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Figure 23:  High-Level Design Dataflow Diagram 
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3.2  Software Implementation 

The Software Implementation was coded in C++ using the OpenCV library for reasons 

explained previously in section 2.1.8. Another reason for choosing OpenCV is its portability to 

the RazorCam platform, for rapid prototyping, as well as it’s relative user-friendliness. The 

implementation follows an approach for Structure from Motion using sequential Monocular 

Camera frames for input, as outlined in [11] and [12].  

The first step is to read two consecutive frames from the monocular camera device. This 

was simple; utilizing OpenCV’s powerful support for webcams it was as easy as plugging in the 

device and activating it with the VideoCapture object. After two consecutive frames have been 

read from the camera, Keypoints are detected for each frame. In this step, either SIFT, SURF, 

BRISK, or any other Keypoint Detection algorithm can be utilized. BRISK is what was chosen 

for the final implementation, for reasons outlined in section 2.1.9.1. SIFT and SURF are also 

viable options so were studied for the Results in section 4.2. Keypoint Detection, seen in part (B) 

of the diagram in (Figure 23), can be performed in parallel for each frame, increasing overall 

performance of the Approach. Once Keypoints have been obtained, the Keypoint Descriptors 

may be calculated using either SIFT, SURF, BRIEF, or Optical Flow descriptors. This step, seen 

in part (B) of the diagram in (Figure 23), may also be performed in parallel for each keypoint 

detected in each frame to increase performance. The Keypoint Descriptors are then used to 

match Keypoints between each frame; this can be done using either brute-force matching or 

cross-check matching as explained in section 2.1.9.3. Once these matches are found, the best 

matches can be filtered later, if desired, to obtain stronger results.  

Now that a set of optimal matched Keypoints between two consecutive frames has been 

obtained, the next step is to find the camera matrices P and P1. These matrices essentially allow 
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the programmer to know the orientation of the camera in each individual frame, which is needed 

for Triangulation. To obtain P and P1, the Fundamental Matrix must be calculated. This is 

conveniently implemented in OpenCV with the findFundamentalMat function, which takes as 

input each set of matched Keypoints. Once the Fundamental Matrix has been found, the Essential 

Matrix can be calculated allowing P and P1 to be found as per the method outlined by Hartley 

and Zisserman [12].  

At this point, a set of optimal matched Keypoints has been obtained, as well as the 

camera matrices P and P1. Since we have calibrated the camera beforehand to obtain K, as seen 

in part (C) of (Figure 23), everything is now known that is needed for triangulation. Using the 

Linear Triangulation method discussed in Section 2.1.14, a Z-coordinate is calculated for each 

set of matching Keypoints. The (x,y) coordinates, in this approach, are taken to be that of the 

second input frame for the final output. Now that this depth information has been calculated, for 

the software implementation, a simple Depth-Map can be viewed in real-time. A screenshot of 

the output can be seen in (Figure 24) below, where each individual dot represents a triangulated 

three-dimensional point. This information could now be used to implement a UAV Navigation 

system based off of depth information calculated from the Monocular camera and OpenCV. The 

performance and accuracy of this method will be discussed in-depth in the Results section 4.3. 
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Figure 24:  Software Implementation 3D Point Cloud Output using SURF Keypoints 
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3.3  Software Development Process  

The software development process of the algorithm described in section 3.2 began by 

first selecting a method for 3D reconstruction. This process consisted of researching various 

methods and their application to an embedded system for use on UAVs; the conclusion was 

reached in section 2 that a monocular camera based system should be utilized due to the SWAP 

constraints imposed on small quad-rotor based UAVs. Once this design decision was made, the 

next step was to decide on an algorithm for calculating the 3D depth information needed for 3D 

reconstruction from 2D images taken using the monocular sensor. From the available methods, 

some of which were briefly discussed in section 2.2.2, structure from motion (SfM) was chosen 

to perform the task. Since OpenCV was chosen from the beginning as the implementation 

language, SfM was perfect because [11] ensured the method was implementable using 

exclusively OpenCV while [12] ensured the math behind it was sound and provable. The method 

also utilized sequential images taken using a monocular camera – so it was completely 

compatible with the design decisions made so far. 

Once structure from motion was chosen as the method for 3D depth information 

calculation, work began on actually implementing this method in software using OpenCV. 

Following the basic dataflow for SfM, presented in section 2.1.12 (Figure 17), the first step was 

to detect, describe, and match keypoints in two sequential image frames taken from the 

monocular camera sensor. First, the frames had to be obtained; this was as simple as using the 

VideoCapture object built into OpenCV. Once two sequential frames are obtained from the 

camera, Keypoints are detected using the algorithm of choice; the three specific 

descriptor/detectors studied are discussed in section 2.1.9. The keypoint descriptors for each 

frame’s set of keypoints are calculated next. These two steps are as easy as using detect and 
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describe functions built into each detectors OpenCV implementation and can be performed in 

parallel for each frame. At this point, two sets of described keypoints have been obtained, each 

corresponding to one image frame; now, they must be matched. This is done using the 

BFMatcher object built into OpenCV; when matching between SIFT or SURF keypoints the 

hamming distance BFMatcher function must be used, but with BRISK normal brute force 

matching is fine. The matches can now optionally be filtered based on a certain matching 

threshold; this value can be adjusted within the BFMatcher object instantiation. 

After a set of optimally matched keypoints was obtained, development began on the next 

step of SfM: calculation of the fundamental and essential matrices. This was done using the 

FindFundamentalMat function built into OpenCV, which simply outputs a Mat object containing 

F, calculated using the matched Keypoints obtained in the previous step. The math behind 

obtaining F is described in [12] and section 2.1.13.1; E can be obtained directly from F and is 

done so based on math described in section 2.1.13.2 and [12]. After E is derived from F, the 

camera matrices P and P1 must be derived from E; the math for this is described in 2.1.13.2 and 

a full proof can be seen in [12]. Since this functionality was not implemented already in OpenCV 

it had to be coded by hand, based on examples found in [11]. Verification of the results of this 

function is admittedly difficult – it is almost impossible to know what the actual values of P and 

P1 technically “should” be; at this point the math was starting to get a little overwhelming but it 

was time to press forward into the next step: coding triangulation.  

The triangulation function built into OpenCV utilizes simple ray intersection, which [12] 

stated was almost completely unreliable, so a function had to be hand-coded for this step. After 

studying different triangulation methods laid out in [12], I chose to implement linear 

triangulation because [11] stated it was possible to accomplish within the OpenCV framework 
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even though it was not a standard function. The linear triangulation function essentially consists 

of constructing one matrix and one vector (corresponding to the inhomogeneous system of 

equations that must be solved by least squares method). Once these two structures are created, 

using data from P and P1 and the keypoint matches obtained in a previous step, they are solved 

using the Solve function built into the C Math library. This triangulation is performed for every 

matched keypoint pair obtained in the first step; the output is a set of 3D points of the form 

(x,y,z). This set of 3D points can be visualized in a variety of ways; a 3D point cloud was chosen 

to display the output within the OpenCV framework and was the final step in development 

before testing and analysis began. This was accomplished in code by simply drawing each 

triangulated 3D point onto the second frame used in calculation.  

3.4  Software Porting to RazorCam   

To emulate a production embedded system that could potentially fly on-board a UAV, the 

RazorCam platform was chosen to prototype the implementation outlined in section 3.2. Since 

the RazorCam system was designed for OpenCV portability, it made sense to utilize this for a 

rapid prototype. Once the OpenCV Software Implementation code was ported to the RazorCam, 

a few minor changes had to be made to the code. Function calls were added to account for the 

fact that frames, seen in (A) of (Figure 23), would be pulled from the RazorCam FPGA DRAM 

now instead of the PC webcam the software implementation utilized. Once the right code was 

added, everything ran but did not perform fast enough for use in a real-time system. It was 

obvious that some type of hardware/software partitioning was going to be necessary to increase 

the performance of the system, but this was out of the scope of this Thesis objective so was not 

pursued. The candidates for hardware partitioning have been found, however, through software 

profiling that will be discussed next.  
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Software profiling of the code was performed using Zoom profiling software, the output 

of which can be seen in (Figure 25). After a minute of profiling a continuous loop of the software 

implementation, it was reported that the SURFInvoker function was called 46.3% of the time, 

cv::calcLayerDetandTrace  was called 21.5% of the time, ResizeAreaInvoker was called 14.1%, 

and everything else registered at less than 0.1%! Profiling revealed that the steps using the most 

execution time was obviously Keypoint detection and description (in the case of this specific 

profile, SURF was used), seen in (B) of (Figure 23) since all three of these functions serve part 

of that purpose. So, these functions are the ‘critical sections,’ prime candidates for a hardware 

acceleration module for the RazorCam system.  

Though a properly functioning Keypoint detection acceleration module has not been 

implemented, a proposed modification to the RazorCam FPGA internal architecture and dataflow 

can be viewed in (Figure 26). First, images are acquired by the image sensor, and then sent to the 

bus (after any optional convolutions, such as grayscale conversion) where they are stored in 

DRAM. After two successive image frames have been stored to memory, the acceleration 

module (K) in (Figure 26) can begin detecting the Keypoints in each frame as well as descriptors 

for each that are then stored in DRAM. Once Keypoint descriptors are detected, matching is 

performed in the ARM processor, the results of which are stored. Now that keypoint matches 

have been found, the camera matrices must be calculated; all this info is finally stored in DRAM. 

Finally the ARM processor can perform triangulation by accessing the stored matches and 

camera matrices from DRAM, storing the final results back in memory. The triangulation results 

are then grabbed by the ARM processor, written to the last frame grabbed by the camera sensor, 

output to the bus and then finally the TFT display for viewing.  
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Figure 25:  Software Implementation Profiling Results (using SURF Keypoints) 

 
Figure 26:  Proposed RazorCam Internal FPGA Architecture for Accelerated Keypoint 

Detection based on [36] 
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4.  RESULTS AND ANALYSIS 

4.1  Methodology 

For testing, the software implementation was first evaluated on an Intel 4770K CPU 

running Ubuntu Linux 12.04 then ported to the RazorCam Embedded Smart Camera running on 

the Xilinx Zynq-7000’s onboard ARM CPU. Each specific platform was tested using every 

chosen keypoint detection and description algorithm individually: SIFT, SURF, and BRISK. The 

results of the testing can be seen in the table below in section 4.2 and are analyzed in 4.3.  

To test the performance of the software implementation, the total execution time of a 

single iteration of the algorithm was collected twenty five times then the average of that sample 

reported as the performance time. To test the accuracy of the software, various depth 

measurements between the sensor and a simple object were taken, averaged, and compared to the 

actual measured distance. These depth measurements were also taken with varying lengths of 

space (moving left in respect to the object being measured) between frames to test whether or not 

the disparity between camera matrices would have any effect on the accuracy. The accuracy 

measurements were all taken using SURF keypoints, since they proved to be the best performers 

in the first round of evaluations, on the same PC hardware running Intel 4770K CPU.  

4.2  Results 

The results of performance evaluation of the software implementation can be seen in 

(Figure 27) below and results of accuracy evaluations can be viewed in (Figure 28). In (Figure 

27), the table displays the execution time, in seconds, for a single iteration of the algorithm when 

tested with different keypoint detector/descriptors on each platform (PC and RazorCam). The 
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table in (Figure 28) reports the distance calculated by the software to a simple object placed in 

front of the sensor at certain pre-measured lengths. 

 

Hardware/CPU Used in Testing Keypoints Used for Calculation 
 SIFT SURF BRISK 

PC - Intel 4770K 0.261 sec 0.225 sec 0.301 sec 
RazorCam – ARM Cortex-A9 4.6 sec 4.4 sec 5.2 sec 

Figure 27: Software Performance Evaluation Results (in Seconds) 

 

Real Distance Between                            Disparity Between Frames   

Object and Camera Sensor 0 m 0.05 m 0.1 m 0.15 m 0.25 m 0.3 m 

0.10 m 0.357   0.345  0.332  0.327  0.321  0.338 

0.20 m 0.685   0.676  0.668  0.659  0.654  0.623 

0.33 m 1.170   1.122  1.080  1.031  0.992  0.924 

0.50 m 1.532   1.455  1.420  1.377  1.286  1.267 

0.75 m 2.080   2.012  1.936  1.877  1.754  1.721 

1.00 m 2.591   2.534  2.476  2.421  2.335  2.277 

2.50 m 7.082   7.035  6.987  6.953  6.895  6.879 

5.00 m 12.070   12.044  12.012  11.987  11.910  11.882 
10.0 m 21.074   21.055  21.037  21.022  20.990  20.966 
15.0 m 34.534   34.511  34.497  34.472 34.438   34.425 

Figure 28: Software Accuracy Evaluation Results (in Meters) 

4.3  Analysis 

The performance results show that it is possible to implement a 3D reconstruction 

algorithm using OpenCV on a desktop system with a general purpose CPU as well as an 

embedded system on chip using an ARM CPU. The software implementation running on a 

general purpose CPU (Intel 4770K) works great in real time. The problem here is, this computer 

cannot be attached to the UAV with SWAP constraints. That is why it is important to port this 



 

 60 

code to the RazorCam, because that is a computer that could actually fit on the UAV However, 

the performance results are dismal for this method running on the RazorCam; not even close to 

real-time performance. Both of these implementations are okay for proof-of-concept, but for a 

real-life system on chip it would be optimal for the algorithm to perform in real-time without so 

much delay in execution time. 

If a hardware accelerator for keypoint detection could be fully implemented, based on the 

software profiling discussed in section 3.4, the software implementation could potentially run in 

real-time on the RazorCam system on chip, making it a viable solution for the backbone of a 3D 

reconstruction system. At the very least, these results demonstrate the proof-of-concept and that 

a rapid prototype can be deployed using OpenCV and the RazorCam. Although the system is not 

fully accelerated yet, continued research can be done to pursue a hardware acceleration module 

for the keypoint detection and description functions.  

The accuracy results show that this may not be the most optimal method for 3D 

reconstruction. Although increasing the disparity between frames and increasing the distance the 

object is away from the sensor both slightly improve the accuracy, the percentage of error is still 

quite high either way. Increasing the disparity between frames improves the results because it 

allows for a more accurate calculation of F and therefore E, P, and P1 (similar to stereo vision 

methods that require a certain disparity between the camera sensors to function properly). 

Increasing the distance between the object and sensor increases the accuracy to a point, but will 

eventually decrease the accuracy as it passes a certain threshold (obviously, as the object would 

be less and less visible as it moved away). This also has to do with the specific camera lens being 

used, as the exact field of view and intrinsic parameters vary from camera to camera. Upon going 

back through the algorithm to find possible accuracy problems caused by bad data or 
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miscalculation, no problems could be found within any of the operations. The only doubts I have 

about the actual implementation lie within the Triangulation function. It is stated in [12] that 

linear triangulation is not their preferred method; another method coined ‘optimal triangulation’ 

is presented in [12] that is much more complex and is not easily implementable within the 

OpenCV framework. Implementing this method in future work has a good possibility of fixing 

these accuracy problems and bringing the percent error down to an acceptable value for a real-

time system. The results demonstrate the proof-of-concept, though, and that a 3D reconstruction 

algorithm can be developed in OpenCV and ported to an embedded system on chip for potential 

real-time use.  
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5.  CONCLUSIONS 

5.1  Summary 

In this Thesis, a method was presented to calculate depth information from keypoints in 

two consecutive image frames using a monocular camera sensor as input and the OpenCV library 

for implementation. This method was first implemented in software and run on a general-purpose 

CPU, and then ported to the RazorCam Embedded Smart-Camera System and run on an ARM 

CPU. After profiling was performed on the software implementation, critical sections of the 

algorithm were identified for potential hardware acceleration and a proposed hardware 

partitioning for the RazorCam Embedded Smart Camera system on chip was presented. The 

results of performance and accuracy testing of the software implementation were not promising, 

however, demonstrating slow speed in pure software on the RazorCam and an unacceptable 

percentage of error. 

5.2 Potential Impact 

The potential impacts of this work will be seen through the continuation of this work in 

the Smart ES lab at University of Arkansas. This method provides the basic depth information 

which would be the backbone of a UAV navigation system, as well as a way to obtain it in real-

time on a small, low-power embedded system. Building upon this work, many potential impacts 

could be realized beyond just UAV navigation; this technology could easily be applied to other 

vehicles such as cars, trains, or boats. This technology is much easier to integrate into existing 

products than other solutions, such as LiDAR, which must have a 360-degree view around the 

vehicle, is bulky, and requires very high power. If pursued further, the work presented here could 
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potentially be commercialized in a few years time with enough manpower and investment; the 

field of UAV is exploding with increasing use being seen in the civilian sector.   

5.3  Future Work 

This thesis provides the basic framework to begin creating a UAV navigation system. 

Basic depth information is calculated using a Monocular Camera in real-time, but the 

information is very basic. In future work, this depth information’s accuracy could be improved 

by potentially using a better triangulation algorithm. The work presented here could also be 

improved by further hardware/software partitioning of the algorithm; perhaps hardware 

acceleration of Keypoint Detection or Descriptor calculation is realizable. Any future work 

would essentially center on improving the accuracy and performance of the approach outlined in 

this thesis, as well as developing it into a more full-fledged navigation system besides just 

providing basic depth information for certain points.  
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