O4 hollow shells, 

indicating a very thin layer of Fe3O4 shell could be homogeneously coated on the surface of the 

Cu seeds. Likewise, Figure 8, D and E, shows TEM images of Cu@MnO core-shell structures 

and the MnO hollow shells, indicating a very thin layer of MnO shells could be homogeneously 

coated on the surface of the Cu seeds. This approach can serve as a templating method to 

produce hollow metal shells of different shapes. For example, if Cu nanorods are present in the 

sample, rod-shaped iron oxide hollow shells can be synthesized, as shown in Figure S6.  It is 

worth noting that these oxides are lacking of identifiable XRD pattern (Fig. S7), possibly due to 

the poor crystallinity of the thin shells. The attempt to apply this approach to NiO failed because 

Ni is very easy alloys with Cu especially at elevated temperature and Cu-Ni alloy surface 

protects against oxidative etching.
32
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Figure 8. (A) schematic illustration of the use of Cu seeds to temperature control coating of 

metal oxide shells, followed by the etching of Cu to generate hollow metal oxide. (B,C) TEM 

characterization of Cu@Fe3O4 before (B) and after (C) etching with ammonium hydroxide. 

(D,E) TEM characterization of Cu@MnO before (D) and after (E) etching with ammonium 

hydroxide. 
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Conclusion 

A temperature-controlled thermal decomposition of zero valence-transition metal complexes  

approach was developed to coat preformed hydrophobic metal nanoparticles and generated metal 

and metal oxide core-shell hybrid nanoparticles. This approach was successfully demonstrated to 

synthesize AuCu3@Fe3O4 core-shell nanoparticles with a thin and a thick shell of ~2 nm and ~5 

nm, respectively. These core-shell nanoparticles exhibit both optical and magnetic properties. 

The synthesis could be extended to other metal oxides to produce optically-active AuCu3@NiO 

and AuCu3@MnO core-shell structures, as well as Cu seeds to yield Cu@Fe3O4 and Cu@MnO 

core-shell structures.  Additionally, the Cu core in the Cu@Fe3O4 and Cu@MnO core-shell 

structure could be etched to generate hollow metal oxide shells which could potentially become a 

versatile method for the production of hollow metal oxide nanostructures based on the shape of 

Cu templates. This work provides a general method to control heterogeneous growth of metal 

oxide on the metal particle surface to form core-shell hybrid nanostructures for various 

applications.   

 

SURPPLEMENTAL INFORMATION 

TEM image of AuCu3@Fe3O4 produced with excess Fe precursor; Scatter plot of Fe3O4 shell 

thickness as a function of seed mass added to the reaction; TEM image of AuCu3@NiO 

produced by heating to 250
o
C; TEM and XRD characterization of AuCu3@MnO produced by 

heating to 250
o
C; ~70 nm Cu seed particles; TEM of Cu nanorods used to produce hollow Fe3O4 

nanorod shells; XRD characterization of Cu@Fe3O4 before etching and resulting hollow Fe3O4 

structures. 
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Appendix A:  Supplemenal Information 

 

 

Figure S1. TEM image of the product from the synthesis in which the same procedure as that of 

Figure 1B was used except the amount of Fe precursor was increased by 3 folds to 0.6 mmol. 
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Figure S2. Scatter plot of measured iron oxide layer thickness as a function of total seed particle 

mass in the products from the synthesis in which the same procedure as that of Figure 1B was 

used except the amount of seeds was varied. 

 

 

  



139 
 

 

Figure S3. TEM image of the product of the AuCu3@NiO synthesis performed at a reaction 

temperature of 250
o
C. 
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Figure S4. Characterization of the product of the AuCu3@MnO synthesis performed at a 

reaction temperature of 250 
o
C: (A) TEM image; and (B) XRD pattern. 
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Figure S5. TEM image of the Cu seeds used for the deposition of the metal oxides shown in 

Figure 8. 
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Figure S6. TEM images of the Cu seeds with a mixture of particles and rods used for the 

deposition of the iron oxides: (A) before the coating process; and (B) after coating and etching 

process. 
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Figure S7. XRD pattern of  Cu@Fe3O4 core-shell structure and hollow Fe3O4 shell. 
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Chapter V.  Conclusion 

This work develops several wet chemical methods to synthesize hybrid nanostructures with 

multiple functional materials which can find uses in various applications. These methods are 

summarized below along with future outlook for the continuation of this research.   

The MASG approach was developed using SiO2 as a mask, to partially protect the surface of 

seeds from further reaction, and subsequently applied to synthesize Pd-Au and Pt-Au 

heterodimers and Pt-Pd-Au heterotrimers. This approach is based on the textbox approach in 

organic synthesis of protection and deprotection. The initial Au-SiO2 dumbbell, or Janus, 

structures were readily synthesized by modifying the amount of silica precursor in the 

microemulsion reaction system. The initial anisotropy produced a platform for forming bi-

metallic Janus heterostructures. The relative energy barriers for homogeneous crystal growth for 

Pt and Pd manifested themselves in the final shape of the nanoparticle; Pd preferred to grow 

heterogeneously to produce mushroom cap like structures on the Au, while Pt preferred 

homogeneous growth, resulting in dendritic arms of Pt extending away from the Au surface. The 

extinction spectra, arising from the Au component of the nanostructure, provide a rapid method 

to determine thickness of the secondary material, as well as concentration, without time 

consuming total metal analysis techniques. Therefore, the described masking and unmasking 

approach is a versatile strategy to rationally synthesize heteronanostructures with multi-

components, improving existing applications and finding new uses in many areas related to 

energy conversion and storage. An attractive next step for this approach is to extend the second 

metal into more reactive transition metals such as Cu, although additional steps must be 

developed to prevent premature oxidation of the Cu. 
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Cu nanostructures exhibit highly efficient coefficients of absorption and scattering, similar to 

Au and Ag nanostructures, but because of the reactivity of Cu, very few instances of solution 

phase Cu nanostructures have been studied for their optical properties.  By incorporating the 

surfactant TOP as a Cu nanoparticle capping agent to prevent oxidation during the sol-gel 

process, Cu-SiO2 core-shell structures were readily produced and persisted in water. The 

protective SiO2 layer was so successful at preventing oxidation and aggregation of the particles, 

that the LSPR spectra was improved after the particles were phase transferred into water. This 

enhanced spectral measurement allowed Cu nanorods to be distinguished from nanocubes that 

had previously exhibited indistinguishable spectra. It was also found that the extinction 

efficiency of the cubes and nanorods was dramatically higher than spherical Cu particles. The 

addition of Cu to already available high quality Au-SiO2 and Ag-SiO2 core-shell nanostructures 

will be a low cost alternative to these nanoparticles for catalysis and sensing applications. 

Additionally, this approach can be used to determine if nanorods are present in mixture of 

nanorods and nanoparticles that has poor colloidal stability, without requiring TEM imaging. 

 The decomposition of zero valence first row transition metals onto preformed Cu-based 

seed nanostructures was used to produce core-shell structures with very thin metal oxide shells.  

The thickness of the oxide shell was limited by the temperature and by the self-nucleation 

potential of the zero-valence transition metal precursors.  This metal oxide coating preserved the 

original seed particle’s shape, and the original optical spectra arising from the LSPR when the 

shell was 2 nm or less in thickness, while also incorporating magnetic properties and changing 

the surface properties of the original particles, producing multi-functional nanostructures.  

Additionally, the oxide shells, when prepared on an easily etched metal such as Cu, can be 
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converted into hollow metal oxide nanostructures that may find use in drug delivery, electrode 

materials, high surface area catalysis, and magnetic imaging.   

These approaches produce highly uniform nanostructures of multiple materials, and aid in the 

expansion of colloidal nanoparticle synthesis beyond noble metals and ads to the toolbox of 

chemical reactivity for rationally synthesizing complex nanostructures.  These multifunctional 

materials will find use in catalytic and sensing applications, and can serve as platforms to replace 

more expensive noble metals Au and Ag. 
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