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Abstract 

A compacted clay liner (test pad) was constructed and instrumented with volumetric 

water content and soil matric potential sensors to determine soil water characteristic curves 

(SWCC) and hydraulic conductivity (k) functions. Specifically, the compacted clay liner was 

subjected to an infiltration cycle during a sealed double ring infiltrometer (SDRI) test followed 

by a drying cycle. After the drying cycle, Shelby tube samples were collected from the 

compacted clay liner and flexible wall permeability (FWP) tests were conducted on sub-samples 

to determine the saturated hydraulic conductivity. Moreover, two computer programs (RETC and 

UNSAT-H) were utilized to model the SWCCs and k-functions of the soil based on obtained 

measurements including the volumetric water content (v), the soil matric potential (), and the 

saturated hudraulic conductivity (ks).  

Results obtained from the RETC program (θs, θr, α, n and ks) were ingested into UNSAT-

H program to calculate the movement of water (rate and location) through the compacted clay 

liner. Although a linear wetting front (location of water infiltration as a function of time) is 

typically utilized for SDRI calculations, the use of a hyperbolic wetting front is recommended as 

a hyperbolic wetting front was modeled from the testing results. The suggested shape of the 

wetting front is associated with utilization of the desorption SWCC instead of the sorption 

SWCC and with relatively high values of ks (average value of 7.2E-7 cm/sec) were measured in 

the FWP tests while relatively low values of ks (average value of 1.2E-7 cm/sec) were measured 

in the SDRI test.  
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1. INTRODUCTION 

1.1. Background 

Soil water characteristic curves (SWCCs) are useful in determining the unsaturated 

properties of soils such as the hydraulic conductivity, shear strength, and coefficients of diffusion 

and adsorption (Fredlund and Rahardjo 1993, Fredlund and Xing 1994, and Fredlund et al. 

1996).  Historically, SWCCs have been obtained in the laboratory using laboratory equipment 

(Klute et al. 1986, Wang and Benson 2004, Mijares and Khire 2010, ASTM D 6836; Wayllace 

and Lu 2012), however, SWCCs have also been obtained in the laboratory using field testing 

equipment (Watson et al. 1975; Beese and van der Ploeg 1976; Tzimas 1979; Li et al. 2004, 

Ogorzalek et al. 2007).  The unsaturated soil properties that were obtained in the laboratory, 

using field-testing equipment, for a laboratory-scale compacted clay liner (3m wide by 3m long 

by 0.6m thick) are presented and discussed. Specifically, the compacted clay liner and the 

instrumentation utilized to collect the data are examined and the results obtained from laboratory 

and field hydraulic conductivity testing on the compacted clay liner soil are compared with 

results that were predicted by modeling the behavior of the compacted clay liner using the 

UNSAT-H program. 

1.2. Hypothesis  

The hypothesis for the proposed research is that unsaturated and saturated soil 

parameters including values of: hydraulic conductivity, volumetric water content, soil 

temperature and soil matric potential can be effectively measured or calculated using field-scale 

equipment. The hypothesis was evaluated by completing several tasks; each of the tasks will 1) 
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fulfill one objective and 2) be comprised of several activities.  The objectives for this research 

are itemized below.  

 To conduct conventional geotechnical tests in the laboratory to thoroughly characterize the 

soil that will be used in this research program. 

 To develop a full-scale testing procedure to determine the SWCC and k-function. 

 To assess the mechanisms of drying and wetting, with a particular emphasis on the 

interpretation of the full-scale field testing results and on the comparison of the results 

obtained from the full-scale field testing with the results obtained from conventional 

geotechnical laboratory tests. 

 To modify or develop models and relationships that are necessary for subsequent use of full-

scale test results for geotechnical applications.  

 To transfer the findings from this research into recommendations and approaches that are 

suitable for use while characterizing unsaturated soil within the global practice of 

geotechnical engineering.  

1.3. Thesis Overview  

The thesis presented herein is divided into five chapters. The introduction of the reseach 

conducted, the hypothesis and this overview are included in Chapter 1. Further details about 

previous research on SWCCs and k-functions (as obtained from laboratory testing, empirical 

correlations, and theoretical models), and a literature review of in-situ instrumentation employed 

in this research are discussed in Chapter 2.  The methods and procedures that were utilized to 

complete this research, including the compacted claly liner (test pad) construction and SDRI 

testing and compacted clay liner modeling are discussed in Chapter 3. Contained in Chapter 4 are 
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the results and discussion of hydraulic conductivity results, in-situ instrumentation response, the 

results of soil water characteristic curves, infiltration and field –obtained SWCC testing 

procedure and results. Chapter 5 contains conclusions drawn based on the results obtained from 

the reseach presented in this document and recommendations for future testing. References are 

also provided for completeness. Further detailed discussion on the soil placement, field and 

laboratory testing results, and measured SWCC and k-functions are also presented in Appendix 

A.   
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2.  LITERATURE REVIEW 

2.1. Introduction  

Numerous researchers have investigated unsaturated soils. Although the topic of 

unsaturated soils is relatively new (intensively investigated for the past 25 years), several 

textbooks have been written on the subject (Fredlund and Rajahdo 1993, Lu and Likos 2004a) 

with SWCC and k-functions also being discussed in details in journal articles (eg., Ogorzalek et 

al. 2008, Wayllace and Lu 2012, Lu and Kaya 2013, Lu et al. 2014). For instance, Fredlund and 

Rajahdo (1993) developed a rational engineering approach to describe the behavior of 

unsaturated soil in terms of stress state while Likos and Lu (2012) discussed the three 

fundamental constitutive relations (soil water retention curve, hydraulic conductivity function 

and suction stress characteristic curve) that are used to define fluid flow, strength and 

deformation behavior of unsaturated soil (Lu and Godt 2014).  

2.2.   Soil Water Characteristic Curve Function (SWCC function) 

The soil water characteristic curve (SWCC) has been utilized as the primary constitutive 

relationship for interpreting the engineering behavior of unsaturated soils. In recent years, the 

SWCC has become an important tool for predicting the mechanical and hydraulic properties of 

unsaturated soils (Fernando 2005). Unsaturated soil properties such as the hydraulic 

conductivity, shear strength, and coefficients of diffusion and adsorption can all be predicted 

from SWCCs (Fredlund and Rahardjo 1993, Fredlund and Xing 1994, and Fredlund et al. 1996).  

The SWCC is typically S- or J- shaped and is hysteretic. The shape of the SWCC is generally 

influenced by soil type, mineralogy, density, initial water content, soil structure, texture, stress 



5 

 

history, method of compaction and net confining stress (Tinjum et al. 1997, Vanapalli et al. 

1999, Lu and Likos 2004, Thu et al. 2007). 

Several laboratory techniques exist for measuring the SWCC (Klute et al. 1986, Wang 

and Benson 2004, Mijares and Khire 2010, ASTM D 6836; Wayllace and Lu 2012). Field-scale 

measurement of SWCCs is expensive; consequently, most of researchers determined SWCCs in 

the laboratory on the small soil samples. However, few literature of field SWCC were also 

published (Watson et al. 1975; Beese and van der Ploeg 1976; Tzimas 1979; Li et al. 2004, 

Ogorzalek et al. 2007). For instance, Waston et al, 1975 measured the field SWCC using a 

triangular pyramid frame housing instrumentation (described by Reginato and Jackson 1971a) to 

determine the water content and tensiometers to measure the soil water pressure. Li et al. 2004 

also measured the field SWCCs at the crest and berm of a large cut slope in Hong Kong using 

TDR moisture probes and vibrating wire tensiometers to measure soil water content and soil 

matric suction, respectively while Ogozalek et al 2007 used TDR probes and thermal dissipation 

sensor to measure soil suction to define SWCC for a capillary barrier cover in Polston, Montana.  

Previous researchers have developed many theoretical models to successful represent the 

experimental results of the SWCC into mathematical models (Burdine 1953, Brooks and Corey 

1964, Mualem 1976, van Genuchten 1980, McKee and Bumb 1987, Kosugi 1994, Fredlund and 

Xing 1994, and Frydman and Baker 2009). A comprehensive description of these models is 

provided in Sillers et al. (2001). Of these models, the van Genuchten (1980) model is commonly 

used to represent SWCC data.  The van Genuchten (1980) model provides a continuous SWCC 

using three fitting parameters (a, n and m), and the model better matches experimental data than 

Brooks and Corey 1964 model. The model is determined using the following equation:  
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   (  )   
                                      (Sillers et al. 2001)                                              Equation 1  

 

In Equation 1, a is fitting parameter related to inverse of air entry; n is related to the pore size 

distribution of the soil; m is a parameter related to the asymmetry for the model; is the soil 

matric suction; S is the normalized water content of the soil given by S = (r/sris 

volumetric water content; r is residual water content; and s is the saturated water content. 

 

As discussed in Topp and Miller (1966) and Kool and Parker (1987), a hysteresis between 

the wetting and drying curves is observed in the SWCC. However, hyperbolic or polynomial 

functions have been fitted experimental data to produce a SWCC. Several computer programs 

such as LEACH-M, RETC, UNSAT-H, HYDRUS, Vadose/W, and SEEP/W were also 

developed and utilized to represent the experimental results into existing parametric models and 

to simulate the water movement through the soil. Furthermore, the aforementioned theoretical 

models are employed in these numerical codes to successful define SWCC. For instance, the 

parametric models of Brooks-Corey (1964) and van Genuchten (1980) are utilized in RETC 

program to represent the SWCC, and the theoretical pore-size distribution models of Mualem 

(1976) and Burdine (1953) to predict the unsaturated k-function from the measured SWCC data.  

2.3. Hydraulic Conductivity Function (k-function) 

The k-function represents the proportionality between the hydraulic gradient and water 

flow rate, and thus is only relevant for conditions in which the water phase in the soil is 

continuous. According to Lu and Godt (2014), the hydraulic conductivity of the soil is no longer 

a constant and typically is portrayed as function of either the degree of saturation or suction of 

the soil. K-functions, which define as relationship between hydraulic conductivity (k) and water 

content or suction, have been determined in the laboratory using rigid- and flexible-wall 

permeameters with flow being controlled by surface infiltration/gravity drainage and by pumps, 
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respectively (Benson and Gribb 1997, Meerdink et al. 1996, Lu and Likos 2005). Based on the 

original work by Olson and Daniel (1981), a transient period (changes in volumetric water 

content and suction) was followed by steady state flow conditions (no changes in volumetric 

water content and suction). Transient measurements have been used to measure the k-function; 

however, there was a significant amount of scatter in the data. As shown by Moore (1939), 

steady-state flow data reduce the scatter in the data but require much longer testing periods. 

The hydraulic conductivity of a compacted clay liner is typically determined using 

laboratory and in-situ test methods. However, as described in Day and Daniel (1985), a 

significant difference between hydraulic conductivity values obtained in the laboratory and in the 

field has been observed by many researchers. In order to compensate that difference laboratory 

tests are conducted and clay liner test pads are constructed to correlate the laboratory results to 

the actual field hydraulic conductivity. Additionally, many regulatory agencies in United States 

require in-situ tests in addition to laboratory tests to confirm the measured hydraulic conductivity 

and the competency of clay liners (Trautwein and Boutwell 1994).  

Many different in-situ and laboratory tests including flexible wall permeameter (ASTM 

D 5084), rigid wall permeameter (ASTM D5856), air-entry permeameter, open double ring 

infiltrometer (ASTM D3385), sealed double ring infiltrometer (ASTM D5093) and two-stage 

borehole tests (ASTM D6391) have proposed and used to determine the hydraulic conductivity 

of the soil. Of these, Flexible Wall Permeability (FWP) and Sealed Double Ring Inflitrometer 

(SDRI) tests were used in the analysis of this paper. Specifically, in the laboratory, the FWP test 

was developed to minimize the sidewall leakage that were previously observed in the rigid wall 

permeameters, to monitor the back pressure in the testing sample,  and also to control both 

horizontal and vertical effective stresses during testing. The FWP is conducted in accordance 
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with ASTM D5084 and Equation 2 is used to determine the hydraulic conductivity (k)of the soil, 

and then k is corrected to the standard temperature of 20 degrees Celsius (Equation 3 and 4). 

  
           

(         )     
  ( 

   

   
 )                (ASTM D5084, 2012)                                         Equation 2     

                                                (ASTM D5084, 2012)                                        Equation 3 

RT = 2.2902* (0.9842
T
)/T

0.1702
              (ASTM D5084, 2012)                                        Equation 4 

In the Equation 2 through 4, ain is the cross-sectional area of reservoir containing influent/inflow 

liquid; aout is the cross-sectional area of the reservoir containing the effluent/outflow liquid; L is 

the length of soil sample; A is the cross-sectional area of soil sample;  ∆h1 is the head loss 

across the permeameter at t1 of water; ∆h2 is the head loss across the permeameter at t2 of 

water; k20 is the  hydraulic conductivity corrected to 20
o
C(68

o
F);  RT  is the ratio of viscosity of 

water at test temperature to viscosity of water at 20
o
C; T is an average test temperature during 

the permeation trial ((T1+T2)/2;  T1 is the test temperature at start of permeation trial; and T2 is 

the test temperature at end of permeation trial. 

 

The SDRI test, which was first developed by Daniel and Trautwein (1986), is an in-situ 

test that is commonly used to accurately measure the hydraulic conductivity of the soil. Unlike 

laboratory hydraulic conductivity tests, SDRI testing was developed to test larger and more 

representative volumes of material, allowing the permeating liquid to flow through secondary 

features (Daniel 1989). The installation and operation of the SDRI test were documented in 

Trautwein Soil Testing Equipment Co. (1987), Trautwein and Boutwell (1994), and ASTM 

D5093 (2012). The values of hydraulic conductivity from SDRI test are general obtained using 

the equation 5, 6 and 7 that are based on Darcy’s law. However, the calculation of hydraulic 

gradient (equation 7) was determined to be complicated because the soil to be tested is initially 

unsaturated (Trautwein and Boutwell, 1994). Therefore, three methods (Apparent, Suction Head 

and Wetting Front method) were proposed by Trautwein and Boutwell (1994) to estimate the 

hydraulic gradient during SDRI testing. Details on these methods can be found in Trautwein and 

Boutwell (1994) and Nanak (2012).  
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                                 (Daniel and Trautwein, 1986)                                                Equation 5 

  
 

 
                                (Daniel and Trautwein, 1986)                                                Equation 6                               

  
       

  
                       (Trautwein and Boutwell, 1994)                                            Equation 7   

In Equations 5 through 7, I is the infiltration rate; Q is the volume of flow (Q= W1-W2); W is the 

initial weight of bag;  W2 is final weight of bag; t is time of flow (t= t2-t1); t1 is the time when 

shut-off valve on bag was opened; t2 is the time when the shut-off valve on bag was closed; A is 

an area of inner ring; k is hydraulic conductivity; i is hydraulic gradient; F is correction factor 

to account for the lateral spreading of water; H is head of water above the soil surface; Hs is 

suction head at location of the wetting front; and Zw is the depth of wetting front below the soil 

surface. 

2.4. In-situ Instrumentation Utilized to Measure Soil Matric Potential and Volumetric 

Water Content 

Like the laboratory techniques mentioned previously, several techniques have been 

utilized to determine the soil matric suction () and volumetric water content (v) of soil in the 

field (in-situ), and these parameters can be used to determine SWCC and k-functions. For 

instance, the time domain reflectrometry (TDR) technique have been used to determine 

volumetric water content, the use of TDR sensors were presented in the literature (Topp et al. 

1980; Menziani et. al 1996; Nemmers 1998; Evett 2003; Campbell Scientific 2013;  Garner and 

Coffman 2014), water matric potential sensors (WMPS) technique have been employed to 

capture the soil matric potential and temperature (Reece 1996 and Phene et al. 1996, Campbell 

Scientific 2013), and also tensiometers are commonly used to measure soil matric potential in the 

field (Trautwein and Boutwell 1994, Ridley et al. 1998, and Take and Bolton 2003).  
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3.  METHODS AND PROCEDURES 

3.1. Introduction 

The investigation that was performed, and is discussed herein, consisted of 1) 

constructing and instrumenting a compacted clay liner, 2) performing a SDRI test, 3) allowing 

the soil to dry during a drying cycle, and 4) performing FWP tests on soil sub-samples that were 

obtained from Shelby tube samples that were collected from the compacted clay liner. In 

addition to methods and procedures utilized to perform the laboratory testing, modeling was also 

performed using the RETC and UNSAT-H software programs. Specifically, the laboratory 

obtained data were utilized within the RETC and UNSAT-H programs to determine the 

infiltration rate through the compacted clay liner. 

3.2. Compacted Clay Liner Construction and Testing 

A 3m wide by 3m long by 0.6m thick compacted clay liner was constructed by 

compacting four-lifts of soil.  Each lift was placed as a 0.2m thick loose lift and compacted to a 

0.15m thick compacted lift within the wooden box described by Maldonado and Coffman 

(2012).  The thickness of the laboratory-scale compacted clay liner resembled a full-scale 

compacted clay liner.  However, due to size limitations in the laboratory, the laboratory-scale 

compacted clay liner was compacted using a ramming compactor instead of a kneading 

compactor. The soil, classified as a low plasticity clay (CL), was placed within the zone of 

acceptance (Figure 4) and following the methods described in in Maldonado and Coffman (2012) 

and Nanak (2012). Detailed discussions are presented in Appendix A.  

 During compaction, instrumentation was installed into the compacted clay liner. Two 

Campbell Scientific CS-610 time domain reflectometry (TDR) probes and two Campbell 



11 

 

Scientific CS-229 water matric potential sensors were installed 0.05m below the top of each lift 

by excavating soil from the surface (for a total of 4 TDR probes and 4 WMPS) and installed 

following the methods described in Garner and Coffman (2012). Following compaction, two sets 

of Irrometer Model S, E-gauge,  tensiometers were installed at depths of 0.13m, 0.27m, and 

0.58m (for a total of 6 tensiometers) and a Trautwein Soil Testing Equipment Co. 2.4m outer 

ring and 0.46m inner ring sealed double ring infiltrometer (SDRI) were also installed. The 

infiltration was measured by connecting a flexible bag filled with a known amount of water to 

the inner ring and a certain interval of time, the bag was removed from the inner ring and 

weighed. The weight loss was equal to the amount of water infiltrated through the soil. The 

sealed inner ring was utilized to eliminate the evaporation loss, and outer ring was used to 

promote one dimensional vertical flow below the inner ring. 

The sensors were installed below the inner ring to accurately capture the change of the 

saturated/unsaturated soil properties during SDRI testing and drying cycle. The locations of the 

sensors and SDRI equipment are shown in Figure 1. Specifically, Campbell Scientific CS-610 30 

cm-long time domain reflectrometry probes and Campbell Scientific CS-229 heat dissipation 

water matric potential sensors along with data acquisition system consisted of two Campbell 

Scientific CR-10X, two Campbell Scientific 16 channel AM-416 relay multiplexers, a Campbell 

Scientific eight channel SDMX-50 coaxial multiplexer and a Campbell Scientific TDR-100 time 

domain reflectrometer were employed to automatically monitor the volumetric water content and 

soil matric potential (soil suction) continuously (hourly readings). 

 A sealed double ring infiltrometer test was then conducted following the procedures 

outlined in Trautwein Soil Testing Equipment Co. (1987), Trautwein and Boutwell (1994), and 

ASTM D5093 (2014). Upon completion of the 69-day SDRI test the water that was ponded 
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within both rings was drained and the compacted clay liner was allowed to undergo a drying 

cycle.  The instrumentation within the compacted clay liner continued to collect continuous data 

during the drying cycle.  The soil was allowed to dry for 86 days under an average temperature 

of  20
o
C, with no direct sunlight, and no direct wind; desiccation cracks were observed to 

develop at the soil surface. Two Shelby tube samples were collected from the compacted clay 

liner at the locations shown in Figure 1b.  Four FWP tests were conducted, in accordance with 

ASTM D5083 (2014), on sub-samples that were removed from one of the Shelby tubes. The 

other Shelby tube was retained for future laboratory-based determination of the SWCCs using 

the transient release and imbibition method (TRIM). 
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(b) 

Figure 1. Schematic of the instrumented compacted clay liner (a) cross-section, and (b) 

plan view.  
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samples collected following the drying cycle) were also ingested into the RETC program.  

Specifically, the van Genuchten (1980) parametric model and the Mualem (1976) theoretical 

pore-size distribution model were utilized in the RETC program to determine the van Genuchten 

(1980) SWCC fitting parameters and the hydraulic conductivity function (k-function).  The 

SWCC parameters and the k-function were then combined with the physical properties of the 

compacted clay liner (layer thicknesses, unit weights, water contents, etc.) within the UNSAT-H 

program to simulate the infiltration rate of the soil.  
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4.  RESULTS AND DISCUSSION 

4.1. Introduction  

 The results obtained utilizing the aforementioned testing procedure include: 1) saturated 

hydraulic conductivity values for in-situ soil and for sampled soil that had been subjected to a 

drying cycle, 2) the time-dependent response of the soil as measured using in-situ 

instrumentation, 3) the soil water characteristic curves and hydraulic conductivity functions, and 

4) the modeled infiltration rate. All of the obtained data are presented and discussed.  In addition, 

the modeled values of the SWCC parameters, the k-functions, and the infiltration rate are also 

compared with the measured values of the respective properties.   Furthermore, based on the 

lessons learned from this study, a detailed procedure is presented for determining field-obtained 

soil water characteristic curves.   

4.2. Hydraulic Conductivity 

The hydraulic conductivity data that were collected in-situ immediately after compaction, 

using the SDRI testing technique, and after the drying cycle, using the FWP technique, are 

presented in Figures 2 and 3, respectively.  The in-situ hydraulic conductivity values from SDRI 

tests were determined using Equations 5,6, and 7 presented in Chapter 2. The hydraulic gradient 

(i) was obtained using the three methods (Apparent Hydraulic Conductivity, Suction Head and 

Wetting Front Method) and tensiometers data (to monitor the progression/location of the wetting 

front). The laboratory hydraulic conductivity values were obtained from FWP using Equation 2, 

3, and 4. The FWP testing was conducted until the outflow and inflow rate ranged between 0.75 

to 1.25), and the average of the four last points (open symbols in Figure 3) was considered as the 

final laboratory hydraulic conductivity of the soil.  
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Figure 2. Results obtained from SDRI testing. 

 

Figure 3. Results obtained from FWP testing. 
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As expected, the values of the hydraulic conductivity that were obtained from the FWP 

tests were higher than the values of hydraulic conductivity that were obtained from the SDRI 

test.  The reason for the difference was attributed to the following: 1) the SDRI data were 

obtained immediately after compaction and prior to the drying cycle, 2) the FWP data were 

obtained from samples that were subjected to the drying cycle (samples that were subjected to 

desiccation), 3) the cross-sectional areas of samples that were tested in the SDRI test and the 

FWP tests were of different size.  

 

Figure 4. In-situ density and water content values from the compacted clay liner and the 

zone of acceptance from Coffman and Maldonado (2011) and Nanak (2012).  

 

Because the soil was compacted to ensure that the dry density and water content were 

within the zone of acceptance except for a few outliers (Figure 4), the measured hydraulic 

90

95

100

105

110

115

120

5 10 15 20 25 30

D
ry

 U
n

it
 W

ei
g

h
t,

 γ
d
, 

[p
cf

]

Measured Water  Content, w, [%]

Layer 1

Layer 2

Layer 3

Layer 4

Zero Air Voids

90% Saturation

80% Saturation

Zone of Acceptance

Construction Nuclear 

Density Measurements 

for Test Pad.

Outlier

*calculated from 

laboratory data

(Gs = 2.67)

*



18 

 

conductivity values that were obtained from the SDRI test were very close to (albeit above) the 

regulatory requirement of 1.0E-7cm/sec (Table 1).  Specifically, the hydraulic conductivity 

values that were obtained for Layer 3 from the SDRI test were lower than the regulatory limit 

when using the wetting front method or the suction method.  These methods are more 

representative of the field conditions, than the apparent method, because the amount of suction at 

the wetting front is assumed to be zero or equal to the measured value of suction, respectively.     

4.3. In-situ Instrumentaion Response 

The time-dependent responses of the in-situ instrumentation corresponding to the data 

obtained from the TDR probes, the WMPS, and the tensiometer probes are presented in Figures 

5, 6, and 7, respectively.  These data were utilized for 1) identifying the amount of time required 

for the wetting front to reach the probes, based on data collected during the wetting cycle, and 2) 

developing SWCCs, based on data collected during the drying cycle. As observed in the response 

of all of the instrumentation, the amount of increase in the volumetric water content and soil 

suction, as observed during the wetting cycle, was negligible compared to the amount of 

decrease in these values during the drying cycle.  This response was expected because the soil 

was compacted on the wet side of the optimum water content within the zone of acceptance that 

was developed to ensure low permeability of the compacted clay liner. Owing to the malfunction 

of the data acquisition and shortcoming of the sensors, only data collected from four TDR and 

four WMPS (one TDR and one WMPS within each layer) sensors were used in this study. As 

shown in Figure 5 and 6, both parameters decreased during the drying cycle and significant 

changes in volumetric water content and matric suction occurred mostly wthin the upper layer 

(Layer 1) because within this layer the influence of evaporation was greated than in other layers.  
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Figure 5. Time-dependent response of the TDR probes located within the compacted clay 

liner. 

 

Figure 6. Time-dependent response of the WMPS located within the compacted clay liner.  
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The tensiometer probes (0 to -100 Kpa) performed better than the WMPS (-10kPa to -

3200kPa) during wetting because of the range limitations of each of the probes.  Specifically, the 

amount of time required for the wetting front to reach each of the probes was determined by 

identifying the time when the probes reached a steady maximum value.  Ideally, the maximum 

value for each of the probes should have been zero kPa, however, the maximum value of the 

WMPS was -10kPa and this value was identified to correspond with the arrival of the wetting 

front.  Like with the suction measurements, the amount of time required to reach the maximum 

volumetric water content was also recorded. The wetting front reached the TDR probes when the 

maximum volumetric water content was observed.      

 

Figure 7.  Time-dependent response of the tensiometer probes located within the 

compacted clay liner. 

 

-120

-100

-80

-60

-40

-20

0

10/10 10/25 11/9 11/24 12/9 12/24 1/8 1/23 2/7 2/22 3/9 3/24

S
o

il
 M

a
tr

ic
 P

o
te

n
ti

a
l,

 ψ
, 

[C
en

ti
b

a
r]

Date

TE (12.7 cm deep)

TE (27.94 cm deep)

TE (58.42 cm deep)

Tensiometers decoupled from soil.

During SDRI testing Drying cycle



21 

 

 The WMPS and TDR probes performed better than the tensiometers during the drying 

cycle because of the decoupling that was observed to develop between the soil and tensiometer 

probes.  This decoupling phenomenon was only observed for the tensiometers because the casing 

of the tensiometer probes extended from the surface to the depth of the location of interest, as 

opposed to the WMPS and TDR probes, where the cable for the probe continued below the 

surface for some distance before surfacing to connect with the data acquisition system.  During 

the drying cycle, surface cracking propagated along the length of the tensiometer probes and 

caused the soil to eventually decouple from the probe. The cracks caused a loss of suction and 

therefore non-representative suction measurements were obtained from the tensiometer probes, 

following cracking. To ensure accurate measurements during wetting and drying, the use of both 

types of probes (tensiometer probes and WMPS) is recommended for the respective conditions 

(wetting and drying).  

4.4. Soil Water Characteristic Cruves 

As shown in Figure 8, the SWCCs that were developed were based on the data obtained 

from the drying cycle.  Although the SWCC is known to exhibit a hysteretic behavior for 

desorption and sorption, the sorption SWCC was not obtained because the in-situ sensors (TDR 

probes and WMPS) were not as sensitive to the changes in the soil that were associated with 

adding water during the SDRI test.  The curves begin and end at different values of volumetric 

water content, because the soil surrounding the probes was first subjected to an infiltration cycle 

by adding water to the surface of the compacted clay liner and then subjected to a drying cycle 

by allowing exposure of the surface to atmospheric conditions. Therefore, the soil near the 
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surface became saturated faster and dried faster.  Also, because the drying front never reached 

the probes located within the bottom layer, a desorption SWCC was not developed for this layer. 

 
Figure 8. Soil water characteristic curves obtained from the data collected from the TDR 

and WMPS during the drying cycle (desorption). 
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UNSAT-H program. The infiltration rate that was calculated from the UNSAT-H program using 

these parameters is presented in the next section. 

 
Figure 9.  Soil water characteristic curves as modeled from field-obtained data in RETC.  
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were utilized (corresponding to the minimum number of points allowed in the UNSAT-H 

software program), the location of the predicted wetting front moved much faster than the 

location of the measured wetting front. The predicted solution for the location of the wetting 

front, as a function of time, converged when 201 nodal points were utilized; however, when 201 

node points were utilized the location of the predicted wetting front moved much slower through 

the soil than the location of the measured wetting front.  Specifically, as the number of nodals 

increases, the wetting front moved slower at any location within the compacted clay liner. The 

location of the predicted wetting front matched the location of the measured wetting front when 

50 nodal points were utilized.  

 
Figure 10. Modeled k-function compared to the k-values obtained from the SDRI and FWP 

tests.     
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hysteresis in the SWCC for the sorption/desorption curves.  Specifically, for the same value of 

volumetric water content, a higher value of suction should be measured during desorption than 

during sorption.  Therefore, the wetting front should progress faster following a sorption SWCC 

than a desorption SWCC.  Because the desorption SWCC was utilized to measure the infiltration 

rate of the soil when subjected to a sorption SWCC the predicted and measured infiltration rates 

did not correlate.  However, although the progression of the wetting front was not well modeled, 

the k-function was well modeled based on the measured SDRI data (sorption data) bounding the 

modeled functions (developed using desorption data).  The SDRI and FWP data that are 

presented in Figure 10 were obtained by determining the change in the volume of water within 

the soil as water was added to the soil during the SDRI and FWP tests.    

 
Figure 11. Infiltration rate as measured using field equipment and modeled using the 

UNSAT-H program.  
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4.6. Field-obtained SWCC Testing Procedure and Results 

As previously discussed, the testing procedures that were utilized may have affected the 

obtained results.  Although the soil utilized in this study was compacted within the previously 

developed zone of acceptance, that zone of acceptance was originally developed to ensure low 

permeability values for soils where the water content will remain near the compaction water 

content; the zone of acceptance was not developed to enable measurement of the SWCC.  To 

obtain both the sorption (wetting cycle) and desorption (drying cycle) data, a new zone of 

acceptance should be constructed in which the values of compacted water content and dry 

density should plot on the dry side of the optimum water content instead of on the wet side of 

optimum water content.  However, during compaction of the compacted clay liner that was 

described herein, the as compacted dry density and water content values plotted near the zero air 

voids line indicating that the soil in the compacted clay liner was near saturation after 

compaction. The high levels of saturation were verified by the observed time-dependent values 

of soil suction and volumetric water content, as obtained during the SDRI testing from the water 

matric potential sensors and time domain reflectrometery probes, respectively. In addition to the 

high levels of saturation preventing the acquisition of the sorption SWCC, these levels also led to 

more intensive desiccation cracking during drying cycle.   

Although hydraulic conductivity data from sub-samples of the desiccated soil samples 

that were collected using the Shelby tubes were utilized to model the infiltration rate through the 

compacted clay liner, this practice is not advisable. Because of the aforementioned severe 

desiccation cracking (Figure 12) that was observed to develop within the top layers during the 

drying cycle; some of the soil samples (sub-samples of the samples acquired from the Shelby 
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tubes that were acquired following the drying cycle) that were utilized for the flexible wall 

hydraulic conductivity were cracked and fissured. These cracks and fissures contributed to the 

higher values of hydraulic conductivity that may not be representative of soil that is not 

subjected to a drying cycle.  

 

Figure 12. Photograph of desiccation cracking within the compacted clay liner following 

the drying cycle (picture taken by the author).   

 

 Instead, the hydraulic conductivity values that should be utilized within the UNSAT-H 

program should be obtained from sub-samples collected prior to the drying cycle or from the 

results obtained from the in-situ tests conducted prior to the drying cycle.  Simply put, if samples 

were collected prior to desiccation then the SWCC and k-function would have been 

representative of a non-desiccated, saturated or unsaturated clay. However, if desiccation is 

expected to occur, then the practice of using the permeability values obtained from the 
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desiccated samples is advisable, because the SWCC and k-function will be representative of 

desiccated, saturated or unsaturated clay.  The measured hydraulic conductivity values from each 

layer obtained from SDRI and FWP tests are presented in Table 1 together with the predicted 

hydraulic conductivity predicted using RETC and UNSAT-H models. Both tests and models 

approaches agreed reasonably well that as wetted depth increases, the hydraulic conductivity 

decrease asymptotically.  

Table 1. Summary of measured and predicted hydraulic conductivity values. 

 

 

                  

 

SDRI FWP RETC UNSAT-H

Wetting Front Apparent Suction ASTM D5084 Mualem (1976) van Genuchten (1980)

Layers Method Method Method (Method C)

k20 k20 k20 k20 ks ks

[cm/sec] [cm/sec] [cm/sec] [cm/sec] [cm/sec] [cm/sec]

Layer 1 4.51E-07 1.13E-07 1.40E-07 1.99E-06 2.40E-06 3.10E-06

Layer 2 4.54E-07 3.02E-07 2.12E-07 1.44E-07 2.81E-06 2.56E-06

Layer 3 5.8E-08 2.01E-07 2.67E-08 3.94E-08 5.86E-07 7.13E-07
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5.  CONCLUSION AND RECOMMENDATIONS  

A compacted clay liner was constructed within an environmentally controlled 

environment to enable collection of SWCCs and k-functions.  WMPS, tensiometers, and TDR 

probes were utilized to measure the amount of suction or volumetric water content within the 

soil.  This instrumentation was also utilized to identify the amount of time required for the 

wetting front to reach various depths within the soil deposit during a wetting cycle (sorption 

cycle) that was associated with the 69-day duration SDRI testing.  Following SDRI testing, the 

compacted clay liner was allowed to dry during an 86-day drying cycle. The same 

instrumentation that was utilized to measure the soil suction and volumetric water content during 

the SDRI test was also used to measure the soil suction and volumetric water content during the 

drying cycle and SWCC curves were developed from measured the drying cycle (desorption 

cycle) data using the RETC program. Shelby tube samples were collected from the compacted 

clay liner following completion of the drying cycle and FWP tests were performed on sub-

samples from these Shelby tube samples.  The measured hydraulic conductivity values obtained 

from the FWP tests were used to anchor the k-functions that were created using RETC program.    

  The RETC developed SWCC and k-functions were ingested into the UNSAT-H program 

to model how the wetting front progressed through the compacted clay liner as a function of 

time.  Depending on the number of nodal points that were utilized within the UNSAT-H program 

the predicted location of the wetting front was under-predicted (5 nodal points), predicted (50 

nodal points), or over-predicted (200 nodal points) when compared with the measured location 

(as obtained from the in-situ instrumentation).  The over-prediction of the location of the wetting 

front when using a large number of nodal points (convergence) was attributed to the utilization 
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of the desorption SWCC to predict the sorption behavior (due to the inability to measure a 

sorption curve because the compacted clay liner was compacted on the wet side of the optimum 

water content).  To overcome this discrepancy between the measured and predicted location of 

the wetting front, the soil should be compacted on the dry side of optimum to enable the 

measurement of both a sorption and a desorption curve.   

 Although the predicted location of the wetting front did not match the measured location 

of the wetting front, the measured k-values obtained from the SDRI test did match the predicted 

k-values.  However, the measured k-values were higher than the regulatory limit even though the 

compacted clay liner was compacted within the zone of acceptance that was developed to ensure 

that the saturated k-values were below the regulatory limit.  The high k-values obtained from the 

FWP were believed to be attributed to desiccation cracking while the high k-values obtained 

from the SDRI were believed to be attributed to several of the measured dry density/water 

content points plotting outside of the zone of acceptance.   

   It is recommended that the soil be compacted on the dry side of the optimum water 

content to overcome the difficulty of predicting the location of the wetting front during sorption 

using a desorption obtained SWCC, and to overcome the severe desiccation cracking that occurs 

during drying.  Specifically, if the soil is compacted on the dry side of the optimum water 

content, then a sorption SWCC can be developed during the SDRI testing and a desorption 

SWCC can be developed following the SDRI testing during the drying cycle. The data collected 

during the sorption SWCC can then be utilized to predict the location of the wetting front during 

the SDRI test.      
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APPENDIX A.  DISCUSSIONS 

Discussion on Zone of Acceptance and Nuclear Gauge Density Testing Results 

As previously mentioned, a zone of acceptance (ZOA) was developed by Nanak (2012) 

following Daniel and Benson (1990) method was used in this study (Figure 4). The methods and 

discussion describing the development of the zone of acceptance are described in Nanak (2012). 

To ensure the quality of construction to meet the requirements, a rod and level were utilized to 

check the height and the elevations of each lift, and the proper compaction was verified using a 

nuclear density gauge data (ASTM D6938), and four readings were taken at four different 

locations on the top of each layer. The locations of each nuclear density gauge test are illustrated 

in Figure 13. The nuclear density gauge tests were conducted outside of the outer ring of SDRI to 

avoid any soil disturbance in the testing area. The results obtained during nuclear density gauge 

testing in each layer are also summarized in Table 2.  

The results obtained from nuclear density gauge testing are also presented in the plot of 

zone of acceptance (Figure 4). As shown in Figure 4, most of the points plotted inside the of the 

ZOA expect the three points from layer 4, one data points from layer 3 and one data point from 

layer 2. In layer 4, a different method of adding water into the soil was used prior the soil 

placement. As a result, low water contents and higher unit weights were obtained after 

compaction. Typically, when nuclear gauge density tests results are plotted outside of the ZOA, 

the layer is removed and reworked. However, the soil in layer 4 was not reworked because the 

tests were completed outside of the area of interest for SDRI testing.  
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Figure 13. Nuclear density gauge testing locations.  

Table 2.  Results of nuclear density gauge data. 
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As described in the chapter 3, the soil was placed into four compacted layers. The 

thicknesses of each layer were measured using a rod and level. In addition, WMPS and TDR 

probes were installed within each layer below in the inner ring as shown in Figure 1 and 2. The 

thicknesses of each layer and the locations of the all probes in each layer are presented in Table 3 

and 4, respectively. During the surveying on layer 3, the gravel layer thickness placed at the 

bottom of the test pad was not taken into consideration while measuring the minimum thickness 

of loose layer. Consequently, layer 3 was determined to be thicker than other layers, and layer 2 

was thinner than other layers in the test pad. 

Table 3.  Summary of layers thicknesses. 

 

Table 4. TDR and WMPS locations.  

 

 

Layers Thickness

[cm]

Layer 1 14.36

Layer 2 7.15

Layer 3 23.50

Layer 4 16.63

Total Clay thickness 61.64

Layers TDR &WMPS Location 

[cm]

Layer 1 6.26

Layer 2 18.37

Layer 3 25.76

Layer 4 47.25
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Discussion on In-situ Hydraulic Conductivity Results Obtained Using SDRI test 

As described in the Chapter 4, the SDRI test was conducted for 69 days and 15 hours. 

Following the procedures and the methods of data reduction documented in ASTM D5093, the 

vertical hydraulic conductivity values were determined. The infiltration rates for each timed 

interval were first calculated. Higher infiltration rates were observed in layer 1 because the soil 

was compacted on low water content with higher unit weights as discussed above. In addition, 

high infiltration rates were observed when the water added in the IV bag, this was caused by the 

change of volume of flow. The data recorded during SDRI testing is summarized in Table 5 and 

the infiltration rate results are presented in Table 5 and plotted in Figure 14.  

 

Figure 14. Summary of infiltration and cumulative time obtained during SDRI testing 
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 The irrometer tensiometers installed were used to monitor the progression of the wetting 

front during SDRI testing. The tensiometer results are summarized in Figure 7. Higher soil 

suctions were observed at the start of the test and started to decrease asymptotically as the water 

penetrates into the soil. The wetting front was located when the water reached the porous tip of 

the tensiometers.  As shown in Figure 15, water reached the porous tip of the tensiometers 

located at 12.7 cm, 27.94 cm and 58.42 cm at 353.22 hours, 857.25 hours and 1670.12 hours, 

respectively. These three points plotted in Figure 14 were used define a linear equation to 

determine the location of the wetting front at any given time. 

 

Figure 15. Summary of wetting front location during SDRI testing. 
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 The wetting front locations were necessary needed to calculate the hydraulic gradient (i). 

The hydraulic gradients were determined using three methods (Apparent Hydraulic 

Conductivity, the Suction Head, and the Wetting Front Method) proposed by Trautwein and 

Boutwell (1990) and discussed into details by Nanak (2012). The results of hydraulic gradients 

are presented in Table 6 and also summarized in Figure 16. Higher hydraulic gradients were 

determined using suction head method and constant gradients were observed using apparent 

method.  The calculated infiltration rates and hydraulic gradients were used to determine the 

hydraulic conductivity of the soils. The results are presented in Chapter 4.    

 

Figure 16. Summary of hydraulic gradient and cumulative time obtained during SDRI 

testing. 
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Discussion on Laboratory Hydraulic Conductivity Results Obtained Using FWP Tests 

Following the procedures documented in ASTM D5084 for data reduction, the laboratory 

hydraulic conductivity of the soil used in this research study was determined. The flexible wall 

permeameter tests were conducted on the samples extruded from the Shelby tubes.  Specifically, 

four samples (one sample in each layer) with an approximate of 7.62 cm for both diameter and 

height were extruded from the Shelby tubes. Note that, the Shelby tubes were collected after 

drying cycle. Consequently, higher hydraulic conductivities were anticipated to be observed 

comparing to the SDRI results. From the laboratory results, high hydraulic conductivity values 

were observed on the sample obtained from Layer 1, and low hydraulic conductivity values on 

sample obtained from Layer 4 because water contents in layer 4 were higher than within other 

layer. The FWP tests were conducted until the measured hydraulic conductivity reached the 

steady state flow. Specifically, the permeation was terminated when at least the four values of 

hydraulic conductivity were close to each other as suggested in ASTM D5084. In addition, the 

outflow to inflow ratio was plotted and also used to ensure the termination of the tests met the 

required conditions (outflow to inflow rate ranged in between 0.75 to 1.25 has to be achieved as 

proposed in ASTM D5084).  The results of laboratory hydraulic conductivity are summarized in 

Figure 3. 

Discussion on Results Obtained Using In-situ Instrumentation  

Three type of in-situ instrumentation were employed in this study including TDR and 

WMPS probes. Eight TDR probes were used to capture the volumetric water content. However, 

Owing to the malfunction of the data acquisition and shortcoming of the sensors, only data 

collected from four TDR probes were analyzed. Data acquired from TDR probes were plotted 

and summarized in Figure 5.  A volumetric moisture content range from 21 to 29 percent 
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calculated using CS-tangent method presented by Topp et al. 1980. During the SDRI testing, the 

volumetric moisture content is constant for 3 hours and then increased by approximately 0.60 

percent in Layer 1. Once the wetting front reached the TDR probes, the volumetric moisture 

content remain nearly constant at 240 hours (the volumetric moisture content remains constant in 

the range of 27 to 28 percent).  

A plot of collected TDR data in Layer 2 was also presented in Figure 5. The obtained 

volumetric moisture content ranged from 22 to 28 percent. As shown in Figure 10, the 

volumetric moisture content is increasing in 119.5 hours and remains constant when the wetting 

front reached (at 748 hours). The data collected from the probes located in layer 3 were also 

plotted and presented in Figure 24. The low volumetric water contents that ranged from 24 to 25 

percent were determined and increased at 1104 hours.  

The data collected from the probes installed in layer 4 were also presented in Figure 5, 

and the volumetric water content in layer 4 ranged from 26 to 27 percent. As shown in Figure 24, 

significant changes occurred when the soil was subject to the drying cycle especially in layer 1 

because within Layer 1 the influence of evaporation was greater than within other layers. As 

shown in Figure 24, the volumetric water content remained in the same range during both SDRI 

and drying analysis which indicated that the study analysis was completed before the wetting and 

drying reached the probes in Layer 4.  

The heat dissipation water matric potential sensors (WMPS) were used to measure the 

soil matric potential of the soil. Like TDR probes, eight WMPSs were installed; however, only 

four sensors were analyzed in this study. The data collected from WMPS were summarized in 

Figure 25. The matric potential values ranged between -10 to 1300 kPa, -10 to 390 kPa, -10 to 
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250 kPa and -10 to 60 kPa for layer 1, 2, 3 and 4, respectively. Unlike the volumetric water 

content that was decreasing during the drying cycle, the matric potential was increasing due the 

loss of the water. As shown in Figure 6, the soil matric suctions values were decreasing from 

layer 1 to layer 4. Significant changes in matric potential were observed in layer 1. This was 

consistent with the results obtained from TDR probes. Additionally to WMPS, the tensiometers 

were also to measure the soil matric suction. However, the tensiometers were decoupled from the 

soil during the adsorption cycle and the matric suctions obtained using WMPS were used. The 

tensiometers data are summarized in Figure 7. 

Discussion on Measured Field SWCC and k-functions  

Based on the field volumetric water content and matric soil matric potential values 

obtained from TDR and WMPS, the SWCCs for desorption at different location within each 

layer were determined (Figure 17). As described in the Chapter 4, the SWCC of depths of 6.25, 

18.37, and 25.76 cm for Lift 1, Lift 2 and Lift 3, respectively are summarized in Figure 27. Due 

to the expedited timeline of the project discussed herein, the study was terminated before any 

significant changes in volumetric water content and matric potential occurred in the sensors 

located in Layer 4. 

Few points were selected from each SWCC and used in RETC program to fit the 

obtained data to existing parametric models (van Genuchten 1980). Using the selected data 

points of volumetric water contents and soil matric suctions and hydraulic conductivity obtained 

using SDRI, van genuchten’s fitting parameters were determined using RETC program. The van 

Genuchten’s fitting parameters were used in UNSAT-H to simulate the flow in unsaturated soils.  

In addition, the RETC program was used to predict the hydraulic conductivity functions (k-
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function) of the soil. Based on the experimental data obtained from the sensors and hydraulic 

conductivity values obtained from FWP and SDRI testing, the calculated curves for hydraulic 

conductivity as function of the volumetric water content and soil matric potential were obtained. 

The details discussions on RETC and UNSAT-H were documented in the Chapter 4.   

 

Figure 17. Field obtained SWCCS using TDR and WMPS data. 
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Table 5. Data Recorded during SDRI test.  
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Table 6.  Summary ofresults obtained from SDRI test. 
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Table 7.  Summary of in-situ hydraulic conductivity obtained from SDRI test. 

 

 

.   

 

S
ta

rt
F

in
a
l 

H
y

d
ra

u
li
c 

C
o
n
d
u
ct

iv
it

y

D
a
te

D
a
te

W
e
tt

in
g

 F
ro

n
t 

M
e
th

o
d

A
p
p
a

re
n
t 

M
e
th

o
d

S
u
ct

io
n
 H

e
a

d
 M

e
th

o
d

t 1
t 2

k
k

k

[D
a
te

]
[D

a
te

]
[c

m
/s

e
c]

[c
m

/s
e
c]

[c
m

/s
e
c]

1
0
/1

0
/1

3
 1

7
:4

7
1
0
/1

4
/1

3
 1

4
:0

0
1
.0

4
E

-0
7

1
.0

1
E

-0
6

9
.2

7
E

-0
8

1
0
/1

4
/1

3
 1

4
:0

5
1
0
/1

6
/1

3
 1

4
:3

5
1
.6

1
E

-0
7

9
.7

9
E

-0
7

1
.4

8
E

-0
7

1
0
/1

6
/1

3
 1

4
:3

7
1
0
/1

8
/1

3
 2

3
:0

2
1
.0

0
E

-0
7

4
.3

8
E

-0
7

9
.3

2
E

-0
8

1
0
/1

8
/1

3
 1

1
:0

5
1
0
/2

1
/1

3
 1

0
:0

0
5
.8

3
E

-0
8

2
.0

1
E

-0
7

5
.4

4
E

-0
8

1
0
/2

1
/1

3
 1

0
:0

2
1
0
/2

3
/1

3
 1

1
:0

0
2
.8

5
E

-0
8

8
.4

5
E

-0
8

2
.6

7
E

-0
8

1
0
/2

3
/1

3
 1

1
:0

5
1
0
/2

5
/1

3
 1

1
:0

0
2
.3

3
E

-0
7

6
.1

5
E

-0
7

2
.1

9
E

-0
7

1
0
/2

5
/1

3
 1

1
:0

2
1
0
/2

8
/1

3
 9

:3
3

4
.5

1
E

-0
7

1
.0

3
E

-0
6

4
.2

5
E

-0
7

1
0
/2

8
/1

3
 9

:3
6

1
0
/3

0
/1

3
 1

0
:5

9
5
.3

4
E

-0
8

1
.1

3
E

-0
7

5
.0

0
E

-0
8

1
0
/3

0
/1

3
 1

1
:0

1
1
1
/1

/1
3
 1

0
:5

9
3
.2

2
E

-0
7

6
.3

7
E

-0
7

3
.0

2
E

-0
7

1
1
/5

/1
3
 1

1
:1

9
1
1
/7

/1
3
 9

:0
3

2
.0

0
E

-0
7

3
.3

7
E

-0
7

1
.8

9
E

-0
7

1
1
/7

/1
3
 9

:0
5

1
1
/8

/1
3
 1

1
:0

0
4
.4

9
E

-0
8

7
.4

0
E

-0
8

4
.2

4
E

-0
8

1
1
/8

/1
3
 1

1
:0

2
1
1
/1

1
/1

3
 1

0
:5

8
1
.9

4
E

-0
7

3
.0

2
E

-0
7

1
.8

4
E

-0
7

1
1
/1

8
/1

3
 1

1
:1

0
1
1
/2

0
/1

3
 1

0
:0

2
4
.5

4
E

-0
7

6
.1

4
E

-0
7

4
.3

3
E

-0
7

1
1
/2

0
/1

3
 1

0
:0

5
1
1
/2

2
/1

3
 8

:5
8

4
.1

4
E

-0
8

5
.4

7
E

-0
8

3
.9

5
E

-0
8

1
1
/2

7
/1

3
 9

:0
0

1
1
/2

9
/1

3
 1

3
:0

4
2
.3

3
E

-0
8

2
.8

6
E

-0
8

2
.2

4
E

-0
8

1
2
/2

/1
3
 1

1
:3

2
1
2
/4

/1
3
 7

:3
1

1
.2

4
E

-0
7

1
.4

6
E

-0
7

1
.1

9
E

-0
7

1
2
/4

/1
3
 7

:3
3

1
2
/1

0
/1

3
 1

8
:5

2
3
.6

5
E

-0
8

4
.0

9
E

-0
8

3
.5

2
E

-0
8

1
2
/1

0
/1

3
 1

8
:5

5
1
2
/1

2
/1

3
 1

4
:0

2
1
.8

6
E

-0
7

2
.0

6
E

-0
7

1
.7

9
E

-0
7

1
2
/1

2
/1

3
 2

:1
5

1
2
/1

6
/1

3
 9

:3
3

7
.9

6
E

-0
8

8
.6

2
E

-0
8

7
.6

9
E

-0
8

1
2
/1

6
/1

3
 9

:3
5

1
2
/1

9
/1

3
 7

:5
4

1
.3

7
E

-0
7

1
.4

0
E

-0
7

1
.3

3
E

-0
7


	Field-Obtained Soil Water Characteristic Curves and Hydraulic Conductivity Functions
	Citation

	ABSTRACT

