
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

8-2014 

From Graphite to Graphene via Scanning Tunneling Microscopy From Graphite to Graphene via Scanning Tunneling Microscopy 

Dejun Qi 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Quantum Physics Commons 

Citation Citation 
Qi, D. (2014). From Graphite to Graphene via Scanning Tunneling Microscopy. Graduate Theses and 
Dissertations Retrieved from https://scholarworks.uark.edu/etd/2195 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu, uarepos@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=scholarworks.uark.edu%2Fetd%2F2195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/2195?utm_source=scholarworks.uark.edu%2Fetd%2F2195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20uarepos@uark.edu


 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Graphite to Graphene via Scanning Tunneling Microscopy 

 

 

 



 

From Graphite to Graphene via Scanning Tunneling Microscopy 

 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Physics 

 

 

by 

 

 

Dejun Qi 

Harbin University of Science & Technology 

Bachelor of Science in Physics, 2005 

Chinese Academy of Science 

Master of Science in Physics, 2008 

 

 

August 2014 

University of Arkansas 

 

 

This dissertation is approved for recommendation to the Graduate Council. 

 

 

__________________________________ 

Dr. Paul Thibado  

Dissertation Director  

 

 

__________________________________        __________________________________            

Dr. Huaxiang Fu Dr. Jiali Li 

Committee Member Committee Member 

 

 

__________________________________        __________________________________ 

Dr. Ryan Tian Dr. Jacques Chakhalian 

Committee Member Committee Member 



 

ABSTRACT 

The primary objective of this dissertation is to study both graphene on graphite and 

pristine freestanding grapheme using scanning tunneling microscopy (STM) and density 

functional theory (DFT) simulation technique. In the experiment part, good quality tungsten 

metalic tips for experiment were fabricated using our newly developed tip making setup. Then a 

series of measurements using a technique called electrostatic-manipulation scanning tunneling 

microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic 

graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can 

be tuned to produce both reversible and irreversible large-scale movement of the graphite surface. 

Under this influence, atomic-resolution STM images reveal that a continuous electronic 

transition between two distinct patterns can be systematically controlled. DFT calculations reveal 

that this transition can be related to vertical displacements of the top layer of graphite relative to 

the bulk. Evidence for horizontal shifts in the top layer of graphite is also presented. Excellent 

agreement is found between experimental STM images and those simulated using DFT. In 

addition, the EM-STM technique was also used to controllably and reversibly pull freestanding 

graphene membranes up to 35 nm from their equilibrium height. Atomic-scale corrugation 

amplitudes 20 times larger than the STM electronic corrugation for graphene on a substrate were 

observed. The freestanding graphene membrane responds to a local attractive force created at the 

STM tip as a highly conductive yet flexible grounding plane with an elastic restoring force. 
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CHAPTER 1   INTRODUCTION 

When a material is cut from a surface, the broken bonds tend to rearrange into a lower 

energy configuration. This process is known as a surface reconstruction and results in surface 

atoms having a different symmetry from the bulk atoms. For example, on the Si(001) surface 

adjacent Si atoms will till toward each other to form a dimer bond. In doing so, half of the 

broken surface bonds can be reformed to significantly lower the total surface energy. The 

symmetry of the surface is now different from the bulk since the periodicity along the dimer 

bond is twice the bulk, thereby yielding a (2 ×1) surface reconstruction [1, 2, 3, 4, 5]. Similar 

things happen on the GaAs(001) surface [6, 7, 8], but here the atomic arrangement is 

dependent on the arsenic pressure as well as the substrate temperature. In some instances a 

phase transition can be identified between the various reconstructions [9]. At the other 

extreme, a more subtle surface reconstruction can occur which involves only the electron 

distribution within the material. A prime example is the easily cleaved GaAs(110) surface, 

which exhibits very weak bonding between layers [10]. Because of this, when the layers are 

separated, the atomic nuclear positions remains the same, but the surface charge density 

significantly redistributes itself. The charge shifts to be only on the surface As atoms instead 

of being equally shared between the Ga and As atoms. Consequently, scanning tunneling 

microscopy (STM) filled-state images show only the As atoms, while empty-state images 

shows only the Ga atoms. 

Similar to GaAs, highly oriented pyrolitic graphite (HOPG) is another example of a 

system which is easily cleaved. When HOPG is imaged using STM, only alternate atoms 
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contribute to the tunneling current. This results in an image with triangular symmetry rather 

than the expected hexagonal symmetry. The hexagonal lattice system is one of the 

seven lattice systems, consisting of the hexagonal Bravais lattice. It is associated with 

45 space groups whose underlying lattice has point group of order 24. And the triangular 

symmetry is the symmetry of a sublattice with hexagonal close-packed structure. This 

surprising result is attributed to the particular stacking order most commonly observed in 

hexagonal graphite [11], referred to as ABA or Bernal stacking. Half of the surface carbon 

atoms (A site atoms) are directly above atoms in the lower layer, while the other half (B site 

atoms) are directly above hexagonal holes. The electronic charge density of the A atom is 

pulled into the bulk, and consequently the STM is unable to image it [12]. However, when a 

single layer of graphite is separated from the bulk, the symmetry is restored, and the 

subsequent redistribution of the electron density allows every carbon atom to be imaged with 

STM. This real-space transformation also leads to all the well-known electronic properties 

which distinguish graphene from graphite [13], including a band structure with linear rather 

than parabolic dispersion [14]. 

Transitions to a linear band structure are especially interesting because the charge 

carriers lose their mass. This is a process of fundamental importance in physics. Something 

similar to this transition has been observed in bilayer graphene using electrical transport 

measurement. Lau and co-workers recently demonstrated that bilayer graphene undergoes a 

phase transition at a critical temperature of 5 K to an insulating state with a band gap of ～3 

meV. [15] It is still being studied, but the effect may be tuned or reversed with the application 

of a perpendicular electric field or magnetic field [16, 17]. 

http://en.wikipedia.org/wiki/Point_group
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Studies using graphite have observed similar things; however, the events are 

randomly occurring, and thought to arise from preexisting defects in graphite. For example, 

using low-temperature (4.4 K) STM, low-voltage scanning tunneling spectroscopy (STS), and 

a magnetic field, Landau levels consistent with graphene have been observed on graphite by 

Andrei and co-workers [18, 19]. Signatures in the sequence have been used to quantitatively 

predict the amount of interaction between the top layer and the bulk. Further evidence of 

varying degrees of coupling can be seen in the symmetry of STM images. The STM tip can 

provide a perturbation that vertically lifts the top layer, resulting in images which exhibit a 

range of possibilities between the triangular and hexagonal lattices [20]. The difficulty, 

however, is that this induced decoupling has been random, not lending itself to a systematic 

study of the important symmetry-breaking transition from bulk graphite to monolayer 

graphene. 

A surface charge density similar to graphene but on graphite can also be attributed to 

horizontal shifts in the surface layer [21, 22]. This has created a lot of excitement in 

potentially controlling the stacking of graphene layers. For example, recent work suggest that 

stacking graphene is a way to solve the band gap problem, which is currently the chief 

obstacle for using graphene in digital electronic devices. Trilayer graphene is especially 

interesting because two stable allotropes have been identified; the layers can be arranged with 

ABA (Bernal) stacking or ABC (rhombphedral) stacking. ABC trilayers exhibit an inherent 

band gap of ～6 meV at the K point [23], which can be increased by applying an electrical 

field, while no such band gap is predicted in ABA trilayers. 
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Naturally, several major steps have been taken toward characterizing the stacking 

sequence. For instance, Raman spectroscopy performed on mechanically exfoliated graphene 

has revealed that the majority of trilayers produced are ABA stacked, while only 15% are in 

the ABC configuration [24, 25]. On the other hand, when graphene is grown on SiC(0001), 

the layers selectively form in ABC order over ABA, as observed with high-resolution 

transmission electron microscopy [26]. Certainly, one would like to control the stacking 

sequence or ideally alter it from one form to the other. A related area with a lot of interest is 

rotated or twisted layers [27, 28]. This has a lot of appeal because all the physics can be 

parameterized with just one angle. Horizontal shifting has received less attention [29]. 

On the other hand, in most graphene studies, samples are on a substrate, which 

degrades the intrinsic mobility of graphene [30]. The mechanisms behind this degradation 

include local effects, such as charged-impurity scattering, and nonlocal phenomena, such as 

phonon scattering [31]. Scanning tunneling microscopy (STM) and spectroscopy (STS) [32, 

33] reveal that charge-donating substrate impurities create charge puddles in supported 

graphene. The numerous limitations associated with examining graphene on substrates have 

led researchers to suspend graphene over holes [ 34 35] to better study its intrinsic properties. 

These efforts have been rewarded with many important breakthroughs, including the 

measurement of its record breaking ballistic carrier mobility [36], thermal conductivity [37], 

and the fractional Quantum Hall Effect [38]. Freestanding graphene has also provided a way 

to probe the material’s intrinsic tensile strength [39, 40]. Atomic force microscopy, combined 

with other techniques, has been utilized to measure its effective spring constant, resonance 

frequency (in the megahertz range) [41], Young’s modulus, self-tension, and the breaking 
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strength of single- and multiple-layer graphene [42, 43]. More recently, STM has been used 

to create minimembranes by locally lifting graphene from the substrate [44]. In addition, 

through the distortion of the two-dimensional plane with strain, the properties of charge 

carriers in graphene have been found to change dramatically as gauge fields (pseudomagnetic 

and deformation potential) are created [45, 46, 47, 48]. Researchers using transmission 

electron microscopy pioneered the efforts of imaging freestanding graphene, providing 

insight into the existence of ripples [49] and revealing point defects and ring defects, as well 

as edge reconstructions [50]. 

In this dissertation I am going to discuss our research of graphene that is coupled with 

the bulk graphite substrate, and focuses on the transition from graphene that is coupled with 

undelying layer to a single layer of graphene. I will present STM images of the HOPG 

surface before, during, and after perturbing the surface using a technique called 

electrostatic-manipulation STM (EM-STM) [51]. With this technique large-scale 

precision-controlled vertical movement of the graphite surface is possible. Atomic-scale STM 

images reveal a continuous transition from graphite lattice symmetry to grapheme lattice 

symmetry. Density functional theory calculations were used to generate a complete set of 

simulated STM images and provide excellent agreement with the measurements. The 

continuous change in the spatial distribution of the charge density is proposed as a measure of 

coupling between the surface layer and the bulk. Next, STM images on HOPG surface which 

show clear evidence of the top layer shifting horizontally in a direction along carbon-carbon 

(C-C) bond axis will be presented. Excellent agreement with a series of DFT simulated 

images generated from structures shifted along this same direction is also presented. From 
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DFT we predicted the direction for the lowest-energy barrier to transition from ABA to ABC 

stacking. 

In the next chapter, our research result of freestanding graphene on TEM grid will be 

discussed. I will describes the EM-STM measurement on freestanding graphene and 

introduce a strain in a controlled way onto the freestanding graphene. Also, I’ll show our 

atomic-resolution STM images of freestanding graphene and document vertical corrugations 

(d) that are 20 times larger than the expected electronic corrugation (de) due to strain-induced 

movement (u, where d = de + u). 
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CHAPTER 2   GRAPHITE AND GRAPHENE 

2.1  Background 

Carbon is one of the most abundant elements in earth and the basis of all organic 

chemistry. Due to its flexible bonding, carbon materials form a series of different structures 

with an equally large variety of physical properties. Graphene, a newly discovered 

two-dimensional (2D) allotrope of carbon atoms with hexagonal lattice layer structure, plays 

an important role in understanding the electronic properties of other carbon allotropes. For 

example, carbon nanotubes [52, 53] can be obtained by rolling graphene along a given 

direction and reconnecting the carbon bonds on the edges of the sheet. Therefore, carbon 

nanotubes consist of only carbon hexagons and can be thought of as one-dimensional (1D) 

carbon allotropes. Graphite, a three dimensional (3D) allotrope of carbon, became well 

known since the pencil was invented in 1564 [54]. It is highly applicable as a tool of writing 

due to the fact that graphite is made out of stacks of graphene sheets that are weakly coupled 

by the van der Waals interaction. It is interesting to imagine that as we are writing on a piece 

of paper with a pencil, we are actually producing graphene stacks and, somewhere among 

them, there could even be single graphene layers. Despite the ubiquity of graphene among all 

these different allotropes and the likelihood of producing of graphene every time we write 

with a pencil over a paper, graphene was not able to be isolated and identified until 440 

hundred years after the pencil was invented [55]. In fact, initially no one expected graphene 

to exist in the free state because of lacking experimental technique that was capable of 

searching for one-atom-thick carbon layers among the pencil debris covering macroscopic 
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areas [56]. While graphene was eventually isolated and identified via its subtle optical effect 

as it is transferred on top of a well-chosen SiO2 substrate which allows it to be observed with 

an ordinary optical microscope [57, 58, 59]. Therefore, graphene is relatively straightforward 

to produce, but quite difficult to find. 

The structural flexibility of graphene is manifested by its electronic properties. The 

sp
2
 hybridization between one s- orbit and two p-orbits leads to the formation of a σ bond 

between nearest carbon atoms that are separated by 1.42 Å. This special hybridization 

therefore gives rise to a triangular layer structure. The formation of σ band is the key to the 

robustness of the lattice structure for all carbon allotropes. According to the Pauli principle, 

these bands contain a filled shell and, as a result, form a deep valence band. The unaffected 

p-orbit, which is perpendicular to the trigonal planar structure, can be weakly bonded with 

neighboring carbon atoms, resulting in the formation of a π band. Unlike the σ band, since 

every p-orbit has one extra electron, the π band is half filled.  

Half-filled bands for transition elements in the periodic table play an important role in 

the physical properties of strongly correlated systems. Because of their strong tight-binding 

character, the Coulomb energies are so large that these transition elements have strong 

collective effects, magnetism, and insulating behavior due to correlation gaps [60]. In fact, it 

was proposed by Linus Pauling in the 1950s that, based on the electronic properties of 

benzene, graphene should be a resonant valence bond (RVB) structure. RVB states have 

become a popular topic in the research of transition-metal oxides, and particularly in the 

research of cuprate-oxide superconductors [61]. This point of view is, in fact, contrasted with 
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contemporary research in band-structure of graphene [62] which was found to be semimetal 

having an unusual linear dispersing electronic excitations called Dirac electrons. However, 

most of the current experimental researches in graphene support the recent view point of band 

structure. In 1946, P. R. Wallace first derived the theory of the band structure of graphene 

and showed that the graphene processes an unusual semimetallic behavior [62]. At that time, 

realization of 2-D material was still thought to be impossible and Wallace’s theory of 

graphene band structure became the starting point to the study of graphite. In the following 

years, graphite had been extensively studied. In particular, the theory of the 

Slonczewski-Weiss-McClure (SWM) band structure of graphite perfectly describe the 

electronic properties of this material [63, 64] and was successfully proved by experiments [65, 

66, 67, 68, 69]. In 1968, the research of Schroeder et al.[70] revealed the currently accepted 

location of electron and hole pockets [71]. Recent years, SWM model has been restudied as it 

came across a problem of describing the van der Waals–like interactions between graphene 

planes. This problem requires a thorough understanding of many-body effects that go beyond 

the band-structure theorem [72]. Even as these issues do not arise in the context of a single 

layer graphene, they are important for multiple graphene layers stack on top of each other, as 

in the case, for instance, graphite. Stacking of graphene sheets change the electronic 

properties considerably and, therefore, the layering structure can be used in order to control 

the electronic properties of stacking graphene crystals. Due to the interlayer coupling, single 

layer graphene processes very different transport properties than graphite or few-layer 

graphene. As the charge carriers in this one-carbon atom thick thin film are confined into a 

two dimensional structure, one can look for and observe the quantum Hall effect. 
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Furthermore, in the case of a single graphene layer, its behavior differs drastically from the 

case of quantum wells in conventional semiconductor interfaces which has been well studied. 

In this chapter, I am going to discuss the crystal structure and the electronic structure of these 

two highly related while essentially different substances: graphene and graphite. 

2.2  Graphite and graphene 

 

Figure 2.1: (a) Graphene lattice structure and (b) its Brillouin zone 

The honeycomb lattice of graphene due to their sp
2
 hybridization is shown in Figure 

2.1(a). Note that a honeycomb lattice is not a Bravais lattice since two neighboring sites are 

not equivalent. Figure 2.1 (a) illustrates that a site on the A sublattice (black dots) has three 

nearest neighbors marked by white dots (in the directions specified by 𝒆𝟏⃑⃑⃑⃑ , 𝒆𝟐⃑⃑⃑⃑ , and 𝒆𝟑⃑⃑⃑⃑ ), while 

a site on the B sublattice (white dots) has nearest neighbors marked by black dots. However, 

if we focus on only A or B sublattices, we are looking at Bravais lattices with triangular 

structure, and we can view the honeycomb lattice as a triangular Bravais lattice with a 

two-atom basis (A and B). The distance between two nearest carbon atoms is 0.142 nm, 
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which is the average of the single and double covalent σ-bonds. The three vectors which 

connect an A-site carbon atom with a nearest neighbor B-site carbon atom are written as the 

following forms: 

                                                                𝒆1⃑⃑⃑⃑ =  
𝑎

2
(√3�̂� + �̂�)                                                             (2.1)  

                                                                𝒆2⃑⃑⃑⃑ =  
𝑎

2
(−√3�̂� + �̂�)                                                          (2.2) 

                                                                𝒆1⃑⃑⃑⃑ =  −𝑎�̂�                                                                             (2.3) 

and the triangular Bravais lattice is spanned by the basis vectors 

                                                                 𝒂1⃑⃑⃑⃑ = √3𝑎�̂�                                                                         (2.4)  

                                                                 𝒂2⃑⃑ ⃑⃑ =
√3

2
𝑎(�̂� + √3�̂�)                                                        (2.5) 

The lattice spacing of graphene is 𝑑 = √3𝑎 = 0.24 nm, and the area of one unit cell 

is Auc = 0.051 nm
2
. The corresponding reciprocal lattice of graphene lattice with the first 

Brillouin zone (inner hexagon) is displayed in Figure 2.1(b), 𝒃1
⃑⃑⃑⃑  and 𝒃2

⃑⃑⃑⃑  are two reciprocal 

lattice unit vectors. Because the hexagonal graphene lattice consists of only carbon atoms, for 

both real space and k-space the crystal lattices can be described by two in-equivalent 

triangular sublattices. As a result, in the real space two neighboring carbon atoms occupy 

non-equivalent sites [as shown in Figure 2.3(b)] with black dots and white dots. The band 

structure of graphene can be calculated by tight-binding approach using a separate Bloch 

function ansatz for the two inequivalent lattice sites [62]. The resulting dispersion of E versus 

k has the following form: 
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                                                         ( ⃑ ) =   √3 +  ( ⃑ ) −    ( ⃑ )                                            (2. ) 

where 

                                           ( ⃑ ) = 2    (√3  𝑎) + 4    (
√3

2
  𝑎)    (

3

2
  𝑎)                  (2. ) 

the plus sign represents the upper (π*) band and the minus sign represents the lower 

(π) band. From Eq. (2.6) and (2.7), it can be seen that the spectrum is symmetric near zero 

energy when t’=0. For finite values of t’, the electron-hole symmetry is broken and the π and 

π* bands become asymmetric. Another important point to be noticed is that, according to Eq. 

(2.6), for some special points in the   ⃑  space, the conduction and valence band touch each 

other exactly at all inequivalent K and K  ́points. Additionally, around the low energy region, 

the valence band is fully occupied and the conduction band is empty. The Fermi energy EF is, 

therefore, intersecting the bands exact at K and K’. These points are also known as 

Dirac-points. Furthermore, in the low energy regions only a linear term of Eq. (2.6) survives:  

                                                                              ( ⃑ ) ∝ | ⃑ |                                                               (2.8) 

Unlike most of the semiconductors/semi-metals, in the low energy region the band 

structure of graphene became linear. In this region, the charge carriers (electrons and holes) 

behave like relativistic Dirac fermions. The description for lower energy is therefore similar 

to a photonic dispersion relation: 

                                                                            (𝑝) = 𝑐∗𝑝                                                                (2.9) 
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where c* is the effective speed of light 𝑐∗ ≈ 106m/s. As we know, if the speed of a particle is 

much smaller than the speed of light, the Einstein relativistic dispersion transits to 

non-relativistic form:  

                                                    = √𝑚2𝑐4 + 𝑐2ℏ2 2 ≈ 𝑚𝑐2 +
ℏ2 2

2𝑚
                                   (2.10) 

and this particle is massive, as can be seen from the Eq. (2.10). While for grahene, the Eq. 

(2.9) is analog to the Einstein relativistic dispersion  = √𝑚2𝑐4 + 𝑐2ℏ2 2 with mass equal 

zero (m=0). As a consequence, the effective mass of the charge carriers in graphene is zero, 

m= 0 [73, 74]. Together with the linear dispersion relation it can be demonstrated that the 

charge carriers in graphene must be described by relativistic Dirac equation [31, 75]. 

 

Figure 2.2: Crystal structure of graphite. Black dots represent A- site carbon atoms while 

white dots represent B- site carbon atoms. Stacking sequence is called ABA (Bernal) 

stacking. 
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As multiple graphene layers are stacked together, the electronic properties of them 

changes dramatically due to coupling between layers and they, as a whole, eventually become 

essentially another substance—graphite. In graphite, these graphene layers are stacked in the 

ABA sequence and bound in the c-direction by weak van de Waals forces. There are four 

atoms per unit cell, as labeled by A, A’ and B, B’ in Figure 2.2. The atoms A and B are on the 

lower layer plane and the atom A’ and B’ are on the upper layer plane, the two planes are 

separated by half the crystallographic c-axis spacing (0.335 nm). As described in the last 

section, the A atoms differ from B atoms in that the A atoms have neighbors directly above 

and below in adjacent layers whereas the B atoms locate at the hollow site of the hexagons of 

adjacent layers [76], they are the two atoms that occupy the two different sublattice sites. The 

same as graphene, overlap of these sp
2 

hybridized orbits leads to the formation of 𝜎-bond 

between nearest carbon atoms on a layer plane. While the 2pz electron forms a delocalized 

orbital of π symmetry. This delocalization leads to loosely bound π-electrons with high 

mobility, the π- electrons therefore determines most of the electronic properties of graphite. 

In addition, graphite is anisotropic, with different physical properties for inplane and c-axis 

crystallographic directions. The translation vectors (in Cartesian coordinates) of the graphite 

crystal structure, as shown in Figure 2.2,  

                                                                𝒂𝟏⃑⃑ ⃑⃑ = 𝑎 (
√3

2
,−

1

2
, 0)                                                      (2.11) 

                                                                𝒂𝟐⃑⃑ ⃑⃑ = 𝑎 (
√3

2
,+

1

2
, 0)                                                      (2.12) 
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                                                                𝒂𝟑⃑⃑ ⃑⃑ = 𝑐(0, 0, 1)                                                                  (2.13) 

where  

                                                               |𝒂𝟏⃑⃑ ⃑⃑ | = 𝑎 = 0.24  nm                                                      (2.14) 

                                                               |𝒂𝟐⃑⃑ ⃑⃑ | = 𝑎 = 0.24  nm                                                      (2.15) 

                                                               |𝒂𝟑⃑⃑ ⃑⃑ | = 𝑐 = 0.  1nm                                                        (2.1 ) 

the lattice parameter is 𝑎 = √3𝑎0, where 𝑎0 = 1.42 𝑛𝑚, it is the in-plane distance 

between two nearest neighbors. 𝑐 = 2𝑐0, where 𝑐0 = 3.35 𝑛𝑚, it is the distance between 

two carbon adjacent layers.  
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Figure 2.3: (a) overall band structure of six-layer graphite. (b) closed view of band structure 

near K point inside the square box in (a) 

As an example, for six-layer graphite, there are 12 σ-bands and 4 π-bands (16 bands in 

total). Six σ-bands are bonding and the other six at higher energies are antibonding. The 

π-bands lie in between these two groups of σ-bands. Similarly, two π-bands are bonding and 

the other two are anti-bonding, while all bands are coupled and the four π-bands are strongly 

coupled. A band structure of six-layer graphite is shown in Figure 2.3 in which, near K point, 

all bands are parabolic. While from Eq. (2.8), we know that, for graphene, the band K point is 

linear. So the parabolic band is an important electronic property that distinguishes the 

graphite layers from graphene.  
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In fact, this diference has been first theoretically predicted by P. Wallce in 1947. By 

applying the traditionally tight binding approach to graphite lattice, and expending the E(k) 

dispersion function near K point via Furious expansion, Wallace obtained the band structure 

of graphite near the K point: 

                                    =  0 + 3𝛾  √3𝜋𝛾| −  𝑐|𝑎 − 3𝜋2𝛾 | −  𝑐|
2𝑎2                        (2.1 ) 

where kc is the coordinate of K point in reciprocal space. And the binding parameter 𝛾 

can be thought of as the hopping energy between two nearest neighbor carbon atoms 

(adjacent A and B atoms in the plane), and 𝛾  can be viewed as the hopping energy between 

two A- site carbon atoms that are directly on top of each other from adjacent planes. To 

obtain the band structure of single layer of graphite (or graphene), simply neglect the 

parameter of interlayer hopping energy (𝛾 ), then only the linear term in Eq. (2.17) survives, 

we have: 

                                                       | −  0| ≈ √3𝜋𝛾| −  𝑐|𝑎                                                     (2.18) 

this is consistent with Eq. (2.8) which is derived directly from single layer graphene. This 

shows how the band structure near K point transits from parabolic to linear as the graphite 

layer is fully separated from the bulk. As we will see in the later discussion with our results, 

as the graphite layer is gradually separated from the bulk, the linear characteristics of its band 

dispersion occur, representing the transition from a layer of graphite to graphene. 

  



 

 

18 

CHAPTER 3   SCANNING TUNNELING MICROSCOPY 

3.1  Background 

The scanning tunneling microscope (STM) was invented by G. Binnig and H. Rohrer 

[77, 78, 79] at IBM in 1982 and awarded the Noble Prize in 1986. The invention of STM 

provides a powerful tool to obtain structural and electronic information of a materials surface 

on an atomic scale. For example, the first atomically resolved STM image resolved and 

confirmed the Si(111) 7 × 7 surface reconstruction [80, 81] and identified Takayanagi’s 

dimer-adatom stacking- fault model [82] as the correct Si(111) 7 × 7 surface structure. The 

basic idea of STM is bringing an ultra-sharp metallic tip in close proximity (a few Å) to a 

conducting sample surface. As a bias voltage is applied between tip and sample, due to the 

tunneling effect of quantum mechanics, an electric current can flow from the sample to the tip 

or reverse. The tunneling current exponentially depends on the tip-sample distance, resulting 

in a high vertical resolution [83]. As the tip scans across the surface and detects the current, a 

map of the surface can be generated with a lateral resolution in the order of atomic scale. 

3.2  Electron tunneling 

Inside the solid crystal, most of the electrons are bounded tightly to individual atomic 

nuclei due to the electrostatic interaction from the nuclei. This is similar to the case of an 

isolated single atom and these electrons are called core electrons. However, there are some 

electrons which are moving far away from the nuclei and feel a relatively weak electrostatic 

force. These electrons are called conduction electrons in a metal. They can be modeled as if 
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they are moving in a nearly constant attractive potential in the nearly free electron 

approximation. A large number of the electron energy levels interact with each other to form 

the so called conduction band. The energy level of the most weakly bound electrons is called 

the Fermi Energy (EF) level at which the electrons are held in the crystal by an energy barrier 

of ~5 eV, this is called the work function of the crystal. In classical physics, these electrons 

can never leave or escape from the crystal for they do not have enough energy to overcome 

the potential barrier. In Quantum Mechanic, however, the electrons near Fermi level have 

probability to penetrate or tunnel through the potential barrier. This results in the wave 

function leaking out 𝜓(𝑥) = 𝜓(0)𝑒−2𝜅  near the conductive sample surface and the 

metallic tip, where 𝜅 is called decay length. By placing them near each other, a finite square 

well can be created, and the leaked out electron wave-function of the tip and sample overlap 

each other. This overlap wave function leads to a tunneling current as the bias voltage is 

applied. 

In classical mechanics, the motion of an electron with energy E moving in a potential 

U(x) is determined by the equation: 

                                                                     
𝑝 

2

2𝑚
+  𝑈(𝑥) =                                                              (3.1) 

where m is the mass of the electron. In regions where E > U(x), the electron has a nonzero 

momentum pz. According to classical mechanical, the electron does not have the ability to 

penetrate into any region with E < U(x), or a potential barrier. In quantum mechanics, the 

motion of an electron, however, is determined by a wave function ψ(z) that satisfies the 

Schrodinger’s equation, 
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ℏ2

2𝑚

𝑑2

𝑑𝑥2
𝜓(𝑥) +  𝑈(𝑥)𝜓(𝑥) =  𝜓(𝑥)                                    (3.2) 

as an example, we focus on a piecewise-constant potential that shown in Figure 3.1. In the 

classically allowed region, E > U0, Eq. (3.2) has solutions of 

                                                                 𝜓(𝑥) = 𝜓(0)𝑒 𝑖𝑘                                                             (3.3) 

where  

                                                                  =  
√2𝑚( − 𝑈0)

ℏ
                                                          (3.4) 

is the wave vector. The electron is moving (in either a positive or negative direction) with a 

constant momentum pz = ћk = [2m(U0-E)]
1/2

 , the same as classical case. In the classically 

forbidden region, Eq. (3.2) has a solution 

                                                                  𝜓(𝑥) = 𝜓(0)𝑒−𝜅                                                              (3.5) 

where  

                                                                   𝜅 =  
√2𝑚(𝑈0 −  )

ℏ
                                                        (3. ) 

is the decay constant. This solution describes a state of the electron that is decaying in 

the +z direction. The probability density of observing an electron near a point z is 

proportional to |𝜓(0)|2𝑒−2𝜅 , which has a nonzero value in the barrier region, thus a 

nonzero probability to penetrate a barrier. Another solution, 𝜓(𝑥) = 𝜓(0)𝑒+𝜅 , describes an 

electron state decaying in the –x direction. 
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Figure 3.1: schematics of quantum mechanics tunneling model. It describes the quantum 

mechanical phenomenon where a particle tunnels through a square barrier that it classically 

impossible. 

The principle of STM is based on the elementary tunneling model discussed above.. 

In general, the work function 𝜙 depends on both the material and the crystallographic 

orientation of the surface. By neglecting the thermal excitation, the Fermi level, which is 

essentially the total chemical potential for electrons, can be treated as the upper limit of the 

occupied state in a metal. If we take the vacuum level as the reference energy level, we have 

EF = −𝜙. In the following, for simplification, we assume that the work function of the tip 

and the sample are equal. As a metal tip and a conducting sample are brought close to teach 

other and a bias voltage V is applied between them, a net tunneling current occurs between 

them. A quantum mechanics sample state 𝜓𝑛 with energy En lying between the interval from 

EF -eV to EF has a high probability to tunneling into the tip. By assuming that the bias is 

much smaller than the value of the work function, 𝑒𝑉 ≪  𝜙, it can be concluded that energy 

levels of all sample states of interest are very close to the Fermi level,  𝑛 ≈ −𝜙. The 
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probability for an electron in the nth sample state to tunnel into the tip surface, x = s, is given 

by 

                                                                   𝑃 ∝  |𝜓𝑛(0)|2𝑒−2𝜅𝑠                                                         (3. ) 

where 

                                                                 𝜅 =  
√2𝑚𝜙

ℏ
                                                                       (3.8)  

is the decaying constant of a sample state near the Fermi level inside the barrier region, and 

𝜓𝑛(0) is the value of the wave function of nth state at the sample surface (at x=0). During 

the experiment, the STM tip is scanning across the sample surface. During the scan, the 

condition of the tip usually does not change. The tunneling current is directly proportional to 

the number of states on the sample surface within the energy interval eV. This number is 

determined by the local nature of the sample surface. And it is finite for metals while is very 

small or zero for semiconductors and insulators. For semimetals, it is in between. The 

tunneling current, therefore, should include all the sample states in the energy interval eV, and 

it can be written as: 

                                                             𝐼 ∝  ∑ |𝜓𝑛(0)|2𝑒−2𝜅𝑠

𝐸𝐹

𝐸𝑛=𝐸𝐹−𝑒𝑉

                                              (3.9) 

If the bias voltage V is small enough that the density of electronic states does not 

change significantly within energy gap of eV, for convenience, the sum in Eq. (3.9) can be 

written in terms of the local density of states (LDOS) at the Fermi level. At a location z and 

energy E, the LDOS of the sample is defined by: 
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                                                             𝜌𝑠(𝑥,  ) ≡  
1

𝜖
∑ |𝜓𝑛(𝑥)|2

𝐸𝐹

𝐸𝑛=𝐸𝐹−𝑒𝑉

                                      (3.10) 

for a sufficiently small 𝜖. The physical meaning of LDOS is the number of electrons per unit 

volume per unit energy, at a given location in space and at a given energy. The probability 

density for a specific state, |𝜓𝑛|2, satisfying the normalization condition: the integration of 

this probability density over the entire space should be 1. As the volume increase, the 

probability density |𝜓𝑛|2 of a single state decreases; but the number of states per unit energy 

increases. The LDOS remains a constant. The surface LDOS near the Fermi level reveals of 

whether the surface is metallic or insulating. By defining the LDOS of the sample surface, the 

tunneling current can be written as: 

                                           𝐼 ∝ 𝑉𝜌𝑠(0,  𝐹)𝑒−2𝜅 ≈ 𝑉𝜌𝑠(0,  𝐹)𝑒−1.025√𝜙                              (3.11) 

The typical value of work function is 𝜙 = 4 𝑒𝑉, which gives a typical value of the 

decay constant 𝜅 =  √2𝑚𝜙/ℏ ≈ 1 Å
-1

. According to Eq. (3.11), the current decays by 

about 𝑒2 ≈  .4  times per Å in distance. 

Simply put, scanning tunneling microscope can be viewed as a very sensitive 

profilometer. At the atomic scale, the STM is actually mapping the surface profile of the 

sample. While at an atomic scale the notion of surface topography is still unclear. One simple 

assumption is that, at the atomic scale, STM is mapping the contour of the charge density of 

the surface material which is essentially the surface topography at the atomic scale. The 

dominant contribution to the tunneling current is from electrons near the Fermi level. All 

electrons below the Fermi level contribute to the charge density. (Hence, the assumption that 
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the topography produced by changes in the tunneling current is a contour of the charge 

density may not be entirely correct.) 

The tunneling current may be calculated by using a tunneling Hamiltonian approach 

that involves first order perturbation theory. Based on model of metal-insulator-metal 

tunneling junction that developed by Bardeen [84, 85]. This approach begins by considering 

two sub-systems instead of trying to solving the Schrödinger equation of a combined system. 

For each subsystem, solving the stationary Schrödinger equation gives rise to the electronic 

states. With time-dependent perturbation theory, one can then find out the electron transfer 

rate between the two electrodes. The overlap between the wave functions from the two 

subsystems, also known as tunneling matrix M, determines the amplitude of the electron 

transfer. With some modifications on the wave functions of one of the surfaces due to the 

existent of the other, the Bardeen tunneling approach can be applied to calculation of the 

tunneling current in STM. This method is also known as the modified Bardeen approach 

(MBA). According to this approach, the tunneling current can be wriiten as:  

      𝐼 =
4𝜋𝑒

ℏ
∫ [ ( 𝐹 − 𝑒𝑉 + 𝜖) −  ( 𝐹 + 𝜖)]𝜌𝑆( 𝐹 − 𝑒𝑉 + 𝜖)𝜌𝑇( 𝐹 + 𝜖)|𝑀|2𝑑𝜖

𝑒𝑉

0

    (3.14) 

where f(E) is the Fermi distribution function, V is the applied voltage, 𝜌𝑆( 𝐹) is the density 

of state of the sample at Fermi level and 𝜌𝑇( 𝐹) is density of states of the tip at the Fermi 

level. M is the tunneling matrix, 𝑀𝜇𝜈 is the tunneling matrix element between the state of the 

STM tip and the sample. Calculating the the the tunneling matrix 𝑀𝜇𝜈 is usually the most 

difficult part in determination of the tunneling current. The difficulty comes from the lack of 
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knowledge of the tip and sample wave functions. If the tip and sample wave functions are 

known 𝑀𝜇𝜈 can be calculated using the expression developed by Bardeen: 

                                                     𝑀𝜇𝜈 = −
ℏ2

2𝑚
∫(𝜒𝜈

∗𝛻𝜓𝜇 − 𝜓𝜈𝛻𝜒𝜈
∗) ∙ 𝑑𝑺                                (3.15) 

Eq. (3.15) determines the tunneling matrix elements M . In this expression,  is the 

modified wave function for the STM tip and  is the wave function for the sample surface. 

The integral is over the surface area defined by S. 

From the discussions above, it is important to understand that the tunneling, which 

determines the experimental observation with STM, depends on the electron wave functions 

on the sample surface regardless of the nuclear position, or atomic position. So, rigorously 

speaking, STM images atomic wave function instead of atoms. The dependence of 

STM-resolved images on the tunneling current will be presented in the following chapters. 
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CHAPTER 4   EXPERIMENTAL DETAILS 

4.1  STM tip making 

The quality of the STM tip is crucial for obtaining atomic resolution STM image.  In 

order to effectively obtain atomic resolution, the probe tip must itself be on the atomic scale. 

Ideally, it implies that the tip should end in exactly one atom. Reliably fabricating ultrasharp 

metallic probes with a tip apex radius on the order of 10 nm has challenged researchers since 

the debut of the field electron emission microscope by Müller in 1936, and has become even 

more significant as field ion microscopy and scanning tunneling microscopy (STM) have 

gained prominence and remained vital research techniques. Because the tip apex radius is 

such a critically important attribute when attempting to image on the atomic scale, 

experiments characterizing ultrasharp probes have primarily focused on the smallest scales, 

employing scanning electron microscopy (SEM), which is capable of 100 000 × 

magnification. Such studies have established that ultrasharp metallic probes can, in fact, be 

reliably manufactured by electrochemical etching, which is a simple, inexpensive, and widely 

used technique [86]. For STM, tungsten wire is preferred because of its high conductivity, 

mechanical strength, durability, and low cost [87]. Typically, electrochemical fabrication 

methods involve submerging the tungsten wire and a conducting ring into an electrolytic 

conducting solution, then applying a bias voltage of either dc [88] or ac [89] between them. 

The resulting current between the ring and wire (mediated by the solution) drives a 

reduction-oxidation reaction, which oxidizes the tungsten at the air/solution interface. This 

basic scheme allows for many variations, each with its own advantages. A great deal of work 
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has thus been devoted to developing optimal etching procedures for consistently and feasibly 

producing high-quality tips [90]. 

One of the most recently developed tip fabrication techniques is to use tungsten wire 

arranged horizontally under a high-magnification optical microscope, with the loop attached 

to a micromanipulator for fine motion control [91]. The solution forms a lamella suspended in 

the loop, which is moved back and forth over the tungsten wire while etching to create a tip 

of the desired shape. This method, known as zone electropolishing, offers superior control 

and precision, and even allows for re-etching a damaged or crashed STM tip. However, this 

method does pose a problem in the final drop off step. It is necessary to thin a small section 

near the end of the wire into a “neck” shape, and then precisely sever the wire while cleanly 

separating the extra end piece. Finally, when the extra piece is removed, the etching must stop 

immediately to avoid detrimental back etching, which quickly dulls the tip. The success of 

this technique is dependent upon the patience, skill, and reaction time of the technician. To 

address these potential difficulties, automatic etching systems have been constructed that 

monitor the current flowing through the etchant and use feedback circuitry to terminate 

power immediately upon completion of the tip etching (typical electrical cutoff time is on the 

order of 10 ns). Unlike the micromanipulator method, in these systems the tungsten wire is 

oriented vertically, and all components remain stationary during etching. Early designs 

involved submerging the loop and wire in the electrolyte solution for the duration of the 

etching, which provided unmatched simplicity. However, Klein and Schwitzgebel reported an 

automatic method in 1997 that offered a far greater degree of control over the final tip shape 

by using a lamella rather than submersion [92]. Nevertheless, cutoff circuits, in practice, often 
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stop the etching too soon due to natural fluctuations in the current, making it necessary for 

the operator to constantly monitor the process and occasionally restart it. In addition, the 

change in current upon completion of the etching is occasionally too small to trigger the 

cutoff circuit, resulting in the back-etching problem. A novel alternative is the mechanical or 

gravity switch developed by Kulawik et al. in 2003, which utilizes two lamellas to break the 

etching circuit as soon as the tip is finished etching [93]. In this setup, the current flows 

through the end of the wire that is being etched off. Naturally, once etched through, the lower 

part of the wire drops under the influence of gravity. This causes circuit breaking when the 

wire breaks contact with the solution held in the upper lamella, providing a reliable cutoff 

time of about 1–10 ms, depending on the thickness of the suspended fluid. 

In this project, we developed a custom electrochemical etching procedure that 

incorporates the best features of the common methods just discussed. Our double-lamella 

system reliably produces ultrasharp tungsten probes capable of producing STM images with 

atomic resolution, as demonstrated by testing the resulting tips on highly oriented pyrolytic 

graphite (HOPG). STM tips were also manufactured using several other electrochemical 

techniques and were similarly tested for quality by using them to image HOPG on the atomic 

level. Furthermore, magnified optical images of the tips were acquired before they were 

transferred into the STM chamber. A strong correlation was found to exist between a tip’s 

cone angle and its ability to produce images with atomic resolution. We propose that this 

observation is related to mechanical stability and can be used as a quick and economical test 

to evaluate the probable quality of a tip, assuming it was etched by a typical electrochemical 

method that has been shown by SEM to consistently yield sufficient sharpness at the apex.  
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For comparison and to create additional tips with different characteristics, the popular 

horizontal zone electropolishing method, the simple submersion method, a single-lamella 

vertical method, and our double-lamella method were employed. The zone electropolishing 

method was used most often. This technique requires ac voltage, high magnification, and 

with a horizontal tungsten wire. In the submersion method, a single gold ring with a diameter 

of a few centimeters was submerged into the NaOH solution, and a dc bias ranging from +3.0 

to +6.0 V was applied to it. The tungsten wire was then lowered until only 2–3 mm remained 

above the surface of the solution and 2 mm was below the surface. The etching rate along the 

wire decreases quickly as the distance below the air/solution interface increases, resulting in 

an atomically sharp tip. A differential cutoff circuit (Omicron Tip Etching Control Unit) was 

used to automatically discontinue the bias and stop the etching when the current experienced 

a sharp drop (i.e., when the lower part of the tungsten wire broke off and dropped into the 

solution) [94]. The single-lamella technique was very similar to the submersion technique; 

although the etching film is thinner and therefore produces a larger cone angle tip. A 

differential cutoff circuit was again used to automatically discontinue the bias when the 

bottom part of the wire fell. 
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Figure 4.1: Photograph of the entire tip etching setup. The tip wire is held fixed at the focal 

length of the microscope using a magnetic support. Two gold loops are mounted on a 

micromanipulator with course x, y, and z control, which is located to the left. A hydraulic 

fine z control is used to alter the etching position. A dc voltage is applied between the two 

gold loops using a Keithley 2400 Sourcemeter shown to the right. (photo by Dejun Qi) 

 

Over 200 STM tips were produced from 0.25 mm diameter polycrystalline tungsten 

wire. Our STM tips were made by our optical microscope STM tip etching set up with double 

lamella cut-off method, as shown in Figure 4.1. The etching process is powered by a Keithley 

2400 Sourcemeter, as shown on the right-hand side of the photograph. This instrument 

supplies a constant dc voltage throughout the etching process and also displays the current 

flowing through the circuit. The eye pieces for the 30× magnification microscope can be seen 

in the lower central region. Rather than being upright according to the original design, the 

optical microscope is on its side (nearly horizontal), mounted on a custom support in a 
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position that allows the tungsten wire to be oriented vertically during the etching progress. 

The STM tip is held at a fixed position equal to the focal position of the microscope using a 

magnetic stand that is positioned to the right of the microscope, as also shown in Figure 4.1. 

The magnification provided by the microscope also facilitates careful regulation of the 

thicknesses and positions of the lamellas. The position of the two loops is controlled using a 

micromanipulator, which offers coarse adjustment in the x, y, and z directions, as well as a 

fine hydraulic control for the z direction in order to maintain etching at the desired location 

with minimal vibration. The micromanipulator can be seen to the left of the microscope near 

the top of the photograph. The precision movement of the loops is necessary because zone 

etching changes the shape of the wire, causing the top lamella (where etching occurs) to shift 

and adhere to a slightly different site. In addition, the top lamella may pop several times 

before the tip is finished etching, and requiring rewetting, followed by thinning. Note that it is 

necessary to readjust the position of the loops to form around the same point on the wire as 

previously. 
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Figure 4.2 (a) Zoomed-in of the tungsten wire mounted inside the tip holder (photo by Dejun 

Qi) and (b)-(c) the schematic of double-loop etching circuit 

A zoomed-in photograph of the tip, tip holder, and gold loops during the etching 

process is shown in Figure 4.2(a). The etching process begins with the insertion of a 5 mm 

length of 0.15 mm diameter tantalum (Ta) wire into a stainless steel Omicron tip holder, 

followed by a 10 mm length of the tungsten (W) wire. The tantalum is relatively soft and as it 

deforms, it serves to hold the tungsten in place as it is pressed into the tip holder. The 

tantalum wire is then trimmed to a length of a couple of millimeters and bent back so as not 

to interfere with the STM operation. The advantage of the Ta wire press-in method becomes 

apparent when the tip needs replacement, as it may be removed along with the used tungsten 

tip, and the holder reused. A magnet keeps the tip holder in place during the etching process. 

Because the tungsten wire is fixed at the focal length of the microscope, the two gold loops 
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are raised up to surround the tungsten wire until the upper gold loop is within about 2–3 mm 

of the end of the Omicron tip holder, the maximum length to avoid damage during transfer to 

the scanner assembly inside the STM chamber after the tip is complete. The full etching 

circuit and the mechanism behind the gravity switch are also illustrated in Figure 4.2(b). The 

upper loop is attached to the grounded side of the dc supply, while the lower loop is attached 

to the positive side (this moves the gas formation away from the etching site). When the wire 

is etched away, the lower section of the wire drops due to gravity. This action results in the 

electrical etching circuit being broken as soon as the falling wire separates from the etching 

solution suspended in the upper loop (falling time is about 10 ms for a 1mm thick lamella). 

The fall stops the etching process, even though the tip is still submerged in the etching 

solution contained in the upper loop. This method works well and eliminates the need to rely 

upon human intervention or a special response characteristic within the electrical circuit. 

A magnified view of the tantalum wire, tungsten wire, and two gold loops is shown 

schematically in Figure 4.2(c). The two gold rings are separated by about 5 mm and oriented 

so that their faces are parallel and lie in horizontal planes. The top ring is 15 mm in diameter, 

while the lower ring has a diameter of about 5 mm. A beaker containing a solution of 8 g 

NaOH dissolved in 100 ml of de-ionized water is raised to briefly submerge the rings. When 

the beaker is lowered, a thin film of the conducting solution is left suspended across each ring. 

With the tungsten wire in place, a meniscus forms around the wire at each ring from the 

suspended solutions as indicated in Figure 4.2(c). A thick meniscus was observed at the top 

ring, where the wire was etched, resulting in a longer length of the tungsten wire etching tip, 

which, in turn, creates a smaller cone angle. To achieve a thinner meniscus and therefore, a 
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larger cone angle, some of the suspended solution can be carefully wiped away. Further, it is 

important to monitor the meniscus and move it down the tapered section of the wire as it will 

attempt to climb up the wire. Another, important factor is to make sure the tip is mounted 

nearly vertical, so during the final etch step the lower piece of wire will not rotate and tear the 

end of the W tip. During etching, the power supply was set to apply a dc bias of about 8 V 

during the tip making process. A higher voltage results in faster etching. For our setup an 8 V 

setting generated a potential difference of about 4.5 V between the tungsten wire and upper 

gold loop. Note, as mentioned earlier, that the upper loop is held at a grounded side so that 

the bubble formation happens at the lower loop. This stops the bubbles from interfering with 

the etching process and also allows for a clear view of the tip throughout the etching. Also, as 

the top wire is thinned the meniscus favors climbing up the W wire and it is important to 

monitor this effect and move the loop down so the solution does not etch the wire above its 

original starting location.  

The completed STM tip is thoroughly rinsed with distilled water, then isopropanol, 

and finally swirled in a concentrated HF solution for 30 seconds to remove any tungsten 

oxides. The tips were then placed under an optical microscope and photographed under 100×, 

500×, and 1000× magnification before being immediately transferred through a load-lock 

into the STM chamber.  
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Figure 4.2: Chart relating the cone angle of the etched tip to the probability that the tip will be 

capable of the producing a certain quality STM images. 

In order to test the quality of our STM tip, STM experiments were performed on 

HOPG surface using these STM tip. The STM experimental details will be discussed in the 

next section. Here we will only shows the results that related to the quality of our STM tip. 

For comparison, STM tip etched by horizontal zone electropolishing, simple summersion 

methods were also used in the STM experiments. Of the four techniques used to manufacture 

STM tips, we found that the horizontal zone electropolishing (~70 tips) and the simple 

submersion (~80 tips) methods mostly produced tips with small cone angles (<10°). The 

single lamella (30 tips) and double-lamella (30 tips) methods mostly produced tips with 
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larger cone angles (>10°). In general, the fabricated STM tips were sorted into three broad 

categories according to the STM image quality each was able to obtain shortly after tunneling 

(i.e., directly after the approach and without any voltage pulses or other tip cleaning 

procedures). The best tips were defined as those that produced small-scale images in which 

the individual atoms of the HOPG surface were clearly resolved. Medium-quality tips were 

defined as those producing small-scale images where atomic features, such as atomic rows, 

were resolved rather than individual atoms. The lowest-quality tips were those for which no 

atomic resolution was displayed in the small-scale images, but which did resolve monolayer 

steps of graphite in large-scale images. An example of each category of STM image quality is 

shown on the left-hand side of Figure 4.2. The quality of the images increases going up the 

vertical axis, beginning with a large-scale, low-quality image on bottom, a small-scale, 

medium-quality image in the middle, and a small-scale, high-quality image on top. Note each 

image was minimally processed, including a plane subtraction and minor filtering. In addition 

to the classification of HOPG images, the optical images of the STM tips themselves were 

also reviewed. Their physical characteristics were documented, and a strong correlation was 

noted between the cone angle of the tips, as measured in the optical images, and the quality of 

the STM image obtained using that tip. These results are also summarized in Figure 4.2. The 

cone angle of a tip was defined as the full angle between the two perimeter lines of the cone, 

as illustrated in the bottom left-hand corner of Figure 4.2. This shows an ideal atomically 

sharp yet stable tip having a full cone angle of about 60° and is generated by stacking spheres 

into a pyramid. To the right of the illustration and along the bottom of Figure 4.2, examples 

of the optical images are displayed. The cone angle increases going along the horizontal axis 
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with small (0°–10°), medium (10°–15°), and large (>15°) cone angles. Note, the large cone 

tip displayed was our largest and best (cone angles around 20° were more typical). The 

entries in the resulting 3 × 3 matrix are the approximate percentages of tips that produced the 

given quality of STM image for each type of cone angle. Note that the percentages in any row 

and column each sum to 100%. The table can be read left to right as well as top to bottom. 

For example, the top row represents 100% of all the high-quality STM images. The first cell 

indicated that 10% of the high-quality images came from STM tips that have a small cone 

angle, another 20% came from tips with medium cone angles, and most important, 70% of 

the tips that provided high-quality STM images had a large cone angle. This information is 

repeated in the second row for the medium-quality STM images and in the third row for the 

lowest-quality STM images. Notice that for the lowest quality images, the vast majority came 

from the STM tips that had a very small cone angle. The matrix can also be read by looking 

at the individual columns. The left column corresponds to 100% of the tips with small cone 

angles (~100 tips); 70% of these tips generated low-quality STM images, while 20% 

generated medium-quality images, and 10% generated high-quality images. The middle 

column corresponds to tips with medium cone angles (~60 tips); 60% of which generated 

medium-quality images, while 20% generated low-quality images, and 20% generated 

high-quality images. The last column corresponds to tips with large cone angles (~50 tips); 

70% of which generated high-quality images, while 20% generated medium-quality images, 

and 10% generated low-quality images. In general, we found tips with a cone angle of ~15° 

or greater gave excellent STM images. We believe a cone angle of ~60° would be optimal for 

both stability and sharpness as shown schematically in Figure 4.2. 
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The results summarized in Figure 4.2 are quite surprising. From our findings, it is 

clear that an optically measured cone angle of an STM tip is the single greatest factor in 

determining the quality of the images obtained using that tip. By looking at this large-scale 

optical property of the STM tip, the mechanical stability of the STM tip may be indirectly 

observed. To substantiate this observation, we made an STM tip by submerging a slightly 

longer tungsten wire in the electrochemical solution (i.e., 3–4 mm instead 2 mm), which 

resulted in a long, thin tip. Under the high-magnification optical microscope we observed the 

completed tip spontaneously vibrating with amplitude of about 1 µm. If an STM tip vibrates 

during the scanning process involved in data taking, then each data point in the resulting 

STM image is a spatial average over a length scale similar to the amplitude of these 

vibrations, resulting in the poorest-quality images. 

Naturally, it is critical that an STM tip be atomically sharp at its apex. SEM studies 

confirm that electrochemical etching generally produces ultrasharp tips. Thus, within the 

scope of the best electrochemical etching techniques, it is important to further characterize 

the STM tips using a simple optical microscope to ensure that they are of the highest quality. 

The various lamella techniques gave the greatest control over the size of the cone 

angle. The popular horizontal zone electropolishing method was shown to primarily produce 

less useful small cone angle STM tips. The reason for this is that the loop is moved back and 

forth along the tungsten wire in this method, so the wire is etched over a longer length, 

creating a smaller cone angle. Nevertheless, the zone electropolishing method does offer 

some advantages. This study brings together the best features of the various methods, as 
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shown in Figure 4.2, to consistently produce STM tips that yield a high percentage of 

atomic-resolution images. One of the factors that most influenced our choices was the risk of 

back etching, which was a primary reason for selecting the double-lamella gravity switch 

approach. Additional improvements were made, however, within this framework. The second 

important factor under consideration was our ability to control the shape of the tip, especially 

its cone angle, as much as possible. Using a lamella to etch the wire gave a degree of control 

over the final tip shape that was impossible to obtain in a submersion method. Having an 

optical microscope focused on the tip combined with the manipulator’s control allowed us to 

observe and modify the position of the lamella, making it possible to predict the cone angle 

of the finished tip. A positive dc etching voltage was chosen to eliminate disruptive gas 

formation at the etching site. The result of all of these choices was a reliable fabrication 

method that generated, with a 70% success rate, STM tips capable of atomic resolution.  

4.2  Samples preparation 

The well fabricated STM tungsten tip was then gently rinsed with distilled water and 

dipped into a concentrated hydrofluoric acid solution to remove surface oxide [95] before 

being transferred into the STM chamber through a load lock. The STM experiments were 

performed in an Omicron ultrahigh-vacuum (base pressure is 10
-10 

mbar), low-temperature 

STM operated at room temperature. We have two samples: a 6 mm × 12 mm ×2 mm thick 

piece of HOPG and freestanding graphene on a 2000-mesh, ultrafine TEM grid with a square 

lattice of holes with side 2L = 7.5 μm and copper bar supports 5 μm wide, as shown in Figure 



 

 

40 

4.4. The samples was mounted with silver paint onto a flat tantalum STM sample plate and 

transferred into the STM chamber, where it was electrically grounded.  

 

Figure 4.4: Highly ordered pyrolitic graphite and TEM grid with prinstine graphene 

suspended. (Photo by Dejun Qi) 

4.2  Electrostatic manipulation-STM (EM-STM)  

One of the important purposes of our project is to manipulate the graphene layer via 

scanning tunneling microscopy. This was realized by our own developed STM-based 

technique. It is called electrostatic manipulation-STM (EM-STM) which is based on the 

electrostatic force between the STM tip and the sample surface [96]. 

With different purpose, different modes of STM operation provide different 

information of the surface of material. There are two modes of operation: constant current 

mode and constant height mode. For the constant current mode, the tip is vertically adjusted, 

by using a feedback loop, in such a way that the current always stays constant. As the current 

is proportional to the local density of state (LDOS), which is described by Eq. (3.11), the tip 
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follows a contour of a constant LDOS during scanning. A kind of a topographic image of the 

surface is generated by recording the vertical position of tip. For the constant height mode, 

the vertical position of the tip is set to be constant, equivalent to a slow or disable feedback 

loop. The current as a function of lateral position represents the surface image. Figure 4.5 

below shows the two modes of operation of STM. 

 

Figure 4.5: Comparison of (a) constant-current and (b) constant-height mode 

The idea of electrostatic-manipulation STM (EM-STM) is originated from the 

technique of constant current scanning tunneling spectroscopy (CC-STS) which bases on the 

constant current mode of STM operation discussed above.  In CC-STS measurements, the 
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tunneling current is held at constant value and the height of STM tip is measured as a 

function of the tip bias. The EM-STM measurements performed were similar in principle to 

CC-STS, wherein scanning is paused but the feedback loop controlling the tip’s vertical 

motion remains operational. The STM tip bias is then varied, and one records the vertical 

displacement required to maintain a constant tunneling current. Assuming the sample is 

stationary, this process indirectly probes its LDOS. A second interaction is also taking place, 

though, in which the tip bias induces an image charge in the grounded sample, resulting in an 

electrostatic attraction that increases with the bias. We have found that in some materials, 

such as graphite [97], this attraction can result in movement of the sample, convoluting and 

often eclipsing any DOS measurement. In an EM-STM experiment, however, these 

deformations are actually the subject of interest. By employing electrostatic forces created by 

the STM tip, one may physically manipulate a surface and examine some of its mechanical 

properties. Thus an EM-STM measurement involves recording the z-position of the tip as the 

bias is varied at constant current, with the goal of controlled sample manipulation. 
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Figure: 4.5: To-scale diagram illustrating the iterative method-of-images technique described 

in thetext to approximate the tip-sample system and calculate the electrostatic attractive force. 

Calculated electric field lines are shown leaving the biased conducting sphere (STM tip) and 

ending at a grounded plane (graphene sample). 
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The electrostatic attraction can be modeled using the traditional method of images 

approach [98], as shown in Figure 4.5. The STM tip is modeled as a conducting sphere of 

radius a. The sample is modeled as a grounded conducting plane. When a potential bias, V, is 

applied between the sphere and the plane, this can be modeled by replacing the sphere with a 

point charge located at the center of the sphere with magnitude 4πε0aV. This induces an 

infinite series of image charges. The first is induced directly on the other side of the grounded 

conducting plane.  This new image charge induces a second image charge inside the sphere, 

which in turn induces a third image charge on the other side of the conducting plane.  The 

electrostatic force between the sphere and the plane is the derivative of the electrostatic 

energy generated by the infinite series of image charges. The electric field of the tip-sample 

system is shown in Figure 4.5. The electric field lines are emitted radically outwards from the 

sphere, and then bend towards the grounded plane. They are perpendicular at the point of 

intersection with the grounded conducting plane. The density of the electric field lines is 

smallest on the opposite side of the sphere and greatest in the region between the sphere and 

the plane.  
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CHAPTER 5   GRAPHENE ON GRAPHITE 

As described in Chapter 2, the Bernal (ABA) stacking of honeycomb carbon atom 

sheets in bulk graphite gives rise to an inequivalence in charge density between atoms located 

on two atomic sites—the A atoms on the surface which are directly on top of a carbon atoms 

in the underlying layer and the B atoms that are located directly above the holes of a hexagon 

rings in the underlying layer. Due to this unique stacking sequence of hexagonal carbon 

layers, surface electronic charge has been partly pulled into the bulk, and hence, the STM 

image of graphite surface normally shows a threefold-symmetric structure with a periodicity 

of 2.46 Å. 

Over the years, a number of explanations have been proposed for the unexpected 

observation of true hexagonal atomic lattice structure on graphite surface via STM. These 

explanations include tip artifacts [99], tip-induced surface elastic deformation [100, 101], 

slipped surface configuration [102], interlayer coupling between asymmetric carbon atoms 

[20, 27, 28, 103], change of current saturation that caused by variation of tip-sample distance 

[104, 105], polarity of the bias voltage sensing different atomic sites [106], the formation of 

charge density wave states [107] and the direct imaging of π states of alternate carbon–carbon 

bonds [108] and so on. Regardless of the accuracy of these explanations, an important 

conclusion can be drawn from this large amount of experiments and theories is that the local 

density of states (LDOS) of each surface carbon atom is highly sensitive to its position 

relative to the other atoms in the underlying layers. In this chapter, I will discuss our research 
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of graphene on bulk graphite surface and show how the movement of surface graphite layer 

can be generated and studied. 

5.1  Surface morphology of graphite 

Two illustrative graphite STM images are displayed in Figure 5.1. Both have had 

minimal image processing and are shown with the fast scan direction horizontal and with the 

slow scan direction going from the bottom to the top. An STM image of the graphite surface 

measuring 100 nm × 100 nm and with a monolayer step running diagonally across the surface 

is shown in Figure 5.1(a). An atomic-resolution STM image measuring 6 nm × 6 nm showing 

the traditional triangular symmetry lattice structure for graphite is shown in Figure 5.1(b). 

This is the typical STM image for graphite and is relatively easy to obtain because only every 

other carbon atom is detected. As we discussed before, in an ideal graphite crystal structure 

with Bernal stacking pattern, the layers of carbon sheets stack together in a way that half of 

the surface carbon atoms (A atoms) are directly above atoms in the lower layer, while the 

other half (B atoms) are directly above hexagonal holes. The pz orbital of A-atoms of the 

surface graphite layer overlaps with that of A-atoms in the lower layer, resulting in that the 

electron charge density of the surface A-atom being pulled into the bulk, as illustrated in 

Figure 5.2, from which we can see that the charge density of B- atoms on the surface is much 

larger than that of A- atoms. 
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Figure 5.1: Constant current STM images of graphite acquired with a tip bias of 0.1 V. (a) 

large scale image (100 nm × 100 nm) with the monolayer step is displayed. (b) atomic scale 

(6 nm × 6 nm) conventional threefold symmetry. 
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Figure 5.2: Overlap of pz orbital of A- site atoms between the two graphite layers 
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Figure 5.3: 1. Constant current STM images of graphite acquired with a tip bias of +0.1 V. 

(a)-(d) 6 nm×6 nm STM images showing: (a) hexagonal symmetry, (b) starting triangular and 

ending hexagonal, (c) line-by-line tilted surface with triangular on left and hexagonal on right, 

and (d) starting hexagonal and ending triangular. 
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Sometimes while imaging graphite, all of the carbon atoms can be observed, resulting 

in the hexagonal symmetry or honeycomb pattern as shown in Figure 5.3(a). This is the same 

pattern one would observe when imaging isolated graphene (as we will see in the next 

Chapter). Less common are STM images which show both triangular and hexagonal patterns 

within a single image as shown in Figure 5.3(b). The beginning of this scan shows the 

traditional graphite structure, while after about two-third of the scan the surface abruptly 

switched to the hexagonal structure. Note, the subsequent STM image acquired (not shown) 

was similar to graphene throughout. An even more interesting result is shown in Figure 5.3(c). 

Here the triangular pattern occurs on the left side, while the hexagonal pattern occurs on the 

right side. Note, this transformation occurs along the fast scan direction, line by-line 

throughout the image acquisition process. Finally, the surface can also start out with a 

hexagonal pattern and switch to the triangular pattern as shown in Figure 5.3(d). Here the last 

three images of Figure 5.3 have been “flatten” so that each line of data has the same average 

height. 

The STM images in Figure 5.3 have been observed numerous times, over a long time 

period, and with a plethora of STM tips. They are somewhat randomly occurring; however, 

the frequency can be increased by increasing the setpoint current or reduce the bias voltage. 

We believe the properties of the STM tip are not changing throughout these scans, but that the 

local properties of the graphite sample are changing. For example, line-by-line one can see a 

clear triangular atomic –resolution pattern along the left edge of Figure 5.3(c). Each atom 

gets rescanned about 10 times (i.e., 400 data points per line with 400 lines per image) to piece 

together the image of a single atom, and each row of atoms appears in the proper triangular 
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position relative to the next row going up the scan. Simultaneously, and also line-by-line, a 

clear hexagonal pattern is being observed on the right edge of Figure 5.3(c). It is not possible 

to associate these changes with changes at the end of the STM tip.  

Ideally, we would like to have these alterations occurring on the surface at our will 

versus at random. The EM-STM measurement will allow this control.  

 

Figure 5.4: EM-STM measurement on HOPG surface with bias changed from 0.1 to 1 V 

A diagram with a typical EM-STM data set and some illustrations of how this 

technique might appear on an atomic scale is shown in Figure 5.4. The EM-STM 
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measurement was taken on graphite and is shown in Figure 5.4(a). Simultaneously, the 

tunneling current was also measured, and the result is plotted in the inset diagram. Measuring 

the tunneling current is critical to proving that the current remains at an approximately 

constant value of 0.2 nA throughout the duration of the measurement. The EM-STM data 

show that during the voltage sweep from 0.1 to 0.6 V the tip is held at its initial height with 

little variation. An illustration showing the relative tip-sample position during this period is 

shown in Figure 5.4(b). From 0.6 to 0.8 V the tip swiftly retracted by about 30 nm, at which 

height it roughly stabilized. Notice the tunneling current remains essentially constant, 

indicating that the sample follows the tip. The sudden movement of the tip suggests that the 

top layer of graphite is being held in place by substrate until the electrostatic force of 

attraction, which increases with voltage, becomes large enough to suddenly separate the 

layers. A schematic of initial release due to the STM tip is illustrated in Figure 5.4(c). When 

the voltage rises above 0.8 V, the top graphite layer is significantly lifted by the tip and fully 

decoupled from the bulk locally as illustrated in Figure 5.4(d). Again, the measured tunneling 

current serves as evidence that the sample surface must move with the tip. If it did not, the 

current would exponentially fall to zero around 0.6 V. Note, traditional constant-height 

(feed-back off) STS data was also acquired (not shown), but the current quickly saturated the 

preamplifier at these higher voltage, consistent with the sample crashing into the stationary 

STM tip.  

The EM-STM technique significantly broadens the abilities of the STM, which is 

already known for its superior ability to obtain atomic structural and local electronic 

information for rigid samples. Now, if the sample is free to move or suspended, one can use 
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EM-STM to gain insight into the local electrostatic and elastic properties. This could prove 

valuable when considering chemically modified freestanding graphene, for example. 

5.2  Altering surface morphology of graphite via EM-STM 

The ability to physically alter the HOPG surface using EM-STM is demonstrated in 

Figure 5.5. A series of 150 nm × 150 nm STM images all at the same location were taken 

before, during and after EM-STM measurement, and the images are displayed in sequential 

order in Figures 5.5(a) –3(e). As before, the slow scan direction of the STM tip proceeded 

from bottom to top, and the images are colored such that the highest points are white (~2 nm 

high) while the lowest points are black. A white strip approximately 20 nm wide is prominent 

in Figure 5.5(a), indicating that a raised ribbon-like structure exists on the HOPG surface. 

This image was taken prior to any EM-STM measurement. A darker strip, or trench, can also 

be seen approximately 50 nm to the right of the white strip, with a protrusion in trench 

serving as a reference point when presented in Figure. 5.5(b), an EM-STM measurement was 

carried out shortly after the scan started. The STM tip was first positioned on the white strip 

just above the in-progress scanning position, and the tip bias was increase from 0.1 to 10.0 V 

at a constant tunneling current of 1.0 nA. Once the scan resumed, the white strip was found to 

be displaced to the right, toward the protrusion. Surprisingly, after re-scanning the white strip 

suddenly jump back to its original position. In the next scan we found that the lower 

protrusion of the white strip had been displaced to the right as shown in Figure 5.5(c).  
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Figure 5.5: Chronological series of about 150 nm × 150 nm filled-state STM images of one 

location on graphite surface takenbefore, during, and after EM-STM measure with a tip bias 

voltage of +0.1 V and a setpoint current of 1.0 nA. 
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Figure 5.6: EM-STM measurement on the white strip. (b) Calculated electrostatic force 

exerted by the STM tip on the graphite surface as a function of the tip height. 

Now, however, this section is somewhat darker (it is likely a fold in the ribbon), 

indicating that a permanent change has been introduced to the surface. To demonstrate this 

ability again, a second EM-STM was taken during the subsequent scan shown in Figure 

5.5(d). This resulted in a displacement of the upper portion of the white strip, this time away 

from the trench. The next scan, taken immediately afterward and shown in Figure 5.5(e), 

shows that a larger portion of the white strip is farther away from the trench, resulting in a 

structure clearly distinct from that in Figure 5.2(a). A larger scale image of the same location 

further reveals that a permanent change was made to the local region of the surface, as shown 

in Figure 5.5(f). This sequence of images helps illustrate the size of the area that can be 

impacted by an EM-STM measurement on graphite. The height of the STM tip versus bias 

voltage, acquire during one of the two EM-STM measurements is shown in Figure 5.6(a), 

with an inset showing that the tunneling current remains roughly constant at 1 nA. The 

EM-STM measurement shows a continuous increase in the height of the STM tip with the 
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increase of the bias voltage. The electrostatic force between the STM tip and the graphite 

surface is calculated with the method of image model, as mention earlier in section 4.2. The 

calculated electrostatic force versus voltage data was then combined with the experimental 

EM-STM data in Figure 5.6(a) to produce the attractive electrostatic force as a function of tip 

height shown in Figure 5.6(b). The force increase almost linearly with height to a maximum 

force of about 4 nN. The area under the force vs. height curve yields an energy cost of about 

230 eV being required to move the graphite strip. 

5.3  Transition from graphite to graphene 

A series of EM-STM measurements taken on the pristine graphite terrace is shown in 

Figures 5.7(a)—(c). The set of data shows the range of results that can occur. Typically, the 

height changes by a small amount when EM-STM is first applied to a given location [as 

shown in Figure 5.7(a)]. Subsequent measurements in the same location can cause larger 

movement to occur [as shown in Figure 5.7(c)]. In addition, we observed that reversal in the 

movement can some time happen. The calculated electrostatic force as a function of applied 

bias was used to convert the EM-STM data shown in Figs. 5.7(a)—(c) into the force versus 

height curves shown in Figures 5.7(d)—(f), respectively. The same maximum force of about 

0.4 nN is reached in each data set because the same voltage range was used for each data set. 

Similar to before, the energy expended by the STM can be found from the area under each 

curve.  
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Figure 5.7: Characteristic EM-STM measurement on HOPG taken at various setpoint current 
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Figure 5.8: (a)—(e) Filled-state atomic-resolution STM images of HOPG surface (f)—(k) 

Similated STM images of graphite taken from DFT calculations. (l)—(q) Side views of the 

simulated six-layer graphite structure shown with the top layer separated from the bulk by 

different amounts. (r)—(w) Band structure near the K point for the six-layer graphite 

structure as the top layer separates from the bulk. 
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A series of high-magnification, atomic-resolution STM images of HOPG surface are 

presented in Figures 5.8(a)—5.8(e). Going down the page, each image shows the gradual 

transformation from full-triangular to full-hexagonal symmetry. We start with a typical STM 

image of HOPG as shown in Figure 5.8(a). The bright white circles are arranged with perfect 

triangular symmetry and represent the pz orbitals of the B-site carbon atoms which are above 

the hexagonal holes in the second layer. For this image, the unit cell depicts only one atom. 

Next, a very weakly visible A-site atom can be seen in Figure 5.8(b). An asymmetrical 

hexagonal pattern is starting to appear in Figure 5.8(c). Two atoms are now apparent in the 

unit cell but with a much larger charge density on one atom. A more balanced hexagonal 

pattern is observed in Figure 5.8(d). The nearly perfect honeycomb pattern is observed in 

Figure 5.8(e). Here both atoms in the unit cell possess nearly equal charge density, 

resembling a typical STM image of graphene rather than graphite. This type of image on 

HOPG is much less common than the triangular one, and in the past obtaining it has been 

mostly a matter of chance.  However, EM-STM provides a mechanism for directly 

separating the surface layer from the bulk at will, effectively creating a section of graphene. 

By systematically repeating the EM-STM measurement at successively higher voltages, one 

can tune the displacement of the top layer. While this procedure does lift the layer, the top 

layer is still attracted to graphite and thus quickly relaxes. Nevertheless, the likelihood of 

observing the graphene hexagonal symmetry on graphite does greatly increase after 

repeatedly performing EM-STM. 

A full understanding of our experimental finding shown in Figures 5.8(a)—5.8(e) was 

not possible until simulated STM images of HOPG were extracted from DFT calculation. 
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These calculations were performed within the local-density approximation without modeling 

the STM tip [109] and using projector augmented-wave potentials [110] as implemented in 

the plane wave basis set VASP code [111]. The graphite was modeled as a six-layer Bernal 

stack, using a 1 × 1 unit cell. A cutoff energy of 500 eV and a very large 219 × 219 × 1 

Monkhorst-Park k-point meash was used to ensure proper sampling around the Dirac point. 

Initially, the atoms were allowed to move until all forces were less than 0.1 eV/nm, resulting 

in a carbon-carbon bond length of 0.142 nm and an interplanar separation of 0.334 nm. Then, 

the top layer was moved away from the bulk in ten equal steps of size 0.015 nm, allowing 

only in-plane relaxation at each step. For each configuration, a simulated constant-current 

STM image was produced by integrating the local DOS from the Fermi level to 0.06 eV 

below that point and choosing an appropriate isocontour surface. These parameters were 

chosen to best replicate the experimental STM conditions.  

Six simulated STM images taken from the DFT calculations are presented in Figures 

5.8(f)—5.8(k). For each, the displacement of the top plane relative to its equilibrium position 

is noted. Large spheres representing the electron density around the B-site atoms arranged in 

a triangular pattern are shown in Figure 5.8(f). As discussed before, this is known to be due to 

half of the top layer carbon atoms (A-site) forming a dimer bond with the carbon atom 

directly underneath it in the plane below. This bonding is responsible for reducing the surface 

charge density of these atoms. The much smaller and less bright adjacent features (shaped 

like a small triangle) represent the electron density around the A-site atoms, but this is not 

resolved in the experimental STM images. For net vertical displacements including 0.015 nm 

up through 0.045 nm, the circles shrink while the triangles grow larger and more rounded. As 
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we continue down the column to the 0.135 nm displacement, we see that the electron density 

for each atom becomes essentially equivalent. Further displacements do not result in any 

additional changes. The simulated images are in excellent agreement with the experimental 

data.  

The side views of the six-layer simulated structure with the top layer moving from a 

net displacement of 0.00 to 0.135 nm are shown in Figures 5.8(l)—5.8(q). Notice that how 

the charge density of the top layer becomes more separated from the bulk layers and becomes 

more concentrated. More information about the electronic properties throughout the 

displacement can be found in reciprocal space. The band structure near the K point for the 

six-layer graphite structure (without any top layer displacement) is shown in Figure 5.8(r). As 

expected, all the bands are parabolic. As the top layer moves vertically, the band structure 

does not show any linear behavior at the Dirac point until Figures 5.8(v) and 5.8(w). This 

marks the important electronic characteristic of graphene. Note there is an extra set of linear 

bands coming from the odd number of layers remaining in the split-off graphite structure 

[112]. After analysis of the band structure through the movement of the top layer, we estimate 

around 0.090 nm the unique electronic properties of graphene are fully present. Namely, the 

bands near K point are linear, and the total surface charge density has increased to nearly the 

level of isolated graphene. 

In addition to getting information about the real-space and reciprocal-space properties, 

we also calculated the total energy of the system as a function of top-layer displacement, as 

shown in Figure 5.9(a). The displacement is reported as a percentage of the strain ɛzz. The 
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energy curve increases smoothly over the range sampled, and it transitions from positive to 

negative curvature near a strain of 13.5% (or a displacement). This inflection point is 

identified with an arrow. The calculated energy needed to fully separate one unit cell is found 

to be approximately 50 meV. From our earlier estimates we found that the STM tip expended 

50 eV to lift the top layer by 30 nm. Thus, we can now estimate that about 1000 unit cells 

were separated during the lift. If the graphene was simply vertically lifted, a circular region 

with radius of about 10 nm would be affected. Since this is similar to the height of the lifted 

graphene, we believe that a much larger area may slide across the graphite surface. 
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Figure 5.9: (a) DFT energy per unit cell as a function of vertical displacement of the top layer 

of graphite. (b) Force as a function of displacement obtained by taking the derivative of the 

energy with respect to displacement. 
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Figure 5.10: (a) Normalized charge density on the A site and B siteas a function of 

displacement. (b) Total charge density as a function of lattice position for both graphite and 

graphene. 
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Next, we can estimate the force required to separate the layers by taking the derivative 

of the energy curve according to the Hellmann-Feynman theorem. This force (or uniaxial 

stress σzz) is a result of the attractive force between the graphitic layers, which increases up to 

the inflection point in the energy and subsequently decreases as shown in Figure 5.9(b). The 

peak force required to separate the (1×1) layers is around 0.07 nN per unit cell. This is much 

smaller than the estimated electrostatic force applied by the STM tip (4 nN), which is 

consistent with the tip being able to lift up a large area of surface graphite. 

The charge densities found on the A atom site (ρA) and the B atom (ρB) as a function 

of layer separation is presented in Figure 5.10(a). The parameters have been normalized in 

two ways. First, since the total electronic charge in top layer increased with the vertical 

displacement, every charge density was divided by the total charge density at that point 

ρtot=ρA + ρB. This ensures that we track only relative charge densities (ρA/ρtot and ρB/ρtot). 

Second, a normalization was applied to the data for each atom so that the normalized 

quantities N(ρA/ρtot) and N(ρB/ρtot) vary from 0 to 0.5 and from 0.5 to 1, respectively. Thus, at 

zero displacement, N(ρA/ρtot) is a minimum and N(ρB/ρtot) is a maximum, consistent with the 

STM images. Also, at the maximum displacement, the charge densities have equalized, also 

as seen in the STM images. (Note that these values are independent the isovalue chosen for 

the simulated STM images.) A key benefit of this normalized scheme is that N(ρB/ρtot) 

represents a stepwise measurement of the decreasing interplanar coupling strength. If rescaled 

from 0 to 1, this parameter can be thought of as the effective mass scaling parameter [113]. 

The other parameter N(ρA/ρtot) tracks the symmetry of the unit cell charge density. This 

parameter is tending toward zero as the symmetry between A and B atom is being broken. In 
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this sense, this parameter (if rescaled from 0 to 1) represents the order parameter for the 

electronic reconstruction. The charge density profiles were also studied as a function of the 

bias voltage. For lower bias voltage (i.e., states closer to the Dirac point) the charge densities 

still began deviating from 50 % at a strain around 40%, but the change to 1 or 0 happened 

more rapidly. This indicates that the states closer to the Fermi level are more sensitive to the 

surrounding environment.  

The total charge density in each plane of atoms of the six-layer slab of graphite is 

shown in Figure 5.10(b). The six sets of double peaks represent the pz orbitals around each 

atomic plane. The two end set of peaks are about half of the size of the bulk peaks. 

Superimpose at the 0 nm position is the graphene charge density. Notice, the magnitude of the 

graphene charge density is more than three times larger than graphite at the surface. This is 

because, for graphite, the charge density at the surface is pulled into the bulk layers. Also, 

notice the charge density for graphene is significantly wider than that for graphite. Overall, 

the more massive charge density of graphene is also responsible for its high current carrying 

capacity and thermal conductivity. Two simulated STM images (shown in side view) for the 

surface of graphene and graphite are included as insert. The large charge density if graphene 

pushes its surface (imaged by STM tip) further out into the vacuum. 

In a broader context for our system, we are modeling the case where a normal force is 

continuously applied to the graphene as it approaches graphite. The two system eventually 

begin to interact, and the graphene transitions to a layer of graphite.  Interestingly, if 

pressure were applied still further, a second transition would occur from graphite to diamond 
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[114], as has been recently verified experimentally using femtosecond laser pulses to achieve 

the change [115]. However, what makes the graphene to graphite transition special is that it is 

the only known system one can observe with atomic resolution about how the electron 

acquires mass; or alternatively, how the electron loses mass and graphene generates the giant 

charge density responsible for its high current carrying capacity and thermal conductivity. 

5.4  Bernal (ABA) and rhombohedral (ABC) stacking 

So far we have presented the EM-STM method and discussed the top graphite layer 

being lifted vertically above the bulk. However, by scanning the STM tip, it is possible to 

horizontally shift the top layer [116], also resulting in a graphene-like electron charge density 

on the surface of graphite. In this section, we systematically study horizontal shifting, which 

causes the transition between different stacking arrangements on the graphite surface. DFT 

calculations are also completed to generated simulated STM images and analyze the 

likelihood for each pathway. 

Evidence for horizontal shifting of the top graphite layer along the carbon-carbon 

bond axis is shown in Figure 5.11. Five characteristic atomic-resolution STM images are 

shown in the leftmost column, and each shows a different symmetry. Anyone that has done 

STM on HOPG has observed at one time or another STM images that are not typical outcome 

shown in Figure 5.11(c). We have systematically cataloged all of these images into groups in 

order to see a pattern. For example, in certain areas of the surface we can scan the tip along 

the carbon-carbon bond axis direction, and the image changes from a triangular pattern to a 

row-like pattern as shown in Figure 5.11(b). To ensure this was not due to the tip asymmetry 



 

 

68 

but was due to the sample, this same tip was repositioned to other areas of the sample (a few 

millimeters away), and the experiment was repeated. We found the effect was associated with 

that specific region of the sample and did not follow the tip. Observation of a graphene-like 

surface charge density on graphite is shown in Figure 5.11(a). STM images showing unequal 

intensity between the two carbon sites along the scan direction are shown in Figures 5.11(d) 

and 5.11(e). 
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Figure 5.11: (a)—(e) Filled-state atomic-resolution STM images of HOPG surface. (f)—(j) 

Simulated STM images of graphite taken from DFT calculations. (k)—(o) Ball-and-stick 

structure models showing the shift of the top layer relative to the second layer along the C-C 

bond direction indicated by the row. (p)—(t) Band structures shown near K point for the 

simulated six-layer graphite structures. 
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To gain insight into the origin of these results, simulated STM images were again 

extracted from DFT calculations without modeling the STM tip. This time, instead of moving 

the top layer vertically away from the bulk, it was slid along the surface. Specifically, the top 

layer of graphite was shifted along C-C bond axis in units of a fraction of a bond length. The 

shifting process is divided into six steps, shown in the form of a fraction of bond length [see 

the top left corner of Figures 5.11(f)—5.11(j)]. The top view of simulated STM images are 

shown in Figures 5.11(f)—5.11(j). With the top layer of the graphite in its equilibrium 

position, a simulated STM image was generated and is shown in Figure 5.11(h), with a 

ball-and-stick model for the top layer of graphite is shifted by half a bond length to the left, 

the charge density of the B-site atom is still larger than that of the A-site atom, as shown in 

Figure 5.11(i). The stacking pattern is shown with a ball-and-stick model in Figure 5.11(n). In 

this pattern the B atom in the top layer has moved away from the center of the hexagon of the 

lower layer and closer to the atom underneath. This increases interaction between them and 

decreases the charge density of the B-site atom in the top plane. On the other hand, the A-site 

atom has shifted farther from the atom underneath, resulting in a weaker coupling between 

them which increases its charge density. After the top layer is shifted by one full bond length 

along this same direction (left), the first two layers of graphite completely overlap, and all 

carbon atoms in the top layer are interacting equally with all the carbon atoms in the lower 

plane [see the model shown in Figure 5.11(o)]. A honeycomb structure is displayed in the 

simulated STM image in Figure 5.11(j). Notice that the electron charge density of the A-site 

atom is slightly different from the B-site atom. This is because a subtle effect coming from 

the third layer. One pair of overlapping atoms is sitting directly above a carbon in the third 
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layer, while the other pair of overlapping atoms is sitting directly above the hole at the center 

of the hexagon in the third layer. Excellent agreement is again found between the 

experimental STM data and the simulated STM data. 

Next, in the computer model, the top layer of graphite was shifted 0.30 bond lengths 

along the C-C bond-axis to the right this time, and another STM image was simulated as 

shown in Figure 5.11(g). A row like structure similar to Figure 5.11(b) can be seen. The 

stacking arrangement for this configuration is best observed in the model shown in Figure 

5.11(l). This row like structure is attributed to the overlap between the carbon atoms in the 

different layers. For a shift of 0.50 bond lengths, the charge density around all sites has 

equalized, as seen in Figure 5.11(f). This gives the nice honeycomb structure and has 

excellent agreement with the STM data shown in Figure 5.11(a). For the ball-and-stick model 

shown in Figure 5.11(k), the top-layer carbon atoms are now exactly centered over the 

benzene ring in the layer below. We define this symmetric configuration as the “no overlap” 

structure since none of the carbon pz orbitals overlap with the ones in the plane below. Note, 

even though the “AA” stacking also yields a graphene-like surface charge density, we believe 

that the horizontal shift is not in this direction but is toward the no-overlap direction. Band 

structure near the K point is shown as a function of horizontal displacement in Figures 

5.11(p)—5.11(t). The most interesting results can be seen in the first and last diagrams. 

Notice that the typical linear dispersion associated with graphene is not present in either case, 

even though the simulated real-space STM images show the hexagonal symmetry of 

graphene. This is because the top layer is still bonding with the surface, and a significant 

amount of the top layer surface charge density is still spread out into the bulk. 
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5.5  A path way from aba to abc stacking sequence 

Evidence that the pathway between ABA and ABC is happening along the C-C 

bond-axis direction and specifically toward the no-overlap structure is presented in Figure 

5.12.  A key STM image of HOPG surface is shown in Figure 5.12(a). This image has 

“caught” the sudden transition from a graphite surface charge density to a graphene charge 

density. On the left side of the image is the signature triangular lattice of graphite, while on 

the right side is the distinct honeycomb structure of graphene. As mentioned earlier, previous 

work has demonstrated graphene formation on graphite; however, it was manifested as a 

continuous transition across the image. Our image is the result of a sudden jump, with the 

slow scan direction oriented horizontally now (left to right), in which a discrete change has 

occurred about two-third of the way through. Note that previous scans in this location showed 

all graphite while the subsequent scans showed all graphene. From these data we cannot only 

measure the vertical shift in the top layer, but we can also measure a horizontal shift as 

discussed next. 
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Figure 5.12: (a) STM image displayed with the slow scan direction going left to right. (b) 

DFT energy/atom is plotted (squares) as a function of the top layer graphite horizontal shift. 

Overlaid on top of the inset image in Figure 5.12(b) are two ball-and-stick models of 

the graphene structure. The left-hand model is fit to the graphene image, while the right-hand 

model is fit to the graphene image. The overlapping region of the two models shows the 
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best-fit horizontal displacement that has occurred during the movement of the top layer. This 

shows that the top layer of graphite was, in fact, shifted in the low energy direction 

previously discussed and by an amount that corresponds to half a bond length. In the lower 

part of Figure 5.12(b), the energy per carbon atom found from DFT while shifting to top layer 

in ten equally spaced steps from ABA to ABC is shown. Note, at each step the top layer was 

allowed to relax perpendicular to the surface to find the lowest energy pathway. The top layer 

is shifted along the C-C bond axis direction but directly toward the no overlap configuration. 

For this shift the ABC arrangement occurs after one bond length, and the no overlap situation 

is at the halfway point. Notice the symmetric shape of the energy curve indicates that there is 

no difference between the top surface layer shifting from ABA toward on overlap and from 

ABC toward no overlap. However, when the top layer is shifted in the opposite direction, 

starting with the ABA stack, the DFT energy per atom is very different as shown in Figure 

5.13. When shifting in this direction, the top layer must move 2 bond lengths before reaching 

ABC stacking and the halfway point is the well-known AA stacking configuration. Notice, 

the barrier height for the no overlap direction is about 1.3 meV/atom in Figure 5.12(b), while 

the opposite direction yields a barrier of about 17 meV/atom in Figure 5.13. Ball-and-stick 

models illustrating the stacking arrangement for the ABA, halfway point, and ABC 

configuration are also shown. Halfway through the shift shown in Figure 5.12(b) is the point 

where the no overlap structure occurs between the top two layers [as more clearly illustrated 

in Figure 5.11(k)] and a graphene-like surface charge density exists. Notice that the energy 

curve has a relatively flat top at this point, which may result in a metastable state, allowing 
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the STM tip to occasionally image this higher-energy configuration. In fact, we believe the 

electrostatic attraction to the STM tip helps stabilize this configuration.  

 

Figure 5.13: DFT energy/atom is plotted (circles) as a function of the top layer horizontal 

shift 

By analyzing the coordination number of the top layer atoms with the second layer 

atoms, one can understand why the no overlap configuration should have the lowest energy 

graphene-like surface charge density. In both the ABA and ABC stacks, half the atoms have 6 

nearest neighbor (with the plane below) and half the atoms have only one 1, for an average 

coordination number of 3.5. When in the no overlap configuration, the atoms each have 3 

nearest neighbor, for an average coordination of 3. When in AA stacking configuration, the 

atoms each have 1 nearest neighbor, for an average coordination of 1. Since the atoms prefer 

to have a higher coordination number, the no overlap configuration energetically prefer over 

the AA stacking structure. 
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CHAPTER 6   GRAPHENE SUSPENDED ON TEM GRID 

As the single graphite layer is totally decoupled from the bulk, its properties change 

dramatically due to the 2-D quantum confinement of the charge carriers. Originally, the 

theory did not support the existence of perfect 2-D crystal, while recent studies of the 2-D 

crystal problem beyond the harmonic approximation [117, 118, 119] has demonstrated that 

2-D membrane can be stabilized via the interaction and coupling between bending and 

stretching long-wavelength phonons. The isolation of graphene has further proved this 

conclusion. In order to understand the intrinsic properties of graphene and avoid the effect 

that comes from any substrate, we performed our research of freestanding graphene over 

holes. In this research the CVD graphene was transferred onto a 2000-mesh, ultrafine grid 

with a square lattice of holes with side 2L = 7.5 μm and copper bar supports 5 μm wide [120].  
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Figure 6.1: (Color online) (a) SEM image of 2000-mesh copper grid with transferred 

graphene. (b) Constant-current scanning tunneling spectroscopy (CC-STS) data showing the 

verticalmovement (d) of the STM tip vs applied bias voltage for three different set-point 

currents. The bottom trace is graphene on copper data that has been offset for clarity. The 

inset shows the measured current as a function of applied bias voltage. (c) Schematic of the 

large-scale location of the STM tip below the freestanding graphene membrane with a low 

(left) and a high voltage (right). 

6.1  EM-STM measurement on freestanding graphene 

A SEM image of the copper grid with the graphene membranes is shown in Figure 

6.1(a). Notice that some of the holes in the copper mesh are fully covered by graphene, while 

others are partially covered. We estimate that graphene covers more than 90% of the grid. 

EM-STM data was acquired for both freestanding graphene and graphene on copper as 

shown in Figure 6.1(b). The height (d) of the STM tip required to maintain a constant current 

is shown, as the bias between the tip and the grounded sample is varied. The inset shows the 

actual measured current versus voltage on a log scale. The constant current indicates that the 
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sample and tip always maintain a close separation to sustain electron tunneling. For the 

highest set-point current, the freestanding graphene membrane raises and follows the tip in 

registry by about d = 30 nm when the voltage reaches 3 V. The result is almost fully 

reversible as the graphene drops by about 35 nm when the voltage is ramped back down. 

Graphene can be held at any height in between by simply changing the voltage accordingly. 

The set-point current plays a similar role in the maximum displacement achieved. A tenfold 

reduction in current reduces the maximum height achieved by the freestanding graphene by 

about a factor of 2. Therefore, a combination of set-point current and bias (for fine tuning) 

can be employed to set the height (d) of the graphene membrane at will. Note that, the Z-V 

plot of graphene on graphite and freestanding graphene is similar in some extent but different 

by the way of rising under the interaction of the STM tip. Graphene on graphite undergoes a 

sudden jump due to the coupling with underlying bulk graphite while freestanding can be 

lifted up more easily and controllable. The EM-STM technique is ideal for quantifying the 

movement of the freestanding graphene since the voltage is incrementally changed in small 

amounts (∼10 mV step size) and the acquisition waits for a long time (∼3 ms) so that the 

feedback can stabilize before the current and new vertical position of the STM tip is recorded. 
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Figure 6.2: (Color online) 6 nm × 6 nm filled-state (tip bias = +0.100 V, tunneling current = 

1.0 nA) STM images of (a) graphene on copper. (b) Freestanding graphene. (c) Tip-induced 

graphene on HOPG graphite with a tunneling current of 0.3 nA. Upper inset in (a)–(c): STM 

images cut from the center. Lower inset in (a)–(c): Height cross-section line profiles taken 

from the center. (d) Schematic illustrating the tip below a carbon atom (left) and below a hole 

in the honeycomb lattice (right). 

Constant-current STM images were also acquired from these samples. A STM image 

of graphene on copper is displayed in Figure 6.2(a). The honeycomb structure is visible but 

somewhat obscured by the harsh morphology of the copper substrate, which gives an overall 

texture to the topography. The upper right-hand inset shows an atomic-resolution image from 
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the central section of Figure 6.2(a) around a single honeycomb ring, magnified two times, 

and displayed with a compressed color scale. Below the image is a height cross-section line 

profile extracted from the center of the STM image, showing an atomic-scale corrugation (de) 

of about 0.05 nm. The vertical scale is fixed at 1 nm for all the line profiles for easy 

comparison. A STM image of the freestanding graphene is displayed in Figure 6.2(b). The 

honeycomb structure is still visible but much less distinct due to the lateral movement of the 

freestanding graphene membrane (described further below). This graphene image also shows 

an overall curvature to the topography. Here it is highest and nearly constant along the 

diagonal line from the lower left-hand side to the upper right-hand side. The most remarkable 

feature of this data is that the underlying atomic lattice is still visible even with an overall 

black-to-white color scale of 4 nm. The inset shows the local atomic structure with apparent 

distortions. The atomic lattice is visible because the height change (d) across the honeycomb 

is a full nanometer (see line profile below image), 20 times greater than the expected 

electronic corrugation (de) for graphene on a substrate. For comparison, a high-quality STM 

image of graphene on graphite [121] is presented in Figure 6.2(c). From the line profile 

below the image, the corrugation amplitude is again about 20 times smaller than that of the 

freestanding graphene membrane. Note the hexagons in these STM images confirm that it is 

single-layer graphene. 

6.2  Fluctuation of the attractive force  

In this section, we present a number of theoretical results which point to the 

significance of the controlled creation of strain fields (i.e., elastic distortions) on graphene by 
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EM-STM. Given that the tip interacts with the membrane at a point, we first took a small 

graphene supercell with 50 atoms, width 2L ≈2 nm, and pulled the center atom, leaving the 

corner atoms fixed. The central atom was gradually displaced an amount d, through a series 

of 0.03-nm increments, up to a maximum perpendicular displacement of 0.30 nm from the 

plane. At each displacement, the other atoms were allowed to relax to the energy minimum. 

The atomic relaxation was carried within the local density approximation to density 

functional theory (DFT) with projector augmented-wave potentials as implemented in the 

plane-wave basis set VASP code. The restoring elastic force was obtained from the 

Hellman-Feynmann theorem as the derivative of the energy data versus displacement and 

displayed in Figure 6.3(a) [the inset shows a schematic of the supercell in a side view, while 

Figure 6.3(b) shows the strained model in a tilted view]. The linear fit shown for distortions 

with d / L<0.1 produced a spring constant of about 20 nN per nm. With the reported 

maximum vertical distortion, and assuming the STM tip was near the center of the suspended 

membrane, we obtained a d / L = (35 nm)/(3.25 μm)∼0.01 from our data in Figure 6.1, well 

within the linear region. This normalized displacement yields a restoring force of about 0.25 

nN from Figure 6.3(a).  
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Figure 6.3: (a) Restoring force of graphene calculated from DFT vs normalized displacement, 

with a linear fit completed over the range from 0 to 0.1. (b) Atomic model used in the DFT 

calculations shown in a tilted view. (c) Force on a unit charge held 0.1 nm above the surface 

as it is moved parallel to the surface and along a line from the center of the honeycomb to the 

nearest carbon atom. A maximum force occurs over the carbon atom. (d) 5-nm radial average 

of the pseudomagnetic field underneath the STM tip vs normalized displacement. 

We next estimated the attractive force between the STM tip and the graphene 

membrane with a simple calculation in which we computed the charge rearrangement in 

graphene needed to screen a unit point charge placed 0.1 nm above the graphene plane, using 

the self-consistent Hückel method. We used a 20 nm × 20 nm square patch of graphene 

containing more than 15 000 π electrons for this purpose. The Coulomb force was computed 

from the self-consistent charge distribution. The van der Waals contributions were not 

considered in our calculation, because the charge accumulation component of the attractive 
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force was sufficient to provide us with a qualitative picture with good insight into the origins 

of the atomic-scale corrugation. 

Indeed, the electrostatic force varies periodically across graphene as shown in Figure 

6.3(c). Moving parallel to the graphene surface along a straight line toward one of the nearest 

carbon atoms, the force oscillates between a minimum (0.15 nN) when the tip is directly 

above a hole and a maximum (0.25 nN) directly above an atom. Thus, the attractive 

electrostatic force between the tip and the graphene oscillates in perfect registry with 

graphene’s atomic spacing. When the test charge was directly above a point halfway between 

a hole and an atom, a lateral force was found to exist (not shown). The magnitude of this 

lateral force is significant, at more than 10% of the vertical force. It draws the graphene sheet 

sideways, causing the STM images of freestanding graphene to blur. Given that the force is 

not constant during the scan, the STM tip must retract or approach the graphene membrane as 

it scans the surface. The freestanding graphene follows the tip, as described previously; hence, 

the atomic-scale corrugation (d) is much larger than that observed when graphene is on a 

substrate (de). 

Knowing from our experimental data and our DFT calculation that the membrane 

strain is within the linear region, we used the analytical expressions for the deformation of a 

membrane from the work of W. H. Duan. et. al., along with the expressions for the 

pseudomagnetic field of F. Guinea, et al.’s work, and the deformation potential calculated by 

H. Suzuura, et. al.[122], to estimate the pseudomagnetic field created by the induced strain 

(d/L) in our setup. Given that d/L is small, in our calculation, we further assumed a circular 
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profile at the edges of the graphene membrane where it contacted the copper. As a result, the 

pseudomagnetic field has the following form: B(r,θ) = |B(r)|cos(3θ)]. We plotted the radial 

average of |B(r)| between r =0 and 5 nmversus normalized displacement at r = 0 in Figure 

6.3(d). For a normalized displacement consistent with our results (d/L = 0.01), the |B(r)| is 

about 25 T beneath the STM tip. Historically, EM-STM data such as that shown in Figure 

6.1(b) was used to measure the local work function φ using the following formula: φ (eV) = 

0.95[Δ ln V/Δd (A° )]
2
, where V is the bias voltage and d is the tip height [123]. Applying this 

formula to our graphene on copper data yielded a work function of about 1 eV, which was 

smaller than the expected value of about 4 eV, but reasonable for STS [124, 125]. Applying 

this formula to our freestanding graphene data, we found an “effective work function” of 

about 10 meV, or 100 times smaller, but here the graphene membrane is free to move and 

follows the retracting tip. The increased bias voltage increases the electrostatic force on the 

freestanding graphene membrane, causing it to move toward the tip. To maintain a constant 

current, the tip pulls away from the approaching graphene membrane. The membrane 

continues to chase the tip until an elastic restoring force grows and eventually equals the 

electrostatic force, as shown in the right-hand side of Figure 6.1(c). However, because there 

is a random offset in the height of a few nanometers in the EM-STM data shown in Fig. 

6.1(b), this may be evidence of different large-scale, low-energy configurations, or ripple 

textures, of the graphene membrane [126]. This may also be the root cause of the two 

different linear regions in the spectra. The first linear region is soft due to removing ripples 

and the second region is hard due to straining the lattice. In this way, the EM-STM 

measurement on freestanding graphene is a tool by which we can learn about the elastic 
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properties and the induced electronic properties of freestanding graphene. It is also interesting 

that for a fixed bias voltage (e.g., 3 V), the height d increases as the current set point 

increases, counter to tunneling theory but consistent with our electrostatic attraction model. 

Similar to the STS data, the STM data shown in Figure 6.2(b) has two features that contribute 

to its atomic corrugation amplitude (d), one electronic (de), and the other elastic (u). The 

electronic component is caused by the spatial variation in the electronic density of states, 

which is normally observed with STM. For graphene on a substrate, this electronic height 

change (de) is known experimentally and theoretically to be at most 0.05 nm. The elastic 

component is caused by the local elastic distortion for the freestanding graphene. In a related 

point, evidence for elastic distortions in graphite has been previously reported. To illustrate, 

as the STM tip is brought into tunneling below a carbon atom, the freestanding graphene is 

attracted to the tip by the electrostatic image force and moves toward it (similar to our earlier 

discussion). The feedback circuitry retracts the tip until a stable equilibrium is achieved, as 

illustrated in the left-hand side of Figure 6.2(d). Next, as the tip scans away from the atom 

and moves toward the center of the hexagon, the electrostatic force decreases. Consequently, 

the elastic restoring force causes the graphene sheet to retract away from the tip. The 

feedback circuit prompts the tip to chase the graphene until the new equilibrium 

configuration is reach, as illustrated in the right-hand side of Figure 6.2(d). This repetitive, 

dynamic, and interactive process is in perfect registry with the electronic corrugation. This 

study demonstrates that STM can be used to probe and induce a controllable strain on 

freestanding graphene membranes. These findings lay the groundwork for using local probes 

to study and manipulate the electrostatic/pseudomagnetic/mechanical interactions in a model 
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environment. For example, it may be possible to study local defects, such as vacancies or 

dopants, and their role in modifying the elastic and electronic properties of the membrane 

using EM-STM. 

  



 

 

87 

CHAPTER 7   SUMMARY AND CONCLUSION 

In summary, this dissertation presents my studies of the elastic and electronic 

properties of graphene on graphite and suspended graphene on a TEM grid via scanning 

tunneling microscopy. 

In the experimental part, high quality metallic probe tips were fabricated for the STM 

experiments. We developed a double-lamella method for manufacturing STM tips 

electrochemically. The double-lamella method that offers excellent control over the tip’s 

shape and consistently produces ultrasharp probes capable of atomic-resolution STM images. 

The setup has the tungsten wire oriented vertically while under optical magnification and 

uses a manipulator to tune the process as it evolves. The resulting tips were photographed 

under 1000× magnification and then used to acquire STM images of HOPG in order to 

determine their overall quality. A strong positive correlation exists between the cone angle of 

a tip, as determined by the optical images, and the chance that the tip will be capable of 

atomically resolved STM images. Larger cone angle tips are more likely to provide better 

STM images, as a result of their greater mechanical stability. Optical imaging of the tips can 

be used to accurately predict their quality, making it an easy and inexpensive tool for 

evaluating electrochemically etched tips prior to STM imaging. 

In the research of graphene on bulk graphite, a possibility for learning something 

useful about graphene’s electronic properties as well as for general STM imaging and 

manipulation has been shown. Graphite has a series of advantages, such as low cost, flat, 

conductive, easy to be cleaved for preparing atomically flat surface, and easy to image the 
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atomic scale by STM. It is, therefore, one of the most commonly used substrates for STM 

experiments. The reason why it is so easy to image is because the atomic corrugation 

measured in a typical STM experiment is on the order of several angstroms, which is 

anomalously large. The reason for that is the weak interlayer coupling and the strength of the 

interaction between the STM probe tip and the surface graphene layer which causes it to 

move (either vertically or horizontally) under the tip, as well as the likelyhood for the tip to 

pull up flakes of graphite. We have demonstrated, in chapter 5, the ability to vertically raise 

and horizontally shift of the surface graphite layer. This is the key to unravelling the complex 

atomic patterns of this otherwise simple-seeming surface is related to the surface charge 

reconstruction. 

This was realized by using the so called electrostatic-manipulation-STM technique of 

our own development which is based on the electrostatic force between the tip and sample 

surface. Our new EM-STM technique significantly broadens the abilities of the STM 

technique. STM is already known for its superior ability to obtain atomic structural and local 

electronic information for rigid samples. Now, if the sample is free to move or suspended, 

one can use EM-STM to gain insight into the local electrostatic and elastic properties. This 

could prove valuable when considering chemically modified graphene, for example. This 

thesis showed that EM-STM measurement can be used to reversibly and irresversibly alter a 

graphite surface with considerable precision by varying the STM tip bias relative to the 

grounded sample. This technique was employed to physically alter the graphite surface with 

precise spatial control. In addition, it was used to controllably lift the top graphite layer away 

from the bulk. We demonstrated unambiguous surface graphene displacement which induces 
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a change in the atomic charge density symmetry and apparent distribution of the surface 

atoms of graphite. DFT simulated STM images for various displacements of the top layer 

relative to the bulk gave excellent agreement with experimental STM images. Band structure 

information predicted that the electronic properties of the top layer matched graphene after a 

vertical displacement of 0.090 nm. Finally, by using the theoretical real-space charge 

densities to characterize the transition from graphite to graphene, a stepwise model of the 

interplanar coupling that is responsible for the electron acquiring mass was presented. We 

also presented experimental evidence for a horizontal shift in the top layer of a graphite 

sample, induced by the STM tip and resulting in the observation of a graphene like surface 

charge density. This shift is direction dependent and in excellent agreement with 

first-principles DFT energy calculations and simulated STM images. Specifically, the 

lowest-energy barrier direction is toward no overlap of the pz orbitals, while the 

highest-energy barrier direction is toward AA stacking (full overlap of the pzorbitals). 

On the other hand, in chapter 6, using the EM-STM technique in combination with 

DFT calculation, we also investigated pristine graphene suspended on a TEM grid. We 

demonstrated that the EM-STM can also be used to manipulate and study the atomic-scale 

properties of freestanding graphene. In addition, atomic resolution STM images of 

freestanding graphene were presented. The highly conductive yet flexible graphene 

membrane is shown to be attracted to the STM tip. The attractive force is found to 

periodically fluctuate from a maximum over the carbon atom to a minimum over the hole in 

the hexagonal structure, giving rise to an extremely large atomic corrugation. As the 

graphene membrane moves toward the STM tip, an elastic restoring force builds up. From the 
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induced strain we estimate the magnitude of the pseudomagnetic field at the vicinity of the 

STM probe. 
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