
27

adaptable complex system with multiple functional redundancies and mission possibilities,

which will serve as an excellent example for the FIMA method’s mission analysis capabilities.

The robotic arm system described here is meant to represent a potential manufacturing robot that

might be found on a factory floor assembly line that would have missions of moving objects

between different positions.

Figure 4.1 – 3-Linkage Robotic Arm Assembly

Unfortunately, when everything is working nominally there is no simple way of

determining how good a mission plan truly is, and it is only when specific failures begin to

appear that any accurate mission analysis can really take place. For example, one mission plan

might only require moving an object a short distance, but one of the locations is at the robot’s

maximum reach, while another mission plan has the robot moving an object much further

distances, but the locations are closer to the base. While the first mission plan may be quicker

and require fewer movements, therefore, making it seem like the better mission, just a small

degradation is all that would be necessary to make the maximum reach unachievable, making the

first mission plan impossible, while the second mission plan would go virtually unaffected. This

28

shows how the differentiation between how various missions will react to a given failure

scenario is of the utmost importance because depending on the type of failures that occur, a

system may need to re-optimize or possibly even completely change a mission plan. This

analysis problem is why the ability to identify the “best” mission based on the Mission

Robustness Ratings for each mission task is one of the major unique contributions of the FIMA

method. Therefore, this robustness analysis will be addressed in much greater detail in this case

study.

4.2.2. Case Study: Methodology

The first step of Phase II was to create an updated, quasi-quantitative Simulink model

with state-machines and failure-logics for each component: the Base Joint, Joint1, Joint2, and

Joint3. Because all of the components are the same type of mechanism, i.e. joints, the state-

machines were all able to be nearly identical, differing only in their governing equations’

nominal values; the Base is defined as having a nominal movement range of 0 to 180 degrees,

Joint1 can range from 0 to 90 degrees, and Joint2 and Joint3 can each range from -180 to 180

degrees. Each joint was sampled every 1 degree. Sensitivity analysis was done by altering the

sampling size to every 3 degrees, as well as every 6 degrees, for each of the use-cases in section

4.2.3. For the 3-degree sampling size the differences in the resulting OCR, MRR, and Mission

Time values were minor (average differences of less than 1% for the OCR values, roughly 2%

for the MRR values, and roughly 1 minute for the Mission Times), however, for the 6-degree

sampling size the difference in results were quite significant and unpredictable. Each linkage

was then given a length of 3 feet and the nominal rotational speed of each was defined as 30

degrees per second. Next, for simplicity sake, during this case study it was assumed that there

were no obstacles within the arm’s movement range, i.e. no external system failures. Also, the

29

linkages were identified as connecting off-axis in order to allow the arm to rotate in on itself.

These criteria were all chosen arbitrarily for this example and would likely differ depending on

the type of arm assembly and quality of components. Also, these criteria could easily be changed

to include obstacles or exclude certain types of arm movements by adding limitations within the

MATLAB code. Lastly, all arm coordinates were then calculated using the following forward

kinematic equations within the MATLAB code:

r = L1*cos(Theta1)+L2*cos(Theta1+Theta2)+L3*cos(Theta1+Theta2+Theta3) (1)

Z = L1*sin(Theta1)+L2*sin(Theta1+Theta2)+L3*sin(Theta1+Theta2+Theta3) (2)

X = LR*sin(Theta0) (3)

Y = LR*cos(Theta0) (4)

where the three arm joints are located in the r-Z coordinate plane, and the base is located in the

X-Y coordinate plane. Also, L1, L2, and L3 are the lengths of the three arm linkages, LR is the

total length of the arm in the r-direction, and Theta0, Theta1, Theta2, and Theta3 are the joint

angles for the Base, Joint1, Joint2, and Joint3, respectively. Examples of the different state-

based governing equations within the Simulink state-machines used for updating each joint’s

movement range, i.e. adjusting the minimum and maximum rotational angles as well as each

joint’s movement speed for given failure scenarios, can be seen for the Base Joint in Figures A5-

A7.

 The Simulink model and MATLAB code are related in such a way that the input data for

the Simulink model will come from the first portion of the MATLAB code and user inputs, then

this information will be processed and outputted from Simulink back into the second portion of

30

the MATLAB code. The Simulink inputs consist of multiple variables for each component that

are dependent upon the user’s responses to prompts generated by the MATLAB code. The user

inputs the health of each component, as well as the degree of failure and type of failure that they

wish to have simulated; the types of failure for this system are movement and speed-based. A

joint’s movement range can be “Defective,” resulting in the joint being stuck at a user-specified

angle, or it can be “Degraded,” anywhere from 0-100% that can then be applied to either a

Lower, Middle, or Upper limitation. For example, a 10% Lower limitation for a range of 0-180

degrees would result in a new range of 18-180 degrees, a 10% Middle limitation would result in

a new range of 9-171 degrees, and a 10% Upper limitation would result in a new range of 0-162

degrees. Likewise, a joint’s speed can also be “Degraded” anywhere from 0-100%. Also, along

with the user-inputted, failure-based speed degradation, a joint’s speed is also programmed to

decrease linearly over time depending on the component’s lifespan rating, i.e. if a joint has a

lifespan of 10,000 180 degree movements with a speed of 30 degrees per second, then if that

joint moves 180 degrees 5,000 times it will now only be capable of moving at 15 degrees per

second.

The Simulink model first processes the current state of each component based on the

user’s inputs and then provides output data, such as updated performance values and new

minimum and maximum achievable angles and speeds, that will then be processed by the

MATLAB code to determine the Overall Coverage Rating, as well as the graphical representation

of all functionalities for the overall system, which can be seen in Fig. 4.2; the top two plots

represent the overall coverage of the arm for a nominal system on the X-Y and r-Z axes,

respectively, and the bottom two plots represent the remaining coverage for a random faulty

system. The example faults present in the bottom plots were: a 20% Middle limitation for the

31

Base, a 25% Middle limitation for Joint1, a 40% Upper limitation for Joint2, and a 35% Lower

limitation for Joint3.

Figure 4.2 – Possible Movement Coverage for 3-Linkage Robot Arm

(Top: Nominal, Bottom: Degraded)

(Left: X-Y axis, Right: r-Z axis)

Next, the user will be asked to input various mission details, such as the various tasks, i.e.

moving an object from point A to point B in the [X,Y,Z] coordinate plane, as well as how many

cycles of these tasks need to be completed. Each [X,Y,Z] location was given a margin of error of

0.2 feet based on the assumption that the arm’s claw would be at least slightly bigger than the

object it is picking up. These user inputs will then result in mission-specific output data that will

be compared with the overall system output data to determine mission feasibility, to optimize the

32

mission plan, and to identify any redundancies or repairs that may be needed. An example of

the plot generated comparing the original, nominal arm angles to the degraded but optimized arm

angles for a given mission can be seen in Fig. 4.3; the mission tasks were to move between two

arbitrarily chosen points, [3,4,4] to [2,2,5], and the degraded plot was for the same example

failure scenario as seen in Fig. 4.2, where Joint2 is the most degraded component and therefore,

the movements were optimized for Joint2.

Figure 4.3 – Nominal (Left) vs. Optimized for Degradation (Right) arm positions

on the r-Z axis

For this system, two use-cases were explored in the following section. The first is using

the FIMA method for comparing two different missions during the same failure scenarios, and

the second is utilizing the failure data to optimize a set mission plan to handle further failures by

altering the position of the entire robot.

4.2.3. Case Study: Results and Discussion

4.2.3.1. Use-Case 1: Mission Comparisons

The first use-case of the FIMA method’s quasi-quantitative analysis was to evaluate

different mission plans, i.e. different sets of tasks, or initial and final positions, for different

failure scenarios in order to show that by using the Overall Coverage Rating (OCR) and the

Mission Robustness Ratings (MRR) the FIMA method can accurately identify which mission

33

plan is best. The mission data for this use-case can be seen in Table 4.1. This mission data

includes three different failure scenarios, where three failure factors for each component are

identified: Percent Degraded-Range, Limitation Type, and Percent Degraded-Speed, respectively.

Each scenario is then evaluated for two different mission plans: A and B. Each mission plan is

responsible for two tasks: moving the robotic arm from an Initial position to a Final position, and

these missions are to be repeated 250 times. The outputs for each mission are the Mission

Feasibility (including which component the mission’s optimization was based), the total Mission

Time, and the Mission Robustness Ratings for both mission tasks, i.e. the initial and final points.

Table 4.1 – Mission Data for Use-Case 1

 Failure Scenario #1 Failure Scenario #2 Failure Scenario #3

Base 0%, None, 0% 0%, None, 0% 0%, None, 0%

Joint1 5%, Upper, 1% 10%, Upper, 1% 45%, Upper, 1%

Joint2 12%, Middle, 1% 24%, Middle, 1% 48%, Middle, 1%

Joint3 9%, Lower, 1% 18%, Lower, 1% 47%, Lower, 1%

OCR 75.4% 56.1% 15.1%

 A B A B A B

Initial [3,4,5] [2,3,4] [3,4,5] [2,3,4] [3,4,5] [2,3,4]

Final [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6]

Cycles 250 250 250 250 250 250

Feasibility Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2

Time 24.01 min 46.68 min 23.73 min 50.63 min 24.57 min 37.86 min

MRRi 94.3% 95.2% 89.1% 55.8% 27.6% 27.3%

MRRf 95.2% 91.4% 90.1% 86.0% 32.0% 30.4%

For Failure Scenario #1, the Overall Coverage Rating for the arm is 75.4%, which

indicates that roughly a quarter of the system’s total functionality has been lost. Next, looking at

the two mission plans, both are feasible and both were functionally optimized for Joint 2, which

is what was expected due to the fact that Joint 2 was the most degraded component. Finally, the

mission time, MRRi, and MRRf values are evaluated. MRRi and MRRf are the Mission

34

Robustness Ratings for each of the mission tasks, i.e. the initial and final positions. For the time

comparison, the shorter the Mission Time the better. However, the shortest mission is not always

the most robust and this is where the Mission Robustness Ratings’ importance is seen. As

mentioned earlier, the individual Mission Robustness Ratings are indicators of how the system

handles specific failure scenarios for its various mission tasks, and it is desired that both MRRi

and MRRf values are larger than the OCR due to the fact that the OCR indicates the overall,

average robustness, and therefore, larger MRR values would signify that the mission plans have

above average robustness. As seen in Table 4.1 both missions have relatively high MRRi and

MRRf values, implying that neither mission was very affected by Failure Scenario #1, and they

are also above the OCR value, which as previously mentioned, is desired. However, when

directly comparing mission A to mission B, mission A is better all-around, as it not only can

complete the necessary 250 cycles faster, but the mission tasks are more robust on average than

those for mission B. Even after only the first failure scenario, mission A can be identified as the

preferred mission plan, however to show that this assumption holds true for further degradations,

Failure Scenario #2 and #3 were simulated. As expected, mission A remains faster and more

robust than mission B for all scenarios. In Failure Scenario #2, mission A becomes significantly

better in all categories than mission B. However, in Failure Scenario #3, while mission A is still

better, the different components’ degradations are becoming balanced through optimization, and,

as expected, the optimization has also begun to balance each mission’s robustness ratings, as well

as helping to decrease each of their mission times, reducing them both below even their far less

degraded Failure Scenario #1’s times.

35

4.2.3.2. Use-Case 2: Mission Adjustments

 The second use-case for the FIMA method’s quasi-quantitative analysis was to

demonstrate that by using the OCR and MRR values for a specific failure scenario, a mission

plan could be greatly improved; both the failure scenario and mission plan were arbitrarily

chosen for this study. Unfortunately, because certain mission plans might not be able to be

altered, such as a robot picking up a bolt and then placing it on a specific area of a vehicle

coming down the assembly line, the position of the entire robot itself might need to be altered in

order to increase the system’s robustness. Therefore, it is assumed that the arm assembly is

capable of being moved on the X-Y plane, such as by being placed on wheels, in order to

optimize its position relative to the initial and final positions it must reach. As seen in Table 4.2,

the original mission plan is again responsible for two tasks of moving the robotic arm from the

initial position to the final position, 250 times, and the output variables for each mission are the

same as for use-case 1: Mission Feasibility (including which component the mission’s

optimization was based), total Mission Time, and Mission Robustness Ratings for both mission

tasks.

Table 4.2 – Mission Data for Use-Case 2

Base 0%

Joint1 15%, Lower, 1%

Joint2 15%, Lower, 1%

Joint3 20%, Middle, 1%

OCR 57.6%

 Original (Shift: -2Y) (Shift: +3X) (Shift: -1Y)

Initial [-1,1,1] [-1,3,1] [-4,3,1] [-4,4,1]

Final [4,3,-1] [4,5,-1] [1,5,-1] [1,6,-1]

Cycles 250 250 250 250

Feasibility Y, FO-J3 Y, FO-J3 Y, FO-J3 Y, FO-J3

Time 71.57 min 44.46 min 34.99 min 31.03 min

MRRi 17.9% 8.3% 60.5% 80.8%

MRRf 50.3% 81.8% 53.1% 82.7%

36

 As seen in Table 4.2, when the failure scenario listed occurs, the original mission plan is

identified as incredibly poor. It is still feasible, however, both MRR values are well below the

OCR, indicating that there are far better mission plans available, and this is where the designer

would ideally be able to tweak the position of the robot in order to find a more robust mission

plan. First, a shift in the negative Y direction was applied, i.e. backing the robot away from the

assembly line, and while this adjustment improved the mission time and the MRR of the final

position, it reduced the MRR of the initial position. Next, a shift in the positive X direction was

applied, and this effectively improved the mission time and both MRR values, however, the

MRR value of the final position is still below the OCR, so further improvements can still be

made. Finally, another shift in the negative Y direction was made and this resulted in vast

improvements to both MRR values and the overall mission time. While further improvements

may have been possible through further adjustments, for the purposes of this study, these

improvements were sufficient. Ultimately, this study showed that by following the FIMA

method, using the OCR and MRR values, a designer could effectively reduce the original

mission time by more than half, while also vastly improving the system’s mission robustness.

37

CHAPTER 5

CONCLUSIONS

The Failure Identification for Mission Analysis (FIMA) method proposed in this paper is

designed to allow a single, adaptable model to be used throughout the entire design process of a

complex system. The method was shown to be able to provide models for qualitative failure

analysis during early design stages, and then expand these models for quasi-quantitative analysis,

as more information about the system becomes available during the later design stages. By using

the FIMA method, designers should no longer be required to create new models or switch

analysis techniques throughout the different design stages, making the whole process much more

efficient and streamlined than with existing failure analysis methods. Moreover, the FIMA

method uniquely allows for the simulations of manufacturing-based failures, as well as

traditional function-based failures. However, the biggest and most unique contribution made by

the FIMA method is its ability to take a complex system’s failure information and use it for

mission assessment and optimization.

With the constant advancement of technology and the ever-growing capabilities of

complex systems, it is absolutely vital to know what the system is being used for in order to

accurately understand the effects of failures on the overall system performance, and the lack of

this mission analysis is where current methods fall short. By using the FIMA method, on the

other hand, mission assessments and optimizations can be performed in order to balance failure

degradations and increase mission robustness for any number of mission plans in an effort to

maximize a system’s use in between repairs. This unique ability could be especially beneficial

for complex systems that are incapable of receiving repairs, such as the NASA rovers exploring

38

Mars, because even if certain functions are lost due to failures, it is vital to know which functions

and mission tasks are still feasible in order to maximize the amount of use the existing rovers can

perform before new ones need to be sent.

By utilizing failure information for mission analysis, the FIMA method can provide more

comprehensive and useful information than other current failure analysis methods. With next-

generation technologies becoming increasingly more complex, it is not enough anymore simply

to know how a system will fail. What the system will be doing, what environment it will be

doing it in, and what functional adjustments are available must all be accurately identified in

order to effectively analyze the effects of complex failures in a complex system, and the FIMA

method has been designed to do just that. First, the FIMA method identifies and assesses the

potential functions and mission tasks that a complex system may be asked to perform, and then

based on various potential failure scenarios, the functions and tasks that are the most and least

robust can be identified. Then, by using this information, the FIMA method is able to optimize

the system’s performance in order to more effectively achieve specific mission plans for any

given failure scenario.

39

CHAPTER 6

FUTURE RECOMMENDATIONS

 The benefit of the FIMA method does not end with its ability to provide failure

simulations. While initially, during Phase II, the health state of each component and the specific

degree of failure must be inputted by the user, in the future, with the addition of actual sensor

data, the same MATLAB code that is used for the quasi-quantitative simulations could be used as

a diagnostics tool for real-time optimization of real-world physical systems. In this capacity, the

code would again not care about the causes of failure, but instead only about the system’s

functional capabilities that remain. For example, in the manufacturing robot used for the Phase II

case studies, instead of the user inputting a “Percent Degraded” value prior to a mission, an

actual robot would run a quick system diagnostics check by rotating each individual joint to their

minimum and maximum angles at peak speed. Then, instead of the state-machines having to

calculate the individual minimum and maximum values and speeds, the sensors would send their

data directly back to the code that would then proceed as before to optimize the arm angles based

on the different minimums and maximums. Therefore, by using the FIMA method, a designer

should be able to use the same model, built congruently with the physical design, from the early,

conceptual design phases, all the way to the final detailed phases, and ultimately, into real-world

application.

Furthermore, future work on Phase III of the FIMA method will focus on a fully

quantitative analysis approach by adding more detailed failure modes to the Phase II models.

The quasi-quantitative analysis will always be somewhat abstract, as the specific causes of

degradation for certain failure modes are not specified. During a fully quantitative analysis

40

however, each failure mode can be expanded. For example, if a wheel was “Degraded” in the

qualitative and quasi-quantitative phases, in Phase III’s fully quantitative models, “Degraded”

could be expanded into such failure modes as “Traction Loss Caused by Wear” or “Low Tire

Pressure,” and then “Defective” could be either “Flat” or “Jammed,” and each one of these

would result in their own behavioral equations as well. Also, the failures could be separated to

indicate different internal and external causes, i.e. “Jammed” could be caused by an internal

malfunction that is a critical failure and cannot be fixed without a total part replacement, or the

jam could be caused by an external failure, such as the wheel being stuck in mud, which would

not be a critical failure in the sense that a component needs replacement, it would only be a

failure on the system-level objective of movement. Phase III of the FIMA method would then

also be able to determine such differences between failures and be able to inform the user the

best course of action moving forward; if the first definition of “Jammed” is simulated, the system

would produce an error message indicating that the mission cannot be completed and that the

broken component must be replaced. If the second definition of “Jammed” is simulated, the

system would produce an error message that identifies this failure as an external failure only, and

if corrected, perhaps through redundancies from other non-compromised components, such as by

switching into 4-wheel drive, would have no long-lasting effects on the system. This ability

would allow the model to identify even more potential failure scenarios, as well as effectively

label which are critical vs. manageable.

The FIMA method’s Phase III quantitative analysis also will be to explore path-planning

optimization. During the Phase II robotic arm case study, it was assumed that there were no

external obstacles and therefore, the arm was able to move between points in a straight line.

However, in more complex cases, it will be necessary not only to know how failures affect the

41

arm’s possible angle combinations at mission points, but also how failures affect the arms ability

to move around obstacle to get from one point to the other. For example, some internal failures

or external obstacles may affect the arm’s ability to move left and right, while others may affect

the ability to move forwards and backwards, and so depending on the required mission plan, the

arm’s path between points will need to be optimized, along with the joint’s angle combination

optimization done in Phase II.

Next, future work on the Phase III quantitative analysis will also include validation of the

models through experimentation on a physical testbed. For the case study examined in Phase II,

the 3-linkage robot arm, this validation could be done a number of ways. Mission abilities and

times could be tested and compared with the failure scenarios and mission plans simulated

through control input constraints for each joint’s speed and minimum and maximum angles, or

by physically replacing the testbed’s healthy joints with different types of degraded joints.

Degraded joints could be manufactured to have various degrees of wear, jams, or breaks and then

based on each of these effects on rotational speeds and minimum and maximum angles, mission

plans, arm positions and paths, and the effects of further degradation on the overall system

performance could be tested.

Lastly, future work on the FIMA method should include its application to more complex

systems with more complex missions in order to show its scalability and its true merit for diverse

applications. One such application idea would be to use the FIMA method to create an advanced

GPS system. Currently, GPS systems are essentially external system failure analysis tools with

mission optimization capabilities. GPS, generally speaking, identifies a mission plan, or route,

based on shortest mission time, and then based on external system failures, such as things like

traffic jams, missed turns, and construction detours, the system identifies all remaining possible

44

[14] R. Stone, I. Tumer, S. Arunajadi. A Framework for Creating a Function-Based Design

Tool for Failure Mode Identification. In Design Engineering Technical Conferences,

Design Theory and Methodology Conference. 2002.

[15] G. Pahl, W. Beitz, J. Feldhusen, K. Grote. Engineering Design: A Systematic Approach.

Springer-Verlag, Berlin. 2007

[16] P. Frank, E. Alcorta Garcia, B. Koppen-Seliger. Modelling for fault detection and

isolation versus modeling for control. Mathematics and Computers in Simulation Vol. 53

Pg. 259-271. 2000.

[17] B. Kuipers. Reasoning with Qualitative Models. Artificial Intelligence Vol. 59. Pg 125-132.

[18] B. Kuipers. Qualitative simulation. Artificial intelligence Vol 29(3) Pg 289-338, 1986.

[19] T. Kurtoglu, I. Y. Tumer. A graph-based fault identification and propagation framework

for functional design of complex systems. Journal of Mechanical Design, Vol. 130(5),

2008.

[20] T. Kurtoglu, I. Tumer, D. Jensen. A Functional Failure Reasoning Methodology for

Evaluation of Conceptual System Architectures. Research in Engineering Design, Vol.

21(4). Pg 209-234, 2010.

[21] R. Stone, I. Tumer, M. Stock. Linking product functionality to historical failures to

improve failure analysis in design. Research in Engineering Design, Vol. 16(2) Pg. 96-

108, 2006

[22] K. Grantham-Lough, R. Stone, I. Tumer. Implementation Procedures for the Risk in

Early Design (RED) Method. Journal of Industrial and Systems Engineering, Vol. 2(2)

Pg 126-143, 2008.

[23] K. Wang, Y. Jin. An analytical approach to function design. In 14th International

Conference on Design Theory and Methodology, Pg 449-459, 2002.

[24] K. Grantham-Lough, R. Stone, I. Tumer. The risk in early design method. Journal of

Engineering Design, Vol. 20(2) Pg 144-173, 2009.

[25] I. Tumer, R. Stone. Mapping function to failure mode during component development.

[26] S. Arunajadai. A function based design tool for failure mode identification and failure-free

design. 2002

[27] P. Eremenko. Formal Model-Based Design & Manufacture. DARPA. 2013.

45

[28] S. Uder. Function-based failure mode identification and detection in conceptual design:

Extending the function-failure design methodology to electrical systems. University of

Missouri-Rolla. 2004.

[29] R. Stone, K. Wood. Development of a functional basis for design. Journal of Mechanical

Design.

[30] R. Nagel, R. Stone, R. Hutcherson, D. McAdams, J. Donndelinger. Function design

framework (FDF): Integrated process and function modeling for complex systems. In

Proceedings of the ASME International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference, 2008.

[31] M. Derelov. Qualitative Modeling of Potential Failures. Journal of Engineering Design

Vol. 19(3), Pg. 201-225, 2008.

[32] E. Coatanea, S. Nonsiri, T. Ritola, I. Tumer, D. Jensen. A Framework for Building

Dimensionless Behavioral Models to Aid in Function-Based Failure Propagation

Analysis. Journal of Mechanical Design Vol. 133. Dec. 2011.

[33] K. Forbus. Qualitative Physics: Past, Present, and Future. Qualitative Reasoning Group-

University of Illinois at Urbana, Champaign.

[34] N. Tague. Failure Mode Effects Analysis (FMEA). Excerpted from The Quality Toolbox.

Second Edition, ASQ Quality Press. Pgs. 236–240. 2004. http://asq.org/learn-about-

quality/process-analysistools/overview/fmea.html

[35] K. Stillings. Advanced Failure Mode Effects Analysis. 2010.

http://www.asq501.org/images/Failure%20Mode%20Effects%20Analysis_Advance

d.pdf

[36] A. Nannikar, D. Raut, R. Chanmanwar, S. Kamble, D. Patil. FMEA for Manufacturing

and Assembly Process. In International Conference on Technology and Business

Management. 2012

[37] Performing a Failure Mode and Effects Analysis. Flight Assurance Procedure no. P-302-

720. www.everyspec.com.

[38] Failure Modes, Effects and Criticality Analysis (FMECA) for Command, Control,

Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR)

Facilities. Department of the Army. Technical Manual: TM 5-698-4. 2006

[39] Failure Mode, Effects and Criticality Analysis (FMECA). Reliability Analysis Center. 1993.

[40] J. Andrews, J. Dugan. Dependency Modelling Using Fault Tree Analysis. In Proceedings

of the 17th International System Safety Conference. 1999.

46

[41] T. Weilkiens. Systems engineering with SysML/UML: modeling, analysis, design. 2007

[42] Object Modeling Group SysML version 1.2.

[43] S. Tung, Z. Wang, D. Wang, N. Jiao, Z. Dong. Nanochannel system fabricated by MEMS

microfabrication and atomic force microscopy. IET Nanobiotechnology. 2011.

[44] S. Tung. J. Kim. 2013. Method of Fabricating a Nanochannel System for DNA Sequencing

and Nanoparticle Characterization. U.S. Patent #20130213815.

47

LIST OF PUBLICATIONS

1. C. DeStefano, D. Jensen. A Qualitative Failure Analysis using Function-based Performance

State-Machines for Fault Identification and Propagation during Early Design Phases. In

Proceedings of the ASME Design Engineering Technical Conferences; International

Computers & Information in Engineering Conference, 2014.

48

APPENDIX

Figure A1. Overview of Simulink Model used for MEMS DNA Sequencer

49

Figure A2. Example of a simple Performance State-Machine (ET Component)

Figure A3. Example of part of a more complicated State-Machine (NBNC Component)

50

Figure A4. Example Failure-Logic Diagram (ET Component)

Figure A5. Example 1 of State-based equations (Base Joint)

51

Figure A6. Example 2 of State-based equations (Base Joint)

Figure A7. Example 3 of State-based equations (Base Joint)

