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ABSTRACT 

 

Starch-inclusion complexes have been proposed as delivery tools for bioactive molecules; 

however complexation yield is generally low with low solubility, which may limit the 

bioavailability of the included molecule. It was proposed that chemical (acetylation) and/or 

enzymatic (isoamylase and β-amylase) modifications of starches prior to complex formation with 

fatty acids of different structures, including stearic, oleic and linoleic acid, may help increase 

complexation yield and solubility of the resulting starch complexes. Potato starch had a 

significantly higher complexation yield than common corn and high amylose (~70%) corn 

starches after debranching combined with a -amylase treatment. Debranched waxy maize starch 

and potato amylose displayed exothermic co-operative binding with hexanoic acid during the 

isothermal titration calorimetry (ITC) measurements.  Acetylation improved the solubility of 

starch complexes and increased the amount of included fatty acids in both soluble and insoluble 

starch complexes compared with the unacetylated starches. The degree of acetylation was 

generally higher for the soluble complexes than for the insoluble ones, which also increased 

recovery of soluble complexes but decreased the recovery for the insoluble complexes. 

Complexation between acetylated starches and fatty acids decreased with an increase in degree 

of unsaturation following the order of stearic acid > oleic acid > linoleic acid. Acetylation of 

debranched starch alone or in combination with the β-amylase treatment can be employed to 

increase complexation yield as well as to improve the solubility of complexes. This may 

potentially prove beneficial in food or pharmaceutical application because an increase in 

solubility can improve complex digestibility, and this may ultimately increase the bioavailability 

of the included molecules.  
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I. GENERAL INTRODUCTION 

  Starch is the primary source of carbohydrate and energy in plants, and the major 

component of most foods.1,2 Starch is a homoglucan and consists of two main components, i.e. 

amylose of an essentially linear molecule with few branches, and amylopectin of a highly 

branched structure. Irrespective of the sources, starch consists of a similar backbone of repeating 

α-D-glucose units linked by α-D-(14) glucosidic linkages with branching points linked by α-

D-(16) linkages. In dilute solution, amylose assumes a helical conformation with a hydrophilic 

exterior and a hydrophobic interior, which enables its interactions with hydrophobic compounds 

to form amylose-inclusion complexes. 

Bioactive compounds are extranutritional constituents that are found in food of both plant 

and animal sources and present in small quantities,3 such as flavonoids, phenolics, and 

anthocyanins. Numerous studies have shown the health benefits of these bioactive compounds, 

such as control of insulin sensitivity, positive effects on cardiovascular disease factors, reduction 

of atherosclerosis, treatment of diabetes, and antioxidant and anti-cancer properties.4,5 However 

most bioactive compounds are unstable and easily degraded under thermal or oxidative stress, 

therefore studies have been conducted to improve stability of these bioactive compounds by 

including them in an inclusion host.  

Inclusion complexes of bioactive compounds have shown to be a viable means of 

protecting the bioactive compounds from oxidation and degradation with starch and 

cyclodextrins being the most studied inclusion hosts. Cyclodextrins (CDs) are cyclic 

oligosaccharides composed of 6, 7 or 8 glucose units to yield α, β and γ-cyclodextrin, 

respectively. CDs have a truncated cone shape with the outer part being hydrophilic while the 

inner part being hydrophobic. This arrangement enables CDs to form inclusion complexes with a 
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wide range of hydrophobic molecules. Among CDs, β-cyclodextrin is the most accessible and 

widely used mainly because of its cost. The inclusion complexes with CDs usually have poor 

solubility, which results in reduced bioavailability. Chemical modification of CD helps to reduce 

its limitations but it also drives up costs of production. Starch therefore offers a better alternative 

as an inclusion host, because of its abundance in nature, ease of digestibility and low costs of 

modifications.  

Despite numerous studies on the formation of amylose inclusion complexes over the 

years, only more recently has inclusion complexes of amylose and bioactive compounds been 

considered as a delivery system.6,7 Amylose has been shown to forms inclusion complexes with 

some bioactive compounds such as salicylic acid and analogues,8 p-aminobenzoic acid,9 

ibuprofen and warfarin,10 ascorbyl palmitate, retinyl palmitate, phytosterol esters11 and 

conjugated linoleic acid.6,12 Although these studies have demonstrated the inclusion 

complexation of starch with bioactive compounds, the yields of complexes reported are very 

low. In addition, upon the complex forming, the starch complex becomes insoluble and 

precipitates out of solution. This subsequent precipitation of complex limits the solubility, 

digestibility and subsequently may limit the bioavailability of the included molecule. 

The goal of this study was to improve the starch-inclusion complexation yield and the 

solubility of the resulting complex by determining the preferred molecular structures and 

modifications that would enhance and stabilize the formation of starch-fatty acid complexes and 

consequently help to improve its solubility. Fatty acids with different degrees of unsaturation 

were used as model compounds. The specific research objectives of this study were to: 

1. Determine the effect of enzymatic modification (isoamylase without or with a β-amylase 

treatment) of starch from different botanical sources on starch-stearic acid complex 
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formation and to determine the effects of molecular size on the formation and solubility 

of starch-stearic acid complexes, 

2. Investigate the complexation of starch chains from different botanical sources with fatty 

acid (hexanoic acid) using isothermal calorimetric titration, and   

3. Determine the effects of a combination of chemical (acetylation) and enzymatic 

modifications (isoamylase without or with a β-amylase treatment) of starch on 

complexation yield and properties of both soluble and insoluble complexes with fatty 

acids of different chemical structures, including stearic (18:0), oleic (18:1) and linoleic 

(18:2) acids. 
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II. LITERATURE REVIEW 

Starch 

Starch serves as a main energy source in human diets and plays an integral part in various 

foods because of its availability and diverse physicochemical and functional properties.1 Starch 

occurs naturally as granules and is insoluble in water because of its semi-crystalline structure. 

Commercial starches are usually extracted from corn, potato, tapioca, wheat, and rice. The 

appearance and characteristics of starch from different plant sources vary greatly and are 

summarized in Table 1. Most starches are composed mainly of a mixture of two polymers: 

amylose, a mixture of essentially linear polysaccharides with few branches, and amylopectin, a 

mixture of highly branched polysaccharides. Both components are homopolymers of α-D-

glucopyranose with the linear chains linked by α-D-(14) glucosidic linkages and the branch 

point linked by α-D-(16) linkages. Non-carbohydrate components, such as lipids, proteins and 

phosphorus, are present in minute amounts2,3 but have strong impacts on the properties of the 

starch. 

The functionality of starch is principally affected by the ratio of amylose and amylopectin 

due to their distinct structures and properties. The ratio of amylose and amylopectin from 

different sources differ4,5 (Table 1) and may slightly also depend upon the methods of extraction 

or measurement. Native starch granules exhibit three distinct wide angle powder X-ray 

diffraction patterns, including the A-, B- and C-type (Figure 1).6 Cereal starches such as maize 

and rice exhibit the A-type polymorph; tuber starches like potato display the B-type; the C-type 

is found in bean or root starches.7 
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Table 1. Characteristics of starch from different botanical sources8,9 

Starch Type Granule Shape Granule 

Size  (μm) 

X-ray 

Pattern 

Amylose 

(%) 

Amylopectin 

(%) 

Barley Cereal Lenticular (A-type)  

Spherical (B-type) 

15-25                    

2-5  

A ~28 ~72 

Maize 

(waxy)  

Cereal Spherical 2-30 A ~0 ~100 

Maize 

(normal) 

Cereal Polyhedral 2-30 A ~27 ~73 

Maize         

(high 

amylose) 

Cereal Irregular 2-30 B 50-75 25-50 

Pea Legume Oval/Compound 5-50 C ~25 ~75 

Potato Tuber Lenticular 5-100 B ~21 ~79 

Rice Cereal Polyhedral 3-8 A 0-30 70-100 

Tapioca Root Spherical/lenticular 5-45 A ~17 ~83 

Sago Cereal Oval 15-35 A ~25 ~75 

Wheat Cereal Lenticular (A-type) 

Spherical (B-type) 

>10 

2-10 

A ~28 ~72 

 

The V-type polymorph is another crystalline structure that is composed of a single 

amylose helix,10 and is formed primarily during recrystallization or complexation of amylose. 

The A and B-type polymorphs differ in the packing density of their double helices, the geometry 

of their single cells units, and the amount of water that is bound to the crystal structure. The A-

type polymorphic starch possesses a monoclinic unit cell, the B-type has hexagonal unit cells, 

and the C-type is a mixture of the A- and B-type11,12 (Figure 2).  



 

7 
 

   

Figure 1. Wide angle X-ray diffraction patterns of the A-, B-, C and V-type starches and their 

sources.13 

 

Figure 2. The helix packing in the A-type (left) and the B-type (right) starch. Water molecules 

are indicated by dot and H-bonds by dashed lines.11  

The A-type polymorph is more densely packed and possesses less water with 8 water 

molecules per unit cell, while the B-type has 36 water molecules per unit cell.8,14 The average 

chain length of the amylopectin in the A-type starches consists of 23-29 glucoses, which is 

shorter than that of the B-type starches of 30-44 glucoses,15 whereas that of the C-type starch of 
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26-30 glucoses falls between the A- and B-types.16 The A-type starch has a higher melting 

temperature and thus is more stable when compared with the B-type starch.17  

Native starch is semi-crystalline in nature, and it is generally accepted that amylopectin is 

responsible for its crystallinity. The linear short chains in amylopectin intertwine to form double 

helices, which tend to form clusters that pack together to line up perpendicular to the growth 

rings. The growth rings originate from the hilum to the periphery of the granule in a radial 

arrangement.1,18,19 The arrangement of the cluster packing forms the alternating crystalline and 

amorphous lamella (Figure 3).11,20 The crystalline lamella corresponds to the double helices, and 

the amorphous lamella corresponds to the branching regions that consist of amylose and 

amylopectin branching points.1  

The possible arrangements of amylose and amylopectin in the granule have been 

proposed. Montgomery et al.21 proposed that a large amount of amylose existed in the amorphous 

region with a small fraction residing in the amorphous lamella. Later, Nikuni19 proposed another 

model where amylose existed freely without interaction with amylopectin within the amorphous 

and semi-crystalline regions. More recent studies have shown that amylose co-crystallized with 

amylopectin and therefore amylose also resided in the crystalline lamella.22,23 As a result of the 

co-crystallization, amylose might disrupt the packing of amylopectin by pulling two adjacent 

amylopectin chains closer, therefore an increase in amylose content resulted in a decrease in the 

amorphous lamella. 
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Figure 3. Expanded view of internal structure showing concentric rings of alternating 

amorphous and crystalline lamella (A), and the location of amylose and amylopectin in a starch 

granule (B).20,24 

Amylose  

Amylose is an essentially linear molecule made of glucose units linked together by α-D-

(14) glucosidic linkages(Figure 4) with about 0.3-0.5% branched fractions linked by α-D-

(16) linkages. The presence of α-D-(16) linkages in amylose has been confirmed because of 

the presence of beta-limit dextrins after β-amylase hydrolysis of amylose from potato and cereal 

sources,25 but the amount of branches present varies with the plant source.26  

There are abundant hydroxyl groups present in the amylose molecule, which make it 

hydrophilic. However, at the same time because of its linear structure, mobility and numerous 

hydroxyl groups, amylose is able to interact with adjacent amylose chains by forming hydrogen 

bonds. This reduces the affinity of amylose for water and enhances the association between 
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amylose molecules.27 This amylose-amylose interaction is known as retrogradation, which has 

great impacts on starch properties.  

 

 

Figure 4.  The glucopyranose units and α-D-(14) glucosidic linkages in amylose.27 

The molecular size of amylose in degree of polymerization (DP) ranges between 200 and 

20,000 glucose units and differs with starch source (Table 2). The average molecular weight of 

amylose ranges from 30,000 to 3,200,000 g/mole,28 and amyloses from cereal sources generally 

have a lower molecular weight than those found in tubers. 

Amylose can exhibit a helical configuration and in dilute solutions forms inclusion 

complexes with suitable organic guest molecules such as iodine.29 The amylose helix can consist 

of 6, 7 or 8 glucose units per turn depending on the size of the guest molecules.30-33 The internal 

diameter of the helix is approximately 0.5 to 0.85 nm in pitch height,31,33 and the left-handed 

helix forms a hydrophobic cavity that encourages the formation of inclusion complexes with 

hydrophobic molecules. 
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Table 2. Amylose molecular size from different starch sources.34 

Starch Source Degree of Polymerization (DP) 

Rice (indica) 3420 

Maize 2500 

High amylose corn (70% amylose) 1990 

Wheat 3480 

Barley 4470 

Sago 4380 

Tapioca 6680 

Potato 6360 

 

Amylopectin 

Amylopectin is the predominant component ranging from 70-80% in most starches. 

Amylopectin molecules are highly branched and consist of linear glucose chains linked by α-D-

(14) linkages with branching points connected by α–D-(16) linkages (Figure 5). 

Amylopectin is among one of the largest biopolymers in nature ranging from DP 300,000 to 

3,000,000 glucoses with a molecular weight of about 106 - 109 g per molecule.35 The type of 

crystalline structure displayed by the starch is governed by the chain length of the branches 

present in the amylopectin molecule15 as previously discussed. Amylopectin molecules with 

longer average chains crystallize into the B-type starch while those with shorter average chains 

yield the A-type starch.  
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Figure 5. Structure of glucopyranose units and both α-D-(14) and α-D-(16) glucosidic 

linkages in amylopectin.27 

Various models have been proposed to describe the amylopectin structure over the years. 

The cluster model proposed by French18 (Figure 6a) has been accepted as the most probable one. 

The model suggests that the exterior chains of the amylopectin exist as double helices, which 

contribute to the crystalline lamellae that are separated by the amorphous lamellae. The model 

also suggests that an increase in the number of clusters increases the molecular weight of the 

amylopectin. Amylopectin is made up of three main chains: A, B and C chains.36  The shortest, 

outermost chains are the A chains, and they carry no other chains; the B chains carry A chains or 

other B chains or bind to C chains; the C chains contain the sole reducing terminal residue in 

each amylopectin molecule, and carry only B chains. The cluster model was further modified by 

Hizukuri37 (Figure 6b) based on the HPLC results of debranched starch by dividing B chains into 

B1-4 fractions with B1 chains of DP 20-24, B2 chains of DP 42-48, B3 chains of DP 69-75, and 

B4 chains of DP>100. A single cluster is made of A and B1 chains, B2 chains extend into two 

clusters, B3 chains are across three clusters, and B4 chains are across four clusters.37  
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Figure 6. The cluster model of amylopectin structure adapted from French18 (a) and Hizukuri37 

(b). 

Amylose-Inclusion Complex  

The formation of inclusion complex between amylose and iodine was first reported by 

Colin & de Claubry.29 Amylose forms a helical structure with a cavity that can include iodine 

atoms to give the blue color. On forming the helix structure, the inner cavity becomes highly 

hydrophobic due to the arrangement of the polar portion of amylose been aligned outwards 

(hydrophilic) and the less polar portion been oriented inwards to form the hydrophobic cavity 

that favors hydrophobic interaction.10 The interaction between amylose and iodine has been 

proposed as a method to determine the amylose content due to a characteristic color that is 

formed on complexation.10,38-40  The intensity of the color formed by the amylose-iodine 

complex has been found to vary with amylose chain lengths.38 Bourne et al.41proposed a method 

referred to as the “Blue Value” for measuring the amylose content by measuring the absorbance 

of the blue color formed by the complex at a wavelength of 680 nm. These same amylose-iodine 
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interactions have also been exploited in potentiometric iodine titration, which is a method often 

employed to determine the amylose content.42  

Bailey and Whelan38 determined that the relative chain length of amylose could also be 

determined by the amylose-iodine reaction as the color and λmax of the complexes change 

depending on amylose chain length and the helix cavity. The λmax of the complex increases with 

increasing amylose DP. Amylose with DP<12 had no color; DP12 was the threshold value for 

forming amylose-iodine red color; DP 30 stained red purple with λmax = 550 nm; DP >52 had a 

blue green color with λmax = 595nm. This color intensity remained at λmax= 645 nm even at a 

higher DP of 568. Banks et al.43 reported the estimated λmax limit for starch-iodine complex was 

642 nm, while John et al.44 estimated it at 650 nm.  

Amylose also forms complexes with other compounds such as some alcohols such as 1-

butanol, lipids, flavors, DMSO, surfactants and salicylic acid.45-49 The interaction between 

amylose and alcohol has been the basis of separating amylose from amylopectin by selective 

precipitation of amylose using butanol.45. Schoch42 studied amylose inclusion complexes and 

reported that the complexation between amylose and a compound was reversible. Banks et al.25 

reported that the resulting complex was crystalline in nature and possessed a V-type X-ray 

diffraction pattern. The study by Rondeau-Mouro et al.49reported that guest molecules were not 

only included in the helix cavity of amylose (intra-helical) during complexation, but also trapped 

between the amylose helices, which contributed to the inter-helical complex formation. 

 

Amylose-Lipid Complex  

The amylose-lipid complex (Figure 7) was first reported by Schoch and Williams.50 They 

reported that the molecular structure formed between amylose and fatty acids was a molecular 
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complex similar to that of amylose with iodine and alcohol, and the interaction was not due to 

surface adsorption. The complex usually forms during heating of starch in the presence of added 

or naturally present lipid51and after complexation, the complexes separate out and can be 

recovered by centrifugation.50  

 

Figure 7. Structure of Amylose-lipid complex.8 

Mikus et al.46 found that only amylose with a helical structure would bind fatty acid, 

while the extended form would not form a complex irrespective of the size of the amylose or 

fatty acid. The conformation of amylose, whether extended or helical, is of great importance for 

complexation, and is dependent on factors such as pH and temperature of the solution where 

complexation occurs. Amylose exists as a helix in acidic or neutral conditions but displays a 

fully extended coil when the pH approaches 12 because hydrogen bonds are weakened with 

increasing pH and temperature.52-54  

The hydrophobic interactions between amylose and fatty acid have been known to 

increase the hydrocarbon chain length of fatty acid increases.55 The complexation between 

amylose and fatty acid is dependent on many factors such as amylose chain length, lipid 

structure, and reaction conditions (e.g. temperature, pH, and solvent), and fatty acid 

solubility.31,50,56-58  Evans59 reported that the temperature at which the complexation reaction was 
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carried out determined if amylose would form inclusion complex with itself or with the guest 

molecule. Amylose inclusion complexation seemed to be favored over amylose-amylose 

interaction at high temperatures, which was attributed to an increase in amylose mobility and 

ability to interact with the guest molecules (lipids) rather than with other amyloses. 

Godet  et al.57 reported that for amylose a minimum of DP 20-30 glucose units is required 

to complex with caprylic (C8:0) and lauric (C12:0) acid and about 30-40 glucose units to 

complex with palmitic acid (C:16:0). These chain lengths were reported to be sufficient to 

accommodate two fatty acids at a time. Fatty acids and mono- and diacyl glycerols can form 

complexes with amylose, while the triacyl glycerols cannot.60 The stability of complexes formed 

decreased with increasing unsaturation of the fatty acids.47,61  Tufvesson et al.62 (2003b) reported 

that complexes formed by fatty acids were thermally more stable than those formed by monacyl 

glycerols. Longer fatty acids (C≥12) showed improved complexation with amylose, which was 

due to the fact that longer fatty acids are less soluble in the complexing solution and tend to 

interact more with the hydrophobic cavity of the amylose. They also found that anionic fatty 

acids favored complex formation of the longer fatty acids (≥C:12) when compared with the 

uncharged ones. 

Amylose-lipid complex can exist as Type I or Type II.51,56 The Type I complex has a 

lower melting temperature (Tm) of around 90 °C and the Type II with a Tm of around 110 °C. 

The Type I complex is known to form at lower temperatures of about 60 °C, and therefore is less 

ordered and low in heat stability.33,63 The Type I complex is formed when rapid nucleation of the 

amylose-lipid complex occurs at around 60 °C,56 whereas the Type II is formed with continuous 

heat treatment and re-arrangement of the complexes at higher temperatures of about 90 °C61 

(Figure 8). The Type II complex is more heat stable because the nucleation rate is low, and this 
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allows for sufficient propagation.63 Tufvesson et al.64 reported that a prolonged heat treatment 

was required for the formation of Type II complexes with long monoglycerides such as glycerol 

monopalmitin (GMP) and glycerol monostearin (GMS), but was not required for those with 

shorter chain such as glycerol monocaprin (GMC), glycerol monolaurin (GML), and glycerol 

monomyristin (GMM).  

 
Figure 8. Type I (A) and Type IIa (B) amylose-lipid complex.65  

The Type II complex has been further classified into two groups: Type IIa and IIb 

(Biliaderis et al, 1986). The Type IIa is formed at a temperature ≥ 90 °C and has a Tm of 114-121 

°C, whereas the Type IIb is formed after further annealing of the Type IIa at 105-115 °C to 

become a more thermostable complex than the Type IIa with a Tm of 121-125 °C .
61 Biliaderis 

and Galloway56 described the conversion of Type IIa into Type IIb as a classical annealing 

process which occurred first with the partial melting of crystallites followed by recrystallization. 

Although studies have shown that the complexation between amylose and a compound is 

reversible,42 there are contradictory results on the digestibility of amylose-lipid complex. Holm et 

al.66 showed that the amylose-lipid complex was hydrolyzed by the hog pancreatic α-amylase and 

absorbed in the gastrointestinal tract, however the rate of hydrolysis was slower compared with 

the uncomplexed amylose. Gelders et al.33 prepared complexes with amylose of varying degrees 

of polymerization (DP 60, 400, and 950) and lipids (docosanoic  acid (C22:0) and glyceryl 

monostearate) in dimethyl sulfoxide (DMSO)-water solvent at 60°C or 90°C for 4 hr. The 
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complexes were subjected to porcine pancreatic α-amylase and there was a decrease in the 

enzymic hydrolysis with increasing amylose DP or complexation temperature. The hydrolysis by 

α-amylase or acid follows the order of Type I > Type IIa > Type IIb with their temperature 

stability in the opposite order.33,67 The rate of hydrolysis was also influenced by both lipid chain 

length and degree of saturation in which resistance increased with increasing lipid chain length 

and decreased with increasing unsaturation.33,47 The complexes formed between amylose and 

lipid offers various benefits such as preventing the lipid from oxidation through stabilization. 

Therefore it has been proposed that the amylose-lipid complex can serve as a form of controlled 

or targeted release mechanism for lipids.53,68,69 Szejtli and Banky-Elod53 complexed amylose and 

a mixture of both saturated (palmitic and stearic acid) and unsaturated fatty acids (linoleic, 

linolenic, and oleic) and reported that the complexed unsaturated fatty acids were completely 

protected from oxidation even in the presence of oxygen. Yang et al.69 reported that the oxidation 

of complexes of amylose and conjugated linoleic acid (CLA) was reduced, and complexes were 

fully released over a 15-hr period under simulated stomach and small intestine conditions.  

Despite the numerous studies, the conditions required for a high yield of amylose-

complex formation are yet to be fully elucidated. Most studies have reported low yield of 

complexed lipids usually ranging from 1-5% of total complex weight.53,61,70  

Bioactive Compounds 

Bioactive compounds are important extranutritional constituents due to the various 

benefits they confer on human health such as anti-oxidative and anti-cancer properties. Many are 

present in food mostly in small quantities and are very sensitive to thermal and oxidative stress, 

resulting in rapid degradation during processing or storage.58 Some natural bioactive compounds 

such as polyunsaturated fatty acids (PUFAs), phenolics, flavonoids, anthocyanins are still been 
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studied to reduce the rate of their degradation. For example, PUFAs can easily be oxidized in the 

presence of atmospheric conditions even with little or no processing. As a result of the numerous 

health benefits, it has become imperative to research ways of effectively stabilizing and 

delivering these components. 

Recently, CLA has become an actively studied bioactive compound. CLA was accidently 

discovered by Pariza and his co-workers. Pariza et al.71 first reported on the health benefits of 

CLA although the identity of CLA was still unknown, it was the group led by Ha et al.72 that later 

identified and discovered the structure of the CLA isomers. CLA exists as a mixture of positional 

and geometric isomers of linoleic acid (C18:2), and has two double bonds separated by a single 

bond. Among the isomers, only a few are biologically active such as 9c, 11t-CLA, 10t, 12c-CLA, 

9t, 11c-CLA, which are naturally found in beef, lamb and dairy products. Over the years, the 

health benefits of CLA has been reported in areas such as modulation of plasma lipids, 

improvement of plasma cholesterol status, anticarcinogenic properties, reduction of colorectal 

cancer, and control of obesity and diabetes.72-74 Recently, Jain and Proctor75 synthesized trans-

trans CLA isomers by photoisomerization of soy oil and studied its nutritional effects on zucker 

rats.76 They reported that the trans-trans CLA-rich soy oil reduced serum cholesterol and low-

density lipoprotein-cholesterol levels by 41 and 50%, respectively, when compared to the obese 

rats fed with a control diet containing linoleic acid. However, similar to other unsaturated fatty 

acids, trans-trans CLA is oxidatively unstable, therefore studies are need to stabilize these 

isomers in order to realize their health benefits.  

Cyclodextrins 

Cyclodextrin (CD), first described by Villers,77 is a cyclic oligosaccharide consisting of 6 

(α-cyclodextrin), 7 (β-cyclodextrin) or 8 (γ-cyclodextrin) glucopyranose units connected by α-D-
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(14) linkages, and the number of glucose units present in the CD determines the dimension 

and size of the cone cavity (Figure 9). Cyclodextrins have the shape of a truncated cone with the 

wider end formed by the secondary 2- and 3-hydroxyl groups and the narrow end formed by the 

primary 6-hydroxyl group.78 The cavity of the cone is lined with hydrogen atoms and glucosidic 

oxygen bridges, which have non-bonding electron pairs directed toward the inner cavity.79 This 

results in a high electron density in the cavity, which is responsible for the relatively hydrophilic 

exterior and the lipophilic interior of CDs. Because of these unique properties, CDs favor the 

formation of inclusion complexes.79-81 However natural cyclodextrins, in particular β-CD, have 

been reported to exhibit limited aqueous solubility of 12.8, 1.8, and 25.6 grams per 100 mL of 

water for α, β, and γ-CD, respectively.82 The much reduced solubility of β-CD was reported to be 

due to its stronger intermolecular hydrogen bonding that diminishes its ability to form hydrogen 

bonds with surrounding water molecules.80,83  

 

Figure 9. Chemical structure (a) and toroidal shape (b) of β-cyclodextrin.80  

Modifications have been carried out to yield various derivatives such as 2-

hydroxypropyl-β-CD, methylated β-CD, branched β-CD such as glucosyl β-CD and 

sulfobutylether β-CD sodium salts to improve the properties of CDs such as solubility (Loftsson 

et al, 2005). After complexation with modified CDs, the physiochemical properties of guest 

molecules such as solubility, stability of labile guests against degradation, visible or UV light 
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sensitivity, chromatographic separations, taste and controlled release of drugs and flavors 

become significantly altered and improved.85 Although these modifications help overcome a 

variety of limitations, they also drive up cost of commercialization of CD complexes.  

Several hypotheses have been proposed for the driving forces behind complexation of 

CDs with other compounds. During complexation with CD, the guest molecule is included in the 

cavity with the release of enthalpy-rich water molecules from the cavity as the driving force for 

the complexation reaction.85 Other driving forces that have been suggested include van der waals 

forces, hydrogen bonding between polar groups of guest molecule, hydrophobic interactions 

between hydrophobic portion of guest molecule and CD cavity, release of the ring strain in CD 

molecule, and changes in solvent-surface tension.86-89 Loftsson and Brewster80 proposed that a 

combination of these reactions instead of one simple construct might be needed to drive the 

complex formation. 

Inclusion Complexes of Cyclodextrins and Bioactive Compounds 

Native or derivatized CDs have been used widely in the pharmaceutical, food, cosmetic 

and other industries.90 Bioactive compounds that have been complexed with CDs are 

indomethacin (an anti-inflammatory drug),91 nalidixic acid (an antibacterial drug),92 iriquinone 

(an anti-cancer drug), rutin (a flavonoid),93 β-lapachone (a natural anticancer drug )94 ferrocene 

(an antiknocking agent in petrol engine), nicotine, sodium dicolofenac (eye drops used to reduce 

redness and swelling after cataracts treatment)95 and aromas (febreze). However, the 

effectiveness of CD as a complexing agent is limited mainly by factors such as cost and 

restrictiveness of the cavity. Therefore it is important to explore alternatives to CDs with a lower 

cost yet improved binding. 
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Inclusion Complexes of Amylose and Bioactive compounds 

Despite numerous studies of the formation of amylose inclusion complexes over the 

years, only more recently has inclusion complexes of amylose and bioactive compounds been 

considered as a delivery system.70,96 Inclusion complexes of amylose and salicylic acid have 

been reported by Oguchi et al.48 They found that amylose (Mw= 1,310,000) complexed one 

molecule of salicylic acid per helical turn when 10% salicylic acid was used in complexation and 

displayed a 71 helix structure (amylose helix with seven glucose units per turn). However when 

the quantity of salicylic acid used in complexing was increased to 30%, two molecules were 

complexed per amylose helical turn displaying the 81 helix structure (amylose helix with eight 

glucose units per turn). The complexes formed with the 71 helix complex were more stable 

because the salicylic molecules were more tightly bound than the ones found in the 81 helix 

complex. 

Lalush et al.70 investigated complexes formed from amylose and conjugated linoleic acid 

(CLA) using two different solvents of dimethyl sulfoxide (DMSO)/water and KOH/HCl at three 

different complexation temperatures of 30, 60 and 90 °C. Both amylose and CLA were soluble in 

DMSO/water, which encouraged complex formation. On the other hand, in the KOH/HCl 

solution, KOH helped to foster the solubility of CLA through ionization while HCl was added to 

neutralize the reaction. However, complex formation was much reduced in the KOH/HCl 

solution since the solubility/dispersability of CLA was less in water than in the organic solvent, 

therefore there was limited amount of CLA available for complex formation. Complexes formed 

using DMSO/water provided greater oxidative stability and exhibited higher weight yield 

compared to those formed in the KOH/HCl solution, with complexation temperature of 30 or 

90°C producing the highest percentage of CLA per gram of complex of 3.8% and 3.3%, 
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respectively. Within the DMSO/water treatments, the reaction temperature of 60 °C resulted in 

the least amount of CLA per gram of complex (2.6%) with the least stability. Within the 

KOH/HCl treatment the complexes formed at 60 °C also contained the least amount of CLA per 

gram of complex (1.9%), but was the most stable. All complexes were tested for susceptibility to 

enzymic hydrolysis under simulated stomach conditions, and the degree of hydrolysis of all 

complexes followed the order of pancreatin (~100%) > α-amylase (~87%) > amyloglucosidase 

(~37%) > β-amylase (~8.5%).  

Yang et al.69 compared complexes formed from amylose or β-CD with CLA and reported 

that the yield and complexation percentage of amylose-CLA was 71.9% and 1.4%, respectively, 

while those of β-CD-CLA was 42.3% and 7.7%, respectively. The amylose-CLA complex 

showed a better stability against oxidation than the BCD-CLA complex when peroxide values 

were compared for the two complexes. Under simulated stomach and small intestine conditions 

for 15 h, the enzymic hydrolysis and release percentage were 87.50 and 95.61% for the amylose-

CLA complex and only 27.92 and 15.96% for the BCD-CLA complex. This implies that amylose 

was more effective in the protection of guest molecules and release of CLA from the complex. 

  Recently, Lay Ma et al (2011) examined the inclusion complexes prepared from amylose, 

amylopectin and high amylose maize starch with three bioactive components (ascorbyl palmitate, 

retinyl palmitate, and phytosterol esters). They found that amylopectin only complexed with 

retinyl palmitate, while amylose and high amylose maize starch complexed with all three fatty 

acid esters. They suggested that adsorption of some of the guest molecules with amylopectin 

could not be ruled out and that complexation of the guest molecules could only have occurred 

with the outer chains of amylopectin. In addition, amylose complexes displayed the V-type X-

ray diffraction pattern, which was in agreement with previous studies (Karkalas & Raphaelides, 
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1986; Biliaderis & Galloway, 1989). The yield of complexation followed the order of ascorbyl 

palmitate > retinyl palmitate > phytosterol esters. The high yield for the ascorbyl palmitate-

complex was attributed to the high solubility of ascorbyl palmitate mainly due to the presence of 

a hydrophilic portion (ascorbic acid). The solubility of guest molecule is an important factor on 

inclusion complex yield because the guest molecule has to be in solution to interact with amylose 

(Putseys et al 2010a).  

Starch Modification   

Native starch has limited applications in the industry because of its limited functionality, 

such as viscosity, texture, solubility, and stability towards pH, shear, temperature, and storage. 

To overcome these shortcomings, starch is often modified through physical, chemical and/or 

enzymatic means. Physical modification involves thermal treatments like annealing, spray 

drying, roll drying, and pregelatinization.97 Chemical modification includes reactions such as 

conversion (acid-thinning, oxidation and dextrinization), crosslinking, and substitution 

(esterification and etherification). Enzymatic modification is achieved using amylases (α-, β-, or 

glucoamylase) and debranching enzymes (isoamylase and pullulanase) to hydrolyze starch.  

Chemical Modification 

 

Chemical modification alters the interactions between starch chains by modifying the 

hydroxyl groups on the anhydroglucose units (AGU) or the glucosidic linkages.98 Chemical 

modifications may be combined according to the Code of Federal Regulations (CFR) to further 

improve starch properties. The properties of modified starch vary depending on the type and 

degree of modification. For substitution, there are three hydroxyl groups, C2, C3 and C6 (Figure 

10) available for reaction in an AGU because the hydroxyl groups in C1 and C4 are involved in 
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glucosidic linkages. Therefore the maximum degree of substitution (DS), which is the average 

number of hydroxyl groups that are substituted per AGU, is three.  

                                                         

                                                         Figure 10. α-D-Anhydroglucose unit. 

 

For substitution reactions such as hydroxypropylation where hydroxypropyl groups can 

react further with the reagent to form a polymeric substituent, molar substitution is used and 

could be greater than three. 

Conversion 

Conversion of starch weakens and degrades starch granules and thus results in reduced 

swelling and consequently viscosity in water.97 During conversion, the primary attack occurs 

with hydrolysis at the α-D-(14) glucosidic linkages, but scission of some α-D-(16) bonds 

could also occur.97 Conversion of starches is usually achieved by acid, hypochlorite, or a 

combination of acid and high temperature (pyroconversions or dextrinization). 

Crosslinking 

Crosslinks are formed by di- or poly-functional chemicals, which bridge between starch 

molecules and reinforce the hydrogen bonds responsible for granule integrity. Crosslinking 

agents allowed for food uses according to CFR include epichlorohydrin, phosphorus 

oxychloride, sodium metaphosphate and adipic/acetic anhydride. Most crosslinked starches have 

about one crosslink in every 1000 to 3000 AGU.99 The level of crosslinking greatly influences 
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the starch properties, such as maintenance of granule integrity on swelling, increased film 

strength, resistance to shear and viscosity breakdown, and only low levels of crosslinking are 

required to maintain starch integrity.97  

Substitution    

Substitution involves stabilization of starch granule with the addition of ionic or non-

ionic groups to prevent re-association of starch molecules and extending the shelf life of starch 

products (Knill & Kennedy, 2005). Most common types of substitutions approved by CFR are 

acetylation and hydroxypropylation for food applications.102  

- Acetylation  

Acetylation involves the esterification of acetic anhydride or vinyl acetate to starch in the 

presence of an alkali as a catalyst (Figure 11). The acetyl group is hydrophobic and yields a 

starch with decreased gelatinization temperature and increased swelling, solubility and storage 

stability. During acetylation it is important to maintain the pH at 8 - 8.4 when using acetic 

anhydride, and at pH 9 - 10 when vinyl acetate is used if optimum reaction efficiency is desired. 

The FDA regulation specifies a maximum of 2.5% acetyl content for acetylated starches used in 

food applications but the average reaction efficiency of acetylation is usually about 70% for 

granular starch.103 

 

 

Starch + CH3-C-O-C-CH3                                                Starch-O-C-CH3 + NaOAc 

                                   

Figure 11. Acetylation of starch by acetic anhydride. 

Acetic anhydride, H2O 

O O O 

Acetic anhydride Starch Acetate NaOH, pH 8-8-5 
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- Hydroxypropylation 

 Hydroxypropylation involves etherification of starch with propylene oxide (Figure 12) in 

the presence of an alkali as a catalyst and salt of 5-15% based on starch weight to prevent starch 

from swelling or gelatinization.104 Hydroxypropylation takes approximately 24 h to complete and 

is about 60% efficiency with respect to the propylene oxide addition. 

         Hydroxypropyl groups are hydrophilic in nature and usually linked to the C-2 position of 

AGU.104 The presence of hydroxypropyl groups weaken and disrupt the internal bonds 

responsible for granule integrity, thus altering the physiochemical properties of starch such as 

shelf life, freeze/thaw stability, cold water swelling and cold storage stability.104 Shi and 

BeMiller105 found that amylose was modified to a greater extent than the amylopectin, 

presumably because amylose was present in the amorphous regions. This was confirmed by Gray 

and BeMiller106 who reported that the hydroxypropylation occurred first in the amorphous 

regions which are most accessible and then proceeded gradually to the crystalline regions.      

 

        

               StO- Na+ + CH2-CHCH3                    STOCH2CHCH3 + NaOH 

 

 

 

Figure 12. Substitution of starch by propylene oxide. 

 

  Hydroxypropylated starches are used in the food industry to improve freeze-thaw 

stability and also to yield products with low pasting temperatures.104 Rutenberg and Solarek98 

reported that the effect of hydroxypropylation on gelatinization temperature was less when 

water 

OH O 

Starch 2-Hydroxypropyl ether starch 

(hydroxypropyl starch) 
Propylene Oxide 
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compared to acetylation, but hydroxypropylation stabilized starch over a wide range of pH, and 

under low temperature conditions. 

 

Enzymatic Modification  

Enzymes are widely employed in the modification of starch to improve its properties, to 

study its fine structure, and to produce products such as corn syrups and sugars that can then be 

further converted to alcohol. Although enzymes can act on native starch, most times the 

modification is carried out using gelatinized starch because it is more susceptible to enzymes. 

Most commonly used enzymes are those allowed by the CFR and they include α- and β-amylase, 

glucoamylase, pullulanase, and isoamylase.  

During starch hydrolysis by enzymes, the dextrose equivalent (DE) increases and the 

viscosity of the starch solution decreases. DE is an indication of the reducing sugar content 

present and is calculated as percent anhydrous dextrose of total dry substance.5The DE increases 

from 0 for starch and ultimately reaches 100 if all the starch is converted to dextrose. 

Maltodextrins are starch hydrolysates with DE < 20 while corn syrups have DE ≥ 20.  

- α-Amylase 

α-Amylase (1,4-α-D-glucan glucanohydrolase) is an endoglucosidase that attacks glucans 

internally away from the chain end. The action is random and results in a rapid drop in 

viscosity107-111  and blue value.34 It achieves this by hydrolysing mainly the α-D-(14) linkages, 

and its action is halted at branch point of α-D-(16) linkages of amylopectin or amylose as well 

as at α-D-(14) -linkages that are located very closely to the branch points.5,34 However, α-

amylase from Thermoactinomyces vulgaris has been reported to hydrolyse α-D (16) -linkages 

albeit weakly. α-Amylase can be extracted from many sources including bacteria, fungi, plants 
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and mammals, and its mode of action, properties and types of degradation products will depend 

on its source.112 α-Amylase obtained from different sources exhibit different properties and the 

ones from Bacillius amyloliquefaciens and Bacillius licheniformis have been shown to exhibit 

high temperature stability. The products produced during the hydrolysis of amylose by α-

amylase include glucose and maltose while varying α-limit dextrins, maltitriose or glucose are 

produced from the hydrolysis of amylopectin.109,110 The relative concentrations of substrate and 

enzymes determine the type of degradation products produced.109  

- β-Amylase    

β-Amylase (1,4-α-D-glucan maltohydrolase) is an exoenzyme that occurs in many plants, 

such as barley, soy beans, and potatoes where it is often accompanied by the presence of α-

amylases. It can also be produced from microbial sources. β-Amylase initiates hydrolysis by 

breaking the next to last glucosidic bond from the non-reducing end of a starch molecule to yield 

β-maltose until the reducing end is reached, or it experiences an α-D-(16) branch linkage.5,108 

The activity of β-amylase is therefore more pronounced on amylose than on amylopectin and its 

activity can be used to indicate the linearity of the glucose polymer or hydrolysate (Wurzburg, 

1986).The complete breakdown of starch by β-amylase yields a mixture of maltose and β-limit 

dextrins.34,53,99 The optimum conditions for β-amylase activity are pH 5.0-7.0 and temperature 

45-70 ºC depending on source of the enzymes.  

- Isoamylase 

Isoamylase, an endoenzyme, is a debranching enzyme that has the ability to hydrolyze α-

D-(16) linkages in starch to produce linear glucans.114 The reaction is characterized by an 

increase in the iodine staining power and β-amylolysis limit.115 Ueda and Nanri116 reported that 

isoamylase from yeast (E. intermedia) had the ability to hydrolyze α-D-(16) glucosidic 
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linkages in both starch and glycogen completely but cannot hydrolyse α-D-(16) glucosidic 

linkages in pullulans completely.117 In plants, reports have shown that isoamylases are also 

required for the normal synthesis of amylopectin, although the precise manner in which they 

influence starch synthesis is still unclear.118 

- Pullulanase 

 Pullulanase works by exowise action to hydrolyze α-D-(16) glucosidic linkages of 

starch to produce maltotriose oligomers and finally maltotriose and trace amounts of 

maltotetraose. Pullulanase cleaves α-D-(16) glucosidic linkages between chains that contain a 

minimum of two glucose residues but not with a chain containing a single glucose residue, as 

with isoamylase.119 However unlike isoamylase, it can hydrolyze pullulans completely but has 

limited hydrolytic power on glycogen.117 

 

Modified Starches in Inclusion Complexation 

Most modified starch used as inclusion hosts are often debranched to create more linear 

glucans for complexing with guest molecules. Yotsawimonwat et al.120 investigated the 

precipitation reaction of debranched waxy rice starch complexed with lauric or stearic acid. 

Waxy rice starch was debranched with pullulanase, and the resulting debranched starch was 

complexed with varying amounts of lauric or stearic acid. They found that pH had a great effect 

on complex formation. At a pH that was below the pKa of the fatty acids (~4.8), debranched 

starch precipitated in free form but at a pH above the pKa, it precipitated as Vh-type complex, 

with the highest complexation at pH 7. Later, Yotsawimonwat et al.121 examined the 

complexation between debranched waxy rice starch with varying short- and long-chain fatty 

acids (FAs). They reported that short chain FA with C8 was more soluble in aqueous solutions 
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and so readily complexed with debranched starch. However, the rate of complexation with the 

short chain FAs was reduced at pH ≥5 compared to FAs of longer chain (C10:0 – C18:0) at the 

same pH.   

Recently, Hasjim et al.122 prepared inclusion complex from isoamylase-debranched high 

amylose maize starch suspension (10%w/w) and palmitic acid at 95ºC for 1 h. They reported that 

the complexation yield increased when starch was treated with isoamylase prior to complexation, 

this was attributed to the presence of more linear chains produced by isoamylase. Zhang et al.123 

debranched high-amylose maize starch (70% amylose) with pullulanase for varying times (0, 2, 

6, 8, 12 and 24 h), and the resultant debranched starches were complexed with lauric acid (10% 

w/w, dry starch base, dsb) in boiling water for 30 min. They reported that starch debranched for 

24 h prior to complexation yielded the highest amount of complexed lipid, therefore they 

suggested that prolonged debranching could improve the formation of starch-lipid complexes.  

Wulff and Kubik124 investigated the chemical modification of amylose prior to complex 

formation. They determined that modification of amylose through hydroxypropylation improved 

the solubility of complexes and only slightly decreased the complexing ability of amylose. A 

degree of substitution of 0.075, which was equivalent to an average of one substituent for every 

13 AGU, formed soluble inclusion complexes with fenchone. Kubik and Wulff125 investigated 

the effect of crosslinking on amylose-inclusion complexation by using circular dichroism (c.d.) 

and isothermal microcalorimetry titration (ITC). Crosslinking stabilized the amylose complex 

and when amylose helix with six glucose units per turn was crosslinked, larger molecules that 

require a helix with 7 or 8 glucose units per turn could no longer be included in the helix. Wulff 

et al.126 again prepared hydroxypropylated amylose (DS= 0.1) from amylose with varying DP to 

further investigate the practical applications for both soluble and insoluble amylose-flavor 
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complexes. The modified amylose was then complexed with flavor compounds, including 2-

hexanone, linalool, fenchone and guaiacol. The use of hydroxypropylated amylose lead to an 

improved stabilization of flavor compounds by protecting them from oxygen and light. They 

suggested that the increased solubility of amylose in solution improved complexing efficiency, 

thus resulting in the improved stability of complexes. Inclusion complexes of the flavors were 

very stable over a one-year period. Nevertheless, low water activity was required for flavor 

stability because there was fast removal of flavors in the presence of water activity above 0.5.  

 

Isothermal Microcalorimetry Titration 

 Isothermal titration calorimetry (ITC) (Figure 13) is a method that has been used to 

characterize the energetics of interaction on a molecular level127 and this can also be done over a 

range of temperatures.128 Titration calorimetry was first described by Hansen et al.129 and 

Christensen et al.130 However, it was not until 1979 that Langerman and Biltonen131 published 

data on the use of microcalorimeters for biological chemistry. The calorimeter measures the heat 

output or uptake of a binding process, therefore, the heat measured can be used to express the 

extent of interaction occurring at equilibrum during titration.128 ITC provides a rapid method for 

the accurate and direct determination of the change in molar enthalpy (∆H)134 and can detect 

changes in thermal power in the range of microwatts.133 

 ITC has been used to investigate interactions between varying molecular interactions 

including protein-ligand interaction, protein-oligonucleotide interaction, protein-carbohydrate 

interactions, lipid systems, carbohydrate-ligand interaction and protein folding. It has also gained 

wide interest for different food applications. There is however little data on using ITC to study 

amylose-inclusion complexes.  
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Silverio et al.133 employed microcalorimetric titration in the investigation of starch 

retrogradation that occurs in the first 24hr. Purified amylose and amylopectin from corn, and 

native starches from wheat, potato, maize, waxy and amylomaize were investigated with or 

without the addition of sodium dodecylsulfate (SDS) or 1-monlauroylrac-glycerol (GML). Net 

exothermic heat of reaction for retrogradation decreased on addition of the lipids but this varied 

depending on the amylose content, botanical source, and type of lipid added. ITC was also able 

to show interactions between waxy maize and the added lipids. Another study that employed the 

use of ITC was by Kubik and Wulff.125 which was discussed earlier. The effect of chemical 

modification of amylose on amylose inclusion complex was examined with the aid of ITC. 

To further understand the amylose-lipid interaction, this sensitive method (ITC) can 

provide information regarding the interactions occurring at a micro level. It can also provide 

more information regarding the effects of varying chain lengths of amylose and fatty acid on the 

degree of interaction between the two molecules. 

 

Figure 13. Representative diagram of a typical power compensation ITC.134 
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III. CHAPTER  1: Effects of Botanical Source and Enzymatic Modifications on the 

Starch-Stearic Acid Complex Formation 

ABSTRACT 

Enzymatic modification of starch may create more favorable starch chains that could enhance 

starch-inclusion complexation. Starches from different botanical sources, including potato, 

common corn and Hylon VII, were modified enzymatically using isoamylase or combined with 

β-amylase prior to complexing with stearic acid, and starches and their complexes were 

characterized. Debranching significantly increased iodine affinity (IA) of potato and common 

corn, but had no effect on Hylon VII starch; the additional β-amylase treatment further increased 

IA of potato and common corn starches, but decreased that of Hylon VII. The highest amount of 

stearic acid (55.9 mg/g) was complexed by the debranched and β-amylase-treated potato starch. 

In general, the IA values of complexes were positively correlated with the amount of stearic acid 

measured by gas chromatography (GC). All starch complexes displayed a mixture of the B- and 

V-type X-ray diffraction patterns, with the debranched and β-amylase treated starch complexes 

exhibiting more of the V-type pattern. These results indicate that the additional β-amylase 

treatment significantly increased complexation between starch and stearic acid for debranched 

potato and common corn starches, but debranching alone was sufficient to increase complexation 

for Hylon VII starch under the present experimental conditions. 

 

KEYWORDS: β-amylase, starch inclusion complexes, stearic acid, iodine affinity, X-ray 

diffraction  
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INTRODUCTION 

Starch is a homoglucan of a similar backbone of repeating α-D-glucose units linked by α-

D-(14) glucosidic linkages with branching points linked by α-D-(16) linkages. Starch 

consists of two main components, i.e. amylose of an essentially linear molecule with few 

branches, and amylopectin of a highly branched structure. Nevertheless, the characteristics of 

starch from different plant sources vary and are affected by the proportion and structure of 

amylose and amylopectin.1,2 Native starches from different sources exhibit three distinct wide-

angle powder X-ray diffraction patterns, including the A-, B- and C-type.3 Cereal starches such 

as maize and rice exhibit the A-type polymorph; tuber starches like potato display the B-type; the 

C-type is found in bean or root starches.4 The V-type polymorph is composed of a single 

amylose helix with a ligand included in its cavity and is formed primarily during complexation 

reaction with amylose.5 In dilute solution, linear starch chains assume a helical conformation 

with a hydrophilic exterior and a hydrophobic cavity, which enables its interactions with 

hydrophobic compounds to form starch-inclusion complexes that usually exhibit the V-type 

polymorph.  

Starch inclusion complexes have been proposed to function as carriers for delivering and 

protecting bioactive molecules from degradation6,7 and for stabilizing volatile compounds.8 

Inclusion complexes involving starch and various molecules such as lipids,9-11 flavors8,12 and 

bioactive compounds6,13,14 have been studied. The formation of inclusion complexes between 

amylose and fatty acids has been reported to be affected by many factors, such as amylose chain 

length,15-18 lipid structure and chain length,7,19-20 reaction temperature,21-22 reaction pH24 and 

complexing solvent.25 The stability of amylose-fatty acid complexes was reported to decrease 

with unsaturation of the fatty acids19,25 but increase with increasing amylose chain length up to 
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degree of polymerization (DP) 400, after which conformation disorders and crystal faults may 

arise for longer chains.11  

Debranching has been employed to improve starch complexing capability.26,27 Recently, 

Zhang et al.28 debranched high-amylose (70% amylose) maize starch using pullulanase for 

varying times (0, 2, 6, 8, 12 and 24 h), and the resultant debranched starches were complexed 

with lauric acid. They reported that starch debranched for 24 h yielded the highest amount of 

complexed lauric acid, suggesting that prolonged debranching could improve the formation of 

starch-lipid complexes.  

The objective of this study was to determine the effect of debranching in combination 

with an additional β-amylase treatment on starches from three sources, potato (~ 21% amylose), 

common corn (~ 27% amylose), and high amylose (~ 70% amylose) corn for the formation of 

starch-stearic acid (C18:0) complex. It was hypothesized that an additional β-amylase treatment 

on debranched starch could improve the complexation yield of some starches by producing 

starch chains with favorable lengths required for complexation with stearic acid. The 

complexation yields, iodine affinity, melting properties and X-ray diffraction patterns of the 

insoluble complexes formed were characterized.  

 

MATERIALS AND METHODS 

Materials. Potato starch was obtained from Penford Food Ingredients (Centennial, CO, USA). 

Common corn and Hylon VII (~70% amylose) starches were obtained from Ingredion Inc. 

(Bridgewater, NJ, USA) and defatted with 85% methanol prior to the complexation reaction to 

remove naturally present lipids. Isoamylase from Pseudomonas sp (specific activity 280 units/mg 

protein), pullulanase from Klebsiella planticola (specific activity 34 units/mg protein) and β-
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amylase from Bacillus cereus (specific activity 2660 units/mg protein) were purchased from 

Megazyme International Ireland Ltd. (Wicklow, Ireland). Stearic acid was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). All other chemicals were of ACS grade. 

Enzymatic Modification of Starch 

Debranching. Potato Starch (15 g wet basis) or other starches (common corn or Hylon VII) (20 

g wet basis) was mixed with 400 mL water (3.75% or 5% w/v, respectively) and gelatinized in a 

boiling water bath for 1 h with constant shaking, and then the mixture was equilibrated to 45 °C 

and adjusted to pH 3.5 with 0.5 M HCl. To the starch solution, isoamylase (0.5% v/w starch db) 

was added and then incubated at 45 °C with constant stirring for 48 h. The starch was recovered 

with 4-fold volume of pure ethanol, centrifuged at 7000g for 10 min, dried at 40 °C for 48 h, and 

milled using a UDY cyclone mill (UDY Corp., Ft. Collins, CO, USA) fitted with a 0.5-mm 

screen. 

β-Amylase Treatment. An additional β-amylase hydrolysis was used in some of the debranched 

starch to reduce the molecular size as described by Arijaje et al.29 After the debranching, the 

starch slurry was adjusted to pH 6.5 with 0.5 M NaOH and incubated with 75 μL of β-amylase at 

40 °C for 4 h. The enzymatic reaction was terminated by boiling for 15 min, and the β-amylase-

treated starch was recovered as previously described for the debranched starches. 

Characterization of Starch Structure. The molecular size distributions of debranched starch 

without or with the β-amylase treatment were characterized using a high-performance size 

exclusion chromatography (HPSEC) system (Waters Corp., Milford, MA, USA) as described by 

Arijaje and Wang.30 Starch (10 mg) was dissolved in 5 mL of 90% DMSO, boiled for 1 h, and 

filtered through a 5.0-μm filter prior to injection into the HPSEC system. The HPSEC system 

consisted of an ultrahydrogel guard column and an Ultrahydrogel 250 column (Waters Corp., 
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Milford, MA, USA), a 200 μL injector valve (model 7725i, Rheodyne, Cotati, CA, USA), an 

inline degasser, a model 515 HPLC pump, and a model 2414 refractive index detector. The 

mobile phase of 0.1 M sodium nitrate with 0.02% sodium azide was eluted at a flow rate of 0.6 

mL/min. The temperature of column was maintained at 55ºC and the detector at 40ºC. Dextran 

standards of molecular weight of 5,200, 11,600, 23,800, 48,600, 273,000 and 410,000 g/mole 

from Waters Corp. (Milford, MA, USA) and 1,050,000 g/mole from Sigma-Aldrich (St. Louis, 

MO, USA) were used to establish the calibration curve. 

Complexation of Starch and Stearic Acid. The starch solution (3.75 % potato or 5 % common 

corn and Hylon VII, w/v), debranched starch without or with the β-amylase treatment, was 

adjusted to pH 7.0, equilibrated to 80 °C, and added with 1 g of stearic acid (dissolved in 25 mL 

warm ethanol). The mixture was stirred continuously and maintained at 80 °C for 30 min to 

ensure sufficient mixing of starch and stearic acid, and then reduced to and maintained at 45 °C 

overnight with continuous stirring. The resulting starch-stearic acid mixture was centrifuged at 

7000g for 15 min, and the precipitate was recovered. The uncomplexed stearic acid was removed 

by rotating the precipitates with 95% ethanol using a labquake shaker rotisserie 

(Barnstead/Thermolyne, Dubuque, IA, USA) at room temperature for 2 h, centrifuged at 7000g 

for 15 min, dried at 40 °C for 48 h, milled using a mortar and pestle, sieved through a 250-μm 

sieve, and stored for further analysis. All samples were replicated. 

 Iodine Affinity of Starches and Complexes. The iodine affinity (IA) of starches and 

complexes were determined by potentiometric titration according to Schoch.31 Each sample (100 

mg) was dissolved in 1 mL of water and 5 mL of 1 M KOH and placed in a refrigerator for 30 

min with intermittent mixing. The sample was neutralized with 0.5 M HCl, and then 10 mL of 

KCl and water was added to achieve a total sample weight of 100.9 g. The solution was titrated 
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against 0.2 mg/mL standardized iodine solution using a potentiometer (Orion 420 plus, Thermo 

Electron Corp., Beverly, MA) by recording the EMF in millivolts. The bound iodine is the 

difference between the total iodine added and the free iodine from the blank titration. The IA was 

calculated using the formula below. The apparent amylose content was then determined by 

comparing against the typical IA value of purified linear fraction of the type of starch used. The 

typical values of corn and potato amyloses are 19.0% and 19.9%, respectively. Complexation 

capability was determined as the difference in IA between starches and their starch complexes. 

% Iodine affinity (IA)=
mg of bound iodine at zero intercept x 100

mg of sample weight (dry basis)
 

Stearic Acid Analysis. The complexed stearic acid was analyzed according to the method 

described by Arijaje et al.29 Complex (100 mg) was mixed with 10 mL of 1 M HCl and incubated 

in a boiling water bath with continuous stirring for 1 h. The mixture was cooled and added with 

10 mL hexane, and rotated on the rotary shaker for 2 h. Two mL of the recovered hexane layer 

containing the extracted stearic acid was added with 1 mL of boron trifluoride methanol to 

convert stearic acid to stearic acid methyl esters. An internal standard of methyl heptadecanoate 

(~1 mg) was subsequently added to all samples. The stearic acid methyl esters was injected into 

a gas chromatographer (GC) (GC-2010, Shimadzu, Kyoto, Japan) equipped with a BP 21 

capillary column (30 m  0.25 mm i.d.; SGE Inc., Austin, TX) with a flame ionization detector 

(FID), and responses were collected by Shimadzu GCsolution Workstation 2.3 (Kyoto, Japan). 

The injection port and detector temperatures were set at 220 °C and 230 °C, respectively. The 

column oven temperature was equilibrated at 100 °C for 1 min, ramped up at 15 °C /min to 160 

°C, again ramped up at 5 °C /min to 200 °C and maintained at 200 °C for 10 min. The flow rate 

of the carrier gas (helium) was 30 mL/min. The concentration of stearic acid was determined 
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from a standard curve prepared by using stearic acid methyl ester solution (0.1, 0.2, 0.4, 0.6, 0.8 

and 1 mg/mL) containing the internal standard of methyl heptadecanoate (0.5 mg/mL).  

Physicochemical Properties. A diffractometer (PW1830 MPD, Philips, Almelo, The 

Netherlands) was used to determine the powder X-ray diffraction pattern of starch and starch 

complexes. The generator voltage was set at 45 kV and the current at 40 mA. The sample was 

scanned over the 2θ angular range from 5° to 35° with a step size of 0.02° and time of 1 s per 

step. 

The thermal properties of all complexes were measured using a differential scanning 

calorimeter (DSC, Pyris-Diamond, PerkinElmer, Shelton, CT, USA). Approximately 8 mg of 

starches and complexes were weighed into stainless steel pans, 16 μL of distilled water was 

added with the aid of a micro syringe, and the pans were hermetically sealed. The samples were 

equilibrated overnight at room temperature before scanning from 25 to 180 °C at 10 °C/min. The 

onset temperature (To), peak temperature (Tp), conclusion temperature (Tc) and enthalpy (∆H) of 

the endotherms were calculated using the Pyris data analysis software.  

Statistical Analysis. All experiments were conducted at least in duplicate and analyzed using 

JMP software (SAS Institute Inc., Cary, NC, USA) and the means of the data were compared 

using Tukey’s honestly significant differences (HSD) test.  

 

RESULTS AND DISCUSSION 

Molecular Size Distribution of Starches. The standard curve used to estimate the degree of 

polymerization of debranched starches without or with the β-amylase treatment is displayed in 

Figure 1a, and the corresponding chromatograms of all starches are presented in Figure 1b. 
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Figure 1a. Standard curve used to estimate the degree of polymerization of debranched starches 

without or with the β-amylase treatment.  

The amylose and amylopectin fractions were divided at the minimum points of the 

profile, which was at a retention time (RT) of 17.04 min for potato and 18.44 min for both 

common corn and Hylon VII starch. For the debranched-only starch, the proportion of amylose 

was 21.8% for potato, 23.9% for common corn, and 61.6% for Hylon VII starch, which were 

similar to the amylose contents usually associated with these commercial starches (Table 1).  

The debranched potato starch exhibited 4 peaks with peak RTs at 12.83, 14.23, 19.45 and 

21.18 min. The debranched common corn starch had 2 peaks with peak RTs at 15.01 and 21.46. 

Hylon VII starch displayed a very broad profile with peak RTs at 15.93 and 20.93 min. The peak 

of debranched potato starch with a peak RT 12.8 min signified the presence of a high molecular 

weight amylose, which was not observed for common corn and Hylon VII starch. Potato amylose 

is known to have a higher molecular weight with a DP range of 840-2180032 compared with 
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common corn of DP 400-1470033 and Hylon VII of DP 270-8940,34 and the present results 

confirm those reports. 

 

 
Figure 1b. Normalized size-exclusion chromatograms of debranched starches without or with the 

β-amylase treatment. 
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Table 1. Percentages of Starch Fractions for Native, Debranched-only and Debranched and 

β-amylase-Treated Starches Calculated from their Molecular Size Distributions.a 

starch  

β-amylase 

treatment 

starch fractions 

amylose  AP 
I 

(DP > 400) 

II 

(DP 20-400) 

III 

 (DP < 20) 

potato No 21.8±0.2e 78.3±0.6b 22.3±0.8d 60.8±1.1b 16.9±0.3c 

Yes 13.7±0.4f 86.3±1.6a 14.2±0.4f 68.7±0.9a 17.1±0.2c 

       

common 

corn 

No 23.9±0.1d 76.2±0.5c 18.8±0.2e 46.1±0.3d 35.0±0.5a 

Yes 71.3±0.7a 28.7±0.3f 53.7±0.9a 42.3±0.5e 4.0±0.2e 

       

Hylon VII no 61.6±0.9b 38.5±0.6e 45.8±0.7b 45.3±0.4d 9.0±0.8d 

yes 40.8±1.0c 59.2±0.0d 32.5±0.1c 49.3±0.3c 18.2±0.4b 

aData of at least two measurements with standard deviation. Means in a column not sharing the 

same letter are significantly different based on Tukey’s honestly significant difference test (p < 

0.05). 

 

The starch chains with a RT shorter than 17.1 min, which corresponded to DP ˃ 400, 

were proposed to be too long to participate in stable complex formation for all starches.11 This 

study by Gelders et al.11 had examined only amylose with peak DP 20, DP 60, DP 400 and DP 

950. On the other hand, starch chains with DP < 20 were too short to form complexes with 

lipids.16 Thus, the optimum chain length for starch complexation was suggested to be between 

DP 20 and 400, and therefore starch chains were divided into three fractions, DP > 400 (I), 20 ≤ 

DP ≤ 400 (II) and DP < 20 (III) to calculate the proportions of each fractions (Table 1). Fraction 

(Fr.) II, the proportion of starch chains proposed to favor for complexing with stearic acid, was 

found to be the predominant fraction in all starches, with potato starch displaying the highest 

proportion, followed by Hylon VII and then common corn starch before the β-amylase treatment. 

Common corn starch had the highest proportion of Fr. III, whereas Hylon VII had the highest 



 

55 
 

proportion of Fr. I. Both potato starch and Hylon VII comprised over 80% of Fr. I and II, which 

agree with Hizukuri et al.35 that their B-type X-ray diffraction pattern has been associated with 

their longer average chain lengths. In contrast, common corn starch has the A-type X-ray 

diffraction pattern and a shorter average chain length.35  

The molecular weight distributions significantly changed after the β-amylase treatment, 

especially for common corn and Hylon VII starches. The amylose fraction significantly 

decreased for potato (13.7%) and Hylon VII (40.8%) starches, but significantly increased for 

common corn starch (71.3%), which was correlated with the change in Fr. I. he decrease in 

amylose fraction and Fr. I for potato and Hylon VII starches was attributed to the hydrolysis of 

longer amylose and amylopectin chains, which caused a shift to a lower DP and reduced the 

proportion of the amylose fraction. The drastic increase in Fr. I of common corn starch (35 

percentage points) after the -amylase treatment was proposed to be due to the extensive 

hydrolysis of amylopectin short chains by β-amylase, thereby increasing the proportion of 

amylose relative to the amylopectin.  

The Fr. II of potato and Hylon VII starches increased 8 and 4 percentage points, 

respectively, whereas that of common corn starch decreased 4 points. The increase of Fr. II in 

potato and Hylon VII starches was attributed to their higher average chain lengths from a greater 

proportion of long chains, which became more uniformly distributed after the -amylase 

treatment. Hylon VII and potato starch contain a high percentage of short chain amylose36 and 

long chain amylose, respectively,37 which may also contribute to their increase in Fr. II after the 

β-amylase treatment. In contrast, common corn starch has a higher percentage of short 

amylopectin chains,35 which were hydrolyzed and only some long amylopectin chains remained.    
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Iodine Affinity and Apparent Amylose Content of Starches and Complexes. The IA values 

and their corresponding apparent amylose contents of native starches and debranched starches 

without and with the β-amylase treatment are presented in Table 2. The amylose contents of 

native starches were similar to the amylose fractions as determined by their respective molecular 

size distributions of debranched starches using HPSEC (Table 1).  

 

Table 2. Iodine Affinity and Apparent Amylose Contentb for Native and Debranched 

Starches Without and With the β-amylase Treatment and their Complexes.a 

 starches 
 

starch complexes 

starch  
iodine 

affinity  

% apparent 

amylose 

contentb  

 
iodine 

affinity  

% apparent 

amylose 

content  

potato      

native 4.80.4f 24.31.9f  N/Ac N/A 

debranched-only 9.90.1d 49.60.3d  6.40.2b 32.80.0b 

debranched with β-amylase 15.80.2a 83.30.8a  4.60.4c 23.02.0c 

common corn      

native 4.60.0f 24.40.1f  N/A N/A 

debranched-only 7.40.3e 39.01.4e  5.60.2b 29.51.2b 

debranched with β-amylase 14.70.3b 77.11.8b  4.50.0c 23.80.1c 

Hylon VII      

native 12.40.2c 65.41.0c  N/A N/A 

debranched-only 12.20.1c 64.20.5c  8.30.0a 43.60.2a 

debranched with β-amylase 10.00.3d 52.91.7d  8.80.2a 46.00.9a 

aData of at least two measurements with standard deviation. Means in a column not sharing the 

same letter are significantly different based on Tukey’s honestly significant difference test (p < 

0.05). 
bApparent amylose content was determined by comparing against the typical iodine affinity value 

of purified linear fraction of the corn and potato amyloses, which are 19.0% and 19.9%, 

respectively. 
c N/A, not applicable  
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The debranching increased the IA and apparent amylose content of potato and common 

corn starches significantly but had no significant impact on those of Hylon VII starch. The 

increase in IA and apparent amylose content in potato and common corn starches was ascribed to 

the long amylopectin chains that became available to complex with iodine after debranching, and 

their different increases indicate that potato starch had a greater proportion of long amylopectin 

chains than common corn starch. The average amylopectin chains in native Hylon VII was 

reported to be 30.9,35 which was sufficient long to complex with iodine even before debranching, 

therefore there was no noticeable difference in the apparent amylose content between native and 

debranched Hylon VII starch.  

When the β-amylase treatment was applied, there was a further significant increase in the 

apparent amylose content from 49.6 to 88.3% for potato starch and from 39.0 to 77.1% for 

common corn starch; however the apparent amylose content of Hylon VII was decreased 

significantly from 64.1 to 52.9%. The increase in IA for potato and common corn starch was 

because the β-amylase treatment helped to reduce the chain length of starch chains to the 

favorable length required for complexation, which was achieved by hydrolysis of short 

amylopectin chains to result in more chains with favorable DP for complexation. This is 

supported by the HPSEC results, where the proportion of long chains (Frs. I and II) unchanged or 

increased for potato and common corn starches, but that of Hylon VII decreased. The Hylon VII 

results indicate that Hylon VII amylopectin long chains took part in the IA measurements, but 

subsequently became too short after the β-amylase treatment to form complexes with iodine. 

These results also corroborate well with the HPSEC results where Hylon VII starch exhibited an 

increase in the proportion of shorter chains (Fr. III) (Table 1) after the β-amylase treatment. The 

present results suggest that debranching of potato and common corn starches can improve their 
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capability to form complexes by reducing the DP of amylose and amylopectin chains to an 

optimum DP range. 

 Following the enzymatic treatments of starches, starch-stearic acid complexes were 

prepared and recovered, and their IAs was measured to estimate the extent of complex formation 

based on the reduction in IA after stearic acid complexation. If starch helix was occupied by 

stearic acid, it would not be capable of complexing with iodine because iodine and fatty acids 

occupied the same location in the starch helix.38 The IA for debranched starch-stearic acid 

complexes were 6.4, 5.6 and 8.3 for potato, common corn and Hylon VII, respectively, which 

corresponds to a complexation yield of 19.8, 9.5 and 20.6% respectively. These results showed 

that for the debranched starches, only common corn starch showed a low complexation yield, 

and agree with the HPSEC results that debranched common corn starch consisted of a high 

percentage of short chains that were ineffective for complexation.  

With the additional β-treatment, the IA of complexes was significantly reduced when 

compared with the starches prior to complexation, from 15.8 to 4.6 for potato, from 14.7 to 4.5 

for common corn, and from 10.0 to 8.8 for Hylon VII starch. As previously discussed, the 

reduction in IA of starch complexes corresponded to the increase in complexation with stearic 

acid. These results therefore show that complexation yield was increased for potato and common 

corn starches but was reduced for Hylon VII after the β-amylase treatment. Although the present 

results support previous studies11,16 that starch chains in Fr. II are responsible for the 

complexation reaction, these results also suggest that starch chains with DP > 400 may 

participate in complexation with stearic acid. The IA of debranched common corn starch 

decreased significantly after the β-amylase treatment, which indicated an increase in 

complexation and was correlated with an increase in the proportions of Fr. I (Table 1). 
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Nevertheless, the β-amylase-treated Hylon VII starch complexes showed a high proportion of 

starch chains in Fr. II, but a low complexation with stearic acid compared with potato and 

common corn starches, which was suspected to be due to an increased Fr. III that was not 

favorable for complexation.  

Overall, when the IA values of complexes from both the debranched without and with the 

β-amylase treatment were correlated with the HPSEC results, the present results suggest that 

complexation of stearic acid occurred mainly with starch chains in Fr. II, and to a much less 

extent with starch chains in Fr. I .  

Complex Recovery and Stearic Acid Content. The recovery of starch-stearic acid complexes 

were obtained by dividing the weight of recovered insoluble complex by the sum of initial starch 

and stearic acid weight. The recovery of the debranched-only starch complexes followed the 

order Hylon VII  common corn  potato. The additional β-amylase treatment had no significant 

effect on the recovery of starch complexes from common corn and Hylon VII starch, but it 

significantly increased the recovery for the potato starch complexes. It is possible that the 

percentage of phosphate monoesters (0.09% dry starch basis)39,40 naturally present in potato 

starch was increased by the β-amylase treatment, which stabilized starch chains and encouraged 

complexation.  The amounts of stearic acid recovered and measured by GC from all starch 

complexes are listed in Table 3. Within the debranched starch, the included stearic acid was in 

the order of Hylon VII starch  potato starch  common corn starch. 
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Table 3. Complex Recovery and Stearic Acid Contenta Recovered from all Debranched 

Starch-Stearic Acid Complexes. 

starch-stearic acid complex  
β-amylase 

treatment 
recovery (g/g) 

stearic acidb in complex 

(mg/g) 

potato no 0.59±0.0c 25.1±0.4d 

yes 0.76±0.4b 55.9±2.1a 

    

common corn no 0.67±0.1c 13.7±0.9e 

yes 0.63±0.1c 33.5±0.5c 

    

Hylon VII no 0.93±0.1a 37.3±0.4b 

yes 0.95±0.2a 33.5±0.7c 

aData of at least two measurements with standard deviation. Means in a column not sharing the 

same letter are significantly different based on Tukey’s honestly significant difference test (p < 

0.05). 
bStearic acid measured by GC. 

 

When the additional β-amylase treatment was applied, the amount of included stearic 

acid increased significantly for potato and common corn starch complexes, but it decreased 

slightly for Hylon VII starch complexes. The β-amylase-treated potato starch complex included 

the highest amount of stearic acid (55.9 mg), and there was no significant difference between the 

amount of complexed stearic acid for the β-amylase-treated common corn and Hylon VII starch 

complex. These results correlated well with the previous results from the IA and apparent 

amylose content (Table 2), in which the β-amylolysis of starch significantly improved complex 

formation with stearic acid for potato and common corn starches, but decreased for Hylon VII 

starch. These results also suggest that although stearic acid and iodine may occupy the same 

position in starch helix,38 their individual interactions with the starch helix differ because of the 

difference in their chemical structures and molecular weight.  
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When the amounts of complexed stearic acid was compared with starch chain fractions, 

the results from the present study are in agreement with previous studies11,16 and IA results that 

starch chains 20 ≤ DP ≤ 400 are effective for starch complexation with stearic acid, except for 

the β-amylase-treated Hylon VII starch, which was discussed earlier and was attributed to the 

increase in very short starch chains (Fr. III) that was too short to form complexes. Starch chains 

with DP > 400 (Fr. I) were also actively participating in complex formation.  

 

Characterization of Starch-Stearic Acid Complexes 

X-ray Diffraction Pattern. The X-ray diffraction patterns of native ungelatinized, debranched 

starches without and with the β-amylase treatment and their starch-stearic acid complexes are 

displayed in Figure 2. Native and debranched potato and Hylon VII starch displayed the B-type 

X-ray diffraction pattern with peaks at 2θ = 5.6, 15.3º, 17.2º, 19.7º, 23.4º (Figure 2), whereas 

native and debranched common corn displayed the A-type X-ray pattern with characteristic 

peaks at 2θ = 10º, 11.4º, 15.2º, 17.2º, 18.2 º, and 23.1º.These results are in agreement with 

previous studies where tuber starches and amylomaize starch have been reported to have the B-

type pattern35,41 and common corn the A-type pattern.42 Hizukuri et al.35 reported that the A-type 

starches have shorter average chain lengths (DP < 19.7) compared with the B-type starches (DP 

> 21.6) and crystallize to display the A- and B-type patterns, respectively. This may explain why 

native ungelatinized Hylon VII starch displayed the B-type pattern. In addition, native 

ungelatinized and debranched Hylon VII starch displayed an additional peak at 2θ = 20º, which 

signifies the presence of naturally present amylose-lipid complexes.41 This suggests that the 

naturally present lipids were not completely removed in Hylon VII starch during the defatting 

process. 
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Figure 2. Normalized X-ray diffractograms of native and debranched potato, common corn and 

Hylon VII starches and their starch complexes. (i) native ungelatized starch; (ii) debranched starch; 

(iii) debranched and β-amylase-treated starch; (iv) debranched starch-stearic acid complex; (v) 

debranched and β-amylase-treated starch-stearic acid complex.  

The XRD patterns displayed by the starches were supported by the HPSEC 

chromatograms (Figure 1b). The A-type pattern exhibited by common corn starch was supported 
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by the HPSEC results, which showed the presence of a high proportion of amylopectin short 

chains that have been implicated in the formation of the A-type crystalline pattern. The peak 

intensities increased with debranching for common corn and Hylon VII starches, and decreased 

slightly for potato starch, but all starches retained the same XRD pattern before and after the 

debranching process, suggesting that the debranching treatment did not affect how starch chains 

arranged themselves to form the crystalline structure. 

When the β-amylase treatment was incorporated to the debranched starches, all three 

resultant starches displayed the B-type pattern. Debranched common corn starch with the A-type 

pattern was transformed to the B-type pattern, signifying a change in crystalline structure. The 

transformation of the XRD pattern of common corn starch is supported by the HPSEC results, in 

which the proportion of short chains (Fr. III) significantly decreased after the β-amylase 

treatment and the significant increase in Fr. I may contribute to the formation of the B-type 

pattern.  

The X-ray patterns of all starch-stearic acid complexes were a mixture of the B- and V-

type pattern (peaks at 2θ = 7.6º, 12.9º and 20º), indicating the presence of retrograded starch 

chains and starch-stearic acid complexes. Zhang et al.28 also observed a mixture of the B- and V-

type pattern in the debranched Hylon V-lauric acid complex. When an additional β-amylase 

treatment was applied to the debranched starches, the intensity of the V-type pattern was 

increased, supporting the previous the IA and GC results that the debranched starches formed 

starch-stearic acid complexes, and the additional β-amylase treatment further encouraged 

complex formation. The intensity of the B-type pattern, particularly the peak at 2θ =17.2º, 

increased significantly for the β-amylase-treated Hylon VII complexes, but decreased for potato 
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and common corn starches, which may explain the negative effect of the β-amylase treatment on 

complexation with stearic acid for debranched Hylon VII starch.  

Thermal properties of Starch and Starch-Stearic acid Complexes The melting properties of 

starch-stearic acid complexes as measured by DSC are presented in Table 4. The peak melting 

temperature of complexes (Tp) without and with the β-amylase treatment ranged from 105.8 to 

108.8 ºC for all starches, depicting the melting of the type I starch-stearic acid complex22, which 

has been reported to dissociate between 95 and 105 ºC.25 Within each starch, the additional β-

amylase treatment only slightly increased the Tp and Tc, but it significantly increased the 

enthalpy value. The increase in enthalpy values might indicate more complex formation, as 

supported by the GC results (Table 3), and/or more energy required to melt these complexes due 

to an increase in their crystallinity, as supported by the X-ray results (Figure 2).  

 

Table 4. Melting Temperatures and Enthalpies of Debranched Starch-Stearic Acid 

Complexesa. 

starch 

β-amylase 

treatment 

dissociation of starch-stearic acid complex 

To (°C) Tp (°C) Tc (°C) ∆H (J/g) 

potato no 94.50.5b 107.11.2a,b 116.91.2b,c 8.850.03b 

yes 96.90.1a 109.00.6a 118.60.0a,b 10.820.15a 

 

     

common corn no 94.90.1b 105.80.6c 117.80.1a,b 5.750.13c 

yes 94.90.4b 107.60.4a,b 119.10.3a 10.710.24a 

 

     

Hylon VII no 93.50.2b 108.80.3a 115.50.4c 2.300.08e 

yes 94.40.7b 108.80.0a 119.10.2a 4.880.12d 

a Mean (standard deviation) of at least two measurements. Means in a column not sharing the same 

letter are significantly different based on Tukey’s honestly significant difference test (p < 0.05). 

Melting temperatures: Onset, To; Peak, Tp; Conclusion, Tc; Enthalpy, ∆H. 
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CONCLUSIONS 
 

In conclusion, the present study demonstrates that a combination of debranching and β-

amylase treatment improved the amount of included stearic acid formation for both potato and 

common corn starches. Hylon VII starch, on the other hand, had the highest complex recovery 

among starches. The β-amylase treatment produced more starch chains with favorable chain 

lengths to form complex with stearic acid for potato and common corn starches. The debranched 

and β-amylase-treated potato starch included the highest amount of stearic acid. Starch chains 

with DP > 400 may also actively participate in complexing with stearic acid.  
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IV. CHAPTER 2: Complexation between Hexanoic Acid and Linear Starch Chains 

using Isothermal Titration Calorimetry - Chapter 2 

ABSTRACT 

There is limited information on the use of isothermal titration calorimetry (ITC) in 

understanding starch-fatty acid interactions. The effects of hexanoic acid concentration and 

temperature on the complexation of debranched waxy maize starch and potato amylose with 

hexanoic acid were investigated using ITC. The starch samples were characterized for their 

molecular size distribution and iodine affinity. Potato amylose and debranched waxy maize 

starch displayed a major peak degree of polymerization (DP) of 330 and 25, respectively and 

Iodine Affinity (IA) value was higher for the potato amylose. The titration data were fitted using 

a nonlinear least squares approach with one set of binding site model. Complexation was 

exothermic and spontaneous for all reactions based on changes in enthalpy free energy (ΔG). The 

binding affinity (Ka) of debranched waxy maize starch for hexanoic acid decreased with 

increasing temperature from 25 to 45ºC. The Ka and number of binding sites (n) for debranched 

waxy maize exceeded that of potato amylose, indicating a higher complexation of debranched 

waxy maize for hexanoic acid. The (n) and enthalpy of binding (∆H) values for both starches 

remained independent of temperature change. 

KEYWORDS: hexanoic acid, isothermal titration calorimetry, waxy maize starch, amylose.   
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INTRODUCTION 

Most starches are composed of a mixture of two polydisperse and polymolecular 

polymers: amylose, an essentially linear polymer, and amylopectin, a highly branched polymer. 

Both are homopolymers of α-D-glucopyranose with the linear chains linked by α-D-(14) 

glucosidic linkages and the branching points by α-D-(16) linkages. Amylose forms a helical 

structure in solution with a hydrophobic cavity induced by the interaction with an hydrophobic 

compound with the polar hydroxyl groups aligned outwards and the less polar groups aligned 

inwards.1 These inclusion complexes have been proposed as carriers for fatty acids2, drugs3 and 

other bioactive compounds.4 Complexation between starch and fatty acids have been studied 

extensively with the aid of X-ray crystallography5,6, differential scanning calorimetry (DSC)7-9, 

and fourier transform infrared spectroscopy (FTIR)10,11. FTIR can also help to identify and 

quantify the particular compound in the complex because different compounds absorb and 

transmit infrared differently.  

Isothermal titration calorimetry (ITC) has been used to characterize the thermodynamics 

of interaction occurring at a molecular level12 over a range of temperatures.13 First described by 

Hansen et al14 and Christensen et al15, ITC is an invaluable tool in understanding molecular 

interactions by measuring the heat output (exothermic reaction) or uptake (endothermic reaction) 

of a binding process, and thus, heat measured can be used to express the extent of interaction at 

equilibrium during titration.13 Various types of molecular interactions such as protein-ligand 

interaction,16-18 protein folding,19 and protein-carbohydrate interaction20,21 have been studied. 

ITC was used to investigate the inclusion complex formation between synthetic amylose 

of varying degrees of polymerization (DP) of 9 – 1000 glucose units or amylopectin with 4-tert-

butyl-phenol or SDS.22 Amylopectin with chain length DP 13 and synthetic amylose with DP ≥ 9 
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formed complexes with SDS, but only amylose with DP ≥ 100 complexed with tert-butylphenol. 

Silverio et al23 investigated the influence of surfactants, including sodium dodecylsulfate (SDS) 

or 1-monolauroylrac-glycerol (GML) on starch retrogradation using isothermal 

microcalorimetric titration. They reported a reduction in net exothermic heat of reaction with the 

addition of the surfactant, implying a decrease in retrogradation. In addition, the interactions with 

starch were affected by amylose content and botanical source of starch, as well as on the type of 

surfactants. ITC was also used to investigate maltodextrin/cyclodextrin and surfactant 

interactions.24-27 Mun et al27 reported (n) values of 2.5 and 5.3 for the binding of SDS and 

dodecyl trimethylammonium bromide (DTAB), respectively, to cycloamylose with an average 

molecular weight of 7500 g/mole. These results indicate that on average, two or three molecules 

of SDS and about five molecules of DTAB bound to one molecule of cycloamylose, 

respectively. However, limited information is available on the use of ITC in understanding 

starch-fatty acid complexation, and ITC may be able to provide more information that could 

enable the optimization of the starch-inclusion complex formation process. 

The objective of the present study was to investigate the thermodynamics of 

complexation of linear starch chains from debranched waxy maize and potato amylose with 

varying concentrations of hexanoic acid (C:6) at two titration temperatures (25 and 45ºC). 

Hexanoic acid was used as a model compound for the starch-fatty acid complex formation study 

because it is hydrophobic to interact with the hydrophobic cavity of the starch helix to form 

complex yet relatively soluble in the buffer solution used for the ITC measurements. Waxy 

maize starch consists ~99% amylopectin and was used to create linear starch chains of lower 

DPs by debranching with isoamylase, whereas potato amylose represented long linear starch 
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chains. The results from this study could offer more information on the starch-inclusion complex 

formation at the molecular level in order to optimize the complexation reaction. 

 

MATERIALS AND METHODS 

Materials. Potato amylose and hexanoic acid were obtained from Sigma-Aldrich (St. Louis, 

MO) and used without further treatment. Waxy maize starch was obtained from Ingredion 

(Bridgewater, NJ, USA).  Isoamylase (specific activity 59,000 units/mg protein) was purchased 

from Hayashibara Biochemical Laboratories Inc. (Okayama, Japan). All other chemicals were 

ACS grade. 

Debranched waxy maize starch was prepared by gelatinizing waxy maize starch slurry (5 

% w/v) in a boiling water bath for 1 h with constant stirring. Then the solution was equilibrated 

to 45°C, adjusted to pH 3.5 with 0.5 M HCl, added with 0.5% isoamylase (v/w starch dry 

weight) and then incubated at 45°C with constant stirring for 48 h. The debranched amylopectin 

was recovered with four-fold volume of pure ethanol, centrifuged, dried at 40°C for 48 h, and 

milled using a UDY cyclone mill (UDY Corporation, Ft. Collins, CO) fitted with a 0.5-mm 

screen. 

Characterization of Starch Structure. The molecular-size distributions of potato amylose and 

debranched amylopectin from waxy maize starch were determined by a high-performance size-

exclusion chromatography (HPSEC) system (Waters Corp., Milford, MA). Approximately 10 mg 

of starch was dissolved in 5 mL of 90% DMSO, boiled for 1 h, and filtered through a 5.0-μm 

filter prior to injection into the HPSEC system. The HPSEC system consisted of a guard column, 

two Shodex columns (OHpak SB-G, 6.0 × 500 (mm) i.d. × length), two Shodex columns (OHpak 

KB-804 and KB-802, both 8.0 × 300 (mm) i.d. × length), a 200 μL injector valve (model 7725i, 
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Rheodyne, Cotati, CA, USA), an inline degasser, a model 515 HPLC pump, and a model 2410 

refractive index detector. The mobile phase of 0.1 M sodium nitrate with 0.02% sodium azide 

was eluted at a flow rate of 0.6 mL/min. The temperature of column was maintained at 60ºC and 

the detector at 40ºC. Dextran standards of molecular weight of 5,200, 11,600, 23,800, 48,600, 

273,000, 410,000 and 872,300 g/mole from Waters Corp. (Milford, MA) and 1,185,000 g/mole 

from Sigma Aldrich (St. Louis, MO) were used to establish the calibration curve. 

Physicochemical Properties. Iodine affinity (IA) was analyzed by potentiometric titration as 

described by Schoch.28 Starch (~100 mg) was dissolved in 1 mL of water and 5 mL of 1 M KOH 

and placed in a refrigerator for 30 min with intermittent mixing. The sample was neutralized with 

0.5 M HCl and 10 mL of 0.5 M potassium iodide (KI) was added. Water was then added to the 

solution to achieve a total weight of 100.9 g. The solution was titrated against ~0.2 mg/mL 

standardized iodine solution using a potentiometer (Orion 420 plus, Thermo Electron Corp., 

Beverly, MA) by recording the electromotive force (EMF) in millivolts from 230 to 285 mV. 

The bound iodine is the difference between the total iodine added and the free iodine from the 

blank titration. The IA was calculated using the formula below, and the apparent amylose content 

was determined by comparing the IA against the typical IA of purified amylose of corn and 

potato starch, which are 19.0% and 19.9%, respectively.  

% Iodine affinity (IA)=
mg of bound iodine at zero intercept  100

mg of sample weight (dry basis)
 

 

 

 

 

 



 

76 
 

Isothermal titration calorimetry 

The complexation between amylose or debranched waxy maize starch and hexanoic acid 

was assessed by measuring the heat change that occurred during titration using a VP-ITC 

titration microcalorimeter (MicroCal Inc., Northhampton, MA). Prior to titration, amylose or 

debranched amylopectin (7.95 mg/mL) was solubilized in 10 mM tris buffer containing 10 mM 

NaCl at pH 7.4. Hexanoic acid (20, 25, 35 mM) was also solubilized in 10 mM tris buffer 

containing 10 mM NaCl at pH 7.4, and all solutions were equilibrated at 25°C and degassed 

under vacuum. The sample cell (1.4 mL) contained amylose and debranched amylopectin 

solution, the reference cell contained ultrapure water, and the injection port contained hexanoic 

acid concentration. Hexanoic acid (10 µL) was titrated into the sample cell every 6 min with a 

total of 35 injections. The resulting titration curves were corrected for ligand free buffer 

interactions and analyzed using the Origin ITC software by MicroCal Inc. Thermodynamic 

parameters characterizing the complexation of debranched waxy maize or potato amylose with 

varied concentrations of hexanoic acid were determined by running the ITC measurements at 25 

and 45 ºC. The data obtained with these interactions was best fitted using a nonlinear least 

squares with one set of binding site model that generated the thermodynamic values of  

association constant (Ka) (where Ka= 1/Kd), number of binding sites (n), enthalpy of 

binding(∆H) and entropy of binding (∆S). The change in free energy (ΔG) for all reactions were 

calculated using the Gibb’s free energy equation, ΔG = ΔH – TΔS, where T is the absolute 

temperature in Kelvin. 
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RESULTS AND DISCUSSION 

Molecular size distribution of starch. The standard curve used to estimate the degree of 

polymerization for the debranched waxy maize starch and potato amylose is displayed in Figure 

1a. 

 

Figure 1a. Standard curve used to estimate the degree of polymerization of debranched starches 

without or with the β-amylase treatment.  

Debranching of waxy maize starch resulted in linear starch chains with a dominant peak 

at retention time (RT) 24.4 min, which corresponded to a peak DP 25 (Figure 1b).  

Approximately 54% of starch chains in the debranched waxy maize starch were longer than DP 

20, which could participate in complex formation with hexanoic acid.29  
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Figure 1b. Molecular size distribution of potato amylose and debranched waxy maize.  

 

The peak DP 25 of debranched waxy maize starch obtained in this study was similar to 

Nakazawa and Wang30 of a DP 27, but higher than previous studies with Cai and Shi31 reporting 

a DP of 9 and Adkins et al.32 reporting a DP of 17. Potato amylose showed a major peak at RT of 

21.6 min, which corresponded to a peak DP ~330, and a shoulder at RT of 18.3 min, which 

corresponded to a peak DP ~7000. The peak DPs of debranched waxy maize and potato amylose, 

i.e. DP 25 and 300, were within the range of synthesized amylose (DP 9-1000) in a complexation 

microcalorimetric study by Wulff & Kubik.22 They reported that linear starch chains with a DP 9 

was sufficient to take part in complex formation. The amylose fraction with a peak DP 7000 in 

potato amylose in this study was presumably not involved in complexation because it exceeded 
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the reported starch chain length for fatty acid complexation according to Gelders et al.,6 who 

found that amylose with a DP > 400 was not effective in forming stable complexes with fatty 

acids. Other studies reported that DP 18-24 glucose units was effective to complex with one fatty 

acid or monoacyl glycerol of 14-18 carbons,33 DP 30-40 with two palmitic acid (C16:0)5, DP 34 

with two stearic acid,7 and DP 40 with two docosanoic acid (C22:0).6   

Iodine Affinity. Iodine affinity (IA) via potentiometric titration is traditionally used to measure 

the apparent amylose content in native starch based on complexation between amylose and 

iodine, although it is known that amylopectin long chains also interact with iodine to 

overestimate apparent amylose content. In this study, IA was used to relate to complexation with 

hexanoic acid. Debranching increased the IA of waxy maize starch from 0.2 to 2.9, which was 

equivalent to 1% and 15.4 % apparent amylose content, respectively (Table 1).  

 

Table 1. Iodine Affinity and Apparent Amylose Contenta for Native and Debranched Waxy 

Maize and Potato Amylose. 

starch  iodine affinity  
% apparent amylose 

contentb  

 

waxy maize starch    

native 0.20.0 1.00.1  

debranched 2.90.7 15.53.9  

potato amylose 13.90.1 70.00.5  

aApparent amylose content was determined by comparing against the typical iodine affinity value 

of purified linear fraction of the corn and potato amyloses, which are 19.0% and 19.9%, 

respectively. 

 

The IA of potato amylose was 13.9, which was equivalent to ~70.0% apparent amylose 

content. The high apparent amylose content suggests that potato starch might interact more with 

hexanoic acid than debranched waxy maize starch because of the presence of more linear starch 

chains. When the apparent amylose content of starches (15.4 and 70 % for debranched waxy 
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maize starch and potato amylose, respectively) are compared with their respective molecular 

weight distribution (Figure 1b), the results indicate that the minimum DP of 70 may be preferred 

to complex with iodine. It is possible that the minimum DP required to complex with hexanoic 

acid is also approximately around 70 because Mikus et al.34 previously reported that iodine and 

fatty acids occupied the same position in the starch helix. 

Isothermal titration calorimetry. The thermodynamic parameters obtained for the interactions 

of debranched waxy maize starch and potato amylose with hexanoic acid of three concentrations 

at two temperatures are presented in Table 2, and the titration curves for the ITC measurements 

are displayed in Figures 2-3 for debranched waxy maize starch and in Figures 4-5 for potato 

amylose. The curves show that the titration of hexanoic acid triggered an exothermic co-

operative binding event, and the binding between debranched waxy maize starch or potato 

amylose and hexanoic acid was stabilized by enthalpy of binding. The titration curve of 

debranched waxy maize starch with 20 mM hexanoic acid at 25 °C showed that the first few 

injections produced large exothermic peaks up to the 16th injection, and thereafter there was a 

decline in the peak height of the signals indicating, that starch chains were becoming saturated 

with hexanoic acid (Figure 2a). The transfer of the non-polar tails of hexanoic acid from buffer 

into starch helices to form starch-hexanoic acid complexes was responsible for the exothermic 

reaction observed.24,26 This is in agreement with previous studies by Wulff & Kubik22 and 

Wangsakan et al,24,26 using maltodextrins with DE between 5 and 25, that when the non-polar 

part of surfactant molecules was transferred from a highly polar environment into the less polar 

environment of maltodextrin helix, an exothermic reaction was produced.  
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Figure 2. ITC profile of debranched waxy maize and hexanoic acid run at 25 °C (a) 20 mM (b) 

25 mM (c) 35 mM. 

When hexanoic acid concentration was increased to 25 mM and 35 mM an earlier decline 

in exothermic peak signal was observed during titration (Figure 2b and 2c). This indicates that as 

hexanoic acid concentration was increased, there was more hexanoic acid available to bind to 

starch per injection, consequently, the debranched waxy maize starch chains became saturated 

faster and the amount of heat produced during binding reduced. Eventually, the debranched 

waxy maize starch chains were all saturated with hexanoic acid, and only the heat of dilution 

from the titration was observed. A similar trend for reduction in heat signal was observed when 

hexanoic acid concentration increased for debranched waxy maize starch titrated at 45 °C 

(Figure 3) and also for potato amylose titrated at 25 and at 45 °C (Figures 4 and 5). It was noted 

that saturation of starch chain and reduction in heat signal occurred earlier for debranched waxy 

maize starch compared to potato amylose at both 25 and 45 °C. This suggests that complexation 
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between debranched waxy maize starch and hexanoic acid may be more favored than with potato 

amylose. 

 
Figure 3. ITC profile of debranched waxy maize and hexanoic acid run at 45 °C (a) 20 mM (b) 

25 mM (c) 35 mM . 

 

Because starch is polydisperse and polymolecular in nature, there was a wide range of 

molecular weight distribution of starch chains in both debranched waxy maize and potato 

amylose. Thus the fitting of the data was more difficult and the variability of entropy values (ΔS) 

was high. The ΔS values may not represent the true condition of the binding of starch to 

hexanoic acid and therefore are not included.  
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Figure 4. ITC profile of potato amylose and hexanoic acid run at 25 °C (a) 20 mM (b) 25 mM (c) 

35 mM. 
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Figure 5. ITC profile of potato amylose and hexanoic acid run at 45 °C (a) 20 mM (b) 25 mM (c) 

35 mM. 

 

This in agreement with Mun et al.27 that reported that the amount of surfactant (SDS) and 

dodecyl trimethylammonium bromide (DTAB) that will bind to cycloamylose chains with 

varying DP of 24 to 44 will differ because of the difference in starch chain length and how far 

the surfactants penetrate the cavity of the cycloamylose. They suggested that these factors will 

determine the entropy of each complexation reaction, which will differ from one another.  
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Table 2. Thermodynamic parameters of debranched waxy maize starch and potato amylose when titrated with varying 

concentrations of hexanoic acid at 25 and 45°C.a 

 

 

  25 °C  45 °C 

starch 

hexanoic 

acid (mM)  n 10-4 Ka (M-1) 

ΔH 

(kcal/mol)  n 10-4 Ka (M-1) ΔH (kcal/mol) 

         

Debranched 

waxy maize 20 0.42±0.01 6.24±2.35 -6390±6  0.43±0.04 1.98±0.17 -5971±152 

 25 0.42±0.04 4.02±0.60 -6125±518  0.41±0.01 1.31±0.21 -5638±399 

 35 0.35±0.01 2.82±0.28 -6694±29  0.39±0.05 1.69±0.75 -5043±76 

         

Potato 

Amylose 20 0.07±0.01 0.51±0.33 -6296±41  0.08±0.00 0.12±0.04 -4073±680 

 25 0.07±0.01 0.40±0.25 -6293±57  0.07±0.00 0.16±0.07 -5894±267 

 35 0.06±0.00 0.34±0.20 -6250±346  0.07±0.00 0.18±0.08 -5849±421 
aData of at least two measurements with standard deviation. Means in a column not sharing the same letter are significantly different 

based on Tukey’s honestly significant difference test (p < 0.05). 
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The enthalpies of binding (ΔH) representing the true value of the reaction at various 

concentrations of hexanoic acid were all negative (Table 2), indicating a spontaneous and 

favorable binding reaction of mostly hydrophobic in nature. There was no particular trend in 

entropy values for the binding of hexanoic acid to debranched waxy maize starch and potato 

amylose at 25 °C, and for all hexanoic acid concentrations used, the entropy of binding for 20 

and 35 mM hexanoic acid to debranched waxy maize starch at 45 °C was positive, and it 

increased with increasing hexanoic acid concentration. The entropy for the binding of potato 

amylose to hexanoic acid at 45 °C was also positive, but it decreased with increasing hexanoic 

acid concentration. These entropy results indicate that at 45 °C as the hexanoic acid 

concentration increased, the degree of order of the system increased for the debranched waxy 

maize starch, suggesting a favorable reaction, but the opposite trend was observed for potato 

amylose.  

The binding affinity (Ka) as observed from the titration curves showed that Ka for 

debranched waxy maize starch and potato amylose decreased from 25 to 45 ºC, except for potato 

amylose binding to 35 mM hexanoic acid. The similar Ka values at 35 mM hexanoic acid at both 

25 and 45 ºC indicate that the increase in hexanoic acid concentration might play a more 

important role in complex binding for potato amylose. In addition, the Ka values of debranched 

waxy maize starch were significantly higher than those of potato amylose at the same hexanoic 

acid concentration and temperature, supporting earlier results that there was a higher binding 

affinity of hexanoic acid to debranched waxy maize starch. The high standard deviation of Ka 

values was assumed to be similar to that of the ΔS values explained earlier.  

There was no noticeable change observed in the (n) values for the binding occurring at 25 

and 45ºC and with increasing concentration of hexanoic acid for debranched waxy maize starch 
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and potato amylose at ~0.42 and ~0.06, respectively (Table 2). These values indicate that on 

average for every molecule of hexanoic acid bound, approximately 2.5 molecules of debranched 

waxy maize starch and approximately 15.8 molecules of potato amylose was involved in the 

reaction. These results agree with the HPSEC results that debranched waxy maize starch had a 

lower peak DP 25 compared with potato amylose of a peak DP 330, therefore more starch chains 

were available for binding for debranched waxy maize starch than for potato amylose. 

In addition to the challenge of polymolecular nature of starch, another challenge in the 

present study was the possibility that two opposing events can be observed from all the titration 

curves, with the first signifying the occurrence of an exothermic reaction and a second reaction 

occurring in the endothermic region which may signify the heats of dilution (Figure 2-5). The 

exothermic reaction was the interaction of starch chains and hexanoic acid, which however 

triggered a second reaction that was endothermic in nature. It is important to note that the second 

endothermic reaction occurred only after the injection of hexanoic acid and was proposed to be 

the heats of dilution obtained from the reassociation of starch chains, or a conformational change 

occurring in the structure of the starch chains, which might have changed the sequence of the 

binding reaction. Therefore the heat of reaction, and other thermodynamic parameters estimated 

cannot be fully attributed to the binding between starch chains and hexanoic acid alone, but may 

also include other conformational changes occurring with the starch chains. 

 
CONCLUSIONS 

 
Nevertheless, the ITC results demonstrate that hexanoic acid bound faster to debranched 

waxy maize starch than to potato amylose, implying that the shorter average DP 25 of 

debranched waxy maize starch, became saturated faster when binding to hexanoic acid than 

potato amylose of a higher average DP 330. The ITC observations are not consistent with the IA 
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values, which showed more iodine binding with potato amylose than with debranched waxy 

maize starch. The longer time it took for potato amylose to become saturated with hexanoic acid 

may be due to the long chain length of potato amylose to interact properly with hexanoic acid to 

form stable complexes. The structural differences between iodine and hexanoic acid may also 

contribute to their differences in binding. The present study showed that the binding of hexanoic 

acid to debranched waxy maize starch occurred much faster than to that of potato amylose due to 

shorter chain length of debranched waxy maize starch. The effect of hexanoic acid concentration 

had a greater impact on the Ka values than on the n values of the complexation. The present 

results suggest that shorter starch chains such as from the debranched waxy maize starch may be 

favored to achieve a faster complexation, and consequently increase the overall efficiency of 

complex formation. 
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V. CHAPTER 3: Effects of Enzymatic Modifications on Starch-Stearic Acid 

Complex Formation. 

ABSTRACT 

Debranched unacetylated and acetylated potato starches with two degrees of substitution 

0.041 (low) and 0.078 (high) combined with or without β-amylase hydrolysis were prepared to 

form soluble and insoluble starch complexes with stearic acid. The effects of modifications on 

the complexation, thermal properties and X-ray patterns of soluble and insoluble complexes were 

investigated. Acetylation decreased the recovery of insoluble complexes but increased that of 

soluble complexes. Low acetylated, β-amylase-treated starch had a significantly increased 

amount of complexed stearic acid (123.1 mg/g) for insoluble complexes; high acetylated, β-

amylase-treated starch had the highest complexed stearic acid (61.2 mg/g) for the soluble 

complexes. The melting temperature of the complexes decreased with acetylation. All β-amylase 

treated acetylated complexes displayed the V-type diffraction pattern with peaks at 2θ = 7.4º, 

12.9º and 20º. These results suggest that starch can be modified by acetylation, debranching, 

and/or β-amylase to produce significant quantities of soluble starch-stearic acid complexes. 

 

KEYWORDS: starch acetylation, starch-fatty acid complex, soluble complex, insoluble 

complex, X-ray diffraction pattern 
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INTRODUCTION 

Amylose is a component of starch and essentially linear in structure with repeating 

glucose units linked by α-D-(14) glucosidic linkages. Amylose adopts a helical structure and 

forms inclusion complexes through hydrophobic interactions with guest molecules, such as 

iodine,1 alcohols,2 fatty acids,3-5 flavors6,7 and genistein.8 

Amylose-fatty acid complexes were first reported by Schoch and Williams9 and have 

since been extensively studied. The characteristics of amylose-fatty acid complex are influenced 

by the starting materials used for the complexation reaction,10 such as amylose from starch, 

purified amylose or synthesized amylose. Complexing with purified or synthesized amylose 

tends to yield more monodisperse complexes than with starch.10 The stability, yield and 

organization of amylose-fatty acid complexes were found to be increased with an increase in 

fatty acid chain length11 and saturation,12 amylose chain length up to degree of polymerization 

(DP) of 400 for monodisperse amylose,13 incubation temperature,14 incubation time, and pH.15 

Nevertheless, the complexation yield between amylose and fatty acid is relatively low, ranging 

from ~3.5% for conjugated linoleic acid5 and 6.9% for a mixture of linoleic and stearic acid.15 

The low yield is partly attributed to the stronger tendency for self-association of amylose than for 

complexation with other molecules.  

Upon complexation, amylose and the included guest molecule form ordered crystalline 

structures, which become insoluble and precipitate out of solution. Most studies on amylose-fatty 

acid complexes have focused mainly on the preparation and characterization of these insoluble 

complexes. Upon complexation, the amylose-included molecule can be stabilized and protected 

from oxidation and light by amylose, thus exhibiting extended stability. Nevertheless, increase in 

crystallinity from complexation results in reduced solubility and increased resistance to enzyme 
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hydrolysis for the included molecules, which could ultimately limit its bioavailability. Therefore 

preparation of soluble complexes is of great importance to improve solubility and bioavailability 

of bioactive compounds for the prevention and treatment of diseases. 

Chemical modification by cross-linking amylose with cyanide chloride has been used by 

Kubik and Wulff16 to create a tailored amylose cavity that was ligand specific. Substitution is 

also  commonly applied to starch to modify starch properties to increase solubility and reduce 

retrogradation.17 When hydroxypropylated amylose at a degree of substitution (DS) of 0.075 was 

used to complex 4-tert-butylphenol (t-BP) and sodium dodecyl sulfate (SDS), there was an 

improvement in the water solubility of the complexes formed, and the modification of amylose 

had minimal impacts on its complexing ability.18 Wulff et al.19 reported that acetylated potato 

amylose derivatives at DS of 0.16 yielded soluble complexes with fenchone, a low molecular-

weight flavor compound.  

In the present study, native and acetylated potato starches were debranched and combined 

with or without an additional β-amylase treatment to prepare complexes with stearic acid 

(C18:0). Debranching of starch increased the amount of chains available for complexation by 

converting highly branched amylopectin into all linear chains. The β-amylase treatment 

shortened the chains by sequentially removing maltoses from the nonreducing end, which could 

lead to chains with more favorable chain lengths and, consequently, better complexing ability. 

Besides reducing retrogradation and increasing solubility of starch, acetylation could also 

improve complexation with stearic acid by enhancing the hydrophobicity of the starch helical 

cavity. The objectives of this study were to determine the effects of these treatments on the 

formation of soluble and insoluble complexes and their complexation yields and 

physicochemical properties. 
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MATERIALS AND METHODS 

Materials. Potato starch was obtained from Penford Food Ingredients (Centennial, CO, USA) 

and used without further treatment. Isoamylase (specific activity 59,000 units/mg protein) was 

purchased from Hayashibara Biochemical Laboratories Inc. (Okayama, Japan). β-amylase from 

Bacillus cereus (specific activity=2484 units/mg protein) was purchased from Megazyme 

International Ireland Ltd. (Wicklow, Ireland). Stearic acid was from Sigma-Aldrich (St. Louis, 

MO, USA). All other chemicals were of ACS grade. 

Acetylation of Starch. Acetylation was carried out following the method described by Wang 

and Wang.20 Starch 160 g dry basis (db) was weighed into a 2-L reaction vessel, and water was 

added to make up a final weight of 457.2 g. The mixture was stirred and hydrated for 30 min, 

and then the pH was adjusted to 8-8.5 with 1 M NaOH. Acetic anhydride (6.4 g, 4% based on 

starch db) was used for a low acetylation, or 9.6 g (8% based on starch db) was used for a high 

acetylation. Acetic anhydride was added very slowly to the starch mixture while the starch slurry 

was maintained pH between 8-8.5 and stirred. After the addition of acetic anhydride, the slurry 

was left to stand for 60 min with stirring. The resulting mixture was adjusted with 1 M HCl to a 

pH of 5.5, washed with a 3-fold volume of deionized water, filtered, and dried in an oven at 40 

°C for 24 h. The acetyl content of starches was determined by the method of McComb and 

McCready21 and expressed as degree of substitution (DS).22 

Enzymatic Modification of Starch.  

Debranching. Starch (15 g wet basis) was added to 400 mL of water (3.75% w/v) and placed in 

a boiling water bath for 1 h with constant stirring to achieve complete gelatinization. The 

solution was equilibrated in a water bath at 45 °C, adjusted to pH 3.5 with 0.5 M HCl, and added 

with 0.5% (v/w starch db) isoamylase and then incubated at 45 °C with constant stirring for 48 h. 
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The starch was recovered with four-fold volume of pure ethanol, centrifuged, dried at 40 °C for 

48 h and milled using a UDY cyclone mill (UDY Corp., Ft. Collins, CO, USA) fitted with a 0.5-

mm screen.  

β-Amylase Treatment. A portion of the debranched starch was further subjected to β-amylase 

hydrolysis to reduce the DP. After incubation with isoamylase for 48 h, the starch slurry was 

adjusted to pH 6.5 with 0.5 M NaOH, and incubated with 0.5% (v/w starch db) β-amylase at 40 

°C for 4 h. The enzyme reaction was terminated by boiling for 15 min. Starch was recovered by 

precipitating with 4-fold volume of pure ethanol, dried at 40 °C for 48 h and milled using the 

UDY cyclone mill fitted with a 0.5-mm screen.  

Characterization of Starch Structure. The molecular-size distribution of debranched 

unacetylated and acetylated starch with or without β-amylase treatment prior to complexation 

was characterized using a high-performance size-exclusion chromatography (HPSEC) system 

(Waters Corp., Milford, MA, USA). Starch (10 mg) was dissolved in 5 mL of 90% dimethyl 

sulfoxide (DMSO), boiled for 1 h, and filtered through a 5.0-μm filter prior to injection into the 

HPSEC system. The HPSEC system consisted of a guard column (OHpak SB-G, 6.0 × 500 (mm) 

i.d. × length), two Shodex columns (OHpak KB-804 and KB-802, both 8.0 × 300 (mm) i.d. × 

length), a 200 μL injector valve (model 7725i, Rheodyne, Cotati, CA, USA), an inline degasser, 

a model 515 HPLC pump, and a model 2414 refractive index detector. The mobile phase of 0.1 

M ammonium acetate with 0.02% sodium azide was eluted at a flow rate of 0.4 mL/min. The 

temperature of the columns was maintained at 55 ºC and that of the detector at 40 ºC. Dextran 

standards with molecular weights of 5,200, 11,600, 23,800, 48,600, 273,000 and 410,000 g/mole 

from Waters Corp. (Milford, MA, USA) and 1,050,000 g/mol from Sigma-Aldrich (St. Louis, 

MO) were used to establish the calibration curve. An Ultrahydrogel 250 column (Waters Corp., 
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Milford, MA, USA) was used for analyzing the molecular size distribution of starches recovered 

after complexation with stearic acid. 

Amylopectin chain-length distribution was characterized by high-performance anion-exchange 

chromatography equipped with pulsed amperometric detection (HPAEC-PAD) according to the 

method of Wong and Jane.23 The HPAEC-PAD system (Dionex ICS-3000, Sunnyvale, CA, 

USA) consisted of the components of AS40 autosampler, a single pump, 

detector/chromatography module (DC), a 4  50 mm CarboPac PA1 guard column, and a 4  

250 mm CarboPac PA1 analytical column. Starch (20 mg) was boiled in 3.2 mL of distilled 

water for 1 h, cooled, and then filtered through a 0.45 µm filter (NYL w/GMF, Whatman, 

Clifton, NJ, USA) prior to injection into the HPAEC-PAD system. The mobile phase consisted 

of two eluents, A (150 mM NaOH) and B (150 mM NaOH containing 500 mM sodium nitrate) 

and was eluted at a flow rate of 1 mL/min. The gradient program was as follows: 94% of eluent 

A at 0 min, 92% at 11 min, 87% at 31 min, 80% at 81 min, 75% at 105 min and 94% at 106 min. 

Column temperature was at 25  °C, and injection volume was 25 μL. Sugar standards, including 

glucose (DP1), maltose (DP2), maltotriose (DP3), maltotetraose (DP4), maltopentoase (DP5), 

maltohexaose (DP6), and maltoheptaose (DP7), were used as calibration standards to identify the 

chromatographic peaks. Each successive peak after DP 7 was considered to represent one 

glucose unit longer than the previous peak. The chains were divided into DP ranges and 

classified as follows: A chains (DP 6-12), B1 chains (DP 13-24), B2 chains (DP 25-36), and B3+ 

chains (DP 37+).24 The average chain length was calculated as the cumulative sum of the product 

of DP and percentage relative areas for all the identified peaks. 

Complexation of Starch and Stearic Acid. The starch solution (3.75% w/v) after debranching 

and with or without the β-amylase treatment as previously described was adjusted to pH 7.0 prior 
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to the addition of 1 g of stearic acid. The mixture was heated at 80 °C for 30 min with continuous 

stirring, and then the temperature was lowered and maintained at 45 °C overnight with 

continuous stirring. Then the starch-stearic acid mixture was centrifuged at 7000g for 10 min, 

from which the precipitate, that is “insoluble complex”, was obtained, and the “soluble complex” 

was recovered from the supernatant by precipitation with a 4-fold volume of pure ethanol. 

Uncomplexed stearic acid was removed from both the insoluble and soluble complexes by 

rinsing with 95% ethanol using a labquake shaker rotisserie (Barnstead/Thermolyne, Dubuque, 

IA, USA) at room temperature for 2 h. Complexes were recovered by centrifugation at 7000g for 

10 min, dried at 40 °C for 48 h, milled using a mortar and pestle, sieved through a 250 mm sieve, 

and stored for further analysis.  

Hydrolysis of Complexes and Stearic Acid Analysis. To the complex (100 mg), both soluble 

and insoluble, was added 10 mL of 1 M HCl and heated in a boiling water bath for 1 h. The 

complex mixture was cooled, and 5 mL of hexane was added to extract the released stearic acid 

by rotation on the rotary shaker for 1 h. The hexane layer was recovered, and the previous step 

was repeated with another 5 mL hexane for 1 h. Boron trifluoride-methanol was added to the 

recovered hexane phase to prepare fatty acid methyl esters, and an internal standard of methyl 

heptadecanoate (~ 1 mg) was subsequently added. The fatty acid methyl esters extracted in the 

hexane layer were injected into a gas chromatography (GC) system (GC-2010, Shimadzu, Kyoto, 

Japan ) equipped with a BP 21 capillary column (30 m  0.25 mm i.d.; SGE Inc., Austin, TX, 

USA) with a flame ionization detector (FID), and responses were collected by a Shimadzu 

GCsolution Workstation 2.3 (Kyoto, Japan). The temperature of the column oven was 

equilibrated at 130 °C for 2 min, ramped at 10 °C /min to 250 °C, and maintained at 250 °C for 3 

min. The injector and detector temperatures were set at 250 and 270 °C, respectively. Stearic 
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acid was methylated and the concentrations of stearic acid were determined from a standard 

curve prepared by using stearic acid solution (0.1, 0.2, 0.4, 0.6, 0.8 and 1 mg/mL) containing the 

internal standard of methyl heptadecanoate (0.5 mg/mL). 

Physicochemical Properties. The thermal stability of all complexes was measured using a 

differential scanning calorimeter (DSC, Pyris-Diamond, PerkinElmer, Shelton, CT, USA). Starch 

samples (approximately 8 mg) were weighed into stainless steel pans, 16 μL of distilled water 

was added with the aid of a microsyringe, and the pans were hermetically sealed. The pans were 

equilibrated for at least 1 h at room temperature before scanning. The samples were scanned 

from 25 °C to 180 °C at a rate of 10 °C/min. The onset temperature (To), peak temperature (Tp), 

conclusion temperature (Tc), and enthalpy (∆H) of the endotherms were calculated using the 

Pyris data analysis software.  

X-ray diffraction pattern. The powder X-ray diffraction pattern of complexes was determined 

using a diffractometer, (PW1830 MPD, Philips, Almelo, The Netherlands). The generator 

voltage was set at 45 kV and the current at 40 mA. The sample was scanned over the 2θ angular 

range from 5° to 35° with a step size of 0.02° and time of 1 s per step. 

Statistical Analysis. All measurements were conducted in replication, and the data were 

analyzed using JMP software (SAS Institute Inc., Cary, NC, USA) and the means were compared 

using Tukey’s honestly significant differences (HSD) test.  

 

RESULTS AND DISCUSSION 

Degree of Substitution. The DS values of the prepared low acetylated and high acetylated 

starches were 0.041 and 0.078, respectively. After both acetylated starches were debranched and 

treated with or without β-amylase and complexed with stearic acid, the insoluble and soluble 

fractions were recovered and analyzed for their structures and properties. It was found that the 
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soluble fractions had significantly higher DS of acetylation, 82-173% higher, than their insoluble 

counterparts for the same treatment (Table 1). The differences in DS between the soluble and 

insoluble fractions of acetylated starch complexes were apparently responsible for the type of 

complexes formed because starch solubility increases with an increase in acetyl groups.  

 

Table 1. Degree Of Substitution (DS) of Acetylated Starches and Stearic Acid Complexesa. 

starch β-amylase 

treatment 

type of complex DS 

Low acetylated starch N/A N/Ab 0.041±0.001f 

    

Low acetylated starch 

complex 

No  Soluble 0.063±0.002d 

Insoluble 0.029±0.000g 

Yes Soluble 0.093±0.002b 

Insoluble 0.034±0.000f 

High acetylated starch N/A N/A 0.078±0.001c 

    

High acetylated starch 

complex 

No Soluble 0.089±0.002b 

Insoluble 0.049±0.001e 

Yes Soluble 0.133±0.002a 

Insoluble 0.052±0.002e 

aAt least replicate samples were prepared for each complex. Data of two measurements with 

standard deviation. Means in a column not sharing the same superscript letter are significantly 

different based on Tukey’s honestly significant difference test (p < 0.05). 
bN/A- Not Applicable. 

A further increase in DS was observed when acetylation was combined with β-amylase treatment 

for both soluble and insoluble fractions. Because starch was acetylated in its native state, most 

acetyl groups were present in the amorphous lamella close to the branching points. Therefore, 
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most acetyl groups were retained after β-amylase hydrolysis, resulting in an increase in DS of 

acetylation for samples treated with β-amylase. 

Wulff et al.19  reported that for the formation of soluble complexes of fenchone, a minimum 

DS of 0.16 was required for acetylated amylose, and only insoluble complexes were formed 

when acetylated amylose with a DS < 0.16 was used. In the present study, soluble complexes 

were produced from acetylated potato starch with DS ≥ 0.063. The difference in the DS observed 

in the two studies may be because starch was used in this study, whereas amylose was used by 

Wulff et al.19 Although a different guest molecule was used in the present study, these results 

suggest that amylopectin chains participated in complexation, and the required DS of acetylation 

for soluble complex formation was proportional to the DP of amylose and amylopectin chains. 

Nevertheless, the present results are in agreement with Wulff et al.19, that there is a minimum DS 

of acetylation for the formation of soluble complex. 

Complex Recovery and Complexation Yield. The recovery of complex was calculated by 

comparing the weight of recovered fractions to the weight of initial materials. The highest 

recovery for the insoluble complex was 0.72 g/g from the unacetylated starches with the β-

amylase treatment. The recovery of unacetylated insoluble complex is in agreement with 

previous studies,5,25 in which only insoluble fractions were reported. The total recovery, 

including both soluble and insoluble complexes, was highest for the unacetylated starch and 

decreased with increasing acetylation, which was probably because the increased solubility of 

starches from acetylation resulted in a significant reduction complex recovery (Table 2). These 

results demonstrate that the presence of acetyl groups the increased solubility of starch and 

prevented the precipitation of starch-stearic acid complexes after complexation, thereby resulting 

in a lower recovery for insoluble complexes but a higher recovery for soluble complexes.  
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Table 2. Complex Recovery and Percentage Stearic Acid Content Recovered from All 

Complexesa. 

 

starch  type of 

complex 

β-amylase 

treatment 

recovery (g/g) stearic acid in 

complex (mg/g) 

unacetylated Soluble no 0.24±0.00d 15.7±1.5f 

Insoluble no 0.58±0.00a 42.7±5.6d 

Soluble yes 0.11±0.01e 33.8±5.4d,e 

Insoluble yes 0.72±0.04a 63.1±1.2c 

     

low acetylated Soluble no 0.26±0.00c,d 23.4±1.3e,f 

Insoluble no 0.32±0.01c,d 101.0±5.9b 

Soluble yes 0.28±0.01c,d 34.6±2.9d,e 

Insoluble yes 0.47±0.01b 123.1±4.2a 

     

high acetylated Soluble no 0.26±0.02c,d 36.8±7.4d 

Insoluble no 0.28±0.02c,d 40.3±3.8d 

Soluble yes 0.38±0.02b,c 61.2±12.2c 

Insoluble yes 0.36±0.02c 16.6±1.9f 

a  Data of at least two measurements with standard deviation. Means in a column not sharing the 

same superscript letter are significantly different based on Tukey’s honestly significant difference 

test (p < 0.05). 

 

 

The additional β-amylase treatment increased recovery for the insoluble fractions of 

acetylated and unacetylated starches and for the soluble fractions of high acetylated starch. When 

acetylated starches received the β-amylase treatment, there was presumably an increase in chain 

lengths of starch chains that would favor for the formation of both insoluble and soluble 

complexes, thus resulting in an increase in complexation. However, for β-amylase-treated 

unacetylated starches the recovery of the insoluble complex increased, which was probably due 

to the absence of acetyl groups.  The absence of acetyl groups may have led to an increase in 
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starch reassociation and a reduction in solubility of unacetylated starches, which ultimately 

prevented complexes from staying in solution. The recovery of soluble fractions from acetylated-

only starch was similar to that from the unacetylated starch at 0.26 g/g, implying that acetylation 

alone might not be sufficient to increase the recovery of soluble complexes. The recovery of 

soluble fractions of acetylated starches increased when the β-amylase treatment was 

incorporated, and this increase became more noticeable with the high acetylated starch. The 

increase in recovery of the soluble fraction of high acetylated was ascribed to the increase in the 

acetyl groups that promoted the preference of stearic acid to interact with the hydrophobic cavity 

of starch helix. This may be ascribed to the orientation of acetyl groups toward the cavity, 

thereby increasing overall hydrophobicity of the cavity and encouraging more stearic acid 

interaction, and this increased complexation.26  

Stearic acid was recovered from all starch complexes, and the amount of stearic acid 

recovered was higher in the insoluble fractions than in the soluble fractions, except for the high 

acetylated and β-amylase treated starch (Table 2). The highest amounts of stearic acid were 

recovered from the insoluble fractions of low acetylated starches fractions without (101.0 mg/g) 

and with (123.1 mg/g) the β-amylase treatment. Lui et al.27 reported that acetylated pea starch 

with DS of 0.1 had a reduced iodine affinity of ~4.4% compared to native pea starch with a value 

of ~6.4%. They concluded that acetyl groups interfered with complex formation and reduced 

complexation yield. Similarly, Wulff et al.19 reported that the complexing ability of amylose with 

fenchone decreased when amylose was modified with hydroxypropyl, hydroxyethyl, acetyl, and 

carboxymethyl groups. In contrast, the present results show that although acetylation of starch 

decreased the recovery of the insoluble fractions, the amount of complexed stearic acid was 
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increased by 95-135% at a low acetylation level with or without the β-amylase treatment, but 

then decreased at a high acetylation level.  

For the soluble complexes, both acetylation and β-amylase treatment enhanced the 

complexation of stearic acid. The high acetylated, β-amylase-treated starch had the highest 

amount of complexed stearic acid (61.2 mg/g), which was about 81% higher than the amount of 

stearic acid recovered from the soluble fraction of unacetylated starch (33.8 mg/g). The present 

results demonstrate that there is an optimum DS of acetylation to increase the amount of 

complexed stearic acid with starch in both soluble and insoluble complexes. This supports our 

hypothesis that apart from acetylation, an optimum starch chain length may also be critical for 

increasing the complexation yield of stearic acid and formation of soluble complexes. 

Molecular Size Distribution. The standard curves used to estimate the degree of polymerization 

of debranched starches without or with the β-amylase treatment and that of their complexes are 

displayed in Figure 1a and b, respectively. The molecular size distributions of the debranched 

unacetylated and acetylated starches prior to complexation with stearic acid are also displayed in 

Figure 1c. For the unacetylated starches, the chromatogram shifted to lower DP with the β-

amylase treatment, and the proportion of amylose fraction between 26-31 min was clearly 

reduced. The hydrolysis by β-amylase reduced the molecular size of amyloses to the range of 

amylopectin long chains and also lowered the molecular size of amylopectin chains. For the 

acetylated starches, the proportion of the amylose fraction increased with acetylation, and a 

further increase was noted with the additional β-amylase treatment.  This increase was attributed 

to an increase in the hydrodynamic volume of the starch due to the presence of acetyl groups 

rather than an increase in the proportion of amylose. This supports the DS results (Table 1) that 
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during β-amylase hydrolysis of acetylated starch most acetyl groups were retained and 

responsible for the increased hydrodynamic volume of the acetylated starches. 

 

 

Figure 1a. Standard curve used to estimate the degree of polymerization of debranched starches 

without or with the β-amylase treatment.  

 
The molecular size distributions of recovered soluble and insoluble fractions of all 

starches are presented in Figure 2. All starches displayed a peak at ~14.5 min, signifying the 

presence of amylose fractions. The peak at 14.5 min (~DP 3400) was more pronounced in the 

insoluble fractions than in the soluble fractions, became larger with acetylation, and then further 

increased when combined with the β-amylase treatment. These results support previous findings 

(Figure 1c) that the increase in amylose fraction was due to the presence of acetyl groups not 

hydrolyzed by β-amylase. 
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Figure 1b. Standard curve used to estimate the degree of polymerization of debranched starch 

complexes without or with the β-amylase treatment.  

The acetylated fractions not treated with β-amylase also displayed two additional peaks at 

~19.5 min of DP 67 and ~21 min of DP 23, which represent amylopectin long and short chains, 

respectively. However, the acetylated and β-amylase-treated starch fractions only had an 

additional peak around 19 min (DP 96).   

It has been reported that approximately DP 18-24 glucose units are required for 

complexation of one fatty acid or monoacyl glycerol of 14-18 carbons,10 DP 30-40 for two 

palmitic acid (C16:0),28 DP 34 for two stearic acid,29 and DP 40 for two docosanoic acid 

(C22:0).13 Therefore it can be deduced that the minimum chains required for complexation of 

one or two stearic acid would be DP 18-40, and were available in both soluble and insoluble 

fractions in the present study.  
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Figure 1c. Normalized HPSEC profiles of debranched only or debranched and β-amylase-treated 

unacetylated and low and high acetylated potato starch. 
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Figure 2. Normalized HPSEC profiles of recovered unacetylated and acetylated potato starches 

from the soluble and insoluble fractions after complexation. 
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The chain-length distributions of recovered starch chains from the soluble and insoluble 

fractions without and with β-amylase treatment are presented in Figures 3 and 4, respectively. 

The soluble fraction displayed a more unimodal-like distribution after the β-amylase treatment 

(Figure 4A, C, E) with peak DP 30 and 33 for low and high acetylated starches, respectively. 

 
Figure 3. Normalized chain-length distributions of recovered starch chains from unacetylated and 

acetylated potato starches without β-amylase treatment after complexation. 
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The insoluble fractions of all starches with or without β-amylase treatment displayed a 

bimodal distribution with peak DP 13-14 and 43-45. These results indicate that upon 

complexation, different fractions of the starch chains form different types of complexes, that is, 

soluble or insoluble complex.  

 

Figure 4. Normalized chain-length distributions of recovered starch chains from unacetylated and 

acetylated potato starches with β-amylase treatment after complexation. 
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When the amounts of complexed stearic acid (Table 2) were compared with the chain-

length distributions (Figures 3 and 4), it was found that the DP range 20-43 from amylopectin 

chains might be more favorable for soluble complex formation, and the proportion of this DP 

range was increased after the β-amylase treatment. The first fraction of chains consisting of ~DP 

6-17 present in all unacetylated and acetylated starches was decreased after β-amylase treatment. 

These results are in agreement with the molecular size distribution results in Figure 2 and 

indicate that DP 6-17 represent chains that are too short to participate in stearic acid 

complexation. The present results also agree with Eliasson,30 who found that amylopectin chains 

could participate in complex formation because the favorable DP for complex formation was 

observed in all fractions.  

Characterization of Starch-Stearic Acid Complexes 

Melting Properties by Differential Scanning Calorimetry. The melting thermogram of starch-

stearic acid complex was observed in all soluble and insoluble fractions except for the soluble 

fractions from the low and high acetylated starch without the β-amylase treatment (Table 3). This 

is in contrast to the stearic acid recovery results, which showed that stearic acid was recovered 

from all soluble and insoluble starch fractions, which will be discussed later in this section. All 

unacetylated starch-stearic acid complexes displayed peak melting temperatures (Tp) of 92.4-

116.1 °C similar to those reported in previous studies,25,31 which indicate the presence of both 

type I and II starch-stearic acid complex. The type I complex has a lower Tp of around 90 °C and 

is formed at lower temperatures of about 60 °C; thus, it is less ordered and exhibits low heat 

stability.10,32 The type II complex has a Tp of around 110 °C31 and is formed with continuous heat 

treatment and rearrangement of the type I complex at higher temperatures of about 90 °C .15 
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Table 3. Melting Temperatures and Enthalpies of Soluble and Insoluble Unacetylated and Acetylated Potato Starch-Stearic Acid 

Complexesa. 

 starch 

 β-amylase 

treatment 

first peak  second Peak 

type of 

complex 
To (°C) Tp (°C) Tc (°C) ∆H (J/g) 

 

To (°C) 

Tp 

(°C) 

Tc 

(°C) ∆H (J/g) 

Unacetylated Soluble No 86.5c 

(0.2) 

92.4f 

(0.2) 

97.1c 

(0.0) 

0.67e 

(0.01) 

 99.8 

(0.0) 

116.1 

(1.4) 

127.1 

(0.3) 

3.53 

(0.12) 

 Insoluble No 101.0a 

(1.9) 

114.4a 

(1.2) 

123.7a 

(0.0) 

6.11c 

(0.62) 

 

    

 Soluble Yes 92.2b 

(0.1) 

110.2b 

(0.9) 

124.7a 

(0.1) 

3.61d 

(0.09) 

 

    

 Insoluble Yes 94.1b 

(0.8) 

107.9b 

(1.1) 

122.0a 

(0.3) 

9.68b 

(0.15) 

 

    

            

Low 

Acetylated 

Soluble No NDb ND ND ND§      

 Insoluble No 

79.2d 

(0.0) 

101.1c,

d 

(0.5) 

114.6b 

(0.8) 

13.92a 

(0.68) 

 

    

 Soluble Yes 68.5e 

(0.1) 

86.5g 

(0.6) 

95.5c 

(2.0) 

7.26c 

(0.23) 

 98.3 

(3.5) 

104.9 

(3.4) 

112.0 

(5.6) 

1.19 

(0.45) 

 Insoluble Yes 77.7d 

(0.9) 

102.2c 

(1.2) 

113.9b 

(0.4) 

15.29a 

(1.62) 

 

    

            
a Mean (standard deviation) of at least two measurements. Means in a column not sharing the same superscript letter are significantly 

different based on Tukey’s honestly significant difference test (p < 0.05) 

b ND- Not detected 
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Table 3. Melting Temperatures and Enthalpies of Soluble and Insoluble Unacetylated and Acetylated Potato Starch-Stearic Acid 

Complexes.a (Cont.) 

 starch 

 β-amylase 

treatment 

first peak  second Peak 

type of 

complex 
To (°C) Tp (°C) Tc (°C) ∆H (J/g) 

 

To (°C) 

Tp 

(°C) 

Tc 

(°C) ∆H (J/g) 

High 

Acetylated 

Soluble No ND ND ND ND      

 Insoluble No 77.5d 

(0.0) 

95.9e,f 

(0.6) 

110.5b 

(2.2) 

10.03b 

(0.17) 

 

    

 Soluble Yes 68.0e 

(0.9) 

82.8g 

(0.8) 

98.0c 

(0.9) 

6.54c 

(0.13) 

 

    

 Insoluble Yes 79.3d 

(0.9) 

97.6d.e 

(1.8) 

111.5b 

(0.3) 

13.30a 

(0.08) 

 

    
a Mean (standard deviation) of at least two measurements. Means in a column not sharing the same superscript letter are significantly 

different based on Tukey’s honestly significant difference test (p < 0.05) 

b ND- Not detected 
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Although both type I and II starch-stearic acid complexes were present in the unacetylated starch 

complexes, the type II complex was more dominant as shown by its higher enthalpy value.  

The low acetylated starch complexes exhibited a lower Tp than the unacetylated starch 

complexes for the same type of complex, and the Tp was further decreased with a higher DS of 

acetylation. This implies that for unacetylated starch, the nucleation rate for complexation was 

low, leading to sufficient propagation10 and rearrangement of the complexes, and hence more 

ordered, heat-resistant complexes were formed. In contrast, the presence of acetyl groups may 

hinder the rearrangement of included helices and prevented the formation of the type II complex. 

The Tp values of all insoluble complexes were higher than their soluble counterparts for all 

acetylated starches; the high acetylated starch fractions did not always exhibit lower melting 

temperatures than their low-acetylated counterparts. Previous studies13,28  have proposed that Tp 

of amylose-fatty acid complexes increased with an increase in amylose size. Therefore, the 

present results suggest that longer starch chains are responsible for the formation of insoluble 

complexes and shorter starch chains for the soluble complexes, supporting the previous HPSEC 

results (Figure 2).   

More energy was required to disrupt the insoluble complex because it is composed of 

more highly organized or longer helices compared with the soluble complexes. Whittam et al.33 

reported that although the same energy was required to disrupt the helical complex structures of 

both crystalline and amorphous complexes of amylose and alcohols (chain length of four to eight 

carbon atoms), the crystalline complexes required an additional energy to break the crystal lattice 

that is absent in amorphous complexes. Hence this might explain why higher enthalpy values 

were observed for the insoluble complexes. Eliasson et al.34 found that the enthalpy of an 

acetylated high-amylose maize starch-cetyltrimethylammonium bromide (CTAB) complex was 
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lower than that of the native high-amylose maize starch-CTAB complex. They concluded that 

acetylation of starch decreased its tendency to crystallize or form the starch-CTAB complex. 

However, in the present study, the enthalpy was higher in acetylated starches than the 

unacetylated starches for the same treatment. Later, Karkalas et al.15 concluded that enthalpy 

values of amylose-lipid complexes should not be regarded as good indicators for measuring 

complex formation because precise results could not always be obtained because some samples 

could have polymorphs in the intermediate polymorphic state, or contain free amylose that could 

give false low-enthalpy readings12.  

According to Lui et al.,27 a different type of supramolecular structure of complexes could 

exist in acetylated starch complexes due to the presence of acetyl groups. The presence of acetyl 

groups may promote the formation of a complex that is not crystalline in nature, which was 

supported by the absence of the endotherm for the soluble complexes of acetylated starches 

without the β-amylase treatment. However, when acetylation was combined with the β-amylase 

treatment, the endotherm of the soluble complex appeared, indicating that the presence of the 

nonacetylated portion of the amylose and amylopectin chains may interfere with the arrangement 

of the included stearic acid when the other portion was more acetylated as evidenced by the 

increased DS after β-amylase treatment (Table 1). Therefore, when the less acetylated portion 

was hydrolyzed by β-amylase, stearic acid was capable of better arranging itself within the starch 

helical structure, thus resulting in increased crystalline structure.  

X-ray Diffraction Pattern. Except the unacetylated and without β-amylase treatment (Figure 

5A) all insoluble starch complexes showed the V-type diffraction patterns with characteristic 

peaks at diffraction angle 2θ = 7.4º, 12.9º, and 20º (Figure 5). Debranched unacetylated starch 

complexes (Figure 5A and B) had additional peaks at 2θ = 17.0º, 22º, and 24º for soluble 
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complexes and at 2θ = 17.0º and 24º for insoluble complexes, which indicate the presence of 

retrogradation. These peaks were absent in all acetylated starch complexes because the acetyl 

groups hindered starch retrogradation except for the soluble low acetylated starch (Figure 5C). 

This may be due to the reassociation of longer chains with low DS of acetylation and not 

involved in stearic-acid complexation. For the unacetylated insoluble starches complexes, the 

additional β-amylase treatment increased the intensity of the V-type pattern and the peak at 2θ = 

20.0º increased noticeably. These results agree with previous DSC enthalpy data (Table 3) that 

for insoluble complexes, the additional β-amylase treatment resulted in starch with chain lengths 

that favored interaction with stearic acid instead of reassociation. The characteristic peak for the 

starch-stearic acid complex 2θ = 20.0º was also observed in the soluble fractions of unacetylated 

starch complexes, indicating that native starches also formed soluble complexes, although only 

in small quantities. The present results again agree with previous results on the amount of 

complexed stearic acid (Table 2). 

 When low acetylation only was applied to starch, the X-ray diffraction peaks of the 

starch-stearic acid complex became predominant in the insoluble fraction, but the intensity of the 

peaks decreased at the high acetylation (Figure 5C,E). At high acetylation, the acetyl groups may 

interfere with proper arrangement of stearic acid in the complexes, thus resulting in complexes of 

low crystallites. These results support previous DSC results that for insoluble fractions, the low 

acetylated starch complex had higher enthalpy than the high acetylated one (Table 3). These 

results agree with Lui et al.,27 who suggested that acetyl groups caused a reduction in the 

crystallinity of complexes and that acetylation resulted in complexes that existed mainly in the 

amorphous state rather than in the crystalline form.  
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Figure 5. X-ray diffraction patterns of the soluble and insoluble fractions of debranched 

unacetylated and acetylated potato starches and their stearic acid complexes; (A) potato starch; (B) 

β-amylase-treated potato starch; (C) low acetylated potato starch; (D) low acetylated β-amylase 

treated potato starch; (E) high acetylated potato starch; (F) high acetylated β-amylase-treated 

potato starch.  
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The same trend was also noted for corresponding soluble complex fractions, in which 

peak intensity decreased for the high acetylated-only starch complex. The characteristic peaks of 

starch-stearic acid complex were barely noticeable in both acetylated-only soluble starch 

complexes, which support the DSC results (Table 3) and indicates that no crystalline structure 

was present in these soluble complexes. Nevertheless, the presence of an amorphous structure 

does not suggest the absence of a starch-stearic acid complex because it may still consist of 

unpacked helical amylose chains28 as evidenced by the presence of complexed stearic acid 

(Table 2). 

The V-type X-ray pattern was not evident for the soluble fractions until the β-amylase 

treatment was combined with acetylation (Figure 5D,F). This again supports previous DSC and 

DS findings that an optimum chain length of starch chains and high acetyl content encouraged 

the formation of crystalline soluble complex. In addition, when a combination of acetylation and 

β-amylase treatment was employed, the peak intensities increased with increasing acetylation in 

both the soluble and insoluble complexes (Figure 5D,F). However, in the debranched-only 

acetylated potato starch complexes (Figure 5C,D), the reverse was noted as the peak intensities 

of complexes decreased with increasing acetylation, which further emphasized the importance of 

starch chain length in complex formation. 

Some insoluble complexes showed a small peak at 2θ = 21.5º (Figure 5D,F), which has 

been ascribed to pure stearic acid that is only physically trapped between starch helices35 but not 

included in the starch helix cavity. Overall, the highest crystallinity for insoluble fractions was 

observed for low acetylated, debranched-only starch (Figure 5C), and for the soluble fractions, 

the highest crystallinity was observed for high acetylated, debranched, and β-amylase-treated 

starch (Figure 5F), which agree with the amount of complexed stearic acid quantified (Table 2).  
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CONCLUSIONS 

 

In conclusion, the present results show that low acetylation encouraged the formation of 

complexed stearic acid with debranched potato starch for insoluble complexes, whereas high 

acetylation increased the amount of complexed stearic acid for soluble complexes. The 

acetylation reduced retrogradation, increased the hydrophobicity of the cavity, and ultimately 

encouraged more starch-stearic acid interaction. A combination of acetylation, debranching and 

β-amylase treatment was required to produce soluble, crystalline starch-stearic acid complex; 

soluble, amorphous starch-stearic acid complexes were formed in acetylated and debranched-

only starches. Acetylation reduced melting temperature and increased the enthalpy values of all 

starch-stearic acid complexes compared with unacetylated ones. There was an optimum range of 

chain length to encourage the formation of starch-stearic acid complexes. Information on the 

generation and properties of soluble starch-stearic acid complex from this study may provide 

insight into the creation of soluble complexes between starch and other insoluble bioactive 

compounds and may pave the way for applications whereby soluble complexes are desired to 

improve bioavailability.  

 

ABBREVIATIONS USED 

DS, degree of substitution; DP, degree of polymerization; DSC, differential scanning 

calorimetry; HPSEC, high-performance size exclusion chromatography; HPAEC-PAD, high-

performance anion-exchange chromatography with pulsed-amperometric detection; GC, gas 

chromatography  
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VI. Chapter 4 : Effects of Chemical and Enzymatic Modifications on Starch-Oleic 

Acid Complex Formation  

ABSTRACT 

The solubility of starch-inclusion complexes affects the digestibility and bioavailability 

of the included molecules. Acetylation with two degrees of substitution 0.041 (low) and 0.091 

(high) combined without or with a β-amylase treatment were employed to improve the yield and 

solubility of inclusion complex between debranched potato starch and oleic acid. Both soluble 

and insoluble complexes were recovered and analyzed for their degree of acetylation, 

complexation yields, molecular size distributions, X-ray diffraction patterns and thermal 

properties. Acetylation significantly increased the amount of recovered soluble complexes as 

well as the complexed oleic acid in both soluble and insoluble complexes. High acetylated-only 

starch complexed the highest amount of oleic acid (38.0 mg/g) in the soluble complexes; low 

acetylated starch with or without the -amylase treatment resulted in the highest complexed oleic 

acid in the insoluble complexes (37.6 - 42.9 mg/g). All acetylated starches displayed the V-type 

X-ray pattern, and the melting temperature generally decreased with acetylation. The results 

indicate that starch acetylation with or without the β-amylase treatment can improve the 

formation and solubility of starch-oleic acid complex. 

KEYWORDS: acetylation, modified starch, starch-oleic acid complex, -amylase, soluble 

complex, insoluble complex,   
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INTRODUCTION 

Amylose forms a helical structure with a hydrophobic cavity that can react with 

hydrophobic molecules such as iodine,1 alcohols,2 ibuprofen,3 salicylic acid,4 genistein,5 flavors,6 

and fatty acids7-15 to form inclusion complexes. Fatty acids are commonly employed as model 

molecules to elucidate the optimum conditions required for complex formation because of their 

varying chain lengths and structures. Upon forming inclusion complex, the included molecule is 

stabilized and protected from degradation,6,16 oxidation,15,17-18 light, and high temperature.5 

Inclusion complex can also serve as a vehicle for controlled release of the included 

molecule.15,17-19 Nevertheless, when inclusion complexation occurs, there is an increase in the 

crystallinity and subsequent precipitation of the complex. The precipitation reduces solubility 

and hydrolysis of the complex, and can eventually limit bioavailability of the included molecule.  

Most studies on starch-inclusion complexes focus on insoluble complexes, and limited 

information is available on the formation of soluble complexes by using modified starch. Wulff 

and Kubik20 found that hydroxypropylation of amylose with a degree of substitution (DS) 0.075 

was sufficient to produce soluble complexes with sodium dodecyl sulfate (SDS). Acetylation of 

pea starch yielded amorphous insoluble complexes with lauric acid and reduced the amount of 

insoluble complexes recovered.21 Acetylation of high amylose maize starch decreased its 

complexing ability with cetyltrimethylammonim (CTAB) when studied by differential scanning 

calorimetry.22 Our previous work23 demonstrated that acetylation reduced the formation of 

insoluble complexes between debranched potato starch and stearic acid by 35-52% depending on 

the degree of acetylation, but increased the yield of soluble complexes by 8.3% for both low and 

high acetylated starches. When the acetylated debranched starches were reduced in molecular 

size by β-amylase, the formation of soluble complexes with stearic acid was improved by 154-
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245% when compared with its unacetylated counterparts. The highest amount of complexed 

stearic acid (123.1 mg/g) was recovered from the low-acetylated β-amylase-treated insoluble 

complex; the highest amount of stearic acid in the soluble complexes (61.2 mg/g) was obtained 

from the high-acetylated β-amylase-treated starch. This study used the same chemical 

(acetylation) and enzymatic (isoamylase and β-amylase) modifications to investigate the 

formation of soluble and insoluble complexes between starch and oleic acid (C18:1). The 

impacts of the presence of one double bond in oleic acid on the yield and properties of soluble 

and insoluble complexes with modified starch were investigated.  

 

MATERIALS AND METHODS 

Materials. Potato starch was obtained from Penford Food Ingredients (Centennial, CO, USA) 

and used without further treatment. Isoamylase from Pseudomonas sp (specific activity 280 

units/mg protein), Pullulanase from Klebsiella planticola (specific activity 34 units/mg protein) 

and β-amylase from Bacillus cereus (specific activity 2660 units/mg protein) were purchased 

from Megazyme International Ireland Ltd. (Wicklow, Ireland). Oleic (cis-9-Octadecenoic) acid 

was purchased from Sigma-Aldrich (St. Louis, MO, USA). All other chemicals were of ACS 

grade. 

Acetylation of Starch. Two levels of acetylation (low and high) of starch was carried out 

according to the method by Wang and Wang.24 The acetyl content was determined according to 

the method of McComb and McCready25 and expressed as degree of substitution (DS).26 

Enzymatic Modification of Starch. Debranching. Starch (15 g wet basis) was added to 400 mL 

water (3.75% w/v) and gelatinized in a boiling water bath for 1 h with constant stirring. The 

temperature of the solution was equilibrated to 45 °C and the pH adjusted to 5.0 with 0.5 M HCl. 
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To the starch solution, isoamylase and pullulanase each at 1.33% (v/w, starch db) was added, and 

then incubated at 50 °C with constant stirring for 48 h. The starch was recovered with 4-fold 

volume of pure ethanol, centrifuged at 7000g for 10 min, dried at 40 °C for 48 h and milled using 

a UDY cyclone mill (UDY Corp., Ft. Collins, CO, USA) fitted with a 0.5-mm screen. 

β-Amylase Treatment. A portion of the debranched starch was further subjected to β-amylase 

hydrolysis to reduce the degree of polymerization (DP). After debranching for 48 h, the starch 

slurry pH was adjusted to 6.5 with 0.5 M NaOH, and incubated with 0.5% (v/w, starch db) β-

amylase at 40 °C for 4 h. The enzyme reaction was terminated by boiling for 15 min. The β-

amylase-treated starch was recovered as previously described. 

Characterization of Starch Structure. The molecular size distributions of debranched 

unacetylated and acetylated starch without or with the β-amylase treatment were recovered after 

complexation with oleic acid and characterized using a high-performance size exclusion 

chromatography (HPSEC) system (Waters Corp., Milford, MA, USA). Starch (10 mg) was 

dissolved in 5 mL of 90% DMSO, boiled for 1 h, and filtered through a 5.0-μm filter prior to 

injection into the HPSEC system. The HPSEC system consisted of a guard column (OHpak SB-

G, 6.0 × 500 (mm) i.d. × length), two Shodex columns (OHpak KB-804 and KB-802, both 8.0 × 

300 (mm) i.d. × length), a 200 μL injector valve (model 7725i, Rheodyne, Cotati, CA, USA), an 

inline degasser, a model 515 HPLC pump, and a model 2414 refractive index detector. The 

mobile phase of 0.1 M sodium nitrate with 0.02% sodium azide was eluted at a flow rate of 0.6 

mL/min. The temperature of column was maintained at 60ºC and the detector at 40ºC. Dextran 

standards of molecular weight of 5,200, 11,600, 23,800, 48,600, 273,000 and 410,000 g/mole 

from Waters Corp. (Milford, MA, USA) and 1,050,000 g/mole from Sigma Aldrich (St. Louis, 

MO, USA) were used to establish the calibration curve. 
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The amylopectin chain length distribution was characterized by high-performance anion-

exchange chromatography equipped with pulsed-amperometric detection (HPAEC-PAD) 

according to the method of Wong and Jane.27 The chains were divided into DP ranges and 

classified as follows: A chains (DP 6-12), B1 chains (DP 13-24), B2 chains (DP 25-36), and B3+ 

chains (DP 37+).28 The average chain length was calculated as the cumulative sum of the product 

of DP and percentage relative areas for all the identified peaks. 

Complexation of Starch and Oleic Acid. All samples were prepared in replicates. The starch 

solution (3.75% w/v), debranched or debranched and β-amylase treated, was adjusted to pH 7.0, 

equilibrated to 80 °C, and mixed with 1 g of oleic acid dissolved in warm 95% ethanol. The 

mixture was maintained at 80 °C for 30 min and stirred continuously to ensure that there was 

sufficient interaction between starch and oleic acid, and then the temperature was maintained at 

45 °C overnight with continuous stirring. The resulting mixture was centrifuged at 7000g for 10 

min, from which the precipitate, that is, “insoluble complex”, was obtained, whereas,  the 

“soluble complex” was recovered by precipitating the supernatant with 4-fold volume of pure 

ethanol. Any uncomplexed oleic acid was removed from both the insoluble and soluble 

complexes by rinsing excess 95% ethanol. Complexes were rotated in excess 95% ethanol using 

a labquake shaker rotisserie (Barnstead/Thermolyne, Dubuque, IA, USA) at room temperature 

for 2 h, centrifuged at 7000g for 10 min, dried at 40 °C for 48 h, milled using a mortar and 

pestle, sieved through a 250-μm sieve, and stored for further analysis.  

 Hydrolysis of Complexes and Oleic Acid Analysis. Soluble or insoluble complex (100 mg) 

was added with 10 mL of 1 M HCl and heated with continuous stirring in a boiling water bath 

for 1 h. After the complex mixture was cooled, 5 mL hexane was added, and the solution was 

rotated on the rotary shaker for 1 h. The hexane layer with the extracted oleic acid was 



 

131 
 

recovered, and the extraction was repeated with another 5 mL hexane for 1 h. To the recovered 

hexane phase, boron trifluoride methanol was added to convert oleic acid to oleic acid methyl 

esters. An internal standard of methyl heptadecanoate (~1 mg) was subsequently added to all 

samples. The oleic acid methyl ester was injected into a gas chromatographer (GC) (GC-2010, 

Shimadzu, Kyoto, Japan) equipped with a BP 21 capillary column (30 m  0.25 mm i.d.; SGE 

Inc., Austin, TX) with a flame ionization detector (FID), and responses were collected by 

Shimadzu GCsolution Workstation 2.3 (Kyoto, Japan). The injection port and detector 

temperatures were set at 220 °C and 230 °C, respectively. The column oven temperature was 

equilibrated at 100 °C for 1 min, ramped up at 15 °C /min to 160 °C, again ramped up at 5 °C 

/min to 200 °C and maintained at 200 °C for 10 min. The flow rate of the carrier gas (helium) 

was 30 mL/min. The concentration of oleic acid was determined from a standard curve prepared 

by using oleic acid methyl ester solution (0.1, 0.2, 0.4, 0.6, 0.8 and 1 mg/mL) containing the 

internal standard of methyl heptadecanoate (0.5 mg/mL).  

Physicochemical Properties. A diffractometer (PW1830 MPD, Philips, Almelo, The 

Netherlands) was used to determine the powder X-ray diffraction (XRD) pattern of complexes. 

The generator voltage was set at 45 kV and the current at 40 mA. The sample was scanned over 

the 2θ angular range from 5° to 35° with a step size of 0.02° and time of 1 s per step. 

The thermal stability of all complexes was measured using a differential scanning 

calorimeter (DSC, Pyris-Diamond, PerkinElmer, Shelton, CT, USA). Approximately 8 mg of 

complex was weighed into a stainless steel pan, 16 μL of distilled water was added with the aid 

of a microsyringe, and the pan was hermetically sealed. The sample was equilibrated for 24h at 

room temperature before scanning and were scanned from 25 to 180 °C at 10 °C/min, 

immediately cooled from 180 to 25 °C at 40 °C/min and rescanned from 25 to 180 °C at 10 
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°C/min to confirm the formation of the starch-fatty acid complex. The onset temperature (To), 

peak temperature (Tp), conclusion temperature (Tc) and enthalpy (∆H) of the endotherms were 

calculated using the Pyris data analysis software.  

Statistical Analysis. All experiments were conducted in replication, and data were analyzed 

using JMP software (SAS Institute Inc., Cary, NC, USA). The means were compared using 

Tukey’s honestly significant differences (HSD) test.  

 

RESULTS AND DISCUSSION 

Degree of Substitution. The low and high acetylated starches used for complex formation with 

oleic acid had a DS of 0.041 and 0.091, respectively (Table 1). Acetylated starches were then 

debranched with isoamylase and treated with or without β-amylase prior to complexation. After 

complexation the soluble and insoluble complexes were recovered and determined for their DS 

of acetylation. Similar to the previous study,23 the soluble complex fractions had a significantly 

higher DS than the insoluble ones for the same treatments. When β-amylase was combined with 

acetylation, an increase in DS was observed for all soluble and insoluble complexes. The lowest 

DS of acetylated starch to form soluble complex with stearic acid was 0.063 in our previous 

study,23 however, oleic acid formed soluble complexes at a lower DS of 0.045 in the present 

study. In addition, the difference in DS of acetylation between the soluble and insoluble 

complexes of oleic acid was significantly smaller than that of stearic acid. These differences in 

DS suggest that a lower DS of acetylation on starch was sufficient to encourage soluble complex 

formation with more polar molecules, such as oleic acid, compared with less polar molecules, 

such as stearic acid. 

 



 

133 
 

Table 1. Degree of Substitution (DS) of Acetylated Starches and Oleic Acid Complexesa. 

starch 

β-amylase 

treatment 

type of 

complex DS 

low acetylated starch N/A N/Ab 0.041±0.001d 

    

low acetylated starch complex no  soluble 0.045±0.005d 

insoluble 0.036±0.005d 

yes soluble 0.071±0.000c 

insoluble 0.045±0.001d 

high acetylated starch N/A N/A 0.091±0.001b 

    

high acetylated starch complex no soluble 0.077±0.002b,c 

insoluble 0.062±0.004c 

yes soluble 0.119±0.004a 

insoluble 0.072±0.009c 

aAt least replicate samples were prepared for each complex. Data of two measurements with 

standard deviation. Means in a column not sharing the same letter are significantly different based 

on Tukey’s honestly significant difference test (p < 0.05). 
bN/A, not applicable. 

 

Complex Recovery and Complexation Yield. Complex recovery was determined by comparing 

the individual recovered complex weight against the initial material weight. The highest recovery 

for the insoluble complexes was 0.73 g/g from the unacetylated β-amylase treated starches 

(Table 2), which is similar to results from previous studies.6,15,23 The total recovery when both 

soluble and insoluble complexes were included was 0.92-0.96 g/g, except for the unacetylated β-

amylase treated starch of a total recovery of 0.85 g/g. These results indicate that modification of 

starch prior to complex formation did not change the total recovery but changed the proportions  
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Table 2. Complex Recovery and Percentage Oleic Acid Content Recovered from All 

Complexesa. 

starch  
type of 

complex 

β-amylase 

treatment 
recovery (g/g) 

oleic acid in individual 

complex (mg/g) 

unacetylated soluble no 0.34±0.04c,d 3.0±0.3g 

insoluble no 0.61±0.02a,b 3.3±0.1g 

soluble yes 0.12±0.01e 10.9±1.0e 

insoluble yes 0.73±0.01a 4.8±0.0f 

     

low acetylated soluble no 0.56±0.03b 16.3±0.1c,d 

insoluble no 0.39±0.03c,d 37.6±3.6a 

soluble yes 0.40±0.04c 26.3±0.3b 

insoluble yes 0.56±0.01b 42.9±6.0a 

     

high acetylated soluble no 0.66±0.01a,b 38.0±2.2a 

insoluble no 0.27±0.01d 20.1±0.5b,c 

soluble yes 0.57±0.08b 12.5±1.1d,e 

insoluble yes 0.35±0.01c,d 20.9±1.0b,c 

aData of at least two measurements with standard deviation. Means in a column not sharing the 

same letter are significantly different based on Tukey’s honestly significant difference test (p < 

0.05). 

 

of the soluble and insoluble complexes for most complexes. The recovery of the insoluble 

complexes decreased with increasing DS of acetylation, whereas the opposite trend was observed 

for the soluble complexes. Acetylation increased the recovered soluble complexes by 65 and 

94% for low and high acetylated starches, respectively, compared with the unacetylated one. 

When an additional β-amylase treatment was incorporated, the recovery of the soluble 

complexes was decreased or unchanged, whereas that of the insoluble complexes was increased 

or unchanged. These results imply that the length of starch chains present in the debranched-only 

starches were more favored for the formation of soluble complexes. The β-amylase treatment 
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hydrolyzed some starch chains to a length that was too short to form complex, thus resulting in a 

decrease in the proportion of recovered soluble complexes. Within the β-amylase-treated 

starches, the recovery of the soluble complexes was increased by 233 to 375% for low and high 

acetylated starches, respectively, when compared with the unacetylated starch.  

The oleic acid content in all starch complexes was determined by GC (Table 2). 

Acetylated starches resulted in significantly higher amounts of complexed oleic acid per gram of 

complex in the recovered complexes compared with unacetylated starches for most treatments, 

suggesting that acetylation encouraged the formation of both soluble and insoluble complexes 

between starch and oleic acid. However, the amounts of complexed oleic acid were significantly 

lower than those of complexed stearic acid reported in the previous work.23 This is attributed to a 

better stability of the complexes formed between starch and stearic acid, a saturated fatty acid, 

than oleic acid of an unsaturated fatty acid.8,10,29-30 

For the insoluble complexes, the highest amount of oleic acid per gram of complex was 

recovered from the low acetylated starch (37.6 - 42.9 mg), which also complexed the higher 

amounts of stearic acid (101.0 and 123.1 mg) in the previous study.23 This indicates that the 

presence of a low level of acetylation (DS 0.036 - 0.045) hindered starch retrogradation and 

encouraged complexation with oleic acid. However, a high level of acetylation (DS 0.062 – 

0.072) decreased not only the complex recovery but also the complexation yield with oleic acid. 

This indicates that the further increase in the number of acetyl groups on starch might destabilize 

the starch helices for complexation. In addition, when β-amylase treatment was combined with 

high acetylation of starch, the amount of complexed oleic acid remained unchanged, suggesting 

that with the β-amylase treatment of high acetylated starch, there were still starch chains with 

favorable lengths that could participate in complexation with oleic acid.  
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For the soluble complexes, the highest amount of oleic acid was recovered from high 

acetylated-only starch (38.0 mg), which was similar to the highest amount of complexed oleic 

acid in the insoluble complexes. In contrast, the highest amount of stearic acid was recovered 

from the high acetylated and β-amylase-treated starch (61.2 mg).23 It is hypothesized that the cis 

double bond structure of oleic acid might require a slightly longer starch chains than stearic acid 

to form soluble complexes with high acetylated starch.  

Molecular Size Distribution. The standard curve used to estimate the degree of polymerization 

of debranched starch complexes without or with the β-amylase treatment is displayed in Figure 

1. 

 

Figure 1. Standard curve used to estimate the degree of polymerization of debranched starch 

complexes without or with the β-amylase treatment.  
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Except for the high acetylated-only starch (Figure 2E), all recovered starch in the starch 

complexes displayed an amylose peak at a retention time of 18.2-18.5 min, which corresponded 

to DP ~7000 (Figure 2). The relative proportion of the amylose peak was greater in the insoluble 

complexes than in the soluble complexes and increased with increasing acetylation level. This 

increasing trend in the amylose peak was also noted in the previous study with stearic acid,23 

which was attributed to an increased hydrodynamic volume from higher acetyl contents.  

The peak DP of soluble complexes shifted to a higher DP for unacetylated and acetylated 

starches after the -amylase treatment, indicating that the β-amylolysis of starch hydrolyzed 

short chains and reduced the chain length of longer chains. For the insoluble complexes, the DP 

remained unchanged for unacetylated and low acetylated starch and slightly increased for the 

high acetylated starches after the β-amylase treatment.  

All complexes displayed a main peak at a retention time between 23 and 24 min, which 

corresponded to DP 91 and 36, respectively, and were composed of mainly amylopectin long 

branched chains that were assumed to be involved in the complex formation with oleic acid. The 

retention time of this peak shifted to a shorter time with increasing acetylation, which was 

similar to the amylose peak. The relative proportion of this main peak was greater in the soluble 

complex than in the insoluble complex for the same treatment. These results are similar to those 

in the previous stearic acid study, although a lower amount of oleic acid was complexed in the 

present study. 
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Figure 2. Normalized size-exclusion chromatograms of recovered soluble and insoluble starch 

complexes from unacetylated and acetylated potato starches after complexing with oleic acid: (A) 

potato starch; (B) β-amylase treated potato starch; (C) low acetylated potato starch; (D) low 

acetylated β-amylase treated potato starch; (E) high acetylated potato starch; (F) high acetylated 

β-amylase treated potato starch.  
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Although previous studies reported that the carbon atoms adjacent to the double bond in 

cis-unsaturated fatty acids may be capable of rotating freely to give rise to a relatively linear 

structure,10,31 the complexation of starch with stearic acid was still more favored than with oleic 

acid. Overall, starch fractions with DP between 14 and 363, corresponding to retention time 25 

and 21.5 min, respectively, were observed in all starch complexes, indicating that these starch 

chain lengths were primarily responsible for complex formation with oleic acid. This agrees with 

Gelders et al32 that amylose chains with DP up to 400 were effective in forming complexes with 

glyceryl monostearate (GMS) and docosanoic acid (C22).  

The chain-length distributions of starch chains up to DP 60 of all starch complexes 

without and with the β-amylase treatment are displayed in Figures 3 and 4, respectively. For the 

soluble complexes, the additional β-amylase treatment resulted in an increase in the peak DP and 

the proportion of the higher DP peak, but it did not change the profiles of the insoluble 

complexes as much. The peak DPs for the soluble complexes of acetylated starches in the present 

work were slightly higher but not significantly different from those reported in the starch-stearic 

acid study,23 although a higher amount of stearic acid was complexed than oleic acid. Similar to 

the starch-stearic acid study,23 the fraction of DP 6-17 was prominent in all starch complexes, but 

it represented the proportion of starch chains that were too short to form complexes.  
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Figure 3. Normalized chain-length distributions of recovered soluble and insoluble starch 

complexes from unacetylated and acetylated potato starches without the β-amylase treatment after 

complexing with oleic acid using high-performance anion-exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD): (A) potato starch; (B) β-amylase treated potato starch; 

(C) low acetylated potato starch; (D) low acetylated β-amylase treated potato starch; (E) high 

acetylated potato starch; (F) high acetylated β-amylase treated potato starch.  
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Figure 4. Normalized chain-length distributions of recovered soluble and insoluble starch 

complexes from unacetylated and acetylated potato starches with the β-amylase treatment after 

complexing with oleic acid using high-performance anion-exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD): (A) potato starch; (B) β-amylase treated potato starch; 

(C) low acetylated potato starch; (D) low acetylated β-amylase treated potato starch; (E) high 

acetylated potato starch; (F) high acetylated β-amylase treated potato starch.  
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The proportion of DP 6-17 decreased with the β-amylase treatment for the soluble 

complexes but increased slightly for the insoluble complexes. These results indicate that when 

the amylopectin chains were considered, the favorable chain length for complexing with fatty 

acid, which was reported9 as DP >20, was longer for the soluble complexes than for the insoluble 

complexes.  

Characterization of Starch-Oleic Acid Complexes 

X-ray Diffraction Pattern. Most soluble and insoluble complexes of unacetylated starches 

displayed a mixture of the B-type and V-type X-ray diffraction patterns (Figure 5A,B) with 

peaks at 2θ = 17.0º, 22º and 24º and 2θ = 12.9º and 20º, respectively. The only exception was the 

soluble complex from the unacetylated-only starch (Figure 5A), which displayed predominantly 

the A-type pattern with peaks at 2θ = 15.3º, 17.2º, 18.2º and 23.1º besides minor peaks at 2θ = 

10º, 11.5º, 20º and 26.5º from the V-type pattern. The presence of the A-type polymorph may be 

ascribed to the high proportion of amylopectin short chains (Figure 3A) that were too short to 

complex with oleic acid but prone to re-association to form very ordered structure33. The 

additional β-amylase treatment on unacetylated starch decreased the intensity of the V-type 

pattern for the insoluble complexes, implying that the formation of insoluble starch-oleic acid 

complexes may require longer starch chains than starch-stearic acid complexes.23 The soluble 

complexes of the unacetylated starch changing from the A-type to B-type pattern after the β-

amylase treatment supports the HPSEC results that shorter chains have been hydrolyzed to result 

in predominantly longer chains. This is in agreement with previous works in which starches with 

shorter average chain length exhibited the A-type pattern (DP <19.7) and starches with a longer 

average chain length (DP >21.6) exhibited the B-type pattern.34 All soluble and insoluble 
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acetylated complexes displayed the V-type pattern with peaks at 2θ = 7.4º, 12.9º and 20º (Figure 

5C-F).  

 

 

Figure 5. Normalized X-ray diffractograms of recovered soluble and insoluble starch complexes 

from unacetylated and acetylated potato starches after complexing with oleic acid: (A) potato 

starch; (B) β-amylase treated potato starch; (C) low acetylated potato starch; (D) low acetylated β-

amylase treated potato starch; (E) high acetylated potato starch; (F) high acetylated β-amylase 

treated potato starch.  
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In the previous work of starch-stearic acid complexes23, the V-type structure was not 

observed in the soluble complexes from acetylated-only starches, even though a significant 

quantity of stearic acid was detected by GC. The XRD results imply that soluble starch-oleic acid 

complexes were formed, but when the GC results (Table 2) were considered, these complexes 

did not include as much oleic acid as did the soluble complexes of stearic acid from the previous 

work. The reason for the difference in the XRD patterns observed in the two studies may be due 

to that stearic acid and oleic acid interacted differently with the acetylated starch helix because of 

their structural differences. However, limited information exists for inclusion complexes from 

chemically modified starch; therefore more research is needed to explain the differences between 

XRD patterns and complexed amount for acetylated starch complexes with stearic acid and oleic 

acid. 

Acetylation of starch noticeably increased the intensity of the V-type pattern of starch-

oleic acid complex and reduced starch retrogradation peak at 2θ = 17º. For the insoluble 

complexes, high acetylated β-amylase treated starch displayed the highest peak intensity (Figure 

5F), which, however, did not contain the highest amount of complexed oleic acid by GC. This 

suggests that the intensity of the V-type pattern might not necessarily correlate with the quantity 

of complexed fatty acids such as oleic acid in this study and stearic acid in the previous study, 

but only reflect the level of organization and arrangement of the type of complex formed. When 

low acetylated starches were treated with β-amylase, the peak intensity of the starch-oleic acid 

complex slightly increased for the soluble complexes but decreased for insoluble complexes 

(Figure 5C,D). Again, there was no correlation between X-ray peak intensity and the amount of 

complexed oleic acid. 
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Melting Properties by Differential Scanning Calorimetry. All insoluble complexes and some 

soluble complexes displayed melting endotherms, but only the insoluble complexes exhibited the 

type II complex peak (Table 3). Within the unacetylated starches, the insoluble complexes of the 

debranched-only starch displayed a single melting endotherm  with Tp at 106.7 °C, signifying the 

presence of the type II starch-fatty acid complex, whereas, the soluble complex within the same 

treatment displayed only type I complex with Tp at 94.8 °C. The type I complex has been 

reported to form at a lower temperature of ~60 °C, leading to the production of randomly 

oriented helical segments,35 while the type II complex is formed at temperatures around 90 °C 

and produces well defined crystallites.36 Godet et al. 9,37 showed that longer starch chains can 

complex more lipids to produce crystals with higher melting temperatures.  

When the unacetylated starch received the additional β-amylase treatment, two melting 

endotherms were observed for the insoluble complexes, including the type I and type II 

complex38 with Tp at 94.9 and 102.9 °C, respectively. Lagendijk and Pennings39 previously 

reported that amylose with DP 900 may contain between 10 and 12 helices, consisting of six 

glucose units per turn, and each helix can complex at least one glycerol monopalmitate. The 

bimodal distribution of the insoluble starch complexes consisting of both short and long starch 

chains (Figure 2B) may lead to production of the type I and type II complex, respectively, which 

is in agreement with previous works.37,39  However, although the type II complexes were formed 

for the unacetylated starch complexes, the amount of complexed oleic acid were still low, 

presumably because of the increased reassociation of starch chains as evidenced in the XRD 

results (Figure 5B). 
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Table 3. Melting Temperatures and Enthalpiesa of Recovered Soluble and Insoluble fractions of Unacetylated and Acetylated 

Potato Starch-Oleic Acid Complexesb. 

 starch 

 β-amylase 

treatment 

type I complex peak  type II complex peak 

type of 

complex 
To (C) Tp (C) Tc (C) ∆H (J/g) 

 

To (C) Tp (C) 

Tc 

(C) ∆H (J/g) 

unacetylated soluble no 88.7a,b 

(0.1) 

94.8a,b 

(0.9) 

101.2a 

(0.6) 

1.59b,c 

(0.13) 

 

    

 insoluble no ND ND ND ND  92.1 

(0.5) 

106.7 

(0.0) 

114.7 

(0.7) 

1.89 

(0.03) 

 soluble yes 90.5a 

(0.6) 

96.1a 

(0.7) 

102.1a 

(0.5) 

1.84b 

(0.10) 

 

    

 insoluble yes 91.6a 

(0.8) 

94.9a,b 

(0.8) 

98.0a 

(1.7) 

0.44d 

(0.10) 

 101.0 

(0.9) 

102.9 

(1.1) 

109.0 

(0.5) 

0.76 

(0.06) 

            

low acetylated soluble no NDc ND ND ND      

 insoluble no 79.8c 

(0.7) 

91.4b 

(0.4) 

100.8a 

(0.7) 

2.84a 

(0.08) 

 

    

 soluble yes ND ND ND ND      

 insoluble yes 85.3b 

(2.4) 

93.1a,b 

(1.9) 

101.4a 

(1.9) 

1.95b 

(0.08) 

 

    
a Melting temperature and enthalpies of complexes scanned from 25 to 180 °C at 10 °C/min, immediately cooled from 180 to 25 °C at 

40 °C/min and rescanned from 25 to 180 °C at 10 °C/min. Melting temperatures: Onset, To; Peak, Tp; Conclusion, Tc; and Enthalpy, ∆H. 
bMean (standard deviation) of at least two measurements. Means in a column not sharing the same letter are significantly different based 

on Tukey’s honestly significant difference test (p < 0.05).  

cND, not detected 
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Table 3. Melting Temperatures and Enthalpiesa of Recovered Soluble and Insoluble fractions of Unacetylated and Acetylated 

Potato Starch-Oleic Acid Complexesb. (Cont.) 

 starch 

 β-amylase 

treatment 

type I complex peak  type II complex peak 

type of 

complex 
To (C) Tp (C) Tc (C) ∆H (J/g) 

 

To (C) Tp (C) 

Tc 

(C) ∆H (J/g) 

high acetylated soluble no 79.8c 

(1.5) 

86.1c 

(0.8) 

99.9a 

(0.4) 

1.86b 

(0.16) 

     

 insoluble no 80.7c 

(0.8) 

93.3a,b 

(0.7) 

100.9a 

(0.7) 

1.43c 

(0.04) 

 

    

 soluble yes ND ND ND ND      

 insoluble yes 80.7c 

(0.1) 

91.6b 

(0.2) 

98.6a 

(2.0) 

1.73b,c 

(0.06) 

 

    
a Melting temperature and enthalpies of complexes scanned from 25 to 180 °C at 10 °C/min, immediately cooled from 180 to 25 °C at 

40 °C/min and rescanned from 25 to 180 °C at 10 °C/min. Melting temperatures: Onset, To; Peak, Tp; Conclusion, Tc; and Enthalpy, ∆H. 
bMean (standard deviation) of at least two measurements. Means in a column not sharing the same letter are significantly different based 

on Tukey’s honestly significant difference test (p < 0.05).  

cND, not detected 
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The additional β-amylase treatment of unacetylated starches had no significant effect on the Tp 

and the enthalpy of the soluble complexes, but it decreased that of the insoluble complexes 

slightly, indicating that the -amylase treatment resulted in starch chains that formed insoluble 

complexes with a lower stability and required a lower energy to dissociate.  

  The introduction of acetyl groups to starch chains significantly decreased the To and Tp 

for all complexes. These findings are in agreement with previous works,22-23,40 in which 

acetylation of starch was reported to decrease the complexing ability and dissociation 

temperature of amylose-lipid complexes, although the complexes referred to in these studies 

were only the insoluble complexes. In addition, acetylated starch complexes displayed only the 

type I complex melting peak, supporting the previous study that the presence of the acetyl groups 

on starch may hinder the aggregation of the starch-oleic acid complexes.23 However, there was 

no clear trend in melting enthalpy in terms of the β-amylase treatment. The enthalpy values also 

did not correlate with the amounts of complexed oleic acid as measured by GC (Table 2). This 

suggests that the enthalpy values might not necessarily represent the amount of oleic acid 

included in the starch complexes but might indicate the energy required to melt the starch-oleic 

acid complex due to the degree of order or level of organization existing within the complexes.  

Although no melting endotherm was observed for the soluble complexes from the low 

acetylated without or with the β-amylase treatment and the high acetylated β-amylase treated 

starch, the presence of the starch-oleic acid complex was supported by the recovered oleic acid 

from the GC (Table 2) as well as by the presence of the V-type pattern displayed in the XRD 

results (Figure 5C,D&F). An opposite trend was observed in the soluble complexes of the low 

acetylated-only starch from the previous study with stearic acid,23 in which the presence of the 

starch-stearic acid complex was not observed in the XRD and DSC analyses, but stearic acid was 
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recovered from the complexes as measured by GC. These results support the hypothesis that 

acetylated starch complexes may exist in different polymorphic arrangements21 because the 

presence of acetyl groups on starch rendered them more soluble and affected their structural 

characterization by DSC. Nevertheless, there may be other factors causing the absence of the 

melting endotherm in some of the soluble starch-oleic acid complexes in the present study. 

Therefore, further investigations such as different chemical modifications or analytical 

techniques such as FTIR may provide a better understanding of the various types of polymorphs 

that can be generated during the complexation of acetylated starch and oleic acid and their 

structural characteristics.  

 
CONCLUSIONS 

 
In conclusion, the present study demonstrates that acetylation of starch alone can enhance 

the formation of both soluble and insoluble starch-oleic acid complexes compared with its 

unacetylated counterpart. Overall, high acetylated-only starch and low acetylated β-amylase 

treated starch resulted in the highest complex formation with oleic acid for the soluble and 

insoluble complexes, respectively. All acetylated soluble and insoluble complexes displayed the 

V-type X-ray diffraction pattern regardless of type of modification. The melting temperatures 

were reduced by acetylation for all complexes, however little correlation was found amongst the 

melting enthalpy values, X-ray intensity, and of the amount of either soluble or insoluble 

complex. The amount of complexed oleic acid in the present work was consistently lower than 

the amount of complexed stearic acid in the previous study for all treatments, confirming that the 

cis-configuration in fatty acids is not favored to form stable soluble or insoluble complexes and 

longer starch chains were preferred for complexation with oleic than with stearic acid. 
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VII. Chapter 5 : Effects of Chemical and Enzymatic Modifications on Starch-Linoleic 

Acid Complex Formation  

ABSTRACT 

Acetylation has been used to reduce retrogradation and to improve solubility of starch. This 

study investigated the complexation yield and physicochemical properties of soluble and 

insoluble starch complexes with linoleic acid when acetylation and a β-amylase treatment were 

applied to debranched potato starch. The degree of acetylation was generally higher in the 

soluble complexes than in the insoluble ones. The insoluble complexes from the acetylated starch 

displayed the V-type pattern, whereas, the soluble complexes displayed a mixture of either the 

A-and V-type or the B-and V-type pattern. Acetylation decreased onset and peak melting 

temperatures for insoluble complexes, but the soluble complexes displayed no melting 

endotherm. Low acetylated starch resulted in the highest amounts of complexed linoleic acid in 

the insoluble complexes. Acetylation substantially increased the amount of complexed linoleic 

acid in the insoluble complexes, but had no positive effect on the formation of the soluble 

complexes. 

 

KEYWORDS: acetylation, starch inclusion complex, linoleic acid, β-amylase, soluble complex, 

insoluble complex 
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INTRODUCTION 

    Inclusion complexes using starch as the complexing agent have been extensively 

studied.1-8 Starch is mainly composed of two components, an essentially linear amylose molecule 

and a highly branched amylopectin molecule. Both amylose and amylopectin are polymers of 

glucose, and the linear portion of the chains may form a helical structure with a hydrophobic 

cavity that can include various hydrophobic ligands such as iodine,9,10  alcohols,11 lipids,1,3,12-13 

flavors,14 and drugs.6,13 When included in the starch helical cavity, the molecules are stabilized 

and protected from oxidation,15 enzyme hydrolysis,16 and high temperature.17 Nevertheless, 

starch inclusion complexes are usually crystalline in nature and become insoluble in aqueous 

solutions.18 

 The complexation of starch and fatty acids have been reported and are influenced by 

many factors, such as starch chain length,19,20 incubation temperature17,21,22 and incubation 

pH.23,24 The thermal stability of starch-fatty acid complexes increases with an increase in fatty 

acid chain length and decreases with an increase in fatty acid unsaturation.25,26 Additionally, 

saturated fatty acids have been reported to form more stable complexes with starch compared 

with unsaturated fatty acids or mono or di-acylglycerols.26-28 Most studies on starch inclusion 

complexes focused mainly on the formation of insoluble complexes, and only few studies have 

investigated soluble starch complexes.29-31  

 Recently, Arijaje et al.30 and Arijaje and Wang31 demonstrated that the formation of 

soluble complexes between starch and stearic (C18:0) and oleic acid (C18:1) could be 

significantly increased when starch was acetylated and debranched. The acetyl groups hindered 

starch retrogradation and encouraged its complexing with fatty acids. Low acetylated debranched 

starch with a degree of substitution (DS) ~ 0.04 increased the amount of complexed stearic and 
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oleic acid in both soluble and insoluble complexes. High acetylated starch (DS 0.08 – 0.09) also 

increased the amount of complexed stearic and oleic acid in the soluble complexes, but 

decreased the yield and complexed stearic and oleic acid in the insoluble complexes when 

compared with low acetylated starch. Stearic acid was complexed to a greater extent than oleic 

acid because it is saturated and relatively less soluble in water.23 When a β-amylase treatment 

was incorporated with unacetylated and low acetylated debranched starch, the amount of 

complexed stearic and oleic acid generally increased in both soluble insoluble complexes. 

However when the β-amylase treatment was combined with high acetylated debranched starch, 

there was no consistent trend for either stearic or oleic acid.  

This work continued our two previous studies30,31 to investigate the impacts of fatty acid 

structure on the formation and properties of inclusion complexes with modified starch. The 

kinked structure in linoleic acid (C18:2) has been reported to present steric hindrance in the 

native starch helix, leading to only partial inclusion.32 We hypothesized that modification of 

starch by chemical (acetylation) and enzymatic (isoamylase and/or β-amylase) methods could 

improve its complexation with linoleic acid.  

 

MATERIALS AND METHODS 

Materials. Potato starch was obtained from Penford Food Ingredients (Centennial, CO, USA) 

and used without further treatment. Isoamylase from Pseudomonas sp (specific activity 280 

units/mg protein), pullulanase from Klebsiella planticola (specific activity 34 units/mg protein) 

and β-amylase from Bacillus cereus (specific activity 2660 units/mg protein) were purchased 

from Megazyme International Ireland Ltd. (Wicklow, Ireland). Linoleic (cis-9, cis-12-
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Octadecadienoic) acid was purchased from Sigma-Aldrich (St. Louis, MO, USA). All other 

chemicals were of ACS grade. 

 Acetylation of Starch. Starch was acetylated as previously described by Wang and Wang.33 The 

acetylation level of starches were determined according to the method of McComb and 

McCready34 and the degree of substitution (DS) were determined according to Wurzburg.35 

Enzymatic Modification of Starch 

Debranching. Starch was debranched as previously described by Arijaje et al.30 Potato starch 

(3.75%, w/v, starch db) was gelatinized in a boiling water bath for 1 h with constant stirring. 

Then the temperature of the solution was equilibrated to 45 °C and the pH adjusted to 5.0 with 

0.5 M HCl. To the starch solution, isoamylase and pullulanase (1.33% v/w starch db) each was 

added, and incubated at 50 °C with constant stirring for 48 h. The starch was recovered with 4-

fold volume of pure ethanol, centrifuged at 7000g for 10 min, dried at 40 °C for 48 h, and ground 

into powder using a UDY cyclone mill (UDY Corp., Ft. Collins, CO, USA) fitted with a 0.5-mm 

screen. 

β-Amylase Treatment. A portion of the debranched starch was subjected to an additional β-

amylase hydrolysis to reduce the degree of polymerization (DP). After the debranching for 48 h, 

the starch slurry pH was adjusted to 6.5 with 0.5 M NaOH, and incubated with 0.5% (v/w starch 

db) β-amylase at 40 °C for 4 h. The enzyme reaction was terminated by boiling for 15 min. The 

β-amylase-treated starch was recovered as previously described. 

Characterization of Starch Structure. The DPs of debranched unacetylated and acetylated 

starch without or with β-amylase treatment were determined by recovering starches after 

complexation with linoleic acid. The recovered starches were characterized using a high-

performance size-exclusion chromatography (HPSEC) system (Waters Corp., Milford, MA, 
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USA). Starch (10 mg) was dissolved in 5 mL of 90% DMSO, boiled for 1 h, and filtered through 

a 5.0-μm filter prior to injection into the HPSEC system. The HPSEC system consisted of a 

guard column (OHpak SB-G, 6.0 × 500 (mm) i.d. × length), two Shodex columns (OHpak KB-

804 and KB-802, both 8.0 × 300 (mm) i.d. × length), a 200 μL injector valve (model 7725i, 

Rheodyne, Cotati, CA, USA), an inline degasser, a model 515 HPLC pump, and a model 2414 

refractive index detector. The mobile phase of 0.1 M sodium nitrate with 0.02% sodium azide 

was eluted at a flow rate of 0.6 mL/min. The temperature of column was maintained at 60ºC and 

the detector at 40ºC. Dextran standards of molecular weight of 5,200, 11,600, 23,800, 48,600, 

273,000 and 410,000 g/mole from Waters Corp. (Milford, MA, USA) and 1,050,000 g/mole 

from Sigma Aldrich (St. Louis, MO, USA) were used to establish the calibration curve. 

The amylopectin chain length distributions were characterized by high-performance 

anion-exchange chromatography equipped with pulsed-amperometric detection (HPAEC-PAD) 

according to the method of Wong and Jane.36 The chains were divided into DP ranges and 

classified as follows: A chains (DP 6-12), B1 chains (DP 13-24), B2 chains (DP 25-36), and B3+ 

chains (DP 37+).37 The average chain length was calculated as the cumulative sum of the product 

of DP and percentage relative areas for all the identified peaks. 

Complexation of Starch and Linoleic Acid. The starch solution (3.75% w/v), debranched or 

debranched and β-amylase treated, was adjusted to pH 7.0 and preheated to 80 °C, and mixed 

with 1 g of linoleic acid that was dissolved in warm 95% ethanol. The mixture was maintained at 

80 °C for 30 min with continuous stirring to allow complexation, and then the temperature was 

maintained at 45 °C overnight with continuous stirring. The resulting starch-linoleic acid mixture 

was centrifuged at 7000g for 10 min, from which the precipitate, “insoluble complex”, was 

obtained, whereas, the “soluble complex” was recovered by precipitating the supernatant with 4-
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fold volume of pure ethanol. Any uncomplexed linoleic acid was removed from both the 

insoluble and soluble complexes by rotating complexes in excess 95% ethanol using a labquake 

shaker rotisserie (Barnstead/Thermolyne, Dubuque, IA, USA) at room temperature for 2 h, 

centrifuged at 7000g for 10 min, dried at 40 °C for 48 h, milled using a mortar and pestle, sieved 

through a 250-mm sieve, and stored for further analysis.  

Hydrolysis of Complexes and Linoleic Acid Analysis. Hydrolysis of complexes was carried 

out as described by Arijaje et al. (2014). Soluble or insoluble complex (100 mg) was added with 

10 mL of 1 M HCl and heated with continuous stirring in a boiling water bath for 1 h. After the 

complex mixture was cooled to room temperature, 5 mL hexane was added, and the solution was 

rotated on the rotary shaker for 1 h. The hexane layer with the extracted linoleic acid was 

recovered, and the extraction was repeated with another 5 mL hexane for 1 h. To the recovered 

hexane phase, boron trifluoride methanol was added to convert linoleic acid to linoleic acid 

methyl esters. An internal standard of methyl heptadecanoate (~1 mg) was subsequently added to 

all complexes. The linoleic acid methyl ester was injected into a gas chromatographer (GC) (GC-

2010, Shimadzu, Kyoto, Japan) equipped with a BP 21 capillary column (30 m  0.25 mm i.d.; 

SGE Inc., Austin, TX) with a flame ionization detector (FID), and responses were collected by 

Shimadzu GCsolution Workstation 2.3 (Kyoto, Japan). The injection port and detector 

temperatures were set at 220 °C and 230 °C, respectively. The column oven temperature was 

equilibrated at 100 °C for 1 min, ramped up at 15 °C /min to 160 °C, again ramped up at 5 °C 

/min to 200 °C and maintained at 200 °C for 10 min. The flow rate of the carrier gas (helium) 

was 30 mL/min. The concentration of linoleic acid was determined from a standard curve 

prepared by using methylated linoleic acid solution (0.1, 0.2, 0.4, 0.6, 0.8 and 1 mg/mL) 

containing the internal standard of methyl heptadecanoate (0.5 mg/mL).  
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Physicochemical Properties. X-ray diffraction (XRD) patterns of complexes were obtained 

using a diffractometer (PW1830 MPD, Philips, Almelo, The Netherlands). The XRD 

diffractograms were collected with the generator voltage set at 45 kV and the current set at 40 

mA. Samples were scanned over the 2θ angle from 5° to 35° in 0.02° steps at 1 s per step. 

The thermal properties of complexes were analyzed with a differential scanning 

calorimeter (DSC, Pyris-Diamond, PerkinElmer, Shelton, CT, USA). Complexes (approximately 

8 mg) were weighed into stainless steel pans, 16 μL of distilled water was added with the aid of a 

microsyringe, and the pans were hermetically sealed. The samples were equilibrated for 24h at 

room temperature before scanning and were scanned from 25 to 180 °C at a rate of 10 °C/min, 

and to confirm the formation of the starch-fatty acid complex, the complexes were immediately 

cooled from 180 to 25 °C at a rate of 40 °C/min and rescanned from 25 to 180 °C at a rate of 10 

°C/min. The onset melting temperature (To), peak melting temperature (Tp), conclusion melting 

temperature (Tc) and enthalpy (∆H) of the endotherms of the rescanned complexes were 

calculated using the Pyris data analysis software.  

Statistical Analysis. The JMP software (SAS Institute Inc., Cary, NC, USA) was used to 

analyze the statistical data that were conducted in replication, and the means were compared 

using Tukey’s honestly significant differences (HSD) test. 

 

RESULTS AND DISCUSSION 

Degree of Substitution. The DS of acetylated starch and starch complexes are presented in 

Table 1. The low and high acetylated starches had a DS of 0.045 and 0.091, respectively, prior to 

complexing with linoleic acid. The DS of acetylation was higher in the soluble complexes than in 

the insoluble ones within the same treatment, except for the low acetylated-only starch complex, 
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in which the DS in the soluble complex (0.048) was lower than in the insoluble one (0.063). The 

present result follows the trend that soluble complexes with linoleic acid would form at a lower 

DS (0.048), which was similar to oleic acid (DS 0.045),31 than with stearic acid (DS 0.063), 

because its double bond that increases its hydrophilicity.23 When the β-amylase treatment was 

included, the DS of acetylation increased in all soluble and insoluble complexes except for the 

low acetylated-only insoluble complex. This agrees with previous works30,31 that acetyl groups 

were preserved during the β-amylase hydrolysis of acetylated starch.  

 

Table 1. Degree of Substitution (DS) of Acetylated Starches and Starch-Linoleic Acid 

Complexesa. 

starch β-amylase 

treatment 

type of  

complex 

DS 

low acetylated starch N/A N/Ab 0.045±0.001f 

    

low acetylated starch complex no soluble 0.048±0.001e 

insoluble 0.063±0.001d 

yes soluble 0.092±0.000b 

insoluble 0.046±0.000f 

high acetylated starch N/A N/A 0.091±0.001b 

    

high acetylated starch complex no soluble 0.090±0.000b 

insoluble 0.037±0.001g 

yes soluble 0.140±0.000a 

insoluble 0.076±0.000c 

aAt least replicate samples were prepared for each complex. Data of two measurements with 

standard deviation. Means in a column not sharing the same letter are significantly different based 

on Tukey’s honestly significant difference test (p < 0.05). 
bN/A, not applicable. 
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Complex Recovery and Complexation Yield. Complex recovery was the recovered complex 

weight over the initial material weight (Table 2). Total recovery including both soluble and 

insoluble complexes for all unacetylated and acetylated complexes was between 0.90-0.95 g/g, 

except the unacetylated β-amylase-treated complex with a total recovery of 0.87 g/g.  

 
Table 2. Complex Recovery and Linoleic Acid Content Recovered from All Complexesa. 

starch  type of 

complex 

β-amylase 

treatment 

recovery (g/g) linoleic acid in 

complex 

(mg/g) 

Unacetylated soluble no 0.29±0.02f,g 1.0±0.0h 

insoluble no 0.65±0.00b,c 1.2±0.1g 

soluble yes 0.11±0.01h 1.1±0.0g,h 

insoluble yes 0.76±0.01a 2.1±0.1e 

     

low acetylated soluble no 0.57±0.03c,d 1.5±0.0f 

insoluble no 0.34±0.06f 26.7±0.4b 

soluble yes 0.47±0.02e 2.3±0.0e 

insoluble yes 0.48±0.00d,e 54.4±1.6a 

     

high acetylated soluble no 0.74±0.02a,b 1.2±0.0g 

insoluble no 0.20±0.03g,h 19.2±0.2c 

soluble yes 0.65±0.02b,c 1.1±0.0g,h 

insoluble yes 0.25±0.01f,g 12.5±0.4d 

aData of at least two measurements with standard deviation. Means in a column not sharing the 

same letter are significantly different based on Tukey’s honestly significant difference test (p < 

0.05). 

 

 

The total recovery is similar to those with oleic acid31 and supports previous findings that 

modified starch only changed the proportion of soluble and insoluble complexes and had little 

impact on the total complex recovery. Similar to the previous works,30,31 for the unacetylated 
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starches, the recovery of the insoluble complexes was higher than that of the soluble complexes 

and increased with the β-amylase treatment. The recovery for soluble complexes increased with 

increasing acetylation level but decreased when the β-amylase treatment was combined for the 

same treatment, and the opposite was noted for the insoluble complexes.  

The amount of linoleic acid recovered from unacetylated complexes was very low (1.0 - 

2.1 mg/g) compared with stearic acid (15.7 – 63.1 mg/g) and oleic acid (3.0 – 10.9 mg/g) in 

previous studies. Acetylation of starch significantly increased the amount of complexed linoleic 

acid in the insoluble complexes because the re-association of starch was reduced and therefore 

complex formation was favored. Acetylation increased the amount of complexed linoleic acid in 

the soluble complexes, although overall complexation yield was still low. The presence of a high 

number of acetyl groups may create steric hindrance that reduced complex formation in the 

soluble complexes. When the β-amylase treatment was combined, the amount of complexed 

linoleic acid increased in both complexes for the low acetylated starch; for the high acetylated 

complexes, the amount of complexed linoleic acid remained unchanged in the soluble complexes 

but greatly decreased in the insoluble complexes. The low inclusion of linoleic acid for the high 

acetylated β-amylase treated starches was attributed to a combination of shorter starch chains 

from the β-amylase hydrolysis and steric hindrance from the increased acetyl groups. The present 

results for the insoluble acetylated complexes are not consistent with results of Lui et al.,38 who 

reported that acetylation of pea starch decreased its complexing ability with lauric acid (C12:0) 

and monopalmitin. The differences between the two studies may be due to the higher DS of 

acetyl groups (DS~0.1) in Lui et al.38 compared with DS of 0.037 to 0.076 in the present study. 

The DS of acetylation ~0.1 in Lui et al.38 may be too high to encourage proper complex 

formation because the previous and present studies also demonstrated that a high acetylation 
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level had a negative impact on starch complexation with fatty acids.30,31 In addition, the different 

botanical source and treatment of starch used in Lui et al.38 (native pea starch) compared with 

debranched starch in this study may also contribute to the inconsistency. 

 Low acetylated β-amylase treated starch complexed the highest amount of linoleic acid 

(54.4 mg/g) in the insoluble complexes, which also complexed the highest amount of stearic acid 

(123.1 mg/g) and oleic acid (42.9 mg/g).30,31 The results suggest that a combination of low 

acetylation and β-amylase treatment improves starch complexing with fatty acids to form 

insoluble complexes. Acetylation alone or in combination with the β-amylase treatment did not 

greatly improve soluble starch complex formation with linoleic acid, although it increased 

soluble complexes with stearic and oleic acid considerably. This low complexation yield of the 

soluble complexes with linoleic acid is attributed to its kinked structure and greater affinity for 

the complexing solvent compared with stearic and oleic acid because Hahn and Hood23 reported 

that a compound with a greater affinity for the complexing solvent than the starch helix may 

remain more in the unbound state than as part of the starch complex. 

Molecular Size Distribution. The standard curve used to estimate the degree of polymerization 

of debranched starch complexes without or with the β-amylase treatment is displayed in Figure 

1. The molecular size distributions of starch chains recovered from both soluble and insoluble 

complexes of all treatments are presented in Figure 2. The soluble and insoluble complexes 

displayed a peak at a peak retention time of 18.2-18.7 min, indicating the presence of amylose 

with a DP range of approximately 4000-7000, which was reported to be too long to participate in 

complex formation.39 The proportion of this amylose fraction increased with acetylation, similar 

to previous works,30-31 because of its increased hydrodynamic volumes from the presence of 

acetyl groups, and the increase was greater in the insoluble complexes than in the soluble ones. 
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The proportion of the amylose fraction was further increased when acetylated starches received 

the additional β-amylase treatment, presumably because of a further increase in hydrodynamic 

volume of starches and the hydrolysis of amylopectin short chains. The major peaks observed in 

the soluble complexes were composed of amylopectin branched chains at a peak retention time 

between 23.8 and 24.8 min, which corresponded to DP 44 and 17, respectively, and this peak 

retention time also decreased with increasing acetylation level. The insoluble complex showed a 

narrower peak retention time between 23.3 and 24.0 min, which corresponded to DP 69 and 36, 

respectively, indicating that amylopectin chains participated in complex formation with linoleic 

acid. 

 

 

Figure 1. Standard curve used to estimate the degree of polymerization of debranched starch 

complexes without or with the β-amylase treatment.  
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Figure 2. Normalized size-exclusion chromatograms of recovered soluble and insoluble starch 

complexes from unacetylated and acetylated starches after complexing with linoleic acid: (A) 

starch; (B) β-amylase-treated starch; (C) low acetylated starch; (D) low acetylated β-amylase-

treated starch; (E) high acetylated starch; (F) high acetylated β-amylase-treated starch.  
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The peak retention time of the soluble complexes was at a lower DP range and the 

proportion of longer starch chains was greater in the insoluble complexes than in the soluble 

complexes for the same treatment, supporting that longer chains were required to form the 

insoluble complexes.  

When the β-amylase treatment was included, the main peak became narrower and shifted 

to a higher DP range, presumably because the shorter chains were hydrolyzed by β-amylase and 

the DS of acetylation became higher. The low acetylated β-amylase treated starch complexed the 

highest amount of linoleic acid for the insoluble complexes and had a peak DP 72, which was 

similar to the result by Xu et al.40, in which synthesized amylose with a DP 62 was effective in 

forming complexes with linoleic and linolenic acid. The present results agree with previous 

works30-31 that starch chains with DPs ~50-80 and a low acetylation degree (~0.034-0.046) 

improved the formation of insoluble complexes with stearic and oleic acids. For the soluble 

complexes, since overall complexation yield was very low compared with the insoluble 

complexes, the present results support our idea that there is an optimum combination of 

acetylation and starch chain length that will encourage complexation. And in the case of the 

soluble complexes from the starch-linoleic acid complex, the right starch chain length and/or in 

combination with acetylation to encourage complexation was not achieved.  
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Figure 3. Normalized chain-length distributions of recovered soluble and insoluble starch 

complexes from unacetylated and acetylated  starches without the β-amylase treatment after 

complexing with linoleic acid using high-performance anion-exchange chromatography with 

pulsed amperometric detection (HPAEC-PAD): (A)  starch; (B) β-amylase-treated starch; (C) low 

acetylated starch; (D) low acetylated β-amylase-treated starch; (E) high acetylated starch; (F) high 

acetylated β-amylase-treated starch.  
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Soluble starches demonstrated a lower average DP range compared with the insoluble complexes 

as shown by the HPSEC chromatogram (Figure 2), therefore starch chains may not have favored 

complexation with linoleic acid. In addition, the presence of high acetyl group content of the 

short chained soluble starch which ranged from 0.048-0.140 may have introduced steric 

hindrance during complexation with the kinked linoleic acid. 

The chain length distributions of the recovered amylopectin chains without and with the 

β-amylase treatment are displayed in Figures 3 and 4, respectively. For the debranched-only 

starches, most main peaks had a peak DP 13-16 and a minor peak of DP 40-44. Godet et al.,12 

had reported that starch chains with DP < 20 were too short to complex with lipids.  

When the additional β-amylase treatment was included, the proportion of chains with DP 

20-60 increased, while that of chains with DP 6-20 decreased noticeably. This agrees with the 

HPSEC results that the additional β-amylase treatment created more long chains with favorable 

lengths to complex linoleic acid. Both HPSEC and amylopectin chain length distribution results 

are supported by the higher amounts of linoleic acid in the insoluble complexes of unacetylated 

and low acetylated starches that received the additional β-amylase treatment (Table 2). Moreover 

for the β-amylase treatment of high acetylated starches, the amount of complexed linoleic acid 

decreased slightly, indicating that there exists an optimum combination of DS of acetylation and 

starch chain length to encourage complex formation.  

For the soluble complexes from all treatments, complexation was very low, presumably 

because shorter chains formed these soluble complexes,30 therefore, the proportion of starch 

chains with DP > 20 in the soluble starch chains in the present work were lower than that of the 

insoluble ones, supporting the HPSEC results. These observations also agree with our earlier 

explanation that the starch chains of the soluble complexes might not be sufficiently long enough  
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Figure 4. Normalized chain-length distributions of recovered soluble and insoluble starch 

complexes from unacetylated and acetylated  starches with the β-amylase treatment after 

complexing with linoleic acid using high-performance anion-exchange chromatography with 

pulsed amperometric detection (HPAEC-PAD): (A)  starch; (B) β-amylase-treated starch; (C) low 

acetylated starch; (D) low acetylated β-amylase-treated starch; (E) high acetylated starch; (F) high 

acetylated β-amylase-treated starch.  
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to participate in the formation of stable complexes with linoleic acid because the kinked structure 

of linoleic acid may have found it difficult to fit into the short chained helices.23 Therefore, 

acetylation without or with the β-amylase treatment on starch had little impact in improving 

soluble complex formation with linoleic acid.  

Characterization of Starch-Linoleic Acid Complexes 

X-ray Diffraction Pattern.  All unacetylated complexes displayed the B-type X-ray diffraction 

pattern with peaks at 2θ = 14.2º, 17.2º, 19.5 º, 22º and 24º, except that the unacetylated 

debranched-only soluble complex displayed the A-type pattern with peaks at 2θ = 10º, 11.4º, 

15.2º, 17.1º, 18.2 º, and 23º (Figure 5A,B). The characteristic V-type pattern by starch-fatty acid 

complexes was not observed in all unacetylated starches except for the peak occurring at 2θ = 

20º, which support the presence of linoleic acid as measured by GC (Table 2). 

 Acetylation of starch increased the peak intensities and the characteristic V-type pattern 

of starch-fatty acid complexes12,41,42 with peaks at 2θ = 7.6º, 12.9º and 20º in all insoluble 

complexes (Figure 5C-F). The peak intensities of the insoluble complexes from linoleic acid 

were much higher than those from stearic or oleic acid for the same treatment.30-31 The 

interaction between acetylated starches and linoleic acid may result in insoluble complexes with 

a more crystalline structure or a different type of polymorphs due to the presence of acetyl 

groups when compared with the unacetylated starches. The intensity of the V-type pattern 

increased with the additional β-amylase treatment but did not change significantly with an 

increase in DS of acetylation. The trend of the increasing V-type peak intensity was also 

observed for the stearic and oleic acid in the previous works.30,31 This indicates that the 

crystallinity of the V-type pattern of complexes became more evident as a result of the 
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hydrolysis of the of starch chains that were not involved in complex formation by β-amylase, 

therefore the V-type pattern became more dominant.  

 
Figure 5. Normalized X-ray diffractograms of recovered soluble and insoluble starch complexes 

from unacetylated and acetylated starches after complexing with linoleic acid: (A) starch; (B) β-

amylase-treated starch; (C) low acetylated starch; (D) low acetylated β-amylase-treated starch; 

(E) high acetylated starch; (F) high acetylated β-amylase-treated starch. 
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The soluble complexes from the low and high acetylated-only starch mainly displayed the 

mixed A- and B-type X-ray patterns similar to as their unacetylated counterparts, indicating that 

the acetylation did not improve complexation (Figure 5C,E). When the β-amylase treatment was 

included, the V-type pattern became more visible in the soluble complex of low-acetylated starch 

(Figure 5D) and was evident in the high acetylated starch complex (Figure 5F). However, the V-

type pattern displayed by the soluble complex of the high acetylated and β-amylase treated starch 

showed a shoulder at the lower diffraction angle of all three peaks. This clearly signifies that a 

different structural arrangement is present in this specific sample, which was not observed in the 

other samples in the present and previous works.  

Despite the V-type pattern observed in the soluble complexes from high acetylated β-

amylase treated starch, the amount of linoleic acid recovered was very low, supporting Arijaje & 

Wang31 that the intensity of the V-type pattern was not necessarily correlated with the quantity of 

included molecule but may more reflect the level of organizational arrangement of the 

complexes formed. Because very little information exists in literature for the XRD patterns that 

are exhibited by chemically and enzymatically modified starch complexes, more research is 

needed to understand the structures of these soluble complexes. 

Melting Properties by Differential Scanning Calorimetry. The unacetylated starch complexes 

displayed an onset melting temperature except for the debranched-only insoluble complex at 

with (To) 79.2 – 89.0 °C, and peak melting transition (Tp) 83.9 - 95.6 °C, which denotes the I 

complex that is known to consist of randomly distributed helical segments43 with a melting 

temperature around ~95 °C.22,27  
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Table 3. Melting Temperatures and Enthalpiesa of Recovered Soluble and Insoluble of 

Unacetylated and Acetylated Starch-Linoleic Acid Complexesb. 

Starch 

type of 

complex 
β-amylase 

treatment 

Starch-linoleic acid complex 

To (°C) Tp (°C) Tc (°C) 

∆H 

(J/g) 

Unacetylated soluble no 89.0a 

(0.4) 

95.0a 

(0.2) 

101.1a 

(0.3) 

1.62b,c 

(0.13) 

 insoluble no ND ND ND ND 

 soluble yes 88.8a 

(0.2) 

95.6a 

(0.5) 

103.1a 

(0.6) 

3.27a 

(0.14) 

 insoluble yes 79.2b 

(0.9) 

83.9b 

(0.7) 

87.8c,d 

(0.4) 

0.35e 

(0.10) 

       

low acetylated soluble no NDc ND ND ND 

 insoluble no 72.6c 

(0.7) 

84.1c 

(0.4) 

90.3b,c 

(0.9) 

1.39c,d 

(0.15) 

 soluble yes ND ND ND ND 

 insoluble yes 72.4c 

(0.5) 

80.8c 

(0.6) 

87.3d 

(1.1) 

1.13d 

(0.16) 

       

high acetylated soluble no ND ND ND ND 

 insoluble no 

73.0c 

(1.2) 

81.6c 

(0.4) 

89.9b,c,d 

(0.7) 

1.61b,c,

d 

(0.04) 

 soluble yes ND ND ND ND 

 insoluble yes 70.7c 

(0.4) 

83.6b 

(0.4) 

91.2b 

(0.0) 

1.96b 

(0.05) 
aMelting temperature and enthalpy after complexes were scanned from 25 to 180 °C at 10 °C/min, 

cooled from 180 to 25 °C at 40 °C/min and rescanned from 25 to 180 °C at 10 °C/min. Melting 

temperatures: Onset, To; Peak, Tp; Conclusion, Tc; Enthalpy, ∆H. 
bMean (standard deviation) of at least two measurements. Means in a column not sharing the same 

letter are significantly different based on Tukey’s honestly significant difference test (p < 0.05). 
cND, not detected 

 

 

The type II complex consists of aggregates of type I complexes with well-defined crystalline 

structures and melts at ~110 °C.43 The formation of the type I complex in the present study 

maybe be due to the kinked structure of linoleic acid which prevented the formation of more 
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crystalline complexes. The reason for the absence of the melting peak in the unacetylated 

insoluble complex is not clear.  

All acetylated insoluble starch complexes displayed only the type I complexes with Tp 

between 80.8 to 84.1 °C. The Tp values reported in the present work were generally lower than 

those reported in the previous works30-31 with stearic or oleic acid, but still represented the 

melting of the starch complex because the complexes were reheated and Tp ˃ 75 °C had 

previously been reported to denote the melting temperature of amylose-lipid complex.26,28 

Acetylation decreased the To, Tp and enthalpy for most starches because the presence of the 

acetyl groups hindered the formation of more ordered starch complexes, thus reducing their 

melting temperatures. There was no further reduction in melting temperatures and enthalpy 

values with high acetylation for starch-linoleic complexes, which was different from starch 

complexes with stearic and oleic acids where high acetylation resulted in starch complexes of 

lower melting temperature and enthalpy than did low acetylation. It is possible that the kinked 

structure of linoleic acid itself destabilizes the starch helix. In addition, linoleic acid complexes 

displayed a lower To compared with stearic and oleic acid complexes, suggesting that the starch-

linoleic acid complex had a lower degree of order or arrangement. This agrees with the findings 

by Karkalas et al.22 (1995) and Zabar et al.42 that an increase in the degree of unsaturation of 

fatty acids used in starch complexation leads to the production of ill-defined crystallites with low 

thermal stability and spatial localizability. There was no melting endotherm for the soluble 

complexes from the acetylated starches, which was also supported by the GC and XRD results 

that the acetylated starch soluble complexes included very small amounts of linoleic acid. 

Overall, the enthalpy values were consistently lower in the acetylated complexes 

compared with their unacetylated counterparts, indicating that a lower energy was required to 
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disrupt the acetylated complexes30 because of its improved solubility from the incorporation of 

the acetyl groups. The interference of re-associated amylose and amylopectin in these complexes 

was excluded as the complexes were rescanned immediately after prior heating and cooling. 

However, the enthalpy values were not consistent with the amounts of complexed linoleic acid 

for unacetylated and acetylated complexes (Table 2). Therefore the enthalpy values may 

represent the amount of energy required to disrupt and melt the complex, and may reflect the 

order existing within the complexes rather than the amount of linoleic acid in the complexes.  

 
CONCLUSIONS 

 
In conclusion, the present study showed that acetylation alone or combined with a β-

amylase treatment can improve the amount of complexed linoleic acid in the insoluble 

complexes, but did not increase the soluble complexes of linoleic acid. The bent structure of the 

linoleic acid hindered soluble complex formation. Acetylation decreased the melting temperature 

and enthalpy of all starch-linoleic acid complexes. Low acetylation combined with the β-amylase 

treatment of starch resulted in the highest amount of complexed linoleic acid in the insoluble 

complexes. There was an optimum degree of acetylation and starch chain length for improving 

complex formation for the insoluble complexes. A combination of low acetylation and β-amylase 

treatment of starch can be exploited for the preparation of the insoluble starch-inclusion 

complexes with bioactive compounds, and this treatment combination may help improve the 

stability of these complexes and ultimately improve their bioavailability. 
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VIII. OVERALL CONCLUSIONS 

Debranching of starch created more linear starch chains that could participate in complex 

formation for potato, common corn and Hylon VII starches, but the effects of an additional β-

amylase treatment varied with different starches. ITC showed that debranched waxy maize starch 

and potato amylose bound to hexanoic acid through an exothermic cooperative event, with 

debranched waxy maize starch binding faster to hexanoic acid than potato amylose. Acetylation 

increased complex formation for both soluble and insoluble complexes by decreasing starch 

retrogradation and stabilizing the included fatty acids. Degree of acetylation was generally 

higher for the soluble complexes compared with the insoluble ones within the same treatment. A 

combination of low acetylation and the β-amylase treatment included the highest amounts of 

fatty acids (stearic, oleic and linoleic acids) for the insoluble complexes. High acetylated starch 

with and without the β-amylase treatment can be employed for the production of soluble 

complexes as this starch treatment included the highest amount of stearic acid and oleic acid, 

respectively. There was an optimum starch chain length and degree of acetylation required to 

encourage the formation of these complexes. Complex formation increased for all starches with 

an increase in the proportion of starch chains with DP 20 to 400, and starch chains with DP > 

400 may also actively participate in complexation. The information from this study could 

provide insight into ways of increasing complexation yield, and into the creation of soluble 

complexes between starch and other insoluble bioactive compounds, which may lead to the 

increased digestibility and bioavailability of the included bioactive compound.  
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