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Abstract

Seed carbohydrate content is an important aspect in breeding for food-grade soybeans
commercialized in the soyfood market. Sucrose and stachyose are the primary carbohydrates in
soybean seed. Sucrose affects the quality and taste of various soyfoods such as tofu, soymilk, and
natto; however, consumption of soy-based products with high stachyose concentrations can
cause diarrhea and flatulence. A mutant line (V99-5089) with high-sucrose and low-stachyose
has been identified. The objectives of this research were: 1) to identify sucrose QTLs in a F;-
derived mapping population; 2) to investigate the genetic relationship between two low-
stachyose sources, V99-5089 and the germplasm line P1200508; and 3) to identify stachyose
QTLs in a F,-derived mapping population. An allelism test for low stachyose was performed by
using 121 F»-derived lines from the cross PI1200508 x V99-5089 grown in three different
environments. Carbohydrate content was determined by a high performance liquid
chromatogram system, and lines were classified as high- or low- stachyose. Chi-square analysis
was performed to test for goodness-of-fit of observed segregation to the expected genetic ratio.
Results showed a 9 high-stachyose : 7 low-stachyose ratio, indicating that two independent
recessive genes conferred the low-stachyose trait in the two mutant lines. Additionally, gene
dosage effect was observed; however, further study is required in order to confirm its presence.
The sucrose and stachyose QTL studies were carried out in 92 F;.7 lines derived from the cross
V97-3000 x V99-5089. Leaf samples were collected at F,.s for DNA extraction and subsequent
molecular analysis using single nucleotide polymorphism (SNP) markers. Seed from F».7 lines
grown in two locations, each one with two replications, were analyzed for sugar content. Results
showed two sucrose QTLs located on chromosomes 6 and 10, accounting for 17 and 11% of the

phenotypic variation, respectively. Additionally, two stachyose QTLs were found on



chromosome 10 and 11, explaining 11 and 46% of the stachyose variation. Results from this
research indicate that the two low-stachyose sources may serve as valuable parents in breeding
for low-stachyose soybeans. Additionally, V99-5089 may also provide favorable alleles for
breeding high-sucrose varieties. The sucrose and stachyose QTLs identified in these studies are

stable across environments and will facilitate the marker-assisted selection for both traits.
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I. Introduction
Soybean origin and market

Soybean [Glycine max (L.) Merr] is a member of the Fabaceae family, whose center of
origin and domestication was located in China (Abe et al., 2003; Hymowitz, 1970). After
domestication, the area planted with soybean expanded worldwide due to the easy adaptation of
the crop and the multipurpose end-uses of the seeds (Johnson et al., 1992). The three major
soybean producers in the world in 2013 were: Brazil, accounting for 39% of world production
with 83.5 million metric tons; United States, with 37% and 82 million metric tons; and
Argentina, with 11% and 51.5 million metric tons (ASA, 2014).

In the United States, the area occupied by soybean ranks second (29%) after corn (35%)
(ASA, 2014). In 2013, 31.2 million ha of soybean were planted in the country. Arkansas
accounted for 3.2 million ha, which produced a total of 3.7 million metric tons of soybean (ASA,
2014).

Soybeans can be used as raw material for many manufactured goods including oil, whole-
bean products, and meal products (Smith and Huyser, 1987). In 2013, oil production in US was
8.6 million metric tons, soybean crush was estimated in 43.9 metric tons, and meal production
reached 34.9 million metric tons (ASA, 2014). Additionally, soybeans are used as livestock feed,
as an ingredient in the food industry, as fuel when converted into biodiesel, and as the main
ingredient of industrial products including lubricants, insulators, paints, glues, crayons, hand

cleaners, and shampoos (ASA, 2014).

Soyfoods

Soybeans have been grown for more than 1000 years in Asia for consumption purposes.



However, their consumption in the Western culture commenced only about 30 years ago,
when their nutritional value and health benefits began to be publicized (Golbitz, 1995).
According to Soyatech (2012), the sales of soyfoods products in U.S. exceeded $5 billion in
2011. These specialty soybeans are grown and commercialized under identity-preserved (IP)
contracts (Sonka et al., 2004), which means that growers get paid a premium for producing top-
quality soybeans which meet specific standards required for the soyfood industry, including low-
saturated fat content, low-linolenic acid content, increased oleic acid content, and an absence of
beany flavor.

Soyfoods can be classified as traditional non-fermented foods, which include tofu,
edamame, and soymilk; and traditionally fermented foods such as miso, natto, soy sauce, and
tempeh (Cui et al., 2004). Tofu is curd soybean made by soymilk that has been coagulated by
calcium, magnesium salt, or glucono delta-lactone (He and Chen, 2013). Edamame is soybeans
harvested early in the vegetable stage which can be commercialized in fresh or frozen food
forms. Soymilk is one of the most popular and traditional soyfoods. According to oral historical
records, it was developed by the King Liu An in the second century B.C. Soymilk is made by
soaking, grinding, and straining soybeans (Shurtleff and Aoyagi, 2013).

Miso is a soybean paste fermented with fungus, bacteria, or yeast. The choice of the microbe
used as the fermentation agent depends on the country where the miso is produced. Most of the
miso made in Japan involves the Aspergillus oryzae fungus while the Bacillus subtilis bacteria
are the typical fermentation agents of the Chinese miso (Kim et al., 2010). Natto is manufactured
from fermentation of soybeans by strains of Bacillus subtilis. During its storage, secondary
fermentation occurs, which causes ammonia to be released. This gives natto its characteristic

odor (Kada et al., 2008). Soy sauce is the most common seasoning in Chinese culture; it is



produced by fermenting a combination of wheat and soybean by Aspergillus fungi, lactic acid
bacteria, and yeast (Sugiyama, 1984). Tempeh is made of de-hulled fermented soybeans by using

Rhizopus oryzae mold (Shurtleff and Aoyagi, 2011).

Health benefits

Soyfoods are considered beneficial to overall health due to their high content of polyunsaturated
fats (essential fatty acids and linolenic acid), vitamins, fiber, minerals, and low content of
saturated fats. Some studies have reported that soy-based foods may reduce the risk of breast and
prostate cancer, osteoporosis, and cardiovascular disease (CVD). In a study conducted by Sacks
et al. (20006), isolated soybean protein and isoflavones reduced LDL cholesterol concentrations
(~ 3%), as compared with milk and other sources of protein. No undesired effects on HDL
cholesterol, triglycerides, lipoprotein, or blood pressure were observed. Similarly, Anderson et
al. (1995) studied the relationship between soy protein consumption and serum lipid
concentration in humans. They reported that the intake of soy protein significantly reduced
serum concentrations of total cholesterol, LDL cholesterol, and triglycerides. Jenkins et al.
(2010) reviewed and re-analyzed the two previous studies aiming to determine whether the
claims that soy proteins have a beneficial effect on heart health were still maintained. They
determined that both studies are well supported by the data collected in the meta-analyses.

The consumption of stearic acid, which is present in soybeans, is desirable in comparison to
other saturated fats, because it simulates the effects of some mono-unsaturated fatty acids by not
altering HDL cholesterol (Kris-Etherton and Yu, 1997), and by decreasing both LDL cholesterol

and the total cholesterol to LDL cholesterol ratio (Hunter et al., 2010).



Additionally, many other studies have assessed the relationship between the intake of
vitamins present in soybeans and prevention of some diseases. Results from a vast amount of
studies, including animal experiments, epidemiological data, and human trials, suggest that
vitamin E offers significant protection against heart disease (Pryor, 2000). Other benefits
reported include improvement of cell-mediated immune responses (Meydani et al., 1997;
Meydani et al., 1990) and cancer prevention (Yang et al., 2012; Watson and Leonard, 1986).
Similarly, intake of vitamin B has been suggested to be associated with prevention of coronary
heart disease in women (Rimm et al., 1998) and vascular disease in men (Ubbinik et al., 1993).
Additionally, it has been reported that consumption of vitamin K is positively associated with

bone mineral density in elderly men (Fujita et al., 2010).

Seed composition

Protein (40%) is the most abundant soybean seed component on a dry-weight basis,
followed by carbohydrates (35%), oil (20%), and ashes (5%) (Liu, 2005; Hymowitz and Collins,
1974). Other important seed components include phytate, isoflavones, lipoxygenases, minerals,
and vitamins.
Protein

Soybeans are mainly grown for protein and oil. In average, soybean seed has around
42% protein content, however, values ranging between 34 and 57% have been reported (Wilson,
2004). The two major protein fractions in soybean are beta-conglycinin (7S) and glycinin (11S)
(Wolf, 1970). The 7S fraction represents one-third of the total soybean protein (37%) and
includes the proteins hemagglutinin, lipoxygenase, -amylase, and 7S globulin. The most

abundant protein in the 7S fraction is 7S globulin. The 118 fraction represents another one-third



of the total soybean protein (31%) and 118 globulin is the main protein in this fraction. The main
common property to both 7S and 11S globulins is the capacity to form disulfide-linked polymers
which causes insolubility (Nash and Wolf, 1967) and increases viscosity (Circle et al., 1964).
Soy proteins have emulsifying properties; they decrease the interfacial tension between the water
and oil, and help to stabilize the emulsion by forming a physical barrier at the interface (Molina
et al., 2001). The 11S-to-7S ratio plays an important role not only in the production of soyfoods
but also in food industries where these proteins are used as natural gelling agents. Thus, a high
11S-to-7S ratio is desirable because it increases the firmness and water-holding capacity of the
gel (Yagasaki et al., 2000).

Among the soybean essential amino acids, glutamic acid is the most abundant (Van Etten
et al., 1959). Glutamic and aspartic acids account for 25% of the total of amino acids, followed
by the hydrophobic side amino acids: lysine, arginine, histidine, glycine, alanine, valine, leucine,
and isoleucine. The hydrophobic amino acids make up 20% of the total amino acid content. An
additional smaller group, constituted by the aromatic amino acids phenylalanine, tyrosine, and
tryptophan, account for 9% (Zarkdakas et al.,1993).

A rapid accumulation of protein occurs during the reproductive stage (Kim et al., 2006a),
reaching 61% of total protein content at maximum fresh weight stage (MFWS) (Rackis, 1981).
The MFWS begins right after R6, about 45 to 50 days after flowering (DAF), when the seeds are
still green but the pods start turning yellow (Rackis et al., 1972). High-molecular-weight
proteins are the most abundant proteins in mature seeds (Liu, 1997a), achieving their maximum
levels at 36 DAF (Hill and Breidenbach, 1974a,b). Conversely, lower-molecular-weight proteins
are predominant at the earliest stages of maturity (Liu, 1997a). The amino acid contents such as

arginine, serine, glutamic acid, glycine, and leucine increases linearly with seed maturation,



whereas histidine and alanine contents decrease (Yazdi-Samadi et al., 1977). Free amino acid
contents are lowered during maturity (Yanagisawa et al., 1997).

There are three major forms of soybean proteins; flours and grits, concentrates, and
isolates (Wolf, 1970). Flours and grits are the least refined form because they vary in fat content,
particle size, texture, and other properties. Flours are produced by grinding soybean flakes, and
then sifting them through a No. 100 mesh screen with an opening of 0.149 mm. Grits are
characterized for having a particle size larger than a 100 mesh (Horan, 1966). Protein contents
for flours and grits range from 40 to 50% on dry-weight basis. Concentrates are made from
defatted flakes or flour, and their protein content is around 70%. Isolates are the most refined
soybean proteins, containing 90% or more protein (Meyer, 1966).

Carbohydrates

Carbohydrates are classified into two different groups: soluble and insoluble. In the
soyfood industry, soluble carbohydrates are considered the most important desired seed sugars,
because they affect the quality and taste of soy-based products (Taira, 1990). Soluble
carbohydrates are separated based on their carbon chain length. Thus, glucose and fructose are
monosaccharides, followed in size by the disaccharide sucrose, and then the oligosaccharides
raffinose and stachyose (Hymowitz et al., 1972; Liu, 1997). Sucrose content accounts for 41.3 -
67.5%, raffinose for 5.2 - 15.8%, and stachyose for 12.1 - 35.2% of the total soluble sugars in
soybean seed (Yazdi-Samadi et al., 1977).

High contents of glucose, fructose, and sucrose are desirable; however, low contents of
raffinose and stachyose contents are preferred for the production of soyfoods. Monogastric
animals lack the a-(1,6)-galactosidase enzyme that converts oligosaccharides into digestible

forms such as glucose and fructose (Gitzelmann and Auricchio, 1965). Consequently,



consumption of soybeans with high raffinose and stachyose contents results in low metabolizable
energy, flatulence, and diarrhea (Kuriyama and Mendel, 1917; Rackis, 1974; Hawton et al.,
1996).

There are several studies that describe the accumulation of soluble carbohydrates during
seed formation and development. It has been established that glucose, fructose, and sucrose
decrease in the initial stages of seed formation. Subsequently, their contents remain steady for
about 3 weeks, and then increase towards the end of seed maturation (Yazdi-Samadi et al., 1977;
Min 2008; Obendorf et al., 2009). Similarly, Kim et al. (2006a) reported a comparable pattern of
sucrose accumulation during the reproductive stage. Raffinose and stachyose mostly accumulate
from 40 to 60 DAF, during the drying phase of seed maturation (Yazdi-Samadi et al., 1977; Min
2008; Obendorf et al., 2009; Saldivar, 2011).

Oil

According to the American Soybean Association (2011), soybeans are the most important
oilseed crop worldwide. Average seed oil concentration has been estimated as 20% (dry-weight
basis), however, values as low as 8 to 28% have been observed (Wilson, 2004). Oil is
accumulated in the seed in the form of triacylglycerol (Hajduch et al., 2005).

Fatty acid content in soybean oil is composed of 110 to 120 g kg™'palmitic acid (C16:0),
40 g kg™ stearic acid (C18:0), 230 to 240 g kg™ oleic acid (C18:1), 530 g kg™ linoleic acid
(C18:2),and 70t0o 80 g kg'1 linolenic acid (C18:3) (Wilson, 2004; Liu, 2005).

Soybean oil has some undesirable characteristics including low oxidative stability, which
has a negative effect on its shelf life and durability at high temperatures. Additionally, its low
cold-flow capacity can be an obstacle for biodiesel production. However, other components such

as monounsaturated fatty acid (i.e. oleic acid) can improve functionality of soybean oil at high



concentrations (>500 g kg'l) (Wilson, 2004). Likewise high palmitate content is desirable
because it increases the oil oxidative stability which is beneficial for industrial and food
purposes. Palmitate is considered one of the most desired saturated fatty esters in soybean oil
(Shen et al., 1997).

Seeds reach 5% oil (dry weight basis) at 25 DAF (Rubel et al., 1972). Then, oil
percentage increases rapidly until 40 DAF. At this stage, oil accumulation makes up for 30% of
the total oil of the mature seed. The remaining oil is synthesized during the next 40 to 64 DAF,
which is also the drying phase of seed maturation (Hajduch et al., 2005). Percentages of palmitic,
stearic, and linolenic acid in the oil decrease with seed maturation, whereas percentages of oleic
and linoleic acid increase (Rubel et al., 1972).

Mineral and vitamins

Potassium is the most abundant mineral in soybean seed, followed by smaller amounts of
P, Ca, Mg, S, Cl, and Na, whose concentrations range between 0.2 and 2%. Minor minerals
content range between 0.01 to 140 ppm, and include Si, Zn, Fe, Cu fluorine, Mn, and Cd (Liu,
1997). In general, mineral content remains steady during maturation (Rackis, 1981).

Soybean vitamins can be classified based on their solubility. Soluble vitamins include
vitamin B whose main constituents are thiamine (vitamin B;), riboflavin (vitamin B,), pyridoxine
(vitamin Bg), and niacin (vitamin Bj;) (Lebiedzinska and Szefer, 2006). Concentrations of
vitamins B, B,, and Bj are usually 13 to 19 ppm, 3 to 4 ppm, and 20 to 26 ppm, respectively.
Other soluble vitamins include pantothenic acid and folic acid whose contents range from 15 to
37 ppm and 1 to 2 ppm, respectively (Burkholder and McVeigh, 1945).

Insoluble or fat-soluble vitamins include vitamin A, whose main component is 3-

carotene, and vitamin E, which is composed mainly of four tocopherols (a-, -, y-, and 8-



tocopherol). These tocopherols are natural chain-breaking antioxidants that can inhibit lipid
degradation (Packer and Landvik, 1989; Carrao-Panizzi, 2007). It has been established that [3-
carotene content decreases with maturation (Rackis, 1981). Vitamin E content in soybean seed
varies with values ranging from 10.9 to 28.4, 150 to 191, and 24.6 to 72.5 ng/g (dry basis) for a-,

Y-, and d-tocopherols, respectively (Guzman and Murphy, 1986).

Other seed components
Phytate

In soybean, P is in a complex as phytic acid, or myo-inositol-1, 2, 3, 4, 5, 6-
hexakisphosphate or Ins Pg (salt form: ‘phytate’). Phytates include Ca™*, Mg, Zn*", and Fe**
salts of hexaphosphoric acid (Oltmans et al., 2005). Phytate is indigestible to monogastric
animals due to the lack of the enzyme phytase in their gastrointestinal tract which is necessary to
catalyze the breakdown of phytate into digestible forms. Thus, most of the P passes through the
intestinal tract of the animal without being used and is then excreted as waste. This manure
contributes to environmental pollution when in contact with ground or surface waters by
promoting eutrophication (Sharpley et al., 1994; Burkholder et al., 2007; Saghai -Maroof et al.,
2009) Moreover, when phytate is consumed, this polianion chelates the cations Ca, Zn, and Fe,
which are key minerals in the animals’ diet (Raboy et al., 2001). According to Rackis (1981),
phytate accumulates during seed maturation and concentration ranges from 1000 to 3000 pg g™
Isoflavones

Flavonoids are polyphenolic phytochemicals. These phenolic compounds have low
molecular weight and are produced as secondary metabolites. According to the International

Union of Pure and Applied Chemistry (IUPAC) (1995), flavonoids are derived from 2-



phenylchromen-4-one, ‘neoflavonoids’ derived from 4-phenylcoumarin, and ‘isoflavonoids’
derived from 3-phenylchromen.

The main isoflavones in soybeans are genistein (4°,5,7-trihydroxyisoflavone) and
daidzein (4’,7-dihydroxyisoflavone). Glycitein (4°,7-dihydroxy-6-methoxyisoflavone) is
considered a minor isoflavone (Anderson and Wolf, 1995). In general, genistein tends to
accumulate in larger quantities in soybeans, compared to daidzein (Murphy et al., 1999).
Isoflavone concentrations have been reported to increase with seed maturation from 20 to 22 mg
g (Rackis, 1981).

Lipoxygenases

Lipoxygenases are enzymes that catalyze the oxygenation of polyunsaturated fatty acids
to form monohydroperoxides (Yenofsky et al., 1988). These enzymes are part of several
physiological processes, including plant growth, fruit ripening, abscission (Veldink et al., 1977),
senescence (Leshem, 1984), and responses to biotic and abiotic stresses (Shin et al., 2012).
Soybean seeds possess three lipoxygenases: LOX1, LOX2, and LOX3. Their enzymatic activity
causes the characteristic beany flavor of the soyfoods (Kitamura et al., 1985). It has been
reported that such activity increases with seed maturation producing a final concentration

between 0.84 and 1.39% (Rackis et al., 1972).

Environmental effects on soybean seed composition

The percentages of seed components have been reported to be affected by genotypic and
environmental factors (Cicek et al., 2006). Ren et al. (2009) studied the effect of high
temperature on soybean seed composition under environment-controlled chamber conditions.

Forty plants from the breeding line N98-4445A (mid-high oleic acid content) were grown at a
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27/18°C day/night temperature with a 13.5-h day photoperiod of 880 pmol m 2 s™'. Once the
plants reached the RS stage, half of the plants were discarded and 10 out of the remaining plants
were treated with a 37/30°C day/night temperature with a 13.5-h day photoperiod of 880 umol
m *s ' from the R5 stage until the R8 stage. Results indicated that high temperature increased
total fatty acid concentration, while no significant effect was observed on individual sugar
(sucrose, raffinose, and stachyose), protein, and phytic acid concentrations.

In a different study, Gao et al. (2009) studied the effect of the agronomic management
systems: tilled with conventional chemical inputs (CT), no-till with conventional chemical inputs
(NT), tilled with low chemical inputs (LI), and tilled with no chemical inputs (ORG), on total oil,
oleic acid and linolenic acid soybean content over five years. Results indicated that there was no
significant effect on total oil content and oil yield on a land-area basis and management systems
had negligible differences among treatments. Likewise, no significant treatment effect was
observed on oleic acid and linolenic acid content across years.

More recently, VanToai et al. (2012) conducted a study to evaluate the effect of flooding
on seed composition of five soybean plant introductions tolerant to this stress and the sensitive
cultivar Williams when grown in three different environments. Results showed a significant
decrease in linoleic and linolenic acids, daidzein, genistein, and glycitein contents while oleic
and stearic acid increased in all the genotypes studied. No significant environmental effects were
observed on palmitic and linolenic acid, and glycitein concentrations.

Furthermore, Taira (1990) reported that protein, 7S and 11s globulins, amino acids,
linolenic acid, and raffinose and stachyose content were primary affected by genotype, whereas
sucrose was mainly influenced by location. He also observed significant yearly variations of oil,

and oleic and linolenic acids, and sucrose, total sugar content. Geater et al. (2000) evaluated the
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effect of genotype and environment on the seed traits total sugar, sucrose, raffinose, stachyose,
protein, oil, protein + oil, fiber, and protein + oil + fiber. Sixteen small-seeded natto lines were
grown in three different locations and for two years. Significant differences among the genotypes
were observed for one or both years for all traits studied except fiber. Additionally, significant
differences among locations and years were reported for all traits except stachyose.

Arslanoglu et al. (2011) evaluated the effects of genotype, environment, and their
interaction on oil and protein content in eight soybean cultivars grown at eight different locations
in Turkey during two years. The genotype x environment interaction effect was significant on the
two traits studied (p < 0.01). Likewise, differences among genotypes were significant as well as
differences among locations for oil and protein content with values ranging from 18.3 to 23.1%
and 29.2 to 38.6%, respectively.

In a bigger study, Carrera et al., (2011) evaluated the effect of climatic variables on
amino acid composition during seed filling. Nine soybean genotypes were grown in 31
environments, resulting from combining 13 locations and different planting dates during two
years. Climatic variables included average daily temperature, cumulative solar radiation, and
precipitation minus potential evapotranspiration. Environment accounted for most of the total
variation for all traits studied followed by the genotype x environment interaction. Total amino
acid concentration ranged between 31.7 and 49.1% while total essential and non-essential amino
acids varied from 12.8 and 19.0% and from 18.9 and 31.2%, respectively.

Cober et al. (1997) evaluated the environment and genotype x environment effects on oil
and sugar soybean seed content in two independent experiments. Contrary to Geater et al. (2000)
findings, no significant location effects on either of the traits studied were observed, whereas

genotype x environment interactions were negligible for both traits but their variance
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components had a lesser magnitude than that of the genotype effect alone.

In a separate study, Geater and Fehr (2000) observed significant differences among
cultivars for total sugar content. The range of values in the study was greater among cultivars
than among locations. As a result, genotype was suggested to have a greater influence than
environment on total sugar content. In a different study, Dardanelli et al. (2006) reported that
maturity group had a significant effect on seed oil content in soybean. In the same study,
maturity group x environment effects were greater for protein and protein and oil content

combined than those for oil.

Development of new cultivars

The main objective of plant breeding is to develop new cultivars with desirable traits by
using the genetic variability available (Jauhar, 2006; Sleeper and Poehlman, 2006). Traditional
plant breeding involves a series of generational advances and subsequent selections until the
desired trait(s) become(s) stable and genetically uniform (homozygous). Breeding lines
containing the desirable trait(s) are then evaluated for agronomic performance across locations
and years. For this reason, in general, the development of new cultivars requires substantial time
and resources.

Furthermore, the nature of inheritance of these desired traits will determine the level of
complexity of the breeding process. Correlations among traits must be considered when making
selections since selecting one trait may result in another trait being enhanced or diminished.

There are several studies on relationships among soybean traits. Wilcox and Shibles (2001)
reported that yield is negatively correlated with seed protein content and positively correlated

with oil. Also, a negative correlation between protein and oil has been established (Hartwig et
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al., 1997; Filho et al., 2001; Wilcox and Shibles, 2001).

Furthermore, soybean seed Ca content was positively associated with water absorption (Saio,
1976), phytate content (Schaefer and Love, 1992), and seed hardness (Chen et al., 1993).
However, other studies have shown no relationship between Ca content and water absorption
(Mullins and Xu, 2001; Wei and Chang, 2004). Additionally, negative correlations between seed
size and seed hardness (Zhang et al., 2008) and seed size and linoleic acid (Maestri et al., 1998)
were observed. Maestri et al. (1998) also indicated that seed size was positively associated with

stearic and oleic acids.

Molecular markers

Traits present different levels of complexity which depend upon the number of genes that
control them. Moreover, the different correlations, the effects that the environment may have on
them, and time invested for their measurement make their study difficult. For these reasons, the
use of molecular markers that are linked to the gene(s) of interest has become an effective
alternative when breeders want to develop cultivars with specific characteristics in a time-
efficient manner.

Quantitative traits are affected by multiple genes and each of these genes has a small
effect that adds up to the total effect (Falconer, 1989). Additionally, these traits are greatly
affected by the environment and are controlled by quantitative trait loci (QTL). A QTL is either
considered the region of the chromosome to which a molecular marker (DNA sequence) is linked
or the region defined by two bordering markers that are not necessarily linked to the QTL
(Melchinger, 1998).

There are several types of molecular markers including Amplified Fragment Length
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Polymorphism (AFLP), Restriction Fragment Length Polymorphism (RFLP), Random Amplified
Polymorphic DNA (RAPD), Single Sequence Repeat (SSR), and more recently, Single
Nucleotide Polymorphism (SNP).

In general, AFLP and RFLP techniques involve digestion of genomic DNA by restriction
enzymes to produce small fragments; fragments are amplified and their size is determined. Both
markers allow amplification of specific restriction fragments and distinction of heterozygous loci
in the population studied (codominance). However, the procedures require large amounts of
DNA and their execution is cumbersome (Rafalski et al., 1991).

With RAPD markers, random segments of genomic DNA are amplified. The main advantage
of this technique is that small amounts of DNA are required as compared with RFLP. However,
RAPD markers are dominant which means that they only identify one allele at a locus. Thus,
they cannot be used to detect heterozygous loci (Rafalski et al., 1991).

Microsatellites, or SSR markers, are stretches of DNA in which the same short nucleotide
sequence (2-4 base pairs) is repeated. Polymorphism (different alleles) is determined by the
number of times the short sequence repeats. Then, DNA fragments are amplified by Polymerase
Chain Reaction (PCR) and separated through gel electrophoresis. These markers are codominant;
therefore, it is possible to distinguish between the heterozygote and homozygote.

Alternatively, SNP markers determine differences at the single nucleotide sequence level.
Advantages to this technique are that SNPs span the whole genome which provides great
coverage. Additionally, sample processing may be completely automated and the use of pre-

made chips makes this procedure very time efficient.
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Molecular linkage groups (MLG)

Linkage groups are composed by linked genes on the same chromosome. Soybeans have
20 linkage groups and a diploid number of 2n = 40. The number of linkage groups corresponds
to the haploid number of chromosomes (Roberts, 1986). The current soybean genetic map was
developed through combination of molecular data coming from the five mapping populations
‘Minsoy’ x ‘Noir 1°, ‘Minsoy’ x ‘Archer’, ‘Archer’ x ‘Noir 1°, ‘Clark’ x ‘Harosoy’, and A81-
356022 x PI1468916. The 20 chromosomes represent 2,523.6 cM and contain a total of 1,849
markers among SSRs, RFLPs, RAPDs, AFLPs, morphological traits, isoenzymes, and others
(Song et al., 2004).

The nomenclature for 11 linkage groups was designated by Zou et al. (2003). According
to Soybase, the remaining nine linkage groups were assigned chromosome numbers in

descending order depending on the linkage group genetic length (Table 1).

QTLs for soybean agronomic traits

Several studies have been carried out using molecular markers to identify QTLs associated
with the expression of quantitative traits in soybean. Unfortunately, many of these QTLs have
proved to be not reproducible across populations with diverse genetic backgrounds. For this
reason, it is essential to find QTLs that can be mapped in different populations and, thus, be
potentially used as effective tools for marker-assistance selection. This section of the literature
review will present some studies on QTL identification for soybean agronomic traits.

Zhang et al. (2004) conducted a study in which 184 recombinant inbred lines (RILs) derived
from the cross Kefeng No.1 x Nannong were screened with RFLPs, SSRs, and expressed

sequence tags (ESTs) for 10 agronomic traits including days to flowering and maturity, plant
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height, number of nodes on main stem, lodging, number of pods per node, protein content, 100-
seed weight, and yield. A total of 63 QTLs were found for the traits studied. These QTLs were
mapped to 12 chromosomes and accounted for 4.2 to 27.5% of the phenotypic variation;
however, most of them were clustered on chromosomes 6 and 11. Additionally, pleiotropism was
observed as some QTLs were mapped to the same loci. It was reported that one QTL could
control up to five traits (Zhang et al., 2004).

In a different study, Hyten et al. (2004) developed a population consisting of 131 Fe-
derived lines derived from the cross Essex x Williams, with the objective of identifying QTLs
associated with protein seed content, oil seed content, and seed size. One hundred polymorphic
markers were used to screen the population. Four QTLs for protein were found on chromosomes
6 (between Satt277 and Satt202), 13 (between Satt335 and Satt144), 9 (between Satt539 and
Satt102), and 7 (between Satt540 and Satt463). These markers accounted for 13.6 to 27.6% of
the phenotypic variation. Six QTLs were found to be associated with oil content and were
mapped to chromosomes 6 (between Satt277 and Satt460), 1 (between Satt184 and Sattl179), 17
(between Satt458 and Satt154), 19 (between Satt166 and Dtl and between Satt229 and Satt373),
and 7 (between Satt540 and Satt463). All of these markers explained between 6.0 and 20.0% of
the phenotypic variation.

Panthee et al. (2007) used SSRs to screen 101 Fe-derived RILs from a population
developed from the cross N87-984-16 x TN93-99 for five agronomic traits; yield, lodging, plant
height, seed filling period, and maturity. Results indicated that there was one QTL for yield
(close to Satt076 on chromosome 19), two for lodging (close to Satt225 and Satt593 on
chromosome 5), and four for maturity (close to Satt263, Satt293, Satt292, and Satt591 on

chromosomes 15, 12, 20, and 5, respectively). The QTLs for lodging explained from 20.6 to
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32.7% of phenotypic variation while QTLs for maturity accounted for 12.8 to 25.7% of the
phenotypic variation observed. The QTL reported for yield explained 13.8% of the phenotypic
variation.

Moreover, Chen et al. (2007) used a population of 154 F;.;o RILs derived from the cross
Charleston x Dongnong to construct a linkage map for 12 agronomic traits. The progeny was
screened with 164 SSRs and the traits evaluated included protein content (P), oil content (O) and
P+O contents, pods per plant, seed weight per plant, 100-seed weight, plant height, days to
maturity, branches, nod number in main stem, average leaf length, and average leaf width. They
reported 68 QTLs for all traits evaluated. Number of QTLs per trait ranged from 3 to 11.

In a more recent study, Xie et al. (2012) used 125 RILs of Fs.7, Fs.g, and Fs.9 generations
derived from the cross Hefeng 25 and Dongnong L-5, to identify QTLs associated with linolenic
acid content and polyunsaturated fatty acids content. The progeny was screened with 112 SSRs
in order to construct a genetic linkage map. Results indicated four QTLs for palmitic acid that
were mapped to chromosome 17 (near Satt389), 16 (near Sat_144), 18 (near Sat_164), and 9
(near Satt727) which explained between 2.5 and 15.2% of the phenotypic variation. One QTL
mapped to chromosome 2 (close to Satt701) was identified to be associated with stearic acid
content and accounted for approximately 13.5% of the phenotypic variation. Four QTLs
associated with linoleic acid content were found; one on chromosome 18 (near Sat_164), one
chromosome 17 (near Satt389), one on chromosome 16 (near Sat_144), and one chromosome 14
(near Satt726). These markers explained between 3.2 and 27.5% of the phenotypic variation. Six
QTLs for linolenic acid content, four of them were mapped to chromosome 14 (close to Satt729,
Fad3a-4, Fad3b-1, and Fad3bc-1), one to chromosome 2 (close to Satt701), and one to

chromosome 18 (close to Sat_164). These markers accounted for 5.3 - 37.3% of the phenotypic
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variation. Additionally, four QTLs were identified for oleic content and mapped to chromosomes
9 (near Satt544), 16 (near Sat_144), 17 (near Satt389), and 18 (near Sat_164). These markers
explained between 5.8 and 20.7% of the phenotypic variation for the trait.

Lately, increasing interest in the potential health benefits of soybean consumption has
prompted the development of studies to identify QTLs for other seed components. Thus,
Primomo et al. (2005) conducted a study with the objective of identifying QTLs associated with
individual and total isoflavone contents. In order to do this, a population of 207 F4.¢ RILs was
developed from the cross AC756 x RCAT Angora. A total of 99 SSR polymorphic markers were
used to construct the genetic linkage map. Results revealed four QTLs associated with daidzein:
Satt538, Satt181, Satt201, and Satt245. The first and second markers were located on
chromosomes 8 and 12 while the last two were on chromosome 7; these markers accounted for
4.2 to 17.6% of the phenotypic variation. Four QTLs were found for genistein content: Satt289
on chromosome 6, Satt181 on LG 12, and Satt201 and Satt245 on chromosome 7.These markers
explained between 5.2 and 31.4% of the phenotypic variation. Five QTLs were identified to be
associated with glycitein content: Satt129 on LG1, Satt547 on LG 16, Satt196 on chromosome 9,
and Satt521 on LG 7. These markers accounted for 4.2 to 9.3% of phenotypic variation.
Additionally, four QTLs were found to be associated with total isoflavone content and were
located close to the markers Satt289 on chromosome 6, Satt181 on chromosome 12, and
Satt201and Satt245 on chromosome 7 and explained between 3.9 and 25.5% of the phenotypic
variation.

In a different study, Li et al. (2010) developed an Fs-derived F6 RILs population with
144 individuals from the cross OAC Bayfield x Hefeng 25. The first parent is a soybean cultivar

which is well known for having high vitamin E content while Hefeng 25 has a low content. The
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genetic linkage map was constructed with 107 polymorphic SSR markers. Results showed four
QTLs associated with a-tocopherol content; QaB2 1 (Sat 177, LG14), QuaC2 1 (Satt376, LG
6), QuD1b 1 (Satt266, LG 2), and Qal 1 (Satt440, LG20). These markers explained between
4.3 and 16.7% of the phenotypic variation. Eight QTLs were reported to be associated with -
tocopherol, QyC1 _1 (Satt 565, LG 4), QyC2_1 (Satt286, LG 6), QyG 1 (Satt199, LG 18),
QyD1b-1 (Satt266, LG 2), and QyO-1 (Satt576, LG 10), and accounted for 2.8 to 13.0% of the
phenotypic variation. Four QTLs were found to be associated with d-tocopherol content,
Q0A2 1 (Sat 383, LG 8), Q6Dla 1 (Satt179, LG 1), QOF 1 (Sat 262, LG 13), and QoI 1
(Satt354, LG 20). These markers explained 4.2 to 10.2% of the phenotypic variation.
Additionally, five QTLs were found to be associated with total vitamin E content, QTVEC2 1
(Satt376, LG6), QTVEC2-2 (Satt286, LG6), QTVE D1b_1 (Satt172, LG2), QTVEN 1
(Sat_125, LG3), and QTVEO 1 (Satt592, LG10). These markers accounted for 2.9 to 10.9% of

the phenotypic variation.

QTLs associated with main soybean seed carbohydrates
Sucrose

Maughan et al. (2000) used RFLP, SSR, and RAPD markers to identify and characterize
QTLs controlling sucrose content in an interspecific F, soybean population derived from the
cross V71-370 x P1 407162. Seventeen markers mapping to seven chromosomes (5, 7, 8, 13, 15,
19, and 20) were significantly associated with sucrose content. Individual markers explained
between 6.1 and 12.4% of the total sucrose variation while combined they explained 53% of total
phenotypic variation. The major markers accounting for most of the variation were located on

chromosome 20 (Table 2).
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Later, Feng et al. (2005) developed a population derived from the cross MFS-591 x Camp
and used SSR markers to identify different sugars. They reported a QTL for sucrose on
chromosome 18, which accounted for 12.9% of the variation in sucrose content (Table 2).
Similarly, Kim et al. (2005; 2006b) used SSR markers to screen two populations with a common
parent and reported six additional QTLs for sucrose content on chromosomes 2, 11, 12, 16, and
19, that explained between 3.6 and 17.3% of the phenotypic variation (Table 2). More recently,
Zeng et al. (2014) used SSRs and SNPs markers on a population derived from MFS-553 x PI
243545 and identified three QTLs for sucrose on chromosomes 5, 9, and 16 that explained 46,
10, and 8% of phenotypic variation, respectively (Table 2).

Stachyose

Sebastian et al. (2000) produced soybean germplasm with low raffinose and stachyose
content by using three different approaches. The first approach was to conduct germplasm
surveys which required the screening of soybean germplasm collections, the second approach
included induction of mutations conferring the desired traits, and the third approach consisted of
recombination of the major genes obtained through the two previous approaches. The line LR28
was identified in germplasm collection for having low raffinose and stachyose content. Sebastian
et al. (2000) developed F; populations derived from crosses between four elite lines and LR28.
The segregation ratio for the four populations fit the genetic model of a single recessive gene,
which was then designated as stcla.

In the same study, Sebastian et al. (2000) performed an allelism test between LR28 and
the low raffinose and stachyose line LR484, developed by mutagenesis. Results indicated the
existence of a single recessive gene stc1b in LR484, which conferred low raffinose saccharide

content and was allelic to stcla in LR28.
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Furthermore, Sebastian et al. (2000) evaluated the raffinose saccharide content of line
LR33 and compared it with wild-type soybeans. The initial tests showed very little differences;
however, after further research, LR33 appeared to be segregating for a mutation that eliminated a
high percentage of the raffinose saccharide content. This new mutation, called mips, was
obtained by chemical mutagenesis. In those soybean lines with the mips genotype, the stachyose
level was reduced to 5 pmol g of seed dry weight and raffinose was reduced to 10 pmol g™, as
compared with 75 pmol g™ of stachyose, and 20 pumol g™ of raffinose in conventional Mips lines.
The combination of the mips gene and stc1x genes had additive effects which resulted in a
dramatic reduction of raffinose and stachyose content.

Feng et al. (2005) reported the existence of one QTL for stachyose on chromosome 10
that explained 18.8% of the phenotypic variation observed. Additionally, Skoneczka et al. (2009)
developed populations from PI 87013 x PI200508 and PI 243545 x PI200508 and reported a
QTL for stachyose on chromosome 6 of PI200508 that explained up to 94% of the phenotypic
variance. Further study of the genomic region suggested that the low stachyose content in
PI1200508 was due to a 3 bp deletion in the galactosyltransferase gene. This mutation reduces the
activity of the enzyme with the same name, which is also involved in the stachyose synthesis
pathway.

Furthermore, Maupin et al. (2011) reported that the SSR marker Satt453 on chromosome
11 had 87% selection efficiency in a marker-assisted selection of low stachyose lines (Table 3).
Additionally, Jaureguy (2009) identified three SSR markers on chromosome 10 which were
linked to stachyose content. He also reported a QTL for this trait flanked between Satt262 and
Sat 282 that explained 48% of the stachyose variation observed (Table 3). More recently, Zeng

et al. (2012) used SSR and SNP markers on a population derived from the cross Osage x V99-
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5089 and identified two QTLs for stachyose on chromosomes 10 and 11, which explained 11 and
81% of the phenotypic variation, respectively. These QTLs were stable across environments
(Table 3).

There have been a few studies that aimed to identify the possible correlations between
sucrose and stachyose and between these carbohydrates and other soybean traits. Results
indicated that sucrose content is positively associated with yield (Cicek et al., 2006); however,
no relationship could be established between this last trait and stachyose content (Cicek et al.,
2006: Neus et al., 2005). Additionally, a negative correlation between sucrose and stachyose
content has been reported (Neus et al., 2005; Hymowitz et al., 1972).

The previously described trait associations seem to indicate that the selection of soybean
lines with high sucrose contents could also lead to a concurrent increase in oil content. However,

stachyose and protein seed contents may be diminished by these breeding efforts.

Research Justification and Objectives

The soyfoods industry has grown in the last few decades due to the increased demand for
these products, resulting from public awareness about their nutritional and health benefits. High
sucrose content is a desirable trait because it affects the quality and taste of soyfoods. However,
low stachyose content is desired since its intake causes flatulence and diarrhea in monogastric
animals. For these reasons, the development of food-grade soybean lines with modified sugar
profiles is essential in order to satisfy market demands.

The development of QTL and molecular markers has speeded up the selection process in
breeding for certain traits. However, few QTLs and markers have been identified for sucrose and

stachyose content. Additionally, several of these markers have proven irreproducible. This
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certainly becomes an obstacle when they need to be used to screen populations with different
genetic backgrounds.

The overall objective of this research is to investigate the genes/QTLs associated with
high-sucrose and low-stachyose content in soybean seed. To address this objective, this research
will be divided into three areas of study. The objective of the first area of study is to perform an
allelism test in order to confirm the genotype segregation model in a soybean population derived
from a low-by-low-stachyose cross, which previously showed the existence of two different
recessive genes controlling the low-stachyose content in soybean seed. The second objective is to
identify and/or confirm QTLs/genes for stachyose content. Lastly, the third objective is to

identify and/or confirm QTLs/genes for sucrose content.

Implications

The two main possible benefits/products of this research are: (1) new reproducible
breeding tools that allow the rapid selection of soybean lines with desired sugar profile and (2)
confirmed genetic sources of high-sucrose and low-stachyose content that can be used in

breeding food-grade soybeans for specialty markets.
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Table 1. Soybean Linkage Groups.

Chr.” LG cM*
1 Dla 98.41
2 DIb 140.63
3 N 99.51
4 Cl 112.32
5 Al 86.75
6 C2 136.51
7 M 135.15
8 A2 146.67
9 K 99.60
10 0 132.89
11 Bl 124.24
12 H 120.50
13 F 120.03
14 B2 108.18
15 E 99.88
16 I 92.27
17 D2 119.19
18 G 105.00
19 L 101.14
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Table 1. Soybean Linkage Groups (Cont.).

Chr. " LG*

cM#

20 I

112.77

T Chromosome.
* Linkage group.

# Chromosome length in centimorgans.
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Table 2. Molecular markers reportedly associated with soybean seed sucrose content.

Marker type QTL name Chr.! Marker cM? % V§ Parents Reference
RFLP Sucrose 1-1 5 A487 1 8.8 8.1 PI 407162 x V71-370 Maughan et al. (2000)
SSR Sucrose 1-9 7 GMSC51 3.1 7.3 PI 407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-2 8 Al136 1 71.4 8.7 PI 407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-3 8 T153 1 50.4 7.6 PI 407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-5 13 A186 1 64.9 9.6 P1407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-10 15  A963 1 17.1 6.9 P1407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-6 19  A023 1 36.7 9.7 P1407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-7 19 Bl64 1 353 9.6 P1407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-8 19 Bl62 2 49.4 7.0 P1407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-4 20 Al44 1 324 12.4 P1407162 x V71-370 Maughan et al. (2000)
RFLP Sucrose 1-13 8 A486 1 53.2 8.4 PI1 407162 x V71-370 Maughan et al. (2000)
SSR Unassigned 18 Satt324 333 12.9 MFS-591 x Camp Feng et al. (2005)
SSR Sucrose 2-2 2 Satt546 87.2 6.4 Keunolkong x Iksan10 Kim et al. (2005)
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Table 2. Molecular markers reportedly associated with soybean seed sucrose content (Cont.).

Marker type  QTL name Chr.! Marker cM? % V%  Parents Reference
SSR Sucrose 2-1 11 Satt197 46.4 3.6  Keunolkong x Iksan10 Kim et al. (2005)
SSR Sucrose 2-3 19 Satt523 29.9 4.1 Keunolkong x Iksan10 Kim et al. (2005)
SSR Sucrose 2-4 19 Satt278 31.2 17.3  Keunolkong x Tksan10 Kim et al. (2005)
SSR Sucrose 3-4 12 Satt442 46.9 8.3 Shinpaldalkong x Keunolkong Kim et al. (2006)
SSR Sucrose 3-6 16 Sct_065 32.1 8.3  Shinpaldalkong x Keunolkong Kim et al. (2006)
SNP Sucl 5 $s245668753  125.1 46 MFS-553 x PI 243545 Zeng et al. (2014)
SNP Suc2 9 $s246796276  76.1 10 MFS-553 x PI 243545 Zeng et al. (2014)
SNP Suc3 16 $s249186914  277.3 8 MFS-553 x PI 243545 Zeng et al. (2014)

T Chromosome.

* QTL position in centimorgans.

$ Percentage of phenotypic variation explained by the marker.



Table 3.Molecular markers reportedly associated with soybean seed stachyose content.

8%

I\/Itz;l;)lzer QTL name Chr.! Marker cM* % V¥ Parents Reference
SSR Unassigned 10 Satt347 42.3 18.8  MFS-591 x Camp Feng et al. (2005)
SSR Unassigned 10 Sat 282 59.4 48.0 MFL-552 x R95-1705  Jaureguy et al. (2009)
SSR Unassigned 10 Sattl73 534 37.0  MFL-552 x R95-1705  Jaureguy et al. (2009)
SSR Unassigned 10 Satt262 54.1 40.0 MFL-552 x R95-1705 Jaureguy et al. (2009)
SSR Unassigned 11 Satt453 1084  28.0  V99-5089 x Essex Maupin et al. (2011)
SNP Stal 10 Sat 282 - 40.3 11.0  Osage x V99-5089 Zeng (2012)
. . X -

BARC-029531-06209" 8 8

BARC-013547-01157 —
SNP Sta2 11 BARC-018869-030311 6.0 79.0  Osage x V99-5089 Zeng (2012)

" Chromosome.

* QTL position in centimorgans.
¥ Percentage of phenotypic variation explained by the marker.
Y QTLs were located in the interval between these markers.



I1. Identification of Quantitative Trait Loci / Genes for Sucrose Content in Soybean Seed

Abstract

Sucrose is the most abundant soluble carbohydrate in soybean seed. It affects the quality
and taste of soyfoods and also increases the metabolizable energy in animal feed. Thus, breeding
for high-sucrose soybean cultivars is driven by the demand for livestock feed and the
development of food-grade soybeans. The objective of this study was to identify quantitative trait
loci (QTL) for sucrose content using single nucleotide polymorphisms (SNP). An F,-derived
mapping population was developed from the cross between a regular sucrose line (V97-3000)
and a high-sucrose line (V99-5089). A total of 92 F,.3 lines were genotyped with 5361 SNP
markers which covered the 20 soybean chromosomes and, from these, 1720 were polymorphic.
Seed samples were collected at F».3, F2.. and F,.7 generations, and sucrose analysis was
performed by using high performance liquid chromatography. Subsequently, linkage maps were
constructed with JoinMap® software and composite interval mapping (CIM) was conducted to
locate QTLs associated with sucrose content. Two QTLs for seed sucrose content were identified
on chromosomes 6 and 10, accounting for 17 and 11% of the phenotypic variation observed for
this trait. Their net contribution was 0.57 and 0.56% to sucrose increase, respectively. The
sucrose QTL on chromosome 10 is located on a similar genetic region of another QTL
previously reported, which suggests that these two QTL may be the same. The other sucrose
QTL on chromosome 6 has not been previously reported, which indicates that this is a novel
QTL. Molecular markers tightly linked to these QTLs could be used for marker-assisted

selection in breeding soybean lines with high- sucrose profile.
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Introduction

Consumption of soybeans has been part of the Asian diet for more than 1000 years.
However, soyfood consumption in the United States has only become popular in the last few
decades. This increase in demand has largely been due to the advertised health benefits
associated with soybean consumption (Golbitz, 1995). Soyfoods can be classified as traditional
non-fermented products or traditional fermented products. The first category is mainly
dominated by tofu (soybean curd), soymilk (soybeans soaked, finely ground, and strained), and
edamame (vegetable soybeans); while the second category include products such as natto
(fermented whole soybean), miso (fermented soup-base paste), and tempeh (made of whole
cooked soybeans) among others (Cui et al., 2004).

In general, soybean seed is comprised of 40% protein, 35% carbohydrates, 20% oil, and
5% ash on a dry-weight basis (Liu, 1997). Soluble carbohydrates account for up to 47% of the
total carbohydrate content (Hymowitz and Collins, 1974). Main soluble sugars are, in order of
abundance, sucrose, stachyose, and raffinose; the concentrations of these sugars range between
2.5 and 8.2%, 1.4 and 4.1%, and 0.1 and 0.9%, respectively (Hymowitz et al., 1972). Glucose
and fructose are considered minor sugars because they account for less than 1% (Hymowitz and
Collins, 1974; Liu, 1997). Among the soluble sugars, sucrose is important in breeding for food-
grade soybean, because it influences the sweetness of the products (Rackis, 1975).

Even though genetic variability has been reported for sucrose content in soybean
germplasm (Hymowitz et al., 1972; Hou et al., 2009), its content is also affected by possible
interrelationships with other seed quality traits. Thus, Wilcox and Shibles (2001) and Jaureguy
(2009) proposed that seed protein and sucrose contents are negatively correlated, which increases

the challenge of developing soybean breeding lines with high contents of both protein and
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sucrose. Additionally, a negative correlation between sucrose and stachyose content has been
reported (Hymowitz et al., 1972; Hitz et al., 2002; Florez-Palacios, 2009; Skoneczka et al.,
2009). Although food-grade soybeans are required to have high sucrose content and low-
oligosaccharide content, specific sugar profiles are needed based on the soy-based product that is
being manufactured. For instance, high sucrose content is desired for both tofu and edamame
production, whereas low-sucrose and high-stachyose contents are required for natto fermentation
(Taira et al., 1990). Moreover, Taira et al. (1990) reported a negative association between
sucrose content and the texture of tofu.

Furthermore, accumulation of soluble sugars increases with seed maturation. However, it
has been reported that glucose, fructose, and sucrose contents decreased during the initial stages
of seed formation. Subsequent to that, their concentrations remained unchanged for about three
weeks until the seed began to mature, and then these sugars began to accumulate (Min 2008;
Obendorf et al, 2009; Saldivar, 2011).

Measurement of sucrose content is a cumbersome task; apart from being costly, it is very
labor intensive. For this reason, breeding programs aiming to develop lines with modified
sucrose composition are focused on identifying molecular markers associated to this trait.
Studies on inheritance of sucrose have revealed its polygenic nature which typical from a
quantitative trait (Maughan et al., 2000; Kim et al., 2006; Zeng et al., 2014). Maughan et al.
(2000) developed a breeding population derived from crossing the high sucrose content, large-
seeded breeding line, V71-370, with the low sucrose content, small-seeded G. soja plant
introduction, PI407162. The RLFP, RAPD, and SSR markers were used to identify and
characterize QTLs controlling sucrose. Maughan et al. (2000) identified seven QTLs on

chromosomes 5, 8, 20, 13, 19, 7, and 15 associated with the trait. The seven QTLs combined
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explained 53% of total variation observed.

Feng et al. (2005) used SSR markers to identify QTLs associated with different soluble
carbohydrates in a breeding population derived from the cross between MFS-591 (high sugar
content) and the cultivar ‘Camp’ (low sugar content). As a result, one QTL for sucrose on
chromosome 18 was reported, and it accounted for 12.9% of the variation in sucrose contents.
Additionally, Kim et al. (2005) studied a population derived from crossing the cultivars
‘Keunolkong’ (early maturation, large-seeded) x ‘Iksan10’ (late maturation, small-seeded) and
identified four other QTLs associated with sucrose content on chromosomes 11, 2, and two
regions of chromosome 19. All four QTLs explained 31.4% of the phenotypic variation. A year
later, Kim et al. (2006) developed a breeding population from the cross ‘Keunolkong’ x
‘Shinpaldalkong’, and reported two additional QTLs on chromosomes 12 and 16. Each of these
QTL accounted for 8.3% of the phenotypic variation for sucrose.

Furthermore, Mozzoni (2009) reported two markers on chromosomes 5 and 8 which
increased the sucrose content by 0.3 percent in a breeding population derived from crossing the
soybean cultivar ‘Ozark’ with the breeding line ‘V99-5089°. Additionally, Skoneczka et al.
(2009) obtained two populations derived from the crosses PI§7013 x PI1200508 and P1243545 x
PI1200508, and identified a molecular marker on chromosome 6 that explained 76% of the
phenotypic variation in sucrose content. More recently, Zeng et al. (2014) developed a
population from the cross ‘MFS-553" x ‘PI 243545’ and reported a major sucrose QTL on
chromosome 5 which explained 46% of the phenotypic variation and two minor QTLs on
chromosomes 9 and 16 that accounted for 10 and 8% of the trait variation, respectively.

The existence of a number of QTLs / genes controlling sucrose is expected due to the

nature of the trait. As with any other quantitative character, sucrose is affected by several genes
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with small additive effects, and several markers for sucrose content have been reported
(Maughan et al., 2000; Feng et al., 2005; Kim et al., 2005; Kim et al., 2006; Jaureguy, 2009;
Mozzoni, 2009; Skoneczka et al., 2009; Zeng et al., 2014). However, results from molecular
studies are, in most cases, unrepeatable since the QTLs cannot be confirmed across populations
with different genetic backgrounds and grown under different environmental conditions. This
study seeks to find common markers that lead to their universal use, unique markers specific for
this trait, and new markers that are different from the ones previously reported. Results of this
research will provide an approach in looking for molecular markers linked to the sucrose

variation.

Materials and methods
Population development and field experiment

An F; soybean population segregating for sucrose content was used in this study and both
parental lines were developed at Virginia Polytechnic Institute. The regular sucrose (~5.0 %)
breeding line, V97-3000, was crossed to the high sucrose (~7.7 %) breeding line, V99-5089, in
summer of 2007, at the Arkansas Agricultural Research and Extension Center (AAREC) in
Fayetteville, AR. The F, plants were grown in Fayetteville during summer of 2008, and
morphological markers (leaf shape and seed size) were used to differentiate true hybrids from
selfs and outcrosses. For instance, V97-3000 is a small-seeded line (9 g 100 seed) with a
narrow leaf shape, whereas V99-5089 is a large-seeded line (20 g 100 seed) with a broad leaf
shape. F; plants were then bulked and harvested.

The F, population was grown in Fayetteville in 2009, in 3-m rows with 150 seed per row.

Soybeans were planted with 1-m rows. Plots were irrigated by furrow irrigation and managed
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according to the standard cultural practices for soybean production in Arkansas (Tacker and
Voires, 1998). A total of 150 random F; plants were tagged and identified with a number. At the
end of the season, these tagged plants were harvested individually to form the mapping
population. A sample containing 100 seed was sent to a winter nursery for generation
advancement in 2009. The remnant of the seed from each F;.;line was used for carbohydrate
analysis.

The winter nursery is located near Upala city in the northwestern part of Costa Rica at 52
meters above sea level (Mongabay, 2014). There, each F,; line was grown in a 3-m row with
0.76-m row spacing. A 3-m row spacing of the parental genotypes was planted next to the
segregating population. Soil was cultivated before planting and plots were fully irrigated and
managed during the growing season using standard cultural practices. After two generation
advancements, F».5 seed was brought back to Fayetteville but, unfortunately, the seed quantity
was not enough to grow a test with two replications in two locations. For this reason, it was
decided to do a seed increase in Fayetteville during the growing season in 2010 and then to
establish the test the following year.

In summer of 2011, F,.¢ plants were grown in a randomized complete block design
(RBD) with two replications in two locations. Locations were Fayetteville and Marianna, AR.
The soil in Fayetteville is classified as Captina silt loam soil (Fine-silty, siliceous, active, mesic
Typic Fragiudults) (Soil Survey Staff, 2013), with very deep, moderately well drained soils,
made in a thin mantle of silty material (Soil Series, 2006). The soil in Marianna is classified as a
Calloway silt loam soil (Fine-silty, mixed, active, thermic Aquic Fraglossudalfs) (Soil Survey
Staff, 2013), and is described as very deep, somewhat poorly drained soil that developed in thick

loess or water reworked loess (Soil Series, 2002). Each soybean plot consisted of two 3-m rows,
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each with 150 seed and a 1-m row spacing. Both locations were fully irrigated by furrow
irrigation and managed based on the standard cultural practices for soybean production in
Arkansas (Tacker and Voires, 1998). The youngest fully developed trifoliate of each plant was
sampled, and samples belonging to the same row were bulked for DNA extraction. In the fall of
2010, F,.¢ seed were harvested, a 10-g sample of each plot was used for carbohydrate analysis
and the remnant of the seed was saved to be planted the next season.

Genotypic data

Genomic DNA extraction. After collection, leaf tissue samples were stored in the freezer
at -80 °C. Subsequently, they were ground with liquid N to a fine powder by using a mortar and
a pestle. DNA was extracted using the cetyltrimethylammonium bromide (CTAB) buffer method
(Kisha et al., 1997) in which, a buffer containing SM NaCl, 200mM Tris pH 8.0, 4% (w/v)
CTAB, 0.5 mM EDTA, and 6.4 ml B-mercaptoethanol is added to the samples, followed by
chloroform:isoamyl alcohol (24:1). After incubation for 60 min at 65°C with occasional gentle
mixing, DNA was precipitated, washed with 95% ethanol, and subsequently dissolved in 0.1 x
TE buffer. Concentrations were calculated by measuring the absorbance at 260 nm using a
BioTek Power Wave XS Microplate Spectrophotometer (BioTek, Winooski, VT). DNA was
stored in the freezer at -80°C.

Single nucleotide polymorphism (SNP) genotyping. For genetic map construction, two
replications of each parental line and 92 F,.; DNA samples were sent to the Research
Technology Support Facility (RTSF) Genomics Core at Michigan State University, East
Lansing, MI. There they were genotyped with 5361 SNP markers (dbSNP-NCBI, 2012) using
the Illumina Infinium® Genotyping HD BeadChip (652k SNPs) on Illumina iScan (Illumina, San

Diego, CA). SNP analysis was performed on 4-uL samples containing a concentration between
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50 and 100 ng/uL of DNA. Intensities of the fluorescence were distinguished using the [llumina
iScan TM Reader, and alleles for each SNP locus were named using Illumina’s Bead Studio TM
software (Illumina, San Diego, CA, v3.2.23). For each SNP marker, the genotype data represent
three possible genotypes AA (homozygote), AB (heterozygote), and BB (homozygote) (Akond
etal., 2013).
Phenotypic data

Soluble carbohydrate analysis. Sugar extraction followed the protocol described by Hou
et al. (2009), with some modifications. Briefly, a 10-g seed sample was ground to a fine powder
using a coffee bean grinder (Krups®, Shelton, CT). Then, the powder was sifted through a 100-
um stainless steel testing sieve (VWR®™, West Chester, PA) in order to obtain a sample with
uniform particle size. Afterwards, a 0.15-g sample was weighed, mixed with 1.5 mL of
deionized-distilled water (ddH,0), and transferred into a 2-mL centrifuge tube. Tube was
vortexed, shaken horizontally for 20 min at 200 rpm and, centrifuged at 14000 rpm for 10 min. A
500 uL aliquot from the supernatant was placed in a new 2-mL centrifuge tube and 700 pL of
acetonitrile (99.9% HPLC grade) (Thermo Fisher Scientific, Inc.) was added. The solution was
mixed by inversion and incubated at room temperature for 30 min. Consequently, the tube was
centrifuged at 14000 rpm for 10 min and 70 pL of the extract was pushed through a 25 mm
Easy-Pressure syringe filter holder (VWR®, West Chester, PA) containing a 0.2 pm filter paper
disc (Pall Lifesciences, East Hills, NY). Then, vials containing a 24-puL aliquot of each sample
extract diluted in 576 pL of distilled water were used for carbohydrate determination in a HPLC.

The anion-exchange HPLC system (Dionex DX500 HPAEC-PAD) was composed of a
GS50 gradient pump, an ED40 pulsed amperometric electrochemical detector, an LC50

chromatographic oven, an AS40 automated sampler with a 25-uL injection loop, and a
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Chromeleon Chromatography Management Data System. The mobile phase consisted of a 90
mM NaOH solvent (VWR®™, West Chester, PA) at constant flow rate of 1 mL min™, prepared by
diluting carbonate-free HPLC grade 50% (w/w) stock solution in distilled water, filtered with a
0.45-pum membrane, and degassed with compressed nitrogen gas for 30 min before vials were
loaded into the auto sampler, as described by Hou et al. (2009). Soluble carbohydrates were
separated by an analytical CarboPac PA-10 pellicular anion-exchange resin column (4 x 250
mm) coupled to a CarboPac PA10 guard column (4 x 50 mm) and preceded by AminoTrap
column (3 x 30 mm) (Dionex, Sunnyvale, CA). Sugar content was determined from regression
curves fitted from a set of standards for sucrose (Sigma-Aldrich, St. Louis, MO) at different
concentrations (10, 20, 40, 60, and 80 pg uL'l). Carbohydrate data then converted to milligrams
of sugar per gram of seed (mg g') on dry weight basis.
Statistical analysis

The Shapiro-Wilk (w) normality test from JMP 10.0 (SAS Institute, Cary, NC) was
conducted on the sucrose distribution data of the population at F».3, F».6, and F,.; generations.
Broad sense heritability (H?) for sucrose was determined as reported by Nyquist (1991), using
the equation:

H*= 6%/ [ 6% + (0"gxe / €) + (67 / 1€)] [1]

Where, ng is the total genetic variance, ngxe is the genotype by environment interaction, ° is the
error variance, r is the number of replications, and e is the number of environments.

Associations between molecular markers and sucrose data were analyzed by single factor
analysis of variance (ANOVA) at the 0.05 significant level with the PROC GLM procedure in
SAS 12.3 (SAS Institute, 2013). The software JoinMap® 4.1 (Van Ooijen, 2006) was used to

construct the linkage maps, and a minimum logarithm of odds (LOD) for linkage group
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construction was set to 3.0. A Haldane mapping function (Haldane, 1919) was used to conduct
regression mapping algorithm of each chromosome or linkage group. Subsequently, the software
Windows QTL Cartographer 2.5 (Wang et al., 2012) and Qgene 4.0 (Joehanes et al., 2008) were
used to combine marker positions with phenotypic data, and thus determine the location of the
QTL on the linkage group. These programs were also used to perform composite interval
mapping (CIM) and multiple interval mapping (MIM) analyses, in order to quantify additive and
dominance effects for significant QTL and optimum position and interaction of the QTL,
respectively. The empirical significance threshold for CIM was determined by one thousand
permutations, with a walk speed of 1cM, and a significance level of a = 0.05 (Zhang et al.,
2008). MIM was performed based on the model ¢(n) = In(n) with a walk speed of 1 cM.
MapChart 2.2 (Voorrips, 2002) was used to create the LOD plots based on the data from

J oinMap® 4.0 and Windows QTL Cartographer 2.5.

Results
Phenotypic data

The Shapiro-Wilk test showed that the seed sucrose content in the mapping population
derived from V97-3000 x V99-5089 was normally distributed in three generations across all
environments studied (Table 1a and Fig. 1). V99-5089 had 2.7 - 3.1% higher sucrose content
than V97-3000, as expected, in all environments (location - year) studied (Table 1b and Fig. 1).
Results from a t-test was conducted to compare the mean sucrose content in V99-5089 and V97-
3000, and showed that V99-5089 (mean = 7.64%, SD = 0.74) had significantly higher sucrose
content that V97-3000 (mean = 4.92%, SD = 1.03); t (6) = 11.44, P <.0001. Some of the lines in

the mapping populations had sucrose content higher than the high sucrose parent and lower than
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the low sucrose parent, indicating transgressive segregation. The normal distribution of the seed
sucrose content and the transgressive segregants in the mapping population confirmed that
sucrose is a quantitative trait controlled by multiple genes / QTLs.

ANOVA was conducted on 129 F».; lines from the cross V97-3000 x V99-5089 and the
parents, and means were separated by Least Significant Difference (LSD) at P < 0.05 (Table 2).
The ANOVA model for seed sucrose was significant with R” value of 0.98, indicating that the
model chosen for the experiment design and data analysis for this study was appropriate and
adequate. Genotype, location, and the genotype x location interaction all were significant sources
of variation for sucrose content. However, genotype accounted for the largest proportion of
sucrose variation, while the effects of location and genotype x location were relatively small.
Sucrose data for the individual lines were consistent among replications and locations, as
indicated by non-significant replication effect in the ANOVA (Table 2) and by the similar
ranking of the lines tested (data not shown). Based on the variance components for sucrose
variation, seed sucrose was a highly heritable trait (H*=0.79).

QTL mapping in F,-derived populations by SNP markers

A total of 5361 random SNP markers covering the 20 soybean chromosomes were used
to genotype Fa.¢ lines and 1720 SNP loci (32%) were polymorphic (Table 3). These markers were
mapped on 20 chromosomes, representing 663 unique SNP loci in the mapping population
(Table 3 and Fig. 2 a-e.). The linkage map spanned 2435.2 cM with an average distance coverage
of 3.8 cM per marker.

Results from the single marker analysis showed 10 significant SNP markers on four
chromosomes (4, 5, 6, and 10) associated with seed sucrose content (Table 4). Lines with the

homozygous genotype carrying the V99-5089 allele consistently had higher sucrose content
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compared with those carrying the V97-3000 allele. On average, the V99-5089 allele accounted
for an increase of sucrose content between 0.22 and 0.77%. The sucrose variation contributed by
the SNP alleles in those four chromosome regions ranged from 2 to 17%. However, the SNP
alleles on chromosomes 6 and 10 appeared to have more impact on sucrose content than the ones
on chromosomes 4 and 5 (Table 5).

In the composite interval mapping analysis, the empirical significance threshold was
computed as a LOD value of 2.5 in the F,.c mapping population in all environments studied;
Fayetteville 2009, Fayetteville 2010, Fayetteville 2011 and Marianna 2011. Based on the average
seed sucrose content across two locations over 3 years, a major sucrose QTL was identified on
chromosome 6, flanked by the SNP markers ss2246102767 and ss2246107039 (Fig. 3a-c),
tightly linked to the marker ss246109643 (Table 5 and Fig. 3a-c). This QTL was tentatively
named Sucl. Sucl had a LOD value of 5.8, significantly higher than the threshold, and explained
17% of phenotypic variation for sucrose content on average (Table 5 and Fig. 3¢). This QTL was
consistently identified in four environments with a LOD value between 3.5 and 7.0 (Figs. 3a-b).
Based on the average seed sucrose content across one location in 2 years, a minor sucrose QTL
was mapped on chromosome 10 (Figs. 4a and 4b), located on the interval ss247300068 and
$s247314578 (Fig. 2¢), tightly linked to the marker SS247304924 (Table 5 and Figs. 4a and 4b).
This minor sucrose QTL on chromosome 10 accounted for 11% of sucrose variation on average
and was tentatively named as Suc2. The multiple interval mapping analysis showed the optimum
locations of the two QTL identified. Sucl was determined to be at 6.7 ¢cM on chromosome 6,

while Suc?2 was located at 117.4 ¢cM on chromosome 10.
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Discussion

In this study, the high sucrose parent ‘V99-5089° consistently produced high sucrose,
while the low parent ‘V97-3000’ produced low sucrose, as expected, in all four environments
consisting of two locations and three years (Fayetteville 2009, 2010, 2011, and Marianna 2011).
Sucrose content of the F,-derived lines from the cross V97-3000 x V99-5089 consistently
exhibited a normal distribution across four environments. A small proportion of the lines had
sucrose content exceeding the range of the low and high parents. The normal distribution of
sucrose content and the presence of transgressive segregants in the mapping population
confirmed that sucrose is a quantitative trait controlled by multiple genes/QTLs with small effect
from the environment.

The average sucrose content for the parents and the F,-derived lines were higher in
Fayetteville in 2010 than in 2011 (Tables 1a and 1b). This can probably be explained by the
difference in the average monthly temperature during the growing season for those two years
(Table 6). Weather data showed that Fayetteville experienced higher temperatures in 2011 than
in 2010. Previous research indicated that high temperatures decreased sucrose content by causing
its degradation into more simple carbohydrates (Hou et al., 2009; Zeng et al., 2014). However,
when comparing the average seed sucrose content for the parents and the F,-derived lines for the
two Arkansas locations (Fayetteville and Marianna) in 2011, this high-temperature-low-sucrose
pattern was observed only for sucrose content of the parent ‘“V97-3000’. Sucrose level for the
parent ‘V99-5089’ and the F,-derived lines were slightly higher in Marianna with warmer
temperatures (Tables 1a and 1b). This contradicting temperature-sucrose relationship agreed with
the observation in a previous study where Ren et al. (2009) evaluated the effect of high

temperature on seed composition and found that high temperature did not have a significant
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effect on the content of sucrose, raffinose, and stachyose.

Results from the ANOVA showed significant differences among genotypes, locations,
and genotype x location effects on sucrose content, which was expected because of the
quantitative nature of the trait (Table 2). Therefore, it is important to evaluate genotypes in
question at multiple locations and years for the phenotypic assessment of sucrose content.
However, genotype accounted for most of the sucrose variation observed (Table 2). Average
sucrose data from the two locations were highly correlated and most of the genotypes in the
population ranked similarly between the two locations (data not shown). Significant genotypic
and environmental effects on seed sucrose content have also been previously reported by other
authors (Geater et al., 2000; Cicek et al., 2006; Zeng et al., 2014). The estimated heritability for
sucrose content in this study (0.79) was similar to the values previously reported by others
(Maughan et al., 2000; Kim et al., 2005; and Zeng et al., 2014), confirming that sucrose is a
highly heritable trait.

In this study, the F,.7 lines and SNP markers which were randomly selected from the
National Center for Biotechnology Information (NCBI) were used to create a unique genetic map
for seed sucrose content. It is considered ‘unique’ because a specific set of SNP markers was
used to developed the DNA chip for the genotyping of the F,.7 lines, which at this time, has not
been reported in the public soybean linkage map (D. Wang, personal communication). For this
reason, the comparison of the genetic positions of those SNP markers in relation to the public
map is not practical or relevant at this time.

Single marker analysis showed three significant SNP markers (55246109643,
85246056190, and ss246037023) in an approximately 18.5 cM region on chromosome 6 that are

associated with sucrose content with 0.31 to 0.57% net contribution to sucrose (Table 5).
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Composite interval mapping analysis with individual and combined data from four environments
further confirmed the existence of a major sucrose QTL linked to ss246109643 with additional
two flanking markers nearby ss246107039 and ss246102767. These three SNP markers are in a
2.2 cM region on chromosome 6 (Fig. 3a-c). However, ss246109643 at 6.7 cM accounted for
17% of the sucrose variation, while ss246037023 at 25.2 ¢cM accounted for 12% of the sucrose
variation (Table 5). It is possible that there are two QTLs in this region as a minor non-
significant peak was obtained in the composite interval mapping analysis (Fig. 3a-c). This region
deserves more attention in future research of sucrose QTL discovery and confirmation. Similarly,
four significant SNP markers with 0.40 to 0.56% sucrose content contribution were identified on
a 39.3 cM region on chromosome 10; $s247292289, ss247300068, ss247304924, and
$s247330645 (Table 4). The composite interval mapping analysis showed a sucrose QTL linked
to $s247304924 and near ss247300068 in a 5.9 cM region on chromosome 10. Evidently this
chromosome region is rather large and the SNP markers identified accounted for relatively small
percent of variation in sucrose as compared to the ones on chromosome 6. Further study is
needed to confirm the minor sucrose QTL in this region and possibly find additional sucrose
QTL in this region.

Although the single marker analysis indicated a large chromosome region on
chromosome 6 and another large region on chromosome 10 that are associated with sucrose
content, the composite interval mapping analysis clearly showed two QTLs, a major QTL on
chromosome 6 and a minor QTL on chromosome 10. The major sucrose QTL is linked to
85246109643 and located at 48,100,279 bp on chromosome 6. The minor sucrose QTL is linked
to $s247304924 and located at 45,826,662 bp on chromosome 10.

Although results from the composite interval analysis did not show QTLs on
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chromosomes 4 or 5, the single marker analysis suggested a region on chromosome 4 and
another region on chromosome 5 that are highly associated with sucrose content. SNP markers
on chromosome 4 showed between 0.33 and 0.50% net contribution to sucrose, while a marker
on chromosome 5 showed 0.54% net contribution to sucrose (Table 5). It is possible these two
regions may contain QTLs for sucrose; therefore these regions deserve research attention in the
future. While there is not a previous report of a sucrose QTL on chromosome 4, a couple of
studies have identified markers linked to sucrose QTLs on chromosome 5 (Zeng et al., 2014;
Maughan et al., 2000).

Previous research has identified 19 QTLs associated with seed sucrose content; these are
located on 12 different soybean chromosomes. Only few sucrose QTLs have been mapped to the
same chromosome, i.e. two QTLs were identified on chromosome 5, three QTLs on chromosome
8, two QTLs on chromosome 16, and four QTLs on chromosome 19 (Zeng et al., 2014; Kim et
al., 2006; Maughan et al., 2000). Although, previous research done by Maughan et al. (2000)
showed several QTLs associated with sucrose content, their results were obtained by single
marker analysis, which is not an adequate analysis for QTL discovery because it only suggests
association between the trait and the marker and does not account for the interaction effect of the
marker alleles. Moreover, Kim et al. (2006) identified sucrose QTLs using data from only one
location which does not provide enough information about the stability of the trait.

The QTL located on chromosome 6 that was identified in this study, is a novel sucrose
QTL because no previous reference to this chromosomal region has been made. On the contrary,
the other sucrose QTL identified in this study and located on chromosome 10 is in agreement
with what was previously reported by Saghai-Maroof and Buss (2008). They indicated that

chromosome 10 contained a major QTL for sucrose in V99-5089 close to the marker Satt453 (at
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38,360,612 - 38,360,653 bp of Gm11 in the Williams 82 physical map). This marker is closely
located upstream of the sucrose QTL found in my study (at 45,826,662 bp of Gm11, Williams

82).
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Conclusion

Two sucrose QTLs were identified in this study. A new major sucrose QTL was located
on chromosome 6 and linked to 52246109643 with additional two flanking markers
$5246107039 and ss246102767. This QTL explained 17% of the phenotypic variation for the trait
and had an average net contribution of 0.57% to sucrose content. The physical proximity of these
three SNP markers (2.2 cM) suggests that they all can be used for marker-assisted selection.
Additionally, a minor sucrose QTL was identified on chromosome 10, linked to SS247304924
and near ss247300068. This QTL accounted for 11% of the sucrose variation observed and had
an average net contribution of 0.56% to sucrose content. Stability of these QTLs across
environments makes them reliable tools to be used in molecular breeding for soybeans with

improved sucrose profile.
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Table 1a. Seed sucrose content (% dry-weight basis) of mapping populations derived from the cross V97-3000 x V99-5089 evaluated
across two locations and over three years.

Year - Location  Generation No. Lines Mean SD' Range Prob < W*
2009 Fayetteville Fy3 129 5.84 1.66 3.27-947 0.975
2010 Fayetteville Fa6 92 5.81 1.93 2.71-9.76 0.983
2011 Fayetteville Fa7 92 5.55 1.64 3.20 - 891 0.981
2011 Marianna Fy.; 92 5.64 1.72 3.03-9.18 0.979

S9

" Standard deviation.
* Shapiro-Wilk normality test.



Table 1b. Seed sucrose content (% dry-weight basis) of parents V97-3000 and V99-5089 evaluated across two locations and over
three years.

99

V97-3000 V99-5089

Year-Location

Mean SDf Mean SDf
2009 Fayetteville 4.69 1.16 7.40 1.05
2010 Fayetteville 5.12 1.43 8.26 0.84
2011 Fayetteville 5.07 0.90 7.32 0.72
2011 Marianna 4.82 0.64 7.57 0.36
Overall* 4.92 1.03 7.64 0.74

T Standard deviation.
*Sucrose mean and standard deviation across four environments.



Table 2. Analysis of variance for seed sucrose content of 92 F,.; population derived from the cross V97-3000 x V99-5089 grown in
Fayetteville and Marianna in 2011.

Degree of Mean Variance Percent 2
Source ¥ 1 s § P-value R
freedom square components Variation
Model 185 3.368 - - <0.0001 0.98
Location 1 0.893 0.004 0.260 <0.0001
Replication (Location) 2 0.010 <0.001 0.001 0.5075
Genotype 91 6.765 1.673 97.198 <0.0001
S
Genotype x Location 91 0.073 0.029 1.707 <0.0001
Error 182 0.014 1.721 0.835

TAnalysis of variance, using PROC GLM in SAS 12.3, of 92 F,.; lines grown in Fayetteville and Marianna, AR in 2011.
* Estimate of variance components, as calculated using PROC VARCOMP in SAS 9.3.
$ Percent of variation explained by each term in the ANOVA model.



Table 3. Summary of SNP markers used for the screening of an F,-derived population from the
cross V97-3000 x V99-5089.

Chr.t LG! Lengtlé No. SNP No. SNP  Average distance (cM)
(cM) mapped locus located between SNP loci
1 Dla 29.8 23 15 2.0
2 D1b 167.0 49 26 6.4
3 N 23.8 99 23 1.0
4 Cl 136.4 77 34 4.0
5 Al 82.4 56 14 59
6 C2 152.5 100 49 3.1
7 M 149.1 51 27 5.5
8 A2 135.6 90 51 2.6
9 K 23.1 90 14 1.6
10 O 139.5 59 32 4.4
11 B1 134.0 141 50 2.7
12 H 150.4 37 27 5.6
13 F 110.6 121 43 2.6
14 B2 48.0 33 16 3.0
15 E 127.1 157 62 2.1
16 J 118.2 90 34 3.5
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Table 3. Summary of SNP markers used for the screening of an F»-derived population from the
cross V97-3000 x V99-5089 (Cont.).

Chr.! LG Lengtl; No. SNP No. SNP  Average distance (cM)
(cM) mapped locus located between SNP loci
17 D2 164.9 124 44 3.7
18 G 133.9 68 44 3
19 L 309.6 158 40 7.7
20 I 99.3 97 18 55
Average 121.8 86 33 3.8
Total 2435.2 1720 663
fChromosome.
*Linkage group.

$Chromosome length in centimorgans.
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Table 4. Single marker analysis of variance for seed sucrose content in 92 F»-derived lines from
the cross V97-3000 x V99-5089 evaluated in Fayetteville (Fay) in 2009 and 2010, and in
Fayetteville and Marianna (Mar) in 2011.

P-value

& SNP Position 2009 2010 2011
Chr. Mark M
arker (cM) Combined*

Fay Fay Fay Mar

4 $s245330356 61.3 0.0818 | 0.0229 | 0.0482 0.0334 0.0382

4 $s245333397 62.4 0.0755 | 0.0234 | 0.0457 0.0327 0.0368

5 55245693942 14.9 0.0033 | 0.0189 | 0.0123  0.0067 0.0077

6 $s246109643 6.7 0.0010 | 0.0001 | 0.0003 0.0001 0.0002

6 $s246056190 22.1 0.0547 | 0.0202 | 0.0194 0.0149 0.0216

6 $s246037023 25.2 0.0488 | 0.0379 | 0.0432 0.0297 0.0365

10 $s247292289 98.5 0.0358 | 0.0440 | 0.0718 0.0408 0.0425

10 $s247300068 111.5 0.0116 | 0.0091 | 0.0150 0.0156 0.0109

10 $s247304924 117.4 0.0089 | 0.0021 | 0.0100 0.0054 0.0048

10 $s247330645 137.8 0.0272 | 0.0109 | 0.0301 0.0212 0.0184

T Chromosome.
*Pooled data from all environments studied.
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Table 5. Mean effect of SNP marker alleles on seed sucrose content in 92 F,-derived population developed from the cross
V97-3000 x V99-5089 grown in two locations and over three years.

IL

chr NP Position 2009 2010 2011 Combined’ .
(cM) | p18 p2' Diff*| P1 P2 Diff. | P1 P2 Diff. | P1 P2 Diff.
4 5245330356 613693 7.15 022 | 7.4 753 039 | 7.12 751 039 | 7.06 740 033 | 0.04
4 5245333397 624688 721 033 | 694 746 052 | 692 757 065 | 691 741 0.50 | 0.09
5 $5245693942 149691 734 043 | 699 751 052 | 693 7.59 0.66 | 694 748 0.54 |0.09
6 $5246109643 67692 744 052 | 7.2 771 059 | 7.09 7.69 060 | 7.04 7.61 057 |0.17
6 $5246056190 22.117.03 780 0.77 | 615 640 025 | 644 687 043 | 654 7.02 048 |0.06
6 $5246037023 2521688 7.13 025 | 7.04 736 032 | 7.04 741 037 | 699 730 031 |0.02
10 $5247292289 98.5|7.03 755 052 | 610 640 030 | 6.54 694 037 | 656 696 0.40 | 0.08
10 5247300068 1115]7.06 758 052 | 6.17 647 030 | 672 7.11 041 | 665 7.05 040 | 0.05
10 $s247304924 117.4 | 688 726 038 | 699 7.58 059 | 691 7.63 072 | 693 749 0.56 |0.11
10 $s247330645 1378722 7.78 056 | 676 7.04 028 | 639 699 060 | 679 727 048 | 0.04

"Pooled data from Fayetteville and Marianna in 2011.

* Pooled data from Fayetteville in 2009 and 2010, and Fayetteville and Marianna in 2011.

§ Allelic effect of P1 = V97-3000.
9 Allelic effect of P2 =V99-5089.

# Allelic difference.
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Table 6. Average monthly temperatures (°C) in Fayetteville, AR in 2010 and Fayetteville and Marianna, AR in 2011.

Month
Year Location
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2010 | Fayetteville | 0.6 0.6 7.8 150 194 256 26.1 278 21.7 144 89 2.2
Fayetteville | 0.6 33 10.0 150 178 256 289 278 183 144 100 44
2011
Marianna 33 56 117 183 21.1 272 283 272 21.1 156 122 72

Information extracted from http://www.wunderground.com (accessed March, 2014).
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Fig. 1. Frequency distribution of seed sucrose content in populations derived from V97-3000 (P1) x V99-5089 (P2) evaluated in four
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(d) Combined data of F,.7 lines in Fayetteville and Marianna, AR in 2011.
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Fig. 2a. A genetic map constructed for chromosomes 1, 2, 3, and 4 using an F,.c mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2b. A genetic map constructed for chromosomes 5, 6, 7, and 8 using an F,.¢ mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2¢. A genetic map constructed for chromosomes 9, 10, 11, 12, and 13 using an F;.¢ mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2d. A genetic map constructed for chromosomes 14, 15, and 16 using an F,.c mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2e. A genetic map constructed for chromosomes 17, 18, 19, and 20 using an F,.c mapping

population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were

mapped to 20 soybean chromosomes.
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Fig. 3a. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome
6 in 92 F,-derived lines from the cross V97-3000 x V99-5089, evaluated across locations and
years: (1) in Fayetteville, AR in 2009; (2) in Fayetteville, AR in 2010.
"LOD = logarithm of the odds.
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Fig. 3b. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome
6 in 92 F,-derived lines from the cross V97-3000 x V99-5089, evaluated across locations and
years: (¢) in Fayetteville, AR in 2011; (d) in Marianna, AR in 2011.

"LOD = logarithm of the odds.
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Fig. 3c. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome 6
in 92 F,-derived lines from the cross V97-3000 x V99-5089 grown in Fayetteville and Marianna
in Arkansas in 2011 (Combined data).

" LOD = logarithm of the odds.
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Fig. 4a. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome
6 in 92 F,-derived lines from the cross V97-3000 x V99-5089 grown: (1) in Fayetteville, AR in
2009 and (2) in Fayetteville, AR in 2010.

" LOD = logarithm of the odds.
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Fig. 4b. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome
6 in 92 F,-derived lines from the cross V97-3000 x V99-5089 grown in Fayetteville, AR in 2009
and 2010 (Combined data).

" LOD = logarithm of the odds.
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II1. Allelism Test for Low-stachyose soybean mutants

Abstract

Stachyose is an undesirable oligosaccharide in soybean meal. Its consumption causes
flatulence and abdominal discomfort in monogastric animals due to the lack of the enzyme o-(1,
6)-galactosidase which breaks it into digestible forms. The recessive gene stacla has been
identified in the plant introduction P1200508, conferring low-stachyose content. Similarly, the
breeding line V99-5089 possesses a mutation in the D-myo-inositol3-phosphate synthase 1 gene
(MIPS1) which results in high sucrose and low stachyose content. Thus, the objective of this
study was to investigate the genetic relationship between the recessive gene in P1200508 and the
mutant gene in V99-5089. An F,-derived population was developed from crossing these parents
and seeds from the parents and F, 3, F».¢, and F».; generations were used for sugar analysis with
high performance liquid chromatography. Chi-square analysis was conducted to test goodness-
of-fit of the observed segregation to the expected genetic ratios. Results indicate that the low-
stachyose trait is controlled by two independent recessive genes with epistatic effect, from
P1200508 and V99-5089. Additionally, gene dosage on stachyose content in the heterozygous
genotypes with one or both genes was observed, as lines with double heterozygous genotype had
lower stachyose content than those with single heterozygous genotype. However further study is
needed to confirm this gene dosage effect. Breeding and selection of soybeans with modified-
stachyose profile should be easy, since only one gene is needed to produce low-stachyose

content and the environment has very little impact on the trait.
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Introduction

The use of soybean as a functional ingredient in the food industry has grown in the
western culture in the past decades. This phenomenon is the result of a widespread awareness on
the nutritional value and health benefits associated with soybean consumption (Golbitz, 1995).

Carbohydrates are the second-largest soybean seed component after protein. Soluble
carbohydrates are important in the food industry because they have an effect on flavor and
quality of the soy-based products (Taira, 1990). Soluble sugars constitute up to 47% of the total
carbohydrate content (Hymowitz and Collins, 1974). Major soluble carbohydrates are sucrose
(2.5 - 8.2% dry weight basis), stachyose (1.4 - 4.1% dry weight basis), and raffinose (0.1 - 0.9%
dry weight basis). The minor soluble sugars, glucose, and fructose account for less than 1% each
(Hymowitz et al., 1972). Most of the insoluble carbohydrates are primarily cell wall components
(Liu, 1997).

Raffinose and stachyose are considered raffinose family oligosaccharides (RFO)
(Gitzelmann and Auricchio, 1965; Hymowitz and Collins, 1974). Their synthesis from sucrose
and galactose is mediated by enzymes with galactosyl-transferanse function. Additionally,
galactinol synthase is a catalyzer in the synthesis of galactinol (O-a-D-galactopyranosyl-(1—1)-
L-myo-inositol) from myo-inositol and UDP-D-Gal (Peterbauer and Richter, 2001).
Subsequently, reversible addition of a galactosyl unit to sucrose results in synthesis of raffinose.
Then, stachyose is synthesized by the reversible addition of another galactosyl unit to raffinose.
These reactions are mediated by the enzymes raffinose synthase and stachyose synthase,
respectively (Fig. 1) (Peterbauer and Richter, 2001).

Stachyose is the most abundant raffinose saccharide and the most anti-nutritional soluble

sugar in soybean (Cristofaro et al., 1974). Consumption of stachyose causes flatulence and
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abdominal discomfort in non-ruminant animals (Kuriyama and Mendel, 1917; Hawton et al.,
1996), due to their lack of the a-(1,6)-galactosidase enzyme that breaks down the stachyose into
digestible forms (Gitzelmann and Auricchio, 1965). Thus, stachyose has a negative effect on the
feed efficiency of soybean meal. The metabolizable energy of soybean meal is low compared its
total energy which is due to the poor digestibility of the raffinose oligosaccharides (Parsons et
al., 2000; Meis et al., 2003). Therefore, development of soybean lines with reduced-stachyose
content is desired for increasing the energy metabolism rate and digestion of soybean meal.

The plant introduction (PI) 200508 has a recessive gene, stcla, which confers high-
sucrose, low-raffinose, and low-stachyose contents (Sebastian et al., 2000). Dierking and Bilyeu
(2008) characterized the trait as a variant allele of a raffinose synthase gene. Additionally, the
breeding line V99-5089 has been identified as source of high-sucrose, low-stachyose, and low-
phytate contents (Saghai-Maroof and Buss, 2008).

Little is known about the genetic relationship between the genes conferring low-
stachyose in PI200508 and V99-5089. A preliminary study suggested the existence of 2 non-
allelic recessive genes controlling this trait (Florez-Palacios, 2009); however, more research is

needed in order to confirm these findings.

Materials and methods
Parental materials

Two low-stachyose sources were used as parents in this study, PI200508 and V99-5089.
PI1200508 is a plant introduction line from Japan (Germplasm Resources Information Network)
that contains low levels of raffinose and stachyose (Sebastian and Kerr, 2000) that has purple

flowers, broad leaves, buff cotyledons, and regular seed size (~15g 100 seeds™) with reduced
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stachyose content (~1 % on dry-weight basis). Virginia Tech University derived a breeding line,
V99-5089, from a cross between V71-370 and PI 87013 (Saghai-Maroof and Buss, 2008). It has
purple flowers, broad leaves, yellow cotyledons and large seed size (25 to 30g 100 seeds™) with
reduced stachyose content (<1 on dry-weight basis).

Population development and field experiment

A PI200508 x V99-5089 cross was made in the summer of 2007 at the Arkansas
Agricultural Research and Extension Center in Fayetteville. Progeny were bulked and carried
through to the F, generation. The F, plants were grown in a winter nursery in spring 2008. The
winter nursery is located near Upala city in the northwestern part of Costa Rica at 52 m above
sea level (Mongabay, 2014). There, each F;.; line was grown in a 3-m row with 0.76-m row
spacing. Additionally, parental genotypes were planted next to the segregating population with a
3-m row spacing. Soil was cultivated before planting and plots were fully irrigated and managed
during the growing season using standard cultural practices. After two generation advancements,
F».5 seed were brought back to Fayetteville, AR in 2009.

In summer 2011, a total of 121 F;. lines were grown in randomized complete block
design (RCBD) with two replications in each of two locations, Keiser and Fayetteville, AR.
Replicated parental checks were also grown along with F».¢lines to account for variation within
blocks. The P1200508 and V99-5089 lines were included two times, each a with different entry
number, to make up a 125-entry test.

Seed at the Arkansas Agricultural Research and Extension Center in Fayetteville were
grown on a Captina-silt-loam soil (Fine-silty, siliceous, active, mesic Typic Fragiudults) (Soil
Survey Staff, 2013), which is characterized as very deep, moderately to well drained, and made

in a thin mantle of silty material (Soil Series, 2006). Whereas, seed at the Northeast Research
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and Extension Center in Keiser, AR were grown on a Sharkey-silty-clay soil (Very-fine,
smectitic, thermic Chromic Epiaquerts), characterized as very deep, poorly to very poorly
drained, very slowly permeable soils that formed in clayey alluvium (Soil Series, 2006). For both
locations, plots consisted of one 3-m single with 0.9-m row spacing. Seeding rate was 30 seeds
per meter, and standard cultural practices were applied throughout the growing season. Similarly,
plants were grown in a 3-m row with a 0.76-m row spacing in the winter nursery in Costa Rica.
Seed samples were taken at F,.3, Fo.6, and F,.7 generations for soluble carbohydrate analyses.
Soluble carbohydrate extraction

Sugar extraction followed the protocol described by Hou et al. (2009), with some
modifications. Briefly, a sample of 10 g of whole soybean seed was ground for 20 sec, to a fine
powder using a coffee bean grinder (Krups®, Shelton, CT). The powder was then sifted through a
100 um sieve (USA Standard testing sieve, opening micrometer 150 A.S.T.M. No. 100), and
0.15 g were used for carbohydrate extraction. The powder was placed in a 2 mL centrifuge tube
and 1.5 mL of distilled and deionized water (ddH,O) was added and the solution vortexed.
Afterward, the tube was shaken horizontally at 200 rpm for 20 min. The solution was then
centrifuged for 10 min at 14000 rpm. An aliquot of 500 pl was transferred into a new tube and
700 ul of 100% acetonitrile were added to the extract. Solution was mixed by inversion,
incubated at room temperature for 30 min, and centrifuged for 10 min at 14000 rpm. About 3 mL
of sugar solution was filtered with a 0.2 um membrane using a 5 mL syringe. Then, 24 pL of
carbohydrate extract was transferred into a 1.5 mL HPLC vial containing 576 pL of ddH,O for
high performance liquid chromatography (HPLC) analysis.
Carbohydrate analysis

The anion-exchange HPLC system (Dionex DX500 HPAEC-PAD) was composed of a
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GS50 gradient pump, an ED40 pulsed amperometric electrochemical detector, an LC50
chromatographic oven, an AS40 automated sampler with a 25-uL injection loop, and a
Chromeleon Chromatography Management Data System. The mobile phase consisted of a 90
mM NaOH solvent (VWR", West Chester, PA) at constant flow rate of 1 mL min™', which was
prepared by diluting carbonate-free HPLC grade 50% (w/w) stock solution in distilled water,
filtered with a 0.45-pum membrane, and degassed with compressed nitrogen gas for 30 min before
vials were loaded into the auto sampler, as described by Hou et al. (2009). Soluble carbohydrates
were separated by an analytical CarboPac PA-10 pellicular anion-exchange resin column (4 x
250 mm) coupled to a CarboPac PA10 guard column (4 x 50 mm) and preceded by AminoTrap
column (3 x 30 mm) (Dionex, Sunnyvale, CA). Sugar content was determined from regression
curves fitted from a set of standards for sucrose (Sigma-Aldrich, St. Louis, MO) at different
concentrations (10, 20, 40, 60, and 80 pg uL'l). Carbohydrate data then converted to milligrams
of sugar per gram of seed (mg g') on dry weight basis.
Statistical analysis

The Shapiro-Wilk (w) statistic from JMP 10.0 (SAS Institute, Cary, NC) was used to test
the normality of the stachyose content distribution for the F,.3. F».6, and F,.7 lines.

Analysis of variance for seed stachyose content was conducted using PROC GLM in
SAS 12.3 (SAS Institute, Cary, North Carolina, USA). Variance components were estimated
using a similar model in the VARCOMP procedure of SAS 12.3. Percent variation of each
source in the model was calculated by dividing each variance estimate over the total variance and
multiplying by 100.

The criteria chosen to establish the thresholds for high- and low-stachyose values for the

populations were the shape of distribution of the population for each environment and the
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respective mean of the high stachyose parent (PI1200508) plus/minus one standard deviation.
Therefore, cutoff points to distinguish between low- and high-stachyose lines were: 1.23% for
the F,.¢ lines grown in Fayetteville in 2010, 1.32% for the F,.; lines grown in Fayetteville in
2011, 1.26% for the F,.; lines grown in Keiser in 2011, and 1.28% for the combined data in 2011
(Fig. 2).The F,.¢ and F,.7 population distributions were subjected to a Chi-square test for two
genes segregating for stachyose content, and the result from the calculated Chi-squared statistic

was also contrasted with the expected Chi-square parameter at an alpha level of 0.05.

Results

Both parents P1200508 and V99-5089 grown in all three environments exhibited the low-
stachyose trait as expected. The stachyose content of V99-5089 was consistently lower than that
of P1200508 (Table 1). The stachyose content of the F,-derived lines ranged from 0.07 to 4.30%
with a mean of 1.82%. The stachyose content distribution of F,-derived lines did not follow a
normal distribution (Figs. 2 and 3), as indicated by the Shapiro-Wilk normality test (Table 1).

The ANOVA was conducted on 121 F,.; lines plus the four parental checks, and means
were separated by Least Significant Difference (LSD) at P < 0.05. There was a significant effect
of genotype, location, and genotype x location interaction on seed stachyose content. However,
most of the variation was accounted for by genotypes (99.03%), while the location (0.004%) and
genotype by location interaction (0.67%) effects were almost negligible in magnitude as
compared to the experiment error (Table 2).

Since the stachyose content of the F»-derived lines did not follow the normal distribution
and there were obvious genetic segregants with high stachyose content in the population, Chi-

square tests were performed to examine if the segregation pattern fitted any expected ratio based
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on a two-independent-gene model. By using a threshold calculated based on the two low
stachyose parents, the F,-derived lines were classified as either high or low stachyose phenotype.
Results showed that the F»-derived lines consistently fitted a 9 high stachyose : 7 low stachyose
ratio in all three environments, which is expected for two complementary genes (Table 3 and
Fig. 4).

The 9/16 of the F,-derived lines classified as high stachyose for the Chi-square test had
stachyose contents ranging from the low stachyose parent (0.5 - 1.2%) to a normal stachyose
level as expected for a commodity soybean genotype (4.0 - 4.5%) (Figs. 2 and 3). This is
apparently a result of gene dosage effect from the heterozygous genotypes from either one or

both low stachyose genes.

Discussion

The stachyose trait showed considerable stability, given that both parents consistently
exhibited low stachyose content across the four environments studied (Table 1) and the F»-
derived lines ranked similarly across environments. All except four F,-derived lines fell in the
same phenotypic classifications based on the parental threshold of stachyose content (Table 3).
Although ANOVA showed a significant effect of location and genotype x location on stachyose
content, those effects were negligible in relevance to the error term (Table 2). Unlike a typical
quantitative trait, stachyose content in my genetic population appeared to be in discrete
distribution and less affected by the environment (Figs. 2 and 3). This would make breeding and
selection for low stachyose simple and easy.

The non-normal distribution of stachyose content in the F»-derived lines from the cross

P1200508 x V99-5089 clearly showed that the seed stachyose content is not a quantitative trait,
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but a trait controlled by major genes (Figs. 2 and 3). The Chi-square tests confirmed the presence
of two independent, recessive genes for the low stachyose trait in the population (Table 3). In a
low- x low-stachyose cross, one would expect all progeny lines to have low stachyose content
similar to the low stachyose parents if the low-stachyose genes in the parents are allelic at a
single locus. A proportion of the progeny lines is expected to be high stachyose if there is more
than one gene involved, depending on the number of genes and their interactions. In a two-gene
model, a 13 high : 3 low stachyose ratio would be expected for both dominant and recessive
epistasis, while a 15 high : 1 low stachyose ratio would be expected for duplicate dominant
epistasis. In my population, 7/16 of the F,-derived lines exhibited low stachyose which is
expected for two genes, both with recessive epistasis. The presence of lines with greater
stachyose content than that of the parents provides strong evidence that the two genes controlling
the low-stachyose trait in PI200508 and V99-5089 are at different loci.

Previous research reported a marker linked to a locus containing a recessive gene, rsm1l,
on chromosome 6 in PI200508 that explained up to 94% of the stachyose variance, and also
suggested that the low stachyose content in PI200508 was due to a 3 bp deletion in the
galactosyltransferase gene, which reduces the activity of the enzyme involved in the stachyose
synthesis pathway (Skoneczka et al., 2009). Sebastian et al. (2000) identified a recessive gene
Stcla for low stachyose content in PI200508, but no allelism test was done with the low
stachyose gene in V99-5089. The recessive gene in P1200508 identified in my study and in the
study by Sebastian et al. (2000) may be the same QTL reported by Skoneczka et al. (2009).
Molecular studies are needed to confirm this assumption.

Maupin et al. (2011) suggested that a SSR marker on chromosome 11 in V99-5089 could

be used in marker-assisted selection of low stachyose lines due to its high selection efficiency
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(87%), suggesting that chromosome 11 may contain genes controlling the trait. Further research
identified a stachyose QTL on chromosome 11 in a mapping population derived from the cross
Osage x V99-5089, explaining 81% of the stachyose variation (Zeng et al., 2012). It is very
likely that the low stachyose gene identified in our research is the same stachyose QTL reported
by Zeng et al. (2012).

The fact that some of the F,-derived lines classified as high stachyose type, in the Chi-
square test, actually exhibited intermediate stachyose content suggests that there was a gene dose
effect on stachyose content in the heterozygous genotypes with one or both loci. The stachyose
content in the high class ranged from 1.51 to 4.30%, depending on the number of heterozygous
loci, assuming that the double heterozygous genotype (AaBb) would have lower stachyose
content than the single heterozygous genotype (AABb or AaBB). Further study using selected
lines with variable stachyose content and molecular markers is needed to confirm the gene

dosage effect on stachyose content.
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Conclusion

Results from my study indicated that the low-stachyose trait is controlled by two
independent recessive genes from pi200508 and v99-5089, and only one gene is needed to have
the low-stachyose phenotype. Gene dosage effect on stachyose content in the heterozygous
genotypes with either one or both genes was observed; however further study is needed to
confirm this effect. In a practical breeding program, both pi200508 and v99-5089 would serve as
good sources of low stachyose and selection for this trait would be straightforward as it is

negligibly impacted by the environment.
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Table 1. Mean and range of stachyose content for parents and populations derived from the P1200508 x V99-5089 cross grown in
Fayetteville in 2010 and 2011, and Keiser, AR in 2011.

P1200508 V99-5089 F,-derived lines
Mean Range Mean Range Mean Range §
(%) (%) (%) (%) (%) (%) Frob=W
Fay'- 2010 1.13 1.06 - 1.20 0.49 0.46 - 0.51 1.70 0.07 - 3.84 <0.0001
Fay' - 2011 1.25 1.16 - 1.31 0.54 0.49-0.53 1.90 0.11-4.30 <0.0001
Kei* - 2011 1.12 0.99 - 1.26 0.51 0.45-0.56 1.85 0.08 - 4.22 <0.0001
\O
(o¢]
Overall' 1.19 0.99 -1.31 0.51 0.45-0.56 1.82 0.07 - 4.30

" Fayetteville, AR.
: Keiser, AR.
¥ Shapiro-Wilk normality test.

9Mean and range across three environments.



Table 2. Analysis of variance for seed stachyose content in F;.7 lines derived from PI1200508 x V99-5089, grown in two
Arkansas locations in 2011.

\O
\O

Source of variation Dfe grees 0{ Sum °£ Mean F-ratio P value Variancg P.er?en't”
reedom squares square component Variation

Model 243 816.1 3.36 1197.68 <0.0001

Location 1 0.31 0.31 110.40 <0.0001 0.0001 0.004
Replication[Location] 2 0.54 0.27 96.70 <0.0001 0.0022 0.130
Genotype 120 812.18 6.77 2413.62 <0.0001 1.6856 99.031
Genotype x Location 120 3.08 0.02 9.14 <0.0001 0.0114 0.671
Error 240 0.67 0.01 0.0028 0.165

" Analysis of variance, using PROC GLM in SAS 12.3, of 121 F,. lines grown in Fayetteville and Keiser, AR in 2011.

* Type II sum of squares.

Y Estimate of variance components, as calculated using PROC VARCOMP in SAS 12.3.
I Percent of variation explained by each term in the ANOVA model.



Table 3. Chi-square test for goodness-of-fit to two-gene model for stachyose content of F»-derived lines from the cross P1200508 x
V99-5089 grown in Fayetteville, AR in 2010 and Fayetteville and Keiser, AR in 2011.

No. of High-stachyose lines’ No. of Low-stachyose lines* X2 (9:7) P value
Fayetteville-2010
. 67 54 0.040 0.84
F».6 lines
Fayetteville-2011
. 68 53 0.001 0.97
F,.7lines
_ Keiser-2011
=
< F2;7 lines 69 52 0.030 0.86
2011 Combined
e 68 53 0.001 0.97
F2;7 lines

" Fy-derived lines were classified as low-stachyose lines if stachyose content was equal to, or lower than: 1.23% for Fayetteville-2010,
1.32% for Fayetteville-2011, for 1.26% in Keiser-2011, and 1.28% for 2011 combined data.

*F,-derived lines were classified as high-stachyose lines if stachyose content was equal to, or greater than: 1.24% for Fayetteville-
2010, 1.33% for Fayetteville-2011, for 1.27% in Keiser-2011, and 1.29% for 2011 combined data.
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Fig. 1. Biosynthetic pathway of raffinose family oligosaccharides (RFO). Extracted from Peterbauer and Ritcher (2001).
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IV. Identification of Quantitative Trait Loci / Genes for Stachyose Content in Soybean Seed
Abstract

Stachyose is the most abundant carbohydrate of the raffinose family oligosaccharides in
the soybean seed. It is considered an unwanted sugar because its consumption causes abdominal
discomfort in monogastric animals. Thus, breeding for low-stachyose soybean cultivars is
desirable for livestock feeding of non-ruminants and the development of food-grade soybeans.
The objective of this study was to identify quantitative trait loci (QTL) for stachyose content
using single nucleotide polymorphism (SNP). An F>-derived QTL mapping population was
developed from the cross between a regular-sucrose line (V97-3000) and a high-sucrose line
(V99-5089). A total of 92 F,.3 lines were genotyped with 5361 SNP markers covering the 20
soybean chromosomes and, from these, 1720 were polymorphic. Seed samples were collected at
F».3, F2.6, and F».7 generations, and stachyose analysis was performed by using high performance
liquid chromatography system. Subsequently, linkage maps were constructed with JoinMap®
software and composite interval mapping (CIM) was conducted to locate QTL associated with
stachyose content. Two stachyose QTLs were identified in this study. One major stachyose QTL
was mapped to chromosome 11 and accounted for 46% of the phenotypic variation observed for
this trait. And one minor QTL was found on chromosome 10 and explained 11% of the stachyose
variation. Both QTLs are in agreement with stachyose QTLs previously reported in populations
with different genetic background, and also proved to be stable across the environments studied.
SNP markers tightly linked to these QTLs can be used for marker-assisted selection in breeding

soybean lines with low-stachyose profile.
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Introduction

Stachyose is one of the most abundant soluble carbohydrates in soybean. Its content
ranges between 1.4 and 4.1% on a dry-weight basis (Hymowitz et al., 1972). However, stachyose
is the most unwanted sugar for livestock feeding of non-ruminants (Cristofaro et al., 1974).
Stachyose intake causes flatulence and abdominal discomfort in monogastric animals (Kuriyama
and Mendel, 1917; Hawton et al., 1996), due to their lack of the a-(1,6)-galactosidase enzyme
that breaks down the stachyose into simple forms (Gitzelmann and Auricchio, 1965). Thus,
stachyose has a negative effect on the feed efficiency of the soybean meal. The metabolizable
energy of soybean meal is low compared its total energy and this is due to the poor digestibility
of the raffinose oligosaccharide (Parsons et al., 2000; Meis et al., 2003). Therefore, development
of soybean lines with reduced-stachyose contents is desired for increasing the energy metabolism
rate and digestion of soybean meal.

The breeding line V99-5089 has been identified as source of high-sucrose, low-stachyose
and low-phytate contents (Saghai-Maroof and Buss, 2008). Results from several studies in which
V99-5089 was crossed to other soybean lines suggest that low stachyose is a heritable trait
(Jaureguy, 2009; Zeng 2012; Mozzoni et al., 2013). Thus, this breeding line could be used in
breeding for soybeans with improved sugar profile. Additionally, crosses between V99-5089 and
other low stachyose sources suggested the presence of a stachyose QTL in V99-5089 that is
different from the low stachyose sources previously reported (Sebastian et al., 2000; Skoneczka
et al., 2009).

Saghai-Maroof and Buss (2008) identified and located the stachyose QTL from V99-
5089 in the interval between Satt453 and Sat 331 on chromosome 11. This QTL accounted for

28% of the phenotypic variation observed. Furthermore, Maupin et al. (2011) reported that the
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SSR marker Satt453 on chromosome 11 had 87% of selection efficiency in marker assisted
selection of low stachyose lines. Additionally, Jaureguy (2009) identified three SSR markers on
chromosome 10 linked to stachyose content. He also reported a QTL for this trait flanked
between Satt262 and Sat 282 that explained 48% of the stachyose variation observed. More
recently Zeng et al. (2012) used SSR and SNP markers on a population derived from the cross
Osage x V99-5089 and identified two QTLs for stachyose on chromosomes 10 and 11, which
explained 11 and 81% of the phenotypic variation in stachyose contents. These QTLs were stable
across environments.

The objective of this study was to confirm stachyose QTL previously reported and / or

identify new QTLs.

Materials and methods
Population development and field experiment

An F, soybean population segregating for sucrose content was used in this study and both
parental lines were developed at Virginia Polytechnic Institute. The regular sucrose (~ 5.0 %)
breeding line V97-3000 was crossed to the high sucrose (~ 7.7 %) breeding line V99-5089 in
summer of 2007, at the Arkansas Agricultural Research and Extension Center (AAREC) in
Fayetteville, AR. The F, plants were grown in Fayetteville during summer of 2008 and
morphological markers (leaf shape and seed size) were used to differentiate true hybrids from
selves and outcrosses, because V97-3000 is a small-seeded line (9 g 100 seed') with narrow leaf
shape, and V99-5089 is a large-seeded line (20 g 100 seed™") with broad leaf shape. F; plants
were then bulked and harvested.

The F, population was grown in Fayetteville in 2009, in 3-meter rows with 150 seed per
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row. Row spacing was 1 meter and plots were irrigated by furrow irrigation and managed
according to the standard cultural practices for soybean production in Arkansas (Tacker and
Voires, 1998). A total of 150 random F; plants were tagged and identified with a number. At the
end of the season, these tagged plants were harvested individually to form the mapping
population. A sample containing 100 seed was sent to a winter nursery for generation
advancement. The remnant of the seed from each F,; line was used for carbohydrate analysis.

The winter nursery is located near Upala city in the northwestern part of Costa Rica at 52
meters above sea level (Mongabay, 2014). There, each F,; line was grown in a 3-m row with
0.76-m row spacing. A 3-m row spacing of the parental genotypes was planted next to the
segregating population. Soil was cultivated before planted and plots were fully irrigated and
managed during the growing season using standard cultural practices. After two generation
advancements, F,.5 seed were brought back to Fayetteville but unfortunately, the seed quantity
was not enough to grow a test with two repetitions in two different locations. For this reason, it
was decided to do a seed increase in Fayetteville during the growing season in 2010 and then
establish the test the following year.

In summer of 2011, F,.¢ plants were grown in a randomized complete block design
(RCBD) with two repetitions in two locations: Fayetteville and Marianna, AR. The soil in
Fayetteville is classified as Captina silt loam (Fine-silty, siliceous, active, mesic Typic
Fragiudults) (Soil Survey Staff, 2013), which is very deep, moderately well drained, and made in
a thin mantle of silty material (Soil Series, 2006). Whereas, the soil in Marianna is classified as a
Calloway silt loam (Fine-silty, mixed, active, thermic Aquic Fraglossudalfs) (Soil Survey Staff,
2013), which is described as very deep, somewhat poorly drained and developed in thick loess or

water reworked loess (Soil Series, 2002). Each soybean plot consisted of two 3-meter rows, each
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with 150 seed and a row spacing of 1 meter. Both locations fully irrigated by furrow irrigation
and managed based on the standard cultural practices for soybean production in Arkansas
(Tacker and Voires, 1998). The youngest fully developed trifoliate of each plant was sampled
and samples belonging to the same row were bulked for DNA extraction. F,.¢ seed were
harvested during fall of 2010 and a 10-g sample of each plot was used for carbohydrate analysis
and the remnant of the seed was saved to be planted the next season.

Genotypic data

Genomic DNA extraction. After being collected, leaf tissue samples were stored in the
freezer at -80 °C. Afterward, they were ground with liquid nitrogen to a fine powder by using a
mortar and a pestle. DNA was extracted using the CTAB (cetyltrimethylammonium bromide)
buffer method (Kisha et al., 1997) in which, a buffer containing 5M NaCl, 200mM Tris pH 8.0,
4% (w/v) CTAB, 0.5 mM EDTA, and 6.4 mL B-mercaptoethanol is added to the samples,
followed by chloroform:isoamyl alcohol (24:1). After incubation for 60 min at 65 °C with
occasional gentle mixing, DNA is precipitated and washed with 95% ethanol and subsequently
dissolved in 0.1 x TE buffer. Concentration was calculated by measuring the absorbance at 260
nm using a BioTek Power Wave XS Microplate Spectrophotometer (BioTek, Winooski, VT).
DNA was stored in the freezer at -80 °C.

Single nucleotide polymorphism (SNP) genotyping. For genetic map construction, two
repetitions of each parental line and 92 F,.; DNA samples were sent to the Research Technology
Support Facility (RTSF) Genomics Core at Michigan State University, East Lansing, MI. There
they were genotyped with 5361 SNP markers (dbSNP-NCBI, 2012) using the Illumina Infinium®
Genotyping HD BeadChip (652k SNPs) on [llumina iScan (Illumina, San Diego, CA).SNP

analysis was performed on 4-pL samples containing a concentration between 50 and 100 ng pL™
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of DNA. Intensities of the beads fluorescence were distinguished by using the Illumina iScan
TM Reader and alleles for each SNP locus were named using [llumina’s Bead Studio TM
software (Illumina, San Diego, CA, v3.2.23). For each SNP marker, the genotype data represents
three possible genotypes AA (homozygote), AB (heterozygote), and BB (homozygote) (Akond
etal., 2013).
Phenotypic data

Soluble carbohydrate analysis. Sugar extraction followed the protocol described by Hou
et al. (2009), with some modifications. Briefly, a 10-g seed sample was ground to a fine powder
using a coffee bean grinder (Krups®, Shelton, CT). Then, the powder was sifted through a 100-
um stainless steel testing sieve (VWR®™, West Chester, PA), in order to obtain a sample with
uniform particle size. Afterwards, a 0.15-g sample was weighed, mixed with 1.5 mL of
deionized-distilled water (ddH,O) and transferred into a 2 mL centrifuge tube. The tube was
vortexed, shaken horizontally for 20 min at 200 rpm and centrifuged at 14000 rpm for 10 min. A
500 uL aliquot from the supernatant was placed in a new 2mL centrifuge tube and 700 pL of
acetonitrile (99.9%, HPLC grade) (Thermo Fisher Scientific, Inc.) was added. The solution was
mixed by inversion and incubated at room temperature for 30 min. Then, the tube was
centrifuged at 14000 rpm for 10 min and 70 pL of the extract was pushed through a 25 mm
Easy-Pressure syringe filter holder (VWR®, West Chester, PA) containing a 0.2 pm filter paper
disc (Pall Lifesciences, East Hills, NY). Then, vials containing a 24-puL aliquot of each sample
extract diluted in 576 pL of distilled water were used for carbohydrate determination in a HPLC.

The anion-exchange HPLC system (Dionex DX500 HPAEC-PAD) was composed of a
GS50 gradient pump, an ED40 pulsed amperometric electrochemical detector, an LC50

chromatographic oven, an AS40 automated sampler with a 25-uL injection loop, and a
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Chromeleon Chromatography Management Data System. The mobile phase consisted of a
90mMNaOH solvent (VWR®™, West Chester, PA) at constant flow rate of 1 mL min™', prepared
by diluting carbonate-free HPLC grade 50% (w/w) stock solution in distilled water, filtered with
a 0.45-um membrane, and degassed with compressed nitrogen gas for 30 min before vials were
loaded into the auto sampler, as described by Hou et al. (2009). Soluble carbohydrates were
separated by an analytical CarboPac PA-10 pellicular anion-exchange resin column (4 x 250
mm) coupled to a CarboPac PA10 guard column (4 x 50 mm) and preceded by AminoTrap
column (3 x 30 mm) (Dionex, Sunnyvale, CA). Sugar content was determined from regression
curves fitted from a set of standards for sucrose (Sigma-Aldrich, St. Louis, MO) at different
concentrations (10, 20, 40, 60, and 80 pg uL'l). Carbohydrate data then converted to milligrams
of sugar per gram of seed (mg g') on dry-weight basis.
Statistical analysis

The Shapiro-Wilk (w) normality test from JMP 10.0 (SAS Institute, Cary, NC) was
conducted on the stachyose content distribution for F,-derived lines. Associations between seed
stachyose and molecular markers were analyzed by single factor analysis of variance (ANOVA)
at the 0.05 significant level using the PROC GLM procedure in SAS 12.3 (SAS Institute, 2012).
The software JoinMap® 4.1 (Van Ooijen, 2006) was used for construction of linkage maps, with
a minimum logarithm of odds (LOD) set to 3.0. A Haldane mapping function (Haldane, 1919)
was used to conduct regression mapping algorithm of each chromosome or linkage group.
Composite interval mapping analysis (CIM) was performed using Qgene 4.0 (Joehanes et al.,
2008. One thousand permutation with a walk speed of 1 cM and experiment-wise o = 0.05 was
adopted to establish the empirical significance threshold (Churchill and Doerge, 1994). Multiple

interval mapping analysis (MIM) was conducted to determine the optimum position of the QTL,
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MIM was performed based on the model ¢(n) = In(n) with a walk speed of 1 cM. MapChart 2.2
(Voorrips, 2002) was used to create the LOD plots based on the data from JoinMap® 4.0 and

Windows QTL Cartographer 2.5.

Results
Phenotypic data

The Shapiro-Wilk test showed that the seed stachyose content in the mapping population
derived from V97-3000 x V99-5089 did not follow a normal distribution in all four environments
(Table 1a and Fig. 1). V97-3000 showed higher stachyose content than V99-5089 by 3.2 — 3.7%
in all environments studied, as expected (Fig. 1 and Table 1b). Some of the lines in the mapping
population had stachyose content lower than the low parent V99-5089 and higher than the high
parent V97-3000 (Table 1a). It is likely that the low-stachyose trait is controlled by a few genes
with major effects.
QTL mapping in F,-derived populations by SNP markers

A total of 5361 random SNP markers covering the 20 soybean chromosomes were used
to genotype Fa.¢ lines and 1720 SNP loci (32%) turned out to be polymorphic. These markers
were mapped on 20 chromosomes, representing 663 unique SNP loci (Table 2). This linkage
map spanned 2435.2 ¢cM with an average distance coverage of 3.8 cM per marker (Table 2 and
Fig. 2a-e).

Results from the single-marker analysis revealed seven significant SNP markers (P <
0.05) on six chromosomes (2, 5, 9, 10, 11, and 19) associated with seed stachyose content (Table
3). Lines with a homozygous genotype carrying the V99-5089 allele had lower stachyose content

compared with those carrying the V97-3000 allele. On average, the V99-5089 allele accounted
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for a reduction of stachyose content between 0.55 and 1.71% (Table 4). The stachyose variation
contributed by the SNP alleles in those five chromosome regions ranged from 7 to 46%.

In the composite interval mapping analysis, the empirical significance threshold was
computed as a LOD value of 2.5 in the F,.c mapping population in all environments studied (i.e.,
Fayetteville 2009, Fayetteville 2010, Fayetteville 2011, and Marianna 2011). Based on stachyose
content in Fayetteville in 2009 and 2010, a minor stachyose QTL was identified on chromosome
10, flanked by the SNP markers ss247176598 and ss247225929, tightly linked to the marker
$52472066709 (Figs. 3a-b). This QTL was tentatively named Stal. Stal had a LOD value of 3.1,
significantly higher than the threshold, and accounted for 11% of stachyose variation observed
(Table 4 and Fig. 3c). Additionally, based on average stachyose content across two locations and
three years, a major stachyose QTL was identified on chromosome 11, flanked by the SNP
markers $s247560171 and ss247559991, tightly linked to the marker ss247557383 (Figs. 4a-c).
This QTL was tentatively named Sta2. Sta2 had a LOD value of 5.1, significantly higher than the
threshold, and explained 46% of phenotypic variation for stachyose content (Table 4 and Fig.
4c). This QTL was consistently identified in four environments with a LOD value between 3.1
and 3.9. The multiple intervals mapping analysis showed the optimum locations of the QTLs
identified. Stal was determined to be at 41.8 cM on chromosome 10 and Sta2 was located at 10
cM on chromosome 11. These results indicate that there are two independent stachyose genes

located in two different chromosome regions.

Discussion
In this study, the high stachyose parent ‘V97-3000" consistently produced high stachyose,

while the low parent ‘V99-5089° produced low stachyose, as expected, in all four environments
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(i.e., Fayetteville 2009, Fayetteville 2010, Fayetteville 2011, and Marianna 2011). The average
seed stachyose content of the F»-derived populations was also consistent across the
environments. These results indicate that stachyose is a stable trait and that environment has very
little impact.

The average stachyose contents for the parents and the progeny were higher in Marianna
in 2011, compared with Fayetteville in the same year. Similarly, stachyose content for parents
and progeny were higher in Fayetteville in 2010 than those for the same location in 2011 (Tables
la and 1b). This can be explained by the difference in the average monthly temperature during
the growing season for those two years and between the two locations (Table 5). Weather history
data showed that Fayetteville, AR experienced higher temperatures in 2010 than in 2011.
Previous reports indicate that high temperatures increased stachyose content due to a reduction in
sucrose (Bellaloui et al., 2013).

Based on the molecular marker analysis, a major stachyose QTL was found on
chromosome 11. This QTL is located close to a QTL previously reported by Saghai-Maroof and
Buss (2008) and confirmed by Zeng (2012). My QTL is likely the same QTL previously reported
by Saghai-Maroof and Buss (2008) and Zeng (2012). This result was expected because V99-
5089 was a common parent for all three studies. As consequence, a major stachyose QTL has
been unquestionably confirmed across populations with different genetic backgrounds and across
environments. Markers associated with this QTL/gene may be used in marker-assisted selection
of low-stachyose lines.

A minor stachyose QTL was mapped to chromosome 10. This QTL is located near the
region of a QTL for stachyose previously reported by Jaureguy (2009) and later confirmed by

Zeng (2012). It appears that the QTL region identified in the three different studies contains the
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same QTL/gene for stachyose in V99-5089. The low-stachyose trait is controlled by two
independent genes, one located on chromosome 11 with a large effect and the other one located
on chromosome 10 with a small effect. The stachyose QTL on chromosome 11 reduced the
stachyose content by up to 2.21 % and the minor QTL on chromosome 10 contributed up to 0.96
% stachyose reduction. Therefore, use of these markers would be very effective in breeding for

low-stachyose soybean.
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Conclusion

Two stachyose QTLs were identified in our study. A major QTL located on chromosome
11, linked to ss247557383, that explained 46% of the phenotypic variation for stachyose and a
minor QTL located on chromosome 10, linked to ss247206709, accounted for 11% of the
stachyose variation. Both QTLs are in agreement with stachyose QTLs previously reported and
also proved to be stable across environments. The fact that stachyose is controlled by few genes
with large effect and also that the environment has little or no effect, confirms that stachyose is a
qualitative trait. For this reason, molecular breeding for soybeans with low-stachyose content

should be fairly straightforward.
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Table 1a. Seed stachyose content (% dry-weight basis) of mapping populations derived from the cross V97-3000 x V99-5089
evaluated across two locations and over three years.

4!

Year — Location Generation No. Lines Mean Range Prob< W'
2009 Fayetteville Fo3 129 2.77 0.11-4.19 <0.0001
2010 Fayetteville Fae 92 2.95 0.12-4.35 <0.0001
= 2011 Fayetteville Frs 92 2.90 0.07-4.32 <0.0001
2011 Marianna F,.7 92 2.94 0.10-4.25 < 0.0001

" Shapiro-Wilk normality test.



Table 1b. Seed stachyose content (% dry matter) of parents V97-3000 and V99-5089 evaluated across two locations and over three
years.

44!

V97-3000 V99-5089

Year-Location

Mean SDf Mean SDf
2009 Fayetteville 3.75 0.16 0.39 0.08
2010 Fayetteville 4.11 0.27 0.40 0.12
2011 Fayetteville 3.92 0.08 0.59 0.06
2011 Marianna 4.00 0.11 0.75 0.35
Overall* 3.94 0.16 0.53 0.15

T Standard deviation.
¥ Sucrose mean and standard deviation across four environments.



Table 2. Summary of SNP markers used for the screening of an F»-derived population from the
cross V97-3000 x V99-5089.

Chr.t LG! Lengtlé No. SNP No. SNP  Average distance (cM)
(cM) mapped locus located between SNP loci
1 Dla 29.8 23 15 2.0
2 D1b 167.0 49 26 6.4
3 N 23.8 99 23 1.0
4 Cl 136.4 77 34 4.0
5 Al 82.4 56 14 59
6 C2 152.5 100 49 3.1
7 M 149.1 51 27 5.5
8 A2 135.6 90 51 2.6
9 K 23.1 90 14 1.6
10 O 139.5 59 32 4.4
11 B1 134.0 141 50 2.7
12 H 150.4 37 27 5.6
13 F 110.6 121 43 2.6
14 B2 48.0 33 16 3.0
15 E 127.1 157 62 2.1
16 J 118.2 90 34 3.5
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Table 2. Summary of SNP markers used for the screening of an F»-derived population from the
cross V97-3000 x V99-5089 (Cont.).

Chr.! LG Lengtl; No. SNP No. SNP  Average distance (cM)
(cM) mapped locus located between SNP loci
17 D2 164.9 124 44 3.7
18 G 133.9 68 44 3
19 L 309.6 158 40 7.7
20 I 99.3 97 18 55
Average 121.8 86 33 3.8
Total 2435.2 1720 663
fChromosome.
*Linkage group.

SChromosome length in centimorgans.
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Table 3. Single-marker analysis of variance for seed stachyose content in 92 F,-derived lines
from the cross V97-3000 x V99-5089 evaluated in Fayetteville (Fay) in 2009 and 2010, and in
Fayetteville and Marianna (Mar) in 2011.

P value
Chr. SNP Marker rosition 2009 2010 2011
(cM) Combined*
Fay Fay Fay Mar

2 $5244874473 157.0  0.0051 0.0045 0.0079 0.0100 0.0056
5 $5245737602 46.1  0.0257 0.0385 0.0863 0.0647 0.0445
9 $s246816196 18.5  0.0469 0.0232 0.0125 0.0226 0.0218
10 5247206709 41.8 0.0176 0.0232 0.0167 0.0340 0.0199
11 ss247571761 2.8  0.0167 0.0040 0.0076 0.0268 0.0099
11 s$s247557383 10.0  0.0332 0.0253 0.0401 0.0278 0.0316
19 5250262655 293.0 0.0347 0.0668 0.0457 0.0193 0.0358

T Chromosome.

*Pooled data from all environments studied.
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Table 4. Mean effect of SNP marker alleles on seed stachyose content in 92 F,-derived population developed from the cross
V97-3000 x V99-5089 grown in two locations and over three years.

9Tl

e NP Position 2009 2010 2011" Combined’ .
(cM) | p1® p2' Diff.* | P1 P2 Diff. | P1 P2  Diff. | P1 P2  Diff.
2 55244874473 157.0|2.85 223 062 |279 206 073 |28 212 070 |2.82 214 0.68 |0.07
5 $5245737602 46.1 1290 235 055 | 284 210 0.74 |2.85 224 0.61 |2.86 223 0.63 |0.06
9 55246816196 185287 223 0.64 | 281 212 069 |28 216 067 |284 217 067 |0.06
10 ss247206709 418377 281 096 | 342 260 082 [3.60 272 0.88 |3.60 271 089 |[0.11
11 ss247571761 281250 136 1.14 | 289 148 141 (267 133 134 |269 139 130 |0.28
11 ss247557383 100 387 1.74 213 | 391 1.8 209 |3.85 1.64 221 |3.88 173 215 [0.46
19 ss250262655 | 293.0 (290 227 0.63 | 2.83 208 075 |2.81 219 062 [285 218 067 |[0.06

"Pooled data from Fayetteville and Marianna in 2011.
* Pooled data from Fayetteville in 2009 and 2010, and Fayetteville and Marianna in 2011.
S Allelic effect of P1 = V97-3000.

Y Allelic effect of P2 =V99-5089.

# Allelic difference.



Table 5. Average monthly temperatures (°C) in Fayetteville, AR in 2010 and Fayetteville and Marianna, AR in 2011.

LTI

Month
Year Location
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2010 | Fayetteville | 0.6 0.6 7.8 150 194 256 261 278 21.7 144 89 2.2
Fayetteville | 0.6 33 10.0 150 178 256 289 278 183 144 100 44
2011
Marianna 33 56 117 183 21.1 272 283 272 21.1 156 122 7.2

Information extracted from http://www.wunderground.com (accessed March, 2014).
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Fig. 2a. A genetic map constructed for chromosomes 1, 2, 3, and 4 using an F,.c mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2b. A genetic map constructed for chromosomes 5, 6, 7, and 8 using an F,.¢ mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2¢. A genetic map constructed for chromosomes 9, 10, 11, 12, and 13 using an F;.¢ mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2d. A genetic map constructed for chromosomes 14, 15, and 16 using an F,.c mapping
population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were
mapped to 20 soybean chromosomes.
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Fig. 2e. A genetic map constructed for chromosomes 17, 18, 19, and 20 using an F,.c mapping

population derived from V97-3000 x V99-5089. A total of 1720 polymorphic SNP markers were

mapped to 20 soybean chromosomes.
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Fig. 3a. Composite interval mapping using SNP markers for seed stachyose QTL on

chromosome 10 in 92 F,-derived lines from the cross V97-3000 x V99-5089, evaluated across

locations and years: (1) in Fayetteville, AR in 2009; (2) in Fayetteville, AR in 2010.
logarithm of the odds.
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2010 (Combined data).
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Fig. 4a. Composite interval mapping using SNP markers for seed stachyose QTL on

chromosome 11 in 92 F,-derived lines from the cross V97-3000 x V99-5089, evaluated across

locations and years: (1) in Fayetteville, AR in 2009; (2) in Fayetteville, AR in 2010.
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Fig. 4b. Composite interval mapping using SNP markers for seed stachyose QTL on
chromosome 11 in 92 F,-derived lines from the cross V97-3000 x V99-5089, evaluated across
locations and years: (1) in Fayetteville, AR in 2011; (2) in Marianna, AR in 2011.
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Fig. 4c. Composite interval mapping using SNP markers for seed sucrose QTL on chromosome
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Overall conclusion

The increasing demand for soyfoods requires concentrating breeding efforts on the
development of soybeans with modified-seed composition. This dissertation particularly focused
on studying QTLs/genes associated with sucrose and stachyose contents due to the effects of
these sugars on the quality, taste, and digestibility of soyfoods. Findings from this dissertation
revealed two independent germplasm sources for low-stachyose that can be used as parental
materials for the development of breeding populations. Additionally, QTLs for sucrose and
stachyose previously reported, were confirmed and validated in our studies, which makes them
reliable molecular tools. These findings will facilitate marker-assisted selection in breeding for

high-sucrose and low-stachyose contents.
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