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Abstract 

Seed carbohydrate content is an important aspect in breeding for food-grade soybeans 

commercialized in the soyfood market. Sucrose and stachyose are the primary carbohydrates in 

soybean seed. Sucrose affects the quality and taste of various soyfoods such as tofu, soymilk, and 

natto; however, consumption of soy-based products with high stachyose concentrations can 

cause diarrhea and flatulence. A mutant line (V99-5089) with high-sucrose and low-stachyose 

has been identified. The objectives of this research were: 1) to identify sucrose QTLs in a F2-

derived mapping population; 2) to investigate the genetic relationship between two low-

stachyose sources, V99-5089 and the germplasm line PI200508; and 3) to identify stachyose 

QTLs in a F2-derived mapping population. An allelism test for low stachyose was performed by 

using 121 F2-derived lines from the cross PI200508 x V99-5089 grown in three different 

environments. Carbohydrate content was determined by a high performance liquid 

chromatogram system, and lines were classified as high- or low- stachyose. Chi-square analysis 

was performed to test for goodness-of-fit of observed segregation to the expected genetic ratio. 

Results showed a 9 high-stachyose : 7 low-stachyose ratio, indicating that two independent 

recessive genes conferred the low-stachyose trait in the two mutant lines. Additionally, gene 

dosage effect was observed; however, further study is required in order to confirm its presence.  

The sucrose and stachyose QTL studies were carried out in 92 F2:7 lines derived from the cross 

V97-3000 x V99-5089. Leaf samples were collected at F2:6 for DNA extraction and subsequent 

molecular analysis using single nucleotide polymorphism (SNP) markers. Seed from F2:7 lines 

grown in two locations, each one with two replications, were analyzed for sugar content. Results 

showed two sucrose QTLs located on chromosomes 6 and 10, accounting for 17 and 11% of the 

phenotypic variation, respectively. Additionally, two stachyose QTLs were found on 
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chromosome 10 and 11, explaining 11 and 46% of the stachyose variation. Results from this 

research indicate that the two low-stachyose sources may serve as valuable parents in breeding 

for low-stachyose soybeans. Additionally, V99-5089 may also provide favorable alleles for 

breeding high-sucrose varieties. The sucrose and stachyose QTLs identified in these studies are 

stable across environments and will facilitate the marker-assisted selection for both traits. 
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I. Introduction  

Soybean origin and market 

Soybean [Glycine max (L.) Merr] is a member of the Fabaceae family, whose center of 

origin and domestication was located in China (Abe et al., 2003; Hymowitz, 1970). After 

domestication, the area planted with soybean expanded worldwide due to the easy adaptation of 

the crop and the multipurpose end-uses of the seeds (Johnson et al., 1992). The three major 

soybean producers in the world in 2013 were: Brazil, accounting for 39% of world production 

with 83.5 million metric tons; United States, with 37% and 82 million metric tons; and 

Argentina, with 11% and 51.5 million metric tons (ASA, 2014).  

In the United States, the area occupied by soybean ranks second (29%) after corn (35%) 

(ASA, 2014). In 2013, 31.2 million ha of soybean were planted in the country. Arkansas 

accounted for 3.2 million ha, which produced a total of 3.7 million metric tons of soybean (ASA, 

2014). 

Soybeans can be used as raw material for many manufactured goods including oil, whole-

bean products, and meal products (Smith and Huyser, 1987). In 2013, oil production in US was 

8.6 million metric tons, soybean crush was estimated in 43.9 metric tons, and meal production 

reached 34.9 million metric tons (ASA, 2014). Additionally, soybeans are used as livestock feed, 

as an ingredient in the food industry, as fuel when converted into biodiesel, and as the main 

ingredient of industrial products including lubricants, insulators, paints, glues, crayons, hand 

cleaners, and shampoos (ASA, 2014). 

 

Soyfoods 

Soybeans have been grown for more than 1000 years in Asia for consumption purposes.  
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However, their consumption in the Western culture commenced only about 30 years ago, 

when their nutritional value and health benefits began to be publicized (Golbitz, 1995). 

According to Soyatech (2012), the sales of soyfoods products in U.S. exceeded $5 billion in 

2011. These specialty soybeans are grown and commercialized under identity-preserved (IP) 

contracts (Sonka et al., 2004), which means that growers get paid a premium for producing top-

quality soybeans which meet specific standards required for the soyfood industry, including low-

saturated fat content, low-linolenic acid content, increased oleic acid content, and an absence of 

beany flavor. 

Soyfoods can be classified as traditional non-fermented foods, which include tofu, 

edamame, and soymilk; and traditionally fermented foods such as miso, natto, soy sauce, and 

tempeh (Cui et al., 2004). Tofu is curd soybean made by soymilk that has been coagulated by 

calcium, magnesium salt, or glucono delta-lactone (He and Chen, 2013). Edamame is soybeans 

harvested early in the vegetable stage which can be commercialized in fresh or frozen food 

forms. Soymilk is one of the most popular and traditional soyfoods. According to oral historical 

records, it was developed by the King Liu An in the second century B.C. Soymilk is made by 

soaking, grinding, and straining soybeans (Shurtleff and Aoyagi, 2013). 

Miso is a soybean paste fermented with fungus, bacteria, or yeast. The choice of the microbe 

used as the fermentation agent depends on the country where the miso is produced. Most of the 

miso made in Japan involves the Aspergillus oryzae fungus while the Bacillus subtilis bacteria 

are the typical fermentation agents of the Chinese miso (Kim et al., 2010). Natto is manufactured 

from fermentation of soybeans by strains of Bacillus subtilis. During its storage, secondary 

fermentation occurs, which causes ammonia to be released. This gives natto its characteristic 

odor (Kada et al., 2008). Soy sauce is the most common seasoning in Chinese culture; it is 
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produced by fermenting a combination of wheat and soybean by Aspergillus fungi, lactic acid  

bacteria, and yeast (Sugiyama, 1984). Tempeh is made of de-hulled fermented soybeans by using 

Rhizopus oryzae mold (Shurtleff and Aoyagi, 2011). 

 

Health benefits 

Soyfoods are considered beneficial to overall health due to their high content of polyunsaturated 

fats (essential fatty acids and linolenic acid), vitamins, fiber, minerals, and low content of 

saturated fats. Some studies have reported that soy-based foods may reduce the risk of breast and 

prostate cancer, osteoporosis, and cardiovascular disease (CVD).  In a study conducted by Sacks 

et al. (2006), isolated soybean protein and isoflavones reduced LDL cholesterol concentrations 

(~ 3%), as compared with milk and other sources of protein. No undesired effects on HDL 

cholesterol, triglycerides, lipoprotein, or blood pressure were observed. Similarly, Anderson et 

al. (1995) studied the relationship between soy protein consumption and serum lipid 

concentration in humans. They reported that the intake of soy protein significantly reduced 

serum concentrations of total cholesterol, LDL cholesterol, and triglycerides. Jenkins et al. 

(2010) reviewed and re-analyzed the two previous studies aiming to determine whether the 

claims that soy proteins have a beneficial effect on heart health were still maintained. They 

determined that both studies are well supported by the data collected in the meta-analyses.   

The consumption of stearic acid, which is present in soybeans, is desirable in comparison to 

other saturated fats, because it simulates the effects of some mono-unsaturated fatty acids by not 

altering HDL cholesterol (Kris-Etherton and Yu, 1997), and by decreasing both LDL cholesterol 

and the total cholesterol to LDL cholesterol ratio (Hunter et al., 2010). 
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Additionally, many other studies have assessed the relationship between the intake of 

vitamins present in soybeans and prevention of some diseases. Results from a vast amount of 

studies, including animal experiments, epidemiological data, and human trials, suggest that 

vitamin E offers significant protection against heart disease (Pryor, 2000). Other benefits 

reported include improvement of cell-mediated immune responses (Meydani et al., 1997; 

Meydani et al., 1990) and cancer prevention (Yang et al., 2012; Watson and Leonard, 1986). 

Similarly, intake of vitamin B has been suggested to be associated with prevention of coronary 

heart disease in women (Rimm et al., 1998) and vascular disease in men (Ubbinik et al., 1993). 

Additionally, it has been reported that consumption of vitamin K is positively associated with 

bone mineral density in elderly men (Fujita et al., 2010). 

 

Seed composition 

Protein (40%) is the most abundant soybean seed component on a dry-weight basis, 

followed by carbohydrates (35%), oil (20%), and ashes (5%) (Liu, 2005; Hymowitz and Collins, 

1974). Other important seed components include phytate, isoflavones, lipoxygenases, minerals, 

and vitamins. 

Protein 

Soybeans are mainly grown for protein and oil. In average, soybean seed has  around 

42% protein content, however, values ranging between 34 and 57% have been reported (Wilson, 

2004). The two major protein fractions in soybean are beta-conglycinin (7S) and glycinin (11S) 

(Wolf, 1970). The 7S fraction represents one-third of the total soybean protein (37%) and 

includes the proteins hemagglutinin, lipoxygenase, β-amylase, and 7S globulin. The most 

abundant protein in the 7S fraction is 7S globulin. The 11S fraction represents another one-third 
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of the total soybean protein (31%) and 11S globulin is the main protein in this fraction. The main 

common property to both 7S and 11S globulins is the capacity to form disulfide-linked polymers 

which causes insolubility (Nash and Wolf, 1967) and increases viscosity (Circle et al., 1964). 

Soy proteins have emulsifying properties; they decrease the interfacial tension between the water 

and oil, and help to stabilize the emulsion by forming a physical barrier at the interface (Molina 

et al., 2001). The 11S-to-7S ratio plays an important role not only in the production of soyfoods 

but also in food industries where these proteins are used as natural gelling agents. Thus, a high 

11S-to-7S ratio is desirable because it increases the firmness and water-holding capacity of the 

gel (Yagasaki et al., 2000). 

Among the soybean essential amino acids, glutamic acid is the most abundant (Van Etten 

et al., 1959). Glutamic and aspartic acids account for 25% of the total of amino acids, followed 

by the hydrophobic side amino acids: lysine, arginine, histidine, glycine, alanine, valine, leucine, 

and isoleucine. The hydrophobic amino acids make up 20% of the total amino acid content. An 

additional smaller group, constituted by the aromatic amino acids phenylalanine, tyrosine, and 

tryptophan, account for 9% (Zarkdakas et al.,1993). 

A rapid accumulation of protein occurs during the reproductive stage (Kim et al., 2006a), 

reaching 61% of total protein content at maximum fresh weight stage (MFWS) (Rackis, 1981). 

The MFWS begins right after R6, about 45 to 50 days after flowering (DAF), when the seeds are 

still green but the pods start turning yellow (Rackis et al., 1972).  High-molecular-weight 

proteins are the most abundant proteins in mature seeds (Liu, 1997a), achieving their maximum 

levels at 36 DAF (Hill and Breidenbach, 1974a,b). Conversely, lower-molecular-weight proteins 

are predominant at the earliest stages of maturity (Liu, 1997a). The amino acid contents such as 

arginine, serine, glutamic acid, glycine, and leucine increases linearly with seed maturation, 
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whereas histidine and alanine contents decrease (Yazdi-Samadi et al., 1977). Free amino acid 

contents are lowered during maturity (Yanagisawa et al., 1997). 

There are three major forms of soybean proteins; flours and grits, concentrates, and 

isolates (Wolf, 1970). Flours and grits are the least refined form because they vary in fat content, 

particle size, texture, and other properties. Flours are produced by grinding soybean flakes, and 

then sifting them through a No. 100 mesh screen with an opening of 0.149 mm. Grits are 

characterized for having a particle size larger than a 100 mesh (Horan, 1966). Protein contents 

for flours and grits range from 40 to 50% on dry-weight basis. Concentrates are made from 

defatted flakes or flour, and their protein content is around 70%. Isolates are the most refined 

soybean proteins, containing 90% or more protein (Meyer, 1966).  

Carbohydrates 

Carbohydrates are classified into two different groups: soluble and insoluble. In the 

soyfood industry, soluble carbohydrates are considered the most important desired seed sugars, 

because they affect the quality and taste of soy-based products (Taira, 1990). Soluble 

carbohydrates are separated based on their carbon chain length. Thus, glucose and fructose are 

monosaccharides, followed in size by the disaccharide sucrose, and then the oligosaccharides 

raffinose and stachyose (Hymowitz et al., 1972; Liu, 1997). Sucrose content accounts for 41.3 - 

67.5%, raffinose for 5.2 - 15.8%, and stachyose for 12.1 - 35.2% of the total soluble sugars in 

soybean seed (Yazdi-Samadi et al., 1977). 

High contents of glucose, fructose, and sucrose are desirable; however, low contents of 

raffinose and stachyose contents are preferred for the production of soyfoods. Monogastric 

animals lack the α-(1,6)-galactosidase enzyme that converts oligosaccharides into digestible 

forms such as glucose and fructose (Gitzelmann and Auricchio, 1965). Consequently, 
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consumption of soybeans with high raffinose and stachyose contents results in low metabolizable 

energy, flatulence, and diarrhea (Kuriyama and Mendel, 1917; Rackis, 1974; Hawton et al., 

1996). 

There are several studies that describe the accumulation of soluble carbohydrates during 

seed formation and development. It has been established that glucose, fructose, and sucrose 

decrease in the initial stages of seed formation. Subsequently, their contents remain steady for 

about 3 weeks, and then increase towards the end of seed maturation (Yazdi-Samadi et al., 1977; 

Min 2008; Obendorf et al., 2009). Similarly, Kim et al. (2006a) reported a comparable pattern of 

sucrose accumulation during the reproductive stage. Raffinose and stachyose mostly accumulate 

from 40 to 60 DAF, during the drying phase of seed maturation (Yazdi-Samadi et al., 1977; Min 

2008; Obendorf et al., 2009; Saldivar, 2011). 

Oil 

According to the American Soybean Association (2011), soybeans are the most important 

oilseed crop worldwide. Average seed oil concentration has been estimated as 20% (dry-weight 

basis), however, values as low as 8 to 28% have been observed (Wilson, 2004). Oil is 

accumulated in the seed in the form of triacylglycerol (Hajduch et al., 2005). 

Fatty acid content in soybean oil is composed of 110 to 120 g kg-1palmitic acid (C16:0), 

40 g kg-1 stearic acid (C18:0), 230 to 240 g kg-1 oleic acid (C18:1), 530 g kg-1 linoleic acid 

(C18:2), and 70 to 80 g kg-1 linolenic acid (C18:3) (Wilson, 2004; Liu, 2005).  

Soybean oil has some undesirable characteristics including low oxidative stability, which 

has a negative effect on its shelf life and durability at high temperatures. Additionally, its low 

cold-flow capacity can be an obstacle for biodiesel production. However, other components such 

as monounsaturated fatty acid (i.e. oleic acid) can improve functionality of soybean oil at high 
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concentrations (>500 g kg-1) (Wilson, 2004). Likewise high palmitate content is desirable 

because it increases the oil oxidative stability which is beneficial for industrial and food 

purposes. Palmitate is considered one of the most desired saturated fatty esters in soybean oil 

(Shen et al., 1997). 

Seeds reach 5% oil (dry weight basis) at 25 DAF (Rubel et al., 1972). Then, oil 

percentage increases rapidly until 40 DAF. At this stage, oil accumulation makes up for 30% of 

the total oil of the mature seed. The remaining oil is synthesized during the next 40 to 64 DAF, 

which is also the drying phase of seed maturation (Hajduch et al., 2005). Percentages of palmitic, 

stearic, and linolenic acid in the oil decrease with seed maturation, whereas percentages of oleic 

and linoleic acid increase (Rubel et al., 1972).  

Mineral and vitamins 

 Potassium is the most abundant mineral in soybean seed, followed by smaller amounts of 

P, Ca, Mg, S, Cl, and Na, whose concentrations range between 0.2 and 2%. Minor minerals 

content range between 0.01 to 140 ppm, and include Si, Zn, Fe, Cu fluorine, Mn, and Cd (Liu, 

1997). In general, mineral content remains steady during maturation (Rackis, 1981).   

Soybean vitamins can be classified based on their solubility. Soluble vitamins include 

vitamin B whose main constituents are thiamine (vitamin B1), riboflavin (vitamin B2), pyridoxine 

(vitamin B6), and niacin (vitamin B3) (Lebiedzinska and Szefer, 2006). Concentrations of 

vitamins B1, B2, and B3 are usually 13 to 19 ppm, 3 to 4 ppm, and 20 to 26 ppm, respectively. 

Other soluble vitamins include pantothenic acid and folic acid whose contents range from 15 to 

37 ppm and 1 to 2 ppm, respectively (Burkholder and McVeigh, 1945). 

Insoluble or fat-soluble vitamins include vitamin A, whose main component is β-

carotene, and vitamin E, which is composed mainly of four tocopherols (α-, β-, γ-, and δ-
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tocopherol). These tocopherols are natural chain-breaking antioxidants that can inhibit lipid 

degradation (Packer and Landvik, 1989; Carrão-Panizzi, 2007). It has been established that β-

carotene content decreases with maturation (Rackis, 1981). Vitamin E content in soybean seed 

varies with values ranging from 10.9 to 28.4, 150 to 191, and 24.6 to 72.5 µg/g (dry basis) for α-, 

γ-, and δ-tocopherols, respectively (Guzman and Murphy, 1986). 

 

Other seed components 

Phytate 

In soybean, P is in a complex as phytic acid, or myo-inositol-1, 2, 3, 4, 5, 6-

hexakisphosphate or Ins P6 (salt form: ‘phytate’). Phytates include Ca+2, Mg2+, Zn2+, and Fe3+ 

salts of hexaphosphoric acid (Oltmans et al., 2005). Phytate is indigestible to monogastric 

animals due to the lack of the enzyme phytase in their gastrointestinal tract which is necessary to 

catalyze the breakdown of phytate into digestible forms. Thus, most of the P passes through the 

intestinal tract of the animal without being used and is then excreted as waste. This manure 

contributes to environmental pollution when in contact with ground or surface waters by 

promoting eutrophication (Sharpley et al., 1994; Burkholder et al., 2007; Saghai -Maroof et al., 

2009) Moreover, when phytate is consumed, this polianion chelates the cations Ca, Zn, and Fe, 

which are key minerals in the animals’ diet (Raboy et al., 2001). According to Rackis (1981), 

phytate accumulates during seed maturation and concentration ranges from 1000 to 3000 µg g-1
. 

Isoflavones 

Flavonoids are polyphenolic phytochemicals. These phenolic compounds have low 

molecular weight and are produced as secondary metabolites. According to the International 

Union of Pure and Applied Chemistry (IUPAC) (1995), flavonoids are derived from 2-
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phenylchromen-4-one, ‘neoflavonoids’ derived from 4-phenylcoumarin, and ‘isoflavonoids’ 

derived from 3-phenylchromen. 

The main isoflavones in soybeans are genistein (4’,5,7-trihydroxyisoflavone) and 

daidzein (4’,7-dihydroxyisoflavone). Glycitein (4’,7-dihydroxy-6-methoxyisoflavone) is 

considered a minor isoflavone (Anderson and Wolf, 1995). In general, genistein tends to 

accumulate in larger quantities in soybeans, compared to daidzein (Murphy et al., 1999). 

Isoflavone concentrations have been reported to increase with seed maturation from 20 to 22 mg 

g-1 (Rackis, 1981). 

Lipoxygenases 

Lipoxygenases are enzymes that catalyze the oxygenation of polyunsaturated fatty acids 

to form monohydroperoxides (Yenofsky et al., 1988). These enzymes are part of several 

physiological processes, including plant growth, fruit ripening, abscission (Veldink et al., 1977), 

senescence (Leshem, 1984), and responses to biotic and abiotic stresses (Shin et al., 2012). 

Soybean seeds possess three lipoxygenases: LOX1, LOX2, and LOX3. Their enzymatic activity 

causes the characteristic beany flavor of the soyfoods (Kitamura et al., 1985). It has been 

reported that such activity increases with seed maturation producing a final concentration 

between 0.84 and 1.39% (Rackis et al., 1972). 

 

Environmental effects on soybean seed composition 

The percentages of seed components have been reported to be affected by genotypic and 

environmental factors (Cicek et al., 2006). Ren et al. (2009) studied the effect of high 

temperature on soybean seed composition under environment-controlled chamber conditions. 

Forty plants from the breeding line N98-4445A (mid-high oleic acid content) were grown at a 
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27/18°C day/night temperature with a 13.5-h day photoperiod of 880 μmol m–2 s–1. Once the 

plants reached the R5 stage, half of the plants were discarded and 10 out of the remaining plants 

were treated with a 37/30°C day/night temperature with a 13.5-h day photoperiod of 880 μmol 

m–2 s–1 from the R5 stage until the R8 stage. Results indicated that high temperature increased 

total fatty acid concentration, while no significant effect was observed on individual sugar 

(sucrose, raffinose, and stachyose), protein, and phytic acid concentrations. 

In a different study, Gao et al. (2009) studied the effect of the agronomic management 

systems: tilled with conventional chemical inputs (CT), no-till with conventional chemical inputs 

(NT), tilled with low chemical inputs (LI), and tilled with no chemical inputs (ORG), on total oil, 

oleic acid and linolenic acid soybean content over five years. Results indicated that there was no 

significant effect on total oil content and oil yield on a land-area basis and management systems 

had negligible differences among treatments. Likewise, no significant treatment effect was 

observed on oleic acid and linolenic acid content across years. 

More recently, VanToai et al. (2012) conducted a study to evaluate the effect of flooding 

on seed composition of five soybean plant introductions tolerant to this stress and the sensitive 

cultivar Williams when grown in three different environments. Results showed a significant 

decrease in linoleic and linolenic acids, daidzein, genistein, and glycitein contents while oleic 

and stearic acid increased in all the genotypes studied. No significant environmental effects were 

observed on palmitic and linolenic acid, and glycitein concentrations. 

Furthermore, Taira (1990) reported that protein, 7S and 11s globulins, amino acids, 

linolenic acid, and raffinose and stachyose content were primary affected by genotype, whereas 

sucrose was mainly influenced by location. He also observed significant yearly variations of oil, 

and oleic and linolenic acids, and sucrose, total sugar content. Geater et al. (2000) evaluated the 
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effect of genotype and environment on the seed traits total sugar, sucrose, raffinose, stachyose, 

protein, oil, protein + oil, fiber, and protein + oil + fiber. Sixteen small-seeded natto lines were 

grown in three different locations and for two years. Significant differences among the genotypes 

were observed for one or both years for all traits studied except fiber. Additionally, significant 

differences among locations and years were reported for all traits except stachyose. 

Arslanoglu et al. (2011) evaluated the effects of genotype, environment, and their 

interaction on oil and protein content in eight soybean cultivars grown at eight different locations 

in Turkey during two years. The genotype x environment interaction effect was significant on the 

two traits studied (p < 0.01). Likewise, differences among genotypes were significant as well as 

differences among locations for oil and protein content with values ranging from 18.3 to 23.1% 

and 29.2 to 38.6%, respectively. 

In a bigger study, Carrera et al., (2011) evaluated the effect of climatic variables on 

amino acid composition during seed filling. Nine soybean genotypes were grown in 31 

environments, resulting from combining 13 locations and different planting dates during two 

years. Climatic variables included average daily temperature, cumulative solar radiation, and 

precipitation minus potential evapotranspiration. Environment accounted for most of the total 

variation for all traits studied followed by the genotype x environment interaction. Total amino 

acid concentration ranged between 31.7 and 49.1% while total essential and non-essential amino 

acids varied from 12.8 and 19.0% and from 18.9 and 31.2%, respectively. 

Cober et al. (1997) evaluated the environment and genotype x environment effects on oil 

and sugar soybean seed content in two independent experiments. Contrary to Geater et al. (2000) 

findings, no significant location effects on either of the traits studied were observed, whereas 

genotype x environment interactions were negligible for both traits but their variance  
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components had a lesser magnitude than that of the genotype effect alone. 

In a separate study, Geater and Fehr (2000) observed significant differences among 

cultivars for total sugar content. The range of values in the study was greater among cultivars 

than among locations. As a result, genotype was suggested to have a greater influence than 

environment on total sugar content. In a different study, Dardanelli et al. (2006) reported that 

maturity group had a significant effect on seed oil content in soybean. In the same study, 

maturity group x environment effects were greater for protein and protein and oil content 

combined than those for oil. 

 

Development of new cultivars 

The main objective of plant breeding is to develop new cultivars with desirable traits by 

using the genetic variability available (Jauhar, 2006; Sleeper and Poehlman, 2006). Traditional 

plant breeding involves a series of generational advances and subsequent selections until the 

desired trait(s) become(s) stable and genetically uniform (homozygous). Breeding lines 

containing the desirable trait(s) are then evaluated for agronomic performance across locations 

and years. For this reason, in general, the development of new cultivars requires substantial time 

and resources.  

Furthermore, the nature of inheritance of these desired traits will determine the level of 

complexity of the breeding process. Correlations among traits must be considered when making 

selections since selecting one trait may result in another trait being enhanced or diminished.  

There are several studies on relationships among soybean traits. Wilcox and Shibles (2001) 

reported that yield is negatively correlated with seed protein content and positively correlated 

with oil. Also, a negative correlation between protein and oil has been established (Hartwig et  
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al., 1997; Filho et al., 2001; Wilcox and Shibles, 2001).  

Furthermore, soybean seed Ca content was positively associated with water absorption (Saio, 

1976), phytate content (Schaefer and Love, 1992), and seed hardness (Chen et al., 1993). 

However, other studies have shown no relationship between Ca content and water absorption 

(Mullins and Xu, 2001; Wei and Chang, 2004). Additionally, negative correlations between seed 

size and seed hardness (Zhang et al., 2008) and seed size and linoleic acid (Maestri et al., 1998) 

were observed. Maestri et al. (1998) also indicated that seed size was positively associated with 

stearic and oleic acids.  

  

Molecular markers 

Traits present different levels of complexity which depend upon the number of genes that 

control them. Moreover, the different correlations, the effects that the environment may have on 

them, and time invested for their measurement make their study difficult. For these reasons, the 

use of molecular markers that are linked to the gene(s) of interest has become an effective 

alternative when breeders want to develop cultivars with specific characteristics in a time-

efficient manner.  

Quantitative traits are affected by multiple genes and each of these genes has a small 

effect that adds up to the total effect (Falconer, 1989). Additionally, these traits are greatly 

affected by the environment and are controlled by quantitative trait loci (QTL). A QTL is either 

considered the region of the chromosome to which a molecular marker (DNA sequence) is linked 

or the region defined by two bordering markers that are not necessarily linked to the QTL 

(Melchinger, 1998). 

There are several types of molecular markers including Amplified Fragment Length  
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Polymorphism (AFLP), Restriction Fragment Length Polymorphism (RFLP), Random Amplified 

Polymorphic DNA (RAPD), Single Sequence Repeat (SSR), and more recently, Single 

Nucleotide Polymorphism (SNP). 

In general, AFLP and RFLP techniques involve digestion of genomic DNA by restriction 

enzymes to produce small fragments; fragments are amplified and their size is determined. Both 

markers allow amplification of specific restriction fragments and distinction of heterozygous loci 

in the population studied (codominance). However, the procedures require large amounts of 

DNA and their execution is cumbersome (Rafalski et al., 1991). 

With RAPD markers, random segments of genomic DNA are amplified. The main advantage 

of this technique is that small amounts of DNA are required as compared with RFLP. However, 

RAPD markers are dominant which means that they only identify one allele at a locus. Thus, 

they cannot be used to detect heterozygous loci (Rafalski et al., 1991). 

Microsatellites, or SSR markers, are stretches of DNA in which the same short nucleotide 

sequence (2-4 base pairs) is repeated. Polymorphism (different alleles) is determined by the 

number of times the short sequence repeats. Then, DNA fragments are amplified by Polymerase 

Chain Reaction (PCR) and separated through gel electrophoresis. These markers are codominant; 

therefore, it is possible to distinguish between the heterozygote and homozygote.  

Alternatively, SNP markers determine differences at the single nucleotide sequence level. 

Advantages to this technique are that SNPs span the whole genome which provides great 

coverage. Additionally, sample processing may be completely automated and the use of pre-

made chips makes this procedure very time efficient.  
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Molecular linkage groups (MLG) 

Linkage groups are composed by linked genes on the same chromosome. Soybeans have 

20 linkage groups and a diploid number of 2n = 40. The number of linkage groups corresponds 

to the haploid number of chromosomes (Roberts, 1986). The current soybean genetic map was 

developed through combination of molecular data coming from the five mapping populations 

‘Minsoy’ x ‘Noir 1’, ‘Minsoy’ x ‘Archer’, ‘Archer’ x ‘Noir 1’, ‘Clark’ x ‘Harosoy’, and A81-

356022 x PI468916. The 20 chromosomes represent 2,523.6 cM and contain a total of 1,849 

markers among SSRs, RFLPs, RAPDs, AFLPs, morphological traits, isoenzymes, and others 

(Song et al., 2004). 

The nomenclature for 11 linkage groups was designated by Zou et al. (2003). According 

to Soybase, the remaining nine linkage groups were assigned chromosome numbers in 

descending order depending on the linkage group genetic length (Table 1). 

 

QTLs for soybean agronomic traits 

Several studies have been carried out using molecular markers to identify QTLs associated 

with the expression of quantitative traits in soybean. Unfortunately, many of these QTLs have 

proved to be not reproducible across populations with diverse genetic backgrounds. For this 

reason, it is essential to find QTLs that can be mapped in different populations and, thus, be 

potentially used as effective tools for marker-assistance selection. This section of the literature 

review will present some studies on QTL identification for soybean agronomic traits. 

Zhang et al. (2004) conducted a study in which 184 recombinant inbred lines (RILs) derived 

from the cross Kefeng No.1 x Nannong were screened with RFLPs, SSRs, and expressed 

sequence tags (ESTs) for 10 agronomic traits including days to flowering and maturity, plant 
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height, number of nodes on main stem, lodging, number of pods per node, protein content, 100-

seed weight, and yield. A total of 63 QTLs were found for the traits studied. These QTLs were 

mapped to 12 chromosomes and accounted for 4.2 to 27.5% of the phenotypic variation; 

however, most of them were clustered on chromosomes 6 and 11. Additionally, pleiotropism was 

observed as some QTLs were mapped to the same loci. It was reported that one QTL could 

control up to five traits (Zhang et al., 2004). 

In a different study, Hyten et al. (2004) developed a population consisting of 131 F6-

derived lines derived from the cross Essex x Williams, with the objective of identifying QTLs 

associated with protein seed content, oil seed content, and seed size. One hundred polymorphic 

markers were used to screen the population. Four QTLs for protein were found on chromosomes 

6 (between Satt277 and Satt202), 13 (between Satt335 and Satt144), 9 (between Satt539 and 

Satt102), and 7 (between Satt540 and Satt463). These markers accounted for 13.6 to 27.6% of 

the phenotypic variation.  Six QTLs were found to be associated with oil content and were 

mapped to chromosomes 6 (between Satt277 and Satt460), 1 (between Satt184 and Satt179), 17 

(between Satt458 and Satt154), 19 (between Satt166 and Dt1 and between Satt229 and Satt373), 

and 7 (between Satt540 and Satt463). All of these markers explained between 6.0 and 20.0% of 

the phenotypic variation. 

Panthee et al. (2007) used SSRs to screen 101 F6-derived RILs from a population 

developed from the cross N87-984-16 x TN93-99 for five agronomic traits; yield, lodging, plant 

height, seed filling period, and maturity. Results indicated that there was one QTL for yield 

(close to Satt076 on chromosome 19), two for lodging (close to Satt225 and Satt593 on 

chromosome 5), and four for maturity (close to Satt263, Satt293, Satt292, and Satt591 on 

chromosomes 15, 12, 20, and 5, respectively). The QTLs for lodging explained from 20.6 to 
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32.7% of phenotypic variation while QTLs for maturity accounted for 12.8 to 25.7% of the 

phenotypic variation observed. The QTL reported for yield explained 13.8% of the phenotypic 

variation. 

Moreover, Chen et al. (2007) used a population of 154 F2:10 RILs derived from the cross 

Charleston x Dongnong to construct a linkage map for 12 agronomic traits. The progeny was 

screened with 164 SSRs and the traits evaluated included protein content (P), oil content (O) and 

P+O contents, pods per plant, seed weight per plant, 100-seed weight, plant height, days to 

maturity, branches, nod number in main stem, average leaf length, and average leaf width. They 

reported 68 QTLs for all traits evaluated. Number of QTLs per trait ranged from 3 to 11. 

In a more recent study, Xie et al. (2012) used 125 RILs of F5:7, F5:8, and F5:9 generations 

derived from the cross Hefeng 25 and Dongnong L-5, to identify QTLs associated with  linolenic 

acid content and polyunsaturated fatty acids content. The progeny was screened with 112 SSRs 

in order to construct a genetic linkage map. Results indicated four QTLs for palmitic acid that 

were mapped to chromosome 17 (near Satt389), 16 (near Sat_144), 18 (near Sat_164), and 9 

(near Satt727) which explained between 2.5 and 15.2% of the phenotypic variation. One QTL 

mapped to chromosome 2 (close to Satt701) was identified to be associated with stearic acid 

content and accounted for approximately 13.5% of the phenotypic variation. Four QTLs 

associated with linoleic acid content were found; one on chromosome 18 (near Sat_164), one 

chromosome 17 (near Satt389), one on chromosome 16 (near Sat_144), and one chromosome 14 

(near Satt726). These markers explained between 3.2 and 27.5% of the phenotypic variation. Six 

QTLs for linolenic acid content, four of them were mapped to chromosome 14 (close to Satt729, 

Fad3a-4, Fad3b-1, and Fad3bc-1), one to chromosome 2 (close to Satt701), and one to 

chromosome 18 (close to Sat_164). These markers accounted for 5.3 - 37.3% of the phenotypic 
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variation. Additionally, four QTLs were identified for oleic content and mapped to chromosomes 

9 (near Satt544), 16 (near Sat_144), 17 (near Satt389), and 18 (near Sat_164). These markers 

explained between 5.8 and 20.7% of the phenotypic variation for the trait. 

Lately, increasing interest in the potential health benefits of soybean consumption has 

prompted the development of studies to identify QTLs for other seed components. Thus, 

Primomo et al. (2005) conducted a study with the objective of identifying QTLs associated with 

individual and total isoflavone contents. In order to do this, a population of 207 F4:6 RILs was 

developed from the cross AC756 x RCAT Angora. A total of 99 SSR polymorphic markers were 

used to construct the genetic linkage map. Results revealed four QTLs associated with daidzein: 

Satt538, Satt181, Satt201, and Satt245. The first and second markers were located on 

chromosomes 8 and 12 while the last two were on chromosome 7; these markers accounted for 

4.2 to 17.6% of the phenotypic variation. Four QTLs were found for genistein content: Satt289 

on chromosome 6, Satt181 on LG 12, and Satt201 and Satt245 on chromosome 7.These markers 

explained between 5.2 and 31.4% of the phenotypic variation. Five QTLs were identified to be 

associated with glycitein content: Satt129 on LG1, Satt547 on LG 16, Satt196 on chromosome 9, 

and Satt521 on LG 7. These markers accounted for 4.2 to 9.3% of phenotypic variation. 

Additionally, four QTLs were found to be associated with total isoflavone content and were 

located close to the markers Satt289 on chromosome 6, Satt181 on chromosome 12, and 

Satt201and Satt245 on chromosome 7 and explained between 3.9 and 25.5% of the phenotypic 

variation. 

In a different study, Li et al. (2010) developed an F5-derived F6 RILs population with 

144 individuals from the cross OAC Bayfield x Hefeng 25. The first parent is a soybean cultivar 

which is well known for having high vitamin E content while Hefeng 25 has a low content.  The 
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genetic linkage map was constructed with 107 polymorphic SSR markers. Results showed four 

QTLs associated with α-tocopherol content; QαB2_1 (Sat_177, LG14), QαC2_1 (Satt376, LG 

6 ), QαD1b_1 (Satt266, LG 2), and QαI_1 (Satt440, LG20). These markers explained between 

4.3 and 16.7% of the phenotypic variation. Eight QTLs were reported to be associated with γ-

tocopherol, QγC1_1 (Satt 565, LG 4), QγC2_1 (Satt286, LG 6), QγG_1 (Satt199, LG 18), 

QγD1b-1 (Satt266, LG 2), and QγO-1 (Satt576, LG 10), and accounted for 2.8 to 13.0% of the 

phenotypic variation. Four QTLs were found to be associated with δ-tocopherol content, 

QδA2_1 (Sat_383, LG 8), QδD1a_1 (Satt179, LG 1), QδF_1 (Sat_262, LG 13), and QδI_1 

(Satt354, LG 20). These markers explained 4.2 to 10.2% of the phenotypic variation. 

Additionally, five QTLs were found to be associated with total vitamin E content, QTVEC2_1 

(Satt376, LG6), QTVEC2-2 (Satt286, LG6), QTVE D1b_1 (Satt172, LG2), QTVEN_1 

(Sat_125, LG3), and QTVEO_1 (Satt592, LG10). These markers accounted for 2.9 to 10.9% of 

the phenotypic variation. 

 

QTLs associated with main soybean seed carbohydrates 

Sucrose 

Maughan et al. (2000) used RFLP, SSR, and RAPD markers to identify and characterize 

QTLs controlling sucrose content in an interspecific F2 soybean population derived from the 

cross V71-370 x PI 407162. Seventeen markers mapping to seven chromosomes (5, 7, 8, 13, 15, 

19, and 20) were significantly associated with sucrose content. Individual markers explained 

between 6.1 and 12.4% of the total sucrose variation while combined they explained 53% of total 

phenotypic variation. The major markers accounting for most of the variation were located on 

chromosome 20 (Table 2). 
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Later, Feng et al. (2005) developed a population derived from the cross MFS-591 x Camp 

and used SSR markers to identify different sugars. They reported a QTL for sucrose on 

chromosome 18, which accounted for 12.9% of the variation in sucrose content (Table 2). 

Similarly, Kim et al. (2005; 2006b) used SSR markers to screen two populations with a common 

parent and reported six additional QTLs for sucrose content on chromosomes 2, 11, 12, 16, and 

19, that explained between 3.6 and 17.3% of the phenotypic variation (Table 2). More recently, 

Zeng et al. (2014) used SSRs and SNPs markers on a population derived from MFS-553 x PI 

243545 and identified three QTLs for sucrose on chromosomes 5, 9, and 16 that explained 46, 

10, and 8% of phenotypic variation, respectively (Table 2). 

Stachyose 

Sebastian et al. (2000) produced soybean germplasm with low raffinose and stachyose 

content by using three different approaches. The first approach was to conduct germplasm 

surveys which required the screening of soybean germplasm collections, the second approach 

included induction of mutations conferring the desired traits, and the third approach consisted of 

recombination of the major genes obtained through the two previous approaches. The line LR28 

was identified in germplasm collection for having low raffinose and stachyose content. Sebastian 

et al. (2000) developed F2 populations derived from crosses between four elite lines and LR28. 

The segregation ratio for the four populations fit the genetic model of a single recessive gene, 

which was then designated as stc1a. 

In the same study, Sebastian et al. (2000) performed an allelism test between LR28 and 

the low raffinose and stachyose line LR484, developed by mutagenesis. Results indicated the 

existence of a single recessive gene stc1b in LR484, which conferred low raffinose saccharide 

content and was allelic to stc1a in LR28. 
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Furthermore, Sebastian et al. (2000) evaluated the raffinose saccharide content of line 

LR33 and compared it with wild-type soybeans. The initial tests showed very little differences; 

however, after further research, LR33 appeared to be segregating for a mutation that eliminated a 

high percentage of the raffinose saccharide content. This new mutation, called mips, was 

obtained by chemical mutagenesis. In those soybean lines with the mips genotype, the stachyose 

level was reduced to 5 μmol g-1 of seed dry weight and raffinose was reduced to 10 μmol g-1, as 

compared with 75 μmol g-1 of stachyose, and 20 μmol g-1 of raffinose in conventional Mips lines. 

The combination of the mips gene and stc1x genes had additive effects which resulted in a 

dramatic reduction of raffinose and stachyose content. 

Feng et al. (2005) reported the existence of one QTL for stachyose on chromosome 10 

that explained 18.8% of the phenotypic variation observed. Additionally, Skoneczka et al. (2009) 

developed populations from PI 87013 x PI200508 and PI 243545 x PI200508 and reported a 

QTL for stachyose on chromosome 6 of PI200508 that explained up to 94% of the phenotypic 

variance. Further study of the genomic region suggested that the low stachyose content in 

PI200508 was due to a 3 bp deletion in the galactosyltransferase gene. This mutation reduces the 

activity of the enzyme with the same name, which is also involved in the stachyose synthesis 

pathway. 

Furthermore, Maupin et al. (2011) reported that the SSR marker Satt453 on chromosome 

11 had 87% selection efficiency in a marker-assisted selection of low stachyose lines (Table 3). 

Additionally, Jaureguy (2009) identified three SSR markers on chromosome 10 which were 

linked to stachyose content. He also reported a QTL for this trait flanked between Satt262 and 

Sat_282 that explained 48% of the stachyose variation observed (Table 3). More recently, Zeng 

et al. (2012) used SSR and SNP markers on a population derived from the cross Osage x V99-
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5089 and identified two QTLs for stachyose on chromosomes 10 and 11, which explained 11 and 

81% of the phenotypic variation, respectively. These QTLs were stable across environments 

(Table 3).  

There have been a few studies that aimed to identify the possible correlations between 

sucrose and stachyose and between these carbohydrates and other soybean traits. Results 

indicated that sucrose content is positively associated with yield (Cicek et al., 2006); however, 

no relationship could be established between this last trait and stachyose content (Cicek et al., 

2006: Neus et al., 2005). Additionally, a negative correlation between sucrose and stachyose 

content has been reported (Neus et al., 2005; Hymowitz et al., 1972).   

The previously described trait associations seem to indicate that the selection of soybean 

lines with high sucrose contents could also lead to a concurrent increase in oil content. However, 

stachyose and protein seed contents may be diminished by these breeding efforts. 

 

Research Justification and Objectives 

The soyfoods industry has grown in the last few decades due to the increased demand for 

these products, resulting from public awareness about their nutritional and health benefits. High 

sucrose content is a desirable trait because it affects the quality and taste of soyfoods. However, 

low stachyose content is desired since its intake causes flatulence and diarrhea in monogastric 

animals. For these reasons, the development of food-grade soybean lines with modified sugar 

profiles is essential in order to satisfy market demands. 

The development of QTL and molecular markers has speeded up the selection process in 

breeding for certain traits. However, few QTLs and markers have been identified for sucrose and 

stachyose content. Additionally, several of these markers have proven irreproducible. This 
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certainly becomes an obstacle when they need to be used to screen populations with different 

genetic backgrounds.  

The overall objective of this research is to investigate the genes/QTLs associated with 

high-sucrose and low-stachyose content in soybean seed. To address this objective, this research 

will be divided into three areas of study. The objective of the first area of study is to perform an 

allelism test in order to confirm the genotype segregation model in a soybean population derived 

from a low-by-low-stachyose cross, which previously showed the existence of two different 

recessive genes controlling the low-stachyose content in soybean seed. The second objective is to 

identify and/or confirm QTLs/genes for stachyose content. Lastly, the third objective is to 

identify and/or confirm QTLs/genes for sucrose content. 

 

Implications 

 The two main possible benefits/products of this research are: (1) new reproducible 

breeding tools that allow the rapid selection of soybean lines with desired sugar profile and (2) 

confirmed genetic sources of high-sucrose and low-stachyose content that can be used in 

breeding food-grade soybeans for specialty markets. 
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Table 1. Soybean Linkage Groups. 
 

Chr. † LG‡ cM ♯ 

1 D1a 98.41 

2 D1b 140.63 

3 N 99.51 

4 C1 112.32 

5 A1 86.75 

6 C2 136.51 

7 M 135.15 

8 A2 146.67 

9 K 99.60 

10 O 132.89 

11 B1 124.24 

12 H 120.50 

13 F 120.03 

14 B2 108.18 

15 E 99.88 

16 J 92.27 

17 D2 119.19 

18 G 105.00 

19 L 101.14 
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Table 1. Soybean Linkage Groups (Cont.). 
 

     Chr. †  LG‡ cM ♯ 

    20 I 112.77 

                                                † Chromosome. 
                                                ‡ Linkage group. 
                                                ♯ Chromosome length in centimorgans. 
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Table 2. Molecular markers reportedly associated with soybean seed sucrose content. 
 

Marker type QTL name Chr.† Marker cM‡ % V§ Parents Reference 

RFLP Sucrose 1-1 5 A487_1 8.8 8.1 PI 407162 x V71-370 Maughan et al. (2000) 

SSR Sucrose 1-9 7 GMSC51 3.1 7.3 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-2 8 A136_1 71.4 8.7 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-3 8 T153_1 50.4 7.6 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-5 13 A186_1 64.9 9.6 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-10 15 A963_1 17.1 6.9 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-6 19 A023_1 36.7 9.7 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-7 19 B164_1 35.3 9.6 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-8 19 B162_2 49.4 7.0 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-4 20 A144_1 32.4 12.4 PI 407162 x V71-370 Maughan et al. (2000) 

RFLP Sucrose 1-13 8 A486_1 53.2 8.4 PI 407162 x V71-370 Maughan et al. (2000) 

SSR Unassigned 18 Satt324 33.3 12.9 MFS-591 x Camp Feng et al. (2005) 

SSR Sucrose 2-2 2 Satt546 87.2 6.4 Keunolkong x Iksan10 Kim et al. (2005) 
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Table 2. Molecular markers reportedly associated with soybean seed sucrose content (Cont.). 
 

Marker type QTL name Chr.† Marker cM‡ % V§ Parents Reference 

SSR Sucrose 2-1 11 Satt197 46.4 3.6 Keunolkong x Iksan10 Kim et al. (2005) 

SSR Sucrose 2-3 19 Satt523 29.9 4.1 Keunolkong x Iksan10 Kim et al. (2005) 

SSR Sucrose 2-4 19 Satt278 31.2 17.3 Keunolkong x Iksan10 Kim et al. (2005) 

SSR Sucrose 3-4 12 Satt442 46.9 8.3 Shinpaldalkong x Keunolkong Kim et al. (2006) 

SSR Sucrose 3-6 16 Sct_065 32.1 8.3 Shinpaldalkong x Keunolkong Kim et al. (2006) 

SNP Suc1 5 ss245668753 125.1 46 MFS-553 x PI 243545 Zeng et al. (2014) 

SNP Suc2 9 ss246796276 76.1 10 MFS-553 x PI 243545 Zeng et al. (2014) 

SNP Suc3 16 ss249186914 277.3 8 MFS-553 x PI 243545 Zeng et al. (2014) 

 

       † Chromosome. 
       ‡ QTL position in centimorgans. 
       § Percentage of phenotypic variation explained by the marker. 
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Table 3.Molecular markers reportedly associated with soybean seed stachyose content. 
 

Marker 
type 

QTL name Chr.† Marker cM‡ % V§ Parents Reference 

SSR Unassigned 10 Satt347 42.3 18.8 MFS-591 x Camp  Feng et al. (2005) 

SSR Unassigned 10 Sat_282 59.4 48.0 MFL-552 x R95-1705 Jaureguy et al. (2009) 

SSR Unassigned 10 Satt173 53.4 37.0 MFL-552 x R95-1705 Jaureguy et al. (2009) 

SSR Unassigned 10 Satt262 54.1 40.0 MFL-552 x R95-1705 Jaureguy et al. (2009) 

SSR Unassigned 11 Satt453 108.4 28.0 V99-5089 x Essex Maupin et al. (2011) 

SNP Sta1 10 
Sat_282 –  

40.3 11.0 Osage x V99-5089 Zeng (2012) 
BARC-029531-06209¶

        

SNP Sta2 11 
BARC-013547-01157 –  

6.0 79.0 Osage x V99-5089 Zeng (2012) 
BARC-018869-03031¶ 

   † Chromosome. 
   ‡ QTL position in centimorgans. 
   § Percentage of phenotypic variation explained by the marker. 
   ¶ QTLs were located in the interval between these markers. 
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II. Identification of Quantitative Trait Loci / Genes for Sucrose Content in Soybean Seed 
 

 
Abstract 

Sucrose is the most abundant soluble carbohydrate in soybean seed. It affects the quality 

and taste of soyfoods and also increases the metabolizable energy in animal feed. Thus, breeding 

for high-sucrose soybean cultivars is driven by the demand for livestock feed and the 

development of food-grade soybeans. The objective of this study was to identify quantitative trait 

loci (QTL) for sucrose content using single nucleotide polymorphisms (SNP). An F2-derived 

mapping population was developed from the cross between a regular sucrose line (V97-3000) 

and a high-sucrose line (V99-5089). A total of 92 F2:3 lines were genotyped with 5361 SNP 

markers which covered the 20 soybean chromosomes and, from these, 1720 were polymorphic. 

Seed samples were collected at F2:3, F2:6, and F2:7 generations, and sucrose analysis was 

performed by using high performance liquid chromatography. Subsequently, linkage maps were 

constructed with JoinMap® software and composite interval mapping (CIM) was conducted to 

locate QTLs associated with sucrose content. Two QTLs for seed sucrose content were identified 

on chromosomes 6 and 10, accounting for 17 and 11% of the phenotypic variation observed for 

this trait. Their net contribution was 0.57 and 0.56% to sucrose increase, respectively. The 

sucrose QTL on chromosome 10 is located on a similar genetic region of another QTL 

previously reported, which suggests that these two QTL may be the same. The other sucrose 

QTL on chromosome 6 has not been previously reported, which indicates that this is a novel 

QTL. Molecular markers tightly linked to these QTLs could be used for marker-assisted 

selection in breeding soybean lines with high- sucrose profile. 
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Introduction 
 

Consumption of soybeans has been part of the Asian diet for more than 1000 years. 

However, soyfood consumption in the United States has only become popular in the last few 

decades. This increase in demand has largely been due to the advertised health benefits 

associated with soybean consumption (Golbitz, 1995). Soyfoods can be classified as traditional 

non-fermented products or traditional fermented products. The first category is mainly 

dominated by tofu (soybean curd), soymilk (soybeans soaked, finely ground, and strained), and 

edamame (vegetable soybeans); while the second category include products such as natto 

(fermented whole soybean), miso (fermented soup-base paste), and tempeh (made of whole 

cooked soybeans) among others (Cui et al., 2004). 

In general, soybean seed is comprised of 40% protein, 35% carbohydrates, 20% oil, and 

5% ash on a dry-weight basis (Liu, 1997). Soluble carbohydrates account for up to 47% of the 

total carbohydrate content (Hymowitz and Collins, 1974). Main soluble sugars are, in order of 

abundance, sucrose, stachyose, and raffinose; the concentrations of these sugars range between 

2.5 and 8.2%, 1.4 and 4.1%, and 0.1 and 0.9%, respectively (Hymowitz et al., 1972). Glucose 

and fructose are considered minor sugars because they account for less than 1% (Hymowitz and 

Collins, 1974; Liu, 1997). Among the soluble sugars, sucrose is important in breeding for food-

grade soybean, because it influences the sweetness of the products (Rackis, 1975).  

Even though genetic variability has been reported for sucrose content in soybean 

germplasm (Hymowitz et al., 1972; Hou et al., 2009), its content is also affected by possible 

interrelationships with other seed quality traits. Thus, Wilcox and Shibles (2001) and Jaureguy 

(2009) proposed that seed protein and sucrose contents are negatively correlated, which increases 

the challenge of developing soybean breeding lines with high contents of both protein and 
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sucrose. Additionally, a negative correlation between sucrose and stachyose content has been 

reported (Hymowitz et al., 1972; Hitz et al., 2002; Florez-Palacios, 2009; Skoneczka et al., 

2009). Although food-grade soybeans are required to have high sucrose content and low-

oligosaccharide content, specific sugar profiles are needed based on the soy-based product that is 

being manufactured. For instance, high sucrose content is desired for both tofu and edamame 

production, whereas low-sucrose and high-stachyose contents are required for natto fermentation 

(Taira et al., 1990). Moreover, Taira et al. (1990) reported a negative association between 

sucrose content and the texture of tofu. 

Furthermore, accumulation of soluble sugars increases with seed maturation.  However, it 

has been reported that glucose, fructose, and sucrose contents decreased during the initial stages 

of seed formation. Subsequent to that, their concentrations remained unchanged for about three 

weeks until the seed began to mature, and then these sugars began to accumulate (Min 2008; 

Obendorf et al, 2009; Saldivar, 2011).  

Measurement of sucrose content is a cumbersome task; apart from being costly, it is very 

labor intensive. For this reason, breeding programs aiming to develop lines with modified 

sucrose composition are focused on identifying molecular markers associated to this trait. 

Studies on inheritance of sucrose have revealed its polygenic nature which typical from a 

quantitative trait (Maughan et al., 2000; Kim et al., 2006; Zeng et al., 2014). Maughan et al. 

(2000) developed a breeding population derived from crossing the high sucrose content, large-

seeded breeding line, V71-370, with the low sucrose content, small-seeded G. soja plant 

introduction, PI407162. The RLFP, RAPD, and SSR markers were used to identify and 

characterize QTLs controlling sucrose. Maughan et al. (2000) identified seven QTLs on 

chromosomes 5, 8, 20, 13, 19, 7, and 15 associated with the trait. The seven QTLs combined  
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explained 53% of total variation observed. 

Feng et al. (2005) used SSR markers to identify QTLs associated with different soluble 

carbohydrates in a breeding population derived from the cross between MFS-591 (high sugar 

content) and the cultivar ‘Camp’ (low sugar content). As a result, one QTL for sucrose on 

chromosome 18 was reported, and it accounted for 12.9% of the variation in sucrose contents. 

Additionally, Kim et al. (2005) studied a population derived from crossing the cultivars 

‘Keunolkong’ (early maturation, large-seeded) x ‘Iksan10’ (late maturation, small-seeded) and 

identified four other QTLs associated with sucrose content on chromosomes 11, 2, and two 

regions of chromosome 19. All four QTLs explained 31.4% of the phenotypic variation. A year 

later, Kim et al. (2006) developed a breeding population from the cross ‘Keunolkong’ x 

‘Shinpaldalkong’, and reported two additional QTLs on chromosomes 12 and 16. Each of these 

QTL accounted for 8.3% of the phenotypic variation for sucrose.  

Furthermore, Mozzoni (2009) reported two markers on chromosomes 5 and 8 which 

increased the sucrose content by 0.3 percent in a breeding population derived from crossing the 

soybean cultivar ‘Ozark’ with the breeding line ‘V99-5089’. Additionally, Skoneczka et al. 

(2009) obtained two populations derived from the crosses PI87013 x PI200508 and PI243545 x 

PI200508, and identified a molecular marker on chromosome 6 that explained 76% of the 

phenotypic variation in sucrose content. More recently, Zeng et al. (2014) developed a 

population from the cross ‘MFS-553’ x ‘PI 243545’ and reported a major sucrose QTL on 

chromosome 5 which explained 46% of the phenotypic variation and two minor QTLs on 

chromosomes 9 and 16 that accounted for 10 and 8% of the trait variation, respectively. 

The existence of a number of QTLs / genes controlling sucrose is expected due to the 

nature of the trait. As with any other quantitative character, sucrose is affected by several genes 
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with small additive effects, and several markers for sucrose content have been reported 

(Maughan et al., 2000; Feng et al., 2005; Kim et al., 2005; Kim et al., 2006; Jaureguy, 2009; 

Mozzoni, 2009; Skoneczka et al., 2009; Zeng et al., 2014). However, results from molecular 

studies are, in most cases, unrepeatable since the QTLs cannot be confirmed across populations 

with different genetic backgrounds and grown under different environmental conditions. This 

study seeks to find common markers that lead to their universal use, unique markers specific for 

this trait, and new markers that are different from the ones previously reported. Results of this 

research will provide an approach in looking for molecular markers linked to the sucrose 

variation. 

 

Materials and methods 

Population development and field experiment 

An F2 soybean population segregating for sucrose content was used in this study and both 

parental lines were developed at Virginia Polytechnic Institute. The regular sucrose (~5.0 %) 

breeding line, V97-3000, was crossed to the high sucrose (~7.7 %) breeding line, V99-5089, in 

summer of 2007, at the Arkansas Agricultural Research and Extension Center (AAREC) in 

Fayetteville, AR. The F1 plants were grown in Fayetteville during summer of 2008, and 

morphological markers (leaf shape and seed size) were used to differentiate true hybrids from 

selfs and outcrosses. For instance, V97-3000 is a small-seeded line (9 g 100 seed-1) with a 

narrow leaf shape, whereas V99-5089 is a large-seeded line (20 g 100 seed-1) with a broad leaf 

shape. F1 plants were then bulked and harvested. 

The F2 population was grown in Fayetteville in 2009, in 3-m rows with 150 seed per row. 

Soybeans were planted with 1-m rows. Plots were irrigated by furrow irrigation and managed 
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according to the standard cultural practices for soybean production in Arkansas (Tacker and 

Voires, 1998). A total of 150 random F2 plants were tagged and identified with a number. At the 

end of the season, these tagged plants were harvested individually to form the mapping 

population. A sample containing 100 seed was sent to a winter nursery for generation 

advancement in 2009. The remnant of the seed from each F2:3line was used for carbohydrate 

analysis. 

 The winter nursery is located near Upala city in the northwestern part of Costa Rica at 52 

meters above sea level (Mongabay, 2014). There, each F2:3 line was grown in a 3-m row with 

0.76-m row spacing. A 3-m row spacing of the parental genotypes was planted next to the 

segregating population. Soil was cultivated before planting and plots were fully irrigated and 

managed during the growing season using standard cultural practices. After two generation 

advancements, F2:5 seed was brought back to Fayetteville but, unfortunately, the seed quantity 

was not enough to grow a test with two replications in two locations. For this reason, it was 

decided to do a seed increase in Fayetteville during the growing season in 2010 and then to 

establish the test the following year.  

 In summer of 2011, F2:6 plants were grown in a randomized complete block design 

(RBD) with two replications in two locations. Locations were Fayetteville and Marianna, AR. 

The soil in Fayetteville is classified as Captina silt loam soil (Fine-silty, siliceous, active, mesic 

Typic Fragiudults) (Soil Survey Staff, 2013), with very deep, moderately well drained soils, 

made in a thin mantle of silty material (Soil Series, 2006). The soil in Marianna is classified as a 

Calloway silt loam soil (Fine-silty, mixed, active, thermic Aquic Fraglossudalfs) (Soil Survey 

Staff, 2013), and is described as very deep, somewhat poorly drained soil that developed in thick 

loess or water reworked loess (Soil Series, 2002). Each soybean plot consisted of two 3-m rows, 
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each with 150 seed and a 1-m row spacing. Both locations were fully irrigated by furrow 

irrigation and managed based on the standard cultural practices for soybean production in 

Arkansas (Tacker and Voires, 1998). The youngest fully developed trifoliate of each plant was 

sampled, and samples belonging to the same row were bulked for DNA extraction. In the fall of 

2010, F2:6 seed were harvested, a 10-g sample of each plot was used for carbohydrate analysis 

and the remnant of the seed was saved to be planted the next season. 

Genotypic data 

Genomic DNA extraction. After collection, leaf tissue samples were stored in the freezer 

at -80 °C. Subsequently, they were ground with liquid N to a fine powder by using a mortar and 

a pestle. DNA was extracted using the cetyltrimethylammonium bromide (CTAB) buffer method 

(Kisha et al., 1997) in which, a buffer containing 5M NaCl, 200mM Tris pH 8.0, 4% (w/v) 

CTAB, 0.5 mM EDTA, and 6.4 ml β-mercaptoethanol is added to the samples, followed by 

chloroform:isoamyl alcohol (24:1). After incubation for 60 min at 65°C with occasional gentle 

mixing, DNA was precipitated, washed with 95% ethanol, and subsequently dissolved in 0.1 x 

TE buffer. Concentrations were calculated by measuring the absorbance at 260 nm using a 

BioTek Power Wave XS Microplate Spectrophotometer (BioTek, Winooski, VT). DNA was 

stored in the freezer at -80°C. 

Single nucleotide polymorphism (SNP) genotyping. For genetic map construction, two 

replications of each parental line and 92 F2:7 DNA samples were sent to the Research 

Technology Support Facility (RTSF) Genomics Core at Michigan State University, East 

Lansing, MI. There they were genotyped with 5361 SNP markers (dbSNP-NCBI, 2012) using 

the Illumina Infinium® Genotyping HD BeadChip (652k SNPs) on Illumina iScan (Illumina, San 

Diego, CA). SNP analysis was performed on 4-µL samples containing a concentration between 
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50 and 100 ng/µL of DNA. Intensities of the fluorescence were distinguished using the Illumina 

iScan TM Reader, and alleles for each SNP locus were named using Illumina’s Bead Studio TM 

software (Illumina, San Diego, CA, v3.2.23). For each SNP marker, the genotype data represent 

three possible genotypes AA (homozygote), AB (heterozygote), and BB (homozygote) (Akond 

et al., 2013). 

Phenotypic data 

Soluble carbohydrate analysis. Sugar extraction followed the protocol described by Hou 

et al. (2009), with some modifications. Briefly, a 10-g seed sample was ground to a fine powder 

using a coffee bean grinder (Krups®, Shelton, CT). Then, the powder was sifted through a 100-

μm stainless steel testing sieve (VWR®, West Chester, PA) in order to obtain a sample with 

uniform particle size. Afterwards, a 0.15-g sample was weighed, mixed with 1.5 mL of 

deionized-distilled water (ddH2O), and transferred into a 2-mL centrifuge tube. Tube was 

vortexed, shaken horizontally for 20 min at 200 rpm and, centrifuged at 14000 rpm for 10 min. A 

500 µL aliquot from the supernatant was placed in a new 2-mL centrifuge tube and 700 µL of 

acetonitrile (99.9% HPLC grade) (Thermo Fisher Scientific, Inc.) was added. The solution was 

mixed by inversion and incubated at room temperature for 30 min. Consequently, the tube was 

centrifuged at 14000 rpm for 10 min and 70 µL of the extract was pushed through a 25 mm 

Easy-Pressure syringe filter holder (VWR®, West Chester, PA) containing a 0.2 µm filter paper 

disc (Pall Lifesciences, East Hills, NY). Then, vials containing a 24-μL aliquot of each sample 

extract diluted in 576 μL of distilled water were used for carbohydrate determination in a HPLC. 

The anion-exchange HPLC system (Dionex DX500 HPAEC-PAD) was composed of a 

GS50 gradient pump, an ED40 pulsed amperometric electrochemical detector, an LC50 

chromatographic oven, an AS40 automated sampler with a 25-μL injection loop, and a 
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Chromeleon Chromatography Management Data System. The mobile phase consisted of a 90 

mM NaOH solvent (VWR®, West Chester, PA) at constant flow rate of 1 mL min-1, prepared by 

diluting carbonate-free HPLC grade 50% (w/w) stock solution in distilled water, filtered with a 

0.45-μm membrane, and degassed with compressed nitrogen gas for 30 min before vials were 

loaded into the auto sampler, as described by Hou et al. (2009). Soluble carbohydrates were 

separated by an analytical CarboPac PA-10 pellicular anion-exchange resin column (4 x 250 

mm) coupled to a CarboPac PA10 guard column (4 x 50 mm) and preceded by AminoTrap 

column (3 x 30 mm) (Dionex, Sunnyvale, CA). Sugar content was determined from regression 

curves fitted from a set of standards for sucrose (Sigma-Aldrich, St. Louis, MO) at different 

concentrations (10, 20, 40, 60, and 80 µg µL-1). Carbohydrate data then converted to milligrams 

of sugar per gram of seed (mg g-1) on dry weight basis. 

Statistical analysis 

The Shapiro-Wilk (w) normality test from JMP 10.0 (SAS Institute, Cary, NC) was 

conducted on the sucrose distribution data of the population at F2:3, F2:6, and F2:7 generations. 

Broad sense heritability (H2) for sucrose was determined as reported by Nyquist (1991), using 

the equation: 

H2 = σ2
g / [ σ

2
g + (σ2

gxe  / e) + (σ2 / re)]  [1] 

Where, σ2
g is the total genetic variance, σ2

gxe is the genotype by environment interaction, σ2 is the 

error variance, r is the number of replications, and e is the number of environments. 

Associations between molecular markers and sucrose data were analyzed by single factor 

analysis of variance (ANOVA) at the 0.05 significant level with the PROC GLM procedure in 

SAS 12.3 (SAS Institute, 2013). The software JoinMap® 4.1 (Van Ooijen, 2006) was used to 

construct the linkage maps, and a minimum logarithm of odds (LOD) for linkage group 
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construction was set to 3.0. A Haldane mapping function (Haldane, 1919) was used to conduct 

regression mapping algorithm of each chromosome or linkage group. Subsequently, the software 

Windows QTL Cartographer 2.5 (Wang et al., 2012) and Qgene 4.0 (Joehanes et al., 2008) were 

used to combine marker positions with phenotypic data, and thus determine the location of the 

QTL on the linkage group. These programs were also used to perform composite interval 

mapping (CIM) and multiple interval mapping (MIM) analyses, in order to quantify additive and 

dominance effects for significant QTL and optimum position and interaction of the QTL, 

respectively. The empirical significance threshold for CIM was determined by one thousand 

permutations, with a walk speed of 1cM, and a significance level of α = 0.05 (Zhang et al., 

2008). MIM was performed based on the model c(n) = ln(n) with a walk speed of 1 cM. 

MapChart 2.2 (Voorrips, 2002) was used to create the LOD plots based on the data from 

JoinMap® 4.0 and Windows QTL Cartographer 2.5. 

 
 
Results  

Phenotypic data 

The Shapiro-Wilk test showed that the seed sucrose content in the mapping population 

derived from V97-3000 x V99-5089 was normally distributed in three generations across all 

environments studied (Table 1a and Fig. 1). V99-5089 had 2.7 - 3.1% higher sucrose content 

than V97-3000, as expected, in all environments (location - year) studied (Table 1b and Fig. 1). 

Results from a t-test was conducted to compare the mean sucrose content in V99-5089 and V97-

3000, and showed that V99-5089 (mean = 7.64%, SD = 0.74) had significantly higher sucrose 

content that V97-3000 (mean = 4.92%, SD = 1.03); t (6) = 11.44, P < .0001. Some of the lines in 

the mapping populations had sucrose content higher than the high sucrose parent and lower than 
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the low sucrose parent, indicating transgressive segregation. The normal distribution of the seed 

sucrose content and the transgressive segregants in the mapping population confirmed that 

sucrose is a quantitative trait controlled by multiple genes / QTLs. 

ANOVA was conducted on 129 F2:3 lines from the cross V97-3000 x V99-5089 and the 

parents, and means were separated by Least Significant Difference (LSD) at P < 0.05 (Table 2). 

The ANOVA model for seed sucrose was significant with R2 value of 0.98, indicating that the 

model chosen for the experiment design and data analysis for this study was appropriate and 

adequate. Genotype, location, and the genotype x location interaction all were significant sources 

of variation for sucrose content. However, genotype accounted for the largest proportion of 

sucrose variation, while the effects of location and genotype x location were relatively small. 

Sucrose data for the individual lines were consistent among replications and locations, as 

indicated by non-significant replication effect in the ANOVA (Table 2) and by the similar 

ranking of the lines tested (data not shown). Based on the variance components for sucrose 

variation, seed sucrose was a highly heritable trait (H2 = 0.79). 

QTL mapping in F2-derived populations by SNP markers 

 A total of 5361 random SNP markers covering the 20 soybean chromosomes were used 

to genotype F2:6 lines and 1720 SNP loci (32%) were polymorphic (Table 3). These markers were 

mapped on 20 chromosomes, representing 663 unique SNP loci in the mapping population 

(Table 3 and Fig. 2 a-e.). The linkage map spanned 2435.2 cM with an average distance coverage 

of 3.8 cM per marker. 

 Results from the single marker analysis showed 10 significant SNP markers on four 

chromosomes (4, 5, 6, and 10) associated with seed sucrose content (Table 4). Lines with the 

homozygous genotype carrying the V99-5089 allele consistently had higher sucrose content 
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compared with those carrying the V97-3000 allele. On average, the V99-5089 allele accounted 

for an increase of sucrose content between 0.22 and 0.77%. The sucrose variation contributed by 

the SNP alleles in those four chromosome regions ranged from 2 to 17%. However, the SNP 

alleles on chromosomes 6 and 10 appeared to have more impact on sucrose content than the ones 

on chromosomes 4 and 5 (Table 5). 

 In the composite interval mapping analysis, the empirical significance threshold was 

computed as a LOD value of 2.5 in the F2:6 mapping population in all environments studied; 

Fayetteville 2009, Fayetteville 2010, Fayetteville 2011 and Marianna 2011. Based on the average 

seed sucrose content across two locations over 3 years, a major sucrose QTL was identified on 

chromosome 6, flanked by the SNP markers ss2246102767 and ss2246107039 (Fig. 3a-c), 

tightly linked to the marker ss246109643 (Table 5 and Fig. 3a-c). This QTL was tentatively 

named Suc1. Suc1 had a LOD value of 5.8, significantly higher than the threshold, and explained 

17% of phenotypic variation for sucrose content on average (Table 5 and Fig. 3c). This QTL was 

consistently identified in four environments with a LOD value between 3.5 and 7.0 (Figs. 3a-b). 

Based on the average seed sucrose content across one location in 2 years, a minor sucrose QTL 

was mapped on chromosome 10 (Figs. 4a and 4b), located on the interval ss247300068 and 

ss247314578 (Fig. 2c), tightly linked to the marker SS247304924 (Table 5 and Figs. 4a and 4b). 

This minor sucrose QTL on chromosome 10 accounted for 11% of sucrose variation on average 

and was tentatively named as Suc2. The multiple interval mapping analysis showed the optimum 

locations of the two QTL identified. Suc1 was determined to be at 6.7 cM on chromosome 6, 

while Suc2 was located at 117.4 cM on chromosome 10.  
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Discussion 

In this study, the high sucrose parent ‘V99-5089’ consistently produced high sucrose, 

while the low parent ‘V97-3000’ produced low sucrose, as expected, in all four environments 

consisting of two locations and three years (Fayetteville 2009, 2010, 2011, and Marianna 2011). 

Sucrose content of the F2-derived lines from the cross V97-3000 x V99-5089 consistently 

exhibited a normal distribution across four environments. A small proportion of the lines had 

sucrose content exceeding the range of the low and high parents. The normal distribution of 

sucrose content and the presence of transgressive segregants in the mapping population 

confirmed that sucrose is a quantitative trait controlled by multiple genes/QTLs with small effect 

from the environment.  

The average sucrose content for the parents and the F2-derived lines were higher in 

Fayetteville in 2010 than in 2011 (Tables 1a and 1b). This can probably be explained by the 

difference in the average monthly temperature during the growing season for those two years 

(Table 6). Weather data showed that Fayetteville experienced higher temperatures in 2011 than 

in 2010. Previous research indicated that high temperatures decreased sucrose content by causing 

its degradation into more simple carbohydrates (Hou et al., 2009; Zeng et al., 2014). However, 

when comparing the average seed sucrose content for the parents and the F2-derived lines for the 

two Arkansas locations (Fayetteville and Marianna) in 2011, this high-temperature-low-sucrose 

pattern was observed only for sucrose content of the parent ‘V97-3000’. Sucrose level for the 

parent ‘V99-5089’ and the F2-derived lines were slightly higher in Marianna with warmer 

temperatures (Tables 1a and 1b). This contradicting temperature-sucrose relationship agreed with 

the observation in a previous study where Ren et al. (2009) evaluated the effect of high 

temperature on seed composition and found that high temperature did not have a significant  
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effect on the content of sucrose, raffinose, and stachyose. 

 Results from the ANOVA showed significant differences among genotypes, locations, 

and genotype x location effects on sucrose content, which was expected because of the 

quantitative nature of the trait (Table 2). Therefore, it is important to evaluate genotypes in 

question at multiple locations and years for the phenotypic assessment of sucrose content. 

However, genotype accounted for most of the sucrose variation observed (Table 2). Average 

sucrose data from the two locations were highly correlated and most of the genotypes in the 

population ranked similarly between the two locations (data not shown). Significant genotypic 

and environmental effects on seed sucrose content have also been previously reported by other 

authors (Geater et al., 2000; Cicek et al., 2006; Zeng et al., 2014). The estimated heritability for 

sucrose content in this study (0.79) was similar to the values previously reported by others 

(Maughan et al., 2000; Kim et al., 2005; and Zeng et al., 2014), confirming that sucrose is a 

highly heritable trait. 

In this study, the F2:7 lines and SNP markers which were randomly selected from the 

National Center for Biotechnology Information (NCBI) were used to create a unique genetic map 

for seed sucrose content. It is considered ‘unique’ because a specific set of SNP markers was 

used to developed the DNA chip for the genotyping of the F2:7 lines, which at this time, has not 

been reported in the public soybean linkage map (D. Wang, personal communication). For this 

reason, the comparison of the genetic positions of those SNP markers in relation to the public 

map is not practical or relevant at this time. 

Single marker analysis showed three significant SNP markers (ss246109643, 

ss246056190, and ss246037023) in an approximately 18.5 cM region on chromosome 6 that are 

associated with sucrose content with 0.31 to 0.57% net contribution to sucrose (Table 5). 
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Composite interval mapping analysis with individual and combined data from four environments 

further confirmed the existence of a major sucrose QTL linked to ss246109643 with additional 

two flanking markers nearby ss246107039 and ss246102767. These three SNP markers are in a 

2.2 cM region on chromosome 6 (Fig. 3a-c). However, ss246109643 at 6.7 cM accounted for 

17% of the sucrose variation, while ss246037023 at 25.2 cM accounted for 12% of the sucrose 

variation (Table 5). It is possible that there are two QTLs in this region as a minor non-

significant peak was obtained in the composite interval mapping analysis (Fig. 3a-c). This region 

deserves more attention in future research of sucrose QTL discovery and confirmation. Similarly, 

four significant SNP markers with 0.40 to 0.56% sucrose content contribution were identified on 

a 39.3 cM region on chromosome 10; ss247292289, ss247300068, ss247304924, and 

ss247330645 (Table 4). The composite interval mapping analysis showed a sucrose QTL linked 

to ss247304924 and near ss247300068 in a 5.9 cM region on chromosome 10. Evidently this 

chromosome region is rather large and the SNP markers identified accounted for relatively small 

percent of variation in sucrose as compared to the ones on chromosome 6. Further study is 

needed to confirm the minor sucrose QTL in this region and possibly find additional sucrose 

QTL in this region. 

Although the single marker analysis indicated a large chromosome region on 

chromosome 6 and another large region on chromosome 10 that are associated with sucrose 

content, the composite interval mapping analysis clearly showed two QTLs, a major QTL on 

chromosome 6 and a minor QTL on chromosome 10. The major sucrose QTL is linked to 

ss246109643 and located at 48,100,279 bp on chromosome 6. The minor sucrose QTL is linked 

to ss247304924 and located at 45,826,662 bp on chromosome 10. 

  Although results from the composite interval analysis did not show QTLs on  
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chromosomes 4 or 5, the single marker analysis suggested a region on chromosome 4 and 

another region on chromosome 5 that are highly associated with sucrose content. SNP markers 

on chromosome 4 showed between 0.33 and 0.50% net contribution to sucrose, while a marker 

on chromosome 5 showed 0.54% net contribution to sucrose (Table 5). It is possible these two 

regions may contain QTLs for sucrose; therefore these regions deserve research attention in the 

future. While there is not a previous report of a sucrose QTL on chromosome 4, a couple of 

studies have identified markers linked to sucrose QTLs on chromosome 5 (Zeng et al., 2014; 

Maughan et al., 2000). 

  Previous research has identified 19 QTLs associated with seed sucrose content; these are 

located on 12 different soybean chromosomes. Only few sucrose QTLs have been mapped to the 

same chromosome, i.e. two QTLs were identified on chromosome 5, three QTLs on chromosome 

8, two QTLs on chromosome 16, and four QTLs on chromosome 19 (Zeng et al., 2014; Kim et 

al., 2006; Maughan et al., 2000). Although, previous research done by Maughan et al. (2000) 

showed several QTLs associated with sucrose content, their results were obtained by single 

marker analysis, which is not an adequate analysis for QTL discovery because it only suggests 

association between the trait and the marker and does not account for the interaction effect of the 

marker alleles. Moreover, Kim et al. (2006) identified sucrose QTLs using data from only one 

location which does not provide enough information about the stability of the trait. 

The QTL located on chromosome 6 that was identified in this study, is a novel sucrose 

QTL because no previous reference to this chromosomal region has been made. On the contrary, 

the other sucrose QTL identified in this study and located on chromosome 10 is in agreement 

with what was previously reported by Saghai-Maroof and Buss (2008). They indicated that 

chromosome 10 contained a major QTL for sucrose in V99-5089 close to the marker Satt453 (at 
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38,360,612 - 38,360,653 bp of Gm11 in the Williams 82 physical map). This marker is closely 

located upstream of the sucrose QTL found in my study (at 45,826,662 bp of Gm11, Williams 

82). 
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Conclusion  

Two sucrose QTLs were identified in this study. A new major sucrose QTL was located 

on chromosome 6 and linked to ss2246109643 with additional two flanking markers 

ss246107039 and ss246102767. This QTL explained 17% of the phenotypic variation for the trait 

and had an average net contribution of 0.57% to sucrose content. The physical proximity of these 

three SNP markers (2.2 cM) suggests that they all can be used for marker-assisted selection. 

Additionally, a minor sucrose QTL was identified on chromosome 10, linked to SS247304924 

and near ss247300068. This QTL accounted for 11% of the sucrose variation observed and had 

an average net contribution of 0.56% to sucrose content. Stability of these QTLs across 

environments makes them reliable tools to be used in molecular breeding for soybeans with 

improved sucrose profile. 
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Table 1a. Seed sucrose content (% dry-weight basis) of mapping populations derived from the cross V97-3000 x V99-5089 evaluated 
across two locations and over three years. 
 

Year - Location Generation No. Lines Mean SD† Range 
 

Prob <  W‡ 
 

2009 Fayetteville F2:3 129 5.84 1.66 3.27 - 9.47 
 

0.975 
 

2010 Fayetteville F2:6 92 5.81 1.93 2.71 - 9.76 
 

0.983 
 

2011 Fayetteville F2:7 92 5.55 1.64 3.20 - 8.91 
 

0.981 
 

2011 Marianna F2:7 92 5.64 1.72 3.03 - 9.18 
 

0.979 
 

  † Standard deviation. 
  ‡ Shapiro-Wilk normality test. 
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Table 1b. Seed sucrose content (% dry-weight basis) of parents V97-3000 and V99-5089 evaluated across two locations and over 
three years. 
 

Year-Location 

V97-3000 
 

V99-5089 
 

Mean SD† Mean 
 

SD† 
 

 
2009 Fayetteville 

 
4.69 

 
1.16 

 
7.40 

 
1.05 

 
2010 Fayetteville 

 
5.12 

 
1.43 

 
8.26 

 
0.84 

 
2011 Fayetteville 

 
5.07 

 
0.90 

 
7.32 

 
0.72 

2011 Marianna 4.82 0.64 7.57 
 

0.36 
 

Overall‡ 4.92 1.03 7.64 0.74 

           † Standard deviation. 
           ‡ Sucrose mean and standard deviation across four environments. 
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Table 2. Analysis of variance for seed sucrose content of 92 F2:7 population derived from the cross V97-3000 x V99-5089 grown in 
Fayetteville and Marianna in 2011. 
 

Source 
Degree of 
freedom† 

Mean 
square 

Variance 
components‡ 

Percent 
Variation§ 

P-value R2 

 
Model 

 
185 

 
3.368 

 
-  

 
-  

 
<0.0001 

 
0.98 

 
Location 

 
1 

 
0.893 

 
0.004 

 
0.260 

 
<0.0001  

 
Replication (Location) 

 
2 

 
0.010 

 
<0.001 

 
0.001 

 
0.5075  

 
Genotype 

 
91 

 
6.765 

 
1.673 

 
97.198 

 
<0.0001  

 
Genotype x Location 

 
91 

 
0.073 

 
0.029 

 
1.707 

 
<0.0001  

 
Error 

 
182 

 
0.014 

 
1.721 

 
0.835 

    

      † Analysis  of  variance, using  PROC GLM  in  SAS  12.3, of  92  F2:7 lines  grown  in  Fayetteville and Marianna, AR in 2011. 
       ‡ Estimate of variance components, as calculated using PROC VARCOMP in SAS 9.3. 
       § Percent of variation explained by each term in the ANOVA model. 
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Table 3. Summary of SNP markers used for the screening of an F2-derived population from the 
cross V97-3000 x V99-5089. 
 

Chr.† LG‡ 
Length 

(cM)§ 
No. SNP 
mapped

No. SNP 
locus located

Average distance (cM) 
between SNP loci 

    
1 D1a  29.8 23 15 2.0 

2 D1b  167.0 49 26 6.4 

3 N  23.8 99 23 1.0 

4 C1  136.4 77 34 4.0 

5 A1  82.4 56 14 5.9 

6 C2  152.5 100 49 3.1 

7 M  149.1 51 27 5.5 

8 A2  135.6 90 51 2.6 

9 K  23.1 90 14 1.6 

10 O  139.5 59 32 4.4 

11 B1  134.0 141 50 2.7 

12 H  150.4 37 27 5.6 

13 F  110.6 121 43 2.6 

14 B2  48.0 33 16 3.0 

15 E  127.1 157 62 2.1 

16 J  118.2 90 34 3.5 

 

 



69 
 

Table 3. Summary of SNP markers used for the screening of an F2-derived population from the 
cross V97-3000 x V99-5089 (Cont.). 
 

Chr.† LG‡ 
Length 

(cM)§ 
No. SNP 
mapped

No. SNP 
locus located

Average distance (cM) 
between SNP loci 

    
17 D2  164.9 124 44 3.7 

18 G 133.9 68 44 3 

19 L 309.6 158 40 7.7 

20 I 99.3 97 18 5.5 

Average 121.8 86 33 3.8 

Total 
 

2435.2 1720 663

            
 

†Chromosome.  
‡Linkage group. 
§Chromosome length in centimorgans. 
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Table 4. Single marker analysis of variance for seed sucrose content in 92 F2-derived lines from 
the cross V97-3000 x V99-5089 evaluated in Fayetteville (Fay) in 2009 and 2010, and in 
Fayetteville and Marianna (Mar) in 2011. 
 

Chr.† 
SNP 

Marker 
Position 

(cM) 

P-value  

2009 2010 2011 
Combined‡

Fay  Fay  Fay  Mar  

4 ss245330356 61.3 0.0818 0.0229 0.0482 0.0334 0.0382 

4 ss245333397 62.4 0.0755 0.0234 0.0457 0.0327 0.0368 

5 ss245693942 14.9 0.0033 0.0189 0.0123 0.0067 0.0077 

6 ss246109643 6.7 0.0010 0.0001 0.0003 0.0001 0.0002 

6 ss246056190 22.1 0.0547 0.0202 0.0194 0.0149 0.0216 

6 ss246037023 25.2 0.0488 0.0379 0.0432 0.0297 0.0365 

10 ss247292289 98.5 0.0358 0.0440 0.0718 0.0408 0.0425 

10 ss247300068 111.5 0.0116 0.0091 0.0150 0.0156 0.0109 

10 ss247304924 117.4 0.0089 0.0021 0.0100 0.0054 0.0048 

10 ss247330645 137.8 0.0272 0.0109 0.0301 0.0212 0.0184 

       † Chromosome. 
       ‡ Pooled data from all environments studied. 
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Table 5. Mean effect of SNP marker alleles on seed sucrose content in 92 F2-derived population developed from the cross  
V97-3000 x V99-5089 grown in two locations and over three years. 
 

Chr.  SNP 
Position 

(cM) 

2009 2010 2011† Combined‡ 
R2 

P1§ P2¶ Diff.♯ P1 P2 Diff. P1 P2 Diff. P1 P2 Diff. 

4 ss245330356 61.3 6.93 7.15 0.22 7.14 7.53 0.39 7.12 7.51 0.39 7.06 7.40 0.33 
 

0.04 

4 ss245333397 62.4 6.88 7.21 0.33 6.94 7.46 0.52 6.92 7.57 0.65 6.91 7.41 0.50 0.09 

5 ss245693942 14.9 6.91 7.34 0.43 6.99 7.51 0.52 6.93 7.59 0.66 6.94 7.48 0.54 0.09 

6 ss246109643 6.7 6.92 7.44 0.52 7.12 7.71 0.59 7.09 7.69 0.60 7.04 7.61 0.57 0.17 

6 ss246056190 22.1 7.03 7.80 0.77 6.15 6.40 0.25 6.44 6.87 0.43 6.54 7.02 0.48 0.06 

6 ss246037023 25.2 6.88 7.13 0.25 7.04 7.36 0.32 7.04 7.41 0.37 6.99 7.30 0.31 0.02 

10 ss247292289 98.5 7.03 7.55 0.52 6.10 6.40 0.30 6.54 6.94 0.37 6.56 6.96 0.40 0.08 

10 ss247300068 111.5 
 

7.06
 

7.58 
 

0.52 
 

6.17 
 

6.47
 

0.30 
 

6.72 
 

7.11
 

0.41 
 

6.65 
 

7.05
 

0.40 0.05 

10 ss247304924 117.4 6.88 7.26 0.38 6.99 7.58 0.59 6.91 7.63 0.72 6.93 7.49 0.56 0.11 

10 ss247330645 137.8 7.22 7.78 0.56 6.76 7.04 0.28 6.39 6.99 0.60 6.79 7.27 0.48 0.04 
 

   † Pooled data from Fayetteville and Marianna in 2011. 
   ‡ Pooled data from Fayetteville in 2009 and 2010, and Fayetteville and Marianna in 2011. 
   § Allelic effect of P1 = V97-3000. 
   ¶ Allelic effect of P2 =V99-5089. 
   ♯ Allelic difference.
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Table 6. Average monthly temperatures (°C) in Fayetteville, AR in 2010 and Fayetteville and Marianna, AR in 2011. 

Year Location 
Month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2010 Fayetteville 0.6 0.6   7.8 15.0 19.4 25.6 26.1 27.8 21.7 14.4 8.9 2.2 

2011 
Fayetteville 0.6 3.3 10.0 15.0 17.8 25.6 28.9 27.8 18.3 14.4 10.0 4.4 

Marianna 3.3 5.6 11.7 18.3 21.1 27.2 28.3 27.2 21.1 15.6 12.2 7.2 

    Information extracted from http://www.wunderground.com (accessed March, 2014).
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Fig. 1. Frequency distribution of seed sucrose content in populations derived from V97-3000 (P1) x V99-5089 (P2) evaluated in four 
environments: (a) F2:6 lines in Fayetteville, AR in 2010; (b) F2:7 lines in Fayetteville, AR in 2011; (c) F2:7 lines Marianna, AR in 2011; 
(d) Combined data of F2:7 lines in Fayetteville and Marianna, AR in 2011.
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cM      Chr. 1                   cM      Chr. 2                  cM     Chr. 3                  cM      Chr. 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2a. A genetic map constructed for chromosomes 1, 2, 3, and 4 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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  cM     Chr. 5                 cM      Chr. 6                  cM      Chr. 7                 cM     Chr. 8 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2b. A genetic map constructed for chromosomes 5, 6, 7, and 8 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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    cM    Chr.9                   cM    Chr. 10                cM    Chr. 11                 cM     Chr. 13 

 
 
 

Fig. 2c. A genetic map constructed for chromosomes 9, 10, 11, 12, and 13 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 

cM    Chr. 12 
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 cM    Chr.14                cM     Chr. 15            cM     Chr. 15 (Cont.)    cM     Chr. 16 

 
 
 

 
 
 
 

 

 

 

 
Fig. 2d. A genetic map constructed for chromosomes 14, 15, and 16 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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    cM    Chr.17             cM    Chr. 18              cM    Chr. 19             cM    Chr. 20 

 
 
 
 
 
 

 

 

 

Fig. 2e. A genetic map constructed for chromosomes 17, 18, 19, and 20 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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      Chr. 6                                                             Chr. 6 
 

           
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3a. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 
6 in 92 F2-derived lines from the cross V97-3000 x V99-5089, evaluated across locations and 
years: (1) in Fayetteville, AR in 2009; (2) in Fayetteville, AR in 2010. 
† LOD = logarithm of the odds. 

(1) (2) 

LOD† LOD 
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    Chr. 6                                                                     Chr. 6 
 
 

          
 
 
          (1)                                                                              (2) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3b. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 
6 in 92 F2-derived lines from the cross V97-3000 x V99-5089, evaluated across locations and 
years: (c) in Fayetteville, AR in 2011; (d) in Marianna, AR in 2011.  
† LOD = logarithm of the odds. 

LOD† LOD
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                                        Chr. 6 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3c. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 6 
in 92 F2-derived lines from the cross V97-3000 x V99-5089 grown in Fayetteville and Marianna 
in Arkansas in 2011 (Combined data).  
† LOD = logarithm of the odds. 

LOD†
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    Chr. 10                                                                Chr. 10 
 

         
 
 

  (1)                                                                         (2) 

 

 

 
 
 
 
 
Fig. 4a. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 
6 in 92 F2-derived lines from the cross V97-3000 x V99-5089 grown: (1) in Fayetteville, AR in 
2009 and (2) in Fayetteville, AR in 2010.  
† LOD = logarithm of the odds. 

LOD† LOD 
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                                     Chr. 10 

 
 
 
 

 

 

 
 
 
Fig. 4b. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 
6 in 92 F2-derived lines from the cross V97-3000 x V99-5089 grown in Fayetteville, AR in 2009 
and 2010 (Combined data).  
† LOD = logarithm of the odds. 

LOD†
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III. Allelism Test for Low-stachyose soybean mutants  

Abstract 

Stachyose is an undesirable oligosaccharide in soybean meal. Its consumption causes 

flatulence and abdominal discomfort in monogastric animals due to the lack of the enzyme α-(1, 

6)-galactosidase which breaks it into digestible forms. The recessive gene stac1a has been 

identified in the plant introduction PI200508, conferring low-stachyose content. Similarly, the 

breeding line V99-5089 possesses a mutation in the D-myo-inositol3-phosphate synthase 1 gene 

(MIPS1) which results in high sucrose and low stachyose content. Thus, the objective of this 

study was to investigate the genetic relationship between the recessive gene in PI200508 and the 

mutant gene in V99-5089. An F2-derived population was developed from crossing these parents 

and seeds from the parents and F2:3, F2:6, and F2:7 generations were used for sugar analysis with 

high performance liquid chromatography. Chi-square analysis was conducted to test goodness-

of-fit of the observed segregation to the expected genetic ratios. Results indicate that the low-

stachyose trait is controlled by two independent recessive genes with epistatic effect, from 

PI200508 and V99-5089. Additionally, gene dosage on stachyose content in the heterozygous 

genotypes with one or both genes was observed, as lines with double heterozygous genotype had 

lower stachyose content than those with single heterozygous genotype. However further study is 

needed to confirm this gene dosage effect. Breeding and selection of soybeans with modified-

stachyose profile should be easy, since only one gene is needed to produce low-stachyose 

content and the environment has very little impact on the trait. 
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Introduction 

The use of soybean as a functional ingredient in the food industry has grown in the 

western culture in the past decades. This phenomenon is the result of a widespread awareness on 

the nutritional value and health benefits associated with soybean consumption (Golbitz, 1995).  

Carbohydrates are the second-largest soybean seed component after protein. Soluble 

carbohydrates are important in the food industry because they have an effect on flavor and 

quality of the soy-based products (Taira, 1990). Soluble sugars constitute up to 47% of the total 

carbohydrate content (Hymowitz and Collins, 1974). Major soluble carbohydrates are sucrose 

(2.5 - 8.2% dry weight basis), stachyose (1.4 - 4.1% dry weight basis), and raffinose (0.1 - 0.9% 

dry weight basis). The minor soluble sugars, glucose, and fructose account for less than 1% each 

(Hymowitz et al., 1972). Most of the insoluble carbohydrates are primarily cell wall components 

(Liu, 1997). 

Raffinose and stachyose are considered raffinose family oligosaccharides (RFO) 

(Gitzelmann and Auricchio, 1965; Hymowitz and Collins, 1974). Their synthesis from sucrose 

and galactose is mediated by enzymes with galactosyl-transferanse function. Additionally,  

galactinol synthase is a catalyzer in the synthesis of galactinol (O-α-D-galactopyranosyl-(1→1)-

L-myo-inositol) from myo-inositol and UDP-D-Gal (Peterbauer and Richter, 2001). 

Subsequently, reversible addition of a galactosyl unit to sucrose results in synthesis of raffinose. 

Then, stachyose is synthesized by the reversible addition of another galactosyl unit to raffinose. 

These reactions are mediated by the enzymes raffinose synthase and stachyose synthase, 

respectively (Fig. 1) (Peterbauer and Richter, 2001). 

Stachyose is the most abundant raffinose saccharide and the most anti-nutritional soluble 

sugar in soybean (Cristofaro et al., 1974). Consumption of stachyose causes flatulence and 



86 
 

abdominal discomfort in non-ruminant animals (Kuriyama and Mendel, 1917; Hawton et al., 

1996), due to their lack of the α-(1,6)-galactosidase enzyme that breaks down the stachyose into 

digestible forms (Gitzelmann and Auricchio, 1965). Thus, stachyose has a negative effect on the 

feed efficiency of  soybean meal. The metabolizable energy of soybean meal is low compared its 

total energy which is due to the poor digestibility of the raffinose oligosaccharides (Parsons et 

al., 2000; Meis et al., 2003). Therefore, development of soybean lines with reduced-stachyose 

content is desired for increasing the energy metabolism rate and digestion of soybean meal. 

The plant introduction (PI) 200508 has a recessive gene, stcla, which confers high-

sucrose, low-raffinose, and low-stachyose contents (Sebastian et al., 2000). Dierking and Bilyeu 

(2008) characterized the trait as a variant allele of a raffinose synthase gene. Additionally, the 

breeding line V99-5089 has been identified as source of high-sucrose, low-stachyose, and low-

phytate contents (Saghai-Maroof and Buss, 2008). 

 Little is known about the genetic relationship between the genes conferring low-

stachyose in PI200508 and V99-5089. A preliminary study suggested the existence of 2 non-

allelic recessive genes controlling this trait (Florez-Palacios, 2009); however, more research is 

needed in order to confirm these findings. 

 

Materials and methods 

Parental materials 

Two low-stachyose sources were used as parents in this study, PI200508 and V99-5089. 

PI200508 is a plant introduction line from Japan (Germplasm Resources Information Network) 

that contains low levels of raffinose and stachyose (Sebastian and Kerr, 2000) that has purple 

flowers, broad leaves, buff cotyledons, and regular seed size (~15g 100 seeds-1) with reduced 
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stachyose content (~1 % on dry-weight basis). Virginia Tech University derived a breeding line, 

V99-5089, from a cross between V71-370 and PI 87013 (Saghai-Maroof and Buss, 2008). It has 

purple flowers, broad leaves, yellow cotyledons and large seed size (25 to 30g  100 seeds-1) with 

reduced stachyose content (<1 on dry-weight basis). 

Population development and field experiment 

A PI200508 x V99-5089 cross was made in the summer of 2007 at the Arkansas 

Agricultural Research and Extension Center in Fayetteville. Progeny were bulked and carried 

through to the F2 generation. The F2 plants were grown in a winter nursery in spring 2008. The 

winter nursery is located near Upala city in the northwestern part of Costa Rica at 52 m above 

sea level (Mongabay, 2014). There, each F2:3 line was grown in a 3-m row with 0.76-m row 

spacing. Additionally, parental genotypes were planted next to the segregating population with a 

3-m row spacing. Soil was cultivated before planting and plots were fully irrigated and managed 

during the growing season using standard cultural practices. After two generation advancements, 

F2:5 seed were brought back to Fayetteville, AR in 2009. 

In summer 2011, a total of 121 F2:6 lines were grown in randomized complete block 

design (RCBD) with two replications in each of two locations, Keiser and Fayetteville, AR. 

Replicated parental checks were also grown along with F2:6lines to account for variation within 

blocks. The PI200508 and V99-5089 lines were included two times, each a with different entry 

number, to make up a 125-entry test. 

Seed at the Arkansas Agricultural Research and Extension Center in Fayetteville were 

grown on a Captina-silt-loam soil (Fine-silty, siliceous, active, mesic Typic Fragiudults) (Soil 

Survey Staff, 2013), which is characterized as very deep, moderately to well drained, and made 

in a thin mantle of silty material (Soil Series, 2006). Whereas, seed at the Northeast Research 



88 
 

and Extension Center in Keiser, AR were grown on a Sharkey-silty-clay soil (Very-fine, 

smectitic, thermic Chromic Epiaquerts), characterized as very deep, poorly to very poorly 

drained, very slowly permeable soils that formed in clayey alluvium (Soil Series, 2006). For both 

locations, plots consisted of one 3-m single with 0.9-m row spacing. Seeding rate was 30 seeds 

per meter, and standard cultural practices were applied throughout the growing season. Similarly, 

plants were grown in a 3-m row with a 0.76-m row spacing in the winter nursery in Costa Rica. 

Seed samples were taken at F2:3, F2:6, and F2:7 generations for soluble carbohydrate analyses. 

Soluble carbohydrate extraction 

Sugar extraction followed the protocol described by Hou et al. (2009), with some 

modifications. Briefly, a sample of 10 g of whole soybean seed was ground for 20 sec, to a fine 

powder using a coffee bean grinder (Krups®, Shelton, CT). The powder was then sifted through a 

100 µm sieve (USA Standard testing sieve, opening micrometer 150 A.S.T.M. No. 100), and 

0.15 g were used for carbohydrate extraction. The powder was placed in a 2 mL centrifuge tube 

and 1.5 mL of distilled and deionized water (ddH2O) was added and the solution vortexed. 

Afterward, the tube was shaken horizontally at 200 rpm for 20 min. The solution was then 

centrifuged for 10 min at 14000 rpm. An aliquot of 500 µl was transferred into a new tube and 

700 µl of 100% acetonitrile were added to the extract. Solution was mixed by inversion, 

incubated at room temperature for 30 min, and centrifuged for 10 min at 14000 rpm. About 3 mL 

of sugar solution was filtered with a 0.2 µm membrane using a 5 mL syringe. Then, 24 µL of 

carbohydrate extract was transferred into a 1.5 mL HPLC vial containing 576 µL of ddH2O for 

high performance liquid chromatography (HPLC) analysis. 

Carbohydrate analysis 

The anion-exchange HPLC system (Dionex DX500 HPAEC-PAD) was composed of a  
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GS50 gradient pump, an ED40 pulsed amperometric electrochemical detector, an LC50 

chromatographic oven, an AS40 automated sampler with a 25-μL injection loop, and a 

Chromeleon Chromatography Management Data System. The mobile phase consisted of a 90 

mM NaOH solvent (VWR®, West Chester, PA) at constant flow rate of 1 mL min-1, which was 

prepared by diluting carbonate-free HPLC grade 50% (w/w) stock solution in distilled water, 

filtered with a 0.45-μm membrane, and degassed with compressed nitrogen gas for 30 min before 

vials were loaded into the auto sampler, as described by Hou et al. (2009). Soluble carbohydrates 

were separated by an analytical CarboPac PA-10 pellicular anion-exchange resin column (4 x 

250 mm) coupled to a CarboPac PA10 guard column (4 x 50 mm) and preceded by AminoTrap 

column (3 x 30 mm) (Dionex, Sunnyvale, CA). Sugar content was determined from regression 

curves fitted from a set of standards for sucrose (Sigma-Aldrich, St. Louis, MO) at different 

concentrations (10, 20, 40, 60, and 80 µg µL-1). Carbohydrate data then converted to milligrams 

of sugar per gram of seed (mg g-1) on dry weight basis.  

Statistical analysis 

The Shapiro-Wilk (w) statistic from JMP 10.0 (SAS Institute, Cary, NC) was used to test 

the normality of the stachyose content distribution for the F2:3, F2:6, and F2:7 lines. 

Analysis of variance for seed stachyose content was conducted using PROC GLM in 

SAS 12.3 (SAS Institute, Cary, North Carolina, USA). Variance components were estimated 

using a similar model in the VARCOMP procedure of SAS 12.3. Percent variation of each 

source in the model was calculated by dividing each variance estimate over the total variance and 

multiplying by 100. 

The criteria chosen to establish the thresholds for high- and low-stachyose values for the 

populations were the shape of distribution of the population for each environment and the 
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respective mean of the high stachyose parent (PI200508) plus/minus one standard deviation. 

Therefore, cutoff points to distinguish between low- and high-stachyose lines were: 1.23% for 

the F2:6 lines grown in Fayetteville in 2010, 1.32% for the F2:7 1ines grown in Fayetteville in 

2011, 1.26% for the F2:7 1ines grown in Keiser in 2011, and 1.28% for the combined data in 2011 

(Fig. 2).The F2:6 and F2:7 population distributions were subjected to a Chi-square test for two 

genes segregating for stachyose content, and the result from the calculated Chi-squared statistic 

was also contrasted with the expected Chi-square parameter at an alpha level of 0.05. 

 

Results 

Both parents PI200508 and V99-5089 grown in all three environments exhibited the low-

stachyose trait as expected. The stachyose content of V99-5089 was consistently lower than that 

of PI200508 (Table 1). The stachyose content of the F2-derived lines ranged from 0.07 to 4.30% 

with a mean of 1.82%. The stachyose content distribution of F2-derived lines did not follow a 

normal distribution (Figs. 2 and 3), as indicated by the Shapiro-Wilk normality test (Table 1). 

The ANOVA was conducted on 121 F2:7 lines plus the four parental checks, and means 

were separated by Least Significant Difference (LSD) at P < 0.05. There was a significant effect 

of genotype, location, and genotype x location interaction on seed stachyose content. However, 

most of the variation was accounted for by genotypes (99.03%), while the location (0.004%) and 

genotype by location interaction (0.67%) effects were almost negligible in magnitude as 

compared to the experiment error (Table 2). 

Since the stachyose content of the F2-derived lines did not follow the normal distribution 

and there were obvious genetic segregants with high stachyose content in the population, Chi-

square tests were performed to examine if the segregation pattern fitted any expected ratio based 
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on a two-independent-gene model. By using a threshold calculated based on the two low 

stachyose parents, the F2-derived lines were classified as either high or low stachyose phenotype. 

Results showed that the F2-derived lines consistently fitted a 9 high stachyose : 7 low stachyose 

ratio in all three environments, which is expected for two complementary genes (Table 3 and 

Fig. 4). 

The 9/16 of the F2-derived lines classified as high stachyose for the Chi-square test had 

stachyose contents ranging from the low stachyose parent (0.5 - 1.2%) to a normal stachyose 

level as expected for a commodity soybean genotype (4.0 - 4.5%) (Figs. 2 and 3). This is 

apparently a result of gene dosage effect from the heterozygous genotypes from either one or 

both low stachyose genes.  

 

Discussion 

The stachyose trait showed considerable stability, given that both parents consistently 

exhibited low stachyose content across the four environments studied (Table 1) and the F2-

derived lines ranked similarly across environments. All except four F2-derived lines fell in the 

same phenotypic classifications based on the parental threshold of stachyose content (Table 3). 

Although ANOVA showed a significant effect of location and genotype x location on stachyose 

content, those effects were negligible in relevance to the error term (Table 2). Unlike a typical 

quantitative trait, stachyose content in my genetic population appeared to be in discrete 

distribution and less affected by the environment (Figs. 2 and 3). This would make breeding and 

selection for low stachyose simple and easy. 

 The non-normal distribution of stachyose content in the F2-derived lines from the cross 

PI200508 x V99-5089 clearly showed that the seed stachyose content is not a quantitative trait, 
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but a trait controlled by major genes (Figs. 2 and 3). The Chi-square tests confirmed the presence 

of two independent, recessive genes for the low stachyose trait in the population (Table 3). In a 

low- x low-stachyose cross, one would expect all progeny lines to have low stachyose content 

similar to the low stachyose parents if the low-stachyose genes in the parents are allelic at a 

single locus. A proportion of the progeny lines is expected to be high stachyose if there is more 

than one gene involved, depending on the number of genes and their interactions. In a two-gene 

model, a 13 high : 3 low stachyose ratio would be expected for both dominant and recessive 

epistasis, while a 15 high : 1 low stachyose ratio would be expected for duplicate dominant 

epistasis. In my population, 7/16 of the F2-derived lines exhibited low stachyose which is 

expected for two genes, both with recessive epistasis. The presence of lines with greater 

stachyose content than that of the parents provides strong evidence that the two genes controlling 

the low-stachyose trait in PI200508 and V99-5089 are at different loci. 

Previous research reported a marker linked to a locus containing a recessive gene, rsm1, 

on chromosome 6 in PI200508 that explained up to 94% of the stachyose variance, and also 

suggested that the low stachyose content in PI200508 was due to a 3 bp deletion in the 

galactosyltransferase gene, which reduces the activity of the enzyme involved in the stachyose 

synthesis pathway (Skoneczka et al., 2009). Sebastian et al. (2000) identified a recessive gene 

Stc1a for low stachyose content in PI200508, but no allelism test was done with the low 

stachyose gene in V99-5089. The recessive gene in PI200508 identified in my study and in the 

study by Sebastian et al. (2000) may be the same QTL reported by Skoneczka et al. (2009). 

Molecular studies are needed to confirm this assumption. 

Maupin et al. (2011) suggested that a SSR marker on chromosome 11 in V99-5089 could 

be used in marker-assisted selection of low stachyose lines due to its high selection efficiency 
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(87%), suggesting that chromosome 11 may contain genes controlling the trait. Further research 

identified a stachyose QTL on chromosome 11 in a mapping population derived from the cross 

Osage x V99-5089, explaining 81% of the stachyose variation (Zeng et al., 2012). It is very 

likely that the low stachyose gene identified in our research is the same stachyose QTL reported 

by Zeng et al. (2012).   

The fact that some of the F2-derived lines classified as high stachyose type, in the Chi-

square test, actually exhibited intermediate stachyose content suggests that there was a gene dose 

effect on stachyose content in the heterozygous genotypes with one or both loci. The stachyose 

content in the high class ranged from 1.51 to 4.30%, depending on the number of heterozygous 

loci, assuming that the double heterozygous genotype (AaBb) would have lower stachyose 

content than the single heterozygous genotype (AABb or AaBB). Further study using selected 

lines with variable stachyose content and molecular markers is needed to confirm the gene 

dosage effect on stachyose content. 
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Conclusion 

Results from my study indicated that the low-stachyose trait is controlled by two 

independent recessive genes from pi200508 and v99-5089, and only one gene is needed to have 

the low-stachyose phenotype. Gene dosage effect on stachyose content in the heterozygous 

genotypes with either one or both genes was observed; however further study is needed to 

confirm this effect. In a practical breeding program, both pi200508 and v99-5089 would serve as 

good sources of low stachyose and selection for this trait would be straightforward as it is 

negligibly impacted by the environment.  
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Table 1. Mean and range of stachyose content for parents and populations derived from the PI200508 x V99-5089 cross grown in 
Fayetteville in 2010 and 2011, and Keiser, AR in 2011. 
 

PI200508 V99-5089 F2-derived lines 

Mean 
(%) 

Range 
(%) 

Mean 
(%) 

Range 
(%) 

Mean 
(%) 

Range 
(%) 

Prob < W§ 

Fay† - 2010  1.13 1.06 - 1.20 0.49 0.46 - 0.51 1.70 0.07 - 3.84 <0.0001 

Fay†  - 2011  1.25 1.16 - 1.31 0.54 0.49 - 0.53 1.90 0.11 - 4.30 <0.0001 

Kei ‡ - 2011  1.12 0.99 - 1.26 0.51 0.45 - 0.56 1.85 0.08 - 4.22 <0.0001 

Overall¶ 1.19 0.99 - 1.31 0.51 0.45 - 0.56 1.82 0.07 - 4.30  

      † Fayetteville, AR. 
      ‡ Keiser, AR. 
      § Shapiro-Wilk normality test. 
      ¶ Mean and range across three environments. 
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Table 2. Analysis  of  variance  for  seed stachyose  content in F2:7 lines  derived  from PI200508 x V99-5089, grown  in  two 
Arkansas locations in 2011.  
 

Source of variation 
Degrees of 

freedom†
Sum of 

squares‡
Mean 

square
F-ratio P value

Variance 
component§

Percent 
Variation¶

Model 243 816.1 3.36 1197.68 <0.0001

Location 1 0.31 0.31 110.40 <0.0001 0.0001 0.004

Replication[Location] 2 0.54 0.27 96.70 <0.0001 0.0022 0.130

Genotype 120 812.18 6.77 2413.62 <0.0001 1.6856 99.031

Genotype x Location 120 3.08 0.02 9.14 <0.0001 0.0114 0.671

Error 240 0.67 0.01 0.0028 0.165
              

  † Analysis  of  variance, using  PROC GLM  in  SAS  12.3, of  121  F2:7 lines  grown  in  Fayetteville and Keiser, AR in 2011. 
  ‡ Type II sum of squares. 
  § Estimate of variance components, as calculated using PROC VARCOMP in SAS 12.3. 
  ¶ Percent of variation explained by each term in the ANOVA model. 
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Table 3. Chi-square test for goodness-of-fit to two-gene model for stachyose content of F2-derived lines from the cross PI200508 x 
V99-5089 grown in Fayetteville, AR in 2010 and Fayetteville and Keiser, AR in 2011. 
 

No. of High-stachyose lines† No. of Low-stachyose lines‡ X2 (9:7) P  value 

Fayetteville-2010  
67 54 0.040 0.84 

F2:6 lines 

Fayetteville-2011  
68 53 0.001 0.97 

F2:7 lines 

Keiser-2011  
69 52 0.030 0.86 

F2:7 lines 

2011 Combined 
data 

68 53 0.001 0.97 
F2:7 lines 

  † F2-derived lines were classified as low-stachyose lines if stachyose content was equal to, or lower than: 1.23% for Fayetteville-2010,    
   1.32% for Fayetteville-2011, for 1.26% in Keiser-2011, and 1.28% for 2011 combined data. 
   ‡ F2-derived lines were classified as high-stachyose lines if stachyose content was equal to, or greater than: 1.24% for Fayetteville- 
    2010, 1.33% for Fayetteville-2011, for 1.27% in Keiser-2011, and 1.29% for 2011 combined data. 
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Fig. 1. Biosynthetic pathway of raffinose family oligosaccharides (RFO). Extracted from Peterbauer and Ritcher (2001). 
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Fig. 2. Frequency distribution of seed stachyose content in F2-derived populations from PI200508 (P1) x V99-5089 (P2) evaluated in  
three environments: (a) F2:6 lines in Fayetteville, AR in 2010; (b) F2:7 lines in Fayetteville, AR in 2011; (c) F2:7 lines Keiser, AR in 
2011. Vertical square-dotted line denotes the threshold for stachyose content: a) 1.23%, b) 1.32% and c) 1.26%. 
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Fig. 3. Frequency distribution of seed stachyose content in F2:7 population derived from the cross PI200508 (P1) x V99-5089 (P2) 
evaluated in Fayetteville and Keiser, AR in 2011. Vertical square-dotted line denotes the threshold for stachyose content = 1.28%.
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Fig. 4. Two-gene model for stachyose content of F2-derived lines from the cross PI200508 x  
V99-5089. 
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IV. Identification of Quantitative Trait Loci / Genes for Stachyose Content in Soybean Seed 
 
Abstract 

Stachyose is the most abundant carbohydrate of the raffinose family oligosaccharides in 

the soybean seed. It is considered an unwanted sugar because its consumption causes abdominal 

discomfort in monogastric animals. Thus, breeding for low-stachyose soybean cultivars is 

desirable for livestock feeding of non-ruminants and the development of food-grade soybeans. 

The objective of this study was to identify quantitative trait loci (QTL) for stachyose content 

using single nucleotide polymorphism (SNP). An F2-derived QTL mapping population was 

developed from the cross between a regular-sucrose line (V97-3000) and a high-sucrose line 

(V99-5089). A total of 92 F2:3 lines were genotyped with 5361 SNP markers covering the 20 

soybean chromosomes and, from these, 1720 were polymorphic. Seed samples were collected at 

F2:3, F2:6, and F2:7 generations, and stachyose analysis was performed by using high performance 

liquid chromatography system. Subsequently, linkage maps were constructed with JoinMap® 

software and composite interval mapping (CIM) was conducted to locate QTL associated with 

stachyose content. Two stachyose QTLs were identified in this study. One major stachyose QTL 

was mapped to chromosome 11 and accounted for 46% of the phenotypic variation observed for 

this trait. And one minor QTL was found on chromosome 10 and explained 11% of the stachyose 

variation. Both QTLs are in agreement with stachyose QTLs previously reported in populations 

with different genetic background, and also proved to be stable across the environments studied. 

SNP markers tightly linked to these QTLs can be used for marker-assisted selection in breeding 

soybean lines with low-stachyose profile. 
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Introduction 

Stachyose is one of the most abundant soluble carbohydrates in soybean. Its content 

ranges between 1.4 and 4.1% on a dry-weight basis (Hymowitz et al., 1972). However, stachyose 

is the most unwanted sugar for livestock feeding of non-ruminants (Cristofaro et al., 1974). 

Stachyose intake causes flatulence and abdominal discomfort in monogastric animals (Kuriyama 

and Mendel, 1917; Hawton et al., 1996), due to their lack of the α-(1,6)-galactosidase enzyme 

that breaks down the stachyose into simple forms (Gitzelmann and Auricchio, 1965). Thus, 

stachyose has a negative effect on the feed efficiency of the soybean meal. The metabolizable 

energy of soybean meal is low compared its total energy and this is due to the poor digestibility 

of the raffinose oligosaccharide (Parsons et al., 2000; Meis et al., 2003). Therefore, development 

of soybean lines with reduced-stachyose contents is desired for increasing the energy metabolism 

rate and digestion of soybean meal. 

The breeding line V99-5089 has been identified as source of high-sucrose, low-stachyose 

and low-phytate contents (Saghai-Maroof and Buss, 2008). Results from several studies in which 

V99-5089 was crossed to other soybean lines suggest that low stachyose is a heritable trait 

(Jaureguy, 2009; Zeng 2012; Mozzoni et al., 2013). Thus, this breeding line could be used in 

breeding for soybeans with improved sugar profile. Additionally, crosses between V99-5089 and 

other low stachyose sources suggested the presence of a stachyose QTL in V99-5089 that is 

different from the low stachyose sources previously reported (Sebastian et al., 2000; Skoneczka 

et al., 2009). 

Saghai-Maroof and Buss (2008) identified and located the stachyose QTL from V99-

5089 in the interval between Satt453 and Sat_331 on chromosome 11. This QTL accounted for 

28% of the phenotypic variation observed. Furthermore, Maupin et al. (2011) reported that the 
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SSR marker Satt453 on chromosome 11 had 87% of selection efficiency in marker assisted 

selection of low stachyose lines. Additionally, Jaureguy (2009) identified three SSR markers on 

chromosome 10 linked to stachyose content. He also reported a QTL for this trait flanked 

between Satt262 and Sat_282 that explained 48% of the stachyose variation observed. More 

recently Zeng et al. (2012) used SSR and SNP markers on a population derived from the cross 

Osage x V99-5089 and identified two QTLs for stachyose on chromosomes 10 and 11, which 

explained 11 and 81% of the phenotypic variation in stachyose contents. These QTLs were stable 

across environments. 

The objective of this study was to confirm stachyose QTL previously reported and / or 

identify new QTLs. 

 

Materials and methods 

Population development and field experiment 

An F2 soybean population segregating for sucrose content was used in this study and both 

parental lines were developed at Virginia Polytechnic Institute. The regular sucrose (~ 5.0 %) 

breeding line V97-3000 was crossed to the high sucrose (~ 7.7 %) breeding line V99-5089 in 

summer of 2007, at the Arkansas Agricultural Research and Extension Center (AAREC) in 

Fayetteville, AR. The F1 plants were grown in Fayetteville during summer of 2008 and 

morphological markers (leaf shape and seed size) were used to differentiate true hybrids from 

selves and outcrosses, because V97-3000 is a small-seeded line (9 g 100 seed-1) with narrow leaf 

shape, and V99-5089 is a large-seeded line (20 g 100 seed-1) with broad leaf shape. F1 plants 

were then bulked and harvested. 

The F2 population was grown in Fayetteville in 2009, in 3-meter rows with 150 seed per  
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row. Row spacing was 1 meter and plots were irrigated by furrow irrigation and managed 

according to the standard cultural practices for soybean production in Arkansas (Tacker and 

Voires, 1998). A total of 150 random F2 plants were tagged and identified with a number. At the 

end of the season, these tagged plants were harvested individually to form the mapping 

population. A sample containing 100 seed was sent to a winter nursery for generation 

advancement. The remnant of the seed from each F2:3 line was used for carbohydrate analysis. 

 The winter nursery is located near Upala city in the northwestern part of Costa Rica at 52 

meters above sea level (Mongabay, 2014). There, each F2:3 line was grown in a 3-m row with 

0.76-m row spacing. A 3-m row spacing of the parental genotypes was planted next to the 

segregating population. Soil was cultivated before planted and plots were fully irrigated and 

managed during the growing season using standard cultural practices. After two generation 

advancements, F2:5 seed were brought back to Fayetteville but unfortunately, the seed quantity 

was not enough to grow a test with two repetitions in two different locations. For this reason, it 

was decided to do a seed increase in Fayetteville during the growing season in 2010 and then 

establish the test the following year.  

 In summer of 2011, F2:6 plants were grown in a randomized complete block design 

(RCBD) with two repetitions in two locations: Fayetteville and Marianna, AR. The soil in 

Fayetteville is classified as Captina silt loam (Fine-silty, siliceous, active, mesic Typic 

Fragiudults) (Soil Survey Staff, 2013), which is very deep, moderately well drained, and made in 

a thin mantle of silty material (Soil Series, 2006). Whereas, the soil in Marianna is classified as a 

Calloway silt loam (Fine-silty, mixed, active, thermic Aquic Fraglossudalfs) (Soil Survey Staff, 

2013), which is described as very deep, somewhat poorly drained and developed in thick loess or 

water reworked loess (Soil Series, 2002). Each soybean plot consisted of two 3-meter rows, each 



109 
 

with 150 seed and a row spacing of 1 meter. Both locations fully irrigated by furrow irrigation 

and managed based on the standard cultural practices for soybean production in Arkansas 

(Tacker and Voires, 1998). The youngest fully developed trifoliate of each plant was sampled 

and samples belonging to the same row were bulked for DNA extraction. F2:6 seed were 

harvested during fall of 2010 and a 10-g sample of each plot was used for carbohydrate analysis 

and the remnant of the seed was saved to be planted the next season. 

Genotypic data 

Genomic DNA extraction. After being collected, leaf tissue samples were stored in the 

freezer at -80 °C. Afterward, they were ground with liquid nitrogen to a fine powder by using a 

mortar and a pestle. DNA was extracted using the CTAB (cetyltrimethylammonium bromide) 

buffer method (Kisha et al., 1997) in which, a buffer containing 5M NaCl, 200mM Tris pH 8.0, 

4% (w/v) CTAB, 0.5 mM EDTA, and 6.4 mL β-mercaptoethanol is added to the samples, 

followed by chloroform:isoamyl alcohol (24:1). After incubation for 60 min at 65 °C with 

occasional gentle mixing, DNA is precipitated and washed with 95% ethanol and subsequently 

dissolved in 0.1 x TE buffer. Concentration was calculated by measuring the absorbance at 260 

nm using a BioTek Power Wave XS Microplate Spectrophotometer (BioTek, Winooski, VT). 

DNA was stored in the freezer at -80 °C. 

Single nucleotide polymorphism (SNP) genotyping. For genetic map construction, two 

repetitions of each parental line and 92 F2:7 DNA samples were sent to the Research Technology 

Support Facility (RTSF) Genomics Core at Michigan State University, East Lansing, MI. There 

they were genotyped with 5361 SNP markers (dbSNP-NCBI, 2012) using the Illumina Infinium® 

Genotyping HD BeadChip (652k SNPs) on Illumina iScan (Illumina, San Diego, CA).SNP 

analysis was performed on 4-µL samples containing a concentration between 50 and 100 ng µL-1 
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of DNA. Intensities of the beads fluorescence were distinguished by using the Illumina iScan 

TM Reader and alleles for each SNP locus were named using Illumina’s Bead Studio TM 

software (Illumina, San Diego, CA, v3.2.23). For each SNP marker, the genotype data represents 

three possible genotypes AA (homozygote), AB (heterozygote), and BB (homozygote) (Akond 

et al., 2013). 

Phenotypic data 

Soluble carbohydrate analysis. Sugar extraction followed the protocol described by Hou 

et al. (2009), with some modifications. Briefly, a 10-g seed sample was ground to a fine powder 

using a coffee bean grinder (Krups®, Shelton, CT). Then, the powder was sifted through a 100-

μm stainless steel testing sieve (VWR®, West Chester, PA), in order to obtain a sample with 

uniform particle size. Afterwards, a 0.15-g sample was weighed, mixed with 1.5 mL of 

deionized-distilled water (ddH2O) and transferred into a 2 mL centrifuge tube. The tube was 

vortexed, shaken horizontally for 20 min at 200 rpm and centrifuged at 14000 rpm for 10 min. A 

500 µL aliquot from the supernatant was placed in a new 2mL centrifuge tube and 700 µL of 

acetonitrile (99.9%, HPLC grade) (Thermo Fisher Scientific, Inc.) was added. The solution was 

mixed by inversion and incubated at room temperature for 30 min. Then, the tube was 

centrifuged at 14000 rpm for 10 min and 70 µL of the extract was pushed through a 25 mm 

Easy-Pressure syringe filter holder (VWR®, West Chester, PA) containing a 0.2 µm filter paper 

disc (Pall Lifesciences, East Hills, NY). Then, vials containing a 24-μL aliquot of each sample 

extract diluted in 576 μL of distilled water were used for carbohydrate determination in a HPLC. 

The anion-exchange HPLC system (Dionex DX500 HPAEC-PAD) was composed of a 

GS50 gradient pump, an ED40 pulsed amperometric electrochemical detector, an LC50 

chromatographic oven, an AS40 automated sampler with a 25-μL injection loop, and a 
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Chromeleon Chromatography Management Data System. The mobile phase consisted of a 

90mMNaOH solvent (VWR®, West Chester, PA) at constant flow rate of 1 mL min-1, prepared 

by diluting carbonate-free HPLC grade 50% (w/w) stock solution in distilled water, filtered with 

a 0.45-μm membrane, and degassed with compressed nitrogen gas for 30 min before vials were 

loaded into the auto sampler, as described by Hou et al. (2009). Soluble carbohydrates were 

separated by an analytical CarboPac PA-10 pellicular anion-exchange resin column (4 x 250 

mm) coupled to a CarboPac PA10 guard column (4 x 50 mm) and preceded by AminoTrap 

column (3 x 30 mm) (Dionex, Sunnyvale, CA). Sugar content was determined from regression 

curves fitted from a set of standards for sucrose (Sigma-Aldrich, St. Louis, MO) at different 

concentrations (10, 20, 40, 60, and 80 µg µL-1). Carbohydrate data then converted to milligrams 

of sugar per gram of seed (mg g-1) on dry-weight basis. 

Statistical analysis 

The Shapiro-Wilk (w) normality test from JMP 10.0 (SAS Institute, Cary, NC) was 

conducted on the stachyose content distribution for F2-derived lines. Associations between seed 

stachyose and molecular markers were analyzed by single factor analysis of variance (ANOVA) 

at the 0.05 significant level using the PROC GLM procedure in SAS 12.3 (SAS Institute, 2012). 

The software JoinMap® 4.1 (Van Ooijen, 2006) was used for construction of linkage maps, with 

a minimum logarithm of odds (LOD) set to 3.0. A Haldane mapping function (Haldane, 1919) 

was used to conduct regression mapping algorithm of each chromosome or linkage group. 

Composite interval mapping analysis (CIM) was performed using Qgene 4.0 (Joehanes et al., 

2008. One thousand permutation with a walk speed of 1 cM and experiment-wise α = 0.05 was 

adopted to establish the empirical significance threshold (Churchill and Doerge, 1994). Multiple 

interval mapping analysis (MIM) was conducted to determine the optimum position of the QTL, 
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MIM was performed based on the model c(n) = ln(n) with a walk speed of 1 cM. MapChart 2.2 

(Voorrips, 2002) was used to create the LOD plots based on the data from JoinMap® 4.0 and 

Windows QTL Cartographer 2.5. 

 
 
Results  

Phenotypic data 

The Shapiro-Wilk test showed that the seed stachyose content in the mapping population 

derived from V97-3000 x V99-5089 did not follow a normal distribution in all four environments 

(Table 1a and Fig. 1). V97-3000 showed higher stachyose content than V99-5089 by 3.2 – 3.7% 

in all environments studied, as expected (Fig. 1 and Table 1b). Some of the lines in the mapping 

population had stachyose content lower than the low parent V99-5089 and higher than the high 

parent V97-3000 (Table 1a). It is likely that the low-stachyose trait is controlled by a few genes 

with major effects. 

QTL mapping in F2-derived populations by SNP markers 

 A total of 5361 random SNP markers covering the 20 soybean chromosomes were used 

to genotype F2:6 lines and 1720 SNP loci (32%) turned out to be polymorphic. These markers 

were mapped on 20 chromosomes, representing 663 unique SNP loci (Table 2). This linkage 

map spanned 2435.2 cM with an average distance coverage of 3.8 cM per marker (Table 2 and 

Fig. 2a-e). 

 Results from the single-marker analysis revealed seven significant SNP markers (P < 

0.05) on six chromosomes (2, 5, 9, 10, 11, and 19) associated with seed stachyose content (Table 

3). Lines with a homozygous genotype carrying the V99-5089 allele had lower stachyose content 

compared with those carrying the V97-3000 allele. On average, the V99-5089 allele accounted 
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for a reduction of stachyose content between 0.55 and 1.71% (Table 4). The stachyose variation 

contributed by the SNP alleles in those five chromosome regions ranged from 7 to 46%.  

 In the composite interval mapping analysis, the empirical significance threshold was 

computed as a LOD value of 2.5 in the F2:6 mapping population in all environments studied (i.e., 

Fayetteville 2009, Fayetteville 2010, Fayetteville 2011, and Marianna 2011). Based on stachyose 

content in Fayetteville in 2009 and 2010, a minor stachyose QTL was identified on chromosome 

10, flanked by the SNP markers ss247176598 and ss247225929, tightly linked to the marker 

ss2472066709 (Figs. 3a-b). This QTL was tentatively named Sta1. Sta1 had a LOD value of 3.1, 

significantly higher than the threshold, and accounted for 11% of stachyose variation observed 

(Table 4 and Fig. 3c). Additionally, based on average stachyose content across two locations and 

three years, a major stachyose QTL was identified on chromosome 11, flanked by the SNP 

markers ss247560171 and ss247559991, tightly linked to the marker ss247557383 (Figs. 4a-c). 

This QTL was tentatively named Sta2. Sta2 had a LOD value of 5.1, significantly higher than the 

threshold, and explained 46% of phenotypic variation for stachyose content (Table 4 and Fig. 

4c). This QTL was consistently identified in four environments with a LOD value between 3.1 

and 3.9. The multiple intervals mapping analysis showed the optimum locations of the QTLs 

identified. Sta1 was determined to be at 41.8 cM on chromosome 10 and Sta2 was located at 10 

cM on chromosome 11. These results indicate that there are two independent stachyose genes 

located in two different chromosome regions.  

 

Discussion 

In this study, the high stachyose parent ‘V97-3000’ consistently produced high stachyose, 

while the low parent ‘V99-5089’ produced low stachyose, as expected, in all four environments 
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(i.e., Fayetteville 2009, Fayetteville 2010, Fayetteville 2011, and Marianna 2011). The average 

seed stachyose content of the F2-derived populations was also consistent across the 

environments. These results indicate that stachyose is a stable trait and that environment has very 

little impact. 

The average stachyose contents for the parents and the progeny were higher in Marianna 

in 2011, compared with Fayetteville in the same year. Similarly, stachyose content for parents 

and progeny were higher in Fayetteville in 2010 than those for the same location in 2011 (Tables 

1a and 1b). This can be explained by the difference in the average monthly temperature during 

the growing season for those two years and between the two locations (Table 5). Weather history 

data showed that Fayetteville, AR experienced higher temperatures in 2010 than in 2011. 

Previous reports indicate that high temperatures increased stachyose content due to a reduction in 

sucrose (Bellaloui et al., 2013). 

Based on the molecular marker analysis, a major stachyose QTL was found on 

chromosome 11. This QTL is located close to a QTL previously reported by Saghai-Maroof and 

Buss (2008) and confirmed by Zeng (2012). My QTL is likely the same QTL previously reported 

by Saghai-Maroof and Buss (2008) and Zeng (2012). This result was expected because V99-

5089 was a common parent for all three studies. As consequence, a major stachyose QTL has 

been unquestionably confirmed across populations with different genetic backgrounds and across 

environments. Markers associated with this QTL/gene may be used in marker-assisted selection 

of low-stachyose lines. 

A minor stachyose QTL was mapped to chromosome 10. This QTL is located near the 

region of a QTL for stachyose previously reported by Jaureguy (2009) and later confirmed by 

Zeng (2012). It appears that the QTL region identified in the three different studies contains the 
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same QTL/gene for stachyose in V99-5089. The low-stachyose trait is controlled by two 

independent genes, one located on chromosome 11 with a large effect and the other one located 

on chromosome 10 with a small effect. The stachyose QTL on chromosome 11 reduced the 

stachyose content by up to 2.21 % and the minor QTL on chromosome 10 contributed up to 0.96 

% stachyose reduction. Therefore, use of these markers would be very effective in breeding for 

low-stachyose soybean. 
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Conclusion 

  Two stachyose QTLs were identified in our study. A major QTL located on chromosome 

11, linked to ss247557383, that explained 46% of the phenotypic variation for stachyose and a 

minor QTL located on chromosome 10, linked to ss247206709, accounted for 11% of the 

stachyose variation. Both QTLs are in agreement with stachyose QTLs previously reported and 

also proved to be stable across environments. The fact that stachyose is controlled by few genes 

with large effect and also that the environment has little or no effect, confirms that stachyose is a 

qualitative trait. For this reason, molecular breeding for soybeans with low-stachyose content 

should be fairly straightforward.  
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Table 1a. Seed stachyose content (% dry-weight basis) of mapping populations derived from the cross V97-3000 x V99-5089 
evaluated across two locations and over three years. 
 

Year – Location Generation No. Lines Mean 
 

Range 
 

Prob< W† 

2009 Fayetteville F2:3 129 2.77 0.11 – 4.19 < 0.0001 

2010 Fayetteville F2:6 92 2.95 0.12 – 4.35 < 0.0001 

2011 Fayetteville F2:7 92 2.90 0.07 – 4.32 < 0.0001 

2011 Marianna F2:7 92 2.94 0.10 – 4.25 < 0.0001 

          † Shapiro-Wilk normality test. 
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Table 1b. Seed stachyose content (% dry matter) of parents V97-3000 and V99-5089 evaluated across two locations and over three 
years. 
 

Year-Location 

V97-3000 
 

V99-5089 
 

Mean SD† Mean 
 

SD† 
 

 
2009 Fayetteville 

 
3.75 

 
0.16 

 
0.39 

 
0.08 

 
2010 Fayetteville 

 
4.11 

 
0.27 

 
0.40 

 
0.12 

 
2011 Fayetteville 

 
3.92 

 
0.08 

 
0.59 

 
0.06 

 
2011 Marianna 

 
4.00 

 
0.11 

 
0.75 

 
0.35 

Overall‡ 3.94 0.16 0.53 0.15 

           † Standard deviation. 
           ‡ Sucrose mean and standard deviation across four environments. 
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Table 2. Summary of SNP markers used for the screening of an F2-derived population from the 
cross V97-3000 x V99-5089. 
 

Chr.† LG‡ 
Length 

(cM)§ 
No. SNP 
mapped

No. SNP 
locus located

Average distance (cM) 
between SNP loci 

    
1 D1a  29.8 23 15 2.0 

2 D1b  167.0 49 26 6.4 

3 N  23.8 99 23 1.0 

4 C1  136.4 77 34 4.0 

5 A1  82.4 56 14 5.9 

6 C2  152.5 100 49 3.1 

7 M  149.1 51 27 5.5 

8 A2  135.6 90 51 2.6 

9 K  23.1 90 14 1.6 

10 O  139.5 59 32 4.4 

11 B1  134.0 141 50 2.7 

12 H  150.4 37 27 5.6 

13 F  110.6 121 43 2.6 

14 B2  48.0 33 16 3.0 

15 E  127.1 157 62 2.1 

16 J  118.2 90 34 3.5 
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Table 2. Summary of SNP markers used for the screening of an F2-derived population from the 
cross V97-3000 x V99-5089 (Cont.). 
 

Chr.† LG‡ 
Length 

(cM)§ 
No. SNP 
mapped

No. SNP 
locus located

Average distance (cM) 
between SNP loci 

    
17 D2  164.9 124 44 3.7 

18 G 133.9 68 44 3 

19 L 309.6 158 40 7.7 

20 I 99.3 97 18 5.5 

Average 121.8 86 33 3.8 

Total 
 

2435.2 1720 663

            
†Chromosome.  
‡Linkage group. 
§Chromosome length in centimorgans. 
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Table 3. Single-marker analysis of variance for seed stachyose content in 92 F2-derived lines 
from the cross V97-3000 x V99-5089 evaluated in Fayetteville (Fay) in 2009 and 2010, and in 
Fayetteville and Marianna (Mar) in 2011. 
 

Chr.† SNP Marker 
Position 

(cM) 

P value  

2009 2010 2011 
Combined‡ 

Fay  Fay  Fay  Mar  

 
2 

 
ss244874473 

 
157.0 

 
0.0051 

 
0.0045 

 
0.0079 

 
0.0100 

 
0.0056 

5 ss245737602 46.1 0.0257 0.0385 0.0863 0.0647 0.0445 

9 ss246816196 18.5 0.0469 0.0232 0.0125 0.0226 0.0218 

10 ss247206709 41.8 0.0176 0.0232 0.0167 0.0340 0.0199 

11 ss247571761 2.8 0.0167 0.0040 0.0076 0.0268 0.0099 

11 ss247557383 10.0 0.0332 0.0253 0.0401 0.0278 0.0316 

19 ss250262655 293.0 0.0347 0.0668 0.0457 0.0193 0.0358 

 † Chromosome. 
 ‡ Pooled data from all environments studied. 
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Table 4. Mean effect of SNP marker alleles on seed stachyose content in 92 F2-derived population developed from the cross    
V97-3000 x V99-5089 grown in two locations and over three years. 
 

Chr.  SNP 
Position 

(cM) 

2009 2010 2011† Combined‡ 
R2 

P1§ P2¶ Diff. ♯ P1 P2 Diff. P1 P2 Diff. P1 P2 Diff. 

2 ss244874473 
 

157.0 2.85 2.23 0.62 2.79 2.06 0.73 2.82 2.12 0.70 2.82 2.14 0.68 0.07

5 ss245737602 
 

46.1 2.90 2.35 0.55 2.84 2.10 0.74 2.85 2.24 0.61 2.86 2.23 0.63 0.06

9 ss246816196 
 

18.5 2.87 2.23 0.64 2.81 2.12 0.69 2.83 2.16 0.67 2.84 2.17 0.67 0.06

10 ss247206709 
 

41.8 3.77 2.81 0.96 3.42 2.60 0.82 3.60 2.72 0.88 3.60 2.71 0.89 0.11

11 ss247571761 
 

2.8 2.50 1.36 1.14 2.89 1.48 1.41 2.67 1.33 1.34 2.69 1.39 1.30 0.28

11 ss247557383 
 

10.0 3.87 1.74 2.13 3.91 1.82 2.09 3.85 1.64 2.21 3.88 1.73 2.15 0.46

19 ss250262655 
 

293.0 2.90 2.27 0.63 2.83 2.08 0.75 2.81 2.19 0.62 2.85 2.18 0.67 0.06
 

  † Pooled data from Fayetteville and Marianna in 2011. 
  ‡ Pooled data from Fayetteville in 2009 and 2010, and Fayetteville and Marianna in 2011. 
  § Allelic effect of P1 = V97-3000. 
  ¶ Allelic effect of P2 =V99-5089. 
  ♯ Allelic difference.
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Table 5. Average monthly temperatures (°C) in Fayetteville, AR in 2010 and Fayetteville and Marianna, AR in 2011. 

 

Year Location 
Month 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2010 Fayetteville 0.6 0.6  7.8 15.0 19.4 25.6 26.1 27.8 21.7 14.4 8.9 2.2 

2011 
Fayetteville 0.6 3.3 10.0 15.0 17.8 25.6 28.9 27.8 18.3 14.4 10.0 4.4 

Marianna 3.3 5.6 11.7 18.3 21.1 27.2 28.3 27.2 21.1 15.6 12.2 7.2 

    Information extracted from http://www.wunderground.com (accessed March, 2014).
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Fig. 1. Frequency distribution of seed stachyose content in populations derived from V97-3000 (P1) x V99-5089 (P2) evaluated in 
three environments: (a) F2:6 lines in Fayetteville, AR in 2010; (b) F2:7 lines in Fayetteville, AR in 2011; (c) F2:7 lines Marianna, AR in 
2011.
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 cM     Chr. 1                   cM      Chr. 2                  cM     Chr. 3                   cM     Chr. 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2a. A genetic map constructed for chromosomes 1, 2, 3, and 4 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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  cM     Chr. 5                  cM     Chr. 6                  cM      Chr. 7                 cM     Chr. 8 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2b. A genetic map constructed for chromosomes 5, 6, 7, and 8 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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    cM    Chr.9                  cM     Chr. 10               cM     Chr. 11                 cM      Chr. 13 

 
 
 

Fig. 2c. A genetic map constructed for chromosomes 9, 10, 11, 12, and 13 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 

cM      Chr. 12 
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cM     Chr.14                    cM      Chr. 15             cM     Chr. 15 (Cont.)      cM      Chr. 16 

 
 
 

 
 
 
 

 

 

 

 
Fig. 2d. A genetic map constructed for chromosomes 14, 15, and 16 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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    cM     Chr.17               cM      Chr. 18               cM     Chr. 19               cM      Chr. 20 

 
 
 
 
 
 

 

 

 

Fig. 2e. A genetic map constructed for chromosomes 17, 18, 19, and 20 using an F2:6 mapping 
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were 
mapped to 20 soybean chromosomes. 
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   Chr. 10                                                                  Chr. 10 
 

           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3a. Composite interval mapping using SNP markers for seed stachyose QTL on 
chromosome 10 in 92 F2-derived lines from the cross V97-3000 x V99-5089, evaluated across 
locations and years: (1) in Fayetteville, AR in 2009; (2) in Fayetteville, AR in 2010.  
† LOD = logarithm of the odds. 

LOD† LOD
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                                  Chr. 10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3b. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 
10 in 92 F2-derived lines from the cross V97-3000 x V99-5089 grown in Fayetteville in 2009 and 
2010 (Combined data).  
† LOD = logarithm of the odds. 

LOD†
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 Chr. 11                                                                 Chr. 11 
 

             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4a. Composite interval mapping using SNP markers for seed stachyose QTL on 
chromosome 11 in 92 F2-derived lines from the cross V97-3000 x V99-5089, evaluated across 
locations and years: (1) in Fayetteville, AR in 2009; (2) in Fayetteville, AR in 2010.  
† LOD = logarithm of the odds. 

(1) (2) 

LOD† LOD
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  Chr. 11                                                              Chr. 11 
 

          
 
 
       (1)                                                                    (2) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4b. Composite interval mapping using SNP markers for seed stachyose QTL on 
chromosome 11 in 92 F2-derived lines from the cross V97-3000 x V99-5089, evaluated across 
locations and years: (1) in Fayetteville, AR in 2011; (2) in Marianna, AR in 2011.  
† LOD = logarithm of the odds. 

LOD† LOD 
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                                       Chr. 11 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4c. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 
11 in 92 F2-derived lines from the cross V97-3000 x V99-5089 grown in Fayetteville and 
Marianna in Arkansas in 2011 (Combined data).  
† LOD = logarithm of the odds. 

LOD†
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Overall conclusion 

 The increasing demand for soyfoods requires concentrating breeding efforts on the 

development of soybeans with modified-seed composition. This dissertation particularly focused 

on studying QTLs/genes associated with sucrose and stachyose contents due to the effects of 

these sugars on the quality, taste, and digestibility of soyfoods. Findings from this dissertation 

revealed two independent germplasm sources for low-stachyose that can be used as parental 

materials for the development of breeding populations. Additionally, QTLs for sucrose and 

stachyose previously reported, were confirmed and validated in our studies, which makes them 

reliable molecular tools. These findings will facilitate marker-assisted selection in breeding for 

high-sucrose and low-stachyose contents.  
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