
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2014

Electroencephalography(EEG) Data Collection and Processing Electroencephalography(EEG) Data Collection and Processing

through Machine Learning through Machine Learning

Jayshree Desai
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Applied Mechanics Commons, and the Systems and Communications Commons

Citation Citation
Desai, J. (2014). Electroencephalography(EEG) Data Collection and Processing through Machine
Learning. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/2160

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu, uarepos@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/295?utm_source=scholarworks.uark.edu%2Fetd%2F2160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.uark.edu%2Fetd%2F2160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2160?utm_source=scholarworks.uark.edu%2Fetd%2F2160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu

Electroencephalography (EEG) Data Collection and Processing through Machine Learning

Electroencephalography (EEG) Data Collection and Processing through Machine Learning

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

By

Jayshree Desai

Birla Institute of Technology and Science Pilani-Dubai

Bachelor of Engineering in Electronics and Communication Engineering, 2012

August 2014

University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Dr. Jingxian Wu

Thesis Director

____________________________________ _____________________________________

Dr. Baohua Li Dr. Jing Yang

Committee Member Committee Member

Abstract

Machine learning methods are an excellent way for understanding the neural basis of human

decision making. Some machine learning systems try to eradicate the need for human intuition in

data analysis whereas others embrace a collective approach between humans and machines. The

objective of this project is to collect Electroencephalography (EEG) signals through wireless

sensors, and the process the collected signals through machine learning methods. The EEG data

is collected using three EEG electrodes, each being the positive, negative and ground terminals

respectively. Since the signal measures in the unit of micro-volts it needs to be amplified using

amplifier circuit. This circuit consists of five stages, namely, the Instrumentation Amplifier, 60

Hz Notch Filter, 31Hz Low Pass Filter, Gain Stage, and Clamper Circuit. Each of these stages

contribute in their own way to amplify and also filter the noise from the EEG signal. The gain of

the entire circuit is about 5140 V/V. The EEG signal is observed on the cathode-ray oscilloscope

and the data is collected on an Arduino Uno microcontroller using the Hyperterminal software.

The data is sampled at a sampling rate of 838 Hz. Any remaining noise from the signal can be

removed by passing it through a digital low-pass filter, if required.

EEG data is collected from 10 people while they are made to concentrate on a particular thought.

The subjects were asked to imagine moving an object towards the direction „Right‟ for the first

150 data sets collected and then the same for the direction „Left‟ for another 150 data sets. All

the data was collected with complete supervision and without any kind of movement of the

subject during the collection process. This part of this data was then used to design a Machine

Learning model called Support Vector Machine (SVM) on Matlab, using which the data was

then processed. The data was divided into two sets, namely. The training data, and testing data.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
300 400 500 600 700

IN1Wavelength (nm)

k

Ellipsometry

Reference

One-third of the total data sets is used for training the SVM model and then the rest of the data

sets are used to test the accuracy of the model. Data from the 10 individuals is processed

individually and also after being mixed. The SVM model randomly selects the training and

testing data and accordingly gives results for the accuracy. Finally, results for the individual data

and mixed data are tabulated and presented in the following thesis.

Acknowledgements

I would like to sincerely thank Dr. Jingxian Wu for his invaluable mentorship and support

through my MS degree and giving me the opportunity to work on this project.

I would like to thank Dr. Baohua Li and Dr. Jing Yang for agreeing to serve as part of my

committee, and for the guidance and support they have offered throughout.

I would like to thank my co-partner Andrew Simms for his complete support and help in a part of

the project.

I would like to thank Iroshi (Ro) Windwalker (IRB/RSC Coordinator, University of Arkansas)

for helping me get the IRB Approval to collect EEG data from people.

I would like to appreciate all the help and support from my friends and colleagues Qing Guo, Ali

Ojutiku, Huong Tran, Vinith Bejugam, Israel Akingeneye, Quang Li, Venkatesan Rajagopalan,

Andrew Simms, M. Theerth Raj, Aric Fisher, Nikhil Basutkar, Shivendra Tripathi, and Rohit

Narala for volunteering to collect EEG data for the project.

Table of Contents

Chapter 1: Introduction ... 1

1.1 Introduction to Electroencephalography (EEG) .. 1

1.2 An Overview of the Thesis.. 3

1.3 Literature Study ... 7

1.3(A) Classification of Support Vector Machine ... 7

Chapter 2: EEG Signal Collection .. 10

2.1 Constructing the EEG Circuit ... 11

2.1(A) Hardware parts required to construct the EEG circuit ... 11

2.1(B) Compiling the Hardware together to form the EEG circuit 16

2.2 Collecting the EEG Data ... 24

Chapter 3: Machine Learning and Support Vector Machines (SVM) .. 26

3.1 Introduction to Machine Learning... 26

3.2 Introduction to SVM ... 26

3.2(A) Linear Classification of Binary Data ... 27

3.2(B) Non- Linear Classification for Binary Data ... 31

3.3 Experimental Design ... 34

Chapter 4: Results and Discussion .. 37

4.1 Results from the EEG Circuit.. 37

4.2 Results after Processing the EEG Signal using SVM ... 43

Chapter 5: Conclusion and Future Work .. 48

Bibliography ... 50

Appendix ... 52

1

Chapter 1: Introduction

1.1 Introduction to Electroencephalography (EEG)

EEG is the measure of the electrical activity inside a human brain. It measures the voltage

changes that are caused due to the ionic movement within the neurons of the brain. Clinically, it

is said that EEG records the spontaneous electrical activity taking place inside the brain. This

activity is monitored for a short period of time, example, 20-30 minutes. Some of the main

neurological diagnostic applications of EEG are in case of epilepsy, coma and brain death.

However, it is also used for studies of sleep and sleep disorders. This is can be done because of

the clear abnormalities observed in the EEG signals during these disorders. It can also be used to

diagnose tumors and strokes.

The electrical charge of the brain is maintained by billions of neurons that are electrically

charged by membrane transport proteins that pump ions across their membranes. There is

constant exchange of ions going on between the neurons and the extracellular milieu. Ions of

similar charge repel each other. When ions from many neurons are pushed out at the same time

they tend to push their neighbors who thereby push their neighbors, creating a wave. This

process is called volume conduction. When this wave of ions reaches the scalp and comes in

contact with the metal of the electrode it pushes or pulls electrons on the metal. The metal used is

a good conductor of electrons it causes is voltage difference between any two electrodes. The

recording of these voltage changes is what forms the EEG signal. The electric potential

generated by a single neuron is extremely small and hence cannot be picked up by the electrodes.

Therefore, EEG activity is always the summation of the synchronous activity of thousands or

millions of neurons with similar spatial orientation.

2

An EEG signal is measured in the range of micro volts (µV), making it a very small signal to be

observed on any instrument. Also it is divided into different types of signals based on the

frequency of the signal. Table 1.1 below shows the differentiation of EEG signals.

Table 1.1 Bands of EEG Signals

Band

Name

Frequency

Range (Hz)

Location of the signal Activity

Delta < 4 Found in the Frontal lobe in adults;

Posterior lobe in children

During slow sleep

range in adults and in

babies.

Theta 4-7 Found in locations that are not

related to the task at hand

During drowsiness and

idling in teens and

adults.

Alpha 8-15 Found on the posterior region of the

head on both sides.

When relaxing or

reflecting back on

thoughts.

Beta 16-31 Symmetrically found on both sides

of the head but most evidently

found in the frontal lobe.

During active thinking,

stress, focusing, high

alertness and

anxiousness.

3

Table 1.1 Bands of EEG Signals Cont.

Band

Name

Frequency

Range (Hz)

Location of the signal Activity

Gamma > 32 Found in the Somatosensory cortex. When two different

senses are combined,

example: sound and

sight.

Mu 8-12 Found in the Sensorimotor cortex "Shows rest state motor

neurons" [1].

From the above table it can be observed that the very small Delta and Theta EEG signals are

usually observed in people only while they are drowsy or asleep. The Alpha and Beta signals are

the ones observed when people are active and the high frequency gamma signals are observed

only in case of cross-modal sensory processing. This shows that the alpha and beta signals can be

most easily be collected from people. Hence, in this thesis we have concentrated on mainly

collecting the alpha and/or beta signals.

1.2 An Overview of the Thesis

This thesis deals with the collection of EEG signals and then processing them and using that data

to control a robot. The purpose of this research is to help the physically disabled people control

objects with just their brain. They can perform various actions for example, switching on the

television or moving things around by just strongly thinking about it. A technology like this is of

great importance as it can give complete independence to disabled people in their day to day life.

4

A brief review of the entire procedure used to collect and process the EEG data is explained

further.

A head band is constructed in order to collect the EEG signals. This band is made of a three

Disposable MR Conditional Cup Electrodes EEG sensors which are directly in contact with the

human head. The electrodes are worn using the International 10-20 system. Based on this system

one electrode is worn on either corner of the forehead and the third one is worn on the bone

behind the ear.

The range of EEG signal in a typical adult human is about 10 µV to 100 µV in amplitude when

measured from the scalp and is about 10-20 mV when measured using subdural electrodes.

Hence, in order to be able to view the EEG signal on a CRO (Cathode Ray Oscilloscope) an

amplifier circuit is required to be built. This circuit consists of three main stages; the pre-

amplification stage, the gain stage and a notch filter. It is constructed using two TL084 IC‟s, one

AD620AN Instrumentation amplifier and one notch filter. The overall gain of this circuit is 5140

V/V. The circuit has three inputs and one output. The three inputs are connected to the three

EEG electrodes and the output is connected to the oscilloscope. When a 12 V signal is supplied

to the circuit while the EEG head band is worn, it displays the amplified EEG signal on the

oscilloscope. The output of the circuit is connected to an Arduino UNO microcontroller. The

Arduino UNO and the series one XBee are used to collect the EEG signal data and communicate

it to the robot.

"An Arduino is a single-board microcontroller used to make applications involving interactive

objects more accessible"[2]. The XBee is a radio module that is "designed for point-to-point and

star communications at over-the-air baud rates of 250 kbits/s"[3]. These two together are used to

5

collect and then transmit the EEG data to the robot. The Hyperterminal software is used to

collect the EEG data from the Arduino connected to the output of the amplifier circuit. The data

is collected at a sampling frequency close to 1k Hz for about 3-4 seconds, which gives a total of

3000 data collected in each sample. A huge number of such samples are collected while strongly

thinking about taking a “Right” and taking a “Left” respectively. These samples are then

processed using the concept of SVM. This data is also filtered using a digital low pass filter

designed on Matlab. The sampling frequency used to design the low pass filter is 837 Hz, since

that is a close estimation of the actual sampling frequency at which the data is being collected.

The filter is designed using the „FDAtool‟ graphical user interface available in the signal

processing toolbox on Matlab.

As defined on Wikipedia [4], Machine learning is a branch of artificial intelligence that can be

used to construct and study systems that can learn from data. Taking the example of an email

message, a machine learning system can be trained to distinguish between spam and non-spam

messages and then after learning, it can be used to allocate new emails into the spam and non-

spam folders. The basis of machine learning consists of two steps, representation and

generalization. The representation learning algorithms preserves the information in their input

and then transforms it making it useful. In this step several data samples are trained and then

based on that they are classifications and predictions about the information are made. After

representation the learner has to then generalize from its experience. It has to accurately perform

on new tasks after experiencing a set of learning data. The training data belongs to an unknown

probability distribution and the learner builds a general model about this space, which helps it to

make sufficiently accurate predictions about new cases.Machine learning either tries to entirely

eliminate the need for human intuition during data analysis or it uses a combined approach of

6

both human and machine. However, it is impossible to completely eliminate human intuition,

since the system's designer has to specify how the data is represented and the mechanisms that

will be used to characterize the data.

As mentioned on the Wikipedia website[5], SVM is a supervised machine learning model that is

used to analyze data, recognize its pattern and then classify new data based on the analysis.

When a set of training data (having data points belonging to two different categories) is

processed using SVM, it constructs a model that distinguishes new data into either of the two

categories. This makes it a "non-probabilistic binary linear classifier"[5]. Data belonging to

different categories is divided by a definite wide gap in between the points. New samples of data

are then mapped into the same space, allocating them a side on either side of the gap depending

on the category they are predicted to belong to. Apart from performing linear classification,

SVM can also perform non-linear classification using the kernel trick, which implicitly maps the

inputs into high-dimensional feature spaces. In case of EEG, the linear classification is

performed.

A matlab code is written that processes all the data samples. Data is collected from 15 people

which is then processed. Each data set has about 150-200 EEG samples of thinking „Right‟ and

„Left‟ respectively. The EEG data is processed using a 5-fold cross validation method. Cross

validation also known as rotation estimation, is a model validation technique that is used to

determine if the results of a statistical analysis can generalize to a set of new data. It is mainly

used during prediction, to estimate the accuracy of a predictive model in practice. In case of a

prediction problem, the model is usually divided into a set of known data on which training is

run and another set of unknown data on which testing is performed. In a single fold cross

validation the data sample is divided into complementary subsets, performing training on one

7

subset and then testing on the other one. In order to reduce variability, several loops of cross

validation are implemented using different partitions, and the results are averaged over the loops.

For 5-fold cross validation the data is divided into five subsets, performing training on four

subsets and then testing one the fifth one. This process is repeated five times making each subset

the testing data once and the remaining four as the training data. After completing the 5-fold

cross validation process, the accuracy of the model is computed. This result is what gives us the

accuracy of the SVM model designed on Matlab.

1.3 Literature Study

1.3(A) Classification of Support Vector Machine

SVM is a classification method that separates data by constructing hyperplanes that separate

each class of data. It can perform classification as well as regression tasks for both continuous

and categorical variables. The categorical variables are usually replaced by a dummy variable,

which is either 0, or 1. The SVM uses a training algorithm that minimizes the error function and

hence constructing a hyperplane to classify the data. Based on this error function used, it is

divided in to four different types of groups:

1. "Classification SVM Type 1 (also known as C-SVM classification)"[6]:

The error function to be minimized for the SVM classification Type 1 is as follows:

1

2
w

T
w + C ξ

i

N

i=1

[6];

Subject to yi (w
T
ϕ(xi) + b) ≥ 1- ξi and ξi ≥ 0, i=1,….N[6].

Here, C= Capacity constant, w= vector of coefficients, and b= constant.

8

It is observed that the greater the value for C, the larger is the error. Hence, the C needs to be

chosen such that it reduces the error function.

2. "Classification SVM Type 2 (also known as nu-SVM classification)" [6]:

The error function to be minimized for the SVM classification Type 2 is as follows:

1

2
w

T
w – υρ +

1

N
 ξ

i

N

i=1

[6];

Subject to yi (w
T
ϕ(xi) + b) ≥ ρ - ξi and ξi ≥ 0, i=1,….N and ρ ≥ 0 [6].

3. "Regression SVM:

In this case there noise is added to the signal ("y= f(x) + noise" [6]). For any Regression model in

general the SVM is assigned to find a function for „f‟ that is capable of predicting how to classify

any new set of data. This can be implemented by training the SVM model on some initial sample

sets and then testing it on the new data. The training is done the same way as for the

Classification Type SVM. It is dived into two types based on the error function that is optimized.

a. Type 1 (also known as epsilon-SVM regression):

The error function minimized for this type is SVM is as follows:

1

2
w

T
w + C ξ

i

N

i=1

+ C ξ
i

N

i=1

*[6]; subject to,

w
T
ϕ(xi) + b - yi ≤ ε + ξi* [6]

yi - w
T
ϕ(xi) – b ≤ ε + ξi[6]

ξi, ξi* ≥ 0, i= 1,…N

9

b. Type 2 (also known as nu-SVM regression):

1

2
w

T
w – C{ υε +

1

N
 (ξ

i
 + ξ

i

N

i=1

*) }[6]; subject to,

(w
T
ϕ(xi) + b) - yi ≤ ε + ξi[6]

yi – (w
T
ϕ(xi) – bi) ≤ ε + ξi*[6]

ξi, ξi* ≥ 0, i= 1,…N; ε ≥ 0 [6]

There are also different types of Kernel Functions that can be used for designing a SVM Model.

“A Kernel function, represents the dot product between the input data points mapped into a

higher dimensional feature space by transformation ϕ” [6].

1. Linear: K(Xi, Xj) = Xi. Xj[6]

2. Polynomial: K(Xi, Xj) = (γXi. Xj+ C)
d
 [6]

3. RBF: exp(- γ |Xi. Xj|
2
) [6]

4. Sigmond: tanh (γXi. Xj + C) [6]

Here K(Xi, Xj) = ϕ(xi) . ϕ(xj) [6]

The kernel function chosen for this project is the RBF, as it is one of the most widely and

commonly used kernel function for designing a SVM model. “This is mainly because it‟s

localized and finite responses across the entire range of the real x-axis” [6].

10

Chapter 2: EEG Signal Collection

This chapter mainly contains the detailed explanation of all the equipment and hardware used

during the process of this experiment with an account of how each of them were used to achieve

the final results. The process of collecting EEG signals can be classified into three main parts.

The first and foremost step is to select the right kind of EEG electrodes. There are several types

of electrodes available in the market which can be used for different types of purposes. It is

essential to select the electrode that best suits the experiment and will be able to help extract a

strong signal from the brain. The next step is to build an EEG circuit that would amplify the EEG

signal and make is viewable on a Cathode Ray Oscilloscope. The EEG circuit itself is divided

into several sections which will explained subsequently in this chapter. This circuit not only

amplifies the signal but also removes some of the noise from it. After the circuit is ready and

tested, the final step is to collect the EEG data. This was collected using an Arduino UNO

microcontroller since it is easy to program and can also give a very high sampling frequency for

the signal collection. The entire process of these three main steps is elucidated at length in the

further sections of this chapter.

This chapter is divided into three major sections,

1. Constructing the EEG Circuit: This will be further divided into sub-sections each describing

the hardware parts that were used to construct the circuit, the process of assembling them

together and then lastly, testing the functionality of the circuit.

2. Verification of the signal for EEG: After compiling all the hardware together and a sample

signal was collected to test for EEG. It was then verified whether the signal contained any useful

EEG information.

11

3. Collecting the EEG data: This section comprises of a detailed summary of collecting the EEG

data and transmitting it wirelessly using an Arduino UNO and XBee. It explains how the

microcontroller was programmed to collect the data and then transmit it to another XBee.

2.1 Constructing the EEG Circuit

This section explains in depth how to construct a simple EEG circuit that will help in monitoring

the EEG signal on an oscilloscope. The circuit is constructed in a way that it can be used for

measuring both EEG and ECG (measure of the heartbeat). It uses three EEG electrodes, two for

measuring the change in voltage across the scalp and one is used as the ground terminal. This

project uses a minimum of three electrodes. In order to be able to use more than three electrodes,

several such EEG circuits need to be constructed and linked together. Constructing this circuit is

very reasonable economically.

2.1(A) Hardware parts required to construct the EEG circuit

Following is the list of all the parts needed to construct a simple EEG circuit with a brief

description of each part.

1. 1x Instrumentation Amplifier:

 AD620ANZ: The datasheet for the AD620 given by Digi-Key Corporation states that [7], the

AD620 is an instrumentation amplifier with low cost and high accuracy. It requires only one

external resistor to adjust its gain from 1 to 10,000. It has a 8-lead SOIC and DIP packaging

which is smaller as compared to the discrete designs and offers a lower power value of 1.3mA

maximum supply current. This makes is a perfect fit for battery-powered and portable

applications. AD620 has accuracy up to 40 ppm, a low offset voltage of max 50µV and a max

12

offset drift of 0.6µV/ºC. This makes it ideal for being used in precision data acquisition systems.

Also, its low noise, low input bias current and low power makes it perfectly suited for being used

in medical applications, for example EEG, ECG and noninvasive blood pressure monitors. The

AD620 can be used as a pre-amplifier because of its low input voltage noise. An instrumentation

amplifier can also be built using three operational amplifiers, but it very rare that it would give a

result as good as the AD620ANZ.

The connections diagram for the AD620ANZ is shown in figure 2.1 below.

Figure 2.1 Pin Diagram of AD620 Instrumentation Amplifier [7].

2. 2x Operational Amplifier:

TL084IN: As mentioned in the datasheet for the TL084 [8], it is a high-speed JFET input quad

operational amplifier. It is a monolithic integrated circuit incorporating high voltage JFET, and

bipolar transistors. It has a high slew rate, low input bias and offset current, and a low offset

voltage temperature coefficient. The pin connections diagram for TL084 is shown in figure 2.2

below.

13

Figure 2.2 Pin Connection Diagram for TL084 Op-Amp [8].

3. 1x Notch Filter- UAF42AP-ND:

 “The UAF42 is an universal active filter which can be used to configure a large range of low

pass, high pass, and band pass filter” [9]. “It uses an inverting amplifier and two integrators

having a classic state-variable analog architecture” [9]. The integrators consist of 1000pF

capacitors on the chip, cut down to 0.5%.

4. Capacitors

5. Resistors

6. 3x EEG Electrodes:

This circuit design uses three EEG electrodes, two for measuring the voltage across the scalp and

the third one is used as a ground electrode. The disposable cup EEG Ag/AgCl electrodes with a

cup size of 10mm are used. The disposable cups ensure the safety of the people and eliminate the

time spent in cleaning and disinfecting the electrodes.

14

7. 1x Breadboard:

A large enough breadboard is need to wire the entire circuit on.

8. Connecting Wires:

Several connecting wires of various sizes are required to make connections in the circuit on the

breadboard.

9. 2x Arduino UNO:

An Arduino UNO is the microcontroller which is used to collect the EEG signal data and then

transmit it to another arduino. It consists of 6 analog inputs, 14 digital input/output pins, a 16

MHz resonator, a USB connection, a power jack, an ICSP header, and a reset button. It is a self-

sufficient microcontroller and simply needs to be connected to a computer with a USB cable,

power it with an AC-to-DC converter or use with a battery. An arduino can receive inputs from a

variety of sensors and thereby control the surroundings such as lights, motors, and other

actuators. It can be programmed using the Arduino programming language. The figure 2.3 below

shows an image of the Arduino UNO used in this project.

Figure 2.3: An image of the Arduino UNO.

15

10. 2x XBee PRO:

A pair of series 1 XBee's are programmed on the Arduino and then used to collect the EED data

on one Arduino and then transmit it to the other arduino. It is a radio module which is used for

over-the-air communication at a baud rate of 250kbits/s. An XBee is perfect for applications that

need a low latency and predictable communication timing. It provides a rapid and robust point-

to-point, peer-to-peer, and multipoint/star configuration communication. It can be used instead of

a pure cable in case of simple serial communication or in a complex hub-and-spoke network of

sensors. The XBee multipoint RF modules increase wireless performance and make development

much easier. The figure 2.4 below shows the picture of the series 1 XBee used in this project.

Figure 2.4: An image of the series 1 XBee.

16

2.1(B) Compiling the Hardware together to form the EEG circuit

Figure 2.5 Schematic diagram of the overall EEG Circuit.

17

Figure2.6: PSpice model of the EEG Circuit.

Given above in figure 2.5 is the final schematic diagram of the EEG circuit, formulated on P-

Spice. This circuit has been slightly influenced from the ECG circuit given in the DIY

Instructables [10]. “The instrumentation amplifier is used in the beginning of the circuit after

which each box is a simple op-amp, used to construct the 60 Hz notch filter, the high-pass filter,

low-pass filter and the gain stage” [10].

18

The circuit is powered with a 12V Power supply from the frequency generator. To power the op-

amps with a -12V to +12V power supply connect positive terminal of the frequency generator to

the positive terminal of the breadboard and the negative terminal of the frequency generator to

the negative terminal of the bread board. The positive and negative terminals are also shorted and

that is connected to the ground terminal of the breadboard. The main goal of this circuit is to

retrieve EEG data by reducing the noise enough to obtain a good signal into the computer. The

signal will then be further passed through a digital low-pass filter to negate as much noise as

possible. This is done by designing a digital low-pass filter on Matlab. The filtered data is then

processed on matlab using SVM, which gives the accuracy of the data.

The EEG circuit is divided into several stages for compilation simplicity. Given below are the

division on the circuit into stages and an explanation of each stage:

1. Stage 1- Instrumentation Amplifier stage:

Figure 2.7: Connections for the Instrumentation amplifier.

19

The positive and negative EEG electrodes are connected to the two input pins (pin 3 and pin 2

respectively) of the AD620ANZ Instrumentation Amplifier. “The output is the difference

between the two input voltages multiplied with a gain value of” [10] 25.7 V/V (G). However, the

instrumentation amplifier is not perfect which results in a slight change in the output when the

inputs are offset the same by some amount. Considering an example from the DIY Instructables

[10], an ideal instrumentation amplifier with inputs 3.1V and 3.2V will give an output of

0.1V*G, whereas the real one will be influenced by the common offset, and will marginally

change the output. This change in the output value is not significant enough and can be

neglected.

The value of the resistor connected across pins 1 and 8 determines the gain of the

instrumentation amplifier. The datasheet for AD620 is attached in the abstract [7], from which

the formula for calculating the gain can be seen (G= 49.4k Ω/R1 + 1). In order to observe the

EEG signal a gain of about 25V/V is required. Hence, using the formula we can calculate the

value of the resistor (Rg= 2k Ω) which gives us a gain value of 25.7 V/V. Pin 7 is given the 12 V

power supply from the frequency generator and pin 5 is grounded. It is possible to build an

instrumentation amplifier using op-amps, but it is advisable to use an AD620 instead to get a

good reading.

20

2. Stage 2- 60Hz Notch Filter:

Figure 2.7: Connections for the Notch Filter.

“The biggest source of noise in the system will be centered at 60Hz” [10], whether you use an

external power supply or batteries. Due to this reason a notch filter has to be incorporated in the

circuit. It will negate as much interference as possible before we apply further gain to the circuit.

A second notch filter can be built at the end of the circuit too to final cut off any more

interference that may have been added to the circuit. The notch filter at the end can also be

replaced by a digital notch or low pass filter for simplicity of the circuit and also to get better

results.

21

3. Stage 3- 31Hz Low Pass Filter

Figure 2.8: Connections for the 31Hz Low Pass Filter.

“A low pass filter is built to filter out the frequencies that are above the alpha/beta/gamma

frequency range” [10]. Not filtering out these frequencies can lead to a good amount of noise in

our final output. It has a cut-off frequency of 31Hz.

22

4. Stage 4- Gain Stage:

Figure 2.9: Connections for the Gain Stage

“This section of the circuit has a quick high pass filter with a cut-off frequency of 1Hz (Fc=

1/2*pi*R13*C5) in the beginning” [10]. The high pass filter is built to get rid of some extra

unwanted noise. However, the main purpose of this circuit is to adjust the gain of the EEG circuit

using the 1M potentiometer. “The potentiometer is variable resistor, with the input connected to

the first pin and the output to the second pin and on turning the wiper the resistance varies

between 0 to 1M ohms” [10]. Adjust the potentiometer such that when viewing the EEG signal

without any body movement the voltage should not fluctuate off-screen. The amplitude of the

signal need not be at its highest value but at the same time it should not be too small that it

causes an error while digitally reading it on the computer. It is also important to make sure that

23

gain is not too high causing the signal to get clipped, as in such a case there is a possibility of

losing some important information. The gain of the EEG Circuit excluding the instrumentation

amplifier is calculated to be 200.

5. Stage 5- Clamper Circuit:

Figure 2.10: Connection diagram for the Clamper Circuit.

The voltage of the signal obtained at the end of the gain stage has some values below 0 Volts

which cannot be read by the arduino. The Arduino UNO reads all values below 0 Volts as zero,

this can completely change the signal causing the loss of some important EEG data. Hence, a

clamper circuit needs to be added to the end of the EEG circuit as it shifts the entire signal up

such that all the peaks are above 0 Volts. The output from the clamper circuit is the final EEG

signal that is seen on the oscilloscope.

24

Once the entire circuit is built it needs to be tested before proceeding to the step of collecting

EEG signals. The results from testing each stage of the circuit is explained in detail in the results

and discussion chapter (chapter 4).

2.2 Collecting the EEG Data

After observing the signal on the oscilloscope, the EEG data is collected using the arduino and

XBee. The XBee is programmed using the Arduino to collect samples of the EEG signal. The

sampling frequency is 838Hz precisely, which is very close to 1K Hz, a very good sampling

frequency. The Arduino code used to program the XBee is given in the Appendix.

Firstly, the baud rate of the XBee is set to 115200 and the same baud is set in the code too. The

sampling frequency is set to 838 Hz and the sampling time is set to 3.5 seconds. So, each set of

data contains 3000 (838*3.5) samples of data. This code collects 100 such sets of data with 10

sets collected continuously. After every 10 sets of data the reset button on the arduino needs to

be pressed to start the next set of data collection. It takes 35 seconds to collect 10 sets of data.

For this thesis, 250 sets of data were collected while thinking of the left and right directions

respectively. Such 250 sample sets were collected twice using two different collection

techniques.

In the first technique, 250 data sets of thinking right were collected all together, with and interval

of 2-3 minutes after every 50 sets. A 10 minute break was taken then taken, after which 250 data

sets of thinking left were collected again with a 2-3 minute break after every 50 sets. The second

technique followed almost the same procedure except that after every 50 sets of data collected

the thought was changed. For example, if 50 sets of thinking right were collected first, then 50

sets of thinking left would be collected after that with a 2-3 minute interval in between. The

25

software used to collect the signal is called HyperTerminal. Its saves the data into a notepad file

with commas separating each value and every set of data starting from the next line.

The next step after collecting all this data is to process it and check its accuracy. The SVM

algorithm is used to process the data. A detailed explanation of this algorithm is given in the

following chapter.

The reason for collecting the data using two different techniques is to check how each technique

affects the accuracy of the SVM algorithm. This would give an idea as to what technique should

be used to collect the data to be finally processed. An IRB approval is taken to test this device on

people and data is collected from 8 different people, asking them to think both left and right.

26

Chapter 3: Machine Learning and Support Vector Machines (SVM)

This chapter consists of the basics of Machine Learning, concentrating on the SVM algorithm. It

give a brief introduction of machine learning and then explains in detail about SVM.

3.1 Introduction to Machine Learning

Machine learning is a branch of artificial intelligence that deals with the construction and study

of systems that can be trained using data. Taking the example of an email message, a machine

learning system can be trained to distinguish between spam and non-spam messages and then

after learning, it can be used to allocate new emails into the spam and non-spam folders. The

basis of machine learning consists of two steps, representation and generalization. The

representation learning algorithm s preserves the information in their input and then transforms it

making it useful. In this step several data samples are trained and then based on that they are

classifications and predictions about the information are made. After representation the learner

has to then generalize from its experience. It has to accurately perform on new tasks after

experiencing a set of learning data. The training data belongs to an unknown probability

distribution and the learner builds a general model about this space, which helps it to make

sufficiently accurate predictions about new cases.

3.2 Introduction to SVM

SVM is a state-of-art classification method introduced in 1992 by Boser, Guyon and Vapnik”

[11][12]. “The SVM classifier is widely used in bioinformatics (and also other disciplines) due to

its high accuracy, ability to deal with high dimensional data such as gene expression, and ,

flexibility in modeling diverse sources of data”[11][13]. “A SVM belongs to the general class of

27

kernel methods” [11][14][15], an algorithm which is dependent on data only through dot-

products. In such a case, one can replace the dot product with a kernel function that can compute

the dot product in a high dimensional feature space. As inferred from the User‟s Guide SVM by

Asa Ben-Hur, and Jason Weston published in 2010 [11], there are two main advantages of this

method: firstly, the fact that it can develop non-linear decision boundaries from techniques used

for linear classifiers; and secondly, kernel function permit user to classify data that have no

fixed-dimensional vector space representation.

3.2(A) Linear Classification of Binary Data

The description given below has been obtained from the work by Tristan Fletcher, published in

2009 [16]. Let there be L training points, with input xi each having D attributes and belonging to

one of the two classes yi= 0 or 1. Hence, the training data if of the form:

{xi, yi} where i=1,.....,L; yi ϵ {-1, 1}; x ϵ R
D

, where D is the dimensionality [16](3.1)

The data here is assumed to be linearly separable, that is a line can be drawn on the graph of x1

vs x2 when D = 2, and a hyperplane on the graphs of x1, x2....xD when D > 2, to separate the two

classes. “The hyperplane can be described by the equation, w.x + b = 0, where” [16]

 “w is the normal to the hyperplane”[16].

 “b/||w|| is the perpendicular distance from the hyperplane to the origin”[16].

28

Figure 3.1: Hyperplane through Linearly separable classes [16].

The data points located closest to the hyperplane on either side are called Support Vectors. SVM

aims at positioning the hyperplane in a way that it is as far as possible from the closest data point

on either side. This means that the distance between the support vectors and the hyperplane must

be maximized. Referring to figure 3.1, it can be said that enforcing SVM cuts down to choosing

values for w and b such that the training data can be represented as:

xi . w + b ≥ +1 for yi = +1 [16] (3.2)

xi . w + b ≤ -1 for yi = -1 [16] (3.3)

Together these equations can be written as,

yi(xi . w + b) -1 ≥ 0 ∀i [16](3.4)

29

From the above equations it can be implied that the planes H1 and H2 on which the Support

Vectors (i.e. the data points closest to the hyperplane) lie can be represented using the following

equations:

xi . w + b = +1, for H1[16] (3.5)

xi . w +b = -1, for H2[16] (3.6)

As, shown in figure 3.1, the distance from H1 to the hyperplane is represented by d1 and from H2

to the hyperplane is d2. Since, the hyperplane is equidistant from both H1 and H2, d1=d2 (called

the SVM‟s margin). This margin is what needs to be maximized in order to place the hyperplane

as far as possible from the Support Vectors.

The margin is calculated to be 1/||w|| using simple vector geometry. “Maximizing it subject to the

constraint in equation (3.4) is equivalent to finding” [16]:

 min ||w|| such that yi(xi . w + b) -1 ≥ 0∀i [16] (3.7)

Equation (3.6) can also be written as:

 min
1

2
||w|| such that yi(xi . w + b) -1 ≥ 0 ∀i [16] (3.8)

“In order to minimize the constraints, a set of Lagrange multipliers α need to be allocated to

them, such that αi ≥ 0 ∀i” [16]:

Lp ≡
1

2
||w||

2
– α[yi(xi . w+ b) – 1 ∀i] [16]

 ≡
1

2
||w||

2
– α

i
 [y

i
 xi . w+b -1]

L

i=1

[16]

30

 ≡
1

2
||w||

2
- α

i
y

i
 xi . w+b

L

i=1

+ α
i

L
i=1 [16](3.9)

The values for w, b and α need to be found in equation (3.9) such that w and b minimize and α

maximizes the equation. This can be achieved by differentiating Lp with respect to w and b and

setting that to zero.

∂Lp

∂w
=0 ⇒w= α

i
y

i
xi

L

i=1

[16](3.10)

∂Lp

∂b
=0 ⇒ α

i
y

i

L

i=1

 = 0 [16](3.11)

Substitute equations (3.10) and (3.11) in (3.9) in order to formulate a new equation LD, which

needs to be maximized as it is dependent only on α.

LD ≡ 𝛼𝑖
𝐿
𝛼=1 -

1

2
 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗𝑖 ,𝑗 such that αi ≥ 0 ∀i , 𝛼𝑖𝑦𝑖 = 0𝐿

𝑖=1 [16]

 ≡ αi
L
α=1 -

1

2
 αiHijαji,j , where Hij≡ yiyjxi . xj [16]

 ≡ αi
L
α=1 -

1

2
α

T
Hα such that, αi ≥ 0 ∀i , αiy

i
=0L

i=1 [16] (3.12)

Hence, we need to find:

maxα[αi
L
α=1 -

1

2
α

T
Hα] such that, αi ≥ 0 ∀i , and αiy

i
=0L

i=1 [16](3.13)

Solving the above equation gives the values for 𝛼, and w when substituted in (3.10).

Calculating the value for b:

Let xS be any data point that satisfies (3.11). Hence, it will be for the form:

31

yS(xS . w + b) = 1 [16] (3.14)

Substituting this in (3.10), we get:

yS (αmy
m

xm . xS+ bmϵS) = 1[16] (3.15)

Here, S is the set of indices of Support Vectors and it can be obtained by determining the indices

i (where αi> 0). Then, multiply (3.15) by yS throughout, and from (3.2) and (3.3) let yS
2
 = 1.

 yS
2
(αmy

m
xm . xS+ bmϵS) = yS[16]

b= yS − αmy
m

xm . xSmϵS [16] (3.16)

Equation (3.16) can also be written using the overall average of the support vectors in S.

b=
1

Ns
 (y

S - ∑α
m
y

m
x

m
. x

S
)sϵS [16] (3.17)

Solving equations (3.13) and (3.17) give the values for w and b, the two parameters that define

“the hyperplane‟s optimal orientation and hence the structure for the Support Vector Machine”

[16].

3.2(B) Non- Linear Classification for Binary Data

This theorem has also been obtained from the work by Tristan Fletcher, published in 2009 [16].

Section 3.2(A) explained the method for constructing an SVM structure for linearly separable

data points. But in the real world most of the data is not linearly separable. Hence, a

methodology for constructing a SVM structure for non-linear data is explained in this section. A

positive slack variable ξi, i= 1,...L, needs to be introduced in equations (3.2) and (3.3), making

the equations as follows:

32

xi . w + b ≥ +1 - ξi for yi = +1 [16] (3.18)

xi . w + b ≤ -1+ ξi for yi = -1 [16], where ξi ≥ 0 ∀i (3.19)

The above equations can be combined into a single equation as follows:

yi(xi . w + b) -1+ ξi ≥ 0 ∀i ,where ξi ≥ 0 ∀i [16]

Figure 3.2: Hyperplane through two non-linearly separable classes [16].

In case of non-linear data, the data can be scattered anywhere in the plane and hence it is not

possible to form a hyperplane to divide the data. In this case, the soft margin method is used to

choose a hyperplane that divides the data points as cleanly as possible along with maximizing the

distance to the nearest data point. In this way the number of miscalculations can be reduced. In

order to do so the following equation is used as the objective function:

min
1

2
||w||

2
 + C ξ

i

L
i=1 such that yi(xi . w + b) -1+ ξi ≥ 0 ∀i [16] (3.20)

33

Here, the trade-off between the slack variable penalty and the margin size is regulated by the

variable C. Lagrange Multipliers are used to solve the above equation (3.20) along with the given

constraint.

Lp ≡
1

2
||w||

2
 + C ξ

i

L
i=1 – α

i
[y

i
(x

i
. w + b) -1+ξ

i

L
i=1] - µ

i
ξ

i

L
i=1 [16] (3.21)

The above equation (3.21) is then differentiated with respect to w, b, and ξi, resulting in the

following:

∂Lp

∂w
=0 ⇒w= αiyi

xi
L
i=1 [16](3.22)

∂Lp

∂b
=0 ⇒ αiyi

L
i=1 = 0[16](3.23)

∂Lp

∂ξ
i

=0 ⇒ C = αi + µi[16](3.24)

Using the above equations, we can formulate LD, as done for the linear data points. LD for non-

linear data has the same form as for the linear data. Now, combining equation (3.24) and µi ≥ 0

∀i, signifies that α ≤ C. Therefore, we have to find the following:

maxα [∑αi -
1

2
α

T
Hα] such that 0 ≤αi ≤ C ∀i and ∑αi yi = 0, where L<i≤1 [16](3.25)

“The value for „b‟ is calculated the same way as it was done for linear data in section

3.2(A)”[16], except that the group of support vectors used are found by determining the values of

indices i where 0 ≤αi ≤ C. Hence, the final structure of Non-Linear SVM is attained using this

procedure.

34

3.3 Experimental Design

SVM has been used to classify the EEG data collected using the EEG Headband constructed.

This section will give an explanation of the SVM structure designed and how the analysis is

done. The SVM design is made using Matlab coding. A function is written to implement SVM

on the data collected (attached in the Appendix). The data collected is firstly divided into two

sets, the Training data set (2/3
rd

 of the total data sets) and the Testing data set (1/3
rd

 of the total

data sets). The training data set is used to train the SVM design. Using this data set the structure

for SVM is constructed. Once the SVM has been designed, the testing data set used to test if the

SVM is correctly designed and gives the results as required. This is analyzed by checking the

accuracy SVM.

The SVM design was made using the power spectral density of the data. Discrete Fourier

Transform (DFT) was implemented on time domain data to convert it to frequency domain using

a code written on Matlab. The following equation is used to perform Discrete Fourier Transform

on the data:

X(k) = x n N
n=1 ω , where ω = e-2πj/N (3.26)

Then the Power Spectrum Density (PSD) is computed using the equation given below:

Sxx =
1

Fs*N
 |X(k)|

2
 (3.27)

After converting the data to frequency domain it is then processed using SVM. The data that has

been collected in real time is non-linear and hence the methodology of designing a SVM

explained in section 3.2(B) is implemented to form the SVM structure. In this project, we have

collected 10 sets of data from 10 different people while they think of the direction 'Right' and

(n-1)(k-1)

N N

35

'Left' respectively. Each data set has 150 trials in it, i.e. 150 trials of thinking 'Right and 150 of

thinking 'Left'. Each trail contains 3000 data valuesat a sampling rate of838 Hz. The first step is

to find the PSD of the raw data. This is done using the Matblab code to convert time domain

signal to frequency domain given in the Appendix of the thesis. The PSD is computed using the

„periodogram‟ function in Matlab. As explained on the Mathworks website [17]:

“Pxx= periodogram(x,window,nfft); Here nfft points are used in the discrete Fourier transform

(DFT)” [17]. If the value of nfft is greater the length of the signal, the original data x is zero-

padded to length nfft. But, if nfft has a value lesser than the signal length, x is wrapped modulo

nfft and a summation is taken using the datawrap. Taking an example of the input signal [1 2 3 4

5 6 7 8] with a nfft of 4, the periodogram result will be sum([1 5; 2 6; 3 7; 4 8], 2). In the code

used for this thesis the value for nfft is taken to be Fs/2=419. The periodogram function

computes one-sided PSD and hence it is multiplied by 2 to get the two-sided PSD. Hence, after

computing the PSD the dimension for the input data and w vectors is equal to Fs/2, which is 419.

After computing the PSD of the original EEG data, one-third of the samples were taken as

testing data and two-third were used for training the SVM. After performing PSD on the data it is

used to design the SVM using the equation 3.28 given below.

The following equation is used to design the structure of the SVM:

argmin
w,ξ,b

 {
1

2
||w||

2
 + C ξ

i
n
i=1 } subject to yi(w . xi –b) ≥ 1 - ξi, ξi ≥ 0 for all i=1,...n (3.28)

 Solving this equation gives the position of the hyperplane that separates the data points. The first

step to solve the equation is to optimize „w‟. This is done by minimizing ||w|| subject to the given

constraint: yi(w . xi –b) ≥ 1 - ξi. After minimizing „w‟ the next step is to find the optimum value

36

for „C‟ and „ξi‟. The dimension of w is 419, which is also the dimension for the input vector x. In

order to do so, a procedure known as 5-Fold Cross Validation is used.

Figure 3.3: Experimental Design for 5-Fold Cross Validation.

Figure 3.3 above shows a pictorial representation of the 5-Fold Cross Validation method. In this

method the training data sets are further divided into five equal parts, where one part is used as

testing data set and four parts are used for training. Using this the value for C and ξi is

determined. This step is repeated five times, making each of the 1/5
th

 data set the testing data set

once. Hence, it will give five values for C and ξi. Finally, the best or most optimum value is

chosen to design the SVM hyperplane. The values for C and ξi are substituted in equation (3.28)

to find the position of the dividing hyperplane. After this, the final step is to test the design of the

SVM one the data in the testing data set and find the accuracy of the design.

Thinking
'Right'/'Left'

Training Data

(2/3rd Data
Sets)

1/5th Data
Sets

1/5th Data
Sets

1/5th Data
Sets

1/5th Data
Sets

1/5th Data
Sets

Testing Data

(1/3rd Data
Sets)

37

Chapter 4: Results and Discussion

The results obtained from the experimental procedure have been shown in this chapter. They are

in the same order as the procedure. The first section has the results from the EEG circuit after the

signal is collected and the second section has results of the signal after it is processed using

SVM.

4.1 Results from the EEG Circuit

After constructing the circuit as instructed in section 2.1 of the chapter 2, the next step is to test

it. The output at the end of each stage of the EEG circuit is verified by connecting the probes of

the oscilloscope at the end of each stage. These observations have been graphed and explained

further in this section.

 Stage 1: Instrumentation Amplifier:

Figure 4.1: Instrumentation amplifier Gain.

38

Figure 4.2: Output from the Instrumentation Amplifier

The figure 4.2 above shows the output from the instrumentation amplifier when the EEG

electrodes are worn on the scalp. This signal has a small amplitude since not enough gain has

been applied to the signal at this stage of the circuit. The frequency is almost 130 Hz which

shows that there is a lot of noise added to the signal. This noise will be negated further in the

circuit. The gain of the instrumentation amplifier is shown in figure 4.1 above. This is the screen

shot from the oscilloscope when given a sine wave as input to the instrumentation amplifier. The

wave in blue is the input and the wave in yellow is the amplified output.

39

Stage 2.3: Notch Filter and Low Pass Filter

 (a) (b)

Figure 4.3: (a) Output at the end of the Notch Filter; (b) Output from the Low Pass Filter.

The out from the 60Hz notch filter and the 31Hz low pass filter is shown in figure 4.3(a) and

4.3(b) respectively. This basically shows that a great portion of the noise has been removed from

the original EEG signal. In the next section of the circuit the signal will pass through the gain

stage to amplify it further.

40

Stage 4: Gain Stage

Figure 4.4: The overall gain of the EEG circuit.

The overall gain of the circuit is 5140 V/V (G= 25.7 V/V * 200 V/V) . This gain value will be

multiplied to the voltage difference between the negative and positive EEG electrodes. The

yellow wave in figure 4.4 is a sine wave input and the blue colored wave is the amplified

version. The output at the end of the gain stage is shown below in figure 4.5(a). The slight

fluctuation in the signal is due to movement of the right arm. When the arm is moved up a

positive peak is observed, and when it moves down the peak is negative.

41

4.5(a): EEG Signal from the gain stage with arm movement.

Figure 4.5 (b): Filtered EEG signal from the gain stage with arm movement.

Figure 4.5(b) is the filtered version of the signal in figure 4.5(a). The signal from the

oscilloscope is passed through a digital low pass filter designed on Matlab. It is designed using

the 'fdatool' on Matlab. The sampling frequency (Fs) used is 838Hz, which is the sampling

42

frequency at which the data is collected on the arduino. The cutoff frequency used is 31Hz, since

most of the signal collected should be below 31Hz (theta, alpha, and beta waves).

It is evident from the figure that the negative part of the signal is clipped off as the arduino uno

cannot read any values below zero. This causes loss of some EEG data, which is why the signal

need to be offset using a clamper circuit. So, a clamper circuit is added at the end of the gain

stage and the final plot of the signal is shown further in the section.

Stage 5: Clamper Circuit

Figure 4.6: Testing the output of the clamper circuit with a sine wave.

The clamper circuit was built as per the circuit given in section 2.1(B) of chapter 2 and a sine

wave it passed through it to check the output. The output of the clamper circuit is shown in

figure 4.6 above. The yellow colored wave is the given input, and as observed it has a few data

points that lie below zero. The blue colored wave is the output which is offset and its reference

43

axis has been brought up, bringing all the data points above the zero axis. Hence, the arduino can

now read all the data values of the signal.

Figure 4.7: Final EEG signal output from the EEG circuit.

Figure 4.7 displays the EEG signal after being offset using the clamper circuit. As you can see in

the image, now the entire EEG signal has been shifted above the zero axis. The two extreme

peaks seen in the image is due to the right to left eye movements. The first peak is seen when the

eye moves right and the second peak is seen when it moves left.

4.2 Results after Processing the EEG Signal using SVM

This section shows the results from processing the EEG data collected using SVM. EEG signals

were collected from several people while they were asked to think about the directions „Right‟

and „Left‟ respectively. They had to concentrate on visualizing any object moving toward the left

or right without it actually moving. Data was collected from 10 individuals at different times,

each data set having 150 samples of each direction. These samples were processed individually

as well as after mixing all of them together and the accuracy of the SVM model was determined.

44

All the values have been shown in the table 4.1 below.

Table 4.1: Results from processing the EEG data using SVM.

Sr.

No.

Data Set

(Thinking

„Left‟ and

„Right‟)

Unknown

Parameters

Error

Rate

(%)

Training

Accuracy

(%)

Cross

Validation

Accuracy

(%)

Test

Accuracy

(%)

1 300

Samples

from

Individual 1

Best C = 12.8071

Best ξ = 30.8766

28 100 72 83

2 300

Samples

from

Individual 2

Best C = 104.505

Best ξ = 9.4877

21.5 100 78.5 81

3 300

Samples

from

Individual 3

Best C =73.6998

Best ξ = 7.846

16 100 84 88

4 300

Samples

from

Individual 4

Best C = 33.1155

Best ξ = 15.7998

26 100 74 71

45

Table 4.1: Results from processing the EEG data using SVM Cont.

Sr.

No.

Data Set

(Thinking

„Left‟ and

„Right‟)

Unknown

Parameters

Error

Rate

(%)

Training

Accuracy

(%)

Cross

Validation

Accuracy

(%)

Test

Accuracy

(%)

5 485

Samples

from

Individual 5

Best C = 141.175

Best ξ = 73.6998

2.41 100 97.5192 97.5155

6 300

Samples

from

Individual 6

Best C = 6.3598

Best ξ = 21.1153

20.50 100 79.5 76

7 300

Samples

from

Individual 7

Best C = 0.522

Best ξ = 11.0232

27.5 100 72.5 75

8 300

Samples

from

Individual 8

Best C = 3.4903

Best ξ = 127.7404

4.5 96.125 95.5 94

46

Table 4.1: Results from processing the EEG data using SVM Cont.

Sr.

No.

Data Set

(Thinking

„Left‟ and

„Right‟)

Unknown

Parameters

Error

Rate

(%)

Training

Accuracy

(%)

Cross

Validation

Accuracy

(%)

Test

Accuracy

(%)

9 300

Samples

from

Individual 9

Best C = 15.6426

Best ξ = 11.473

30 100 70 72

10 305

Samples

from

Individual

10

Best C = 16.4446

Best ξ = 62.8028

18.64 100 80.9756 84

11 3190

Samples

from all 10

Individuals

Best C = 2.7183

Best ξ = 11.9413

28.13 99.9061 71.9249 71.6038

The table 4.1 displays the values for the best C and ξ, error rate, training accuracy and test

accuracy for the SVM model designed to process the EEG data. The C and ξ is obtained using 5-

fold cross validation. The cross validation accuracy for each trial is also given, which determines

47

how accuracy of C and ξ. The training accuracy determines the efficiency of training the SVM

model and the test accuracy determines how accurate the model is at distinguishing the new data

as 'Right' or 'Left. The best test accuracy obtained from an individual is observed to be

97.5155% and the lowest is 71%. The average of all the testing accuracies from individual

people is 80%. The error rate decreases as the testing accuracy increases, which means that the

best result has the least error rate (0.024). The data collected from each individual was then

mixed together and then processed using SVM. The testing accuracy for the mixed data is

71.6038%.

There is a great difference between the highest and the lowest test accuracy from individual

people. This could be because thinking about the direction 'Right' or 'Left' is very vague. Each

person has their own different way of thinking about the direction. Which is also why when the

data from different people is mixed the test accuracy decreases. Also, there were external factor

that could have caused error, like noise in the room, slight noise from the EEG circuit, the EEG

electrodes not being placed in the perfect position on the scalp. These factors could affect the

accuracy of the data collected. The number of EEG sensors used is three, which is the minimum

number of sensors to be used for an EEG analysis. Hence, they are not able to sense a great

amount of EEG signals. All these factors together justify the results shown in table 4.1.

48

Chapter 5: Conclusion and Future Work

This thesis describes the method of constructing an EEG Headband that senses EEG signals

when worn on the scalp. The Headband is constructed using three EEG Ag/AgCl electrodes. An

amplifying circuit is constructed in order to amplify the EEG signals and view them on a

Cathode Ray Oscilloscope. These signals are then collected using a microcontroller and

transmitted to another microcontroller used to control a robot. Data from the EEG signals is

collected and also processed using the Machine Learning algorithm called Support Vector

Machine. Data was collected from 10 individuals at different times, where they were asked to

think strongly about moving an object to the „Right‟ and „Left‟ respectively, without actually

moving it. About 150-250 data samples for each direction were collected from each individual.

They were processed using SVM individually as well as after mixing all the data together. The

model is designed using Matlab. The results prove to give an accuracy of 71.6038% for the

mixed data and average of 82% for the individual data sets. The accuracy obtained is proved to

be good which implies that the model designed is efficient.

The future work for this project can be divided into two parts. One part could be to expand the

EEG headband to more than just three electrodes. Several EEG circuits will have to be

constructed for that as each circuit takes in only two input electrodes and one ground electrode.

All the circuits can be made on a single Printed Circuit Board (PCB) for as many EEG electrodes

that one needs to use as that would reduce the noise in the signal. Having more electrodes would

also help collect a stronger EEG signal which would also improve the result after processing the

signal using SVM. The second part could be to increase the sampling frequency of transmitting

the EEG signal from the headband to the robot. The frequency achieved now is about 20-50 Hz,

which is very less for the robot to be able to detect if the signal is for moving „Right‟ or „Left‟.

49

To overcome this problem, we used wired connection to transmit the signal to the robot instead

of wireless and could achieve a sampling frequency of 837 Hz.

50

Bibliography

[1] H. GASTAUT, "Electrocorticographic study of the reactivity of rolandic rhythm," Rev.

Neurol. (Paris), vol. 87, pp. 176-182, 1952. \

[2] "Arduino Project," 31 12 2013. [Online]. Available: http://www.arduino.cc/.

[3] Digi International Inc., "www.digikey.com," 2006-2011. [Online]. Available:

http://www.digi.com/pdf/ds_xbeemultipointmodules.pdf

[4] "Machine Learning," Wikipedia, 04 June 2014. [Online]. Available:

http://en.wikipedia.org/wiki/Machine_Learning

[5] "Support Vector Machine," Wikipedia, 20 June 2014. [Online]. Available:

http://en.wikipedia.org/wiki/Support_Vector_Machine.

[6] StatSoft, Inc., "Electronic Statistics Textbook. Tulsa, OK," 2013. [Online]. Available:

https://www.statsoft.com/textbook/support-vector-machines.

[7] Analog Devices, Inc., "www.digikey.com," 2003-2011. [Online]. Available:

http://www.analog.com/static/imported-files/data_sheets/AD620.pdf.

[8] Texas Instruments, "www.ti.com," February 1977-Revised Januray 2014. [Online].

Available: http://www.ti.com/lit/ds/symlink/tl084m.pdf.

[9] Texas Instruments, "www.ti.com," July 1992-Revised October 2010. [Online]. Available:

http://www.ti.com/lit/ds/symlink/uaf42.pdf.

[10] C. Henry, "http://www.instructables.com/," 22 June 2012. [Online]. Available:

http://www.instructables.com/id/DIY-EEG-and-ECG-Circuit/.

[11] A. Ben-Hur and J. Weston, "A user‟s guide to support vector machines," in Data Mining

Techniques for the Life SciencesAnonymous Springer, 2010, pp. 223-239.

[12] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classifiers.

In D. Haussler, editor, 5th Annual ACM Workshop on COLT, pages 144–152, Pittsburgh, PA,

1992. ACM Press.

[13] B. Sch¨olkopf, K. Tsuda, and J.P. Vert, editors. Kernel Methods in Computational Biology.

MIT Press series on Computational Molecular Biology. MIT Press, 2004.

51

[14] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge UP,

Cambridge, UK, 2004.

[15] B. Sch¨olkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[16] T. Fletcher, "Support vector machines explained," Tutorial Paper., Mar, 2009.

[17] The MathWorks, Inc, "www.mathworks.com," The MathWorks, Inc, 1994-2014. [Online].

Available: http://www.mathworks.com/help/signal/ref/periodogram.html.

52

Appendix

Code to collect data using the Arduino UNO

int number = 10;

int samples = 838;

int seconds = 3.5;

int sensorPin = A0; // select the input pin for the potentiometer

bool off = false;

void setup() {

 // declare the ledPin as an OUTPUT:

 Serial.begin(115200);

}

void loop() {

 // read the value from the sensor:

 while(off)

 {

 }

 getValues();

 off = true;

}

void getValues(){

 int time = micros();

 for(int j = 0;j<number;j++){

 Serial.print("data");

 Serial.print(j+1);

 Serial.print("=[");

 for(int i =0; i<samples*seconds-1; i++){

53

 Serial.print(micros()-time);

 Serial.print(", ");

 Serial.print(analogRead(sensorPin));

 Serial.print(", ");

 }

 Serial.print(micros()-time);

 time = micros()-time;

 Serial.print(", ");

 Serial.print(analogRead(sensorPin));

 Serial.println("];");

 Serial.println("");

 }

}

54

Matlab Code for Low Pass Filter:

Fs = 838;

number = 10;

%insert data matrices here

data1=[];

data2=[];

data3=[];

data4=[];

data5=[];

data6=[];

data7=[];

data8=[];

data9=[];

data10=[];

Y = zeros(number,3000);

G1 = 5.0/1024.0;

G2 = 25.7

G3 = 200

%G = G1*G2*G3;

G = 5.0/(1024.0*200*25.7)

%G = 200*25.7

i = 1:2:length(data1);

time = data1(i)/1e06;

i = 2:2:length(data1);

data1 = data1(i)*G;

data1 = data1 - mean(data1);

Y(1,:) = filter(Hd1,data1);

data2 = data2(i)*G;

data2 = data2 - mean(data2);

Y(2,:) = filter(Hd1,data2);

data3 = data3(i)*G;

data3 = data3 - mean(data3);

Y(3,:) = filter(Hd1,data3);

data4 = data4(i)*G;

data4 = data4 - mean(data4);

Y(4,:) = filter(Hd1,data4);

data5 = data5(i)*G;

55

data5 = data5 - mean(data5);

Y(5,:) = filter(Hd1,data5);

data6 = data6(i)*G;

data6 = data6 - mean(data6);

Y(6,:) = filter(Hd1,data6);

data7 = data7(i)*G;

data7 = data7 - mean(data7);

Y(7,:) = filter(Hd1,data7);

data8 = data8(i)*G;

data8 = data8 - mean(data8);

Y(8,:) = filter(Hd1,data8);

data9 = data9(i)*G;

data9 = data9 - mean(data9);

Y(9,:) = filter(Hd1,data9);

data10 = data10(i)*G;

data10 = data10 - mean(data10);

Y(10,:) = filter(Hd1,data10);

figure(1);

title('Thinking Right');

hold on

subplot(2,2,1);

plot(time,Y(1,:),'r','linewidth',2);

title('EEG Signal 1');

subplot(2,2,2);

plot(time,Y(2,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('EEG Signal 2');

subplot(2,2,3);

plot(time,Y(3,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('EEG Signal 3');

subplot(2,2,4);

plot(time,Y(4,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('EEG Signal 4');

56

figure(5);

plot(time,Y(5,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('Filtered Data');

figure(6);

plot(time,Y(6,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('Filtered Data');

figure(7);

plot(time,Y(7,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('Filtered Data');

figure(8);

plot(time,Y(8,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('Filtered Data');

figure(9);

plot(time,Y(9,:),'r','linewidth',2);

xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('Filtered Data');

figure(10);

plot(time,Y(10,:),'r','linewidth',2);

x xlabel('Time (Seconds)'); ylabel('Amplitude (Volts)');

title('Filtered Data');

57

Matlab Code to convert the EEG signal from Time Domain to Frequency Domain:

% transfer time domin signals into frequency domin

clear all

clc

% Fs is sampling rate , N is the amount of sample

Fs = 837; N = 3000;

powerdata_all1 = csvread('Left formatted.csv',1,0);

powerdata_all2 = csvread('Right formatted.csv',1,0);

powerdata_all1 = powerdata_all1(1:end,[1:2:end])';

powerdata_all2 = powerdata_all2(:,[1:2:end])';

original_data = [powerdata_all1;powerdata_all2];

 for k = 1:300; % k is the number of different channel

window = hamming(N); %using hamming window to reduce energy leakage

psd_data(k,:) = 2*periodogram(original_data(k,:),window,0:Fs/2,Fs); % periodogram is build in

function to transfer time domin data into frequency domin data

 end

 str =['left and right power data .csv'];

 csvwrite(str,psd_data,0,0)

58

Matlab Function for SVM:

function [eeg_svmstrcture] = train_rbfsvm_eeg_Jay(eeg_training_data_x, eeg_training_data_y ,

method1 , method2,bond,alpha)

%Summary of this function goes here

x = eeg_training_data_x;

y = eeg_training_data_y;

number_of_success = sum(y);

r = length(y);

number_of_failure = r - number_of_success;

% creat a index for success and failure

success_index = find(y==1)';

failure_index = find(y==0)';

% suppose a range for C

percentage_bound = bond ; % 95

max_c=15; %max_c=20, 5

min_c=-5; %min_c = -12, -5, 1

C_array=exp(min_c:1:max_c);

C_length=length(C_array);

% suppose a range for sigma

max_sigma=5; %max_sigma=5

min_sigma=-10; %min_sigma=-10

Sigma_array=exp(min_sigma:1:max_sigma);% 1

G_length=length(Sigma_array);

% select optimal gamma using mulitiple-fold cross validation

xValidationFolds = 5;

rand('state',0); randn('state',0);

indexPermutation_success = randperm(number_of_success); % sample from this index set

setSize_success = number_of_success/xValidationFolds;

rand('state',1); randn('state',1);

indexPermutation_failure = randperm(number_of_failure); % sample from this index set

setSize_failure = number_of_failure/xValidationFolds;

% here comes my model selection loop

train_correct_rate=zeros(C_length, G_length);

test_correct_rate=zeros(C_length, G_length);

optimazation_criterion_2=zeros(C_length, G_length);

%%

59

%first searching

for k=1:C_length

 for j=1:G_length

 for fold=1:xValidationFolds

 testPortion_success = indexPermutation_success(round((fold-

1)*setSize_success)+1:round(fold*setSize_success));

 testPortion_failure=indexPermutation_failure(round((fold-

1)*setSize_failure)+1:round(fold*setSize_failure));

 testPortion=zeros(1, length(testPortion_success)+length(testPortion_failure));

 for n=1:length(testPortion_success)

 testPortion(1, n)=success_index(testPortion_success(n));

 end

 for

m=length(testPortion_success)+1:length(testPortion_success)+length(testPortion_failure)

 testPortion(1, m)=failure_index(testPortion_failure(m-length(testPortion_success)));

 end

 trainPortion = setdiff(1:1:r,testPortion);

 % train SVM classifier here using indices 'trainPortion'

 x_train = x(trainPortion, :);

 y_train = y(trainPortion, :);

 svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'kernel_function',

'rbf', 'rbf_sigma', Sigma_array(1, j), 'method', method1);

 %svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'method', 'SMO');

 group_train=svmclassify(svmstrcture, x_train);

% %%new

train_correct_rate(k,j)=train_correct_rate(k,j)+100*sum(group_train==y_train)/size(x_train,1);

 % compute the correct rate for test data in this fold

 x_test= x(testPortion,:);

 y_test= y(testPortion,:);

 group=svmclassify(svmstrcture, x_test);

 test_correct_rate(k, j)=test_correct_rate(k,j)+100*sum(group==y_test)/size(x_test,1);

 Pro_test_1=0;

 Pro_test_2=0;

 for l=1:length(y_test)

 if (y_test(l)==1) && (group(l)==0)

 Pro_test_1=Pro_test_1+1;

 else if (y_test(l)==0) && (group(l)==1)

 Pro_test_2=Pro_test_2+1;

 end

 end

 end

 Pro_test_1=Pro_test_1/length(testPortion_success);

 Pro_test_2=Pro_test_2/length(testPortion_failure);

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)+alpha*Pro_test_1+(1-

alpha)*Pro_test_2;

 end % end fold

60

 train_correct_rate(k,j)=train_correct_rate(k,j)/xValidationFolds;

 test_correct_rate(k,j)=test_correct_rate(k,j)/xValidationFolds;

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)/xValidationFolds;

 if train_correct_rate(k,j)<percentage_bound

 optimazation_criterion_2(k, j)=Inf;

 end

 end % end j

end %end k

train_correct_rate

optimazation_criterion_2

test_correct_rate

[best_rate1, index1]=min(optimazation_criterion_2);

[best_rate2, index2]=min(best_rate1);

best_C=C_array(index1(1, index2))

best_sigma=Sigma_array(index2)

best_rate2

%%

% second searching

C_range_1=max(min_c, log(best_C)-0.5*10):0.5:min(log(best_C)+0.5*10,max_c);

C_array=exp(C_range_1);

Sigma_range_1=max(min_sigma, log(best_sigma)-

0.5*10):0.5:min(log(best_sigma)+0.5*10,max_sigma);

Sigma_array=exp(Sigma_range_1);

C_length=length(C_array);

G_length=length(Sigma_array);

% select optimal gamma using mulitiple-fold cross validation

xValidationFolds = 5;

rand('state',0); randn('state',0);

indexPermutation_success = randperm(number_of_success); % sample from this index set

setSize_success = number_of_success/xValidationFolds;

rand('state',1); randn('state',1);

indexPermutation_failure = randperm(number_of_failure); % sample from this index set

setSize_failure = number_of_failure/xValidationFolds;

% here comes my model selection loop

train_correct_rate=zeros(C_length, G_length);

test_correct_rate=zeros(C_length, G_length);

optimazation_criterion_2=zeros(C_length, G_length);

for k=1:C_length

 for j=1:G_length

61

 for fold=1:xValidationFolds

 testPortion_success = indexPermutation_success(round((fold-

1)*setSize_success)+1:round(fold*setSize_success));

 testPortion_failure=indexPermutation_failure(round((fold-

1)*setSize_failure)+1:round(fold*setSize_failure));

 testPortion=zeros(1, length(testPortion_success)+length(testPortion_failure));

 for n=1:length(testPortion_success)

 testPortion(1, n)=success_index(testPortion_success(n));

 end

 for

m=length(testPortion_success)+1:length(testPortion_success)+length(testPortion_failure)

 testPortion(1, m)=failure_index(testPortion_failure(m-length(testPortion_success)));

 end

 trainPortion = setdiff(1:1:r,testPortion);

 % train SVM classifier here using indices 'trainPortion'

 x_train = x(trainPortion, :);

 y_train = y(trainPortion, :);

 svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'kernel_function',

'rbf', 'rbf_sigma', Sigma_array(1, j), 'method', method2);

 %svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'method', 'SMO');

 group_train=svmclassify(svmstrcture, x_train);

% %%new

train_correct_rate(k,j)=train_correct_rate(k,j)+100*sum(group_train==y_train)/size(x_train,1);

 % compute the correct rate for test data in this fold

 x_test= x(testPortion,:);

 y_test= y(testPortion,:);

 group=svmclassify(svmstrcture, x_test);

 test_correct_rate(k, j)=test_correct_rate(k,j)+100*sum(group==y_test)/size(x_test,1);

 Pro_test_1=0;

 Pro_test_2=0;

 for l=1:length(y_test)

 if (y_test(l)==1) && (group(l)==0)

 Pro_test_1=Pro_test_1+1;

 else if (y_test(l)==0) && (group(l)==1)

 Pro_test_2=Pro_test_2+1;

 end

 end

 end

 Pro_test_1=Pro_test_1/length(testPortion_success);

 Pro_test_2=Pro_test_2/length(testPortion_failure);

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)+alpha*Pro_test_1+(1-

alpha)*Pro_test_2;

 end % end fold

 train_correct_rate(k,j)=train_correct_rate(k,j)/xValidationFolds;

 test_correct_rate(k,j)=test_correct_rate(k,j)/xValidationFolds;

62

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)/xValidationFolds;

 if train_correct_rate(k,j)<percentage_bound

 optimazation_criterion_2(k, j)=Inf;

 end

 end % end j

end %end k

train_correct_rate

optimazation_criterion_2

test_correct_rate

[best_rate1, index1]=min(optimazation_criterion_2);

[best_rate2, index2]=min(best_rate1);

best_C=C_array(index1(1, index2))

best_sigma=Sigma_array(index2)

best_rate2

%%

% third searching

C_range_1=max(min_c, log(best_C)-0.25*10):0.25:min(log(best_C)+0.25*10,max_c);

C_array=exp(C_range_1);

Sigma_range_1=max(min_sigma, log(best_sigma)-

0.25*10):0.25:min(log(best_sigma)+0.25*10,max_sigma);

Sigma_array=exp(Sigma_range_1);

C_length=length(C_array);

G_length=length(Sigma_array);

% select optimal gamma using mulitiple-fold cross validation

xValidationFolds = 5;

rand('state',0); randn('state',0);

indexPermutation_success = randperm(number_of_success); % sample from this index set

setSize_success = number_of_success/xValidationFolds;

rand('state',1); randn('state',1);

indexPermutation_failure = randperm(number_of_failure); % sample from this index set

setSize_failure = number_of_failure/xValidationFolds;

% here comes my model selection loop

train_correct_rate=zeros(C_length, G_length);

test_correct_rate=zeros(C_length, G_length);

optimazation_criterion_2=zeros(C_length, G_length);

for k=1:C_length

 for j=1:G_length

63

 for fold=1:xValidationFolds

 testPortion_success = indexPermutation_success(round((fold-

1)*setSize_success)+1:round(fold*setSize_success));

 testPortion_failure=indexPermutation_failure(round((fold-

1)*setSize_failure)+1:round(fold*setSize_failure));

 testPortion=zeros(1, length(testPortion_success)+length(testPortion_failure));

 for n=1:length(testPortion_success)

 testPortion(1, n)=success_index(testPortion_success(n));

 end

 for

m=length(testPortion_success)+1:length(testPortion_success)+length(testPortion_failure)

 testPortion(1, m)=failure_index(testPortion_failure(m-length(testPortion_success)));

 end

 trainPortion = setdiff(1:1:r,testPortion);

 % train SVM classifier here using indices 'trainPortion'

 x_train = x(trainPortion, :);

 y_train = y(trainPortion, :);

 svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'kernel_function',

'rbf', 'rbf_sigma', Sigma_array(1, j), 'method', method2);

 %svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'method', 'SMO');

 group_train=svmclassify(svmstrcture, x_train);

% % %new

train_correct_rate(k,j)=train_correct_rate(k,j)+100*sum(group_train==y_train)/size(x_train,1);

 % compute the correct rate for test data in this fold

 x_test= x(testPortion,:);

 y_test= y(testPortion,:);

 group=svmclassify(svmstrcture, x_test);

 test_correct_rate(k, j)=test_correct_rate(k,j)+100*sum(group==y_test)/size(x_test,1);

 Pro_test_1=0;

 Pro_test_2=0;

 for l=1:length(y_test)

 if (y_test(l)==1) && (group(l)==0)

 Pro_test_1=Pro_test_1+1;

 else if (y_test(l)==0) && (group(l)==1)

 Pro_test_2=Pro_test_2+1;

 end

 end

 end

 Pro_test_1=Pro_test_1/length(testPortion_success);

 Pro_test_2=Pro_test_2/length(testPortion_failure);

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)+alpha*Pro_test_1+(1-

alpha)*Pro_test_2;

 end % end fold

 train_correct_rate(k,j)=train_correct_rate(k,j)/xValidationFolds;

 test_correct_rate(k,j)=test_correct_rate(k,j)/xValidationFolds;

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)/xValidationFolds;

64

 if train_correct_rate(k,j)<percentage_bound

 optimazation_criterion_2(k, j)=Inf;

 end

 end % end j

end %end k

train_correct_rate

optimazation_criterion_2

test_correct_rate

[best_rate1, index1]=min(optimazation_criterion_2);

[best_rate2, index2]=min(best_rate1);

best_C=C_array(index1(1, index2))

best_sigma=Sigma_array(index2)

best_rate2

%%

% fourth searching

C_range_1=max(min_c, log(best_C)-0.1*10):0.1:min(log(best_C)+0.1*10,max_c);

C_array=exp(C_range_1);

Sigma_range_1=max(min_sigma, log(best_sigma)-

0.01*10):0.01:min(log(best_sigma)+0.01*10,max_sigma);

Sigma_array=exp(Sigma_range_1);

C_length=length(C_array);

G_length=length(Sigma_array);

% select optimal gamma using mulitiple-fold cross validation

xValidationFolds = 5;

rand('state',0); randn('state',0);

indexPermutation_success = randperm(number_of_success); % sample from this index set

setSize_success = number_of_success/xValidationFolds;

rand('state',1); randn('state',1);

indexPermutation_failure = randperm(number_of_failure); % sample from this index set

setSize_failure = number_of_failure/xValidationFolds;

% here comes my model selection loop

train_correct_rate=zeros(C_length, G_length);

test_correct_rate=zeros(C_length, G_length);

optimazation_criterion_2=zeros(C_length, G_length);

for k=1:C_length

 for j=1:G_length

 for fold=1:xValidationFolds

 testPortion_success = indexPermutation_success(round((fold-

1)*setSize_success)+1:round(fold*setSize_success));

65

 testPortion_failure=indexPermutation_failure(round((fold-

1)*setSize_failure)+1:round(fold*setSize_failure));

 testPortion=zeros(1, length(testPortion_success)+length(testPortion_failure));

 for n=1:length(testPortion_success)

 testPortion(1, n)=success_index(testPortion_success(n));

 end

 for

m=length(testPortion_success)+1:length(testPortion_success)+length(testPortion_failure)

 testPortion(1, m)=failure_index(testPortion_failure(m-length(testPortion_success)));

 end

 trainPortion = setdiff(1:1:r,testPortion);

 % train SVM classifier here using indices 'trainPortion'

 x_train = x(trainPortion, :);

 y_train = y(trainPortion, :);

 svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'kernel_function',

'rbf', 'rbf_sigma', Sigma_array(1, j), 'method', method2);

 group_train=svmclassify(svmstrcture, x_train);

% %%new

train_correct_rate(k,j)=train_correct_rate(k,j)+100*sum(group_train==y_train)/size(x_train,1);

 % compute the correct rate for test data in this fold

 x_test= x(testPortion,:);

 y_test= y(testPortion,:);

 group=svmclassify(svmstrcture, x_test);

 test_correct_rate(k, j)=test_correct_rate(k,j)+100*sum(group==y_test)/size(x_test,1);

 Pro_test_1=0;

 Pro_test_2=0;

 for l=1:length(y_test)

 if (y_test(l)==1) && (group(l)==0)

 Pro_test_1=Pro_test_1+1;

 else if (y_test(l)==0) && (group(l)==1)

 Pro_test_2=Pro_test_2+1;

 end

 end

 end

 Pro_test_1=Pro_test_1/length(testPortion_success);

 Pro_test_2=Pro_test_2/length(testPortion_failure);

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)+alpha*Pro_test_1+(1-

alpha)*Pro_test_2;

 end % end fold

 train_correct_rate(k,j)=train_correct_rate(k,j)/xValidationFolds;

 test_correct_rate(k,j)=test_correct_rate(k,j)/xValidationFolds;

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)/xValidationFolds;

 if train_correct_rate(k,j)<percentage_bound

 optimazation_criterion_2(k, j)=Inf;

 end

 end % end j

66

end %end k

train_correct_rate

optimazation_criterion_2

test_correct_rate

[best_rate1, index1]=min(optimazation_criterion_2);

[best_rate2, index2]=min(best_rate1);

best_C=C_array(index1(1, index2))

best_sigma=Sigma_array(index2)

best_rate2

% fifth searching

C_range_1=max(min_c, log(best_C)-0.05*10):0.05:min(log(best_C)+0.05*10,max_c);

C_array=exp(C_range_1);

Sigma_range_1=max(min_sigma, log(best_sigma)-

0.05*10):0.05:min(log(best_sigma)+0.05*10,max_sigma);

Sigma_array=exp(Sigma_range_1);

C_length=length(C_array);

G_length=length(Sigma_array);

% select optimal gamma using mulitiple-fold cross validation

xValidationFolds = 5;

rand('state',0); randn('state',0);

indexPermutation_success = randperm(number_of_success); % sample from this index set

setSize_success = number_of_success/xValidationFolds;

rand('state',1); randn('state',1);

indexPermutation_failure = randperm(number_of_failure); % sample from this index set

setSize_failure = number_of_failure/xValidationFolds;

% here comes my model selection loop

train_correct_rate=zeros(C_length, G_length);

test_correct_rate=zeros(C_length, G_length);

optimazation_criterion_2=zeros(C_length, G_length);

for k=1:C_length

 for j=1:G_length

 for fold=1:xValidationFolds

 testPortion_success = indexPermutation_success(round((fold-

1)*setSize_success)+1:round(fold*setSize_success));

 testPortion_failure=indexPermutation_failure(round((fold-

1)*setSize_failure)+1:round(fold*setSize_failure));

 testPortion=zeros(1, length(testPortion_success)+length(testPortion_failure));

 for n=1:length(testPortion_success)

67

 testPortion(1, n)=success_index(testPortion_success(n));

 end

 for

m=length(testPortion_success)+1:length(testPortion_success)+length(testPortion_failure)

 testPortion(1, m)=failure_index(testPortion_failure(m-length(testPortion_success)));

 end

 trainPortion = setdiff(1:1:r,testPortion);

 % train SVM classifier here using indices 'trainPortion'

 x_train = x(trainPortion, :);

 y_train = y(trainPortion, :);

 svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'kernel_function',

'rbf', 'rbf_sigma', Sigma_array(1, j), 'method', method2);

 %svmstrcture=svmtrain(x_train, y_train, 'boxconstraint', C_array(1,k), 'method', 'SMO');

 group_train=svmclassify(svmstrcture, x_train);

% % %%new

train_correct_rate(k,j)=train_correct_rate(k,j)+100*sum(group_train==y_train)/size(x_train,1);

 % compute the correct rate for test data in this fold

 x_test= x(testPortion,:);

 y_test= y(testPortion,:);

 group=svmclassify(svmstrcture, x_test);

 test_correct_rate(k, j)=test_correct_rate(k,j)+100*sum(group==y_test)/size(x_test,1);

 Pro_test_1=0;

 Pro_test_2=0;

 for l=1:length(y_test)

 if (y_test(l)==1) && (group(l)==0)

 Pro_test_1=Pro_test_1+1;

 else if (y_test(l)==0) && (group(l)==1)

 Pro_test_2=Pro_test_2+1;

 end

 end

 end

 Pro_test_1=Pro_test_1/length(testPortion_success);

 Pro_test_2=Pro_test_2/length(testPortion_failure);

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)+alpha*Pro_test_1+(1-

alpha)*Pro_test_2;

 end % end fold

 train_correct_rate(k,j)=train_correct_rate(k,j)/xValidationFolds;

 test_correct_rate(k,j)=test_correct_rate(k,j)/xValidationFolds;

 optimazation_criterion_2(k, j)= optimazation_criterion_2(k, j)/xValidationFolds;

 if train_correct_rate(k,j)<percentage_bound

 optimazation_criterion_2(k, j)=Inf;

 end

 end % end j

end %end k

train_correct_rate

optimazation_criterion_2

68

test_correct_rate

[best_rate1, index1]=min(optimazation_criterion_2);

[best_rate2, index2]=min(best_rate1);

best_C=C_array(index1(1, index2))

best_sigma=Sigma_array(index2)

best_rate2

train_correct_rate =train_correct_rate(index2)

corresponding_test_correct_rate=test_correct_rate(index1(1, index2), index2)

eeg_svmstrcture=svmtrain(x, y, 'boxconstraint', best_C, 'kernel_function', 'rbf', 'rbf_sigma',

best_sigma, 'method', method2);

end

69

Matlab Code to Test the EEG Data using SVM:

close all;

clear all;

clc;

powerdata_all = csvread('left and right power data .csv') ;

decision_data_all = [ones(150,1);zeros(150,1)];

defalt = [1:300];

test_range = [randsample(1:150,50) randsample(151:300,50)];

x_test = powerdata_all(test_range,:);

y_test = decision_data_all(test_range);

train_range = setdiff(defalt,test_range);

training = powerdata_all(train_range,:);

decision = decision_data_all(train_range);

alpha = 0.5;

%% start calculating

method1 ='LS' ;

method2 ='LS' ;

bond = 80;

[eeg_svmstructure]=train_rbfsvm_eeg_Jay(training,decision,method1,method2,bond,alpha);

group_train=svmclassify(eeg_svmstructure, training);

% train_correct_rate=100*sum(group_train==decision)/size(training,1)

group=svmclassify(eeg_svmstructure, x_test);

test_correct_rate=100*sum(group==y_test)/size(x_test,1)

Pro_test_1=0;

Pro_test_2=0;

for l=1:length(y_test)

 if (y_test(l)==1) && (group(l)==0)

 Pro_test_1=Pro_test_1+1;

 else if (y_test(l)==0) && (group(l)==1)

 Pro_test_2=Pro_test_2+1;

 end

 end

end

Pro_test_1=Pro_test_1/sum(y_test)

Pro_test_2=Pro_test_2/(length(y_test)-sum(y_test))

conMat = confusionmat(y_test, group)

	Electroencephalography(EEG) Data Collection and Processing through Machine Learning
	Citation

	tmp.1501680967.pdf.OVumC

