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Abstract 

 Large body size requires limb joints capable of supporting said weight, and a species 

exhibiting sexual size dimorphism may necessitate joint size differences between the sexes of the 

species.  If habitual behavior differs with body size, one may expect to see significant variation 

in joint morphology between species and the sexes within species.  The following analysis tests 

two hypotheses: (1) that significant differences in joint size between males and females correlate 

with the magnitude of sexual dimorphism and (2) that there is significant interspecific variance 

in joint shape between males and females of the same species.  The first hypothesis is tested by 

taking principal component scores from the first two components of a Principal Component 

Analysis (PCA) with full tangent space and Procrustes form space projection and subjecting 

them to an Analysis of Variance (ANOVA) to see if a significant amount of variance exists 

between sexes for each species observed.  The second hypothesis is tested in the same way, the 

only difference being that the PCA utilizes solely a full tangent space projection in order to 

nullify size differences in variance.  The results of the analysis show that the magnitude of sexual 

dimorphism correlates with differences in joint size.  However, there is no significant 

interspecific variation in shape between males and females in the same species.  The analysis did 

not have a consistent sample size for all sexes or species and the sample sizes were all relatively 

small.  As such, an analysis with larger samples and greater consistency will be needed to 

confirm the inferred conclusions. 
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I.) Introduction 

 The primate elbow joint is adapted to bear weight in tension and compression and to 

provide stability during flexion and extension (Feldesman, 1976; Feldesman 1982; Rose 1988; 

Ruff and Runestad 1992; Rockwell 1994; Lague and Jungers 1999; Lague 2003; Drapeau 2008).  

At the same time, there is significant variation in the locomotor and postural behavior, body size, 

and body size dimorphism throughout primates (Feldesman 1976; Doran 1993 (1); Doran 1993 

(2); Plavcan 2001; Patel 2005 (2); Drapeau 2008), all of which can have a substantial impact on 

the types of loads transmitted through the elbow.  Large body size necessitates limb joints 

capable of supporting large weights, and differences in weight associated with sexual size 

dimorphism may necessitate differences in limb joint morphology between the sexes (Lague 

2003).  If body size and habitual behavior vary significantly within and between primate species, 

we should likewise expect to see significant variation in elbow joint morphology within and 

between species.  My analysis will evaluate size and shape variation of the articulation of the 

proximal ulna among a series of anthropoid primates and examine the ways that shape variation 

corresponds to variation in habitual locomotor behavior, body size, and body size dimorphism. 

 The following study will test two hypotheses:  (1) that significant differences in joint size 

between males and females correlate with the magnitude of sexual dimorphism, (2) that there is 

significant interspecific variation in joint shape between males and females (in a given species). 
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A.) Anatomy of the Proximal Ulna 

 As a group, modern primates share the primitive therian mammalian forelimb 

morphology, with the radius and ulna unfused.  The elbow is comprised of three joints: the 

humeroulnar, humeroradial, and radioulnar.  The humeroulnar joint comprises the articulation of 

the trochlear surface of the proximal ulna against the trochlear surface of the distal humerus.  

The humeroulnar joint, being a classic saddle joint, allows only for flexion and extension.     

The humeroradial joint, in contrast, accommodates both flexion and extension and the rotation of 

the radius in association with supination and pronation of the forearm.  This is accomplished by 

the articulation of the rounded, cup-like surface of the proximal radius against the toroid surface 

of the humeral capitulum.  This configuration allows rotation of the proximal radial head against 

the humerus through a continuous range of flexion and extension.  Finally, contact between the 

proximal radial head and the proximal ulna results in the radioulnar joint, which accommodates 

rotation of the radial head against the ulna.  Notably, weight is born primarily through the 

humeroulnar joint (Feldesman 1976; Rockwell 1994; White et al. 2012). 

Motions about the elbow are controlled by a series of flexors and extensors, a series of 

muscles that control supinators and pronators, and secondarily by the attachment of the flexors 

and extensors of the wrist and hand, which cross the elbow and attach to the humerus.  Amongst 

all primates, flexion is facilitated by the insertion of the biceps brachii on the radial tuberosity 

while extension is facilitated by the insertion of the triceps brachii on the olecranon of the elbow 

(Diego et al. 2012; White et al. 2012).  The pronator teres muscle inserts on the lateral radial 

shaft to accommodate pronation and the supinator muscle inserts on the radial tuberosity to 

provide supination.  The biceps brachii also provides for supination whilst the forearm is 

pronated (White et al. 2012).   
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The elbow is stabilized by a series of ligaments that allow for movement while resisting 

dislocation.  The ligaments in the elbow are partitioned into two collateral ligament complexes; 

the medial and the lateral.  In the lateral collateral ligament complex, the positions of the radius 

and the ulna relative to the humerus are maintained by the radial and ulnar collateral ligaments, 

which both originate from the lateral epicondyle.  The radial collateral ligament inserts on the 

annular ligament and the ulnar collateral ligament inserts on the lateral side of the ulna.  The 

annular ligament extends from the ulna and wraps around the head of the radius, holding the 

bones of the forearm together.  The medial collateral ligament complex is made up of anterior 

and posterior bundles, both of which originate on the medial epicondyle of the humerus and 

insert on the medial coronoid process.  The oblique chord ligament originates from the coronoid 

process on the anterolateral aspect of the ulna and inserts just below the radial tuberosity on the 

posteromedial aspect of the radius, stabilizing the elbow during quadrupedal locomotion.  The 

oblique cord is present in all Old World monkeys, but is variable in H. sapiens and P. troglodytes 

(Regan et al. 1991, Patel 2005 (1), Diego and Wood 2011, Diego et al. 2012, White et al. 2012).  

No muscles in the modern human elbow are unique to humans; the general musculature 

of the elbow joint is plesiomorphic throughout primates, though there are derived features in 

some taxa.  Synapomorphic among most hominoids, with the exception of Pan, is the loss of the 

epitrochleoanconeus, a muscle ancestral to tetrapods that connects the medial epicondyle of the 

humerus to the olecranon process of the ulna. Amongst modern humans, Hylobates, Pongo, and 

Gorilla the epitrochleoanconeus is not present as a separate, well-defined muscle with the 

exception of rare cases (Abdala and Deigo 2010, Diego et al. 2012).  Amongst hylobatids the 

pronator teres typically originates solely from the humerus, reflecting the ancestral state.  In 
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hominids, however, the pronator teres is slightly derived, usually originating from both the 

humerus and ulna (Diego and Wood 2011, Diego et al. 2012; White et al. 2012).  

B.) Shape and Size Differences and Dimorphism 

   Richmond (1998), given the correlation between function and joint morphology, shows 

that it is possible to distinguish between hominoids, cercopithecoids and platyrrhines based on 

the morphology of the ulna.    

 The differences in the specific shape and size of a given articular surface correlate with 

the magnitude of transmitted forces, the position of the joint during loading, and the range of 

motion necessary during locomotion (Ruff and Runestad 1992).  There are two trends in 

catarrhine morphology: one trend for forearm rotational mobility, exhibited by hominoids, and 

another for terrestriality, exhibited by cercopithecoids (Richmond et al. 1998; Schmitt 2003). 

 

Figure 1.)  Cercopithecoid and basal catarrhine ulnas. From left to right, top to bottom: 
female Macaca nemestrina, male Cercocebus torquatus, male Cercopithecus alboguris kolbi, 
male Colobus guereza kikuyuensis. 
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Figure 2.) Hominoid ulnas.  From left to right, top to bottom: Male Gorilla gorilla, male 
Pongo pygmaeus, male Pan paniscus, male Pan troglodytes. 
 
 

The primitive form of the anthropoid ulna is exhibited by platyrrhines and basal 

catarrhines (Figure 1), wherein the radial head is positioned anteriolaterally to the proximal ulna 

and anteriorly overlaps with one half the width of the ulnar shaft.  Cercopithecoids typically 

exhibit a narrow trochlear surface, deep and narrow sigmoid notches and olecranon processes, 

and a wide, anteriorly facing radial notch.  Hominoids, likewise, exhibit relatively broad and low 

trochlear notches with marked median ridges, reduced olecranon processes, laterally facing 

radial notches, and prominent lateral trochlear rim, which provides elbow stability in all phases 

of flexion and extension (Jenkins 1973) (Figure 2).  Cercopithecoids exhibit a limited, laterally 

facing area of the trochlear notch for articulation with the lateral side of the humeral trochlea; 

hominoids exhibit an articulation with the medial trochlear keel occupying the whole length of 



 

 

6

the trochlear notch (Jenkins 1973; Feldesman 1976; Rose 1988; Richmond et al. 1998). The 

forelimb is subjected to either tensile stress or to muscle generated compressive stresses.  During 

suspensory locomotion the forelimb experiences predominately tensile loading and reduced 

compressive loading (Swartz 1989).  Hominoids frequently use suspensory locomotion to 

navigate arboreal environments, placing the elbow joint in tension.  The pronounced hominoid 

trochlear keel inhibits the radial head from overriding the capitulum during suspensory behavior 

(Rockwell 1994).  Terrestrial quadrupedal primates (such as baboons and great apes, hylobatids 

being solely suspensory) possess elbow joints better prepared to resist mediolateral forces, 

specifically those that would cause medial collapse at the elbow.  Terrestrial primates regularly 

experience lateral and medial oriented substrate reaction forces, which may explain the robust 

keeling exhibited on both sides of the humeral articular surface of the elbow (Schmitt 2003).   

Body size and locomotor behavior are the primary factors that dictate the nature of 

skeletal stresses and thereby strongly influence the morphology of skeletal elements. Joints 

support the body of an organism, and as body size increases joint shape can change to better 

support weight (Swartz 1989; Lague 2000; Lague 2003).  As such, the effect of body size on 

joints has been shown to be pivotal in interpreting skeletal structure variation in a functional 

context (Gould 1966, Ruff and Runestad 1992).  The linear dimensions of bones will vary in 

proportion to body mass at a power of 1:3 if there is no variation in shape associated with body 

size variation.  If shape remains constant as size changes in a given bone, the surface or cross-

sectional areas of the bone (proportional to the square of the linear dimensions) will vary in 

proportion to body mass at a power of 2:3.  If peak forces exerted on a limb are directly related 

to the force exerted due to gravity acting on body mass, then the loads which the limb bears will 

also increase in proportion to body mass.   With isometric scaling, peak stress will be greater in 
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the bones of larger animals (Gould 1966, Swartz 1989).  Thus, as body size varies between 

vertebrate species, one can expect to see different sizes of joints in the skeletons of said species.  

Dimorphism can be viewed as an extension of the relationship between body size and joint form.  

Just as species with differing body weights can be expected to have different joint sizes, males 

and females of a single species can be expected to have different joint shapes if a significant 

degree of size dimorphism is present in the species (Plavcan 2001). 

Sexual size dimorphism is prevalent amongst anthropoid primates.  Weight bearing is a 

major constraint on the design of joints (Swartz 1989).  Males are on average larger than females 

among anthropoid species (Plavcan 2011).  Amongst anthropoid species, extant catarrhines are 

known to exhibit a relatively high degree of body size dimorphism (Fairbairn 1997, Plavcan and 

Schaik 1997). Amongst Pongo abelii, for example, males on average weigh twice as much as 

females (Cant 1987).  Male cercopithecoids exhibit body masses ranging from 30-80% larger 

than female cercopithecoids.  Dimorphism in the elbow joint articulation can be present in two 

respects: size and shape.  Differences in joint size and shape are not mutually exclusive; a joint 

can exhibit a high degree of shape dimorphism yet have little to no size dimorphism, and vice 

versa (Lague 2000).  For a given size dimorphic primate species, males are expected to have 

larger limb joints than one would expect based on isometric scaling of joint size to body size 

(Gould 1966, Plavcan and Schaik 1997; Plavcan 2001; Lague 2000).   

 Skeletal dimorphism typically arises as a consequence of size dimorphism and not as a 

consequence of varying selection for different male and female adaptations (Fairbairn 1997, 

Plavcan 2001).  However, size dimorphism can lead to differences in locomotor behavior.  Large 

primates, by virtue of their size, cannot support their bodyweight by moving quadrupedally along 

arboreal substrates (Cant 1987, Schmitt 2003).  As body size increases, one can expect to 
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observe a decrease in the frequency of leaping behavior and an increase in the frequency of 

suspensory behavior (Rockwell 1994).  Cant observed that male P. abelii, due to their greater 

bodyweight, more frequently utilize above-branch postures while feeding than females.  In 

comparison, female P. abelii more often utilize below-branch postures while feeding.  The males 

also typically feed on larger substrate branches than females in order to support their weight 

during feeding, females being light enough to hang from smaller branches (Cant 1987).  Doran 

has shown that even closely related species, such as Pan troglodytes and Pan paniscus, can 

exhibit differences in morphology and locomotion based on body weight.  In comparison to P. 

troglodytes, P. paniscus utilize more quadrupedalism and less quadrumanous climbing and 

scrambling.  P. paniscus are typically smaller in size than chimpanzees, thus they are able to 

more frequently find arboreal substrates capable of supporting their weight when practicing 

arboreal quadrupedalism.  P. paniscus females also more frequently utilize arboreal 

quadrapedalism than their larger male counterparts, showing how locomotor behavior can differ 

between sexes.  P. paniscus arboreal quadrupedalism is primarily palmigrade, which is unusual 

given how important suspensory behavior is in the locomotor repertoire of great apes.  P. 

troglodytes almost always knuckle-walk during arboreal quadrupedalism; this is so they can 

retain their adaptations for hanging, a vital component for scrambling and climbing behavior 

(Doran 1993(1); Doran 1993(2)).   

 The biomechanical and functional reasons for variation in patterns of dimorphism are not 

well understood and little comparative work has been done on the subject (Plavcan 2001).  There 

are few analyses of sexual dimorphism in the limb joints, and most studies of sexual dimorphism 

in the elbow joint have focused on the humerus (Jenkins 1973; Lague and Jungers 1999; Lague 

2000).  The likelihood of significant dimorphism in relative size for a joint surface should be 
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related to the degree of body size dimorphism and the magnitude of peak stresses that are 

habitually encountered by the joint.  Large males can encounter relatively greater joint stress 

levels than females unless structural change compensates for increased weight-related forces 

(Lague 2000).    Lague’s study of joint size dimorphism found that cercopithecine monkeys tend 

to have relatively large degrees of joint size dimorphism in the distal humeral joint articulation.  

Nonhuman hominoids were found to typically exhibit low joint size dimorphism; even species 

with high body weight dimorphism, such as P. pygmaues and Gorilla gorilla, were found to have 

geometrically similar joint sizes between sexes.  Modern humans, despite not using their elbow 

joints to support bodyweight, were found to exhibit a relatively higher degree of joint size 

dimorphism than other hominoids (Lague 2003).  Lague and Jungers found that catarrhines do 

not exhibit sex-related shape differences in the distal humerus, the only exception being G. 

gorilla, which exhibited a more expanded trochlear crest in males than in females (1999).   

 Joint scaling patterns have pivotal implications for the analysis of sexual dimorphism.  To 

maintain joint stresses, large animals may exhibit disproportionately larger joint surfaces than 

smaller animals, resulting in shape differences that significantly deviate from isometric scaling 

(allometry).  Positive allometry indicates morphology that increases in size faster than body size 

increases.  Negative allometry, likewise, indicates morphology that increases in size slower than 

body size increases.  Isometry is when morphology increases in size at a rate proportional to 

body size, so that geometric proportionality is maintained at all sizes (Rockwell 1994).  Swartz 

identified positive interspecific allometry, with the larger joints of larger primates exhibiting 

significant intraspecific scaling (1989).  Godfrey found that the joint articulations of primates, 

particularly in the humerus, exhibit positive allometry (1991).  Ruff and Runestad note that 

anthropoid primates exhibit isometric or at least modest positive allometric scaling in the 
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morphology of diaphyseal cross sections.  Primates appear to follow the same general scaling 

trends in their limbs as other mammals.  However, specific size-related modifications may have 

different effects on different structural properties (Ruff and Runestad 1992).  Joint surface 

allometry in entirely suspensory primates, such as gibbons, is found to not significantly deviate 

from the overall anthropoid pattern.  In the case of gibbons, locomotor repertoires that reduce 

limb loading may have no selective effect on joint morphology.  Gibbon morphology may in fact 

reflect the biomechanics of the ancestral locomotor condition (Swartz 1989).   

 Little research has been done in regards to how sexual dimorphism can influence joint 

articulator size and shape.  My analysis will investigate how joint size and shape change with 

body size in primates.  Morphometrics and multivariate analyses will be used to examine how 

variance in joint size and shape are distributed in Hylobates lars, Pongo pygmaeus, Papio 

cynacephalous, Gorilla gorilla, Pan paniscus, Pan troglodytes, and Homo sapiens, specifically 

testing the hypothesis that joint shape and size vary significantly between males and females in 

each species.  The analysis will examine how variance is distributed across eigenvectors from 

two separate Principal Component Analyses: one with Procrustes Form Space Projection and one 

without.  Principal component scores from each eigenvector will be used in several Analyses of 

Variance to examine whether or not shape and size vary significantly between males and females 

in each species.  If species and sexes exhibit a significant difference in a given set of principal 

component scores, then one can conclude that variations exists in the morphology of joint 

articulation of the proximal ulna.   
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II.) Methods 

 The comparative sample for the analysis consists of 10 Hylobates lars (4 male, 6 female), 

13 Pongo pygmaeus (6 male, 7 female), 21 Papio cynacephalus (11 male, 10 females), 14 

Gorilla gorilla (7 male, 7 female), 16 Pan paniscus (8 males, 8 females), 20 Pan troglodytes (9 

males, 11 females), and 35 Homo sapiens (16 male, 19 female) ulnas.  All individuals are adult 

as judged by epipheseal fusion.  The sample is meant to be representative of the Hominoidea, 

with P. cynacephalus as an out-group and a representative of Cercopithecoidea.  The primates 

analyzed practice a wide variety of locomotor behavior.  P. cynacephalus are terrestrial 

quadrupeds, H. lars are brachiators, and H. sapiens are bipeds.  With the exception of H. sapiens, 

the great apes analyzed practice a mosaic of arboreal and terrestrial locomotor behavior; 

preferences for any one locomotor behavior vary depending on the environment of a given 

population.  P. pygmaeus practices a combination of suspension and clambering in arboreal 

environments while terrestrially being a fist-walker. P. troglodytes, P. paniscus, and G. gorilla 

are all terrestrial knucklers and arboreally practice a combination of suspension and clamber.  All 

of the ulnas were taken from the 3-D model collection collected by Dr. J. Michael Plavcan at the 

University of Arkansas. The models were scanned using a Konica-Minolta Vivid 9i 3-D scanner 

and then uploaded and rendered in Polyworks software.  All the ulnas were either from the left 

side, or were right ulnas mirrored to match a left ulna. The 3-D coordinates of articular landmark 

sites were collected using Polywork’s IMinspect.  Twenty-two landmarks were taken off of the 

humeroulnar and radioulnar articulators to record the shape of the ulna proximal joint 

articulations.  The landmarks on the humeroulnar and radioulnar articulators were chosen based 

on the location of landmarks identified by Feldesman and Drapeau, with midpoints chosen to 

more accurately map joint shape (1976, 2008).  The landmarks are tips, extrusions, extremal 
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points, and mid-points between other landmarks along the edge of the joint articulation (Figure 3, 

Table 1).  

  
Figure 3.) Ulna Landmarks.  Each circle represents a landmark.  The numbers inside each 
circle correspond to the landmarks in Table 1. 
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Table 1.) Ulna Landmarks 

 

To place midpoint landmarks along the rim of the humeroulnar articulation, a plane 

(Plane A) is anchored to the two landmarks (Points A and B) being intersected by the midpoint 

landmark and a floating point (Point C) placed at the midpoint between the anconeal beak and 

coronoid process.  In Figure 4, point A is the anteromedial most point on the border of the 

humeroulnar articulation (Landmark 4), while point B is the postermedial most point (Landmark 

6).  Once plane A is identified, a line (Line A) passing through points A and B is plotted along 

plane A and the midpoint between points A and B is identified (Point D). A line (Line B) 

perpendicular to line A is plotted on plane A through point D.  Finally, the midpoint landmark 

Ulna Landmarks 

# Landmark # Landmark 

1 Anconeal Beak 13 Midpoint between 9 and 10 (Distal border of 
RA) 

2 Keel Midpoint 14 Midpoint between 7 and 10 (Anterior border 
of RA) 

3 Coronoid Process 15 Midpoint between 11 and 13 (Center of RA) 

4 Anteromedial Border of HA 16 Midpoint between 5 and 7 ( Lateral Facet of 
HA) 

5 Anterolateral Border of HA 17 Midpoint between 5 and 16 (Proximal Lateral 
Facet of HA) 

6 Posteromedial Border of HA 18 Midpoint between 4 and 6 (Medial Facet of 
HA) 

7 Proximal Anterior Border of 
RA 

19 Midpoint between 4 and 18 (Proximal Medial 
Facet of HA)  

8 Proximal Posterior Border of 
RA 

20 Midpoint between 6 and 18 (Distal Medial 
Facet of HA) 

9 Distal Posterior Border of RA 21 Midpoint between 2 and 16 (Center of Lateral 
HA) 

1
0 

Distal Anterior Border of RA 22 Midpoint between 2 and 18 (Center of Medial 
HA) 

1
1 

Midpoint between 7 and 8 
( Proximal border of RA) 

Key: 
HA - Humeroulnar Articulaton,  RA - Radioulnar 
Articulation 1

2 
Midpoint between 8 and 9 
(Posterior border of RA) 
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(Landmark 18) is plotted on the rim of the joint articulation at a point along a line perpendicular 

to plane A that intersects line B.  The midpoint along the rim of the humeroulnar is identified as 

the midpoint between points A and B for the analysis.  Midpoints on the humeroulnar articulator 

(Landmarks 16-20) were placed using the described method (Figure 4).  

 
Figure 4.) Male Homo sapien ulna (Hosap 496). Points, planes, and lines for placing 
midpoint landmarks on the humeroulnar articulation. The midpoint landmark is along a 
line perpendicular to Plane A.  Line A is shown in red.  Plane A is shown in blue. 
 

To identify the keel midpoint (Landmark 2), a plane (Plane B) is anchored to the 

anconeal beak, coronoid process, and the ulnar keel. A line (Line T) is plotted through the 

landmarks on the anconeal beak and coronoid process.  The midpoint between the anconeal beak 

and the coronoid process along line T on plane B is identified (Point C).  A line (Line C) 

perpendicular to line T is plotted through point C on plane B.  The point where line C intersects 

the ulnar keel is identified as the keel midpoint (Figure 5).   
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The center of the lateral humeroulnar (Landmark 21) is placed by finding the midpoint 

between the keel midpoint (Landmark 2) and the lateral facet of the humeroulnar (Landmark 16).  

The midpoint between keel midpoint and lateral facet of the humeroulnar along the surface of the 

joint is chosen as center of the lateral humeroulnar.  This same method is use to place the center 

of the medial humeroulnar (Landmark 22) which is the midpoint between the keel midpoint and 

the medial facet of the humeroulnar (Landmark 18). 

 
Figure 5.) Male Homo sapien ulna (Hosap 496).  Points, planes, and lines for placing the 
Keel Midpoint. Line C is shown in blue. Plane B is shown in orange.   
 

Midpoint landmarks along the rim of the radioulnar articulation are placed by first 

anchoring a plane (Plane C) to the points being intersected (Points E and F) and the point along 

the outermost part of the joint rim between E and F (Point G).  In the Figure 6, point E 

(Landmark 8) is the proximal posterior most point on border of the radioulnar articulation, while 
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Point F (Landmark 9) is the distal posterior most point.  The midpoint between points E and F is 

point H.  A line (Line R) is plotted through points E and F.  A line (Line D) is then projected 

perpendicular to line R on plane C through the midpoint H.  The midpoint landmark (Landmark 

12) between E and F is placed where Line D intersects the rim of the radioulnar joint. Midpoint 

landmarks on the radioulnar articulation (Landmarks 11-14) were placed by using the described 

method (Figure 6). 

 
Figure 6.) Male Homo sapien (Hosap 496).  Points, planes, and lines for placing midpoint 
landmarks on radioulnar joint.  Point E is the proximal posterior most point of the joint 
and point F is the distal posterior most point of the joint.   Line D is shown in teal. Plane C 
is show in yellow. 
 

The radial midpoint (Landmark 15) was placed by first fitting a plane (plane D) to the 

radioulnar joint articulation.  A line (Line E) is placed perpendicular to the plane through a point 

located at the midpoint between the landmark at the PA/PP facet and the landmark at the DA/DP 
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facet.  The point of intersection of line E and the model is used as the radial midpoint (point J in 

Figure 7).  It should be noted that the PA facet occupies the same point as posterolateral most 

point of the humeroulnar articulation. 

 
Figure 7.) Male Homo sapien (Hosap 496).  Points, planes, and lines for placing the Radial 
Midpoint.  Plane D is shown in light purple. 
 

A generalized Procrustes analysis [REF] was used on all models to scale, translate and 

rotate them to fit with each other as closely as possible.  A Principal Component Analysis (PCA) 

was then applied to the models to see how variance is distributed throughout the species.  Both 

the Procrustes and PCA analysis were accomplished using Morphologika software.  The PCA 

analysis of the data was split into two parts: one PCA to account for size differences between the 

joints (Procrustes Form Space) and one to negate size differences (solely analyzing shape 

differences).  By removing size based variance, PCA can more accurately pick up on shape 
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differences between the joints.  The first and second principal components were plotted against 

their respective natural log centroid sizes in order to observe regression lines and possible 

isometry or allometry in joint shape.  A one-way analysis of variance (ANOVA) was used to test 

the significance of the differences between species and sexes within species along PC1 and PC2 

for both PCAs.  The F-ratio produced by the ANOVA’s shows the degree of difference in the 

variance of the PC scores.  If a comparison of PC scores between sexes in a species yields a high 

F-ratio, then there may be a significant difference in said sexes along the PC.  A Tukey’s test was 

applied post hoc to observe the significance of the differences seen between species and sexes in 

each ANOVA.   
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III.) Results 
 

 
Figure 8.) Shape PC1 and shape PC2 (Full Tangent Space Projection) (Green Triangles=G. 
gorilla, Red Squares= H. lars, Black Diamonds=H. sapiens, Teal Squares=P. pygmaeus, 
Orange Triangles=P. cynocephalus, Purple Triangles=P. troglodytes , Blue Squares= P. 
troglodytes).   Shape PC1 depicts change in the proportional mediolateral breadth of 
humeroulnar joint, while shape PC2 depicts change in the proportional anterodistal 
breadth of the radioulnar joint.  
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 Figure 9.) Size PC1 and size PC2 (Full Tangent Space Projection and Procrustes Form 
Space) (Green Triangles=G. gorilla , Red Squares= H. lars, Black Diamonds=H. sapiens, 
Teal Squares=P. pygmaeus, Orange Triangles=P. cynocephalus, Purple Triangles=P. 
troglodytes , Blue Squares=P. troglodytes).  Size PC1 depicts change in the raw mediolateral 
breadth of humeroulnar joint, while size PC2 depicts change in the raw anterodistal 
breadth of the radioulnar joint.  
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Figure 10.) The regression of shape PC1 against ln Centroid Size (Full Tangent Space 
Projection) for all species (Ln Centroid Coef=-0.209, Squared Multiple R=0.287, Adjusted 
squared multiple R=0.281).  The line of regression is marked in blue and each ulna 
specimen is marked in red.  The X axis is the natural log centroids sizes and the Y-axis is 
the PC scores. 

 
Figure 11.) The regression of shape PC2 against ln Centroid Size (Full Tangent Space 
Projection) for all species (Ln Centroid Coef=0.071, Squared multiple R=0.114, Adjusted 
squared multiple R=0.107).  The line of regression is marked in blue and each ulna 
specimen is marked in red.  The X axis is the natural log centroids sizes and the Y-axis is 
the PC scores. 
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Figure 12.) The regression of size PC1 against ln Centroid Size (Full Tangent Space 
Projection and Procrustes Form Space) for all species (Ln Centroid Coef=0.936, Squared 
multiple R=0.826, Adjusted squared multiple=0.825).  The line of regression is marked in 
blue and each ulna specimen is marked in red.  The X axis is the natural log centroids sizes 
and the Y-axis is the PC scores. 

 
Figure 13.) The regression of size PC2 against ln Centroid Size (Full Tangent Space 
Projection and Procrustes Form Space) for all species.  (Ln Centroid Coef=.005, Squared 
Multiple R=0.000, Adjusted squared multiple=0.000).  The line of regression is marked in 
blue and each ulna specimen is marked in red.  The X axis is the natural log centroids sizes 
and the Y-axis is the PC scores. 
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A) Regressions 
The regression lines of both shape PC1 (Ln centroid coefficient=-0.209, p=0.000, squared 

multiple R=0.287) (Figure 10) and shape PC2 (Ln centroid coefficient=0.071, p=0.000, squared 

multiple R=0.114) (Figure 11) against the natural log centroid size show negative allometry.  The 

regression line of size PC1 against the natural log centroid size shows isometry (Ln centroid 

coefficient=0.936, p=0.000, squared multiple R=0.826) (Figure 12), showing that the 

mediolateral breadth of the humeroulnar articulator is consistent as size increases.  The 

regression line of size PC2 against the natural log centroid size shows no correlation (Ln centroid 

coefficient=0.005, p=0.874, squared multiple R=0.000) (Figure 13).  It should be noted that 

shape PC1, shape PC2, and size PC1 exhibit regression lines that are statistically significant.  

Size PC2 does not show a regression line that is statistically significant.   
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Table 2.) Analysis of Variance of shape PC1 and shape PC2 scores (Full Tangent Space 
Projection) for all species observed (Interspecific variation between sexes).  The 
independent variable in each ANOVA is the species in the sample and the dependent 
variable is the PC scores.  Species exhibit significant difference along both components 
(p<0.005). 

 Source Sum-of-Squares Df Mean-Square F-ratio P 
PC1 Taxa 1.416 1 1.416 856.149 0.000 

Error 0.210 127 0.002   
 
PC2 Taxa 0.039 1 0.039 11.653 0.001 

Error 0.429 127    
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Figure 14.) Least squares means of shape PC1 and shape PC2 scores (Full Tangent Space 
Projection) for all species observed.  The independent variable in each plot is species and 
the dependent variable is the PC scores. 
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Table 3.) Matrix of pairwise mean differences for shape PC1 scores (Full Tangent Space 
Projection) for all species observed. 

P. cyn P. pan P. trog H. lars G. gor H. sap P. pyg 
P. cyn 0.000       

P. pan -0.257 0.000      

P. trog -0.253 0.004 0.000     

H. lars -0.257 -0.001 -0.004 0.000    

G. gor -0.358 -0.101 -0.105 -0.101 0.000   

H. sap -0.273 -0.016 -0.020 -0.015 0.085 0.000  

P. pyg -0.334 -0.078 -0.081 -0.077 0.024 -0.062 0.000 

 
 
 
 
 
 
 
Table 4.) Matrix of pairwise mean differences for shape PC2 scores (Full Tangent Space 
Projection) for all species observed. 

P. cyn P. pan P. trog H. lars G. gor H. sap P. pyg 
P. cyn 0.000       

P. pan -0.102 0.000      

P. trog -0.094 0.008 0.000     

 H. lars -0.104 -0.002 -0.010 0.000    

 G. gor 0.032 0.134 0.126 0.136 0.000   

 H. sap -0.046 0.056 0.048 0.058 -0.078 0.000  

 P. pyg 0.047 0.149 0.141 0.151 0.015 0.093 0.000 
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B.) Interspecific Variation in Shape 

In the shape PCA (the PCA without Procrustes Form Space Projection), PC1 and PC2 

cumulatively explain 58.77% of the total variance.  An Analysis of Variance comparing species 

via shape PC1 scores (F=856.149, p=0.000) and shape PC2 scores (F=11.653, p=0.001) also 

shows that species vary significantly on both components of the shape PCA (Table 2).  

Cercopithecoids and Hominoids vary significantly along both shape PC1 and shape PC2.  

Cercopithecoids exhibit narrow trochlear notches and broad radial notches, whereas Hominoids 

exhibit relatively broader trochlear notches and narrower radial notches (Figure 14).  

 A Tukey’s post hoc test on shape PC1 shows that H. sapiens, P. troglodytes, P. paniscus, 

and H. lars exhibit significant similarity in means (p<0.05) for the proportional mediolateral 

breadth of the humeroulnar articulator.  G. gorilla and P. pygmaeus also exhibit significant 

similarities in means while P. cynocephalus exhibits no significant similarity to any other species 

(Table 3). 

 A Tukey’s post hoc test on shape PC2 shows that P. troglodytes, P. paniscus, H. lars 

exhibits significant similarity in means (p<0.05) for the proportional anterodistal breadth of the 

radioulnar articulator. There also significant similarities in means between P. cynocephalus, H. 

sapiens, G. gorilla, and P. pygmaeus as well as significant similarities between H. sapiens and P. 

troglodytes (Table 4).   
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Table 5.) Analysis of Variance of size PC1 and size PC2 scores (Full Tangent Space 
Projection and Procrustes Form Space) for all species observed (Interspecific variation 
between species).  The independent variable in each ANOVA is the species in the sample 
and the dependent variable is the PC scores.  Species exhibit significant differences along 
both components (p<0.05). 

 Source Sum-of-Squares Df Mean-Square F-ratio P 
PC1 Taxa 10.116 1 1.686 175.179 0.000 

Error 1.174 127 0.010   
 
PC2 Taxa 1.077 1 0.180 247.366 0.000 

Error 0.089 127 0.001   
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Figure 15.) Least Squares Means of size PC1 and size PC2 scores (Full Tangent Space 
Projection and Procrustes Form Space) for all species observed, with species as the 
independent variable and PC scores as the dependent variable. 
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Table 6.) Matrix of pairwise mean differences for size PC1 scores (Full Tangent Space 
Projection and Procrustes Form Space) for all species observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7.) Matrix of pairwise mean differences for size PC2 scores (Full Tangent Space 
Projection and Procrustes Form Space) for all species observed. 

P. cyn P. pan P. trog H. lars G. gor H. sap P. pyg 
P. cyn 0.000       
P. pan -0.210 0.000      
P. trog -0.190 0.021 0.000     
H. lars -0.362 -0.152 -0.173 0.000    
G. gor -0.193 0.017 -0.004 0.169 0.000   
H. sap -0.204 0.007 -0.014 0.159 -0.010 0.000  
P. pyg -0.225 -0.015 -0.035 0.137 -0.032 -0.021 0.000 

P. cyn P. pan P. trog H. lars G. gor H. sap P. pyg 
P. cyn 0.000       
P. pan 0.285 0.000      
P. trog 0.387 0.102 0.000     
H. lars -0.354 -0.639 -0.741 0.000    
G. gor 0.769 0.484 0.382 1.123 0.000   
H. sap 0.385 0.100 -0.001 0.739 -0.384 0.000  
P. pyg 0.488 0.203 0.101 0.842 -0.281 0.103 0.000 
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C.) Interspecific Variation in Size 

In the size PCA (the PCA with Procrustes Form Space Projection), PC1 and PC2 

cumulatively explain 87.6226% of the total variance.  An Analysis of Variance comparing 

species via size PC1 scores (F=175.179, p=0.000) and size PC2 scores (F=247.366, p=0.000) 

shows that species vary significantly from each other on both components of the size PCA 

(Table 5).   

A Tukey’s post hoc test on size PC1 shows that H. sapiens and P. troglodytes exhibit 

significant similarity in mean (p<0.05) for the raw mediolateral breadth of the humeroulnar 

articulator.  With the exception of the similarity observed in H. sapiens and P. troglodytes, all 

species exhibit significant mean differences in size PC1 scores (Table 6). 

A Tukey’s post hoc test on size PC2 shows that there are no significant differences in 

means (p<0.05) for the raw anterodistal breadth of the radioulnar articulator amongst H. sapiens, 

P. troglodytes, P. paniscus, G. gorilla, and P. pygmaeus.  The size PC2 scores of P. 

cynocephalus and H. lars, however, each exhibit significant mean differences (p>0.05) from all 

other primates (Table 7). 

Size PC1 shows mediolateral breadth of the humeroulnar joint is greatest in G. gorilla 

and P. pygmaeus and smallest in H.lars and P. cynocephalus.  Size PC2 shows that the breadth 

of the radial notch is greatest in P. cynocephalus and least in H. lars (Figure 9).    
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Table 8.) Table of shape ANOVAs (Full Tangent Space Projection) for dimorphism in 
species along shape PC1 (Intraspecific variation between sexes).  Each ANOVA examines 
the variance in one species, with sex as the independent variable (male or female) and PC 
scores as the dependent variable.  All species exhibit nonsignificant differences in variance 
(p>0.05).  
Species Sum-of-Squares Df Mean-Square F-ratio P 
P. cynocephalus  0.000 1 0.000 0.635 0.435 
P. paniscus 0.000 1 0.000 0.089 0.770 
P. troglodytes 0.000 1 0.000 0.005 0.947 
H. lars 0.000 1 0.000 0.003 0.959 
G. gorilla 0.000 1 0.000 0.109 0.747 
H. sapiens 0.000 1 0.000 0.112 0.740 
P. pygmaeus 0.000 1 0.000 0.004 0.953 
 
 
 
Table 9.) Table of shape ANOVAs (Full Tangent Space Projection) for dimorphism in 
species along shape PC2 (Intraspecific variation between sexes).  Each ANOVA examines 
the variance in one species, with sex as the independent variable (male or female) and PC 
scores as the dependent variable.  All species exhibit nonsignificant differences in variance 
(p>0.05). 
Species  Sum-of-Squares Df Mean-Square F-ratio P 
P. cyncephalus  0.000 1 0.000 0.001 0.976 
P. paniscus 0.005 1 0.005 3.802 0.071 
P. troglodytes 0.001 1 0.001 0.653 0.430 
H. lars 0.000 1 0.000 0.002 0.966 
G. gorilla 0.001 1 0.001 4.604 0.053 
H. sapiens 0.000 1 0.000 0.257 0.615 
P. pygmaeus 0.000 1 0.000 0.003 0.960 
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Table 10.) Tables of size ANOVAs (Full Tangent Space Projection and Procrustes Form 
Space) of dimorphism in species along size PC1 (Intraspecific varation between sexes).  
Each ANOVA examines the variance in one species, with sex as the independent variable 
(male or female) and PC scores as the dependent variable.  P.cynocephalus, P. troglodytes, 
G. gorilla, and P. pygmaeus (bolded) are the only species exhibiting significant differences 
in variance (p<0.05). 
Species Sum-of-

Squares 
Df Mean-Square F-ratio P 

P. cynocephalus  0.241 1 0.241 215.938 0.000 
P. paniscus 0.002 1 0.002 1.929 0.187 
P. troglodytes 0.031 1 0.031 7.466 0.014 
H. lars 0.000 1 0.000 0.043 0.842 
G. gorilla 0.240 1 0.240 50.910 0.000 
H. sapiens 0.000 1 0.000 0.635 0.435 
P. pygmaeus 0.184 1 0.184 73.635 0.000 
 
 
 
Table 11.) Tables of size ANOVAs (Full Tangent Space Projection and Procrustes Form 
Space) of dimorphism in species along size PC2 (Intraspecific variation between sexes).  
Each ANOVA examines the variance in one species, with sex as the independent variable 
(male or female) and the PC scores as the dependent variable.  P. cynocephalus, G. gorilla, 
and P. pygmaeus (bolded) are the only species exhibiting significant differences in variance 
(p<0.05). 
Species Sum-of-Squares Df Mean-Square F-ratio P 
P. cynocephalus  0.008 1 0.008 64.301 0.000 
P. paniscus 0.000 1 0.000 0.223 0.644 
P. troglodytes 0.001 1 0.001 1.631 0.218 
H. lars 0.000 1 0.000 0.058 0.816 
G. gorilla 0.011 1 0.011 13.012 0.004 
H. sapiens 0.000 1 0.000 0.001 0.976 
P. pygmaeus 0.184 1 0.184 73.635 0.000 
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D.) Sexual Shape Dimorphism 

Sexes do not vary significantly in shape for any species along shape PC1 and shape PC2 

(p>0.05) (Table 8, Table 9). 

E.) Sexual Size Dimorphism 

Size PC1 shows that there are significant differences in size between sexes amongst G. 

gorilla, P. troglodytes, P. pygmaeus, and P. cynocephalus (p<0.05) (Table 10).  Size PC2 shows 

that G. gorilla, P. pygmaeus, and P. cynocephalus exhibit significant differences in variance 

between the sexes (p<0.05), while P. troglodytes shows no significant difference between sexes 

(p>0.05) (Table 11).    



 

 

33

Least Squares Means

female male
SEX

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

P
C

1_
S

P
A

C
E

Least Squares Means

female male
SEX

0.0

0.2

0.4

0.6

0.8

1.0

P
C

2_
S

P
A

C
E

 

Figure 16.) Plot Least Squares Means for size ANOVA (Full Tangent Space Projection and 
Procrustes Form Space) of dimorphism in P. cynocephalus along size PC1 and size PC2.  
The independent variable for each plot is sex (male or female).  The dependent variable is 
PC scores. 
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Figure 17.) Least Squares Means for size ANOVA (Full Tangent Space Projection and 
Procrustes Form Space) of Dimorphism in P. pygmaeus along size PC1 and size PC2.  The 
independent variable for each plot is sex (male or female).  The dependent variable is PC 
scores. 
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Figure 18.) Least Squares Means for size ANOVA (Full Tangent Space Projection and 
Procrustes Form Space) of Dimorphism in G. gorilla along size PC1 and size PC2.  The 
independent variable for each plot is sex (male or female).  The dependent variable is PC 
scores. 
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Figure 19.) Plot of Least Squares Means for size ANOVA (Full Tangent Space Projection 
and Procruste Form Space) of dimorphism in P. troglodytes along size PC1 and size PC2.  
The independent variable for each plot is sex (male or female).  The dependent variable is 
PC scores. 
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IV.) Discussion 

 The findings from the analysis support the hypothesis that the magnitude of 

sexual dimorphism correlates with differences in joint size.  Large bodied primates all exhibit 

larger joints with larger body size, but no significant shape change is observed between sexes of 

the same species.  As such, one can reject that hypothesis that significant interspecific variance 

in joint shape exists between males and females of the same species.   

The sexes of G. gorilla show a difference in intraspecific variance along shape PC2 that 

is close to significant (p=0.053): this probability may be a byproduct of the relatively small 

sample size of G. gorilla (7 male, 7 female).  Though some primate species may exhibit 

differences in habitual behavior between sexes, said differences are not so great as to cause 

functional differences in joint morphology.  There was no consistent sample for the analysis and 

the sample size for sexes in all species were relatively small (n<30).  Though the mediolateral 

breadth of the elbow joint appears to scale isometrically with size, larger samples and a 

consistent sample size would be needed to confirm any of the observed results.  Bootstrapping 

can provide greater consistency if not enough bones can be collected to even out each species 

sample. 

The regression of size PC1 against the natural log centroid size shows that the 

mediolateral breadth of the humeroulnar joint scales isometrically with body size (Ln centroid 

coefficient=0.936, p=0.000, Squared multiple R=0.826) (Figure 12).  No other regression 

showed a clear correlation between PC scores and the natural log centroid size. 

The F-ratios effectively show the magnitude of difference between males and females in 

each species.   One can observe that for size PC1 the F-ratio is greatest in P. cynocephalus, the 

species most distantly related to H. sapiens.  The smaller the F-ratio the closer a species is 
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related to H. sapiens, the exception being P. paniscus, in which case the low sexual size 

dimorphism can be inferred to be an independently derived trait.  The sexes in P. troglodytes 

show sexual size dimorphism in the mediolateral breadth of the proximal ulna articulator, 

whereas P. paniscus shows none (Table 10).  P. troglodytes are highly aggressive and territorial 

relative to P. paniscus and the sexual dimorphism exhibited by the former is a byproduct of this 

aggressive behavior (Doran 1993 (1), Fleagle 2013).  Male and female H. lars, a species that is 

known to exhibit little sexual dimorphism, do not exhibit a significant difference in variance in 

the breadth of both the humeroulnar and radioulnar articulator.  The H. sapiens sample also 

exhibits no sexual size dimorphism, which corresponds with the overall trend of lessening sexual 

dimorphism in the genus Homo.  The observed magnitudes of size dimorphism in the 

mediolateral breadth of the humeroulnar match similar findings of dimorphism in body mass and 

canine morphology (Leigh and Shea 1995, Plavcan 2001, Plavcan 2011).   

The findings from the analysis support the hypothesis that the magnitude of sexual 

dimorphism correlates with difference in joint size.  Figure 12 shows how the size PC1 scales 

isometrically with the natural log centroid size of each specimen, a variable that reflects the 

overall size of the ulna.  Large bodied primates all exhibit larger joints with larger body size, but 

little change in joint shape.  It can be inferred that differences in locomotor behavior due to 

bodyweight are not so extreme as to cause proportional shape differences in the proximal ulna, at 

least as observed from the chosen landmarks. 

The regressions of PC1 and PC2 of the shape PCA are significant, however the squared 

multiple R for both regressions show a low goodness-of-fit (Figure 10, Figure 11).  It may be 

that the differences in shape observed between cercopithecoids and hominoids are obstructing 

the analysis.  The regression of size PC2 shows the lowest goodness-of-fit, and it can likewise be 
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inferred that P. cynocephalus is obstructing the analysis (Figure 13).  Size PC1 is the only 

principal component that reliably shows scaling (Figure 12).  The regression observed in Figure 

12 shows that the raw mediolateral breadth of the humeroulnar articulator scales with body size 

in all species.  The regressions of shape PC1, shape PC2 and size PC2 do not show any 

correlation with body size.  Observing Figures 8, 9, 10, and 13, it is apparent that P. 

cynocephalus, the species showing the most obvious body size dimorphism, is obfuscating the 

regression of the other species.  It may be that sexual dimorphism and articulator adaptations 

have diverged in P. cynocephalus to the point where they are an outlier to the other species in the 

analysis.  In the future an analysis of sexual dimorphism of solely cercopithecoids may 

illuminate how sexual dimorphism in cercopithecoids differs from hominoids.  P. cynocephalus 

is an out-group in an analysis that has placed greater emphasis on hominoids; such an analysis 

cannot hope to accurately examine sexual dimorphism amongst all catarrhines. 

Joint morphology does appear to distinguish primate taxa.  The raw mediolateral breadth 

of the humeroulnar articulator is greatest in G. gorilla and P. pygmaeus, the primates in the 

analysis that exhibit the greatest bodyweight.  Shape PC1 shows change in the proportional 

mediolateral breadth of the humeroulnar articulator, showing how the joint becomes broader or 

narrower in shape in a given species (Figure 8).   For both G. gorilla and P. pygmaeus, the 

proportional mediolateral breadth of the humeroulnar joint is greatest among males and can be 

inferred to be a means of supporting the larger bodyweights exhibited by males in each species.   

H. sapiens and P. troglodytes exhibit similar measurements in the mediolateral breadth of 

the humeroulnar articulator (Table 6).  P. troglodytes are the most recent ancestor of H. sapiens 

out of all the species observed; the similarities in size observed in the humeroulnar joint may be 
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an ancestral condition to both species, however there is currently no fossil evidence supporting 

this conjecture. 

The raw mediolateral breadth of the humeroulnar articulator is narrowest in H. lars.  H. 

lars is a primarily suspensory primate and the narrowness observed in the humerounlar 

articulator may be attributed to how H. lars subjects its elbow joint almost exclusively to tension 

during locomotion.  In comparison G. gorilla and P. pygmaeus subject their bones to extreme 

compression due their greater bodyweight and utilization of terrestrial locomotion.   

The raw anterodistal breadth of the radioulnar articulator appears to be similar amongst 

all hominoids with the exception of H. lars.  P. cynocephalus also exhibit dissimilarity to all 

other primates observed (Table 7).   H. lars exhibits the anterodistally narrowest radioulnar 

articulators out of all the species examined.  In comparison P. cynocephalus exhibits the 

anterodistally broadest radioulnar articulators.  P. cynocephalus is exclusively terrestrial in its 

locomotion and exhibit anteriorly oriented radioulnar articulators to stabilize their forearms 

during locomotion.  The broadness of the radioulnar articulator exhibited by P. cynocephalus 

may be an adaptation to increase the service area of the joint for stabilizing the joint.  P. 

troglodytes, P. paniscus, G. gorilla, and P. pygmaeus exhibit similar anterodistal breadths in 

their radioulnar articulators, which may be attributed to their utilization of both arboreal and 

terrestrial locomotion.  The anterodistal breadth of the radioulnar articulator exhibited by H. 

sapiens can be inferred to be an ancestral trait plesiomorphic for all hominoids observed with the 

exception of H. lars.   

It does not appear, however, that any specific locomotor behavior correlates with a 

specific joint shape.  A Tukey’s post hoc test of the shape PC1 scores shows that G. gorilla and 

P. pygmaeus are grouped, but there are significant differences in the locomotor behavior of each 
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species.  Joint shape does appear to change with bodyweight, however the bodyweight 

differences between sexes is not shown to be significant enough to produce shape differences 

within any observed species.  Given the results of the analyses one can be assured that the 

taxonomic classification of the proximal ulna in fossil catarrhines is not being distorted by shape 

dimorphism.  If a collection of proximal ulna fossils (all known to be catarrhines) exhibits 

similar morphology but differ in size, one can hypothesize that there may be sexual dimorphism 

in said fossils.  The isometry observed in the regression of size PC1 against the natural log 

centroid size is consistent with limb scaling patterns observed across catarrhine primates.  As 

such, one can hypothesize that fossil catarrhines may exhibit similar scaling patterns with the 

pattern observed in extant species being an ancestral trait (Steudel 1982, Swartz 1989, Godfrey 

1991). 

An analysis of just the proximal ulna is insufficient to fully understand how sexual 

dimorphism affects morphology and scaling in the elbow joint.  Past studies have typically 

analyzed either one or two bones in the elbow joint.  Patel found that the radial head in monkeys 

is ovoid with an eccentrically positioned fovea whereas in hominoids it is more circular with a 

distinct bevel on the medial aspect between the proximal and distal articular surfaces.  One can 

differentiate between terrestrial quadrupedalism and arboreal suspension based on the different 

morphologies observed in the proximal radius (Patel 2005 (2)).  In the distal humerus, the elbow 

joint is size dimorphic relative to the given degree (overall magnitude of difference) of body size 

dimorphism.  Lague found that mountain gorillas exhibit dimorphism in the distal humerus that 

ranges from similar to far below the expected for similarity between sexes.  It is suspected that, 

amongst African apes, large bodied males experience considerably greater joint stresses than 

females; the large mobile joints may diminish stress to the point that positive allometry is not 
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needed (Lague 2000).  However, all the bones in the elbow are utilized in locomotor and 

positional behavior.  The elbow joint can be better understood if it is analyzed as an integrated 

unit rather than as individual parts.  Differences in morphology may become apparent when all 

three articulations are analyzed cumulatively rather than separately.  In the future I propose an 

analysis of all three bones of the elbow via their articulations sites.  Such an analysis would 

require an extensive sample of bones taken from multiple collections, but 3-D modeling via 

polyworks should make the procuring of said bones relatively simple.  I hypothesize that such an 

analysis, should it be undertaken, would yield an overall more precise and accurate investigation 

of dimorphism in the elbow joint.      

In conclusion, the sexes in certain species show significant variance in the raw 

mediolateral breadth of the humeroulnar articulator and the raw anterodistal breadth of the 

radioulnar articulator, however there are no corresponding significant differences in the 

proportions of said articulators.  Significant differences in joint size between males and females 

were found to correlate with the magnitude of sexual dimorphism.  Significant interspecific 

variance in joint shape was not found to exist between males and females of the same species; 

differences in locomotor behavior between sexes do not appear to be strong enough to facilitate 

differences in morphology.  A more systematic study with a larger sample size will be needed to 

verify the observed results.  Special thanks to Dr. Plavcan, Dr. Ungar, and Dr. Nolan for agreeing 

to be part of my thesis committee and Dr. Plavcan in particular for providing the 3-D models and 

statistical programs used in the analysis.   
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