

 49

Figure 23: High-Level Design Dataflow Diagram

 50

3.2 Software Implementation

The Software Implementation was coded in C++ using the OpenCV library for reasons

explained previously in section 2.1.8. Another reason for choosing OpenCV is its portability to

the RazorCam platform, for rapid prototyping, as well as it’s relative user-friendliness. The

implementation follows an approach for Structure from Motion using sequential Monocular

Camera frames for input, as outlined in [11] and [12].

The first step is to read two consecutive frames from the monocular camera device. This

was simple; utilizing OpenCV’s powerful support for webcams it was as easy as plugging in the

device and activating it with the VideoCapture object. After two consecutive frames have been

read from the camera, Keypoints are detected for each frame. In this step, either SIFT, SURF,

BRISK, or any other Keypoint Detection algorithm can be utilized. BRISK is what was chosen

for the final implementation, for reasons outlined in section 2.1.9.1. SIFT and SURF are also

viable options so were studied for the Results in section 4.2. Keypoint Detection, seen in part (B)

of the diagram in (Figure 23), can be performed in parallel for each frame, increasing overall

performance of the Approach. Once Keypoints have been obtained, the Keypoint Descriptors

may be calculated using either SIFT, SURF, BRIEF, or Optical Flow descriptors. This step, seen

in part (B) of the diagram in (Figure 23), may also be performed in parallel for each keypoint

detected in each frame to increase performance. The Keypoint Descriptors are then used to

match Keypoints between each frame; this can be done using either brute-force matching or

cross-check matching as explained in section 2.1.9.3. Once these matches are found, the best

matches can be filtered later, if desired, to obtain stronger results.

Now that a set of optimal matched Keypoints between two consecutive frames has been

obtained, the next step is to find the camera matrices P and P1. These matrices essentially allow

 51

the programmer to know the orientation of the camera in each individual frame, which is needed

for Triangulation. To obtain P and P1, the Fundamental Matrix must be calculated. This is

conveniently implemented in OpenCV with the findFundamentalMat function, which takes as

input each set of matched Keypoints. Once the Fundamental Matrix has been found, the Essential

Matrix can be calculated allowing P and P1 to be found as per the method outlined by Hartley

and Zisserman [12].

At this point, a set of optimal matched Keypoints has been obtained, as well as the

camera matrices P and P1. Since we have calibrated the camera beforehand to obtain K, as seen

in part (C) of (Figure 23), everything is now known that is needed for triangulation. Using the

Linear Triangulation method discussed in Section 2.1.14, a Z-coordinate is calculated for each

set of matching Keypoints. The (x,y) coordinates, in this approach, are taken to be that of the

second input frame for the final output. Now that this depth information has been calculated, for

the software implementation, a simple Depth-Map can be viewed in real-time. A screenshot of

the output can be seen in (Figure 24) below, where each individual dot represents a triangulated

three-dimensional point. This information could now be used to implement a UAV Navigation

system based off of depth information calculated from the Monocular camera and OpenCV. The

performance and accuracy of this method will be discussed in-depth in the Results section 4.3.

 52

Figure 24: Software Implementation 3D Point Cloud Output using SURF Keypoints

 53

3.3 Software Development Process

The software development process of the algorithm described in section 3.2 began by

first selecting a method for 3D reconstruction. This process consisted of researching various

methods and their application to an embedded system for use on UAVs; the conclusion was

reached in section 2 that a monocular camera based system should be utilized due to the SWAP

constraints imposed on small quad-rotor based UAVs. Once this design decision was made, the

next step was to decide on an algorithm for calculating the 3D depth information needed for 3D

reconstruction from 2D images taken using the monocular sensor. From the available methods,

some of which were briefly discussed in section 2.2.2, structure from motion (SfM) was chosen

to perform the task. Since OpenCV was chosen from the beginning as the implementation

language, SfM was perfect because [11] ensured the method was implementable using

exclusively OpenCV while [12] ensured the math behind it was sound and provable. The method

also utilized sequential images taken using a monocular camera – so it was completely

compatible with the design decisions made so far.

Once structure from motion was chosen as the method for 3D depth information

calculation, work began on actually implementing this method in software using OpenCV.

Following the basic dataflow for SfM, presented in section 2.1.12 (Figure 17), the first step was

to detect, describe, and match keypoints in two sequential image frames taken from the

monocular camera sensor. First, the frames had to be obtained; this was as simple as using the

VideoCapture object built into OpenCV. Once two sequential frames are obtained from the

camera, Keypoints are detected using the algorithm of choice; the three specific

descriptor/detectors studied are discussed in section 2.1.9. The keypoint descriptors for each

frame’s set of keypoints are calculated next. These two steps are as easy as using detect and

 54

describe functions built into each detectors OpenCV implementation and can be performed in

parallel for each frame. At this point, two sets of described keypoints have been obtained, each

corresponding to one image frame; now, they must be matched. This is done using the

BFMatcher object built into OpenCV; when matching between SIFT or SURF keypoints the

hamming distance BFMatcher function must be used, but with BRISK normal brute force

matching is fine. The matches can now optionally be filtered based on a certain matching

threshold; this value can be adjusted within the BFMatcher object instantiation.

After a set of optimally matched keypoints was obtained, development began on the next

step of SfM: calculation of the fundamental and essential matrices. This was done using the

FindFundamentalMat function built into OpenCV, which simply outputs a Mat object containing

F, calculated using the matched Keypoints obtained in the previous step. The math behind

obtaining F is described in [12] and section 2.1.13.1; E can be obtained directly from F and is

done so based on math described in section 2.1.13.2 and [12]. After E is derived from F, the

camera matrices P and P1 must be derived from E; the math for this is described in 2.1.13.2 and

a full proof can be seen in [12]. Since this functionality was not implemented already in OpenCV

it had to be coded by hand, based on examples found in [11]. Verification of the results of this

function is admittedly difficult – it is almost impossible to know what the actual values of P and

P1 technically “should” be; at this point the math was starting to get a little overwhelming but it

was time to press forward into the next step: coding triangulation.

The triangulation function built into OpenCV utilizes simple ray intersection, which [12]

stated was almost completely unreliable, so a function had to be hand-coded for this step. After

studying different triangulation methods laid out in [12], I chose to implement linear

triangulation because [11] stated it was possible to accomplish within the OpenCV framework

 55

even though it was not a standard function. The linear triangulation function essentially consists

of constructing one matrix and one vector (corresponding to the inhomogeneous system of

equations that must be solved by least squares method). Once these two structures are created,

using data from P and P1 and the keypoint matches obtained in a previous step, they are solved

using the Solve function built into the C Math library. This triangulation is performed for every

matched keypoint pair obtained in the first step; the output is a set of 3D points of the form

(x,y,z). This set of 3D points can be visualized in a variety of ways; a 3D point cloud was chosen

to display the output within the OpenCV framework and was the final step in development

before testing and analysis began. This was accomplished in code by simply drawing each

triangulated 3D point onto the second frame used in calculation.

3.4 Software Porting to RazorCam

To emulate a production embedded system that could potentially fly on-board a UAV, the

RazorCam platform was chosen to prototype the implementation outlined in section 3.2. Since

the RazorCam system was designed for OpenCV portability, it made sense to utilize this for a

rapid prototype. Once the OpenCV Software Implementation code was ported to the RazorCam,

a few minor changes had to be made to the code. Function calls were added to account for the

fact that frames, seen in (A) of (Figure 23), would be pulled from the RazorCam FPGA DRAM

now instead of the PC webcam the software implementation utilized. Once the right code was

added, everything ran but did not perform fast enough for use in a real-time system. It was

obvious that some type of hardware/software partitioning was going to be necessary to increase

the performance of the system, but this was out of the scope of this Thesis objective so was not

pursued. The candidates for hardware partitioning have been found, however, through software

profiling that will be discussed next.

 56

Software profiling of the code was performed using Zoom profiling software, the output

of which can be seen in (Figure 25). After a minute of profiling a continuous loop of the software

implementation, it was reported that the SURFInvoker function was called 46.3% of the time,

cv::calcLayerDetandTrace was called 21.5% of the time, ResizeAreaInvoker was called 14.1%,

and everything else registered at less than 0.1%! Profiling revealed that the steps using the most

execution time was obviously Keypoint detection and description (in the case of this specific

profile, SURF was used), seen in (B) of (Figure 23) since all three of these functions serve part

of that purpose. So, these functions are the ‘critical sections,’ prime candidates for a hardware

acceleration module for the RazorCam system.

Though a properly functioning Keypoint detection acceleration module has not been

implemented, a proposed modification to the RazorCam FPGA internal architecture and dataflow

can be viewed in (Figure 26). First, images are acquired by the image sensor, and then sent to the

bus (after any optional convolutions, such as grayscale conversion) where they are stored in

DRAM. After two successive image frames have been stored to memory, the acceleration

module (K) in (Figure 26) can begin detecting the Keypoints in each frame as well as descriptors

for each that are then stored in DRAM. Once Keypoint descriptors are detected, matching is

performed in the ARM processor, the results of which are stored. Now that keypoint matches

have been found, the camera matrices must be calculated; all this info is finally stored in DRAM.

Finally the ARM processor can perform triangulation by accessing the stored matches and

camera matrices from DRAM, storing the final results back in memory. The triangulation results

are then grabbed by the ARM processor, written to the last frame grabbed by the camera sensor,

output to the bus and then finally the TFT display for viewing.

 57

Figure 25: Software Implementation Profiling Results (using SURF Keypoints)

Figure 26: Proposed RazorCam Internal FPGA Architecture for Accelerated Keypoint

Detection based on [36]

 58

4. RESULTS AND ANALYSIS

4.1 Methodology

For testing, the software implementation was first evaluated on an Intel 4770K CPU

running Ubuntu Linux 12.04 then ported to the RazorCam Embedded Smart Camera running on

the Xilinx Zynq-7000’s onboard ARM CPU. Each specific platform was tested using every

chosen keypoint detection and description algorithm individually: SIFT, SURF, and BRISK. The

results of the testing can be seen in the table below in section 4.2 and are analyzed in 4.3.

To test the performance of the software implementation, the total execution time of a

single iteration of the algorithm was collected twenty five times then the average of that sample

reported as the performance time. To test the accuracy of the software, various depth

measurements between the sensor and a simple object were taken, averaged, and compared to the

actual measured distance. These depth measurements were also taken with varying lengths of

space (moving left in respect to the object being measured) between frames to test whether or not

the disparity between camera matrices would have any effect on the accuracy. The accuracy

measurements were all taken using SURF keypoints, since they proved to be the best performers

in the first round of evaluations, on the same PC hardware running Intel 4770K CPU.

4.2 Results

The results of performance evaluation of the software implementation can be seen in

(Figure 27) below and results of accuracy evaluations can be viewed in (Figure 28). In (Figure

27), the table displays the execution time, in seconds, for a single iteration of the algorithm when

tested with different keypoint detector/descriptors on each platform (PC and RazorCam). The

 59

table in (Figure 28) reports the distance calculated by the software to a simple object placed in

front of the sensor at certain pre-measured lengths.

Hardware/CPU Used in Testing Keypoints Used for Calculation
 SIFT SURF BRISK

PC - Intel 4770K 0.261 sec 0.225 sec 0.301 sec
RazorCam – ARM Cortex-A9 4.6 sec 4.4 sec 5.2 sec

Figure 27: Software Performance Evaluation Results (in Seconds)

Real Distance Between Disparity Between Frames

Object and Camera Sensor 0 m 0.05 m 0.1 m 0.15 m 0.25 m 0.3 m

0.10 m 0.357 0.345 0.332 0.327 0.321 0.338

0.20 m 0.685 0.676 0.668 0.659 0.654 0.623

0.33 m 1.170 1.122 1.080 1.031 0.992 0.924

0.50 m 1.532 1.455 1.420 1.377 1.286 1.267

0.75 m 2.080 2.012 1.936 1.877 1.754 1.721

1.00 m 2.591 2.534 2.476 2.421 2.335 2.277

2.50 m 7.082 7.035 6.987 6.953 6.895 6.879

5.00 m 12.070 12.044 12.012 11.987 11.910 11.882
10.0 m 21.074 21.055 21.037 21.022 20.990 20.966
15.0 m 34.534 34.511 34.497 34.472 34.438 34.425

Figure 28: Software Accuracy Evaluation Results (in Meters)

4.3 Analysis

The performance results show that it is possible to implement a 3D reconstruction

algorithm using OpenCV on a desktop system with a general purpose CPU as well as an

embedded system on chip using an ARM CPU. The software implementation running on a

general purpose CPU (Intel 4770K) works great in real time. The problem here is, this computer

cannot be attached to the UAV with SWAP constraints. That is why it is important to port this

 60

code to the RazorCam, because that is a computer that could actually fit on the UAV However,

the performance results are dismal for this method running on the RazorCam; not even close to

real-time performance. Both of these implementations are okay for proof-of-concept, but for a

real-life system on chip it would be optimal for the algorithm to perform in real-time without so

much delay in execution time.

If a hardware accelerator for keypoint detection could be fully implemented, based on the

software profiling discussed in section 3.4, the software implementation could potentially run in

real-time on the RazorCam system on chip, making it a viable solution for the backbone of a 3D

reconstruction system. At the very least, these results demonstrate the proof-of-concept and that

a rapid prototype can be deployed using OpenCV and the RazorCam. Although the system is not

fully accelerated yet, continued research can be done to pursue a hardware acceleration module

for the keypoint detection and description functions.

The accuracy results show that this may not be the most optimal method for 3D

reconstruction. Although increasing the disparity between frames and increasing the distance the

object is away from the sensor both slightly improve the accuracy, the percentage of error is still

quite high either way. Increasing the disparity between frames improves the results because it

allows for a more accurate calculation of F and therefore E, P, and P1 (similar to stereo vision

methods that require a certain disparity between the camera sensors to function properly).

Increasing the distance between the object and sensor increases the accuracy to a point, but will

eventually decrease the accuracy as it passes a certain threshold (obviously, as the object would

be less and less visible as it moved away). This also has to do with the specific camera lens being

used, as the exact field of view and intrinsic parameters vary from camera to camera. Upon going

back through the algorithm to find possible accuracy problems caused by bad data or

 61

miscalculation, no problems could be found within any of the operations. The only doubts I have

about the actual implementation lie within the Triangulation function. It is stated in [12] that

linear triangulation is not their preferred method; another method coined ‘optimal triangulation’

is presented in [12] that is much more complex and is not easily implementable within the

OpenCV framework. Implementing this method in future work has a good possibility of fixing

these accuracy problems and bringing the percent error down to an acceptable value for a real-

time system. The results demonstrate the proof-of-concept, though, and that a 3D reconstruction

algorithm can be developed in OpenCV and ported to an embedded system on chip for potential

real-time use.

 62

5. CONCLUSIONS

5.1 Summary

In this Thesis, a method was presented to calculate depth information from keypoints in

two consecutive image frames using a monocular camera sensor as input and the OpenCV library

for implementation. This method was first implemented in software and run on a general-purpose

CPU, and then ported to the RazorCam Embedded Smart-Camera System and run on an ARM

CPU. After profiling was performed on the software implementation, critical sections of the

algorithm were identified for potential hardware acceleration and a proposed hardware

partitioning for the RazorCam Embedded Smart Camera system on chip was presented. The

results of performance and accuracy testing of the software implementation were not promising,

however, demonstrating slow speed in pure software on the RazorCam and an unacceptable

percentage of error.

5.2 Potential Impact

The potential impacts of this work will be seen through the continuation of this work in

the Smart ES lab at University of Arkansas. This method provides the basic depth information

which would be the backbone of a UAV navigation system, as well as a way to obtain it in real-

time on a small, low-power embedded system. Building upon this work, many potential impacts

could be realized beyond just UAV navigation; this technology could easily be applied to other

vehicles such as cars, trains, or boats. This technology is much easier to integrate into existing

products than other solutions, such as LiDAR, which must have a 360-degree view around the

vehicle, is bulky, and requires very high power. If pursued further, the work presented here could

 63

potentially be commercialized in a few years time with enough manpower and investment; the

field of UAV is exploding with increasing use being seen in the civilian sector.

5.3 Future Work

This thesis provides the basic framework to begin creating a UAV navigation system.

Basic depth information is calculated using a Monocular Camera in real-time, but the

information is very basic. In future work, this depth information’s accuracy could be improved

by potentially using a better triangulation algorithm. The work presented here could also be

improved by further hardware/software partitioning of the algorithm; perhaps hardware

acceleration of Keypoint Detection or Descriptor calculation is realizable. Any future work

would essentially center on improving the accuracy and performance of the approach outlined in

this thesis, as well as developing it into a more full-fledged navigation system besides just

providing basic depth information for certain points.

 64

REFERENCES

[1] C. Harris and M. Stephens. "A Combined Corner and Edge Detector."Alvey Vision
Conference. 15 (1988).

[2] D. Lowe. "Distinctive Image Features from Scale-Invariant Keypoints." International
Journal of Computer Vision 60, no. 2 (2004): 91-110.

 [3] S. Leutenegger, M. Chli, and R. Y. Siegwart. "BRISK: Binary Robust Invariant Scalable
Keypoints." Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011.

[4] I. Barandiaran, M. Graña, and M. Nieto. "An Empirical Evaluation of Interest Point
Detectors." Cybernetics and Systems 44.2-3 (2013): pp. 98-117.

[5] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. "Speeded-Up Robust Features
(SURF)." Computer Vision and Image Understanding 110, no. 3 (2008): 346-359.

 [6] M. Trajković and M. Hedley. "Fast Corner Detection." Image and Vision
Computing, 16.2 (1998): pp. 75-87.

[7] J. Matas et al. "Robust Wide-Baseline Stereo from Maximally Stable Extremal
Regions." Image and vision computing 22.10 (2004), pp. 761-767.

[8] M. Agrawal, K. Konolige, and M. R. Blas. "Censure: Center surround extremas for
realtime feature detection and matching." Computer Vision–ECCV 2008. Springer Berlin
Heidelberg, 2008, pp. 102-115.

[9] E. Rublee et al. "ORB: an efficient alternative to SIFT or SURF." Computer Vision
(ICCV), 2011 IEEE International Conference on. IEEE, 2011.

 [10] P. F. Alcantarilla, A. Bartoli, and A. J. Davison. "KAZE Features." Computer Vision–
ECCV 2012. Springer Berlin Heidelberg, 2012, pp. 214-227.

[11] D.L. Baggio et al. “Exploring Structure from Motion Using OpenCV,” in Mastering
OpenCV with Practical Computer Vision Projects. Birmingham, UK: Packt Publishing Ltd,
2012, ch. 4.

[12] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2003.

 65

[13] D. Yoo, D. Won, and M. Tahk. "Optical Flow Based Collision Avoidance of Multi-Rotor
UAVs in Urban Environments." International Journal of Aeronautical and Space Sciences 12,
no. 3 (2011): pp. 252-259.

[14] D. Howden and T. Hendtlass. "Collective Intelligence and Bush Fire Spotting."
In Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 41-
48. ACM, 2008.

[15] H. Bendea, et al. "Mapping of Archaeological Areas Using a Low-Cost UAV. The
Augusta Bagiennorum Test Site." In XXI International CIPA Symposium, pp. 01-06. 2007.

[16] A. Samad et al. "The Potential of Unmanned Aerial Vehicle (UAV) for Civilian and
Mapping Application." In System Engineering and Technology (ICSET), 2013 IEEE 3rd
International Conference, pp. 313-318.

[17] F. Caballero et al. "A Visual Odometer Without 3D Reconstruction for Aerial Vehicles.
Applications to Building Inspection." In Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference, pp. 4673-4678.

[18] N. Metni and T. Hamel. "A UAV for Bridge Inspection: Visual Servoing Control Law
with Orientation Limits." Automation in Construction 17, no. 1 (2007): pp. 3-10.

[19] L. Zhengrong et al. "Knowledge-Based Power Line Detection for UAV Surveillance and
Inspection Systems." In Image and Vision Computing New Zealand, 2008. IVCNZ 2008. 23rd
International Conference, pp. 1-6. IEEE, 2008.

[20] D. Hausamann et al. "Monitoring of Gas Pipelines–a Civil UAV Application." Aircraft
Engineering and Aerospace Technology 77, no. 5 (2005): pp. 352-360.

[21] P. Doherty and P. Rudol. "A UAV Search and Rescue Scenario with Human Body
Detection and Geolocalization." In AI 2007: Advances in Artificial Intelligence, pp. 1-13.
Springer Berlin Heidelberg, 2007.

[22] T. Tomic et al. "Toward a Fully Autonomous UAV: Research Platform for Indoor and
Outdoor Urban Search and Rescue." Robotics & Automation Magazine, IEEE 19, no. 3 (2012):
pp. 46-56.

[23] A. Puri. "A Survey of Unmanned Aerial Vehicles (UAV) for Traffic
Surveillance." Department of Computer Science and Engineering, University of South
Florida, 2005.

 66

[24] A. Puri, K. P. Valavanis, and M. Kontitsis. "Statistical Profile Generation for Traffic
Monitoring Using Real-Time UAV Based Video Data." In Control & Automation, 2007.
MED'07. Mediterranean Conference on, pp. 1-6. IEEE, 2007.

[25] L. Li et al. "Multi-Objective Optimization Model And Evolutionary Algorithm To Plan
UAV Cruise Route For Road Traffic Surveillance." In Transportation Research Board 92nd
Annual Meeting, no. 13-0735. 2013.

[26] L. Wallace et al. "Development of a UAV-LiDAR System with Application to Forest
Inventory."Remote Sensing vol. 4, no. 6 (2012): pp. 1519-1543.

[27] Y. Lin, J. Hyyppa, and A. Jaakkola. "Mini-UAV-Borne LiDAR for Fine-Scale
Mapping." Geoscience and Remote Sensing Letters, IEEE 8, no. 3 (2011): pp. 426-430.

[28] J. Park and Y. Kim. "3D Shape Mapping of Obstacle Using Stereo Vision Sensor on
Quadrotor UAV." AIAA Guidance, Navigation, and Control Conference, January 2014. Seoul
National University, 2014.

[29] K. Schmid et al. "Stereo Vision Based Indoor/Outdoor Navigation for Flying Robots."
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp.
3955-3962. IEEE, 2013.

[30] D. Magree, J. G. Mooney, and E. N. Johnson. "Monocular Visual Mapping for Obstacle
Avoidance on UAVs." Journal of Intelligent & Robotic Systems 74, no. 1-2 (2014): pp. 17-26.

[31] T. Mori and S. Scherer. "First Results in Detecting and Avoiding Frontal Obstacles from
a Monocular Camera for Micro Unmanned Aerial Vehicles." In Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pp. 1750-1757. IEEE, 2013.

[32] J. Lee et al. "Obstacle Avoidance for Small UAVs Using Monocular Vision.” Aircraft
Engineering and Aerospace Technology 83, no. 6 (2011): pp. 397-406.

[33] M. Brown, R. Szeliski, and S. Winder. "Multi-Image Matching Using Multi-Scale
Oriented Patches." In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 1, pp. 510-517. IEEE, 2005.

[34] H. Yu and R. Beard. "A Vision-Based Collision Avoidance Technique for Micro Air
Vehicles Using Local-Level Frame Mapping and Path Planning."Autonomous Robots vol. 34, no.
1-2 (2013): pp. 93-109.

[35] M. Mefenza, F. Yonga, and C. Bobda. “Razorcam: An Embedded Platform for Image
Processing.” ASEE Midwest Conference, 2013.

 67

[36] M. Mefenza, F. Yonga, and C. Bobda. “RazorCam: A Prototyping Environment for
Video Communication,” ACM HotMobile 2013 Poster. SIGMOBILE Mobile Computing
Commun. Rev., 17(3): pp. 13–14, November 2013.

[37] M. Mefenza. “Design and Verification Environment for High-Performance and Secure
Video-Based Embedded Systems.” Smart Embedded Systems Laboratory, Computer Science
and Computer Engineering Department, University of Arkansas, December 2013.

[38] B. Rinner et al. "The Evolution from Single to Pervasive Smart Cameras." In Distributed
Smart Cameras, 2008. ICDSC 2008. Second ACM/IEEE International Conference on, pp. 1-10.
IEEE, 2008.

[39] J. Schlessman et al. "Hardware/Software Co-Design of an FPGA-Based Embedded
Tracking System." In Computer Vision and Pattern Recognition Workshop, 2006. CVPRW'06.
Conference on, pp. 123-123. IEEE, 2006.

[40] M. Bramberger et al. "Real-Time Video Analysis on an Embedded Smart Camera for
Traffic Surveillance." In Real-Time and Embedded Technology and Applications Symposium,
2004. Proceedings. RTAS 2004. 10th IEEE, pp. 174-181. IEEE, 2004.

[41] F. Dias et al. "Hardware, Design and Implementation Issues on a FPGA-Based Smart
Camera." In Distributed Smart Cameras, 2007. ICDSC'07. First ACM/IEEE International
Conference on, pp. 20-26. IEEE, 2007.

[42] H. C. Longuet-Higgins. "The Reconstruction of a Plane Surface from Two Perspective
Projections." Proceedings of the Royal Society of London. Series B. Biological Sciences 227, no.
1249 (1986): 399-410.

[43] Q. T. Luong and O. D. Faugeras. "The Fundamental Matrix: Theory, Algorithms, and
Stability Analysis." International Journal of Computer Vision 17, no. 1 (1996): 43-75.

[44] Z. Zhang and G. Xu. "A General Expression of the Fundamental Matrix for Both
Perspective and Affine Cameras." In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence-Volume 2, pp. 1502-1507. Morgan Kaufmann Publishers Inc., 1997.

[45] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O'Reilly Media, Inc., 2008.

[46] C Bobda. RazorCopter. Digital Photograph. Used with Permission <smartes.uark.edu>

[47] R. Best. MQ-9 Returns from Winter Training Mission. March 6, 2012. Digital
Photograph. United States Air Force, Public Domain.
<http://www.hancockfield.ang.af.mil/photos/mediagallery.asp?galleryID=5774&page=1>

 68

[48] T. Tschida. NASA Altair Predator B with Payloads for NOAA-NASA Flight
Demonstration. April 20, 2005. Photograph. National Aeronautics and Space Administration,
Public Domain. <http://www.dfrc.nasa.gov/Gallery/Photo/Altair_PredatorB/HTML/EC05-0090-
19.html>

[49] AeroVironment, Inc. Nano Hummingbird. 2011. Digital Photograph. Used Under Non-
Commercial License Courtesy of AeroVironment, Inc. < http://www.avinc.com/media_gallery/>

