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adaptable complex system with multiple functional redundancies and mission possibilities, 

which will serve as an excellent example for the FIMA method’s mission analysis capabilities.  

The robotic arm system described here is meant to represent a potential manufacturing robot that 

might be found on a factory floor assembly line that would have missions of moving objects 

between different positions.   

 

 

 

 

  

 

 

 

Figure 4.1 – 3-Linkage Robotic Arm Assembly  

Unfortunately, when everything is working nominally there is no simple way of 

determining how good a mission plan truly is, and it is only when specific failures begin to 

appear that any accurate mission analysis can really take place. For example, one mission plan 

might only require moving an object a short distance, but one of the locations is at the robot’s 

maximum reach, while another mission plan has the robot moving an object much further 

distances, but the locations are closer to the base.  While the first mission plan may be quicker 

and require fewer movements, therefore, making it seem like the better mission, just a small 

degradation is all that would be necessary to make the maximum reach unachievable, making the 

first mission plan impossible, while the second mission plan would go virtually unaffected.  This 
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shows how the differentiation between how various missions will react to a given failure 

scenario is of the utmost importance because depending on the type of failures that occur, a 

system may need to re-optimize or possibly even completely change a mission plan.  This 

analysis problem is why the ability to identify the “best” mission based on the Mission 

Robustness Ratings for each mission task is one of the major unique contributions of the FIMA 

method.  Therefore, this robustness analysis will be addressed in much greater detail in this case 

study. 

4.2.2. Case Study: Methodology 

 

The first step of Phase II was to create an updated, quasi-quantitative Simulink model 

with state-machines and failure-logics for each component: the Base Joint, Joint1, Joint2, and 

Joint3.  Because all of the components are the same type of mechanism, i.e. joints, the state-

machines were all able to be nearly identical, differing only in their governing equations’ 

nominal values; the Base is defined as having a nominal movement range of 0 to 180 degrees, 

Joint1 can range from 0 to 90 degrees, and Joint2 and Joint3 can each range from -180 to 180 

degrees.  Each joint was sampled every 1 degree. Sensitivity analysis was done by altering the 

sampling size to every 3 degrees, as well as every 6 degrees, for each of the use-cases in section 

4.2.3.  For the 3-degree sampling size the differences in the resulting OCR, MRR, and Mission 

Time values were minor (average differences of less than 1% for the OCR values, roughly 2% 

for the MRR values, and roughly 1 minute for the Mission Times), however, for the 6-degree 

sampling size the difference in results were quite significant and unpredictable.  Each linkage 

was then given a length of 3 feet and the nominal rotational speed of each was defined as 30 

degrees per second. Next, for simplicity sake, during this case study it was assumed that there 

were no obstacles within the arm’s movement range, i.e. no external system failures.  Also, the 
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linkages were identified as connecting off-axis in order to allow the arm to rotate in on itself.  

These criteria were all chosen arbitrarily for this example and would likely differ depending on 

the type of arm assembly and quality of components. Also, these criteria could easily be changed 

to include obstacles or exclude certain types of arm movements by adding limitations within the 

MATLAB code.  Lastly, all arm coordinates were then calculated using the following forward 

kinematic equations within the MATLAB code:  

 

r = L1*cos(Theta1)+L2*cos(Theta1+Theta2)+L3*cos(Theta1+Theta2+Theta3)          (1) 

Z = L1*sin(Theta1)+L2*sin(Theta1+Theta2)+L3*sin(Theta1+Theta2+Theta3)           (2) 

X = LR*sin(Theta0)                                                         (3) 

Y = LR*cos(Theta0)                                                         (4) 

 

where the three arm joints are located in the r-Z coordinate plane, and the base is located in the 

X-Y coordinate plane. Also, L1, L2, and L3 are the lengths of the three arm linkages, LR is the 

total length of the arm in the r-direction, and Theta0, Theta1, Theta2, and Theta3 are the joint 

angles for the Base, Joint1, Joint2, and Joint3, respectively.  Examples of the different state-

based governing equations within the Simulink state-machines used for updating each joint’s 

movement range, i.e. adjusting the minimum and maximum rotational angles as well as each 

joint’s movement speed for given failure scenarios, can be seen for the Base Joint in Figures A5-

A7. 

 The Simulink model and MATLAB code are related in such a way that the input data for 

the Simulink model will come from the first portion of the MATLAB code and user inputs, then 

this information will be processed and outputted from Simulink back into the second portion of 
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the MATLAB code.  The Simulink inputs consist of multiple variables for each component that 

are dependent upon the user’s responses to prompts generated by the MATLAB code.  The user 

inputs the health of each component, as well as the degree of failure and type of failure that they 

wish to have simulated; the types of failure for this system are movement and speed-based.  A 

joint’s movement range can be “Defective,” resulting in the joint being stuck at a user-specified 

angle, or it can be “Degraded,” anywhere from 0-100% that can then be applied to either a 

Lower, Middle, or Upper limitation.  For example, a 10% Lower limitation for a range of 0-180 

degrees would result in a new range of 18-180 degrees, a 10% Middle limitation would result in 

a new range of 9-171 degrees, and a 10% Upper limitation would result in a new range of 0-162 

degrees.  Likewise, a joint’s speed can also be “Degraded” anywhere from 0-100%.  Also, along 

with the user-inputted, failure-based speed degradation, a joint’s speed is also programmed to 

decrease linearly over time depending on the component’s lifespan rating, i.e. if a joint has a 

lifespan of 10,000 180 degree movements with a speed of 30 degrees per second, then if that 

joint moves 180 degrees 5,000 times it will now only be capable of moving at 15 degrees per 

second. 

The Simulink model first processes the current state of each component based on the 

user’s inputs and then provides output data, such as updated performance values and new 

minimum and maximum achievable angles and speeds, that will then be processed by the 

MATLAB code to determine the Overall Coverage Rating, as well as the graphical representation 

of all functionalities for the overall system, which can be seen in Fig. 4.2; the top two plots 

represent the overall coverage of the arm for a nominal system on the X-Y and r-Z axes, 

respectively, and the bottom two plots represent the remaining coverage for a random faulty 

system. The example faults present in the bottom plots were: a 20% Middle limitation for the 



31 

Base, a 25% Middle limitation for Joint1, a 40% Upper limitation for Joint2, and a 35% Lower 

limitation for Joint3.   

 

Figure 4.2 – Possible Movement Coverage for 3-Linkage Robot Arm  

(Top: Nominal, Bottom: Degraded) 

(Left: X-Y axis, Right: r-Z axis) 

 

Next, the user will be asked to input various mission details, such as the various tasks, i.e. 

moving an object from point A to point B in the [X,Y,Z] coordinate plane, as well as how many 

cycles of these tasks need to be completed.  Each [X,Y,Z] location was given a margin of error of 

0.2 feet based on the assumption that the arm’s claw would be at least slightly bigger than the 

object it is picking up.  These user inputs will then result in mission-specific output data that will 

be compared with the overall system output data to determine mission feasibility, to optimize the 
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mission plan, and to identify any redundancies or repairs that may be needed.   An example of 

the plot generated comparing the original, nominal arm angles to the degraded but optimized arm 

angles for a given mission can be seen in Fig. 4.3; the mission tasks were to move between two 

arbitrarily chosen points, [3,4,4] to [2,2,5], and the degraded plot was for the same example 

failure scenario as seen in Fig. 4.2, where Joint2 is the most degraded component and therefore, 

the movements were optimized for Joint2. 

 
Figure 4.3 – Nominal (Left) vs. Optimized for Degradation (Right) arm positions  

on the r-Z axis 

 

For this system, two use-cases were explored in the following section.  The first is using 

the FIMA method for comparing two different missions during the same failure scenarios, and 

the second is utilizing the failure data to optimize a set mission plan to handle further failures by 

altering the position of the entire robot. 

4.2.3. Case Study: Results and Discussion 

 

4.2.3.1. Use-Case 1: Mission Comparisons 

 

The first use-case of the FIMA method’s quasi-quantitative analysis was to evaluate 

different mission plans, i.e. different sets of tasks, or initial and final positions, for different 

failure scenarios in order to show that by using the Overall Coverage Rating (OCR) and the 

Mission Robustness Ratings (MRR) the FIMA method can accurately identify which mission 
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plan is best.  The mission data for this use-case can be seen in Table 4.1.  This mission data 

includes three different failure scenarios, where three failure factors for each component are 

identified: Percent Degraded-Range, Limitation Type, and Percent Degraded-Speed, respectively.  

Each scenario is then evaluated for two different mission plans: A and B.  Each mission plan is 

responsible for two tasks: moving the robotic arm from an Initial position to a Final position, and 

these missions are to be repeated 250 times.  The outputs for each mission are the Mission 

Feasibility (including which component the mission’s optimization was based), the total Mission 

Time, and the Mission Robustness Ratings for both mission tasks, i.e. the initial and final points. 

Table 4.1 – Mission Data for Use-Case 1 

 Failure Scenario #1 Failure Scenario #2 Failure Scenario #3 

Base 0%, None, 0% 0%, None, 0% 0%, None, 0% 

Joint1 5%, Upper, 1% 10%, Upper, 1% 45%, Upper, 1% 

Joint2 12%, Middle, 1% 24%, Middle, 1% 48%, Middle, 1% 

Joint3 9%, Lower, 1% 18%, Lower, 1% 47%, Lower, 1% 

OCR 75.4% 56.1% 15.1% 

 A B A B A B 

Initial [3,4,5] [2,3,4] [3,4,5] [2,3,4] [3,4,5] [2,3,4] 

Final [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] 

Cycles 250 250 250 250 250 250 

Feasibility Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 

Time 24.01 min 46.68 min 23.73 min 50.63 min 24.57 min 37.86 min 

MRRi 94.3% 95.2% 89.1% 55.8% 27.6% 27.3% 

MRRf 95.2% 91.4% 90.1% 86.0% 32.0% 30.4% 

 

For Failure Scenario #1, the Overall Coverage Rating for the arm is 75.4%, which 

indicates that roughly a quarter of the system’s total functionality has been lost.  Next, looking at 

the two mission plans, both are feasible and both were functionally optimized for Joint 2, which 

is what was expected due to the fact that Joint 2 was the most degraded component.  Finally, the 

mission time, MRRi, and MRRf values are evaluated.  MRRi and MRRf are the Mission 
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Robustness Ratings for each of the mission tasks, i.e. the initial and final positions. For the time 

comparison, the shorter the Mission Time the better.  However, the shortest mission is not always 

the most robust and this is where the Mission Robustness Ratings’ importance is seen. As 

mentioned earlier, the individual Mission Robustness Ratings are indicators of how the system 

handles specific failure scenarios for its various mission tasks, and it is desired that both MRRi 

and MRRf values are larger than the OCR due to the fact that the OCR indicates the overall, 

average robustness, and therefore, larger MRR values would signify that the mission plans have 

above average robustness. As seen in Table 4.1 both missions have relatively high MRRi and 

MRRf values, implying that neither mission was very affected by Failure Scenario #1, and they 

are also above the OCR value, which as previously mentioned, is desired.   However, when 

directly comparing mission A to mission B, mission A is better all-around, as it not only can 

complete the necessary 250 cycles faster, but the mission tasks are more robust on average than 

those for mission B.  Even after only the first failure scenario, mission A can be identified as the 

preferred mission plan, however to show that this assumption holds true for further degradations, 

Failure Scenario #2 and #3 were simulated.  As expected, mission A remains faster and more 

robust than mission B for all scenarios.  In Failure Scenario #2, mission A becomes significantly 

better in all categories than mission B.  However, in Failure Scenario #3, while mission A is still 

better, the different components’ degradations are becoming balanced through optimization, and, 

as expected, the optimization has also begun to balance each mission’s robustness ratings, as well 

as helping to decrease each of their mission times, reducing them both below even their far less 

degraded Failure Scenario #1’s times.  
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4.2.3.2. Use-Case 2: Mission Adjustments 

 

 The second use-case for the FIMA method’s quasi-quantitative analysis was to 

demonstrate that by using the OCR and MRR values for a specific failure scenario, a mission 

plan could be greatly improved; both the failure scenario and mission plan were arbitrarily 

chosen for this study. Unfortunately, because certain mission plans might not be able to be 

altered, such as a robot picking up a bolt and then placing it on a specific area of a vehicle 

coming down the assembly line, the position of the entire robot itself might need to be altered in 

order to increase the system’s robustness. Therefore, it is assumed that the arm assembly is 

capable of being moved on the X-Y plane, such as by being placed on wheels, in order to 

optimize its position relative to the initial and final positions it must reach. As seen in Table 4.2, 

the original mission plan is again responsible for two tasks of moving the robotic arm from the 

initial position to the final position, 250 times, and the output variables for each mission are the 

same as for use-case 1: Mission Feasibility (including which component the mission’s 

optimization was based), total Mission Time, and Mission Robustness Ratings for both mission 

tasks.    

Table 4.2 – Mission Data for Use-Case 2 

Base 0% 

Joint1 15%, Lower, 1% 

Joint2 15%, Lower, 1% 

Joint3 20%, Middle, 1% 

OCR 57.6% 

  

 Original (Shift: -2Y) (Shift: +3X) (Shift: -1Y) 

Initial [-1,1,1] [-1,3,1] [-4,3,1] [-4,4,1] 

Final [4,3,-1] [4,5,-1] [1,5,-1] [1,6,-1] 

Cycles 250 250 250 250 

Feasibility Y, FO-J3 Y, FO-J3 Y, FO-J3 Y, FO-J3 

Time 71.57 min 44.46 min 34.99 min 31.03 min 

MRRi 17.9% 8.3% 60.5% 80.8% 

MRRf 50.3% 81.8% 53.1% 82.7% 
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 As seen in Table 4.2, when the failure scenario listed occurs, the original mission plan is 

identified as incredibly poor.  It is still feasible, however, both MRR values are well below the 

OCR, indicating that there are far better mission plans available, and this is where the designer 

would ideally be able to tweak the position of the robot in order to find a more robust mission 

plan.  First, a shift in the negative Y direction was applied, i.e. backing the robot away from the 

assembly line, and while this adjustment improved the mission time and the MRR of the final 

position, it reduced the MRR of the initial position.  Next, a shift in the positive X direction was 

applied, and this effectively improved the mission time and both MRR values, however, the 

MRR value of the final position is still below the OCR, so further improvements can still be 

made.  Finally, another shift in the negative Y direction was made and this resulted in vast 

improvements to both MRR values and the overall mission time.  While further improvements 

may have been possible through further adjustments, for the purposes of this study, these 

improvements were sufficient.  Ultimately, this study showed that by following the FIMA 

method, using the OCR and MRR values, a designer could effectively reduce the original 

mission time by more than half, while also vastly improving the system’s mission robustness. 
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CHAPTER 5 

CONCLUSIONS 

 

 

The Failure Identification for Mission Analysis (FIMA) method proposed in this paper is 

designed to allow a single, adaptable model to be used throughout the entire design process of a 

complex system.  The method was shown to be able to provide models for qualitative failure 

analysis during early design stages, and then expand these models for quasi-quantitative analysis, 

as more information about the system becomes available during the later design stages.  By using 

the FIMA method, designers should no longer be required to create new models or switch 

analysis techniques throughout the different design stages, making the whole process much more 

efficient and streamlined than with existing failure analysis methods.  Moreover, the FIMA 

method uniquely allows for the simulations of manufacturing-based failures, as well as 

traditional function-based failures.  However, the biggest and most unique contribution made by 

the FIMA method is its ability to take a complex system’s failure information and use it for 

mission assessment and optimization.   

With the constant advancement of technology and the ever-growing capabilities of 

complex systems, it is absolutely vital to know what the system is being used for in order to 

accurately understand the effects of failures on the overall system performance, and the lack of 

this mission analysis is where current methods fall short. By using the FIMA method, on the 

other hand, mission assessments and optimizations can be performed in order to balance failure 

degradations and increase mission robustness for any number of mission plans in an effort to 

maximize a system’s use in between repairs.  This unique ability could be especially beneficial 

for complex systems that are incapable of receiving repairs, such as the NASA rovers exploring 
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Mars, because even if certain functions are lost due to failures, it is vital to know which functions 

and mission tasks are still feasible in order to maximize the amount of use the existing rovers can 

perform before new ones need to be sent.    

By utilizing failure information for mission analysis, the FIMA method can provide more 

comprehensive and useful information than other current failure analysis methods.  With next-

generation technologies becoming increasingly more complex, it is not enough anymore simply 

to know how a system will fail.  What the system will be doing, what environment it will be 

doing it in, and what functional adjustments are available must all be accurately identified in 

order to effectively analyze the effects of complex failures in a complex system, and the FIMA 

method has been designed to do just that.  First, the FIMA method identifies and assesses the 

potential functions and mission tasks that a complex system may be asked to perform, and then 

based on various potential failure scenarios, the functions and tasks that are the most and least 

robust can be identified.  Then, by using this information, the FIMA method is able to optimize 

the system’s performance in order to more effectively achieve specific mission plans for any 

given failure scenario.  
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CHAPTER 6 

 

FUTURE RECOMMENDATIONS 

 

 

 

 The benefit of the FIMA method does not end with its ability to provide failure 

simulations.  While initially, during Phase II, the health state of each component and the specific 

degree of failure must be inputted by the user, in the future, with the addition of actual sensor 

data, the same MATLAB code that is used for the quasi-quantitative simulations could be used as 

a diagnostics tool for real-time optimization of real-world physical systems.  In this capacity, the 

code would again not care about the causes of failure, but instead only about the system’s 

functional capabilities that remain. For example, in the manufacturing robot used for the Phase II 

case studies, instead of the user inputting a “Percent Degraded” value prior to a mission, an 

actual robot would run a quick system diagnostics check by rotating each individual joint to their 

minimum and maximum angles at peak speed.  Then, instead of the state-machines having to 

calculate the individual minimum and maximum values and speeds, the sensors would send their 

data directly back to the code that would then proceed as before to optimize the arm angles based 

on the different minimums and maximums.  Therefore, by using the FIMA method, a designer 

should be able to use the same model, built congruently with the physical design, from the early, 

conceptual design phases, all the way to the final detailed phases, and ultimately, into real-world 

application. 

Furthermore, future work on Phase III of the FIMA method will focus on a fully 

quantitative analysis approach by adding more detailed failure modes to the Phase II models.  

The quasi-quantitative analysis will always be somewhat abstract, as the specific causes of 

degradation for certain failure modes are not specified.  During a fully quantitative analysis 
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however, each failure mode can be expanded.  For example, if a wheel was “Degraded” in the 

qualitative and quasi-quantitative phases, in Phase III’s fully quantitative models, “Degraded” 

could be expanded into such failure modes as “Traction Loss Caused by Wear” or “Low Tire 

Pressure,” and then “Defective” could be either “Flat” or “Jammed,” and each one of these 

would result in their own behavioral equations as well.  Also, the failures could be separated to 

indicate different internal and external causes, i.e. “Jammed” could be caused by an internal 

malfunction that is a critical failure and cannot be fixed without a total part replacement, or the 

jam could be caused by an external failure, such as the wheel being stuck in mud, which would 

not be a critical failure in the sense that a component needs replacement, it would only be a 

failure on the system-level objective of movement. Phase III of the FIMA method would then 

also be able to determine such differences between failures and be able to inform the user the 

best course of action moving forward; if the first definition of “Jammed” is simulated, the system 

would produce an error message indicating that the mission cannot be completed and that the 

broken component must be replaced.  If the second definition of “Jammed” is simulated, the 

system would produce an error message that identifies this failure as an external failure only, and 

if corrected, perhaps through redundancies from other non-compromised components, such as by 

switching into 4-wheel drive, would have no long-lasting effects on the system.  This ability 

would allow the model to identify even more potential failure scenarios, as well as effectively 

label which are critical vs. manageable. 

The FIMA method’s Phase III quantitative analysis also will be to explore path-planning 

optimization.  During the Phase II robotic arm case study, it was assumed that there were no 

external obstacles and therefore, the arm was able to move between points in a straight line.  

However, in more complex cases, it will be necessary not only to know how failures affect the 
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arm’s possible angle combinations at mission points, but also how failures affect the arms ability 

to move around obstacle to get from one point to the other.  For example, some internal failures 

or external obstacles may affect the arm’s ability to move left and right, while others may affect 

the ability to move forwards and backwards, and so depending on the required mission plan, the 

arm’s path between points will need to be optimized, along with the joint’s angle combination 

optimization done in Phase II. 

Next, future work on the Phase III quantitative analysis will also include validation of the 

models through experimentation on a physical testbed.  For the case study examined in Phase II, 

the 3-linkage robot arm, this validation could be done a number of ways.  Mission abilities and 

times could be tested and compared with the failure scenarios and mission plans simulated 

through control input constraints for each joint’s speed and minimum and maximum angles, or 

by physically replacing the testbed’s healthy joints with different types of degraded joints.  

Degraded joints could be manufactured to have various degrees of wear, jams, or breaks and then 

based on each of these effects on rotational speeds and minimum and maximum angles, mission 

plans, arm positions and paths, and the effects of further degradation on the overall system 

performance could be tested. 

Lastly, future work on the FIMA method should include its application to more complex 

systems with more complex missions in order to show its scalability and its true merit for diverse 

applications.  One such application idea would be to use the FIMA method to create an advanced 

GPS system.  Currently, GPS systems are essentially external system failure analysis tools with 

mission optimization capabilities.  GPS, generally speaking, identifies a mission plan, or route, 

based on shortest mission time, and then based on external system failures, such as things like 

traffic jams, missed turns, and construction detours, the system identifies all remaining possible 
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APPENDIX 

 

Figure A1. Overview of Simulink Model used for MEMS DNA Sequencer 
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Figure A2. Example of a simple Performance State-Machine (ET Component) 
 

 

 

Figure A3. Example of part of a more complicated State-Machine (NBNC Component) 
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Figure A4. Example Failure-Logic Diagram (ET Component) 
 

 

Figure A5. Example 1 of State-based equations (Base Joint) 
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Figure A6. Example 2 of State-based equations (Base Joint) 
 

 

 

 

Figure A7. Example 3 of State-based equations (Base Joint) 
 


