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ABSTRACT 

This thesis presents the overall power flow and load management system for a 2 kW residential 

power router. The objective is to satisfy the residential load demand with cost savings by 

managing the energy sources including PV, battery, generator, and grid. The power flow 

management system algorithm is developed both for grid-connected mode and island mode. This 

algorithm involves the battery state of charge estimation, available PV power, load demand and 

electricity grid pricing. The residential load management algorithm is also developed using PV 

power prediction and load power prediction acquired for a day. A Labview GUI is also 

developed for this load management. 
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CHAPTER 1  

 

INTRODUCTION AND OBJECTIVES 

 

1.1 Need for System Level Energy Management  

Residential electricity prices are increasing day by day and are expected to continue rising 

in the future [1]. As shown in Fig. 1.1.1, the electricity price was 11 Cents/kWh for 

residential sector in 2012. However, the price increased to 12 Cents/kWh in 2014 and it is 

predicted that this price will increase to 12.8 Cents/kWh in 2015 for the residential sector. 

At the same time, carbon emissions have also increased over the past few years. According 

to the new “Clean Power Plan”, carbon emissions must be reduced and a new emission 

threshold is defined by the plan [2].  

 

Fig. 1.1.1. Average electricity price in different sectors from 2012 to 2015 [1]. 
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Many companies are trying to develop new technologies which can reduce energy 

consumption and these emissions which has led to the development of renewable energy sources 

such photovoltaic (PV) or wind power generation [3][4]. 

However, there are some concerns regarding the use of PV as a renewable energy source, 

since there is often a mismatch between load demand and PV power generation [5]. To adjust 

load demand to match available energy resources an intelligent energy management system is 

required, which will control the power flow between PV, battery, and grid. This results in an 

overall reduction of the grid energy consumption for the residence. 

1.2 Formulation of System Level Energy Management 

This thesis presents an energy management system that includes PV, battery, and grid that 

accommodates various factors such as TOU pricing, battery state of charge, generated PV power, 

and user load demand. This system also includes a load management structure which manages 

the loads according to forecasted PV power, and forecasted load demand. The TOU pricing data 

is used in the control algorithm along with PV power, load power and battery state of charge 

information to distribute the generated power to supply the loads. In addition, weather data is 

used for PV power prediction to further enhance load management. TOU pricing and weather 

information are acquired directly from Internet sources using serial communication. This 

information can be remotely monitored via a computer or a smart device. For this thesis a 

Labview GUI is used for collecting data and monitoring PV power, battery state of charge, and 

load demand.  With all of the collected and monitored data, the system will automatically control 

the charging and discharging of the battery to maximize cost savings for the end user.  
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1.3 Smart Green Power Node 

The University of Arkansas, in collaboration with the University of South Carolina, started a 

project in order to build a smart energy management system in January 2013. The system was 

named the Smart Green Power Node (SGPN). This thesis focuses on the design and 

implementation of the system level control of the SGPN, which includes power flow and load 

management. This system level control will be interfaced with the hardware during the system 

integration process. 

1.4 Thesis Organization 

This thesis is arranged as follows: Chapter 2 covers the theoretical knowledge of battery 

models for state of charge estimation, solar irradiation model for photovoltaic power prediction, 

and statistical regression models for electrical load demand prediction. Chapter 3 presents the 

algorithms, simulation, and DSP implementation of power flow management for both grid-

connected and island modes. Chapter 4 covers the design, simulation, and DSP implementation 

of the PV prediction and load prediction model. It also covers the simulation and Labview GUI 

implementation of the load management using the PV prediction and load prediction models. 

Finally, Chapter 5 closes with conclusions and recommendations for future work. 

 

 

  



4 
 

CHAPTER 2  

 

THEORETICAL BACKGROUND AND RELATED CONCEPTS 

 

2.1 System level Control Overview 

The control structure for this energy management system can be divided into two categories: 

(a) hardware level control, and (b) system level control. This system level control is then sub-

categorized into two sections: (a) Power flow management and (b) Load management. Power 

flow management system initially monitors the voltage and current for PV, load, grid, and 

battery. Battery SOC is estimated using battery voltage and current. After that, the system level 

control algorithm is developed to decide when to charge or discharge the battery based on these 

data. Lead-acid battery is considered for this project. Hence the construction of lead-acid battery 

and its equivalent models are studied for the battery SOC estimation. Load management is 

developed using TOU price, PV power prediction, and load demand prediction. PV power 

prediction primarily depends on the estimation of solar radiation and weather conditions. 

Hotell’s solar radiation model is studied and described in this thesis. Load demand prediction is a 

statistical process which depends on historical load profile. Several stochastic time series (STS) 

methods have been studied and discussed in this thesis paper. 

2.2 Lead Acid Battery Construction  

Lead acid batteries are made of lead dioxide, which acts as the positive electrode, and pure 

lead, which acts as the negative electrode. Sulphuric acid acts as the electrolyte in which the 

electrodes are immersed. When the battery discharges the electrons travel from the negative 
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electrode (anode) to positive electrode (cathode) and when the battery charges the anode acts as 

the positive electrode and the cathode acts as the negative electrode. The chemical reactions in a 

lead acid battery are given below [6]: 

• When discharging: 

Pb + HSO�� − 2e� → PbSO� + H	(Anode) 
PbO� + HSO�� + 3H + 2e� → PbSO� + 2H�O	(Cathode) 

• When charging: 

PbSO� + 2H�O − 2e� → PbO� +HSO�� + 3H	(Anode) 
PbSO� + H + 2e� → Pb + HSO��	(Cathode) 

2.3 Lead Acid Battery Models 

There are several electrical models commonly applied to lead acid batteries. These models 

are outlined and described in the subsections that follow. 

2.3.1 Simple Battery Model 

The simple battery model consists of an electromotive force (E0), internal resistance, and 

battery terminal voltage [7]. The electromotive force E0 is obtained from open circuit voltage 

measurements. In this model, the internal resistance ESR is a constant value. Fig. 2.3.1 shows the 

circuit diagram for the simple battery model. 



6 
 

 

Fig. 2.3.1. Simple battery model circuit diagram [7]. 

2.3.2 Modified Simple Battery Model 

The modified simple battery model is quite similar to the simple battery model with one 

exception: the internal resistance is not constant. It varies with battery state of charge (SOC) [8]. 

Fig. 2.3.2 shows the circuit diagram for the modified simple battery model. The equation for 

varying internal resistance is given by: 

 � = ��� !"	 
                

(2.1) 

where, 

r is the varying internal resistance, 

R0 is the internal resistance when the battery is fully charged, 

SOC is the battery state of charge, and 

k is battery capacity constant (typically from 1.1 to 1.3 for a lead acid battery). 
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Fig. 2.3.2. Modified battery model circuit diagram [8]. 

2.3.3 Advanced Simple Battery Model 

In the advanced simple battery model, the battery terminal voltage depends on the battery 

open circuit voltage, battery discharge current, and the internal resistance [9]. The equation for 

the battery terminal voltage is given by: 

 #$%&'()*+ = #,- − ./*$ ∗ �( (2.2) 

 

Fig. 2.3.3. Advanced simple battery model circuit diagram [9]. 

Here, the battery open circuit voltage can be calculated with the knowledge of the battery 

SOC. The equation for battery open circuit voltage is given by: 

 #,- = 1� + 12 ∗ � ! (2.3) 
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Here, SOC is the state of charge of the battery, a0 is defined as the terminal voltage when the 

state of charge is 0% and a1 can be calculated from getting the value of a0 and Voc when SOC is 

100% [10] .  

2.3.4 Thevenin Battery Model 

 

Fig. 2.3.4. Circuit diagram for Thevenin battery model [11]. 

The Thevenin battery model is composed of the battery open circuit voltage, internal 

resistance, capacitance, over-voltage resistance, and the capacitance between electrolyte and 

electrode [11]. The equations for the Thevenin battery model are: 

 #/*$ = #,- − (./*$ ∗ � + #�) (2.4) 

 #� = 3 1�� + 1!�5 ∗ ./*$ (2.5) 

2.3.5 Third Order Model 

The third order model can be divided into three sections. Each of the sections is described 

below: 
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2.3.5.1 Capacity Model 

The battery charge and discharge current is the input for this capacity model. Battery 

capacity remaining can be calculated by knowing the rated capacity and electrolyte temperature 

[12]. The equation for battery capacity is given by:  

 !(.), 7)) = !� ∗ 81 + 7)79:
;
 (2.6) 

where θf is the electrolyte temperature and C0 is the battery rated capacity. When the battery is 

discharging the total capacity can be calculated by the following equation: 

 !(., 7) = <- ∗ !�
1 + (<- − 1) = ..∗>?

∗ 31 + 7@7A5
;
 (2.7) 

Here Kc is a constant, θf is the electrolyte temperature, and I* is the nominal battery current.  

The amount of charge extracted from the battery can be calculated by integrating the total 

current flow from and to the battery [12]. The equation for the extracted charge is given by: 

 B%(C) = B()$ +D −.'(E)FE$
�  (2.8) 

Here Qe is the charge extracted from the battery, Qint is the initial extracted charge, Im is the 

current flowing from or to the battery, and t is the simulation time. 

Finally, battery state of charge (SOC) can be calculated by knowing the battery capacity and 

charge extracted from the battery [12]. The equation is given by: 

 � ! = 1 − B%!(0, 7) (2.9) 
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2.3.5.2 Voltage Model 

The state of charge is calculated using the capacity model in [12], which requires the battery 

electrolyte temperature θf as an input. To acquire this electrolyte temperature it is required to 

create a thermal model. The input for the thermal model comes from the voltage model which 

takes SOC as an input and generates R0, R1, R2 and electromotive force Em for the thermal model. 

The electromotive force Em varies with temperature and state of charge. The equation for Em 

is: 

 H' = H'� − <%(273 + 7)(1 − � !) (2.10) 

Here Em0 is the open circuit voltage at full charge, θ is the electrolyte temperature, and SOC 

is the battery state of charge. 

The resistance R1 varies with depth of discharge. The equation for the depth of discharge is: 

 J ! = 1 − B%!(.1KL, 7) (2.11) 

And the equation for R1 is given by: 

 �2 = −�2� ln(J !) (2.12) 

Here R10 is a constant and DOC is the depth of discharge. 

The main branch resistance R2 is dependent on battery state of charge. When the battery is 

charging it affects this resistance, but it is not affected by battery discharge current. The equation 

for R2 is given by: 

 �� = ��� ∗ NOPQR(2�STU)V1 + NP��WXW∗  (2.13) 
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Fig. 2.3.5. Third order battery model circuit diagram [7]. 

where R2 is the main branch resistance, R20 is a constant in ohms, Em is the open circuit voltage, 

Im is the main branch current, I* is the nominal battery current and A22 is an empirical constant.  

The terminal resistance R0 varies with battery SOC but can be assumed constant for different 

temperatures. The equation for R0 is given by: 

 �� = ���O1 + Y�(1 − � !)V (2.14) 

where R0 is the terminal resistance in ohms, R00 is the initial value of R0 when the state of charge 

is 100%. 

2.3.5.3 Thermal Model 

The thermal model calculates the battery electrolyte temperature by estimating the internal 

power losses due to resistance and ambient temperature [12]. The equation for electrolyte 

temperature is given by: 
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 7(C) = 7()$ +D (Z[ − (7 − 7*)�\!\
$
� FE (2.15) 

where Ps is the power loss due to the resistances. The equation for Ps is given by: 

 Z[ = #&2��2 + .��� + .��� (2.16) 

2.4 PV Prediction Overview 

The output from a PV panel can be predicted based on solar irradiation and temperature 

forecasted [13]. The equation for the PV power output is given by: 

 Z]^ = _Y]^`$O1 − 0.005(c- − 25)V (2.17) 

Here, Ppv is the PV power output in kW, Apv is the solar panel area in m2, Gt is the total solar 

radiation in W/m2 and Tc is the weather temperature in °C. 

Weather forecasting data can be found from various Internet weather service websites. The 

solar irradiation depends on different geographical conditions such as latitude, longitude, time 

zone, day of the year, local mean time and the altitude of the area [13]. 

2.4.1 Clear Sky Radiation Model Overview 

Total solar radiation on a PV panel can be divided into three components: beam radiation, 

diffuse radiation, and reflected radiation [13]. Beam radiation is one kind of solar radiation 

which comes straight to the surface of the earth from the Sun. Radiation scattered by molecules 

and particles in the atmosphere is called diffuse radiation. Reflected radiation comes from the 

reflection of sunlight from non-atmospheric entities such as the ground. These three radiation 

components can be calculated using the following equations: 
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 `/$ = `,) ∗ C/ ∗ cos 7[  

(2.18) 

 `f$ = `,) ∗ Cf ∗ cos 7g ∗ 1 + hijk2  (2.19) 

 `&$ = l ∗ `,) ∗ C& ∗ cos 7g ∗ 1 + hijk2  (2.20) 

Here, Gon is the extraterrestrial solar radiation in W/m2, l is the average reflectance of the 

ground, and tb, td, and tr are atmospheric transmittance for beam, diffuse and reflected radiation. 

7g	is the zenith angle and k is the inclined angle. Gon is calculated by the following equation: 

 `,) = [̀- ∗ 31 + .033 cos 32mJ36555 (2.21) 

where D is the number of the day of the year and Gsc the solar constant (1367 W/m2).  

The transmittance for beam, diffuse and reflected radiation can be calculated by the equations 

proposed by Hottel [13]. 

 C/ = (1� + 1_1	 ∗ N= �"-,[\_g>) (2.22) 

 Cf = 0.271 − 0.294 ∗ C/ (2.23) 

 C& = 0.271 − 0.706 ∗ C/ (2.24) 

a0, a1, and k are constants that can be calculated from Hottel’s equations [13]: 

 1� = �� ∗ (0.4237 − 0.00821 ∗ (6 − Y)�) (2.25) 

 12 = �2 ∗ (0.5055 − 0.00595 ∗ (6.5 − Y)�) (2.26) 

 s = �" ∗ (0.2711 − 0.1858 ∗ (2.5 − Y)�) (2.27) 
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where A is the altitude of the area. r0, r1 and rk are the correction factors which vary from climate 

to climate. The solar zenith angle 7g and incident angle vector 7[ can be calculated using the 

following equations: 

 hij7g = hijt ∗ cosφ ∗ hijv + jw@t ∗ sinφ (2.28) 

 

 hij7[ = jw@t ∗ siny ∗ hijk − jw@t ∗ hijy ∗ jw@k ∗
hijz + hijt ∗ hijy ∗ hijk ∗ hijv + hijt ∗ jw@y ∗
jw@k ∗ hijz ∗ hijv + hijt ∗ jw@z ∗ jw@v ∗ jw@k 

(2.29) 

where t is the solar declination, y is latitude of the area, v is the hour angle vector, and z and k 

are inclination of the surface. The equations for calculating these components are given by: 

 t = m180 ∗ 23.45 ∗ sin 82m(J + 284)365 : (2.30) 

 v = m180 ∗ 8({|c − c} − 12) ∗ 15 + ~i@LwC�FN + H$4 : (2.31) 

where LMT is the local mean time, TZ is the time zone and Et is solar time in minutes. 

2.5 Load Prediction Overview 

There are several methods used for electrical load prediction. Among them, the stochastic 

time series (STS) method is the most popular approach that is applied for short term load 

forecasting. The STS method is classified into different models depending on certain 

characteristics [14]. These models will be outlined and detailed in the following sub-sections. 

2.5.1 Autoregressive Model (AR) 

In the auto-regression process the current value can be expressed linearly in terms of 

previous value and random noise [14]. The equation for the regression process is given by: 
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 �(C) = 1(C) + ∅2�(C − 1) + ∅��(C − 2) + ⋯+ ∅]�(C − �) (2.31) 

where y(t) is the current value, ∅2, ∅�….∅] are the regression coefficients and y(t-1), y(t-

2)….y(t-p) are the previous value. The random noise a(t) has zero mean and unknown fixed 

variance. The previous loads can be models using the backshift operator B. 

 ∅(�)�(C) = 1(C) (2.32) 

2.5.2 The Moving Average Process (MA) 

In the moving average process the current can be calculated from the previous values of 

white noise. In the auto-regression process there is only one white noise that is used but in the 

moving average process, a number of white noise series are used [14]. The series of white noise 

can be constructed by forecasting errors and residuals. The equation for the moving average 

process is given by: 

 �(C) = 1(C) + 721(C − 1) + 7�1(C − 2) + ⋯+ 7]1(C − �) (2.33) 

White noise series can be written in terms of the backshift operator B. 

 �(C) = 7(�)1(C) (2.34) 

2.5.3 The Autoregressive Moving Average Process (ARMA) 

In the autoregressive moving average process the current value y(t) is calculated from the 

previous values (y(t-1), y(t-2)….y(t-p)) and also from the series of the white noise (a(t-1), a(t-

2)… a(t-p)) [14]. The equation for autoregressive moving average process is given by: 

 

�(C) = ∅2�(C − 1) + ∅��(C − 2) + ⋯+ ∅]�(C − �) + 1(C)
+ 721(C − 1) + 7�1(C − 2) + ⋯+ 7]1(C − �) (2.35) 

Using the backshift operator the equation can be written as: 
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 ∅(�)�(C) = 7(�)1(C) (2.36) 

2.5.4 The Autoregressive Integrated Moving Average Process (ARIMA) 

The regression processes described earlier are stationary processes where the covariance of 

the time series does not change with time [14]. However, for a non-stationary process the first 

step is to convert to a stationary process by introducing the delta operator. Then, the stationary 

process can be modeled with an AR, MA, or ARMA process. The model equation for the 

ARIMA process is given by: 

 ∅(�)∇F�(C) = 7(�)1(C) (2.37) 
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CHAPTER 3  

 

POWER FLOW MANAGEMENT 

 

3.1 Power Flow Management Structure 

The objective for system level control is to satisfy the residential load demand by managing 

the onsite energy sources including PV, battery, and generator in conjunction with the grid. The 

rule-based algorithm described in [15] is used for power flow management both for grid-

connected and island modes. This algorithm involves the battery state of charge estimation, 

available PV power, load demand, and electricity time of use (TOU) pricing. The residential load 

management algorithm is also developed using TOU price, PV power prediction, and load power 

prediction acquired for one day. The block diagram for the system level control is shown in Fig. 

3.1.1. 

 

Fig. 3.1.1. Block diagram for power flow management structure. 
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PV power and load demand can be calculated from their voltage and current values using 

voltage and current sensors for PV and load. Battery SOC estimation is performed using sensed 

battery voltage and current. TOU pricing is parsed from the Internet using serial communication 

and a LabVIEW GUI. Finally, a rule-based algorithm is implemented to make the decision of 

when to charge or discharge the battery based on this data. 

3.2 Battery SOC Estimation 

Four 12 V lead-acid batteries have been chosen for this power routing system. The lead-acid 

batteries modeled in Simulink are used in the system level control for battery SOC estimation. 

There are several known methods for battery SOC estimation. Two are considered here: 

• Discharge current method 

• Terminal voltage method 

3.2.1 Discharge Current Method 

In the discharge current method, the SOC is calculated from battery discharge current and the 

electrolyte temperature. A third order lead acid battery model, as described in Chapter 2, is used 

for the simulation. 

 

Fig. 3.2.1. Top level block diagram for battery SOC estimation using discharge current. 
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In Fig. 3.2.1, Ib is the battery discharge current, θa is the ambient temperature, V0 is terminal 

output voltage, Qe is the amount of charge extracted from the battery and θ is the battery 

electrolyte temperature. The amount of charge extracted from the battery can be calculated by 

integrating the discharging current and the battery SOC is dependent on this extracted charge and 

the battery capacity. This battery capacity is dependent on the battery electrolyte temperature.  

 

Fig. 3.2.2. SimulinkTM block diagram with capacity model, voltage model and thermal model. 

Battery electrolyte temperature depends on the amount of power loss due to heat and the 

ambient temperature. The electrolyte temperature is calculated using the thermal model 

described in section 2.3.5.3, and power loss due to heat is calculated using the voltage model 

described in section 2.3.5.2. Once the electrolyte temperature is known, the battery capacity is 

calculated using the following equation: 
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 !(., 7) = <- ∗ !�
1 + (<- − 1) = ..∗>?

∗ 31 + 7@7A5
;
 (3.1) 

The amount of charge extracted Qe, is calculated by integrating the battery discharge current 

Im. Then, battery SOC is calculated by taking into account the amount of charge extracted from 

the battery and the battery capacity. 

 B%(C) = B()$ +D −.'(E)FE$
�  (3.2) 

 � ! = 1 − B%!(0, 7) (3.3) 

The entire battery model is simulated in Matlab/Simulink. The parameters used in this model 

are taken from [12] and [7] and are listed in Table I below.  

TABLE 3.1. PARAMETERS FOR BATTERY SOC ESTIMATION 

Parameters for capacity model 

C0
* = 72.37 Ah 

Kc = 1.2 

ε = 1.19 

δ = 1.75 

Kt = 0.47 

θf = -40 °C 

Parameters for voltage  model 

R00 = 2 mΩ 

A0 = -0.30 

R10 = 7 mΩ 

Ke = 5.8×10-4 

A21 = 8 

A22 = -8.45 

Parameters for thermal model 
Cθ = 15 Wh/C 

Rθ = 0.2 C/W 
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Fig. 3.2.3. Simulation results for battery SOC estimation when the battery is charging. 

Fig. 3.2.3 shows simulation results for battery SOC estimation when the battery is charging. 

Initially, the simulation is performed for a 12 V (6 cells) battery. It is then multiplied by 4 to 

achieve 48 V from the battery. The charging current limit is 10 A and capacity is 72.37 Ah. So, 

when the battery is charging, the terminal voltage increases linearly and battery state of charge 

also increases with this charging current. Initially, the battery voltage was 47.2 V and the state of 

charge was 30%. The voltage then starts increasing with the charging current. It increases up to 

47.9 V and the battery SOC reaches 43% from a starting point of 30%.  

Fig. 3.2.4 shows the simulation results for battery SOC estimation when the battery is 

discharging. From the battery datasheet it is found that the maximum voltage of the battery is 

limited to 51.2 V. For the simulation, the discharge current limit is -20 A. When the battery 

discharges, the terminal voltage decreases linearly with the battery discharging current and the 

battery state of charge also decreases from the previous condition. Initially, the battery voltage 

was 49 V and the state of charge was 82%. The voltage then starts decreasing as the battery 
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discharges current. Eventually, it decreases to 48.37 V and the battery SOC reaches 74% from an 

initial starting point of 82%. 

 

Fig. 3.2.4. Simulation results for battery SOC estimation when the battery is discharging. 

The discharge current method of estimating battery SOC is not straightforward, since it 

depends on many factors such as temperature and battery capacitance. It also requires 

temperature sensor to monitor the ambient temperature. However, the voltage method is 

implemented in system level since it only requires voltage and current sensor for battery. 

3.2.2 Battery Voltage Method 

Voltage method is another way to estimate battery state of charge which requires estimating 

battery open circuit voltage. The equation for battery open circuit voltage is given by: 

 #,- = 12 ∗ � ! + 1� (3.4) 

So, the equation for battery state of charge is: 

48.2

48.4

48.6

48.8

49

49.2

V
o

lt
a

g
e

 [
 V

 ]

0 1 2 3 4 5 6 7 8
0.7

0.75

0.8

0.85

Time [ Hours ]

S
ta

te
 o

f 
C

h
a

rg
e 

[X
 1

0
0

%
]



23 
 

 � ! = #,- − 1�12  (3.5) 

Here, SOC is the state of charge of the battery, a0 is defined as the terminal voltage when the 

state of charge is 0% and a1 can be calculated from getting the value of a0 and Voc when SOC is 

100% [10].   

To calculate the battery state of charge under closed circuit conditions, battery current and 

internal resistance are taken into account for accurate output [16]. The equation for battery 

terminal voltage in a closed circuit condition is given by: 

 #$%&'()*+ = #,- − ./*$ ∗ �( (3.6) 

 #,- = #$%&'()*+ + ./*$ ∗ �( (3.7) 

where Ibat is the battery current and Ri is the battery internal resistance.  

The battery state of charge under closed conditions can be estimated using the equation given 

by: 

 � ! = (#$%&'()*+ + ./*$ ∗ �() − 1,12  (3.8) 

Four OptimaTM red top 75/25 12 V batteries are used for this residential power router system 

[17]. The terms a0 and a1 are calculated from datasheet information and Ri is directly given in the 

datasheet. From the datasheet, it is found that the open circuit voltage at 100% state of charge is 

12.8 V for one battery [17]. Since four batteries are used in series, the open circuit voltage at 

100% SOC is 51.2 V and the open circuit voltage at 0% SOC is 42 V (a0). The term a1 is 

calculated as (51.2 - 42) / 1= 9.2 and the internal resistance, Ri is .0030 Ω. The battery terminal 

voltage and current are measured using current and voltage sensors. Given these parameters, the 

battery state of charge can be calculated using the above equation. 



24 
 

 

Fig. 3.2.5. Simulation results for battery SOC estimation using voltage method. 

Fig. 3.2.5 shows the battery SOC estimation waveform using the voltage method. The battery 

charging limit is 10 A and the discharge limit is -20 A. The battery voltage was initially at 49.5 

V. The battery SOC decreases to 75% from 82%. As the battery charges, the battery voltage 

starts increasing and the battery SOC logically increases as well.  

3.3 Battery Charge and Discharge Control 

After acquiring battery state of charge information, the next step is to use this SOC 

information along with the generated PV power data, load demand data, and electricity TOU 

pricing data to calculate a battery current reference for the hardware level control to decide when 

to charge or discharge the battery. The rule-based algorithm is used to calculate the battery 

current reference. This rule-based algorithm is divided into two modes of operation: 

• Island mode control 

• Grid-connected mode control 
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3.3.1 Island Mode Control 

In island mode the system is not connected with the grid. Load demand is served by PV 

generated power, available battery storage, and the AC generator. Thus, electricity grid pricing is 

not used for control decisions. Fig. 3.1.1 shows the algorithm that is used for island mode power 

flow management. 

 

Fig. 3.3.1. Flow chart for power flow management in island mode. 

The simulations are performed for a 2 kW system. The output voltage is chosen to be 

between 50 V and 60 V for a 2 kW PV system and it is assumed that four 12 V batteries are used 

in series in the system. The simulation was completed for a time period covering one day (24 

hours).  
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Fig. 3.3.2. Simulation results for island mode. 

As is shown in Fig. 3.3.2, at 5:00 am in the morning when there is no solar radiation: 

� PV current is zero 

� Load current is 2.35 A 

� Battery state of charge is 0.74 

PV power = (0 A * 50 V) = 0 W; Load Power = (2.35 A * 240 V) = 564 W; Load power > 

PV power. Hence, the load needs compensation from the battery with {(0 W – 564 W) ÷ 48.8 V} 

= -11.55 A, which doesn’t cross the battery discharge limit of -20 A. Thus, the generator is not 

required at that moment and remains off. 
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0

10

20

30

40

P
V

 C
u
rr

e
n
t 
[ 

A
 ]

0

2

4

6

8

10

L
o
a
d
 C

u
rr

e
n
t 
[ 
A

 ]

0.6

0.7

0.8

S
O

C
 [

 X
 1

0
0
%

]

0 5 10 15 20
-15

-10

-5

0

5

10

15

Time [ Hours ]

C
u
rr

en
t 
R

e
f 
[ 

A
 ]



27 
 

� PV Current is 37 A 

� Load Current is 6.7 A 

� Battery SOC is 0.85 

PV power = (37 A * 50 V) = 1850 W; Load power = (6.7 A * 240 V) = 1608 W; Load power 

< PV power. Hence, the PV can charge the battery using excess power with (1850 W – 1608 W) 

/ 49.9 V = 4.84 A. As in the previous case, the charging limit of 10 A is not crossed, and the 

generator remains off. 

At 3:00 pm in afternoon: 

• PV Current is 30 A 

• Load Current is 6.2 A 

• Battery SOC is 0.77 

PV power = (30 A * 50 V) = 1500 W; Load power = (6.2 A * 240 V) = 1488 W; Load power 

< PV power. Now, the PV can charge the battery using excess power with (1500 W – 1488 W) / 

49.1 V = 0.24 A. Again, the generator remains off. 

At 8:00 pm: 

� PV Current is 1 A 

� Load Current is 8 A 

� Battery SOC is 0.839 
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Here, PV power = (1 A * 50 V) = 50 W; Load Power = (8 A * 240 V) = 1920 W. So, load 

power > PV power. The load therefore needs compensation of (1920 W – 50 W) = 1870 W, 

which requires the battery to discharge (-1870 W / 49.75 V) = -37.58 A. So, the generator must 

be turned on to provide 10 A of current to the battery. 

TABLE 3.2. SUMMARY OF FOUR DIFFERENT CONDITIONS IN ISLAND MODE 

PV Power (W) Load Demand (W) Battery Voltage (V) SOC (%) Iref  (A) 

0 564 48.8 74 -11.55 

1850 1608 49.9 85 4.84 

1500 1488 49.1 77 0.24 

50 1920 49.75 83.9 10 

 

TABLE 3.2 shows the summary of the island mode control output according to four different 

values for PV power, load demand, and battery SOC. Battery current reference calculation is 

shown according to different operating scenarios for a day. For island mode control, this battery 

current reference is used by the hardware control to charge and discharge the battery. The control 

algorithm is able to handle all possible scenarios according to the state diagram shown in Fig. 

3.3.3. However, these four scenarios have been shown in this paper since it covers the major 

operating conditions including charging the battery, discharging the battery, and turning on the 

generator.  
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Fig. 3.3.3. State diagram for island mode. 

 

Fig. 3.3.4. Power flow and generator status waveform in island mode. 
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In Fig. 3.3.4 it is shown that when there is no PV power available the battery discharges and 

is not sufficient to supply power to the load, so the generator also turns on to compensate for the 

demand. However, when the PV power is available, it supplies the necessary power to the load 

and excess power is diverted to charge the battery. At night, when the load demand is high but 

there is no PV power available, the generator turns on to supply power to the load and charge the 

battery. 

3.3.2 DSP Implementation of Island Mode Control 

 

Fig. 3.3.5. Output results for DSP implementation of island mode control. 

PV voltage and 

current 

Battery current 

reference 

Generator status 

Battery voltage, 

current, and State of 

charge 

Load voltage and 

current 



31 
 

The island mode power flow management algorithm is implemented using a TI 

TMS320F28335 microcontroller. The objective is to calculate the battery current reference based 

on battery SOC, PV power, and load power. Fig. 3.3.5 shows the DSP output for battery current 

reference in island mode for different conditions representing 24 hours of operation. Battery 

SOC is estimated by sensing battery voltage and battery current. PV power and load power is 

calculated by sensing PV output voltage, PV output current, load voltage, and load current. 

These values come from the hardware level control algorithm where they are sensed using 

voltage and current sensors. Finally, the battery current reference is calculated for island mode, 

which is sent to the hardware level control algorithm to maintain the power between battery and 

PV. It also sends a switching signal to turn on/off the generator whenever it is needed. 

3.3.3 Grid-connected Mode 

In grid-connected mode, the system is always connected to the grid. It can pull required 

power from the grid or it can “sell” back some power to the grid, depending on the power 

available from the PV and battery. The electricity TOU pricing plays an important role in this 

control algorithm. Twenty-four hour TOU data is obtained from Internet source. The algorithm 

calculates the current reference based on battery charging and discharging limit, TOU price 

information, PV power, load demand, and battery SOC as shown in Fig. 3.3.6. 
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Fig. 3.3.6. Flow chart for power flow management in grid-connected mode. 

This simulation is also carried out for a 2 kW system. The TOU pricing information is obtained 

from an internet website [18]. The simulation is completed for a 24 hour period.  

As can be seen in Fig. 3.3.6, at 5:00 am in the morning when there is no solar radiation: 

� TOU price is 4.6 cents/kWh 

� PV current is zero 

� Load Current is 2.35 A 

� Battery SOC is 0.85 
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Fig. 3.3.7. Simulation results for grid-connected mode. 

Since the TOU price is low at that time, PV power is (50 V * 0 A) = 0 W and load power is 

(240 V * 2.35 A) = 564 W. Hence, the load requires power from grid and, since the battery SOC 

is 0.85, the grid can charge the battery as per the following equation: 

 

.&%9 = .f + �(.- − .f) ∗ �− (Z2 − Z+,�)�Z�] − Z+� + 1��
= 	−20 + O�10 − (−20)�
∗ �− (4.6 − 2.6)(11.4 − 2.6) + 1�V = 3.19	Y 
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where, Id is the discharging limit, Ic is the charging limit, P1 is the TOU price, Plow is the lowest 

TOU price of the day, and Pup is the highest TOU price of the day. 

At 10:00 am in the morning: 

� TOU price is 6.6 cents/kWh 

� PV current is 35 A 

� Load Current is 6.7 A 

� Battery SOC is 0.865 

Since the TOU price is high, PV power is greater than load power by (50 V * 35 A) - (240 V 

* 6.7 A) = 142 W and SOC is 0.865. Therefore, excess power generated by the PV can be used to 

charge the battery with a charging current, Iref = (142 W / 49.99 V) = 2.84 A. 

At 3:00 pm in the afternoon: 

� TOU price is 4.5 cents/kWh 

� PV current is 30 A 

� Load current is 6.2 A 

� Battery SOC is 0.75 

Since the TOU price is low at that time, but PV power is greater than load power by (50 V * 

30 A) - (240 V * 6.2 A) = 12 W and the battery SOC is 0.85, the grid will not be used and the PV 

can give its extra power to charge the battery with Iref = (12 W / 48.9 V) = 0.24 A. 
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At 8:00 pm: 

� TOU price is 6.1 cents/kWh 

� PV current is 1 A 

� Load current is 8 A 

� Battery SOC is 0.866 

Here, the TOU price is high and the PV power is lagged by (1 A * 50 V) - (240 V * 8 A) = -

1870 W, which requires a battery discharge current of (-1870 W / 50 V) = -37.4 A. However, the 

battery discharge limit is -20 A, so grid power will be used and the battery will also partially 

discharge Iref = -1.93 A which is calculated using Eq. (3.9). 

TABLE 3.3. SUMMARY OF DIFFERENT CONDITIONS IN GRID - CONNECTED MODE 

TOU Price 

(Cents/kWh) 

PV Power 

(W) 

Load Demand 

(W) 

Battery Voltage 

(V) 

SOC 

(%) 
Iref  (A) 

4.6 0 564 49.82 85.3 3.18 

6.6 1750 1608 49.99 86.5 2.84 

4.5 1500 1488 48.9 75 0.24 

6.1 50 1920 50 86.6 -1.93 

 

TABLE 3.3 shows the summary of grid-connected mode control with different values for 

TOU price, PV power, load demand, and battery SOC. 
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Fig. 3.3.8. Power flow, daily grid power usage and electricity cost in grid-connected mode. 

Fig. 3.3.8 shows the power flow for the PV, battery, and load. It also shows a comparison for 

grid power usage and electricity costs between “with SGPN system” and “without SGPN 

system”. Based on this power flow and 24 hour TOU pricing information, daily grid power usage 

is calculated. In the morning, when the TOU price is high, the load demand is compensated by 

the grid, and the battery is also charged using grid power. When there is available solar radiation, 

the load demand is compensated by PV power, and the extra PV power is used to charge the 

battery. At night, when there is no solar power, and the grid TOU price is also high, the battery 

discharges to compensate load demand. Four different scenarios have been described in this 

thesis paper but the control algorithm is able to perform all the scenarios according to the state 

5

10

15

P
ri

c
e 

[ 
C

e
n

ts
/ 

k
W

h
 ]

 

 

-1

0

1

2

3

4

P
o

w
er

 [
 k

W
 ]

 

 

0

1

2

3

4

P
o

w
e
r 

[ 
k

W
h

]

 

 

0 5 10 15 20
-0.1

0

0.1

0.2

0.3

Time [ Hours ]

C
o

st
 [

 $
 ]

 

 

Load Demand

PV Power

Battery Power

Grid power usage without SGPN

Grid power usage with SGPN

Electricity cost without SGPN

Electricity cost with SGPN



37 
 

diagram shown in 

 

Fig. 3.3.9. The monthly average grid power usage and electricity cost savings are also 

estimated from this daily usage calculation. The average monthly grid power usage and 

electricity cost are as shown in Fig. 3.3.10 and Fig. 3.3.11.  
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Fig. 3.3.9. State diagram for grid-connected mode 
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Fig. 3.3.10. Average monthly grid power usage and electricity cost comparison. 

 

Fig. 3.3.11. Average monthly electricity cost comparison. 
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Fig. 3.3.12. Average monthly cost savings using SGPN. 

Average savings per month is estimated using grid power usage and electricity cost 

calculation. From the Fig. 3.3.12, it is shown that, the maximum savings yield in summer season 

(from April to August) since the PV power is maximum at that time. The average savings per 

month is around $15.00 in summer. The average yearly saving is around $160.00.  

3.3.4 DSP implementation of Grid-connected Mode 

The algorithm for power flow management in grid-connected mode includes TOU price, PV 

power, load power, and battery SOC. To acquire 24 hour TOU price information, a 

communication system algorithm is used along with the system level control algorithm. TOU 

price data is parsed directly from the internet using LabVIEW. Initially Hypertext Transfer 

protocol (HTTP) Client Virtual Instruments is used to get XML file from TOU price website. 

The parsed data is then trimmed with a string function. The Xbee communication protocol is 

used to transfer this data to the DSP. Twenty-four hour TOU price data is collected from an 
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internet source and sent to the DSP through the Labview GUI. Then, according to the algorithm, 

the maximum and the minimum value of TOU pricing data are extracted from the data. PV 

power, load demand, and battery SOC are also calculated from their voltage and current values 

by using voltage and current sensors. The algorithm then calculates the battery current reference 

for grid-connected mode based on the TOU price, battery SOC, PV power, and load demand. 

Fig. 3.3.13 shows the DSP output for the battery current reference for different conditions 

representing a 24-hour period. The battery current reference is used at the hardware level control 

code in the DSP to indicate when to charge and discharge the battery. 

 

Fig. 3.3.13 Output results for DSP implementation of grid-connected mode control. 
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CHAPTER 4  

LOAD MANAGEMENT 

 

4.1 Load Management Structure 

The objective of the load management system is to reduce the grid power usage and 

electricity bill for the user by maximizing the usage of available PV power and by using the grid 

power when the TOU pricing is low. This load management is dependent on the projected power 

generation of the PV over a 24 hour period, load demand over the same period, and electricity 

TOU price.  

 

Fig. 4.1.1. Block diagram for load management structure. 
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Fig. 4.1.1 shows the block diagram for load management. Among the various stochastic time 

series (STS) methods, general auto-regression model used for twenty-four hour load demand 

prediction based on historical load demand. PV power is predicted based on radiation model 

using geographical and weather information of the local area. The weather data parsed from 

“National Weather Service” website and the TOU price data is acquired from “Power smart 

pricing” website using LabVIEW and serial communication [19],[18].  

4.2 PV Power Prediction 

The output power from a PV panel is dependent on solar radiation, temperature, solar panel 

area, and photoelectric conversion efficiency. Hottel’s clear sky radiation model is used to 

forecast the solar radiation for 24 hours [13]. Solar radiation varies from place-to-place, since it 

depends on geographical data such as latitude, longitude, time zone, day of the year, and the 

local mean time.  

The solar radiation model was simulated in Matlab using geographical information for 

Fayetteville, Arkansas, USA.  

A calculation for 12:00 pm, 9th July, 2014 is performed as follows: 

Perpendicular solar radiation constant, Gsc: 

 [̀- = 1367	 ��� (4.1) 

The 9th July, 2014 is the 190th day of the year, so:  

 J = 190 (4.2) 
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Extra-terrestrial solar radiation, Gon is calculated from the perpendicular solar radiation 

constant and numbered day of the year: 

 `,) = 1367 ∗ 31 + .033 cos 32m ∗ 190365 55 = 1320.3	 ��� (4.3) 

 

The calculation for solar declination (t) and the time in minutes (Et) are calculated by putting 

the value of D into the following equations: 

 t = m180 ∗ 23.45 ∗ sin 82m(190 + 284)365 : = 0.39	�1F/j (4.4) 

 

 

Fig. 4.2.1. PV power prediction model block diagram. 
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H$ = 229.1831 ∗ (7.5N�� + .001868 ∗ hij7 − .032077 ∗ jw@7
− .014615 ∗ hij27 − 0.040849 ∗ jw@27
= 	−4.93	�w@�CNj 

(4.5) 

where, 

 7 = 2m(J − 1)365 = 3.25	�1F/j (4.6) 

The calculation is performed for local mean time (LMT) of 12:00 pm in Fayetteville, AR. 

 {|c = 12 (4.7) 

The time zone, TZ for Fayetteville, AR is -6: 

 c} = −6 (4.8) 

The latitude,	y and the longitude, € for Fayetteville, AR are 36° North, and -94° West, 

respectively. 

 y = 36 ∗ m180 = 0.6238	�1F/jNh (4.9) 

 € = −94 (410) 

Hour angle vector,	(v) depends on local mean time, time zone, longitude, and time in 

minutes. 

 
v = m180 ∗ 8(12 − (−6) − 12) ∗ 15 + (−94) + −4.934 :

= −0.09	�1F/jNh 
(4.11) 

Inclination angle of surface is 0°. 

 z, k = 0 (4.12) 
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The next step is to calculate the solar zenith angle vector and the incident angle vector. Both 

of the angle vectors vary with factors such as solar declination, latitude, inclination angle of 

surface, and the hour angle. 

 
hij7g = cos(0.39) ∗ cos(0.6238) ∗ cos(−0.09) + sin(0.39)

∗ sin(0.6238) 	= 0.968 

(4.13) 

 

hij7[ = sin	(0.039) ∗ sin(0.6238) ∗ cos	(0) − jw@(0.039)
∗ hij(0.6238) ∗ jw@(0) ∗ hij(0) + hij(0.039)
∗ hij(0.6238) ∗ hij(0) ∗ hij(0) + hij(0.039)
∗ jw@(0.6238) ∗ jw@(0) ∗ hij(0) ∗ hij(−0.09)
+ hij(0.039) ∗ jw@(0) ∗ jw@(−0.09) ∗ jw@(0) = 0.9687 

 

 

 

 

(4.14) 

The terms a0, a1 and rk are the constant from Hottel’s model [13]. These values vary with 

altitude and correction factors r0, r1 and rk, which depend on climate types. 

TABLE 4.1. r0, r1, and rk VALUES FOR DIFFERENT CLIMATE TYPES [13] 

Climate Type r0 r1 rk 

Tropical 0.95 0.98 1.02 

Mid latitude summer 0.97 0.99 1.02 

Subarctic summer 0.99 0.99 1.01 

Mid latitude winter 1.03 1.01 1 
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The climate type for Fayetteville, AR is mid-latitude summer (Since its latitude is between 

23° N and 66° N). Hence, from the TABLE 4.1, the correction factors for Fayetteville, AR are 

0.97, 0.99, and 1.02.  

The altitude for Fayetteville, AR is 427 m: 

 Y = 0.427	s� (4.15) 

 1� = 0.97 ∗ (0.4237 − 0.00821 ∗ (6 − 0.427)�) = 0.16 (4.16) 

 12 = 0.99 ∗ (0.5055 − 0.00595 ∗ (6.5 − 0.427)�) = 0.717 (4.17) 

 s = 1.02 ∗ (0.2711 − 0.1858 ∗ (2.5 − 0.427)�) = 0.358 (4.18) 

Atmospheric transmittance (tb), diffuse transmittance (td) and reflected transmittance (tr) are 

calculated from the following equations by using altitude and the constant values. 

 C/ = (0.16 + 0.717 ∗ N=��.����.��� > = 0.6596 (4.19) 

 Cf = 0.271 − 0.294 ∗ 0.6596 = 0.0771 (4.20) 

 C& = 0.271 − 0.706 ∗ 0.6596 = 0.7367 (4.21) 

Average reflectance of the ground (l) is 0.2, so: 

 l = 0.2 (4.22) 

Beam radiation (Gbt), reflected radiation (Grt), and diffuse radiation (Gdt) are calculated using 

the following equations using each transmittance value:  

 `/$ = 1320 ∗ 0.6596 ∗ 0.986 = 844.88	�/�� (4.23) 

 `f$ = 1320 ∗ 0.0771 ∗ 0.986 ∗ 1 + hij02 = 98.71	�/�� (4.24) 
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`&$ = 0.2 ∗ 1367 ∗ 0.7367 ∗ 0.986 ∗ 1 + hij02

= 188.72	�/�� 

(4.25) 

	The total solar radiation, Gt is the summation of beam radiation, reflected radiation, and the 

diffuse radiation. 

 `$ = 844.88 + 98.71 + 188.72 = 1132.3	�/�� (4.26) 

The simulation is performed for a 24 hour period for three different times of the year: 

February, July, and November. 

 

Fig. 4.2.2. Twenty-four hour solar radiation prediction for the month of February. 

 

Fig. 4.2.3. Twenty-four hour solar radiation prediction for the month of July. 

0 5 10 15 20

200

400

600

800

1000

1200

Time [ Hours ]

R
a
d

ia
ti

o
n

 [
 W

/ 
m

2
]

0 5 10 15 20

200

400

600

800

1000

1200

Time [ Hours ]

R
ad

ia
ti

o
n

 [
 W

/m
2
]



49 
 

 

Fig. 4.2.4. Twenty-four hour solar radiation prediction for the month of November. 

The total solar radiation in July (shown in Fig. 4.2.3) is greater than the radiation in February 

and November (shown in Fig. 4.2.3. and Fig. 4.2.4, respectively). The predicted power from the 

solar panel is calculated using predicted solar radiation in conjunction with other information 

such as solar panel area, conversion efficiency, and temperature. The area of the solar panel and 

photoelectric conversion efficiency is calculated from the solar panel datasheet. This SGPN 

system is designed to have eight 327 W solar panels in series to yield approximately 2.5 kW 

power from the PV. The photoelectric conversion efficiency is 20%. The equation for solar panel 

area is given by: 

 ji~1�	�1@N~	1�N1 = Z#	�i�N�ji~1�	�1Fw1Cwi@ ∗ hi@KN�jwi@	NAAwhwN@h� (4.27) 

 �i~1�	�1@N~	1�N1, Y = (327 ∗ 8)�(1132.3 ∗ 0.2)�/�2 = 11.5	�� (4.28) 
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TABLE 4.2. DAY TYPE INDEX VALUES FOR DIFFERENT WEATHER [13] 

Forecasted Weather Type Day Type Index 

Clear 0.9 

Partly Cloudy 0.7 

Cloudy/ Foggy 0.3 

Rainy/Snowy/Overcast 0.1 

 

The predicted power from the PV panel for a clear day is then calculated using the equation 

given by: 

 Z]^ = � ∗ Y]^ ∗ 0.9 ∗ `$O1 − 0.005(c- − 25)V = 2.23	s� (4.29) 

Here, the temperature Tc = 34 °C is used for calculation. The simulation for PV prediction is 

also performed for 24 hour periods in February, July, and November since the temperatures are 

different for each of these months a year. 
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Fig. 4.2.5. Twenty-four hour PV power prediction for the month of February. 

 

Fig. 4.2.6. Twenty-four hour PV power prediction for the month of July. 

30

40

50

60

T
em

p
er

a
tu

re
 [

 F
ar

en
h
it

e 
]

0 5 10 15 20

0.5

1

1.5

Time [ Hours ]

P
re

d
ic

te
d
 P

o
w

er
 [

 k
W

 ]

30

40

50

60

70

80

90

100

T
em

p
er

at
u

re
 [

 F
a
re

n
h
it

e 
]

0 5 10 15 20

0.5

1

1.5

2

2.5

3

Time [ Hours ]

P
re

d
ic

te
d
 P

o
w

er
 [

 k
W

 ]



52 
 

 

Fig. 4.2.7. Twenty-four hour PV power prediction for the month of November. 

The Fig. 4.2.5 shows PV power simulation results for a 24 hour period in February. Here, the 

PV can generate a maximum of approximately 1.5 kW, since the radiation is not that high and 

PV power generation begins at 7:00 am and lasts until 4:00 pm. Fig. 4.2.6 shows the same 

simulation for July. Here, the PV will generate a maximum of approximately 2.2 kW, since the 

solar radiation is higher in summer. PV power generation starts at 5 am and lasts until 6:30 pm. 

In November, as shown in Fig. 4.2.7, the PV power production is not as high and produces 

power only from 7:00 am to 3:30 pm. 

4.3 Load Prediction 

4.3.1 Electrical Load Prediction Using Auto-regression Model 

For the auto-regression model, the current load depends on the previous load demand and the 

auto-regression coefficients. The equation for auto-regression model is given by: 

 �(C) = 1(C) + ∅2�(C − 1) + ∅��(C − 2) +⋯+ ∅]�(C − �) (4.30) 
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where y(t) is the value for the current load, ∅2, ∅�….∅] are the regression coefficients, and y(t-

1), y(t-2)….y(t-p) are the value previous hour’s load demands. The initial step is to find the 

regression coefficient values using historical load demand data in the regression analysis. 

Historical US residential load demand data for three different times of a year (February, July, 

and November) are considered for this auto-regression model. These data sets are taken 

“Connecticut Light & Power” website [20]. This website provides hourly historical load demand 

for twelve months. Separate load demand data for weekdays and weekends are collected from 

this website. 

 

Fig. 4.3.1. Twenty-four hour average historical load demand for the month of February [20]. 

These historical data sets are used in an MS Excel regression analysis to calculate the 

regression coefficients. 
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TABLE 4.3. REGRESSION COEFFICIENTS FOR AUTO REGRESSION MODEL ( FEBRUARY 

WEEKDAYS) 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

1.574 1.204 -0.928 0.403 -0.169 -0.133 0.113 -0.339 0.219 -0.27 0.248 

 

TABLE 4.4. REGRESSION COEFFICIENTS FOR AUTO REGRESSION MODEL (FEBRUARY WEEKENDS) 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

1.13 1.289 -0.326 -0.44 0.488 -0.233 -0.294 0.018 0.244 0.365 -0.343 

 

The regression coefficients for load demand profiles in July and November are calculated in 

a similar way and are shown in Table 4.5, TABLE 4.6, Table 4.7, and TABLE 4.8 respectively. 

 

Fig. 4.3.2. Twenty-four hour average historical load demand for the month of July [20]. 
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TABLE 4.5. REGRESSION COEFFICIENTS FOR AUTO REGRESSION MODEL (JULY WEEKDAYS) 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

0.581 1.093 -0.169  0.217 -0.153 -0.265 -0.232 -0.07 0.331 0.049 0.305 

 

TABLE 4.6. REGRESSION COEFFICIENTS FOR AUTO REGRESSION MODEL (JULY WEEKENDS) 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

0.47 1.21 -0.183 -0.464 -0.248 -0.14 -0.538 -0.539 0.069 0.29 -0.255 

 

 

Fig. 4.3.3. Twenty-four hour average historical load demand for the month of November [20]. 

TABLE 4.7. REGRESSION COEFFICIENTS FOR AUTO REGRESSION MODEL (NOVEMBER 

WEEKDAYS) 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

0.709 1.2919 -0.527 -0.007 -0.17 0.329 -0.413 0.04 0.099 -0.133 0.311 
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TABLE 4.8. REGRESSION COEFFICIENTS FOR AUTO REGRESSION MODEL (NOVEMBER WEEKENDS) 

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

0.618 1.207 -0.039 -0.776 0.28 0.408 -0.66 -0.081 0.54 0.036 -0.48 

 

After the regression coefficients are calculated, the next step is to use these regression 

coefficients with previous hourly load demands in the auto regression model to predict the next 

24 hours of load demand. The simulation is performed to predict the load in a 24 hour period 

using an auto-regression model in Matlab with the calculated regression coefficients. 

 

Fig. 4.3.4. Twenty-four hour load demand prediction for the month of February. 
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Fig. 4.3.5. Twenty-four hour load demand prediction for the month of July. 

 

Fig. 4.3.6. Twenty-four hour load demand prediction for the month of November. 
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Table 4.9. LOAD DEMAND PREDICTION ACCURACY 

Month 
Accuracy 

Weekdays Weekends 

February 93.85% 90.49% 

July 87.25% 89.11% 

November 92.49% 91.5% 

 

Table 4.9. shows the calculated accuracy for predicted load demand for different seasons. For 

weekdays in February, the prediction for load demand is 93.85% accurate whereas in weekends 

the accuracy is 90.49%. For July, the prediction is 87.25% accurate for weekdays and 89.11% for 

weekends. The prediction accuracy for November load demand is also more than 90%. 

4.4 DSP Implementation of PV & Load Prediction 

Twenty-four hour weather data, along with geographical information (latitude, longitude, 

time zone, and local time) is acquired from a weather website using LabVIEW using the same 

method as used for TOU pricing. Xbee communication is used to send these data sets to the DSP. 

When the DSP receives the weather information, it runs the code to calculate the predicted PV 

power. It also calculates the predicted load demand by retrieving previous load demand for the 

home from memory. Fig. 4.4.1 shows the DSP output for the PV predicted power and predicted 

load demand that are calculated from acquired weather, geographical information, and previous 

load demand. 
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Fig. 4.4.1. Output results for DSP implementation of PV prediction and load prediction. 
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4.5 Types of Load Management 

Twenty-four hour load management is performed for three times of the year based on the 

calculation of PV prediction, load prediction, and TOU price. The load management is 

categorized into two sections. These sections are described in the following sub-sections. 

4.5.1 Automatic Turn On/Off Load Management 

Automatic turn on/off load management makes a default schedule for twenty-four hours to 

for load usage. It also requires user interaction to turn on/off the load to save electricity. 

However, the users get an indication of when to turn on or turn off the load depending on PV 

power prediction, load demand prediction, and TOU price. Three household loads are chosen for 

simulation whose power ratings are 1 kW, 0.6 kW, and 0.4 kW. The simulation is performed for 

three different months in a year: February, July, and November.  

 

Fig. 4.5.1. Simulation results for automatic turn on/off load management for the month of 

February. 
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Fig 4.5.1 shows the automatic load management simulation results obtained for the month of 

February. In February, the TOU price reaches a peak in the morning (from 6:00 am to 10:00 am) 

and in the evening (from 5:00 pm to 7:00 pm). PV power is available from 7:00 am to 5:00 pm. 

To reduce electricity cost, each of the three loads can be turned on when the TOU price is low in 

the morning. When the TOU price goes high, the loads can be turned off until the PV power is 

available to supply the loads. The loads can then be turned on again at night when the TOU is 

low. 

 

Fig. 4.5.2. Simulation results for automatic turn on/off load management during the month of 

July. 

Fig 4.5.2 shows the automatic load management simulation results obtained for the month of 
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available from 5:00 am to 6:00 pm. To reduce electricity cost, each of the three loads can be 

turned on when the TOU price is low until 11:00 am. When the TOU price goes high after 11:00 

am, the available PV power supplies the loads. The loads can remain turned on until 6:00 pm. 

The loads can be turned off again at night when the TOU is high and there is available PV 

power. 

 

Fig. 4.5.3. Simulation results for automatic turn on/off load management for the month of 

November. 

Fig 4.5.3 shows the automatic load management simulation results obtained for the month of 

November. In November, the TOU price reaches a peak in the morning (from 5:00 am to 8:00 
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power is available to supply the loads. The loads can be turned on again at night when the TOU 

price is low. 

4.5.2 Labview GUI Demonstration for Load Management 

A Labview GUI is constructed for manual load management demonstration. The TOU price 

and weather data is collected from the internet using Labview and sent to DSP using Xbee 

communication protocol as shown in Fig. 4.5.4.  

 

Fig. 4.5.4. Hardware connections and Labview GUI for weather and TOU data acquisition. 

PV prediction and load prediction models are programmed in Labview. Weather data and 

TOU price is acquired at the beginning of the day. Initially these data are parsed from internet 

using Labview and sent to DSP using Xbee communication protocol. This forecasted weather 

data is used with the predicted solar radiation and solar panel parameters to calculate the 24 

hours of PV predicted power. The load demand for the previous day is also collected for 24 hour 

load demand prediction. The Matlab simulation is coded into Labview for the manual load 
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management. From this GUI interface the user can see which time will be better to turn on/off 

the loads to minimize the cost of electricity. Fig. 4.5.5 and Fig. 4.5.6 show the GUI interface 

constructed for the month of February, July, and November. 

 

Fig. 4.5.5. LabVIEW GUI interface automatic load management (February). 

 

(a) 
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(b) 

Fig. 4.5.6. LabVIEW GUI interface for automatic load management for (a) July and (b) 

November. 

4.5.3 Automatic Load Management with Temperature Control 

Automatic load management requires no user interaction. A house space heater was used as 

the load in this thesis. However, other loads with specific load model can also be added. But the 

algorithm will be same since it is based on TOU price, PV power prediction, and load demand 

prediction. A Matlab thermodynamic model of a house heating system is considered for this 

thesis [21]. The system automatically turns the heater on or off depending on the predicted PV 

power, predicted load demand, and TOU price. It also controls the indoor temperature of the 

house. The parameters used for this house heating system are given in TABLE 4.10. 
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TABLE 4.10. SPECIFICATIONS FOR HOUSE SPACE HEATER [21] 

Parameters Value 

Length of the house, Lhouse 30 m 

Width of the house, Whouse 10m 

Height of the house, Hhouse 4m 

Roof pitch 40° 

Number of windows, Nwin 6 

Height of the windows, Hwin 1m 

Width of the windows, Wwin 1m 

Cp value of air 1005.4 J/kg-K 

Heater air temperature 50°F 

Air flow rate 3600 kg/hr 

Density of air, δ 1.2250 kg/m3 

Temperature set point 70°F 

 

Total area for the windows, Awin is calculated using the following equation: 

 Y�w@ = ��w@ ∗ ��w@ ∗ ��w@ (4.31) 

 Y�w@ = 6 ∗ 1 ∗ 1 = 6	�� (4.32) 

Total area of the wall Awall for the house is calculated using the following: 

Y�*++ = (2 ∗ {�,�[% ∗ ��,�[%) + (2 ∗ ��,�[% ∗ ��,�[%)
+ �2 ∗ � 1

hij ZwChℎ	�iiA2   ∗��,�[% ∗ {�,�[% 
+ tan(�wChℎ	�iiA) ∗ ��,�[% −��() = 960	�� 

(4.33) 
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The next step is to calculate the equivalent thermal resistance, Req. The equation for 

equivalent thermal resistance is calculated using the following equation. The terms kwall and kwin 

are two constants whose values are 136.8 J/hr/m/C and 2808 J/hr/m/C, respectively. 

�1~~	�NjwjC1@hN, ��*++ = {�*++s�*++ ∗ Y�*++ = 1.52 × 10��	¢ℎ��2��2!�2       (4.34) 

�w@Fi�	�NjwjC1@hN, ��() = {�()s�() ∗ Y�() = 5.93 × 10�£	¢ℎ��2��2!�2       (4.35) 

And the equivalent thermal resistance of the house is: 

 �%¤ = ��*++ ∗ ��()��*++ + ��() = 4.26 × 10�£		¢ℎ��2��2!�2       (4.36) 

The next step is to calculate the total internal air mass, M. The equation for calculating the 

internal air mass, M is given by: 

 
| = ({�,�[% ∗ ��,�[% ∗ ��,�[% + tan(�wChℎ	�iiA)

∗ ��,�[% ∗ {�,�[%) (4.37) 

The Matlab house space heater model is simulated by using calculated geometry, thermal 

properties, thermal resistance of the house, temperature set point, and outdoor temperature. The 

space heater is controlled to turn on/off depending on PV predicted power, predicted load 

demand, and TOU price. 
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Fig. 4.5.7. Simulink model for space heater control. 

 

Fig. 4.5.8. Simulation results for automatic load management (space heater control). 
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 Fig. 4.5.8 shows the simulation results for space heater control based on TOU price, 24 hour 

PV power prediction, and 24 hour load prediction. When the TOU price is low from 9 pm to 5 

am, the space heater is continuously turned on/off although there will be no PV power available. 

It will also control the temperature between 65 °F and 75 °F. Whenever the temperature is 

beyond 75 °F the heater will be turned off, and when the temperature is below 65 °F the heater 

will be turned on again. Under any other circumstance, the heater will be turned on/off when the 

PV power is available to supply the space heater load demand. From 5 am to 9 am, the TOU 

price goes high and there will be not enough PV power to supply the load. Therefore, the space 

heater will be turned off until the PV power is available to compensate the load demand. 
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CHAPTER 5  

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

5.1 Concluding Remarks 

This thesis has presented the overall system level energy management for a residential power 

router which includes both power flow and load management to reduce the cost of electricity for 

the homeowner. Hardware systems were also designed by other graduate students involved in 

this project.  

The power flow management system is designed based on battery SOC, electricity TOU 

price, PV power, and load demand. Among the various available methods, the voltage method 

was chosen for battery SOC because it is easier to implement in a DSP. Labview was used as an 

interface to parse the live TOU price data from the Internet. PV power and load power 

information were obtained from the hardware system. Using this information, a power flow 

management algorithm was implemented for both a grid-connected mode and an island mode. 

The daily, monthly, and yearly average electricity cost savings for the homeowner were also 

estimated. The total yearly savings for a year is around $160.00 depending on seasonal PV 

power availability, different load demand and TOU pricing data. The total cost for the device is 

around $1200.00. It will take ($1200.00 / $160.00) = 7.5 years for a user to start getting the 

profit. 

The load management system design was based on PV power prediction, load demand 

prediction, and TOU price information. Twenty-four hour PV power prediction was 
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implemented using the clear sky solar radiation model, which requires geographical data and 

weather data for the local area. These data are parsed live from the internet using Labview. A 24 

hour electrical load demand prediction model was designed and implemented using a statistical 

auto regression model based on historical load demand data.  

5.2 Recommendations for Future Work 

In this project, there were some limitations and challenges in system level design. There are 

also a few tasks remaining which are in need of completion. In this thesis, the PV prediction is 

modeled using geographical and weather data of Fayetteville, Arkansas. However, TOU pricing 

data used in the control algorithm is parsed from a website which shows the pricing data for 

Illinois, since there is no website available for Arkansas TOU pricing information. For the PV 

prediction, the solar radiation is estimated successfully. Based on the estimated solar radiation, 

PV power prediction is also calculated using weather information and solar panel parameters. 

Real solar panel will be used in further field testing. Currently, the TOU price and weather data 

obtained from the internet are sent to the DSP using Labview as a GUI interface. This 

arrangement could be made more robust by developing a smart phone application or web server 

for the system which directly sends the required data to the DSP. The development of a smart 

phone application is currently under construction. The system level control is integrated with 

hardware level control using Labview graphical user interface. However, both the 

communication and system level control can also be implemented in Raspberry Pi which will not 

require any computer interface for internal communication. The TOU price and weather data can 

be parsed directly from the internet to the Raspberry Pi and after completing the system level 

control tasks, the output will be sent to DSP for hardware level control. After full system 
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integration, more features can be added into this energy management system to improve 

accuracy and reliability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

REFERENCES 

[1]  "Short-Term Energy Outlook," U.S. Energy Information Administration, [Online]. 
Available: http://www.eia.gov/forecasts/steo/. 

[2]  "Fact Sheet: Clean Power Plan Overview," [Online]. Available: 
http://www2.epa.gov/carbon-pollution-standards/fact-sheet-clean-power-plan-overview. 

[3]  Y. Riffonneau and S. Bacha, "Optimal Power Flow Management for Grid Connected PV 
Systems With Batteries," IEEE Transactions on Sustainable Energy, vol. 2, 2011.  

[4]  B. Stalling, R. Motte, T. Clemmer, H. A. Mantooth and R. Dougal, ""Design and Evaluation 
of a Universal Power Router for Residential Applications," in Energy Conversion Congress 

and Exposition, Raleigh, 2012.  

[5]  Y. Riffonneau, S. bacha, F. barruel and A. Delaille, "Energy flow management in grid 
connected PV systems with storage - A deterministic approach," in IEEE International 

Conference on Industrial Technology, 2009.  

[6]  "Lead-acid Battery," [Online]. Available: 
http://en.wikipedia.org/wiki/Lead%E2%80%93acid_battery. 

[7]  M. Ceraolo, "New Dynamical Models of Lead-Acid Batteries," IEEE transactions on 

Power Systems, vol. 15, pp. 1184-1190, 2000.  

[8]  J. P. Cun, J. Fiorina, M.Fraisse and H. Mabboux, "The Experience of a UPS Company in 
Advanced Battery Monitoring," in Telecommunications Energy Conference, 1996.  

[9]  M. Valvo, F. Wicks, D. Robertson and S. Rudin, "Development and Application of an 
Improved Equivalent Circuit Model of a Lead Acid Battery," in Proc. Energy Convers. Eng. 

Conf., 1996.  

[10] S. Pang, J. Farrell, J. Du and M. Barth, "Battery State-of-Charge Estimation," in Americal 

Control Conference, 2001.  

[11] F. M. Gonzalez-Longatt, "Circuit Based Battery Models: A Review," in Congreso 

Iberoamericano de estudiantes De Ingenieria Electrica, 2006.  

[12] S. Barsali and M. Ceraolo, "Dynamic Models of Lead Acid Batteries: Implementation 
Issues," IEEE Transactions on Energy Conversion, vol. 17, 2002.  

[13] D. Shanxu, C. Changsong and C. Tao, "Forecasting Power Output for Grid-Connected 
Photovoltaic Power System Without Using Solar Radiation Measurement," IEEE 

International Symposium on Power Electronics for Distributed Generation Systems, pp. 
773-777, 2010.  



74 
 

[14] I. Moghram and S. Rahman, "Analysis and Evaluation of Five Short-Term Load 
Forecasting Techniques," IEEE Transactions on Power System, vol. 4, 1989.  

[15] S. Teleke, M. E. Baran, S. Bhattacharya and A. Q. Huang, "“Rule-Based Control of Battery 
Energy Storage for Dispatching Intermittent Renewable Sources," IEEE Transactions On 

Sustainable Energy, vol. 1, p. 117, 2010.  

[16] "How to measure state of charge," Battery University, [Online]. Available: 
http://batteryuniversity.com/learn/article/how_to_measure_state_of_charge. 

[17] "OPTIMA Batteries Specification," Johnson Controls Inc. Company, [Online]. Available: 
http://d26maze4pb6to3.cloudfront.net/optimabatteries/9613/4583/5078/REDTOP_Full_Spe
cs_Sheet.pdf. 

[18] "Power Smart Pricing," [Online]. Available: http://www.powersmartpricing.org/. 

[19] "National Weather Sevice," [Online]. Available: http://www.weather.gov/. 

[20] "Numeric Profiles," Connecticut Light & Power, [Online]. Available: http://www.cl-
p.com/ESuppliers/CLPProfileSegments/Numeric_Profiles/?MenuID=4294985412. 

[21] "Thermal Model Of a House," The MathWorks Inc., [Online]. Available: 
http://www.mathworks.com/help/simulink/examples/thermal-model-of-a-house.html. 

 

 



75 
 

APPENDIX  

 

Appendix A: DSP Code for Power Flow and Load Management 

 

#include "stdio.h" 

 

#include "math.h" 

 

# include "stdlib.h" 

 

//for power flow management 

float Iload=2.35; 

float Vpv=50; 

float Vbat=49.32; 

float Vload_rms=240; 

float Ipv=0; 

float price=0; 

int t; 

float Iref; 

float SOC; 

float Ibat=-20; 

int grid_status; 

int mode=1; //mode=0 island ; mode=1 is grid-connected 

int generator_status; 

float TOU[24]= {2.6, 2.6, 2.6, 2.7, 3.1, 4.6, 11.4, 8.3, 8.3, 7.6, 6.6, 5.8, 

5.1, 4.8, 4.5, 4.5, 4.7, 9.6, 11.2, 8.4, 6.1, 4.3, 4, 3}; 

 

//for pv prediction 

float month; 

float Day; 

float GSC; 

float fValue; 

float Gon; 

float theta; 

float ET; 

float latitude; 

float longitude; 

float latitude_1; 

float longitude_1; 

float solardec; 

int Local_mean_time[24]= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 23}; 

float Time_zone; 

float omega[24]; 

float alpha; 

float beta; 

float Costhetaz[24]; 

float costhetas[24]; 

float r0; 

float r1; 

float rk; 
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float a0; 

float a1; 

float kappa; 

float tr[24]; 

float td[24]; 

float tb[24]; 

float ro; 

float A; 

float Grt[24]; 

float Gdt[24]; 

float Gbt[24]; 

float Gt[24]; 

float conversion_efficiency; 

float Solar_panel_area; 

float Temperature[24]; 

float PV_output[24]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0}; 

float PV_OUTput[24]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0}; 

int PV_Output[24]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0}; 

 

 

// for load prediction and load scheduling 

float TOUsum; 

float TOUavg; 

float prevload[24] = {1.946, 1.629, 1.545, 1.464, 1.512, 1.754, 1.898, 2.273, 

2.398, 2.211, 2.006, 1.848, 1.776, 1.730, 1.584, 1.680, 1.803, 2.075, 2.498, 

2.662, 2.582, 2.441, 2.340, 2.131}; 

float tempe[24]={2.131, 1.946, 1.629, 1.545, 1.464, 1.512, 1.754, 1.898, 

2.273, 2.398, 2.211, 2.006, 1.848, 1.776, 1.730, 1.584, 1.680, 1.803, 2.075, 

2.498, 2.662, 2.582, 2.441, 2.340}; 

float tempe3[24]={2.340, 2.131, 1.946, 1.629, 1.545, 1.464, 1.512, 1.754, 

1.898, 2.273, 2.398, 2.211, 2.006, 1.848, 1.776, 1.730, 1.584, 1.680, 1.803, 

2.075, 2.498, 2.662, 2.582, 2.441}; 

float tempe4[24]={2.441, 2.340, 2.131, 1.946, 1.629, 1.545, 1.464, 1.512, 

1.754, 1.898, 2.273, 2.398, 2.211, 2.006, 1.848, 1.776, 1.730, 1.584, 1.680, 

1.803, 2.075, 2.498, 2.662, 2.582}; 

float tempe5[24]={2.582, 2.441, 2.340, 2.131, 1.946, 1.629, 1.545, 1.464, 

1.512, 1.754, 1.898, 2.273, 2.398, 2.211, 2.006, 1.848, 1.776, 1.730, 1.584, 

1.680, 1.803, 2.075, 2.498, 2.662}; 

float tempe6[24]={2.662, 2.582, 2.441, 2.340, 2.131, 1.946, 1.629, 1.545, 

1.464, 1.512, 1.754, 1.898, 2.273, 2.398, 2.211, 2.006, 1.848, 1.776, 1.730, 

1.584, 1.680, 1.803, 2.075, 2.498}; 

float tempe7[24]={2.498, 2.662, 2.582, 2.441, 2.340, 2.131, 1.946, 1.629, 

1.545, 1.464, 1.512, 1.754, 1.898, 2.273, 2.398, 2.211, 2.006, 1.848, 1.776, 

1.730, 1.584, 1.680, 1.803, 2.075}; 

float tempe8[24]={2.075, 2.498, 2.662, 2.582, 2.441, 2.340, 2.131, 1.946, 

1.629, 1.545, 1.464, 1.512, 1.754, 1.898, 2.273, 2.398, 2.211, 2.006, 1.848, 

1.776, 1.730, 1.584, 1.680, 1.803}; 

float tempe9[24]={1.803, 2.075, 2.498, 2.662, 2.582, 2.441, 2.340, 2.131, 

1.946, 1.629, 1.545, 1.464, 1.512, 1.754, 1.898, 2.273, 2.398, 2.211, 2.006, 

1.848, 1.776, 1.730, 1.584, 1.680}; 

float tempe10[24]={1.680, 1.803, 2.075, 2.498, 2.662, 2.582, 2.441, 2.340, 

2.131, 1.946, 1.629, 1.545, 1.464, 1.512, 1.754, 1.898, 2.273, 2.398, 2.211, 

2.006, 1.848, 1.776, 1.730, 1.584}; 
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float tempe11[24]={1.584, 1.680, 1.803, 2.075, 2.498, 2.662, 2.582, 2.441, 

2.340, 2.131, 1.946, 1.629, 1.545, 1.464, 1.512, 1.754, 1.898, 2.273, 2.398, 

2.211, 2.006, 1.848, 1.776, 1.730}; 

float tempe12[24]={1.730, 1.584, 1.680, 1.803, 2.075, 2.498, 2.662, 2.582, 

2.441, 2.340, 2.131, 1.946, 1.629, 1.545, 1.464, 1.512, 1.754, 1.898, 2.273, 

2.398, 2.211, 2.006, 1.848, 1.776}; 

int load[24]={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0}; 

float aa=0; 

float bb=0; 

float cc=0; 

float dd=0; 

float ee=0; 

float ff=0; 

float gg=0; 

float hh=0; 

float ii=0; 

float jj=0; 

float kk=0; 

float ll=0; 

float load1; 

float load2; 

float load3; 

char load1_status[24]; 

char load2_status[24]; 

char load3_status[24]; 

 

//Fahad 

 

void main(void) 

{    

int i; 

float upper_price = TOU[0]; 

float lower_price = TOU[0]; 

for (i = 0; i < 24; i++) 

{ 

if (TOU[i] > upper_price) 

{ 

upper_price = TOU[i]; 

} 

else if (TOU[i] < lower_price) 

{ 

lower_price = TOU[i]; 

} 

} 

 

// determining the current TOU price according to time input in hour 

 

if  (t<1) 

{price=TOU[0];} 

else if (t<2) 

{price=TOU[1];} 

else if (t<3) 

{ price=TOU[2];} 

else if (t<4) 

{ price=TOU[3];} 

else if (t<5) 
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{ price=TOU[4];} 

else if (t<6) 

{ price=TOU[5];} 

else if (t<7) 

{ price=TOU[6];} 

else if (t<8) 

{ price=TOU[7];} 

else if (t<9) 

{ price=TOU[8];} 

else if (t<10) 

{ price=TOU[9];} 

else if (t<11) 

{ price=TOU[10];} 

else if (t<12) 

{ price=TOU[11];} 

else if (t<13) 

{ price=TOU[12];} 

else if (t<14) 

{ price=TOU[13];} 

else if (t<15) 

{ price=TOU[14];} 

else if (t<16) 

{ price=TOU[15];} 

else if (t<17) 

{ price=TOU[16];} 

else if (t<18) 

{ price=TOU[17];} 

else if (t<19) 

{ price=TOU[18];} 

else if (t<20) 

{ price=TOU[19];} 

else if (t<21) 

{ price=TOU[20];} 

else if (t<22) 

{ price=TOU[21];} 

else if (t<23) 

{ price=TOU[22];} 

else 

{price=TOU[23];} 

 

 

SOC= (((Vbat-(Ibat*0.0030))-31.5)/6.9); 

 

//battery current reference estimation for grid-connected mode 

 

        if (mode==1) 

{ 

//battery current reference estimation for grid-connected mode 

 

if  (5+((-(((price*100)-(lower_price*100))/((upper_price*100)-

(lower_price*100)))+1)*(-2-5))>0) 

 

  { 

  if (Ipv*Vpv < Iload*Vload_rms) 

  { 

  if (SOC > 0.5 ) 

  { 
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  if (((Iload*Vload_rms-Ipv*Vpv)/Vbat) <= 5+((-(((price*100)-

(lower_price*100))/((upper_price*100)-(lower_price*100)))+1)*(-2-5))) 

  { 

  Iref=((Iload*Vload_rms-Ipv*Vpv)/Vbat); 

  grid_status=1; 

  } 

  else 

  { 

  Iref= (5+((-(((price*100)-(lower_price*100))/((upper_price*100)-

(lower_price*100)))+1)*(-2-5))); 

  grid_status=1; 

  } 

  } 

  else 

  { 

  Iref = 0; 

  grid_status=1; 

  } 

  } 

  else 

  { 

  Iref = 0; 

  grid_status=0; 

  } 

  } 

  else 

  { 

  if (Ipv*Vpv < Iload*Vload_rms) 

  { 

  if (SOC < 0.8) 

  { 

  Iref = -((5 + (-2 -5)*(-(((price*100) - 

(lower_price*100))/((upper_price*100)-(lower_price*100)))+1))); 

  grid_status=1; 

  } 

  else if (SOC < 1) 

  { 

  if ((100000*exp(-5*(((Vbat-(-Ibat*0.0030))-31.5)/6.9)*1)) <= 5 + 

(-2 -5)*(-(((price*100) - (lower_price*100))/((upper_price*100)-

(lower_price*100)))+1)) 

  { 

  Iref=-(-(100000*exp(-5*((Vbat-(-Ibat*0.0030))-31.5)/6.9)*1)); 

  grid_status=1; 

  } 

  else 

  { 

  Iref= (5 + (-2-5)*(-(((price*100) - 

(lower_price*100))/((upper_price*100)-(lower_price*100)))+1)); 

  grid_status=1; 

  } 

  } 

  else 

  { 

  Iref = 0 ; 

  } 

  } 

  else 
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  { 

  if (SOC < 0.9) 

  { 

if ((Ipv*Vpv-Iload*Vload_rms)/Vbat > 2) 

{ 

  Iref = -2; 

  } 

else 

{ 

 Iref=-(Ipv*Vpv-Iload*Vload_rms)/Vbat; 

} 

} 

  else 

  { 

  Iref = 0 ; 

  } 

  } 

  } 

        } 

        else 

        { 

        if (SOC <= 0.5) 

        { 

        if (Ipv*Vpv-Iload*Vload_rms > 0) 

        { 

        if ( ((Ipv*Vpv-Iload*Vload_rms)/Vbat) <= 2) 

        { 

        Iref = -(Ipv*Vpv-Iload*Vload_rms)/Vbat; 

        generator_status=0; 

        } 

        else 

        { 

        Iref = -2; 

        generator_status=0; 

        } 

        } 

        else 

        { 

        Iref = 0; 

 

        generator_status=1; 

        } 

        } 

        else if (SOC >= 0.99) 

        { 

        if (Ipv*Vpv < Iload*Vload_rms) 

        { 

        if (((Ipv*Vpv-Iload*Vload_rms)/Vbat) >= -5) 

        { 

        Iref = -(Ipv*Vpv-Iload*Vload_rms)/Vbat; 

        generator_status=0; 

        } 

        else 

        { 

        Iref = 5; 

        generator_status=1; 

        } 
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        } 

        else 

        { 

        Iref = 0; 

        generator_status=0; 

        } 

        } 

        else if (SOC > 0.8) 

        { 

        if (Ipv*Vpv > Iload*Vload_rms) 

        { 

        if (((Ipv*Vpv-Iload*Vload_rms)/Vbat) > 1e5*exp(-5*SOC*2.30)) 

        { 

         if ((Ipv*Vpv-Iload*Vload_rms)/Vbat > 2) 

         { 

           Iref = -2; 

           generator_status=0; 

 

           } 

         else 

         { 

          Iref = -(1e5*exp(-5*SOC*2.30)); 

          generator_status=0; 

         } 

        } 

        else 

        { 

         if ((Ipv*Vpv-Iload*Vload_rms)/Vbat > 2) 

                  { 

                    Iref = -2; 

                    generator_status=0; 

                    } 

                  else 

                  { 

                   Iref = -(Ipv*Vpv-Iload*Vload_rms)/Vbat; 

                   generator_status=0; 

                  } 

        } 

        } 

        else if (((Ipv*Vpv-Iload*Vload_rms)/Vbat) < -5) 

        { 

        Iref = 5; 

        generator_status=1; 

        } 

        else 

        { 

        Iref = -(Ipv*Vpv-Iload*Vload_rms)/Vbat; 

 

        generator_status=0; 

        } 

        } 

        else 

        { 

        if (Ipv*Vpv > Iload*Vload_rms) 

        { 

        if (((Ipv*Vpv-Iload*Vload_rms)/Vbat) > 2) 

        { 
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        Iref = -2; 

 

        generator_status=0; 

 

        } 

        else 

        { 

        Iref = (Ipv*Vpv-Iload*Vload_rms)/Vbat; 

        generator_status=0; 

        } 

        } 

        else if (((Ipv*Vpv-Iload*Vload_rms)/Vbat) < -5) 

        { 

        Iref = 5; 

        generator_status=1; 

 

        } 

        else 

        { 

        Iref = -(Ipv*Vpv-Iload*Vload_rms)/Vbat; 

        generator_status=0; 

        } 

        } 

        } 

 

   

//load management code//   

    if(t == 17) 

  { 

 int j; 

 for (j=0; j<24;j++) 

 { 

 GSC=1370; 

  // time in minutes 

   fValue = cos(2 * 3.1416 * Day / 365); 

   Gon = GSC * (1 + (0.033 * fValue)); 

   theta = 2 * 3.1416 * (Day - 1) / 365; 

   ET = 229.1831 

    * (7.5e-5 + .001868 * cos(theta) - .032077 * 

sin(theta) 

      - .014615 * cos(2 * theta) - .040849 * 

sin(2 * theta)); 

      latitude_1 = 3.1416 / 180 * latitude; 

   longitude_1 = longitude; 

  // solar declination 

   solardec = 3.1416 / 180 * 23.45 * sin(2 *3.1416 * (Day + 284) / 

365); 

  // hour angle vector 

   omega[j] = 3.1416/180*((Local_mean_time[j]-Time_zone-

12)*15+longitude_1+ET/4); 

  // inclination angle of surface 

         beta = 0; 

   alpha = 0; 

  // solar zenith angle vector 

   Costhetaz[j] = cos(solardec) * cos(latitude_1) * cos(omega[j]) 

    + sin(solardec) * sin(latitude_1); 

  // incident angle vector 
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  costhetas[j] = sin(solardec) * sin(latitude_1) * cos(beta) 

    - sin(solardec) * cos(latitude_1) * sin(beta) * 

cos(alpha) 

    + cos(solardec) * cos(latitude_1) * cos(beta) * 

cos(omega[j]) 

    + cos(solardec) * sin(latitude_1) * sin(beta) * 

cos(alpha) 

      * cos(omega[j]) 

    + cos(solardec) * sin(alpha) * sin(omega[j]) * 

sin(beta);   

  // correction factors for this climate type 

   r0 = .97; 

   r1 = .99; 

   rk = 1.02; 

  A=0.0960; 

   a0 = r0 * (0.4237 - 0.00821 * pow((6 - A), 2)); 

   a1 = r1 * (.5055 + .00595 * pow((6.5 - A), 2)); 

   kappa = rk * (.2711 + .01858 * pow((2.5 - A), 2)); 

   tb[j] = (a0 + a1 * exp(-kappa / Costhetaz[j])); 

   td[j] = .271 - .294 * tb[j]; 

   tr[j] = .271 + .706 * tb[j]; 

   ro = .2; 

   Gbt[j] = Gon * tb[j] * costhetas[j]; 

   Gdt[j] = Gon * Costhetaz[j] * td[j] * ((1 + cos(beta)) / 2); 

   Grt[j] = ro * Gon * Costhetaz[j] * tr[j] * ((1 + cos(beta)) / 

2); 

   Gt[j] = Gbt[j] + Gdt[j] + Grt[j]; 

  conversion_efficiency=0.2; 

     Solar_panel_area=10; 

 PV_OUTput[j]= conversion_efficiency*Solar_panel_area*Gt[j]*(1-5e-

3*(((Temperature[j]-32)*0.556)-25))*0.5*(sin(Costhetaz[j])+1)/1000; 

       PV_output[j] = (PV_OUTput[j]*1000);  

     

 if (PV_output[j]<=0) 

 {PV_Output[j]=0;} 

 else 

 {PV_Output[j]=(int)(PV_output[j]);} 

  if (month<= 4) 

  { 

aa=0.5816; 

bb=1.09; 

cc=-0.169; 

dd=0.217963; 

ee=-0.15357; 

ff=-0.26548; 

gg=-0.23235; 

hh=-0.07016; 

ii=0.33199; 

jj=0.04902; 

kk=0.3059; 

ll=-0.5379; 

  } 

  else if (month<=8) 

   { 

aa=0.70; 

bb=1.29; 

cc=-0.52; 
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dd=-0.007; 

ee=-0.17; 

ff=0.329; 

gg=-0.413; 

hh=0.04; 

ii=0.099; 

jj=-0.133; 

kk=0.311; 

ll=-0.175; 

 } 

else 

{ 

aa=1.57; 

bb=1.20; 

cc=-0.9; 

dd=0.40; 

ee=-0.16; 

ff=-0.13; 

gg=0.11; 

hh=-0.33; 

ii=0.219; 

jj=-0.27; 

kk=-0.24; 

ll=0.24; 

} 

load[j] = 

((aa+(bb*tempe[j])+(cc*tempe3[j])+(dd*tempe4[j])+(ee*tempe5[j])+(ff*tempe6[j]

)+(gg*tempe7[j])+(hh*tempe8[j])+(ii*tempe9[j])+(jj*tempe10[j])+(kk*tempe11[j]

)+(ll*tempe12[j]))*1000); 

  load1=(0.87*1000); 

  load2=(0.62*1000); 

  load3=(0.47*1000); 

TOUsum=(TOU[0]+TOU[1]+TOU[2]+TOU[3]+TOU[4]+TOU[5]+TOU[6]+TOU[7]+TOU[8]+TOU[9]

+TOU[10]+TOU[11]+TOU[12]+TOU[13]+TOU[14]+TOU[15]+TOU[16]+TOU[17]+TOU[18]+TOU[

19]+TOU[20]+TOU[21]+TOU[22]+TOU[23]); 

TOUavg=(TOUsum/24); 

  if (TOU[j]<TOUavg) 

  { 

   load1_status[j]='1'; 

   load2_status[j]='1'; 

   load3_status[j]='1'; 

  } 

  else 

  { 

  if (PV_Output[j] > load[j])  //if (PV_output[j] > load[j]) 

  { 

   load1_status[j]='1'; 

      load2_status[j]='1'; 

      load3_status[j]='1'; 

  } 

  else if (PV_Output[j]>load1+load2+load3) 

  { load1_status[j]='1'; 

          load2_status[j]='1'; 

          load3_status[j]='1';} 

  else if (PV_Output[j]>load1+load2) 

  { load1_status[j]='1'; 

          load2_status[j]='1'; 
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          load3_status[j]='0';} 

          else if (PV_Output[j]>load1+load3) 

          { load1_status[j]='1'; 

          load2_status[j]='0'; 

          load3_status[j]='1';} 

          else if (PV_Output[j]>load3+load2) 

          { load1_status[j]='0'; 

          load2_status[j]='1'; 

          load3_status[j]='1';} 

      else if (PV_Output[j]>load1) 

      {load1_status[j]='1'; 

      load2_status[j]='0'; 

      load3_status[j]='0';} 

      else if (PV_Output[j]>load2) 

      {load1_status[j]='0'; 

      load2_status[j]='1'; 

      load3_status[j]='0';} 

      else if (PV_Output[j]>load3) 

      {load1_status[j]='0'; 

      load2_status[j]='0'; 

      load3_status[j]='1';} 

      else 

      { load1_status[j]='0'; 

          load2_status[j]='0'; 

          load3_status[j]='0';} 

 } 

  } 

        } 

} 


	Design of System Level Control for a Residential Power Router
	Citation

	Microsoft Word - Fahad Hossain Thesis 4th December

