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Abstract

To achieve more cost efficient transportation infrastructure within the state of Arkansas, a
series of cost-benefit analyses were performed. The analyses, specifically developed for load
resistance factor design (LRFD) designed drilled shaft foundations, were designed to compare
the fiscal impacts of the drilling and sampling, in-field and laboratory testing, full-scale load
testing, and concrete mixing techniques utilized by the University of Arkansas (UofA), the
Arkansas Highway and Transportation Department (AHTD), and the Missouri Department of
Transportation (MODOT). The methodologies were compared at three test site locations within
the state of Arkansas: Siloam Springs, AR, Turrell, AR, and Monticello, AR. These sites were
selected to represent the predominant geological deposits within the state. Three drilled shaft
foundations (two four-foot diameter drilled shafts and one six-foot diameter drilled shaft) were
each constructed at the Siloam Springs Arkansas Test Site (SSATS) and the Turrell Arkansas
Test Site (TATS). A drilled shaft database was developed containing soil properties, and
predicted and measured results of the full-scale load tests performed upon each drilled shaft.
Cost-benefit analyses for each methodology were compared by means of predicted and measured
static axial capacity. Values of predicted axial capacity were generated for each methodology
using the Bridge Software Institute FB-Deep, Ensoft SHAFTv2012, and Microsoft Excel®
spreadsheet programs. Based on the results of the full-scale load testing, the FB-Deep program
utilizing the data from the UofA sampling and testing method was selected as the best
methodology for predicting the axial capacity values for drilled shaft foundations in the state of
Arkansas. Results of the cost-benefit analyses indicated a potential savings of $262,800 (32
percent) for drilled shaft foundations in rock. A potential savings of $323,800 for performing

full-scale drilled shaft load tests in rock were attained. Unit cost per ton of resistance values of



$24.11 and $82.70, and $75.47 and $141.57 were determined for the UofA and AHTD sampling
and testing methods at the SSATS and TATS, respectively. Drilled shaft foundations tested in
liquefiable soil were concluded to cost $137,500 (8.7%) more than driven pile foundations, but

provided the benefit of additional lateral resistance.
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Chapter 1:  Introduction
1.1. Background

In 2007, load resistance factor design (LRFD) was specified as the mandatory practice by
the U.S. Department of Transportation (USDOT) for all infrastructure projects that receive
funding through the Federal Highway Administration (FHWA) or other USDOT funding
vehicles (Lwin, 2007). LRFD methods, compared to the previously utilized allowable stress
design (ASD) methods, incorporate a unified measure of reliability for superstructure and
substructure, with the ultimate goal of developing cost efficient designs. Due to the influence of
federal funding for construction of transportation infrastructure, the FHWA LRFD requirement
has become an obligation for state highway authorities to implement in all new transportation
infrastructure construction. Extensive research has been conducted for implementation of the
new design methodology for substructure design, as well as developing regional soil specific
resistance factors.

In the state of Arkansas, the Arkansas State Highway and Transportation Department
(AHTD) primarily employs the use of standard penetration testing (SPT) blow count data to
estimate the engineering properties of soils. AHTD also currently utilizes overly conservative,
nationalized American Association of State Highway and Transportation Officials (AASTHO)
recommended LRFD resistance factors. The use of these resistance factors is the result of current
AASHTO LRFD resistance factors being either a) back-calculated from historically employed
ASD factors of safety, or b) calculated using reliability theory from outdated methods. As a
result, the current design practices employed by the AHTD fail to benefit from the potential
advantages of advanced sampling techniques, advanced in-situ testing, advanced laboratory

testing, and advanced full-scale load tests. Therefore, the fiscal advantages associated with the



implementation of LRFD are not realized. In order to achieve more cost efficient infrastructure
within the state of Arkansas, researchers at the University of Arkansas (UofA) are developing
regionally calibrated resistance factors through the means of advanced sampling, advanced in-
situ testing, advanced laboratory testing, and advanced full-scale load testing.
1.2. Significance to the Geotechnical Engineering Community

This research project will benefit the geotechnical design community by providing
engineers with regionally calibrated resistance factors to use in LRFD drilled shaft design,
ultimately yielding a more cost efficient design. Within the scope of the work described in this
document, this research project will contribute to the expanding knowledge base concerning
advanced full-scale load testing and cost analyses. Specifically relationships obtained through
full scale load testing between the predicted and measured skin friction and end bearing
resistances of drilled shafts embedded into clay, sand, and competent limestone shall be
evaluated. The research will investigate the discrepancies between two available commercial
software programs widely used to evaluate drilled shaft axial capacity. As a benefit to the general
public, this project will increase the knowledge base contributing to more sustainable and fiscally
beneficial infrastructure design.
1.3. Project Overview

The Arkansas State Highway and Transportation Department’s (AHTD) current design
practices incorporate an overly-conservative amount of uncertainty and bias, potentially
increasing the fiscal burden incurred by the state and public. Savings from less overly-
conservative designs based on locally calibrated LRFD resistance factors may be obtained
through the means of advanced sampling, in-situ testing, laboratory testing, and full-scale load

tests.



Geotechnical site investigations were conducted at three locations within the state of
Arkansas: Siloam Springs, Turrell, and Monticello. The locations of each project site are
presented in Figure 1.1. Siloam Springs, situated within the Northwestern portion of the state
geology, consists of a competent limestone overlain by approximately sixteen feet of cherty clay.
Turrell, located near the Mississippi River, exhibits floodplain characteristics and is composed of
a sand base overlain by ten feet of low plasticity silt, overlain by ten feet of high plasticity clay.
Monticello, situated within the Southeastern portion of the state, consists of sand, overlain by
approximately twenty feet of stiff clay, overlain by ten feet of sand, overlain by thirty feet of
desiccated clay. The site stratigraphy at each of the three sites obtained from subsurface

investigation borings and recovered samples is presented in Figure 1.2.
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Test Sites.

The geotechnical site investigations performed by the University of Arkansas (UofA) (in
conjunction with MODOT) and AHTD consisted of respectively advanced and conventional
sampling and testing procedures. UofA samples were obtained every 2.5 feet (using SPT in
sands, Osterberg hydraulic fixed-piston sapling in clay, Pitcher barrel sampling in stiff clay or
soft rock, and double swivel core barrel in hard rock). AHTD samples were obtained (using a
split barrel sampler, Shelby tube sampler, and core-barrel sampler) every 2.5 feet to 20 feet
depth, then every five feet till termination of the boring. Each UofA and AHTD boring was
terminated at either 100 feet depth or after 15 feet of continuous rock core had been obtained.
Samples collected from the AHTD boreholes were placed in cardboard core boxes prior to

transport. Samples collected from UofA boreholes were saved in sealed, expandable packers that



were waxed, and maintained prior to transport. CPT tests were conducted at each site on behalf
of the UofA by MODOT personnel (with the exception of rock sites) after the UofA and AHTD
boreholes were completed.

The University of Arkansas (UofA) conducted conventional laboratory testing on all
samples and advanced laboratory testing only on select samples. Conventional laboratory testing
included the following: Atterberg limits, moisture content, unit weight, grain size analysis,
specific gravity, and calcium carbonate content. Advanced laboratory testing consisted of
unconsolidated-undrained triaxial compression. AHTD conventional testing included Atterberg
Limits, moisture content, and unit weight.

Engineering properties of the geomaterial encountered during the investigations
preformed at each site were compared for the various sampling and testing methods. From these
properties, predictions of ultimate axial capacity and load settlement curves utilizing the various
sampling and testing methods and prediction programs were performed and compared. Cost
predictions for each shaft were also determined. From capacity predictions, length
determinations for each of the test drilled shaft foundations were performed. Based on each
determination, the test shafts (three for each site consisting of two four-foot diameter shafts and
one six-foot diameter shaft) were further designed and constructed. The cost of construction for
each shaft was recorded. Full-scale load tests were performed at the Siloam Springs and Turrell
Arkansas Test Sites to compare the predicted and measured capacities of each constructed drilled
shaft foundation. From the measured capacities and the recorded costs associated with each
shaft, a unit cost per ton of capacity for the UofA and AHTD testing and sampling methods were
determined. These unit values were then utilized to determine the cost implications of each

testing and sampling method at various levels of infrastructure. Further future data analysis shall



enable the determination of regionally-calibrated resistance factors, aiding designers in the State
of Arkansas.
1.4. Thesis Overview

This document is divided into nine chapters. Chapter 1 includes an introduction, a brief
overview of the project, and an overview of this thesis. Chapter 2 contains a literature review on
LRFD practice, axial design capacity methods, drilled shaft capacity predictive technologies, and
full-scale Osterberg Cell (O-Cell®) testing. The literature review also encompasses drilled shaft
advanced load testing case studies. A detailed site description along with a description of the
methods and procedures used to conduct the geotechnical site investigations at each site are
discussed in Chapter 3. The predictive methods and procedures used to determine a scope for
the advanced full-scale load tests are discussed in Chapter 4. The procedures discussed include
developing a determination length and capacity for each shaft, and evaluating the variances in
predicted capacities using different sampling techniques, testing techniques, and predictive
technologies. Chapter 4 also contains a description of the methods utilized to perform the cost-
benefit analyses. The construction processes associated with the Siloam Springs Arkansas Test
Site, along with the quantitative and qualitative characteristics of each advanced full-scale load
test are discussed in Chapter 5. Likewise, the construction processes associated with the Turrell
Arkansas Test Site, along with the quantitative and qualitative characteristics of each advanced
full-scale load test are discussed in Chapter 6. The results of the predictive technology evaluation
in regard to different sampling and testing techniques are evaluated and discussed in Chapter 7.
Results contained in Chapter 8 specifically include an evaluation of O-Cell® output data, a
discussion between predicted vs measured ultimate axial capacities, predicted vs measured unit

end bearing resistances, and predicted vs measured skin frictions, a discussion on the differences



between predictive technologies, as well as a discussion evaluating the overall effects of
advanced sampling, and testing methods. Chapter 8 also contains the results of the cost-benefit
analyses. Chapter 9 contains conclusions developed from a culmination of the literature review
as well as the collected results. From the conclusions, recommendations for countering the
potential fiscal deficits associated with the results of overly-conservative, conventional designs
in the state of Arkansas are addressed through suggested sampling methods, testing methods, and

predictive technologies. Recommendations for future testing are also included in Chapter 9.



Chapter 2:  Literature Review

2.1.  Introduction

A broad body of research exists regarding the cost-benefits of LRFD by using Osterberg
load cell tests; however no research specifically addresses the potential fiscal benefits associated
with this type of testing in the state of Arkansas. This literature review is composed of the
following sections, a discussion of the relevance of LRFD and the application of LRFD to drilled
shaft design (Sections 2.2. and 2.3., respectively). A summary of the methods of axial capacity
estimation is presented in Section 2.4. Detailed discussions on Osterberg load cell testing and
Osterberg load cell case studies are presented in Section 2.5. Cross-hole sonic logging is
addressed in Section 2.6. The variability and uncertainty introduced from sample size in LRFD
are discussed in Section 2.7., while commercially available drilled shaft axial capacity prediction
software programs are presented in Section 2.8. The last item discussed in this chapter is

concrete admixtures (Section 2.9.).

2.2.  Historical Background of Load Resistance Factor Design (LRFD)

Fundamental structural reliability theory was first introduced by Fredenthal (1956) and
Pugsley (1955), which advocated probability theory over absolute reliability theory. A process
for developing the design criteria to ensure a small probability of failure was discussed in each
publication (Phoon, 2004). In Cornell (1969), the concept of a reliability index () was
introduced, how this reliability index was be used to calculate load and resistance factors was
then addressed in Lind (1971). According to Phoon (2004), the reliability method was first
implemented in Ravindra and Galambos (1978) for steel structures, and is still utilized in the
structural community. As discussed in Section 2.3., the use of the reliability method in

geotechnical applications began in 1965, and was implemented following a federal mandate in



2007. The research that led to this mandate and the acquired resistance factors are discussed in

sections 2.2.2 and 2.2.3, respectively.

2.3.  Historical Background of Load Resistance Factor Design (LRFD) for Geotechnical

Applications

One of the first LRFD efforts for geotechnical applications involving foundation design is
found in Hansen (1965). Hansen (1965) advocated the separation of ultimate and serviceability
limit state checks, as well as partial load factors and soil parameters (Phoon, 2004). As a result,
modified partial factors of safety were implemented in the Danish Code of Practice for
Foundation Engineering (1985), and the Canadian Foundation Engineering Manual, CFEM, 3™
Ed. (Canadian Geotechnical Scociety, 1992). In the United States, the transition to LRFD
calibrated factors from a semi-analytical reliability-based approach (as opposed to ASD fitted
calibration) was retarded due to a lack of statistical data and funding until research was
performed by Rojiani et al. (1991) and Yoon and O’Neill (1997). According to Phoon (2004),
reliability indexes (using an extensive range of procedures including rational, semi-empirical,
and in-situ methods) were developed from risk levels. In Paikowsky and Stenersen (2000),
differences between the AASHTO (1997) specifications and the NCHRP Report 343 (Barker et
al., 1991) were discussed. A target reliability index of 3.5 for bridge superstructures was
recommended in AASHTO (1997), yet reliability indices ranging from 2.5 to 3.5 for drilled
shafts, and 2.0 to 2.5 for driven piles were recommended in NCHRP Report 343 (Barker et al.,
1991). This difference negates one of the chief principals behind LRFD practice — uniting the
bridge superstructure and substructure. In response, NCHRP Project 24-17 (Paikowsky, 2002)
was initiated to revise the driven pile and drilled shaft portions of Section 10 of the AASHTO

(1997) Specifications, and to specify a resistance factor calibration procedure. Currently, in



AASTHO (2012), a design target reliability of 2.3 (with an approximate probability of failure of
0.01) is specified for redundant foundations systems based on recommendations in Zhang et al.

(2001), Allen et al. (2005), and Paikowsky (2004).

2.3.1. Load Resistance Factor Design (LRFD) in Drilled Shaft Design

Because protecting the safety of the general public is the the primary objective of all
drilled shaft design approaches, the design load (Qudes) is specified not to exceed the available
capacity (Quit) for allowable stress design (ASD). As presented in Equation 2.1, the use of a
pre-determined global factor of safety (FS) is utilized to prevent failure and ensure the safety of

the general public.

Qu
Qdes < Quu = F—;t (Brown et al., 2010) Equation 2.1
Where: Ques = applied design load,

Qan = allowable load,

Quit = ultimate load capacity,

FS = global factor of safety (=1).
The aforementioned global factor of safety is used to assess the potential for adverse
performance. Factors such as construction quality, material and load anomalies, or unexpected
subsurface conditions are all accounted for in a single variable (Brown et al., 2010). Because the
ASD methodology does not identify all possible failure modes, the approach has been replaced
with limit state design. Partial factors to modify loads and resistances (the smaller the partial
factor applied, the more uncertain the quantity) are utilized in load resistance factor design.

LRFD is viewed as an improvement in design methodology because individual factors of safety
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can be applied to each quantity rather than lumped together at the end of the design process
(Brown et al., 2010). By utilizing LRFD, all limiting components of a structure are individually
evaluated, resulting in a more cost-effective design. As presented in Table 2.1, thirteen (13)
potential limit states are identified in Article 3.4 of the AASHTO LRFD Bridge Design
Specifications (2012) for bridge design evaluation.

Table 2.1. Limit states for bridge design (after AASHTO, 2012).

Limit State  |Case Load Combination Description

I [Basic Load Combination, normal vehicular use without wind
Owner-specified special design values, without wind

Bridge exposed to wind velocity exceeding 55 mph

Very high dead load to live load force effect ratios

Normal vehicular use with wind of 55 mph

Normal operational use with 55 mph wind and all loads taken at nominal values
Control yeilding of steel structures, slip-critical connections
Longitudinal analysis

Tension in prestressed concrete columns with crack control
Load combination including earthquake

Ice load, vehicle and vessel collisions, certian hydraulic events
Infinite repetative vehicular live loads and dynamic responses
Finite repetative vehicular live loads and dynamic responses

Strength

Service

Extreme Event

Fatigue

== == 2 EEI=I<2E=

The equations used to calculated LRFD strength limit state of a drilled shaft is presented in
Equation 2.2. For each limit state, the sum of factored force effects (including axial loads, shear

forces, or moments) may not exceed the sum of factored resistances.

Z nviQi < Z biR; (Brown etal., 2012) Equation 2.2

Where: n; = load modifier ( to accommodate for group effects),
y; = load factor (applied to force effect i),
Q; = nominal value of force effect i,

¢, = resistance factor (applied to resistance component i),
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R; = nominal value of resistance component i.
Examples of commonly utilized load factors from AASHTO (2012) are presented in Tables 2.2
and 2.3. Specifically, each table accounts for the various loading combinations associated with
each limit state.

Table 2.2. Load combinations and load factors (after AASHTO, 2012).

DC Use One at a Time
DD
DW
EH
EV | LL
ES | IM
EL | CE
Load PS | BR
Combination | CR | PL
State SH| LS| WA | WS|WL| FR TU TG| SE |EQ|[BL| IC |CT|CV
Strength [ yp |1.75] 1.00 | - - |1.00]0.50/1.20 |YTG|YSE| - - - - -
Strength 11 vp |1.35] 1.00 | - - 11.00/0.50/1.20 |YTG|ySE| - - - - -
Strength 111 Yyp| - | 1.00]|14] - |1.00[0.50/1.20 |YTG|YSE| - - - - -
Strength IV yp| - | 1.00| - - |1.00]0.50/1.20| - - - - - - -
Strength V vp |1.35] 1.00 | 0.4 | 1.0 |1.00| 0.50/1.20 |YTG|YSE| - - - - -
Service 1 1.00{1.00| 1.00 | 0.3 | 1.0 |1.00|1.00/1.20 |YTG|YSE| - - - - -
Service 11 1.00{1.30] 1.00 | - - [1.00]1.00/1.20] - - - - - - -
Service III 1.00/0.80| 1.00 | - - |1.00|1.00/1.20 |YTG|YSE| - - - - -
Service IV 1.00| - |1.00]0.7| - |1.00/1.00/1.20] - [1.0] - - - - -
Extreme Event | yp |[YEQ]| 1.00 | - - 11.00 - - - |11.00[ - - - -
Extreme Event I | yp [0.50]| 1.00 | - - 11.00 - - - - [1.00[1.00]|1.00|1.00
Fatigue [
(LL, IM, CE only) 150} - i i i i i i i i i i i
Fatigue II
(LL, IM, CE only - (075 - i i i i i i i i i i i
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Table 2.3. Load factors for permanent loads (after AASHTO, 2012).

Type of Load, Foundation Type, and Method Used to Calculate Downdrag Load Facjtqr
Max1murn| Minimum
DC: Component and Attachments 1.25 0.90
DC: Strength IV only 1.50 0.90
DC: Downdrag |D11']led Shafts, O'Neill and Reese (1999) Method 1.25 0.35
DW: Wearing Surfaces and Utilities 1.50 0.65
EH: Horizontal Earth Pressure
Active 1.50 0.90
At-Rest 1.35 0.90
AEP for Anchored Walls 1.35 N/A
EL: Locked-in Construction Stresses 1.00 1.00
EV: Vertical Earth Pressure
Overall Stability 1.00 N/A
Retaining Walls and Abutments 1.35 1.00
Rigid Buried Structure 1.30 0.90
Rigid Frames 1.35 0.90
Flexible Buried Structures
+ Metal Box Culverts and Structural Plate Culverts with Deep Corrugations| 1.50 0.9
+ Thermoplastic Culverts 1.3 0.9
+ All Others 1.95 0.9
ES: Earth Surcharge 1.50 0.75

Where: Permanent loads

CR = force effects due to creep,

DD = downdrag force,

DC = dead load of structural components and nonstructural components,

DW = dead load of wearing surfaces and utilities,

EH = horizontal earth pressure load,

EL = miscellaneous locked-in force effects from the construction process,

ES = earth surcharge load,
EV = vertical pressure from dead load of earth fill,
PS = secondary forces from post-tensioning,

SH = force effects due to shrinkage,
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Transient loads

BL = blast loading,

BR = vehicular braking force,

CE = vehicular centrifugal force,

CT = vehicular collision force,

CV = vessel collision force,

EQ = earthquake load,

FR = friction load,

IC =ice load,

IM = vehicular dynamic load allowance,

LL = vehicular live load,

LS = live load surcharge,

PL = pedestrian live load,

SE = force effect due to settlement,

TG = force effect due to temperature gradient,

TU = force due to uniform temperature,

WA = water load and stream pressure,

WL = wind on live load,

WS = wind load on structure.

The aforementioned empirically derived methods used to evaluate drilled shaft capacity

are determined from the principals of static forces acting on the surfaces of the shaft. The
methods involve the summation of resistance from both the side friction and end resistance. As

presented in Figure 2.1, the probability of failure, a function of loading conditions (Q) and
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resistance conditions (R), increases when load (Q) exceeds resistance (R). Prior to the
implementation of LRFD, the methodology in O’Neill and Reese (1999) was used in ASD to
calculate axial shaft resistance (undrained shear strength in clay, friction angle in sand, and
uniaxial compressive strength in rock and in intermediate geomaterials). The O’Neill and Reese
(1999) method is also used to calculate shaft resistance in LRFD framework by utilizing a
probability of failure instead of a factor of safety. Resistance conditions are a function of soil
type, sampling procedure, laboratory testing, and full-scale load tests, while loading conditions
are determined from initial design criteria (Allen et al., 2005). The reliability index (P)
represents the number of standard deviations between the mean safety margin and the failure

limit, and decreases as the probability of failure increases (Allen et al., 2005).
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Figure 2.1. Schematic of LRFD load and resistance parameters (after Withiam et al., 1998).
2.3.1.1. Resistance Factors

In practice, a design engineer may not need to conduct reliability analyses on data
acquired from field and laboratory testing, to apply LRFD to drilled shaft design. Resistance
factors for routine design as published in AASHTO (2012) are presented in Table 2.4. These
factors are developed from reliability theory and statistical analyses of full-scale load tests or are
fitted from ASD methods (Paikowsky, 2004). Calibration by reliability theory and fitting to

ASD is further discussed in Sections 2.3.1.1 and 2.3.1.2, respectively. Although resistance
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factors for drilled shaft design are published for routine design (AASHTO, 2012), the limitations
of the presented values are based on the calibration characteristics. Each resistance factor value
is only valid for a particular range of parameters and should only be utilized if the parameters of
the design criteria coincide with the parameters of the original calibration. These parameters
include design equations, load factors, geomaterial type, and geomaterial properties (Allen et al.,
2005).

Table 2.4. Resistance factors for geotechnical resistance of drilled shafts (after AASHTO,
2012).

Method/Soil/Condition Resistance
Factor
o.-method
Sid ist in cl 0.45
ide resistatice In clay O'Neill and Reese, (1999)
Total Stress
Ti ist in cla 0.40
b resistance In vy O'Neill and Reese, (1999)
. . . -method
Sid t d 0.55
e resivtance M SE% 1 O Neill and Reese, (1999)
Nominal Axial Tip resistance in sand |O'Neill and Reese, (1999) 0.50
Compressive Side resistance in IGMs |O'Neill and Reese, (1999) 0.60
Resistance of Single | Tip resistance in IGMs |O'Neill and Reese, (1999) 0.55
Drilled Shafts, ¢stat . ) . Horvath and Kenny, (1979)
Sid t k ’ 0.55
e resistaiee 0K 1 o Neill and Reese, (1999)
Side resistance in rock |Carter and Kulway, (1988) 0.50
Canadian Geotechnical Scociety, (1985)
Pressuremeter method
Ti ist i k ) . . 0.50
b tesistance I ro¢ Canadian Geotechnical Scociety, (1985)
O'Neill and Reese, (1999)
o.-method
Clay o 0.35
Uplift Resistance of E Nef[]}ll agd Reese, (1999)
: : -metho
Single Drilled Shafts, Sand , 0.45
& h an O'Neill and Reese, (1999)
up
Rock Horvath and Kenny, (1979) 0.40
Carter and Kulway, (1988)
Horizontal
All materials 1.0
Geotechnical materia
Static Lo'ad Test All materials 0.70
(compression), $ioad
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2.3.1.2. Calibration to Fit Method

The “calibration to fit method” is usually performed after a design philosophy change
(e.g., ASD to LRFD) and results from a lack of statistical data. Using the calibration to fit
method (Equation 2.3), resistance factors used in LRFD specifications are adjusted to produce
designs similar to the ASD specifications. Because the calibration is developed by fitting to
ASD method, and because the ASD method uses the historic factor of safety, the uncertainty (or
actual margin of safety) of the load and resistance is NOT considered (Allen et al., 2005). A
means to back-calculate a necessary resistance factor magnitude from a pre-determined factor of
safety is provided in the design method.

YL DL
L' Allen et al., 200 i
Pp = — (Allen et al., 5) Equation 2.3

DL
FS (H + 1)

Where: yoL = dead load factor,

L = live load factor,
DL = dead load,
LL = live load,
FS = global factor of safety.
2.3.1.3. Calibration Using Reliability Theory
Calibration by means of the use of reliability theory involves the development of load and
resistance factors from a targeted probability of failure, where the force effect (Q) and available
resistance (R) are treated as random variables. The general steps for calibration of resistance
factors, using reliability theory, as described in Allen et al. (2005) are presented below.
= Determine the statistical parameters (e.g. mean, standard of deviation, and

coefficient of variation [COV]) that characterize the force effects and resistances.
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= Estimate the reliability inherent in the currently available design procedures.
= Given the currently implied margin of safety, and noting the reliability levels
applied throughout literature and the AASHTO (2012) specification, select a
target level of reliability.
= (alculate resistance factors using load factors specified by AASHTO (2012) for
the given evaluated limit state.
Resistance factors may be calculated using normal load and resistance distributions using
Equation 2.4. Resistance factors may be calculated using lognormal load and resistance

distributions using Equation 2.5.

ﬁ — HUR—HQ
f(,}zﬁg(z) (Allen et al., 2005) Equation 2.4
Where: S = the reliability index,

LR = mean value of the resistance,
Mo = mean value of the load,
or = standard of deviation value of the resistance, and

og = standard of deviation value of the load.

In

@2p |
ApFS <_+1> V2 V2 V2

Qp 14+COV4
g = ADQ + AL R

- \/ln[(1+C0VI%)(1+C0V5D+COV5L)]

(Whithiam et al., 1998)

(Nowak, 1999) Equation 2.5
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Where: S = the reliability index,
Qb = nominal value of the dead load,
QL = nominal value of the live load,
AR = mean value of the bias values (measured / predicted) for resistance,
Ap = mean value of the bias values (measured / predicted) for the dead load,
A= mean value of the bias values (measured / predicted) for the live load,
FS = the factor of safety used in ASD,
COVqp = the coefficient of variation value of the bias values for the dead load,
COVqL = the coefficient of variation value of the bias values for the live load, and

COVr = the coefficient of variation value of the bias values for the resistance.

2.3.1.3.1. Reliability Calibration by Barker et al. (1991)

For the calibration of resistance factors for drilled shafts as reported in Barker et al.
(1991), statistical data was obtained from 76 load tests as reported in Reese and O’Neill (1988)
and Horvath and Kenney (1979). For Barker et al. (1991), normal distributions of dead and live
loads, lognormal distributions of resistances, a dead to live load ratio of 3.0, and the load
statistics presented in Table 2.5 were utilized. Based on results, the factor of safety from
previously utilized ASD had a significant influence on final resistance factor selection (Allen,
2005). Despite the AASHTO specified structural bridge reliability index of 3.5, the [ value
calculated from previous ASD factors of safety were found to be typically less in Barker et al.
(1991), especially with redundant foundations. A recommended [3 value ranging from 2.5 to 3.0
for drilled shafts was specified in Barker et al. (1991).

Table 2.5. Load statistics and factors utilized (after Barker et al., 1991).
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Coeflicent of Load Factor
Load T M f Bi
oac ype can o1 bas Variation Used
Dead Load Ap = 1.05 COVgp =0.09 ypr=1.3
Live Load 7¥L =1.05-1.22 COVQL =0.11 YLL™ 2.17

2.3.1.3.2. Reliability Paikowsky et al. (2004)

Calibrations in Paikowsky et al. (2004) were performed on 338 pile load tests and 256
drilled shaft load tests that focused on the strength limit state. Unlike Barker et al. (1991), the
database was gathered under the assumption that the full-scale field installations addressed
sources of uncertainty including spatial variability, design model error, and systematic error. For
the analysis conducted, load statistics from Nowak (1999) and load factors from AASHTO
(2007) were utilized (Table 2.6). In Paikowsky et al. (2004), lognormal distributions of dead and
live loads, a dead load to live load ratio of 2.0, and predominately lognormal distributions of
resistances were assumed. Results obtained from the use of the reliability theory developed by
Hasofer and Lind (1974), and none from previous ASD factors of safety, were used to determine
resistance factors (unlike Barker et al., 1991). In Paikowsky et al. (2004), it was concluded that a
target reliability index of 3.0 should be used for shaft and pile groups less than 5. For shaft and
pile groups greater than 5, a target reliability index of 2.3 should be used. A summary of
calibration results from Barker et al. (1991) and Paikowsky et al. (2004) are presented in Table
2.7.

Table 2.6. Load statistics and factors utilized (after Paikowsky et al., 2004).

Load Type Mean of Bias Coeﬂi‘ce‘nt of Load Factor
Variation Used

Dead Load Ap=1.05 COVqgp =0.1 ypL=1.25

Live Load 7\,]_ =1.15 COVQL =0.2 YLL™ 1.75
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2.4. Existing Methods of Axial Capacity Estimation

Empirically determined methods (methods derived from the results of full-scale load
testing) for predicting axial drilled shaft resistance using AASHTO (2007, 2012) design
procedures are presented in this section. The ultimate axial capacity for the LRFD strength limit
state may be evaluated as the sum of two major resistance components: side friction resistance

(fs) and end bearing resistance (qp), as presented in Equations 2.6 through 2.8.

n
Z i R; = Z s Rowi + dsRpy  (Brown etal., 2010) Equation 2.6
i=1
Rgy = mB Az; f (Brown et al., 2010) Equation 2.7
7 B? .
Ry = 2 qp (Brown et al., 2010) Equation 2.8
Where: ¢ = resistance factor for side resistance in layer i,

Rsn,i = nominal side resistance for layer i,

n = number of geomaterial layers providing side resistance,

Ren = nominal end bearing resistance,

db = resistance factor for base resistance,

B = shaft diameter,

A:i = thickness of geomaterial layer |,

fs = nominal unit side resistance, and

gb = nominal unit base resistance.
Nominal side resistance (Rsn,i) is a function of the surface area of the drilled shaft in contact with
a given geomaterial layer. Nominal base resistance (Rsn,i) is a function of the cross-sectional

area of the base of a shaft. Methods for determining unit side and base resistance are presented

23



in Sections 2.4.1. through 2.4.6. for cohesive, non-cohesive, and rock geomaterial layers,
respectively. Axial capacity prediction methods are based largely on the research described in
Reese and O’Neill (1988) and O’Neill and Reese (1999). The O’Neill and Reese (1999) method
produces shaft resistances within 10 to 20 percent of the original Reese and O’Neil (1988)
method, however the O’Neill and Reese (1999) method more clearly separates the strength and
service limit states by excluding base diameter settlement correction factors for strength limit
state design (Allen et al., 2005). The primary differences between the Reese and O’Neill (1988)
and the O’Neill and Reese (1999) methods are outlined in Allen et al. (2005) and are presented in

Table 2.8.

Table 2.8. Differences between Reese and O’Neill (1988) and O’Neill and Reese (1999),
from Allen et al. (2005).

Resistance Condition Difference

At shear strengths (c,) greater than 3 ksf (150 kPa), the
Side Friction in Clay  |O'Neill and Reese (1999) method is approximatley 10%
more conservative than Reese and O'Neill (1988) method.

O'Neill and Reese (1999) method excludes base diameter
End Bearing in Clay  [correction factor, the O'Neill and Reese (1999) method is
less conservative than the Reese and O'Neill (1988) method.

In loose to medium dense sands (N60 < 15 blows/ft), the
Side Friction in Sand |O'Neill and Reese (1999) method is more conservative by a
ratio of N60/15 than the Reese and O'Neill (1988) method.

IfN60 < 50 blows/ft, the O'Neill and Reese (1999) method
is 5% more conservative. The O'Neill and Reese (1999)
End Bearing in Sand [method excludes base diameter correction factor, the O'Neill

and Reese (1999) method is less conservative than the Reese
and O'Neill (1988) method.

The O'Neill and Reese (1999) method and the Reese and
Rock O'Neill (1988) method are significantly different (not
comparable).
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2.4.1. Side Friction Resistance in Cohesive Soils

The O’Neill and Reese (1999) method for predicting the unit side shear resistance of
drilled shafts is one of the most widely utilized methods for computing deep foundation capacity
for cohesive soils. To determine the unit side shear resistance (fs) in cohesive soils, the undrained
shear strength of the soil (cu) is multiplied by alpha (a) to account for the variability in side
resistance, as presented in Equation 2.9 (Reese and O’Neill, 1988). Alpha is a dimensionless
correlation coefficient, and is limited to a value of 1.0 (Equations 2.10 and 2.11). From O’Neill
and Reese (1999), an average alpha value of 0.55 is recommended, except along the top five feet
(1.5 m) of the shaft and the bottom one diameter of the shaft (oo = 0). The reduction factor is
used to account for uncertainties in the strength of the cohesive material due to differing

construction techniques and/or inadequate soil/concrete bonds.

fs= acy (O’Neill and Reese, 1999) Equation 2.9
c
if P—” <15,a= 055 (O’Neill and Reese, 1999) Equation 2.10
a
. Cu Cy . .
if —=15,a= 055-0.1 ( ) (O’Neill and Reese, 1999) Equation 2.11
P, P,—1.5
Where: fs = unit skin friction (ksf),

o = empirical cohesion factor,
Cu = undrained shear strength (ksf), and
Pa= atmospheric pressure (2.12 ksf).
2.4.2. End Bearing Resistance in Cohesive Soils
The O’Neill and Reese (1999) method for calculating load transfer from tip resistance in

cohesive soils is subject to less uncertainty than load transfer due to skin friction (O’Neill and
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Reese, 1999). Unit end bearing resistance (qv) for drilled shafts in clay is a function of the
average undrained shear strength of the clay (cu) over a depth of two diameters below the base
and the bearing resistance factor (N*.) as presented in Equations 2.12 through 2.14. Values of
N*¢ are presented in Table 2.9, and should be linearly interpolated for values between those
tabulated. If the undrained shear strength of the soil is less than one ton per square foot (tsf) and
the depth of the base is greater than three times the diameter of the shaft, the rigidity index (L) is
included as a function of the maximum end bearing resistance. The rigidity index is directly

related to soil stiffness and inversely related to shear strength (O’Neill and Reese, 1999).

if ¢, >1tsf (96 kPa),and D, = 3B,

pmax = 9 Cy

(O’Neill and Reese, 1999) Equation 2.12

if ¢, <1tsf (96 kPa),and D, = 3B,

4
Qpmax = 7 [In(r + D] ¢y "Nei
3 (O'Neill and Reese, 1999)  gquation 2.13

if D, < 3B,

Dy

2 1
Qomax = 3 [1 + g<—>] N¢ ¢y (O’Neill and Reese, 1999)

B Equation 2.14

Where: cu= undrained shear strength,

Db = depth of shaft base,
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B = diameter of shaft base,

gbmax = maximum unit end bearing resistance,
Ir=“rigidity” index, and

N*c =bearing capacity factor < 9.0.

Table 2.9. Values of I, = Es/ 3cy and N, (after O’Neill and Reese, 1999).

*

¢, E/3c.| N
500 Ib/f> (24 kPa) 50 6.5
1000 Ib/ft* (48 kPa) | 150 8.0

2000 b/f° ( = 96 kPa)| 250-300| 9.0

2.4.3. Side Friction Resistance in Non-Cohesive Soils

The beta method presented in O’Neill and Reese (1999) is utilized for calculating unit
side resistance in non-cohesive soils. Unit side resistance (fsmax) is a function of the effective
normal stress and the interface friction angle of the shaft and borehole, as presented in Equations
2.15 through 2.17. Beta (), a dimensionless correlation factor between the vertical effective
stress (c’v) and unit side friction resistance (fsmax) for a given layer of soil, is back-calculated
from full-scale static load tests. This correlation factor is not be confused with the previously
discussed coefficient of variation (). The value of the correlation factor decreases solely as a
function of depth and is bounded between the depths of 5 and 86 feet. According to O’Neill and
Reese (1999), after 86 feet, friction angle values approach a common magnitude from the high

shearing strains induced by drilling at the wall of the borehole.

fomax = B oy < 4. Of > for 025 < <12 (O’Neill and Reese, 1999)  Equation 2.15

if Ngo = 15,8 = 1.5 — 0.135vz (ft) (O’Neill and Reese, 1999)  Equation 2.16
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N, .
if Ngo <15, = 1—650(1,5 —0.135Vz (ft)) (O’Neill and Reese, 1999)  Equation 2.17

Where: S = load transfer coefficient,
fsmax = maximum unit skin friction resistance,
o’v=vertical effective stress (ksf),
z = depth below ground surface (ft), and

Neo = average corrected blow count (corrected for hammer efficiency only).

2.4.4. End Bearing Resistance in Non-Cohesive Soils

The calculation of unit end bearing resistance (gbmax) is a function of uncorrected blow
count values (N). When an excavation is drilled into sand, there is a tendency for the sand at the
bottom of the excavation to loosen upon drilling. As settlement occurs, the previously loosened
sand beneath the tip of the drilled shaft densifies (Reese and O’Neill, 1988). Because of this
phenomenon, a limiting values for end bearing was established (Equation 2.18) in Reese and
O’Neill (1988). If the base of the shaft exceeds 50 inches in diameter, a modified value of unit

end bearing resistance (qor) may be utilized, as presented in Equation 2.19.

if 0 <N <50,9pmax = 0.6 N < 30tsf (O’Neill and Reese, 1999) Equation 2.18
50 - .
if B=50in,q,, = Equax (O’Neill and Reese, 1988) Equation 2.19
Where: gbmax = maximum unit end bearing resistance,

N = uncorrected blowcount,

Qor = reduced unit end bearing resistance,
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Z = depth below ground surface (ft), and

Neo = average corrected blow count (corrected for hammer efficiency only).

2.4.5. Side Friction Resistance in Rock

Until a total shaft movement of 0.4 inches occurs, it is recommended that the axial
compressive load is solely supported by shaft side friction resistance (AASTHO, 2012). In
AASHTO (2012), two methods for calculating side friction resistance in rock are presented, the
O’Neill and Reese and (1999) method and the Horvath and Kenney (1979) method. According to
the O’Neill and Reese (1999) method, unit side friction resistance is a function of the unconfined
rock compressive strength (qu), the atmospheric pressure (Pa), and the concrete compressive
strength (f°c). Depending on the condition of the rock socket, smooth or rough, equations may be
utilized to analyze unit side resistance (Equations 2.20 and 2.21, respectively). For rock that is
stronger than concrete, unit side friction may be governed by the strength of the concrete rather
than the strength of the rock mass.

For smooth socket:

0.5

0.5 /
fomar = 065 B, [T < 0.658, lj;—cl (O°Neill and Reese, 1999)  Equation 2.20
a a
For rough socket:
Ar (L\]**
fimax = 0.8 _<I>l T (O’Neill and Reese, 1999)  Equation 2.21
r
Where: fsmax = maximum unit skin friction resistance,

Pa = atmospheric pressure (2.12 ksf),
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qu= unconfined uniaxial compressive strength of rock <0.75 f’c,
f’c = 28-day compressive strength of concrete, and

r, Ar, L, L’= geometric terms associated with rock socket (Figure 2.2).

Centerline of Socket

L' =

— Distance
along
socket

L L L L

—

Figure 2.2 Geometric terms associated with Equation 2.21 (after O’Neill and Reese, 1999).

In Horvath and Kenney (1979), rock joint spacing must also be considered as a function
of unit side friction. To account for rock joint spacing, the reduction factor (o) is utilized
(Equation 2.22) as presented in AASHTO (2012). Values of a. are presented in Table 2.11. This
reduction factor (o), estimated from O’Neill and Reese (1999), is determined from the ratio of

the rock mass modulus (Em) to intact rock modulus (Ei) as correlated from RQD values (Table

2.12).

0.5 110-5
femax = 0.65a, P, [Z—”] <78P, []I:—Cl (AASHTO, 2012) Equation 2.22
a

a
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Where: fsmax = maximum unit skin friction resistance,
Pa = atmospheric pressure (2.12 ksf),
qu= unconfined uniaxial compressive strength of rock <0.75 f’c,
f’c = 28-day compressive strength of concrete, and

o= rock joint reduction factor (Table 2.8).

Table 2.10. Estimated values of a. (after O’Neill and Reese, 1999).

En/E; Ole
1.0 1.0
0.5 0.8
0.3 0.7
0.1 0.55
0.05 0.45

Table 2.11. Estimated values of En / Ei based on RQD, (after O’Neill and Reese, 1999).

RQD En/E;i
(Percent) | Closed Joints | Open Joints
100.0 1.00 0.60
70.0 0.70 0.10
50.0 0.15 0.10
20.0 0.05 0.02

The Carter and Kulhawy (1988) method for predicting unit side friction resistance in rock, a
method that is similar to the O’Neill and Reese (1999) method, is presented in Equation 2.23.
Although designers prefer the direct relation of unconfined compressive strength to unit side
shear resistance, the simplified relationship may be misleading (Carter and Kulhawy, 1988). It is
difficult to correlate a simple rock property to the overall mechanical behavior of a shaft/rock

system. Consequently, the equation is applicable to uniform, sound rock constructed for smooth
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wall sockets. Additional methods to evaluate unit skin friction resistance in rock are presented in

Table 2.10.
4y 105
fimax = 0.63 P, [P—”] (Carter and Kulhawy, 1988) Equation 2.23
a
Where: fsmax = maximum unit skin friction resistance,

Pa = atmospheric pressure, and
qu= unconfined uniaxial compressive strength of rock.

Table 2.12. Additional methods for evaluating skin friction resistance.

Soil Type Condition Method Equation
Gupton and Logan (1984) £=0.20 (qu)
Reynolds and Kaderabek (1980 £=0.30 (q,
Rock Skin Friction = ( ) (%)

Rowe and Armitage (1987) - smooth | £ [Mpa] = 0.45 (qu)""
Rowe and Armitage (1987) - rough f; [Mpa] =0.6 (qu)o'5

2.4.6 End Bearing Resistance in Rock

Three methods for calculating unit end bearing resistance in rock are included in
AASHTO (2012). These methods include the O’Neill and Reese (1999) method, the Canadian
Geotechnical Society (1985) method, and the Pressuremeter method, also from the Canadian
Geotechnical Society (1985).  According to O’Neill and Reese (1999), unit end bearing
resistance (qps) is a function of rock joint spacing parameters (s and m), and unconfined uniaxial
compressive strength (qu). If no compressible material or gouge-filled seams exist up to two
diameters below the base of the shaft (intact, high quality rock with RQD values of 100
percent), and the depth of the socket extends below the ground surface by greater than 1.5 times
the shaft diameter, then unit end bearing resistance may be determined using Equation 2.24. If

jointed rock (e.g. shale or a limestone shale mix) exists up to two diameters below the base of the
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socket, the values of unconfined compressive strength are smaller than 5.2 tsf, and all joints are
closed and generally horizontal, then Equation 2.25 should be utilized to determine the unit end
bearing resistance. If joints up to two diameters below the base of the shaft are randomly
orientated and can be evaluated from cuts in the excavations, then Equation 2.26 should be
utilized. In highly fractured rock, the joint parameters S and m, based on rock type descriptions
from Hoek and Brown (1988), are used; values of s and m parameters are presented in Table
2.13. Additional methods to evaluate unit end bearing resistance in rock are presented in Table
2.14.

if RQD =100% up to 2B,and D,, = 1.5B

(O’Neill and Reese, 1999) Equation 2.24
qpmax = 2.5qy

if 70% < RQD < 100% up to 2B,q, > 5.2 tsf ©

q = 4.83[10.44 q,,]°°? ’Neill and Reese, 1999) Equation 2.25
bmax — ** . u

if RQD <70% up to 2B

Gomax = 595 + (M55 + )95 g, (O’Neill and Reese, 1999) Equation 2.26

Where: Qbsmax = maximum unit end bearing resistance,
RQD = rock quality designation,
gu= unconfined uniaxial compressive strength of rock,
B = shaft diameter, and

s, m = fractured rock mass parameters (Table 2.11).
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Table 2.13. Approximate relationship between rock mass quality, material constants, and
nonlinear strength (after Hoek and Brown, 1988).

Rock Type

A = Carbonate rocks with well-developed crystal
cleavage - dolomite, limestone, and marble

B = Lithified agrillaceous rocks - mudstone, siltstone,
shale, and slate (normal to cleavage)

‘é C = Arenaceous rocks with strong crystals and poorly
Rock Quality 2 |developed crystal cleavage - sandstone and quartzite
S [D=F ine-grained polyminerallic igneous crystalline rocks
- andesite, dolerite, diabase and rhyolite
E = Coarse grained polyminerallic igneous and
metamorphic crystalline rocks - amphibolite, gabbro
gniess, granite, norite, quartz-diorite
A B C D E
INTACT RO.CK SA.MPLES s 7.00 10.00 15.00 17.00 25.00
Laboratory size specimens free fom | | 100 | 100 | 1.00 | 1.00
discontinuities
VERY GOOD QUALITY ROCK
MASS: Tightly nterlocking S 2.40 3.43 5.14 5.82 8.567
undisturbed rock with unweathered m | 0.082 0.082 0.082 0.082 0.082
joints at 3-10 ft.
GOOD QUALITY ROCK MASS
Fresh tonlightly weathered rock S 0.575 0.821 1.231 1.395 2.052
. ) .. . m | 0.00293 | 0.00293 |0.00293 | 0.00293 | 0.00293
slightly disturbed joints at 3-10 ft.
Fair QUALITY ROCK MASS s| 0128 | 0183 | 0275 | 0311 | 0458
Several sets of moderately weathered | | 1 50009 | 0.00009 | 0.00009 | 0.00009 | 0.00009
joints spaced at 1-3 ft.
POOR QUALITY ROCK MASS
Numerous weathered jomts at 2-12 S 0.029 0.041 0.061 0.069 0.102
in., some gouge. Clean compacted m | 3X10-6 | 3X10-6 | 3X10-6 | 3X10-6 | 3X10-6
waste rock.
VERY POOR QUALITY ROCK
MASS: Numerous heavily weathered | s 0.007 0.010 0.015 0.017 0.025
joints spced <2 in. with gouge. Waste | m | 1x10-7 1x10-7 | 1x10-7 | 1x10-7 | 1x10-7
rock with fines.
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Table 2.14. Additional methods for evaluating unit end bearing resistance.

Zhang and Enstien (1998) Qt =4.83*(qu.51)*(A)
Rock Reese and O'Niell (1999) Qt=2.5(qu)
Kulhawy and Prakoso (2006) Qt=3.38(qu)
Rowe and Armitage (1987) Qt=2.5(qu)

2.5. Full-Scale Load Testing

The ultimate capacity and deformation behavior of a drilled shaft foundation may be
difficult to predict using standardized design methods. Local geology and construction
procedures can affect the behavior of a drilled shaft, making full-scale load testing desirable.
Load tests are used to determine the load-transfer characteristics or lateral performance of a
drilled shaft (O’Neill and Reese, 1999). Failure of a drilled shaft may be defined as either
“plunging” (large movements) under extremely small increments of load, or a total movement
equal to five percent of the diameter of the drilled shaft (O’Neill and Reese, 1999). A typical
load test setup is instrumented to identify the internal load distribution within the shaft, enabling
an analysis of the end bearing and skin friction resistances. From the information obtained during
a load test, data may then be used to improve the design efficiency of drilled shaft foundations
for the area. Potential benefits and limitations associated with full-scale load testing performed

in the design phase are presented in Table 2.15.
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Table 2.15. Summary of benefits and limitations associated with load tests, (after Brown et
al., 2010).

Benefits Limitations

1. Results can be readily implemented for 1. Requires extra time and effort.
econmony and constructablility

2. Can extenuate design time.
2. Alternative foundation systems can be

compared. 3. Separate permitting issues may
3. Mitigation of constructability issues arise.
L 4. Success dependent upon
4. May reduce construction time. .
construction procedures.

2.5.1. Osterberg Load Cell Testing

The Osterberg load cell (O-Cell™), developed by Jori Osterberg, was first used in 1984,
and is presently utilized to determine drilled shaft resistance (Zhang, 2004; Yu et al., 2012).
Compared to a conventional top-down load test, which requires a static load frame, anchor
system, and conventional hydraulic jack, O-Cell testing may be performed by applying load from
a hydraulic jack that was cast within the shaft during construction. An advantage of O-Cell
testing over top-down load testing (with appropriate instrumentation) is the ability to
differentiate between side friction and end bearing resistance values. Utilizing an O-Cell, side
friction resistance and end bearing resistance can be separated by applying a bi-directional load

upon a drilled shaft as presented in Figure 2.3 (Zhang, 2004).

36



Reaction System

o

i o]

Q
Expanding
Osterberg
T Cell
Q Q =Rpx
Conventional Top Osterberg Cell
Load Test Test

Figure 2.3. Comparison of O-Cell™ and conventional tests (modified from Schmertmann
and Hayes, 1997).

The O-Cell has large pistons, allowing for the application of large loads with
comparatively low jack pressures (Zhang, 2004). Available O-Cell sizes and respective
capacities are presented in Table 2.15. As the O-Cell expands, the side friction resistance (Rsn)
developed above the O-cell serves as the reaction force against which the end bearing resistance
(Ren) below the cell reacts (Miller, 2003). Conversely, end bearing resistance (RsN) is
developed at the same time and serves as the reaction force against which side friction resistance
(Rsn) above the O-Cell reacts. O-Cells normally reach the ultimate load for only one of the two
resistance components. To ensure adequate information, the O-Cell should be placed in an
optimum location in which the predicted forces below and above the cell are equivalent

(Schmertmann and Hayes, 1997). O-Cell load tests are performed in accordance with ASTM
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D1143 (2013) in which increments equivalent to five percent of the anticipated failure load are
applied at least every four minutes. Instrumentation utilized to measure strains and
displacements along the shaft during testing (mechanical and electronic) may include those listed
in Table 2.17. O-Cells are sacrificial, and are usually considered expendable upon completion of

the test. A schematic of a typical Osterberg cell load test setup is presented in Figure 2.4.

Table 2.16. Available O-Cell sizes and capacities (Zhang, 2004).

Nominal Diameter | Nominal Capacity | Total Test Capacity
(in) (mm) | (kips) | (MN) | (kips) | (MN)
9 230 450 1.8 900 3.6
13 330 870 3.6 1740 7.2
21 540 2000 8.9 4000 17.8
26 660 3640 16 7280 32
34 870 6150 27 12300 54

Table 2.17. Possible instrumentation summary of an O-Cell load test (after Miller, 2003).

Type of Instrumentation

Load Test Location

Measurment Component

Displacement Transducers

shaft

Linear Vibrating Wire Bott late of Osterb 1 Extension between the two plates
ottom plate of Osterberg ce

Transducers (LVWT) P & ofthe O-Cell

Linear Voltage Reference beam or telltale at top of | Vertical/horizontal movement of the

top of the shaft

plate of the O-cell to the top of the

Strain Gauges Various locations along shaft Stress/strain within the shaft
. Reference beam or telltale at top of | Vertical/horizontal movement of the
Dial Gauges
shaft top of the shaft
Telltales Extend from the bottom and/or top |Vertical movement of the O-Cell

and compression of the shaft
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Figure 2.4. Schematic of an example Osterberg cell load test setup (modified from Miller,
2003).

A method for constructing a load-displacement curve equivalent to applying the load at
the top of the shaft was developed in Osterberg (1998). The method was based upon the
following assumptions: a) the shaft is considered rigid, b) the base resistance curve obtained
from the O-Cell test is the same as the curve obtained from a conventional load test, and c) the
friction resistance curve obtained from the O-Cell test is the same as the curve obtained from a
conventional load test. By adding the side resistance and base resistance at the same

displacement point on the curve (Figure 2.5a) for several displacement points, the equivalent
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load displacement curve, as would have been measured from the top of the shaft, is obtained

(Figure 2.5b).

Side Shear

Displacement (mm})
o
L

End Bearing

‘_40 -IILJ.J'_JlI|Illll]Jnl.lllllll.lllll.ll.ll{llll

0O 10 2 30 4 S0 60 70 80
Load (MN)
a)

Top Load, [MN]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

End Bearing and Side Shear

Displacement, [mm]
N

50 &
b)

Figure 2.5. Example of a load displacement curve from a) an O-Cell (Osterberg, 1998), and
b) a top-down load displacement test.
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2.5.2. Osterberg Load Cell Case Studies

O-Cell load tests are commonly utilized to aid in the determination of locally calibrated
LRFD resistance factors (Yu et al., 2012). An overview of select case studies utilizing O-Cell
load testing to determine LRFD resistance factors is presented. These case studies include
testing performed in Louisiana and Mississippi as found in Yu et al. (2012) as discussed in
Section 2.5.2.1, in the Midwest as presented by Yang et al. (2008) and discussed in Section
2.5.2.2, in Florida as presented in Kuo et al. (2002) and discussed in Section 2.5.2.3, and in

Missouri as presented in Vu (2013) and discussed in Section 2.5.2.4.

2.5.2.1. Louisiana

O-Cell testing was utilized to calibrate the LRFD resistance factors for drilled shafts in
Louisiana (Yu et al., 2012). Twenty-two (22) drilled shafts located in Louisiana and Mississippi
were tested using Osterberg load cells in soils consisting of clay, silt, sand, and gravel. The
ultimate nominal resistance was specified using the criteria provided in O’Neill and Reese
(1999). In some cases, where the failure criterion was not met, an estimated load at failure was
extrapolated for select load-settlement curves; settlements requiring a large amount extrapolation
were rejected (Yu et al., 2012). Based on the results of statistical comparisons between the
predicted and measured drilled shaft resistances, as obtained using the Monte-Carlo simulation
method, the current FHWA/AASTHO method (O’Neill and Reese, 1999) underestimated shaft
resistance by an average of 17 percent. Yu et al. (2012) calculated total resistance factors and
recommended a value of 0.6 to be used by the Louisiana Department of Transportation and
Development (LADOTD) engineers. However, this value (17 percent underestimation and,
resistance factor of 0.60) may fail to include the amount of uncertainty from soil sampling and

testing methods used to obtain the evaluated soil properties (Race et al., 2013). Race et al. 2013
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recommended that the variability in soil sampling and testing methods must also be evaluated

prior to developing a load test database to determine local resistance factors.

2.5.2.2. Midwest

O-Cell test data was utilized to calibrate LRFD side friction resistance factors for drilled
shafts in weak rock in Missouri, Kansas, and Colorado in Yang et al. (2008). In O’Neill and
Reese (1999) “weak rock™ is defined as intermediate geomaterials (IGMs) having an unconfined
compressive strength between 0.5 and 5 MPa. Examples of the weak rock encountered within the
Yang et al. (2008) study included shale, sandstone, claystone, siltstone, fossiliferous limestone,
and ammonite. Calibrations were performed using the Monte Carlo simulation method on data
collected from 19 O-Cell tests on drilled shafts designed using the FHWA/AASHTO method
(O’Neill and Reese, 1999). Although the FHWA/AASTHO method significantly underestimated
side resistance, the calibrated resistance factors were found to be comparable with current

AASTHO LRFD Bridge Design Specifications (Yang et al., 2008).

2.5.2.3. Florida

Load test data was utilized to calibrate LRFD resistance factors for drilled shafts in sand,
gravel, and rock in Florida by Kuo et al. (2002). Calibrations were performed using the first-
order second-moment method on data collected from 185 static load tests on drilled shafts
designed using the O’Neill and Reese (1988) and Reese and Wright (1977) methods. From the
data, calculated resistance factors were generally within the range of 0.3 to 0.6. Resistance
factors obtained from the Reese and O’Neill (1988) method were higher than that of the Reese
and Wright (1977) method for most soils. It was concluded, in Kuo et al. (2002), that the cased-
hole method of construction had the highest resistance in sand and clay layers, but dry-hole

construction had the highest resistance factors for shafts constructed in rock. For clay and sand
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deposits, skin friction resistance factors were higher than the combined skin and tip resistance

factors. This trend was reversed for shafts constructed in rock (Kuo et al., 2002).

2.5.2.4. Missouri

Data from O-Cell testing was utilized to calibrate LRFD service limit resistance factors
for drilled shafts in Missouri shales (Vu, 2013; Ding, 2013). Tests were performed on twenty-
one (21) instrumented drilled shafts, located at two sites. Vu (2013) concluded that ultimate
capacity may not be mobilized until larger displacements (up to 11 percent of the shaft diameter)
occur. This 11 percent ultimate mobilized displacement is much larger than the current
assumption of an ultimate mobilization displacement of five percent of the shaft diameter. Vu
(2013) also noted the wide range in results. Ranges in data were significantly larger than the
range of results in Reese and O’Neill (1999). Based on the increased range, if the Reese and
O’Neill (1999) range of variability was later utilized for analysis, the results will be
unconservative. Calibrated resistance factors were determined for shafts in which both skin
friction resistance and end bearing resistance were considered (Equation 2.27), as well as special
cases in which only end bearing resistance or skin friction resistance was utilized (Table 2.18). It
is important to note that for the special cases, resistance factors may not be used separately for

side friction and tip resistances.

(5—-cov)(e—-cov) .
¢ = 0 + Cpr| Cuyp (Vu, 2013) Equation 2.27

Where: COV = coefficient of variation of uniaxial compressive strength,

6= normalized load over capacity,
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Cpf = coefficient for different probability of failure (pr ), and
cup = coefficient for different shaft length over shaft diameter (L/D).

Table 2.18. Special case calibrated resistance factors (Vu, 2013).

Shaft Diameter Shaft Length
(Shaft Length = 301t.) (Shaft Diameter = 3 ft.)
2 ft. 4 f. 6 ft. 10 ft. 20 ft. 30 ft.
Side Resistance Factor 0.165 0.165 0.017 0.165 0.165 0.165
Tip Resistance Factor 0.275 0.280 0.280 0.280 0.280 0.280

2.6. Cross-Hole Sonic Logging

During and after the construction process of large diameter drilled shafts, anomalies in
the shaft may be introduced from a variety of sources including the improper handling of slurry,
concrete, casings, and/or reinforcement. These anomalies can have negative effects on shaft
performance and include voids, honeycombing, necking, cracks, soil inclusions, and/or exposed
rebar (Li et al., 2005). To ensure the safety of the drilled shaft foundation, anomalies should be
identified as soon as possible, making non-destructive evaluation testing after drilled shaft
construction attractive. According to Chernauskas and Paikowsky (2000), one of the most
common non-destructive testing techniques utilized to assess the structural integrity of a drilled
shaft is cross-hole sonic logging (CSL). The CSL system includes lowering a pair of
piezoelectric transducers into diametrically opposing vertical PVC or steel tubes that have been
filled with water (as a coupling agent). One transducer is used to generate sound compression
waves (10 pulses per second) that propagate through the shaft, while the other transducer is used
to receive the signals (Chernauskas and Paikowsky, 2000). A typical CSL test setup is presented
in Figure 2.7. The transducers are placed at the bottom of each diametrically opposing pipe such
that they are in the same horizontal plane and are then raised at a rate of one foot per second

(Figure 2.6). The assembly is raised till it reaches the top of the shaft, and the process is repeated
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for each tube-pair combination. As the probability of encountering an anomaly decreases with
the increase of shaft diameter (if the size of the anomaly remains constant), larger shaft diameters
require a larger number of tubes to accurately assess the integrity of the shaft (Li et al., 2005). In
quality, homogenous concrete, the stress/sound wave speed (C) is a function of the elastic
modulus, bulk density, and unit weight of the concrete (Equation 2.28). According to
Chernauskas and Paikowsky (2000), values of C typically range between 12,000 and 13,000 feet

per second.

c= |—= (Chernauskas and Paikowsky, 2000) Equation 2.28

Where: C = stress/sound wave speed (ft/sec),
E=modulus of concrete (Ib/ft?),
7 = unit weight of concrete (Ib/ft?), and

g = gravitational coefficient (ft/sec?).
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Figure 2.6. Typical CSL test setup showing transmitter and receiver at various depths, and
a plan view of possible test combinations (after Chernauskas and Paikowsky,
2000).

The CSL method allows for a direct, timely assessment of pile integrity, however the method is

limited in that detection of anomalies is bounded only between the tubes, and testing can only be

performed on shafts for which the tubes were previously installed during construction.

Debonding between the concrete and tubes may also present an issue if testing is delayed.
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2.7. Uncertainty and Variability in LRFD from Number Samples

Mathematical and statistical models exist to interpret soil parameters obtained from soil
samples. However, when the number of samples obtained for interpretation is small (due to site
conditions, time constraints, and budget constraints), large amounts of uncertainty may be
present in the collected soil property data. This uncertainty may result in either over-
conservative and costly designs or failure-prone designs. The effects of sample populations on
the uncertainty and variability of LRFD spread footings was evaluated in Ding (2013). Ding
(2013) also developed a method to account for the negative effects of limited sample numbers.
Samples from four sites in Missouri were selected and analyzed to determine the effects of
sample size on foundation capacity. Results indicated that with an increasing number of samples,
the percentage of over-conservative cases decreased from 90 percent to less than 20 percent. The
percentage of under-conservative designs decreased as the sample size increased from three (3)
to six (6) samples, but failed to decrease again until the number of samples exceeded 40. It was
concluded in Ding (2013) that to reduce the incidence of a failure prone case, a very large sample
population size is necessary. Regardless of the intended target probability of failure, it was
found that foundations designed at the same site conditions, at the same depths have similar
occurrences of under-conservative, over-conservative cases. To account for the effects of sample
population size on a given confidence interval (CI), factors d and d. were developed for
lognormal linear regression models (Figure 2.7) and lognormal constant regression models

(Figure 2.8), respectively (Ding, 2013).
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Figure 2.7 Factor d for various confidence bounds and number of samples for lognormal
linear regression models (Ding, 2013).
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Figure 2.8 Factor d. for various confidence bounds and number of samples for lognormal

constant regression models (Ding, 2013).

Utilizing the Upper Confidence Interval of COV (CI) method on only extremely small

sample population sizes (n<5), the occurrence of failure prone cases can be reduced to less than

15 percent (Ding, 2013). Because the uncertainty associated with smaller sample sizes is too

great, Ding (2013) recommends using a population size of at least three soil samples to estimate
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soil parameters. Although the research specifically addressed the uncertainty with spread
footings, the CI-method may be applied to other engineering practices like deep foundation

systems (Ding, 2013).

2.8. Static Axial Capacity Estimation Programs

Two static axial capacity estimation programs exist that can be utilized to predict the
ultimate axial capacity for drilled shaft foundation systems and the load settlement curves for
drilled shaft foundation systems. The programs, Bridge Software Institute FB-Deep (2012) and
Ensoft SHAFT (2012), are presented in Sections 2.8.1 and 2.8.2, respectively. These sections

also include program specific evaluation methodologies which deviate from AASHTO (2012).

2.8.1. Bridge Software Institute FB-Deep

Bridge Software Institute FB-Deep (FB-Deep 2012, Townsend 2003a, Townsend 2003b)
is a commercially available static axial capacity estimation program developed by the Bridge
Software Institute at the University of Florida. The program may be used to evaluate the static
axial capacity of either driven piles or drilled shafts. Using FB-Deep, axial capacity is predicted
by utilizing methods contained in FHWA report FHWA-NHI-10-016 (Brown et al., 2010) and
AASHTO LRFD Bridge Design Specification (AASTHO, 2007). Site specific soil parameters
obtained from standard penetration testing (SPT) or cone penetration testing (CPT) are utilized in
the FB-Deep program to predict static axial capacity. Using SPT input data, empirical
relationships based on Floridian soils between SPT and CPT data (Schmertmann, 1967,
Bloomquist et al., 1992) are used to predict axial capacity based on the relationships developed

in Schmertman (1978), Bustamante and Gianeselli (1982), and Bloomquist et al. (1992).
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2.8.1.1. FB-Deep Side Friction Resistance in Cohesive Soil

In accordance with AASHTO (2007), the o Method to is utilized in FB-Deep to calculate
ultimate friction resistance (Qs). Following the recommendations of O’Neill and Reese (1999),
the alpha value is neglected along the top five feet of clay along the shaft, as well as one
diameter from the base of the shaft. However, unlike O’Neill and Reese (1999), the alpha value
is set to equal 0.55, rather than the value being a function of undrained shear strength and

atmospheric pressure (Equation 2.29).

f.= ac, <2.75tsf (AASHTO, 2007) Equation 2.29

Where: fs = unit skin friction <2.75 tsf,

o = empirical cohesion factor 0.55, and

Cu = undrained shear strength (ksf).

2.8.1.2. FB-Deep End Bearing Resistance in Cohesive Soil

The O’Neill and Reese (1999) method is used in the FB-Deep program to determine the
unit end bearing resistance for drilled shafts in clay (as presented previously in Equations 2.12
through 2.14). The program interpolates or extrapolates undrained shear strength values at depths
one diameter below the shaft base. If the base of the shaft is located at the top of a clay layer,
FB-Deep utilizes weighted averages of the undrained shear strength values at depths two
diameters below the shaft base in the calculation of capacity. According to Lai (2012), in
instances where the clay located at the base of the shaft is soft, the undrained shear strength value

may be reduced by one-third to account for high strain-bearing failure.
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2.8.1.3. FB-Deep Side Friction Resistance in Non-Cohesive Soil

The B Method from O’Neill and Reese (1999) is used in the FB-Deep program to
determine ultimate side friction resistance (as previously presented in Equations 2.15 through
2.17). For soil layers larger than five feet thick, the program subdivides the layer into one foot
increments in which to calculate 3 values. Besides this deviation from O’Neill and Reese

(1999), the methods are otherwise similar.

2.8.1.4. FB-Deep End Bearing Resistance in Non-Cohesive Soil

The equations and theory introduced by Reese and O’Neill (1988) are used in the FB-
Deep program to calculate unit end bearing resistance in sand (as presented previously in
Equations 2.18 and 2.19). Weighted average modified blowcount values are also utilized at
depths between 1.5 to 2 diameters below the base of the shaft. If modified blowcount (Neo)
values exceed a value of 50, the material is classified and evaluated as an intermediate

geomaterial (IGM).

2.8.1.5. FB-Deep Side Friction Resistance in Rock

Utilizing FB-Deep, a user may select one of two methods for calculating frictional
resistance in limestone. The UF-Method from McVay et al. (1992), developed particularly for
limestone (Equation 2.30), enables the unit frictional resistance to be calculated as a function of
unconfined compressive strength (qu) and tensile strength (qt). Also associated with the UF-
method is a general correlation of unconfined compressive strength to unit skin friction
resistance. The correlation (Equation 2.31) allows the user to input empirical parameters based
on engineering judgment from the geological area associated with the design. The correlation is a
required input parameter when using FB-Deep with smooth rock sockets. Values of previously

determined a and b coefficients as utilized by various researchers are presented in Table 2.19.
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fou = 05 JquJa: (McVay et al., 1992) Equation 2.30

fou=aqd (McVay et al., 1992) Equation 2.31

Where: fsu = unit skin friction resistance (tsf),
qu = unconfined compressive strength (tsf),
qt = tensile strength (tsf), and
a and b = empirical geological parameters (Table 2.19).

Table 2.19. Previous empirical geological values (a & b) for Equation 2.32 (after McVay et

al., 1992).

Author a [tsf] b [tsf]
Williams et al., (1980) 1.842 0.367
Rowe and Armitage, (1987) [smooth 145 0.50
sockets]
Rowe and Armitage, (1987) 1.94 0.50
[rough sockets]
Horvath and Kenny, (1979) 0.21 0.50
Carter and Kulhawy, (1988) 0.2 0.50
Reynoldds and Kaderabek, (1980) 0.3 1.0
Gupton and Logan, (1984) 0.2 1.0
Reese and O'Neill, (1988) 0.15 1.0

2.8.1.6. FB-Deep End Bearing Resistance in Rock
A user defined unit end bearing capacity value is required for FB-Deep. If the value is not
input, a value of one-half of the uniaxial unconfined compressive strength of the rock is utilized

(Equation 2.32).

by = 0.5 qy (FB-Deep, 2012) Equation 2.32
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Where: gbu = unit end bearing resistance,

qu = unconfined compressive strength.

2.8.2. SHAFTv2012

Ensoft SHAFT (Reese 2012a, 2012b, SHAFT 2012), a widely used axial capacity
estimation program, was commercially released in 1987 under the direction of Dr. Lymon C.
Reese. Since 1978, seven versions of SHAFT have been distributed by ENSOFT. The
predictive methods utilized in SHAFT are also based on methods obtained from Brown et al.
(2010) and AASHTO (2007). The settlement of the drilled shaft, as a function of load, and the
distribution of load along the shaft are predicted using SHAFT. Additionally, LRFD reduction
factors for side friction and tip resistance in each soil layer may be specified for each geostrata
layer. Using the SHAFT program, axial capacity values are predicted based on the analysis

methods presented in Table 2.20.
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Table 2.20. SHAFTVv2012 analysis methods.

Soil Type Resistance Type Basic Approach
Side Resistance o.-method (O'Neill and Reese, 1999)
Cohesive Soil
ohesive So Bearing Capacity (Skempton, 1951)

(Sheikh and O'Neill, 1986)
Side Resistance -method (O'Neill and Reese, 1999)

Non-Cohesive Soil End Bearing -(Meyerhoﬁ 1976)
(Quiros and Reese, 1977)
Side Resistance (Hovarth and Kenney, 1979)
Rock . . (Canadian Geotechnical Society, 1978)
B C -
caring C-apacity (Bieniawski, 1984)
Non-Cohesive . . (Mayne and Harris, 1993)
Side Resist:
Intermediate de Hesilance (O'Neill et al., 1996)
GeoMaterials . . (Mayne and Harris, 1993)
B C
(IGMs) caring t-apacity (O'Neill et al, 1996)
Cobhesi
© e51\fe Side Resistance (O'Neill et al., 1996)
Intermediate
Gegl\é[;glals Bearing Capacity (O'Neill et al., 1996)

Side Resistance (O'Neill and Reese, 1999)
Gravelly Sand and (Rollins et al., 2005)
Gravel . . (Meyerhof, 1976)
B C
caring Capacity (Quiros and Reese, 1977)

2.9. Concrete Admixtures
Concrete admixtures are ingredients added to concrete, before placement, which are not
the main constituents of concrete that include water, aggregates, cement, or fibers. The use of

admixtures can provide the following beneficial properties:

= acceleration or retardation of set time,
= enhanced chemical resistance,
= enhanced freeze/thaw resistance,
= enhanced strength,
= enhanced workability, and
* and enhanced finishability.

In 2011, the Federal Highway Administration (FHWA) reported an estimated 80 percent of the

concrete produced in North America contains one or more admixtures. Many perform multiple
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functions, further forwarding the ultimate goals of public safety and cost-savings. The two types

of commonly utilized admixtures are mineral (Section 2.9.1) and chemical (Section 2.9.2).

2.9.1. Mineral Admixtures

Mineral admixtures include fly ash (Section 2.9.1.1), silica fume (Section 2.9.1.2), and
blast furnace slag (2.9.1.3). These admixtures are usually added in large amounts to allow for a
reduction in cement. However, additional benefits of mineral admixtures include alkali-silica

reaction (ASR) resistance, sulfate attack resistance, and thermal cracking resistance.

2.9.1.1. FlyAsh

Fly ash is a finely ground (finer than cement), glassy, end-product of coal combustion
which has been used in the U.S. to supplement cement since the early 1930’s (Davis et al., 1937).
Along with the environmental and fiscal benefits associated with the re-use of coal combustion
products, fly ash can also improve the workability, segregation potential, bleeding potential, heat
generation, and ASR susceptibility of concrete. Two classes of fly ash are Class C and Class F.
Class C fly ash is produced from burning subbitumous coal and lignite, and possesses
cementitious and pozzolanic properties (Halstead, 1986). Class F fly ash is produced from
burning anrthracite or bituminous coal, and is rarely cemetitious (Halstead, 1986). Currently in
the U.S., a maximum substitution rate of 15 to 25 percent fly ash replacement is required, as

specified in ASTM C618 (2012).

2.9.1.2. Silica Fume
Silica fume is a byproduct of the coal combustion process which is also purposed for
cement replacement. Silica fume consists of fine (up to 100 times finer than cement) vitreous

particles with strong pozzolanic properties (Luther, 1990). This mineral admixture improves
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compressive strength, bond strength, abrasion resistance, and density. According to the Luther
(1989), a maximum substitution rate of up to 15 percent silica fume replacement is currently

specified for projects completed in the United States, as addressed in ASTM C1240 (2012).

2.9.1.3. Blast Furnace Slag

Blast furnace slag is a granular, semi-crystalline product of molten iron being quenched
with water. It is highly cementitious, and is classified into three grades: 80, 100, and 120 (Lewis,
1981). The use of grade 80 blast furnace slag should be generally avoided as a concrete
admixture. However, according to the FHWA (2011), grade 100 and 120 blast furnace slag will
yield equal or greater seven-day compressive strengths, and may be substituted for cement on a
one to one basis, as addressed in ASTM C989 (2012). The mineral admixture improves early

strength gain potential, permeability, and ASR resistance.

2.9.2. Chemical Admixtures

Chemical admixtures include water reducing agents (Section 2.9.2.1), air entraining
agents (Section 2.9.2.2), set retarders (Section 2.9.2.3), accelerators (Section 2.9.2.4), and
superplasticizers (2.9.2.5). These admixtures are usually added in very small amounts to

perform a variety of functions.

2.9.2.1. Water Reducing Agents

Water reducing admixtures are added to concrete to: improve workability, achieve a
given slump at a lower water/cement ratio, or achieve a specified strength at lower cement
contents than those used in standard concrete. Water reducers are commonly utilized in bridge
deck construction, low-slump overlays, and patching applications (Rixom and Mailvaganam,

1986). A reduction in water demand of seven to ten percent is usually achieved utilizing a water
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reducer, as well as an increase in compressive strength of up to 25 percent, as compared to

standard concrete (Mindess and Young, 1981).

2.9.2.2. Air Entrainment

Air entrainment is the uniform incorporation of small air bubbles into the cement paste
matrix of a concrete. Most air entraining agents are categorized as organic additives such as
wood resin salts, synthetic detergents, petroleum acid salts, or fatty/resinous acids and salts
(Edmeades and Hewlett, 1986). According to the FHWA (2011), specifications of air entraining
agents in concrete are located in ASTM C260 (2010). Adding air entraining agents can improve

the freeze/thaw resistance, workability, bleed potential, and segregation potential of concrete.

2.9.2.3. Set Retarders

Set retarders are used to delay cement hydration without impacting the long-term
mechanical properties of the concrete mixture. Retarders delay hydration by offsetting the heat
of hydration; enabling more time for hauling, placing, and/or texturing (Mindess and Young,
1981). The formation of cold joints, and crack formation from form deflection are also
minimized utilizing retarders. Because of these benefits, retarders are widely utilized on bridge

decks, and are considered the second most commonly utilized admixture (U.S. Dept. Trans.,

1990).

2.9.2.4. Accelerants

Accelerating agents are utilized in concrete to promote early compressive and flexural
strength gain as well as a shortened setting time. Calcium chloride is the most common and
economical concrete accelerant despite the potential for steel corrosion from the calcium chloride

(Ramachandran, 1984a). Because of the potential for corrosion, allowable dosage rates of
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calcium chloride are limited to two percent of the cement content, and chloride free accelerants
including sulfates, formates, nitrates, and triethanolamines have been researched
(Ramachandran, 1984b). All accelerants should meet the specifications required, as described in
ASTM (C494 (2013). Despite the corrosion potential, calcium chloride is noted to improve the

workability, water demand, and bleed potential of freshly placed concrete.

2.9.2.5. Superplasticizers
Superplasticizers (or high range water reducers) are linear polymers which belong to one

of four families. According to Mindess and Young (1981), these families include:

1) sulfonated melamine-formaldehyde condensates (SMFs),
2) sulfonated naphthalene-formaldehyde condensates (SNFs),
3) modified lignosulfonates, and

4) polycarboxylate derivatives.

Superplasitcers neutralize the surface charges on cement particles, releasing the water in the
cement particle agglomerations, and reducing the viscosity of the paste (Mindess and Young,
1981). Superplasticizers can produce high flowing concrete with slumps ranging from seven to
nine inches, and high strength concrete at water cement rations from 0.3 to 0.4 (Ramachandran
and Malhorta, 1984). Due to the admixture reducing water demands from 12 to 15 percent
without hindering workability, compressive strength values greater than 14,000 pounds per
square inch at 28 days have been achieved, as well as reduced concrete permeability values

(Malhorta, 1989). Specifications for superplasticizers are presented in ASTM C494.

2.10. Conclusion
This literature review discussed LRFD and its relevance to drilled shaft design in
Sections 2.2. and 2.3., highlighting the calibration to fit method (ASD) and the calibration based

on reliability method. Previous calibrations performed by Barker et al. (1991) and Paikowsky
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(2004) were compared. Barker et al. (1991) used both fitting and reliability theory to recommend
resistance factors, while Paikowsky et al. (2004) only used reliability theory. The issue of current
resistance factors used with O’Neill and Reese (1999) from AASHTO (2012) to have been

selected based on calibrations performed on Reese and O’Neill (1988) was also presented.

As a result of current methods utilizing outdated resistance factors, the differences
between O’Neill and Reese (1999) and Reese and O’Neill (1988) were discussed in Section 2.4
along with methods of axial capacity estimation. For cohesive and non-cohesive soils, the
methodology by O’Neill and Reese (1999) was reported. However, in rock, various methods for
calculating shaft axial capacity including O’Neill and Reese (1998), Carter and Kulhawy (1988),
Horvath and Kenney (1979), and Zhang and Einstin (1999) were discussed. The major property
from which most predictive methods in rock are based upon is uniaxial compressive strength,

although rock joint spacing should also be considered.

To validate the predictive methods in Section 2.4, full-scale load tests should be
performed. Section 2.5 discussed Osterberg load cell testing, specifically the benefits of
separating side friction resistances and end bearing resistances with O-Cell testing versus
conventional top-down testing was discussed, as well as previous Osterberg load cell case
studies. Previous O-Cell load tests results were used to calibrate resistance factors in soils in
Louisiana, weak rock in the Midwest, granular media and rock Florida, and shales in Missouri.
In Louisiana, the effects of uncertainty in regard to sample collection and testing were not
addressed when generating a load test database, undermining the claim of AASHTO (2012)

methods being 17 percent overconservative in this geologic region.
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CSL testing, and how piezoelectric transducers may be utilized to determine the
structural integrity of a drilled shaft was discussed in Section 2.6. The test should be performed
raising the transmitter and receiver in unison at one foot per second. Competent concrete is
reported to have a sonic/stress velocity around 12,000 to 13,000 feet per second. The variability
and uncertainty introduced from sample size in LRFD was addressed by Ding (2013), and
concluded that a sample population of at least three should always be utilized in determining soil

properties (Section 2.7).

Current commercially available drilled shaft axial capacity prediction software programs
Bridge Software Institute and Ensoft were introduced in Section 2.8. Bridge Software Institute
FB-Deep is developed by researchers in Florida, and can utilize both CPT and SPT input to
determine static axial capacity. In limestone specifically, the program utilizes predictive methods
by McVay et al. (1992), but also allows the user to input rock parameters based on local geology.
Ensoft SHAFT is developed by researchers in Texas, and can utilize friction angle input as well
as blow count input. In rock, the program requires rock joint spacing input. Concrete admixtures
are presented in Section 2.9. Physical descriptions, dosage rates, and effects on concrete of

common mineral and chemical admixtures are discussed, as well their current specifications.
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Chapter 3: Test Sites and Investigations
3.1. Introduction
A general description of the Siloam Springs, Turrell, and Monticello Arkansas Test Sites
are presented in this chapter (Figure 1). Specifically, site access considerations and the
geological formations specific to each test site are addressed in Section 3.2. Descriptions of the
geotechnical investigations performed to acquire engineering properties at each test site are

discussed in Section 3.3. The sampling and testing methods performed by UofA, AHTD, and

MODOT personnel are compared in Section 3.4.

(a) (b) (c)
Figure 3.1. Photographs of the (a) Siloam Springs, (b) Turrell, and (c) Monticello Arkansas
Test Sites.

3.2. Test Site Descriptions

Each test site, located within the State of Arkansas (Figure 3.2), was selected represent
typical geologic profile that matched one of the typical geological profiles found within the state
of Arkansas. Thereby, the results of this study could supplement most regional projects. The
Siloam Springs Arkansas Test Site, located in the Northwestern region of the state, exemplifies
the Ozark karst topography (Section 3.2.1). The Turrell Arkansas Test Site, situated near the
Mississippi River, exhibits floodplain characteristics and is prone to liquefaction (Section 3.2.2).
The Monticello Arkansas Test Site, situated within the Southeastern portion of the state,

exemplifies gulf coastal plain characteristics (Section 3.2.3).
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Figure 3.2. Site vicinity map of test site locations (modified from Google Earth, 2013).
3.2.1. Siloam Springs Site Description

The Arkansas Highway and Transportation Department (AHTD) is in the process of
designing a new bridge across the Illinois River near Siloam Springs, Arkansas. The town of
Siloam Springs is located in the Northwestern region of the state. The Siloam Springs Arkansas
Test Site is located on County Road 16 (AR-16) approximately 1.4 miles southeast of the city
limits of Siloam Springs (Township 17 North Range 33 West). The site utilized for this research
project is located to the north of the exiting bridge (Figure 3.3a). The soil conditions at the site
consist of approximately 16-feet of cherty clay below ground surface underlain by 59-feet of

competent limestone, underlain by dark grey shale to a depth of 100-feet, the termination of most
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borings (Figure 3.3b). Site access considerations included a steep access road, an existing

superstructure located 22-feet above the ground surface, and river flood stage periods.
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Figure 3.3 Location and layout of Siloam Springs Arkansas Test Site (a) relative to city of
Siloam Springs (modified from Google Earth, 2013), and (b) interpreted test
site soil profile as obtained from geotechnical investigation.
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3.2.1.1. Geology of Area

The underlying rock formation at the Siloam Springs Arkansas Test Site (SSATS) is
located near to two major characteristic formations: the Pitkin Limestone/Fayetteville Shale
Formation and the Boone Formation (Figure 3.4). These formations are located along the
Springfield Plateau and exhibit normal faulting, with displacement to the southern side
(McFarland, 2004). As associated with many Ozark geological formations, each formation is
known for dissolutional features including large fissures, caves, and sinkholes. According to the
Arkansas Geological Survey (AGS), the SSATS is located less than one mile southeast of a

normal fault (Figure 3.4).
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Figure 3.4. Geological formations associated with Siloam Springs Arkansas Test Site
location (modified from USGS, 2013)
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3.2.1.1.1. Pitkin Limestone/Fayetteville Shale

The Pitkin Limestone Formation (named for outcrops near the Pitkin post office of
Washington County, AR) is of the late Mississippian period, and is located throughout the Ozark
Plateaus of northern Arkansas, and eastern Oklahoma. The Pitkin Limestone Formation is
characterized as fine to course grained, oolitic, lioclastic limestone with sequences of
interbedded black shale, and/or chert located throughout the formation (McFarland, 2004). The
average thickness of the Pitkin Limestone Formation ranges from about 50 feet in the Western

Ozarks to about 200 feet in the Eastern Ozarks (McFarland, 2004).

The Fayetteville Shale Formation, also deposited in late Mississippian period, is a black,
fissile, concretionary clay shale that is commonly inerbedded with fine grained limestone
(McFarland, 2004). The thicknesses of the Fayetteville Shale Formation typically range between
10 and 400 feet (McFarland, 2004). The formation is located in north-central Arkansas, and is
underlain by the Batesville Sandstone Formation. A photograph of a typical outcrop of the Pitkin
Limestone Formation underlain by the Fayetteville Shale Formation, near Marshall, AR, is

presented in Figure 3.5.
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Figure 3.5. Photograph of an outcrop of the Pitkin Limestone Formation underlain by
Fayetteville Shale Formation along Highway 65 near Marshall, AR (modified
from USGS, 2013).

3.2.1.1.2. Boone Formation

The Boone Formation (named after the extensive features found throughout Boone
County, AR) was formed in the middle Mississippian geologic period, and is located throughout
the Ozark plateau of northern Arkansas, Southwestern Missouri, and Eastern Oklahoma. The
Bonne Formation is composed of fine to course grained fossiliferous limestone with chert
intrusions (McFarland, 2004). Lower zones of the formation are suggested to abut the
Chattanooga Shale Formation at depths ranging from 300 to 350 feet (McFarland, 2004). A
photograph of an exposed outcrop of the Boone Formation, near Marshall, AR, is presented in

Figure 3.6.
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Figure 3.6. Photograph of Boone Formation along Highway 65 at Marshall, AR (from
USGS, 2013).

3.2.1.1.3. Siloam Springs Formation Determination

An investigation of collected rock core samples recovered from depths ranging from 15
to 102 feet below ground surface was performed by UofA personnel to determine the geologic
formation and depth of the underlie at the Siloam Springs Arkansas Test Site (Figure 3.7). The
limestone cores recovered at depths ranging from 1 to 38 feet were found to consist of fine to
course grained limestone interbedded with sequences of dark grey to black chert throughout the
material. At the Siloam Springs Arkansas Test Site, the shale interface was located at a depth of
approximately 75 feet. No fine grained limestone intrusions were observed in rock core samples
recovered at the Siloam Springs Arkansas Test Site, as would be expected from the Fayetteville

Shale Formation.
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Figure 3.7. Examples of the cores of limestone and shale as collected and stored by
researchers at the University of Arkansas.
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3.2.2. Turrell Site Description

In the Arkansas Highway and Transportation Department (AHTD) constructed a new
overpass for US Highway 63 across Interstate 55 (I-55) within Crittenden County near the town
of Turrell, Arkansas. Turrell is located in the Eastern region of the state, approximately 5.3 miles
east of the Mississippi River. The test site is located within the city limits of Turrell (Township 9
North Range 8 East), within the clover leaf connecting southbound US 63 traffic with
northbound Interstate 55 traffic. The site is Southwest of the existing overpass spanning I-55
(Figure 3.8) and consists of approximately twenty-feet of high plasticity clay below the ground
surface underlain by twelve feet of low plasticity silt, underlain by poorly graded sand (Figure

3.9). Site access considerations included on-coming traffic safety and wetland depressions.
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Figure 3.8. Location and layout of Turrell Arkansas Test Site relative to the town of
Turrell (modified from Google Earth, 2013).
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Figure 3.9. Turrell Arkansas Test Site subsurface stratigraphy as obtained from
geotechnical investigations.

3.2.2.1. Site Geology

Topographically, the Eastern and North Eastern area of Arkansas range from low hills to
essentially flat terrain. The area is widely dominated by Quaternary terrace and alluvial deposits
with minimum exposure of Tertiary units (AGS, 2013). Due to the being within the Mississippi
Embayment, the area exhibits a North-South erosional characteristic (from Crowley’s Ridge),
which is generally capped by Quaternry loess, preventing the exposures of the Tertiary deposits
(AGS, 2013). The site geology at the Turrell Arkansas Test Site is based widely on geomorphic
considerations rather than lithology or age (AGS, 2013), and is largely comprised of alluvium

and dune sand (Figure 3.10).
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Figure 3.10. Geological formations associated with Turrell Arkansas Test Site (modified

from AGS, 2013).
3.2.2.1.1. Alluvium

The alluvium (located up to approximately 32 feet below ground surface at the Turrell

Arkansas Test Site) is deposited from major and local stream channels, meanders, natural levees,

and/or overbank flows.

According to AGS (2013), these deposits date from the Quaternary

Period, Holocene Epoch and are distributed throughout the Mississippi River Embayment and

Eastern Arkansas (Figure 3.10). The stratigraphy is known for highly variable layer thicknesses,

variable lower contact zones, and a scarce amount of fossils (AGS, 2013).

3.2.2.1.2. Crowley’s Ridge Sand

Underlying the alluvial deposits of the Mississippi Embayment (located approximately at

32 feet below ground surface at the Turrell Arkansas Test Site), homogenous, poorly-graded, tan

to buff-grayish sand was encountered. According to AGS (2013), the material is thought to be
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derived from glacial outwash originally deposited along major drainage channels during the
initial states of the interglacial times. These deposits date from the Quaternary Period, Holocene
Epoch and are distributed east of Crowley’s Ridge (Figure 3.10). The northern portion of
Crowley’s Ridge is capped by intervals of unconsolidated silt and sand with lenses of clay and
gravel (AGS, 2013). However, this unit has never been thoroughly studied in the state of

Arkansas.

3.2.2.2. Earthquake Hazards

The Turrell Arkansas Test Site is located within the New Madrid Seismic Zone. Due to
the stratigraphic makeup of the site (loose cohesionless deposits less than 50 feet below ground
surface and a high water table), and the proximity of the site to the New Madrid Seismic Zone,
the site is classified as being very highly susceptible to liquefaction (Figure 3.12). The area has
been recorded to have experienced numerous seismic events of ranging magnitudes since 1811
(Figure 3.11). As a result, seismic effects were considered in the design process at the Turrell

Arkansas Test Site location, as further discussed in Chapter 6.
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Figure 3.11. Recorded seismic events in the New Madrid Seismic Zone (after AGS, 2013).
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Figure 3.12. Liquefaction susceptibility of the Turrell Arkansas Test Site (after AGS, 2013).

74



3.2.3. Monticello Site Description

The Arkansas Highway and Transportation Department (AHTD) is planning to construct
a new overpass spanning a railroad in Drew County near the town of Monticello, Arkansas. The
overpass is part of the new US-69 corridor (Figure 3.13). The town of Monticello is located in
the southeast region of the state. The test site is located approximately 1.9 miles Southeast of the
city limits of Monticello (Township 13 South Range 6 West), along the eastern side of the
railway. The site consists of approximately twenty-seven feet of desicated clay below the ground
surface underlain by fifteen feet of poorly graded sand, underlain by eighteen feet of stiff clay,
underlain by poorly graded sand (Figure 3.14). Site access considerations include airport

proximity, railroad safety, and consistency of the topmost desiccated clay layer.

Figure 3.13. Location and layout of the Monticello Arkansas Test Site relative to the city of
Monticello (modified from Google Earth, 2013).
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Interpreted Soil Profile
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Figure 3.14. Monticello Arkansas Test Site interpreted soil profile as obtained from
geotechnical investigation.

3.2.3.1. Site Geology

The major underlying geological formations encountered at the Monticello Arkansas Test
Site are Terrace deposits (Figure 3.15). As typically exemplified in Southeastern Arkansas, the
area is dominated by Tertiary Marginal Marine and Coastal Plain deposits, including a layer of
Quaternary Terrace and Alluvial deposits (AGS, 2013). The features encountered at the
Monticello Arkansas Test Site are identified as Gulf Coastal Plain and Mississippi Embayment
deposits by AGS (2013), and exhibit generally normal faulting, with displacement to the

Southern side (3.13).
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Figure 3.15. Geological formations associated with Monticello Arkansas Test Site (after
AGS, 2013).

3.2.3.1.1. Terrace Deposits

Terrace deposits, from the Qauternary Period, Pleistocene Epoch, are located in Eastern
and Southern Arkansas, the Mississippi Embayment, and the Gulf Coastal Plain. These deposits
include a vibrational sequence of gravels, sands, silts, and clays, with individual deposits being
lenticular and discontinuous. Fossils are rare in Terrace deposits, and several terrace levels are
recognized with the lowest stratigraphic layer being the youngest. The thickness and lower

contact areas of these layers are variable.

3.3. Site Investigations

Geotechnical site investigations were conducted at all three test site locations (Siloam
Springs, Turrell, and Monticello) within the state of Arkansas. The geotechnical investigations
included field and laboratory testing on samples obtained from AHTD boreholes, University of

Arkansas (UofA) boreholes, and cone penetration test (CPT) soundings. The geotechnical site
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investigations were performed by personnel from the UofA (in conjunction with personnel from
the Missouri Department of Transportation [MODOT] and AHTD) and consisted of advanced

and conventional sampling and testing procedures.

UofA samples were obtained every 1.5 feet in sand and every two (2) feet in clay, or
every five (5) feet (using SPT [60 mm diameter] in sands, Osterberg hydraulic fixed-piston
sampling in soft to stiff clay, Pitcher barrel sampling in stiff clay, and double swivel core barrel
in hard rock). AHTD samples were obtained (using a standard split barrel sampler [30 mm
diameter] in sands and clays or a core-barrel sampler in rock) every five (5) feet to the
termination of each boring. In general, UofA and AHTD borings were terminated at either 100
feet depth or after 15 feet of continuous rock core had been obtained. Clay samples collected
from UofA boreholes were saved in wax-sealed Shelby tubes with expandable packers prior to
transport. Sand samples were saved in sealed plastic bags. Rock core samples were stored in
waxed cardboard boxes. CPT tests were conducted at each site on behalf of the UofA by
MODOT personnel simultaneously as UofA and before AHTD boreholes were completed at the
Turrell and Monticello Arkansas Test Sites. UofA in-field tests performed on collected samples
included unconsolidated undrained triaxial compression, minivane, torvane, and pocket
penetrometer readings. All necessary equipment for conducting in-filed testing was housed in a

mobile lab facility as presented in Figure 3.16.
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Figure 3.16. Photograph of the UofA mobile lab facility.

3.3.1. Siloam Springs Investigations

UofA geotechnical investigations were performed at the Siloam Springs Arkansas Test
Site (SSATS) from October 3 through October 6, 2011, and included field and laboratory testing
on samples obtained from six (6) UofA boreholes and 13 AHTD boreholes (Figure 3.17a). The
UofA field testing in conjunction with MODOT was performed on November 10, 2011, and
included field testing at five (5) cone penetration test (CPT) soundings. Each sounding extended
to a minimum depth below ground surface of 13.5 feet. A photograph of the stored samples from

the SSATS is presented in Figure 13.7b.
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(a) (b)
Figure 3.17. Photograph of (a) geotechnical investigations performed by UofA in
conjunction with AHTD at Siloam Springs Arkansas Test Site, and (b) UofA
stored rock cores and soil samples.

3.3.2. Turrell Investigations

UofA geotechnical investigations were performed at the Turrell Arkansas Test Site
(TATS) from November 7 through November 9, 2011, and included field and laboratory testing
on samples obtained from six (6) UofA boreholes and six (6) AHTD boreholes. A photograph of
bulk sample collection from a Shelby tube is presented in Figure 3.18a. The UofA field testing in
conjunction with MODOT was performed from October 19 through October 20, 2011, and
included field testing at five (5) cone penetration test (CPT) soundings. Each sounding extended
to a minimum depth below ground surface of 53 feet. A photograph of the MODOT CPT rig is

presented in Figure 3.18b.
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(a) (b)
Figure 3.18. Photograph of (a) bulk sample collection performed by UofA personnel at the
TATS, and (b) MODOT CPT rig.

3.3.3. Monticello Investigations

UofA geotechnical investigations were performed at the Monticello Arkansas Test Site
(MATS) from January 31st through February 1, 2012, and included field and laboratory testing
on samples obtained from five (5) UofA boreholes and five (6) AHTD boreholes (Figure 3.19a).
The UofA field testing in conjunction with MODOT was performed from October 8 through
October 9, 2011, and included field testing at three (3) cone penetration test (CPT) soundings.
Each sounding extended to a minimum depth below ground surface of 70 feet. A photograph of a

typical UU triaxial compression sample acquired from the MATS is presented in Figure 3.19b.
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(a) (b)
Figure 3.19. Photograph of (a) geotechnical investigations performed by UofA in
conjunction with AHTD at Monticello Arkansas Test Site, and (b) UofA UU
triaxial compression test sample.

3.4. Laboratory Testing

UofA personnel conducted conventional laboratory testing on all samples and advanced
laboratory testing on select samples. Conventional laboratory testing included: Atterberg limits,
moisture content, unit weight, grain size analysis, and specific gravity tests. Uniaxial unconfined
compression testing was also performed on rock core samples at depths every five feet.
Advanced laboratory testing consisted of unconsolidated-undrained (UU) triaxial compression
testing on clay and consolidated drained (CD) triaxial compression testing on sands. Raw
California split spoon sampler blow count values were correlated to standard blow count values

utilizing the empirical transfer function presented in Figure 3.20.
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Figure 3.20. Empirical transfer function for raw blow count values utilized by UofA.
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AHTD determined Atterberg limits and moisture contents in the laboratory, and unit weights

from correlations described in Bowles (1977) with SPT standard split spoon blowcount values

(Table 3.1). A summary of the combined sampling and testing methods conducted by both UofA

and AHTD personnel is presented in Table 3.1.
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Table 3.1. AHTD empirically correlated values for unit weight from blow count (from
Bowles, 1977).

| DESCRIPTION | VERY LOOSE | LOOSE | MEDIUM | DENSE I! VERY DENSE ||
| | I
Relative I | | I | I
|Density Dr O 0.}5 o.:las _.o.elas o.:las 1.?0
I
|Corrected | | | [ | |
Standard | 4 10 30 50 |
penetra- I | | | | |
R S T |
UL ° o
! . | l,g" 130 EZ 4/ |
|Approx | o | | | |
langle of 25~30° (27-32° 30=35° . 35-40° 38-43° |
|internal | | | l
|friction | I | | l
. R I
l .
|Approx.’ | | | | | |
|range | 70-100 |90-115 [110-130 |110-140| 130-150 |
jof moist | | | | | |
lunit | i E { } II
|weight |
| (¥) pecf I I I I I I
Table 3.2. Sampling and testing methods performed by UofA and AHTD personnel.
Organization Testing/Sampling Method Geomaterial ASTM
Standard Penetration Testing (62 mm)
California Spilt Spoon Sampler Sand
Osterberg Hydraulic Fixed-Piston Sampler Clay
D1586
Shelby Tube Sampler Clay
Pitcher Barel Sampler Stiff Clay/Soft Rock
University of Arkansas Double Swwel‘Core B'firrel Sampler Ro.ck
(UofA) Cone Penetration Testing Sand/Silt/Clay D5778
Unconsolidated Undrained Triaxial Sand/Silt/Clay D2850
Consolidated Drained Triaxial Compression Sand/Silt/Clay D7181
Grain Size Analysis Sand/Silt/Clay
Wet and Dry Sieve Sand/Silt/Clay D422
Hydrometers Silt/Clay
Atterberg Limits Silt/Clay D4318
Arkansas State Highway Standard Penetration TesIlng (30 mm)
. Standard Split Spoon Sampler Sand D1586
and Transportation Core Barrel Sampi Rock
Department (AHTD) - F)re afre’ Sampeer : o
Atterberg Limits Silt/Clay D4318

84




3.5. Conclusion

The site conditions and geotechnical investigations performed at each test site were
discussed. The Siloam Springs Arkansas Test Site was determined to be located in the alluvial
plain of the Illinois River, underlain by the Boone Formation underlain by the Chattanooga Shale
Formation. The Turrell Arkansas Test Site was determined to be located in the depositional
plain of the Mississippi Embayment, underlain by alluvium and Crowley’s Ridge sand. The
stratigraphy at the Turrell Arkansas Test Site was additionally identified as being susceptible to
liquefaction due to its proximity to the New Madrid Fault Zone. The Monticello Arkansas Test
Site was determined to be located within the Gulf Coastal Plain of the Mississippi Embayment,

underlain by Terrace deposits.

Geotechnical investigations were performed at each test site location by personnel from
the UofA, AHTD, and MODOT. UofA in-situ testing/sampling methods consisted of SPT testing
with a California split spoon in cohesionless soils. An Osterberg hydraulic fixed piston, Shelby
tube sampler, and pitcher barrel sampler were utilized in cohesive soils. Additionally, a double
swivel core barrel sampler was utilized in rock. AHTD in-situ testing/sampling methods
consisted of SPT testing with a standard split spoon in all soils, and double swivel core barrel
sampler in rock. MODOT in-situ testing (on behalf of the UofA) was performed using a CPT
apparatus for cohesive and cohesionless soils. Soil properties (i.e. unit weight, moisture content,
friction angle, percent fines, plasticity index, shear strength, and uniaxial compressive strength)
were determined from conventional and advanced laboratory testing following the UofA
sampling method. Select AHTD soil engineering properties (i.e. moisture content, plasticity

index, and percent fines) were determined from conventional laboratory testing. All other AHTD
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soil engineering properties were determined utilizing Bowles (1977) by correlating values of

SPT blow-counts.
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Chapter 4: Predictive and Cost-benefit Methods

4.1. Introduction

Discussions of the predictive methods utilized to determine drilled shaft ultimate axial
capacity for each site are presented in this chapter. Prior to performing the predictions, a
database was developed that contained the engineering soil properties that were obtained from
the UofA, AHTD, and MODOT methods (Section 4.2). Ultimate axial capacities were then
predicted by inputting these values [including mean, mean plus one standard of deviation (mean
+1 SD), and mean minus one standard of deviation (mean -1 SD)] into predictive software
programs (Ensoft SHAFTv2012, Bridge Software Institute FB-Deep, and in Microsoft Excel®),
as discussed in Section 4.3. From the generated outputs, ultimate axial capacities were then
compared, as a function of depth, to determine the effects of each predictive software program.

Included within Section 4.3 is a discussion of the methodology utilized to compare
methods for predicting the ultimate axial capacity in rock. Empirically determined methods,
including O’Neill and Reese (1999), Horvath and Kenney (1979), Rowe and Armitage (1987),
etc., for predicting unit side friction and end bearing resistance in rock were compared utilizing a
spreadsheet, for the Siloam Springs Arkansas Test Site (SSATS). Ultimate axial capacities were
then compared as a function of depth to determine the effects of each predictive method and
input range (mean, mean +1 SD, and mean -1 SD). Results of these comparisons are discussed in
Chapter 7.

A description of the methodology utilized to perform the cost-benefit analysis for UofA
and AHTD sampling and testing methods is presented in Section 4.5. Also included within this
section is a discussion regarding the methodology utilized to perform the fiscal impact analysis

associated with each sampling and testing method for different levels of infrastructure.
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4.2. Engineering Properties Database
Prior to the prediction of the ultimate axial capacities for each of the proposed drilled

shafts, an engineering properties database was developed for each site. This database contained
the mean, mean +1 SD, and mean -1 SD engineering property values, as a function of depth, for
each sampling method at each site. Depending on the site, these engineering properties included
some or all of the following:

a) corrected blow count (Neo),

b) total unit weight (yt),

¢) undrained shear strength (cu),

d) friction angle (¢),

e) CPT tip resistance (qc),

f) shear wave velocity measurements (Vs),

g) uniaxial unconfined compressive strength (qu) [only for Siloam Springs],

h) uniaxial tensile strength (qb) [only for Siloam Springs],

1) modulus of elasticity (Em) [only for Siloam Springs], and
J) rock quality designation (RQD%) [only for Siloam Springs].

To simplify the input process, engineering properties were compiled in units specific to each
technology. Values of uniaxial tensile strength of rock at a given depth were calculated as being
one-half of the value of the uniaxial unconfined compressive strength of the rock. In some
instances, the values for a given depth were unavailable (as indicated by red text). As a result, the
value was determined from the average of the nearest top and bottom value. Water content and
other soil index properties were also utilized to help identify strata. A screen-shot of a portion of

the complied database is presented in Figure 4.1.
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. Depth N60 Unit Weight FB Cu-DIR
Monticello Mean 1+ -1 Mean 1+ -1 Mean 1+ -1
[ft] [blows] | [blows] | [blows] [pef] [pef] [pef] [tsf] [tsf] [tsf]
5.5 48 75 21 148.00 152.47 143.53 2.350 3.661 1.039
11.5 36 43 29 148.00 152.47 143.53 1.750 2.087 1.413
16.5 31 42 20 144.00 149.48 138.52 1.525 2.056 0.994
21.5 34 56 12 144.00 152.94 135.06 1.675 2.740 0.610
26.5 32 46 19 140.00 147.07 132.93 1.328 1.721 0.935
31.5 33 38 27 122.00 138.43 105.57 1.625 1.625 1.625
36.5 37 49 26 120.00 127.07 112.93
41.5 16 20 11 134.00 139.48 128.52 0.775 0.999 0.551
46.5 14 17 10 132.00 136.47 127.53 0.675 0.843 0.507
51.5] 22 33 10 138.00 146.37 129.63 1.063 1.614 0.511
56.5| 22 25 18 140.00 140.00 140.00 1.050 1.206 0.894
61.5 37 52 23 120.00 127.07 112.93
66.5| 41 65 18 118.00 126.37 109.63
71.5 38 53 23 120.00 127.07 112.93
76.5| 40 47 32 118.00 122.47 113.53
81.5| 41 54 29 120.00 127.07 112.93
86.5 38 50 26 120.00 127.07 112.93
91.5 37 42 33 120.00 120.00 120.00
96.5| 48 61 35 124.00 129.48 118.52
101.5| 48 53 42 122.00 126.47 117.53
Source From Field Data 2012 From Field Data 2012 From Field Data 2012
Tab : California vs Standard Tab: AHTD Data Tab: California vs Standard

Figure 4.1. Screenshot of engineering properties database utilized for AHTD drilled shaft

axial capacity prediction at the Monticello Arkansas Test Site.

4.2.1. Siloam Springs Rock Engineering Properties

Rock properties of interest at the Siloam Springs Arkansas Test Site included qu, gv,
RQD%, and Em, as obtained following the UofA drilling and sampling method to a depth of 100
feet below ground surface. Following the AHTD drilling and sampling methodology, RQD
values were only collected to a depth of 38 feet below ground surface. Below 38 feet engineering
properties were assumed to be constant for values obtained from the AHTD method. Due to the

nature of CPT testing, rock engineering property values were not obtained following the

MODOT drilling and sampling procedures.
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4.2.2. MODOT Acquired Soil Engineering Properties at the Turrell Arkansas Test Site
MODOT obtained values of soil engineering properties at the Turrell Arkansas Test Site
(TATS) were assumed to be constant below a depth of 71.5 feet below ground surface. These
constant values were attributed to a maximum CPT sounding depth of 71.5 feet. The sounding
was terminated prematurely to prevent equipment damage that was possible due to the dense

sand strata encountered at that depth.

4.3. Predictive Technologies

Values injested into the Ensoft SHAFTv2012 software program, Bridge Software
Institute FB-Deep software program, and the Microsoft Excel® spreadsheet were acquired from
the aforementioned generated engineering properties database (Section 4.3.3). For completeness,
a general background of the Ensoft SHAFTv2012 and Bridge Software Institute FB-Deep was
previously presented in Chapter 2. Selected data from the generated output file from each
program/spreadsheet, for each site, and from each geotechnical investigation methodology
(UofA, MODOT, AHTD) were then compiled (Section 4.3.4) and compared (Section 4.3.5). A
matrix illustrating the different combinations of inputs required for the calculations of ultimate
axial capacity for each of the drilled shafts, and comparisons between the different methods, is

presented in Table 4.1.
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Table 4.1. Input combinations for SHAFTv2012, FB-Deep, and the developed spreadsheet
for each four and six foot diameter drilled shaft.

For Each Four-foot and Six-foot Diameter Shaft
FB-Deep SHAFT - Friction Angle
Test Site Monticello | Siloam Turrell Test Site | Monticello Siloam Turrell
Mean Mean Mean Mean Mean Mean
UofA 1 1 1 UofA 1 1 1
-1 -1 -1 -1 -1 -1
Mean Mean Mean Mean Mean Mean
AHTD 1 1 1 AHTD 1 1 1
-1 -1 -1 -1 -1 -1
Mean Mean Mean Mean Mean Mean
DDOT - ¢, direct i 1 1 1 MODOT 1 1 1
-1 -1 -1 -1 -1 -1
Mean Mean Mean SHAFT - Blow Count
MODOT - ¢, q. inp 1 1 1 Test Site | Monticello Siloam Turrell
-1 -1 -1 Mean Mean Mean
Spreadsheet UofA 1 1 1
Test Site Monticello | Siloam Turrell -1 -1 -1
Mean Mean Mean Mean Mean Mean
UofA 1 1 1 AHTD 1 1 1
-1 -1 -1 -1 -1 -1
Mean Mean Mean Mean Mean Mean
AHTD 1 1 1 MODOT 1 1 1
-1 -1 -1 -1 -1 -1
Mean Mean Mean
MODOT 1 1 1
-1 -1 -1

4.3.1. Data Entry

The data entry process for each of the predictive methods is presented in this section.
Discrepancies between each program/spreadsheet are noted. Additionally, special requirements,
assumptions, and proprietary omissions noted during the data entry process for each

program/spreadsheet are discussed.
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43.1.1. SHAFTv2012

Utilizing SHAFTv2012, the ultimate axial capacity predictions for drilled shafts were
calculated in English units. In noncohesive soils, the SHAFT program utilized a linear
interpolation from zero values at ground surface to the maximum values at ten pile diameters
below ground surface. In cohesive soils, a five foot upper exclusion zone was specified, as
recommended in O’Neill and Reese (1999). At the Siloam Springs, Turrell, and Monticello
Arkansas Test Sites, a water table elevation of ten, ten, and thirty-five feet below ground surface,
respectively, was input for each prediction. SHAFTv2012 enables the user to specify a corrected
blow count (Neo) or friction angle (¢) value to determine the axial capacity for a given drilled
shaft. As a result, two predictions (one based on Neo values and one based on ¢ values) for each

site were performed.

Upon creating a new file in within the SHAFT program, a soil profile was created and
values were entered. The soil layer data window (as indicated by the layered icon presented in
Figure 4.2) first requires a soil type selection. The dropdown window allowed for the selection of
nine possible soil types using the SHAFT program. At the Siloam Springs Arkansas Test Site,
“clay (FHWA Spec.)” was selected to a depth of 16 feet below ground surface. Below a depth of
16 feet, “strong rock (side friction + end bearing)” was selected to a depth of 50 feet. At the
Turrell Arkansas Test Site, “clay (FHWA Spec.)” was selected to a depth of 30 feet below
ground surface. Below a depth of 30 feet, “sand (FHWA Spec.)” was selected to a depth of 99.5
feet. At the Monticello Site, “clay (FHWA Spec.)” was selected to a depth of 27 feet below
ground surface. From 27 feet to 37 feet, “sand (FHWA Spec.)” was selected, and from 37 to 56
feet, “clay (FHWA Spec.)” was selected. Below a depth of 56 feet, “sand (FHWA Spec.)” was

selected as the soil type to a depth of 100.5 feet.
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Following the layer selection, the depth of the bottom of each of the selected soil layers
was then entered. Ror the UofA testing results, the geomaterial layer depths were designated at
increments of five feet (exempting geomaterial interface layers). For the AHTD testing results,
geomaterial layer depths were also designated at increments of five feet in soil. In rock however,
the geomaterial layer depths for the AHTD testing results were variable. For the MODOT
testing results, the soil layers at the Siloam Springs Arkansas Test Site were designated at
increments of 1.5 feet, while soil layers at the Turell and Monticello Arkansas Test Sites were
designated at increments of five feet. A screenshot of the soil layer data entry interface (for the

Siloam Springs Site with the mean values of the UofA data) is presented in Figure 4.2.

File Data Computation Graphics Window Help

D@ mﬁﬁ—% Soil Layer Data Icon

ﬂ Soil Layer Data [E=SECh =]
Layer Sed Type Depth st Bolhees Layet Data Max. Side Max End LRFD Resistance Factor |LAFD Restance Factor| »
of each Lages (1] Friction (be/it"2] |Bearing fbs/t"2) [Side Frction]
1 | clay (FHwit Spec | -1 1: Clay Lages Data 0 0 1 1
ey R S T i !
Bl mlrﬁfwfﬂn cther sidn | iy Ly st 0 0 ! L
,‘_ fmﬁgﬁlﬁﬂ\\-’n sdg 4 Clay Lapes Data 1] ] 1 1
5_ ;mﬁgmmjmm beany 20 5 Stwong Rock Layes Dot 0 0 1 L
6 |oavel Folns et &) _J= £ Shiong Rock Layes Data o 0 1 b
I rrpeem——Te T ororaioo. B a . 1
[€ [seong rock e kctoneend be_v] & Shong Rock Layes Data o 0 L 1
rm 40 3 Shong Rock Lapes Dats o 0 1 1
10 [ stsong rock [1ads bichorvend be_»] 45 10 Swong Rock Layer Dala |0 0 L 1
Addfow | jwetflow | DeleteRow |
M Side Fiiction and Max. End Bearing:
IF ertsins are it a3 zoi0, the program azzumes o lmits in side fiction and end bearing computed by the program.

Figure 4.2. Screenshot of the SHAFT soil layer data entry interface for the Siloam Springs
UofA mean testing and sampling method.
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Following the selection of the depth of each layer, the individual soil layer data was then
entered. For clay layers, values of total unit weight, and cohesion were required. Blow count
values, alpha factors, and bearing capacity coefficients were not entered due to alpha values and
bearing capacity coefficients being internally generated by the program. Due the presence of
cohesion values, blow count values were not required for analysis. A screenshot of the clay layer

data entry interface window (for the SS-W4 shaft at the Siloam Springs site using the UofA data)

is presented in Figure 4.3.

ST 201277 SN

File Dasta Computation Graphics Window Help

o|s|aly|=(w|+| ||

i Soil Layer Data =@ [=
Lapes Sol Type Diepth at Bottom Laper Data Mae Side Max End
of each Layer () Friction (/"2 |Besrng (be/it"2)
1 Jckay FHwia Spec) B[ 1: Clay Layer Dista 0 0
2 clay (FHWA Spec. | -|5 ClagsLagee Dt (] 0
3 [clsy (FriwA Spec) |0 3 Clay Layer Data D 0
addRow | InsetRow | [DeleteRow |
Max Side Friction and Max. End Beaing
- IF erdries are left a2 2ero, the program assumes no Btz in sade iction and end bearing computed by the pogram’

=
] Clay Layer Data 3 = B
Location, 1=Top, 2=Bottom | Total Linit weight | Cobesion  [Blow Counts [Alpha  [Beasing Capacity
a3 ba/it"Z) |-Dptional Factoe |Coedficient, Nc

1 13 Fr] 0 ] 0
2 142 am L] o 0

The uses may optionally enter blow courts only in cases the cohesion it not readly avalsble
1F the user designates 2eeo values for both Alpha factor and N,
the progeaen will inteirially genesate those values duing computaticn.

Figure 4.3. Screenshot of the SHAFT clay layer data entry interface for the Siloam Springs
UofA mean sampling and testing program.
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For sand layers, values of total unit weight, and friction angle or blow count, were
entered. Values of Ko and beta were not entered, because they were internally generated by the
program. Two separate files (one with entered blow count values and one with entered friction
angle values) were generated for the Turrell and Monticello Arkansas Test Sites for each drilling
and sampling method and each statistical sampling of the data. A screenshot of the sand layer
data entry interface window (for the four-foot diameter shaft at the Monticello site for the UofA

drilling and statistical sampling method) is presented in Figure 4.4.

2] SHAFT 2012.7.7 - Monti frction
File Data Computation Graphics Window Help

D|e|al»| =K

B Soil Layer Data ol@ =
Layer Sol Type Depth at Bottom Layer Data Max. Side Mas. End LRFD Resistance Factor [LRFD Resistance Factor| =
of each Layer () Friction [bs/M"2) |Bearing (bs/"2) [(Side Friction) [End Beaiing)
1 | ctay FHw Spec) =2 1: Clay Layes Data 0 0 1 1
2 [owFHwaspes) =] 55 2 Clay Lapes Data 0 0 1 1
3 [owFrwaspee) <11 3 Clay Lages Data 0 0 1 1
& JowFrwaspee) ] 17 4 Clay Laes Data 0 0 1 1
5 JowFrwaspes) ] 23 5 Clay Layer Data 0 0 1 1
6 [owFHwaspes) ] 2 . 0 0 1 1
7 [oand (FHwia Spec) v C 7: Sand Lapes Data 0 0 1 1
[8 [zand (Friwia Spec) BEd T Sand Layer Dol 4 0 1 1
5 fomFrwaspes)  v] 465 8 Clay Layes Daa 0 0 1 1
[0 [y [Friwia Spec) ~| 505 10: Clay Lages Data 0 0 1 1 -
| | Dot Row |
Maw. Side Friction and Max. End Bearing
IF eniries ace left 83 zero, the program assumes no mits mn side fnction and end bearng computed by the program.
- - ;
1L Sand Layer Data 7 (7= o)
Location, 1=Tog, 2«Bottom | Total Uindt Waeight (Blow Counts
a3 Friction Angle |-Optional  [Ko Beota
1 =] F] [ 0 []
2 125 2 0 0 []
The user may optional the Irction angle is not readly avalable
st mmmmmmmﬁﬁ” —
If Hhes uzer indends 1o use Beta cosfficasnt fon side-rction computation, please leave Ko at 20
M the user designates zero values for both Ko and Beta, the pecgram will inkemaly germrats Beta for
side-hiction comgutation

Figure 4.4. Screenshot of the SHAFT sand layer data entry interface for the Monticello
UofA mean drilling and sampling method.
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For rock layers encountered at the Siloam Springs Site, input parameters of uniaxial
unconfined compressive strength, concrete compressive strength, rock joint discontinuity
spacing, rock joint discontinuity thickness, elastic modulus, socket diameter, and RQD% were
entered. All of the concrete compressive strength values were input as the minimum AHTD
required value of 504000 psf. Values of rock joint discontinuity spacing and thickness were not
determined by personnel during any of the testing/sampling programs. To acquire values for this
necessary input field, a sensitivity analysis was performed. Values of six feet and 0.0001 feet for
rock joint discontinuity spacing and rock joint discontinuity thickness, respectively, were
selected to be entered for among the values obtained from each drilling and sampling program.
Additionally, a socket diameter of 4 feet and 6 feet was entered for each four- and six-foot
diameter shaft setup, respectively. An example screenshot of the SHAFT rock layer input
interface for mean values of the UofA obtained data at the Siloam Springs Arkansas Test Site for

the SS-W4 shaft is presented in Figure 4.5.
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Figure 4.5. Screenshot of the SHAFT rock layer data entry for mean values of the UofA
obtained data at the Siloam Springs Arkansas Test Site.

Upon the creation of a given soil profile, the boundary conditions of the drilled shaft were
defined. The drilled shaft properties entry window (as navigated to from the data tab in Figure
4.6) enables the user to enter the geometric characteristics of the shaft, as well as input a shaft
modulus of elasticity. For each case, a straight shaft was selected with a minimum and maximum
diameter equal to either four or six feet. An upper exclusion zone of five feet was entered for
each case, as well as a modulus of elasticity of 3372165 psi. This values was selected as a
function of the input concrete compressive strength. A screenshot of the SHAFT drilled-shaft

properties screen with the UofA obtained mean values at the Siloam Springs Arkansas Test Site
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is presented (Figure 4.6). A summary of the input SHAFT geometries for each site is presented
(Table 4.2). Two predictions were completed at the Siloam Springs and Turrell Arkansas Test

Sites — the first prediction with as-designed lengths, and the second prediction with as-

constructed lengths.
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Figure 4.6. Screenshot of the SHAFT drilled-shaft properties screen for the UofA obtained

mean values for a four-foot diameter shaft at the Siloam Springs Arkansas Test
Site.
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Table 4.2 SHAFT entered shaft geometries for the Siloam Springs, Turrell, and Monticello

Arkansas Test Sites.
Test Site Shaft ID Total Length | Diameter | Increments
[ft] [in] [£t]

SS-E4 23* 48 1
Siloam Springs SS-w4 26%* 48 1
SS-C6 21* 72 1
T-N4 88.0* 48 1
Turrell T-S4 86.5% 48 1
T-C6 61.5* 72 1
M-?4 91.5 48 1
Monticello M-?4 91.5 48 1
M-C6 72 72 1

*Pending on Construction

Following the entry of the drilled-shaft properties and soil layer data, values were
validated and an “elevation view” of the shaft geometry within the soil profile was generated.
This elevation view was utilized to further identify errors in the data entry. The drilled shaft
geometry, as illustrated in relation to the designated soil profile, is presented in the “elevation

view” window, and is designated by the icon indicated in Figure 4.7.
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Figure 4.7. Screenshot of the SHAFT “elevation view” window for the UofA data for a
four-foot diameter shaft at the Siloam Springs Arkansas Test Site.

Following data entry in SHAFT, the output capacity for each drilled shaft configuration
was generated by clicking on the computation icon shown in Figure 4.8. Upon a successful
completion of the computational analysis, the message presented in Figure 4.8 is displayed in
SHAFT. Major errors in data entry prevented an output file from being generated. Minor errors
were directly addressed in the output file. Specifically, if the previously entered soil property
values were outside the pre-determined range of acceptable values for a given soil type, it was
noted in the output file. At the Siloam Springs Site in particular, values of unit weight at the

clay/rock interface were selected as being higher than the maximum accepted value for the clay
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soil type. This error was ignored, because the values that were entered were directly measured

and deemed suitable for unit weights at that given interface.

Information s &

Computations are completed. |
Please, check output file for results or ermor messages.

Figure 4.8. Screenshot of an example of a SHAFT successful computational output
message.

Following acquisition of measured displacement values, utilizing iterations from the
SHAFT program, modified predicted values of axial capacity were generated using load-
settlement plots, as presented in Figure 4.9. At a displacement of 0.15 percent, a value of
predicted axial capacity was selected following the regression of the load-settlement curve for
each shaft. Note this selected value was significantly smaller than the original value generated

for a displacement of 5 percent of the drilled shaft diameter.
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Figure 4.9. SHAFT-generated values of axial capacity from a load-settlement curve for
Test Shaft SS-W4 at the SSATS at (a) 0.15 percent shaft diameter and (b) 5

percent shaft diameter.

4.3.1.2. FB-Deep

Utilizing FB-Deep, ultimate axial capacity predictions of the drilled shafts were

calculated in English units. Upon creating a new file in FB-Deep, a soil profile was entered. The

boring log entry window (as indicated by the layered icon shown in Figure 4.10) required the

addition of a new soil layer. New soil layers were added by clicking “Insert Layer” within the

boring log screen, as presented in Figure 4.11. The depth below the ground surface

corresponding to the bottom of each newly created soil layer was then entered. The same soil

layer thicknesses that were utilized in SHAFT (Section 4.3.1.1) were also utilized in FB-Deep.
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Figure 4.10. Screenshot of the FB-Deep user interface.
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Figure 4.11. Screenshot of the FB-Deep boring log user interface.

Following input of the layer thickness, the soil description was then selected. Five
possible soil types were available for selection within FB-Deep. Plastic clay, clean sand, and
limestone strata were designated as soil types 1, 3, and 4, respectively. However, in FB-Deep,
soil type 4 was classified as “Limestone, very shelly sand”. This classification indicates

predicted capacities for the limestone may be conservative..

A ground surface elevation of zero feet was specified for all predictions. At the Siloam
Springs Arkansas Test Site, Soil Type 1 “plastic clay” was selected to a depth of 16 feet below

ground surface. Below a depth of 16 feet, Soil Type 4 “limestone, very shelly sand” was selected
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to a depth of 100 feet. At the Turrell Arkansas Test Site, Soil Type 1 “plastic clay” was selected
to a depth of 30 feet below ground surface. Below a depth of 30 feet, Soil Type 3 “clean sand”
was selected to a depth of 99.5 feet. At the Monticello Site, Soil Type 1 “plastic clay” was
selected to a depth of 27 feet below ground surface. From 27 to 37 feet, Soil Type 3 “clean sand”
was selected, and from 37 to 56 feet, Soil Type 1 “plastic clay” was selected. Below a depth of

56 feet, Soil Type 3 “clean sand” was selected to a depth of 100.5 feet.

Following entry of the soil type, individual soil layer data was entered. For clay layers,
the method of undrained shear strength calculation was designated (cu calculation method) within
a box located in the boring log entry window (Figure 4.12). Utilizing the direct undrained shear
strength (cu) calculation method, values of total unit weight, and cohesion were entered.
Utilizing the CPT cu calculation method, values of unit weight and CPT tip resistance (qc) were
required. Two predictions for the MODOT sampling and testing method were performed at each
site (one prediction utilized the calculated cuy values, and one prediction utilized the measured qec
values). A screenshot of the clay layer data entry interface for the direct cu calculation method is
presented in Figure 4.12. For the MODOT testing and sampling method, calculated cu values

were obtained from Robertson (2012) utilizing values of qc and effective vertical stress.

_ qc— Ty (Robertson, 2012) Equation 4.1
Ny

Cy =

Where: Cu = undrained shear strength (ksf),
gc = CPT tip resistance (ksf),
o’vo = effective vertical stress for a given depth (ksf), and

Nk= 14 for normally consolidated clays, 18 for over consolidated clays.
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Figure 4.12. Screenshot of the FB-Deep plastic clay, via direct c, calculation method, entry
fields.

For the rock layers encountered at the Siloam Springs Site, input parameters of uniaxial
unconfined compressive strength (qu), elastic modulus (Em), RQD%, and socket roughness were
entered. A selection of a rock side friction calculation method was also required. All shaft
socket roughnesses were entered as smooth. As a result, all rock side friction calculation methods
were pre-specified as “A qu”B” by the program. Values of A and B were input as 0.670 and
0.50, respectively, in accordance with O’Neill and Reese (1999) and Horvath and Kenney
(1979). The “A qu”B” method was selected as being the most similar to the modified method

specified in AASHTO (2012). In AASTHO (2012), a reduction factor (o) which varies with
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RQDY% is applied to the value of unit skin friction resistance that is otherwise calculated using
O’Neill and Reese (1999), and Horvath and Kenney (1979). However, because the FB-Deep
program is proprietary and it is unknown how the program utilizes required input values of
RQD%, the AASTHO (2012) method was not selected. An example screenshot of the FB-Deep
rock layer input interface for the mean values obtained by the UofA drilling and sampling

procedures at the Siloam Springs Arkansas Test Site is presented in Figure 4.13.
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Figure 4.13. Screenshot of the FB-Deep Soil Type 4 “limestone, very shelly sand” entry
fields and rock side friction calculation method designation.

For sand layers, values of total unit weight and blow count were entered. All of the blow

count values entered were indicated to have been obtained using an automatic hammer (Figure
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4.14). However, a blow count modification factor of 1.0 was selected, as the previously entered
blow counts were already corrected by a factor of 1.28 for hammer and energy efficiency (Race
and Coffman, 2013). A screenshot of the boring log screen with input data for sasnd is presented

in Figure 4.14.
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Figure 4.14. Screenshot of the FB-Deep Soil Type 3 “clean sand” entry fields and blow
count modification factor.

Upon the creation of a soil profile, the boundary conditions of the drilled shaft were
defined. The drilled shaft property entry fields were located in the main FB-Deep interface (as
shown in Figure 4.15). This interface enables the user to enter geometric characteristics and

material properties of the shaft. For all cases, a concrete unit weight of 150 pcf, a concrete

108



elastic modulus of 3372000 psi (selected as a function of the input concrete compressive strength
), and a concrete slump of seven inches were entered (Figure 4.15). A capacity calculation
corresponding to a vertical settlement of five percent of the shaft diameter was also entered for
each case, as recommended by AASHTO (2012). At the Siloam Springs and Turrell Arkansas
Test Sites, a water table elevation of ten feet below ground surface was entered. At the
Monticello Arkansas Test Site, a water table elevation of 35 feet below ground surface was

entered.
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Figure 4.15. Screenshot of the Siloam Springs Arkansas Test Site boundary conditions
entry fields.

The “Insert Shaft” button was selected to create a new fixed-length shaft. To create a
shaft which enabled the user to evaluate a range of lengths, the “Insert Range” button was
selected. For the Siloam Springs and Turrell Arkansas Test Sites, a fixed length shaft for each
as-constructed shaft was inserted, as well as a range of shaft lengths for both the four- and six-

foot diameter shafts. For the Monticello Arkansas Test Site, the as-designed lengths and range
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of lengths were inserted for both the four-and six-foot diameter shafts. A summary of each of

the shafts generated at each site is presented in Table 4.3.

Table 4.3. FB-Deep entered shaft geometries for the Siloam Springs, Turrell, and
Monticello Arkansas Test Sites.

Test Site Shaft ID Input Total Diameter Minimum | Maximum | Increments
Option | Length [ff] | [in] Length [f] |Length[f]|  [f]
SS-w4 Single 26 48 1
. . SS-E4 Single 23 48 1
Sil S
(ﬁﬁsuﬁleg;][as SS-C6 | Singke 21 7 A
Range 48 1 70 1
Range 72 1 70 1
T-N4 Single 86.5 48 1
Turrell T-S4 Spgle 86.5 48 1
[as-constructed] T-C6 Single 61.5 72 1
Range 48 1 100 1
Range 72 1 100 1
M-N4 Single 91.5 48 1
Moticello 1\1\//11'(8:2 gfnglle 971; ‘7‘5 1
-desiened - ingle
[as-designed] Range 48 1 100 1
Range 72 1 100 1

Following the entry of drilled-shaft properties and soil layer data, values were validated and an
“input echo” of the data was generated. This “input echo” report was utilized to further identify
errors in the data entry. Drilled shaft material and geometric properties were tabulated in relation
to the designated soil profile (Figure 4.16). This report, generated prior to the computational

analysis, was designated by the icon indicated in Figure 4.16.
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Figure 4.16. Screenshot of FB-Deep input echo report generated prior to computation.

Following data entry and the “input echo” validation, an output capacity for each given drilled
shaft configuration was generated by selecting the Shaft ID of interest within the shaft geometry

window, and clicking the “Cap. Report > > button, as shown in Figure 4.17.
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Figure 4.17. Screenshot of example FB-Deep computation procedure for Test Shaft SS-E4.

4.3.1.3. Spreadsheet

Utilizing an Excel® spreadsheet, ultimate axial capacity predictions for drilled shafts was
calculated, in English units, in a manner consistent with a failure criteria based on a vertical
displacement of five percent of the drilled shaft diameter. The methods used to determine
ultimate axial capacity in soil were selected to model the AASTHO (2012) design process, with
one exception. As specified in Reese and O’Neill (1988), an end bearing resistance reduction
factor for shaft diameters greater than 50 inches was applied to end bearing resistance values.

The methods used to determine ultimate axial capacity in rock were selected to model the

AASTHO (2012) design process utilizing O’Neill and Reese (1999). Drilled shaft concrete
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compressive strength values were required to predict ultimate resistances in rock. For all
predictions incorporating rock, a concrete compressive strength of 4000 pounds per square inch
was input. At the Siloam Springs, Turrell, and Monticello Arkansas Test Sites, a water table
elevation of ten-, ten-, and thirty-five feet below ground surface, respectively, was utilized for
each prediction. Resistance values for four- (D1) and six-foot (D2) diameter shafts were
investigated. A screenshot of the spreadsheet user interface for UofA mean values at the Turrell

Arkansas Test Site is presented in Figure 4.18.
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4.3.2. Exported Data

Output files generated by SHAFT and a spreadsheet enabled the user to predict the
ultimate axial capacity for both four- and six-foot diameter shaft foundations. Output files
generated by FB-Deep were computed separately for the four- and six-foot diameter shafts. A
screenshot of the utilized output values collected from SHAFTv2012, FB-Deep, and a

spreadsheet for UofA mean values at the Turrell Arkansas Test Site are presented in Figures

4.19,4.20, and 4.21, respectively.

INFORMATION

DIAMETER OF STEM - 4.000 FT.
DIAMETER OF BASE - 4.000 FT

END OF STEM TO BASE - 0.000 FT.
ANGLE OF BELL - 0.000 DEG
IGNORED TOP PORTION - 5.000 FT
IGNORED BOTTOM PORTION - 0.000 FT.

AREA OF ONE PERCENT STEEL =  18.098  5Q.IN.
ELASTIC MODULUS, Ec = 0.337E+07 LB/5Q IN
VOLUME OF UNDERREAM - 0.000 cu.vDs

PREDICTED RESULTS
Qs = ULTIMATE SIDE RESISTANCE;
a8 = ULTIMATE BASE RESISTANCE;
WT = WEIGHT OF DRILLED SHAFT (UPLIFT CAPACITY ONLY);
Qu = TOTAL ULTIMATE RESISTANCE;
LRFD Q5 = TOTAL SIDE FRICTION USING LRFD RESISTANCE FACTOR
TO THE ULTIMATE SIDE RESISTANCE;
LRFD QB = TOTAL BASE BEARING USING LRFD RESISTANCE FACTOR
TO THE ULTIMATE BASE RESISTANCE

LRFD QU = TOTAL CAPACITY WITH LRFD RESISTANCE FACTOR. ~
LENGTH| VOLUME a5 a8 au LRFD Q5 LRFD Q8  LRFD QU -
(FEET)| (cu.vos) (Tows)  (Tons) | (Tows)| (Tows)  (TONS) (TONS)

= 2.79 12.42° 147.35 - 12.42  147.35 159.77
7.0 3.26 24,30 139,44 163.74 24.30 139.44 163.74
8.0 3.72 35.63 131.25 166.88 35.63 131.25 166.88
9.0 4.19 46.41  123.01  169.42 46.41  123.01 169.42
10.0 4.65 56.62 114.80 171.42 56.62 114.80 171.42
11.0 5.12 66.27 106.69 172.96 66.27  106.69 172.96
12.0 5.59 75.34 98.75 174.09 75.34 98.75 174.09
13.0 6.05 B3.83 91.34  175.17 E3.83 91. 34 175.17
14.0 6. 52 91.73 B4.46 176.19 91.73 84.46 176.19
15.0 6.98 99.03 78.11  177.14 99.03 78.11 177.14
16.0 7.45 105.73 72.26 177.99 105.73 72.26 177.99
17.0 .91 111.97 66. 7 176.75 111.97 66. 7. 178.75
18.0 8.38 117.74 61.56 179.30 117.74 61.56 179.30
19.0 8. 123.05 57.62 180.67 123.05 57.62 180.67
20.0 9.31 127.89 54.96 182.86 127.89 54.96 162.86
21.0 9.78 132.42 53.73 186.1% 132.42 53.73 186.15
22.0 10.24  136.64 54.04 190,68 136.64 54.04 190.68
23.0 10.71  140.55 55.01 195.56  140.55 55.01 195.56
24.0 11.17  144.14 56. 58 00,73 144.14 56. 58 200.73
25.0 11.64 147,42 58.36 205.7 147.43 8. 36 205.79
26.0 12.10  150.40 59.95 210.35 150.40 59.95 210.135
7.0 12.57 153.53 61.56 215.09 153.53 6L. 56 215.09
28.0 13.03 156.83 63.22 220.0%5 156.83 63.22 220.05
29.0 13.50 160,28 64.98 225.26 160.28 64.98 225.26
30.0 13.96 163.90 67.72 231.62 163.90 67.72 231.62
31.0 14.43  170.74 7L.47 242,21 170.74 T1.47 242.21
32.0 14.90 177.65 76.36 254.01 177.65 76.36 254.01
33.0 15.36 184,62 82.17 266.80 1B4.62 82.17 266. B0
4.0 15.83 191.67 88. 60 80,27  191.67 8. 60 280.27
35.0 16.29 198.80 6.43 205,23 198.80 6.43 205.23
36.0 16.76 206.00 105.45 311.4 206.00  105.45 311.45
7.0 17.22 213.28 5.57 328.84 211.28 115.57 328.84
36.0 17.69 221.23 126.99 346.21 221.23 126.99 348.21
39.0 18.15 229.85 139.43 369.28 229.85 139.43 369.28
40.0 18.62 239,17 149.91 389.08 239.17 145.91 389.08
41.0 19.08 249.17  157.7 406.93  249.17  157.75 406.93
42.0 19.55 259.88 162.28 422.16 259.88 162.28 422.16
43.0 20,02 271.45 163.18 434,63 271.45 163.18 434.63

Figure 4.19. Screenshot of SHAFT output data for UofA mean values at the Turrell

Plotted Values

Arkansas Test Site for a four foot diameter shaft.
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Figure 4.20. Screenshot of FB-Deep output data for UofA mean values at the Turrell
Arkansas Test Site for a four-foot diameter shaft.

Turrell Length Determination - Unfactored Strength

Depth [2] DI=4f D2-6f
(ft) Side (ton) | Tip (ton) | Ultimate (ton) | Side (ton) | Tip (ton) | Ultimate (ton)
0 0 0 0 0 0 0
2 0 125.664 | 125.6637061 0 282.743 | 282.7433388

6 13.11934 | 116.811] 129.9307207 | 19.67902 | 242.608 | 262.2872603
10 32.96023 | 89.6218 | 122.5819906 | 49.44035 | 179.244 | 228.6838646
16 72.74343 | 78.5509 | 151.2943464 | 109.1151 | 176.74 | 285.8547053
20 92.10303 | 57.3966 | 149.4996313 | 138.1545 | 129.142 | 267.2968965
26 109.6864 | 46.4957| 156.1821572 [ 164.5297 | 104.615 [ 269.1450243
30 120.6954 | 76.5511 | 197.2464592 [ 181.0431 [ 119.611 | 300.6541295
36.5 193.8327 | 76.5511] 270.3837588 | 290.7491 | 119.611| 410.360079
41.5 | 252.9651|102.068 | 355.0331987 | 379.4477 | 159.481 [ 538.9290523
46.5 | 313.4895]|173.303| 486.792584 | 470.2343 | 270.786 [ 741.0203183
51.5 | 375.1789 | 148.849| 524.0281499 | 562.7683 | 232.577| 795.3453041
56.5 | 437.4711)136.091| 573.5618721 | 656.2067 | 212.642 | 868.8484806
61.5 | 500.0568|247.728 | 747.7845337 | 750.0852 | 387.075] 1137.159782
66.5 561.596 |213.705| 775.3009931 | 842.394 |333.914| 1176.308053
71.5 1621.5576]192.441| 813.9983896 | 932.3363 | 300.689 | 1233.025137
76.5 ]679.3087| 231.78 | 911.0882845 | 1018.963 | 362.156| 1381.11865
81.5 ] 733.6687|203.073| 936.7416307 [ 1100.503 [ 317.301 | 1417.804504
86.5 | 785.2525]196.694| 981.9461843 | 1177.879 [ 307.334 | 1485.212631
91.5 | 840.0677)297.699| 1137.766234 | 1260.102 | 465.154 | 1725.255509
96.5 | 898.4558 | 369.997| 1268.452587 | 1347.684 | 578.12 | 1925.803677
99.5 1934.6376|423.157| 1357.794813 | 1401.956 | 661.183 | 2063.139545

Figure 4.21. Screenshot of spreadsheet output data for UofA mean values at the Turrell
Arkansas Test Site for a four- and six-foot diameter shaft.
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4.3.3. Comparisons

From the text output files generated by SHAFTv2012 and FB-Deep, as well as
spreadsheet results, the predicted ultimate axial capacity values of each of the drilled shaft
foundations were implemented into a new spreadsheet to expedite the comparative process. The
predicted axial capacity values, at given depths, were plotted for the Turrell and Monticello
Arkansas Test Sites. The predicted values were determined by utilizing pertinent values as
obtained from the UofA, AHTD, and MODOT sampling and testing methods. Specifically, the
values obtained from SHAFT, FB-Deep, and a spreadsheet were compared (Table 4.4). A total of
202 summarizing plots were developed. The predicted ultimate predicted drilled shaft ultimate
capacity values as obtained from the various software programs are presented in each of the
plots. For the Siloam Springs Arkansas Test Site, values of axial capacity, at a given depth were
not plotted for the MODOT sampling and testing method, because the properties of the rock
were not determined using this method. For each test site, plots were generated comparing the

following:

a) sampling and testing methods with respect to software program,
b) software program with respect to data range, and
c¢) data range with respect to sampling and testing method were generated.

Table 4.4. Quantity of comparisons summary.
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4.3.3.1. Additional comparisons in Rock

The predictive methods used to determine unit side friction and end bearing resistance in
rock socketed drilled shafts at the Siloam Springs Arkansas Test Site were compared. The mean,
mean +1 SD, and mean -1 SD values of the unconfined compressive strength for the rock were
utilized to compare seven methods for predicting unit side friction resistance, and five methods
for predicting end bearing resistance. Values of end bearing resistance and unit side friction

resistance were also compared for each of the testing and sampling methods.

4.3.3.1.1. Methodology Selection
The predictive methods that were utilized to determine unit side friction and end bearing
resistances were selected based on the following criteria:

a) the AASTHO LRFD Bridge Design Specifications (2012),
b) geologic regions comparable to the state of Arkansas, and/or
c) drilled shaft design literature.

The selected methods for calculating unit side friction and end bearing resistance are listed in
Table 4.5. For this research project, McVay et al. (1992) was omitted from unit side friction
resistance predictions due to a lack of rock tensile strength data. Additionally, Reese and
O’Neill (1988) was omitted from end bearing resistance predictions due to a lack of rock joint

spacing data.
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Table 4.5. Selected rock socketed drilled shaft axial capacity prediction methods.

Method | Equation
Unit Side Friction Resistance

Reese and O'Niell (1999) £, [Mpa] = 0.65 (qu/P,)"" < 7.8 P, (f. /P,
Rowe and Armitage (1987) f [tsf]=1.45 quo‘5
Carter and Kulhawy (1988) £ [tsf] = 0.63 (qu/ Py)"”
AASHTO (2012) Modified From:

Horvath and Kenney (1979) £ [ksf] = 0.65 o (qu/Ps)"” < 7.8 P, (o /P)"”

O'Niell and Reese (1999)
Reynolds and Kaderabek (1980) £ [tsf]=0.3 q
Horvath and Kenney (1979) £ [tsf] = 0.67 qu ~
Gupton and Logan (1984) £ [tsf]=0.2 q4

Unit End Bearing Resistance

AASHTO (2012) From: gb [tsf]=2.5qu

O'Niell and Reese (1999)
Hoek and Brown (1988) Good Quality Rock 05 0.5 0.5
= + +
Reese and O'Niell (1988) s=0.00293 , m=0.575 G thsf] =[s77+ (m(s )+ )7 1 d
Hoek and Brown (1988) Very Good Quality Rock 0.5 0.5 0.5
= + +
Reese and O'Niell (1988) s=0.082 , m=2.40 G thsf] = {57+ (m(s7)+ )7 1 G
Zhang and Einstien (1998) q» [Mpa] = 3.38 g,
Kulhawy and Prakoso (2006) Qb [tsf] = 3.38 qu
Rowe and Armitage (1987) qp [tsf] = 2.5 qy

4.3.3.1.2. Rock Comparisons

From the spreadsheet results, values of drilled shaft predicted axial capacity with depth
were implemented into a new spreadsheet to expedite the comparative process. Values of axial
capacity at one-foot increments of depth were plotted at the Siloam Springs Arkansas Test Site
for UofA, AHTD, and MODOT sampling and testing methods (Table 4.6). A total of 24 plots

were developed comparing the following:

a) mean sampling and testing regime with respect to methodology,
b) mean +1 SD sampling and testing regime with respect to methodology, and

c) mean -1 SD sampling and testing regime with respect to methodology.
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Table 4.6. Quantity of comparisons summary for values of axial capacity at the Siloam

Springs Arkansas Test Site.
: Side Friciton Resistance | End Bearing Resistance
Test Site Total
w.r.t Methodology w.r.t Methodology
. : 6 (4 ft. dia.) 6 (4 ft. dia.)
Sil S 24
Oam Sprines 6 (6 . dia.) 6 (6 . dia.)

4.4. Cost-benefit Analyses

The methods utilized to perform the cost-benefit analyses for the Siloam Springs (Section
4.4.1) and Turrell (Section 4.4.2) Test Sites are presented in this Section. Two analyses were
performed for each site: one to establish a unit cost per ton of resistance utilizing the UofA and
AHTD sampling and testing methods, and one to evaluate the cost implications of UofA and
AHTD sampling and testing methods on various types of infrastructure. Due to time scope, a

cost-benefit analyses for the Monticello Arkansas Test Site was not performed.

4.4.1. Siloam Springs Arkansas Test Site

Methods utilized to perform the cost-benefit analyses at the SSATS are presented in this
Section. The methods utilized to develop values of unit cost per ton of resistance for AHTD and
UofA sampling and testing methods are presented in Section 4.4.1.1. The methods utilized to
develop the cost implications of UofA and AHTD sampling and testing methods upon various
levels of infrastructure at the Siloam Springs Site are discussed in Section 4.4.1.2. As the
SSATS cost-benefit analysis for the UofA sampling and testing method was developed utilizing
measured load test values, the proposed cost savings associated with the SSATS were expected
to be conservative estimates. Savings reported were calculated utilizing capacities measured at
settlements ranging between 0.02 and 0.18 percent. Note that values of maximum measured
capacity were intended to be reported at settlements of five percent, however due to scheduled

lateral load testing, displacements during testing were minimalized.
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4.4.1.1. Unit Cost of the UofA and AHTD Sampling and Testing Methods in Rock

The methods utilized to develop values of unit cost per ton of resistance utilizing the
UofA and AHTD testing and sampling methods presented in this Section. For the UofA testing
and sampling method, upon development of the top down load settlement curve for the western
oriented four-foot diameter drilled shaft (SS-W4), centrally oriented six-foot diameter drilled
shaft (SS-C6), and eastern oriented four-foot diameter drilled shaft (SS-E4), values of maximum
capacity at respective settlements were recorded. For the AHTD testing and sampling method, a
maximum axial design load value (as previously provided by AHTD) was utilized. The as-built
cost for each shaft was then determined utilizing typical current practice. As-built costs for
shafts constructed utilizing the UofA sampling and testing method were developed utilizing the

following:

a) estimates from AHTD (geotechnical investigation plus rock strength testing),
b) materials take-offs,
c) estimates from Aldridge Construction Co. (shaft construction), and

d) estimates from Loadtest Inc. (load testing).

Communal fees, such as those for equipment rentals and labor, were divided according to
duration of construction for each shaft. As-built costs for shafts to be constructed utilizing the

AHTD sampling and testing method were developed utilizing the following:

a) estimates from AHTD (geotechnical investigation),
b) materials take-offs, and

c) estimates from Aldridge Construction Co. (shaft construction).

Costs associated with the construction for each UofA constructed shaft, as well as a

typical AHTD constructed shaft within the same test site profile are presented in Table 4.7.
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Upon determination of the cost associated with each shaft, unit cost per ton of resistance
was determined. For the UofA sampling and testing method, the three values of unit cost per ton
of resistance were determined. From these three values, the most suitable shaft (SS-E4) was
selected using engineering judgment. The unit cost per ton value for this shaft was later utilized
to perform the cost implication. As the design length for all shafts utilizing the AHTD sampling
and testing method were specified at 26 feet, only one unit cost per ton of resistance value was

required, and was subsequently selected to perform the cost implication.

4.4.1.2. Cost Implications for Infrastructure in Rock

The methods utilized to calculate the cost implications of UofA and AHTD testing and
sampling methods upon various levels of infrastructure are presented in this Section. Fiscal
impacts utilizing the UofA and AHTD testing and sampling methods at the Siloam Springs
Arkansas Test Site were evaluated and for the AHTD-provided load condition and for three
additional hypothetical load conditions. The three hypothetical load conditions evaluated

included the following:

a) A heavy building,
b) A large structure with less concentrated loads, and

¢) A medium structure with moderate loads.

Each load condition (exempting the AHTD-provided condition) was taken from discussions
found within Brown (2008), and descriptions for each load condition are presented in Table 4.8.
All load conditions were evaluated utilizing the SSATS soil profile, specifically. Utilizing the
unit cost per ton of resistance factors (as previously discussed in Section 4.4.1.1.) generated for
the UofA and AHTD sampling and testing methods, the total cost of foundations for each load

condition was calculated and then compared.
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Table 4.8. Summary of the SSATS AHTD-provided and hypothetical load condition
descriptions.

Load Condition Description No. of Shafts | Max Axial Load
[n] [tons]
AHTD - Provided  |Single-lane Bridge Superstructure 22 445
Hypothetical 1 Heavy Building with Concentrated Loads 50 1700
Hypothetical 2 Large Stucture with Less Concentrated Loads 150 850
Hypothetical 3 Medium Structure with Moderate Loads 40 500

Values were calculated by multiplying the unit cost per ton of resistance by the max axial load
and number of shafts associated with each load condition. The costs of the geotechnical
investigations and load testing for each sampling and testing method were then added to this

value to generate a project cost. Project costs were evaluated for the following methods:

a) the UofA measured method (utilizes the benefits of UofA full-scale load testing
and UofA advanced sampling and testing methods at settlements of 0.18%),

b) the AHTD method (includes the AHTD geotechnical investigation only at
settlements of 5%), and

c) the UofA designed method (utilizes only the benefits of the UofA advanced

sampling and testing methods at settlements of 5%).

4.4.2. Turrell Arkansas Test Site

The methods utilized to perform the cost-benefit analyses at the TATS are presented in
this Section. The methods utilized to develop values of unit cost per ton of resistance for the
AHTD, MODOT, and UofA sampling and testing methods are presented in Section 4.4.2.1. The
methods utilized to develop the cost implications of UofA and AHTD sampling and testing
methods upon various levels of infrastructure at the Turrell Arkansas Test Site are discussed in
Section 4.4.2.2. As with the SSATS, the TATS cost-benefit analysis for the UofA sampling and
testing method was developed utilizing measured load test values. As a result, proposed cost

savings associated with the TATS were expected to be conservative estimates. Savings reported
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were calculated utilizing capacities measured at settlements ranging between 1.02 and 3.06
percent. Note that values of maximum measured capacity were intended to be reported at
settlements of five percent, however due to scheduled lateral load testing, displacements during

testing were minimalized.

4.4.2.1. Unit Cost of the UofA, MODOT, and AHTD Sampling and Testing Methods in Soil
The methods utilized to calculate values of unit costs per ton of resistance utilizing the
UofA, MODOT, and AHTD testing and sampling methods at the TATS are presented in this
Section. For the UofA testing and sampling method, upon development of the top down load
settlement curve for the southern oriented four-foot diameter drilled shaft (T-S4), centrally
oriented six-foot diameter drilled shaft (T-C6), and northern oriented four-foot diameter drilled
shaft (T-N4), values of maximum capacity at respective settlements were recorded. The MODOT
sampling method only utilized values of maximum capacity from test shaft T-S4. For the AHTD
testing and sampling method, a maximum axial design load value (as previously provided by
AHTD) was utilized. The as-built cost for each shaft was then determined utilizing typical
current practice. As-built costs for shafts constructed utilizing the UofA and MODOT sampling

and testing methods were developed utilizing the following:

a) estimates from AHTD (geotechnical investigation plus advanced testing),
b) materials take-offs,

c) estimates from MODOT,

d) estimates from McKinney Drilling Co. (shaft construction), and

e) estimates from Loadtest Inc. (load testing).
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Communal fees, such as those for equipment rentals and labor, were divided according to
duration of construction for each shaft. As-built costs for shafts to be constructed utilizing the

AHTD sampling and testing method were developed utilizing the following:

a) estimates from (geotechnical investigation),
b) materials take-offs, and
c) analysis of bids from AHTD (piling construction).

The costs associated with the construction of each shaft for the UofA and MODOT
testing and sampling methods, as well as a pile group for the AHTD sampling and testing

method for the TATS soil profile are presented in Table 4.9.
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4.4.2.2. Cost Implications for Infrastructure in Soil

The cost implications of utilizing the UofA, MODOT, and AHTD testing and sampling
methods upon various levels of infrastructure are presented in this Section. Fiscal impacts
utilizing the UofA, MODOT, and AHTD testing and sampling methods at the Turrell Arkansas
Test Site were evaluated and for the AHTD-provided load condition and for three additional
hypothetical load conditions (as previously described in Section 4.4.1.2). Each load condition
(exempting the AHTD-provided condition) was taken from discussions found within Brown
(2008), and descriptions for each load condition are presented in Table 4.10. All load conditions

were evaluated utilizing the TATS soil profile, specifically.

Table 4.10. Summary of the TATS AHTD-provided and hypothetical load condition
descriptions.

Load Condition Description No. of Shafts | Max Axial Load
[n] [tons]
AHTD - Provided  |Principal Arterial Bridge for On-Ramp Approach 28 395
Hypothetical 1 Heavy Building with Concentrated Loads 50 1700
Hypothetical 2 Large Stucture with Less Concentrated Loads 150 850
Hypothetical 3 Medium Structure with Moderate Loads 40 500

Utilizing values of unit cost per ton of resistance (as previously discussed in Section 4.4.2.1.) the
total cost of each load condition for the UofA and AHTD sampling and testing methods were
calculated and then compared. These values were calculated by multiplying the unit cost per ton
of resistance by the max axial load and number of shafts associated with each load condition.
The costs of the geotechnical investigations and load testing for each sampling and testing
method were then added to this value to generate a project cost. Project costs were evaluated for

the following methods:

a) the UofA measured method (utilizes the benefits of UofA full-scale load testing

and UofA advanced sampling and testing methods at settlements of 1.19%),
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b) the MODOT method (utilizes benefits of MODOT CPT geotechnical
investigation and UofA full-scale load testing),

c) the AHTD method (includes the AHTD geotechnical investigation only at
settlements of 5%), and

d) the UofA designed method (utilizes only the benefits of the UofA advanced

sampling and testing methods at settlements of 5%).

4.5. Conclusion

The predictive methods that were utilized to estimate the ultimate axial capacity for
drilled shaft foundations associated with this research project were discussed in Chapter 4. The
results The predictive software programs utilized to compare values of capacity included Ensoft
SHAFT, Bridge Software Institute FB-Deep, and an Excel® spreadsheet. Results of these
comparisons are discussed in Chapter 7. To optimize the predictive process, an engineering
properties database was developed containing relevant soil and rock properties (as determined by
geotechnical investigations). Property values that were missing were obtained by averaging
values from the nearest surrounding depths. Rock engineering property values obtained from the
AHTD method at the Siloam Springs Arkansas Test Site were assumed to be constant below a
depth of 38 feet below ground surface. Soil engineering property values obtained from the
MODOT method at the Turrell Arkansas Test Site were assumed to be constant below a depth of

71.5 feet below ground surface.

From the engineering properties database, the values were entered into Ensoft
SHAFTv2012, Bridge Software Institute FB-Deep, and the Excel® spreadsheet. A sensitivity
analysis was performed to acquire additional necessary input values for rock utilizing the
SHAFT program. At the Siloam Springs, Turrell, and Monticello Arkansas Test Sites, a water

table elevation of ten-, ten-, and thirty-five feet below ground surface, respectively, was utilized
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for each prediction. Utilizing FB-Deep, an energy correction factor of 1.0 was applied to all input
Neo values. Furthermore, FB-Deep soil type 4 is classified as “Limestone, very shelly sand”,
which could possibly yield conservative estimates. Utilizing a spreadsheet, methods for
determining values of ultimate axial capacity were selected to model the AASTHO (2012)
design process, with one exception. As specified in Reese and O’Neill (1988), an end bearing
resistance reduction factor for shaft diameters greater than 50 inches was applied to end bearing

resistance values.

Output files generated by SHAFT and the spreadsheet enabled the user to predict drilled
shaft ultimate axial capacity for both the four- and six-foot diameter drilled shaft foundations.
Output files generated by FB-Deep for the four- and six-foot diameter shaft foundations were
computed separately. From the text output files and spreadsheet results, predicted axial capacity
values for the respective foundations were plotted for each test site corresponding to the data
obtained from the UofA, AHTD, and MODOT sampling and testing methods as obtained using
SHAFT, FB-Deep, and the spreadsheet. A total of 202 summarizing plots for predicted drilled
shaft ultimate capacity were generated.

Predictive methods for determining the unit side friction and end bearing resistance for
the rock socketed drilled shaft foundations at the Siloam Springs Arkansas Test Site were also
analyzed. Utilizing mean, mean +1 SD, and mean -1 SD values of the unconfined compressive
strength for the rock, seven methods for predicting unit side friction resistance and five methods
for predicting end bearing resistance were selected, computed in a spreadsheet, and compared.
McVay et al. (1992) was omitted from unit side friction resistance predictions due to a lack of

rock tensile strength data. Additionally, Reese and O’Neill (1988) was omitted from end bearing
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resistance predictions due to a lack of rock joint spacing data. A total of 24 summarizing plots
for predicted drilled shaft ultimate capacity were generated.

The cost-benefit analyses performed for the SSATS and TATS each consisted of two
parts. The first part included establishing a unit cost per ton of resistance for each UofA (and
MODOT) constructed shaft and the originally designed UofA and AHTD shafts/pile groups.
Values of unit cost per ton of resistance for the SSATS were determined from estimates from
Aldridge Construction Co., AHTD, materials take-offs, and Loadtest Inc. Values of unit cost per
ton of resistance for the TATS were determined from estimates from McKinney Drilling Co.,
AHTD, materials take-offs, MODOT, and Loadtest Inc. Using engineering judgment, a most
suitable unit cost per ton of resistance value was selected for each method. The second part of
the cost-benefit analyses consisted of utilizing values of unit cost per ton of resistance to evaluate
the fiscal implication of each sampling and testing method upon various levels of infrastructure.
Total project foundation costs for UofA Measured, MODOT, AHTD, and UofA Designed
methods were calculated and compared for three hypothetical load conditions (provided from

Brown, 2008), as well as the original site load condition (provided from AHTD).
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Chapter 5: Construction and Testing at the Siloam Springs Arkansas Test Site
5.1. Introduction

To develop more economical designs for the proposed drilled shaft foundations,
Osterberg load cell tests (O-Cell) were performed at Siloam Springs, Turrell, and Monticello. For
the Siloam Springs Site, design considerations (Section 5.2) are presented in this chapter as well
as a discussion on the construction process for each shaft (Section 5.3). Concrete testing and
cross hole sonic logging were performed prior to testing, and are addressed in Sections 5.4 and
5.5, respectively. The full scale load testing setup and procedures for each shaft at Siloam
Springs are discussed (Section 5.6), as well as an explanation of the data interpretation process
for evaluating load transfer characteristics (Section 5.7).
5.2. Foundation Design

Three drilled shafts, two measuring four feet in diameter, and one measuring six feet in
diameter were designed to a depth which would support a design load of 1112.5 tons. The West
four foot diameter shaft (hereinafter referred to as SS-W4), the East four foot diameter shaft
(hereinafter referred to as SS-E4), and the central six foot diameter shaft (hereinafter referred to
as SS-C6) were designed using the O’Neill and Reese (1999) methods of predicting drilled shaft
resistance in cohesive materials and rock as found in AASHTO (2012). Both skin friction
resistances and end bearing resistances were utilized to determine ultimate shaft capacity.
Ultimate side friction resistance was determined by using equations 2.22 and 2.23, as presented
previously in Chapter 2. Ultimate end bearing resistance was determined by using equation 2.24
also presented in Chapter 2. Based on the geotechnical investigation (discussed in Chapter 3) the
cherty clay is underlain by limestone, with the top of the limestone at a depth of 18 feet below

the ground surface. Based on the results from predictive equations, the design requirements were
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met when the tips of the shafts constructed reached a depth of 20 feet. However, to ensure
adequate data collection and embedment length of each shaft into limestone, the drilled shafts
were each designed with a seven-foot rock socket (the tips of the shafts were specified for 25-
feet below the ground surface). This seven foot rock socket length was specified even though
current AHTD drilled shaft design practices require a minimum rock socket depth of ten feet.
From the specified depths, additional drilled shaft properties including rebar quantities and
configurations, spacer quantities and locations, CSL tubing quantities and locations, and mix
design considerations were developed using ACI 318 (2008), AASHTO (2012), and O’Neill and
Reese (1999). A typical schematic for the four-foot and six-foot diameter test shaft designs is

presented in Figure 5.1 and Figure 5.2, respectively.
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Figure 5.1. Schematic of four-foot diameter shaft design.
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5.2.1. Test Shafts SS-W4 and SS-E4

Test shaft SS-W4 (measuring four feet in diameter and oriented furthest West on the test
site) and test shaft SS-E4 (measuring four feet in diameter and oriented furthest East on the test
site) were designed to extend 25 feet below the ground surface, and have a reveal length of four
feet, equaling a total shaft length of 29 feet. The longitudinal steel of each shaft was chosen to
equal less than 1.5 percent of the gross cross-sectional area of the shaft with 12 (quantity)
Number 14 bars of Grade 60 steel centered at 16.53 inches from the center of the shaft (separated
at 30 degrees), as presented in Figure 5.3. Transverse reinforcement within each of the SS-W4
and SS-E4 shafts included tied Grade 60 steel hoops consisting of 58 (quantity) Number 5 bars
spaced from every 0.5-feet from 0.25-feet below the top of the shaft to the bottom of the drilled
shaft (Figure 5.3). The tubing for cross hole sonic logging consisted of four (quantity), two inch
diameter, Schedule 40 steel pipe centered 28.19 inches from the center of the shaft (separated at

90 degrees), as presented in Figure 5.3.

12 Quantity No. 14
Liongitudinal Steel =

(a) (b)
Figure 5.3. Photograph of a four-foot diameter shaft reinforcement cage from the (a) end,
and (b) side views.
Plastic spacers, attached to the transverse steel, were specified at eight foot increments to provide
six inches of clearance between the outer transverse steel and the edge of the concrete. The top

four feet of reveal of each shaft consisted of a four foot cubic block of concrete. This block

contained extra reinforcement including four (quantity) Number 14 longitudinal bars and six
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(quantity) Number 5 transverse bars. A photograph of the reinforcement utilized within the top
block is presented in Figure 5.4. A four foot long piece of 3.5 inch diameter Schedule 40
polyvinylchloride pipe was also specified to be installed across the center of the shaft and located
eighteen inches below the top of each block (oriented East to West). This pipe (located at the
same vertical elevation in each shaft) was included to enable future lateral load testing.

¥ 4 }

4 Quantity No. 14 '7-"-«'-@._ =
Longitudinal Steel = -

g _ﬂ__l* ‘.\ L Lk ; ‘E ..1-.

6 Quantity No. 5
Transverse Steel Hoops

I l,‘-;...’-f A

v

Figure 5.4. Photograph of etr rinforcement for the top block reinforcement cage.

Linear vibrating wire displacement transducers (LVWDTs) were specified to monitor
strains within the shaft at given locations to better understand the load transfer characteristics of
the construction. Pairs of diametrically opposing linear vibrating wire displacement transducers
(LVWDTs) were specified to be installed (utilizing zip ties and welded mounts) within each
four-foot diameter shaft at three locations. Displacement transducers were located at depths
below ground surface of 14.7, 20.7, and 24.7-feet within test shaft SS-W4. Within test shaft SS-
E4, displacement transducers were located at depths below ground surface of 12.8, 16.8, and
21.5-feet. A photograph of a linear vibrating wire transducer is presented in Figure 5.5a. Also

specified within each shaft were five 0.5-inch diameter Schedule 40 black steel telltale casings.
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Each casing was specified to house one 0.125-inch diameter stainless steel telltale. Within test
shaft SS-W4, three telltale casings were specified to rest upon the side of the bottom O-Cell steel
plate at a depth below ground surface of 23.5-feet, and two telltale casings were specified to rest
upon the side of the top O-Cell plate at a depth of 24.7-feet. Within test shaft SS-E4, three
telltale casings were specified to rest upon the side of the bottom O-Cell steel plate at a depth
below ground surface of 21.5-feet, and two telltale casings were specified to rest upon the side of
the top O-Cell plate at a depth of 20.3-feet. A photograph of the telltale casings installed is

presented in Figure 5.5b.

LineargVibrating Wire
Displacément Transducer ; . it -
(a) (b)

Figure 5.5. Photograph of (a) linear vibrating wire displacement transducers and (b)
telltale casings utilized in each shaft.

5.2.2. Test Shaft SS-C6

Test Shaft SS-C6 (measuring six feet in diameter and centrally oriented on the test site)
was also designed to extend 25 feet below the ground surface, and have a reveal length of four
feet, equaling a total shaft length of 29 feet. The longitudinal steel of the shaft was chosen to
equal less than 1.33 percent of the gross cross-sectional area of the shaft with 24 (quantity)
Number 14 bars of Grade 60 steel centered at 28.53 inches from the center of the shaft (separated

at 15 degrees), as presented in Figure 5.6. Transverse reinforcement within the SS-C6 test shaft

138



included tied Grade 60 steel hoops consisting of 58 (quantity) Number 5 bars spaced every 0.5-
feet from 0.25-feet between the top of the shaft to the bottom of the drilled shaft (Figure 5.6).
The tubing for cross hole sonic logging consisted of four (quantity), two-inch diameter, Schedule
40 steel pipe centered 28.19 inches from the center of the shaft (separated at 90 degrees). Tied,
plastic spacers were specified at eight foot increments to provide six inches of clearance between
the outer transverse steel and the edge of the concrete. The top four feet of reveal of the shaft
consisted of a four foot by six foot by six foot block of concrete. This block contained extra
reinforcement including four (quantity) Number 14 longitudinal bars and 6 (quantity) Number 5
transverse bars. A six foot long piece of 3.5-inch diameter Schedule 40 polyvinylchloride pipe
was also specified to be installed across the center of the shaft and loaded 18 inches below the
top of the block (oriented East to West). This pipe (located at the same vertical elevation as the

pipes in Test Shafts SS-W4 and SS-E4) was included to enable future lateral load testing.

o E s o)
Figure 5.6. Photograph of a six-foot diameter shaft reinforcement cage from the (a) side,
and (b) end views.
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Linear vibrating wire displacement transducers (LVWDTs) were also specified to monitor
strains within test shaft SS-C6 at given locations to better understand the load transfer
characteristics of the construction. Pairs of diametrically opposing linear vibrating wire
displacement transducers (LVWDTs) were specified to be installed (utilizing zip ties and welded
mounts as presented in Figure 5.7) within the six-foot diameter shaft at three locations.
Displacement transducers were located at depths below ground surface of 7.3, 13.3, and 19.8-feet
within test shaft SS-C6. Also specified within this shaft were five 0.5-inch diameter Schedule 40
black steel telltale casings. Each casing was specified to house one 0.125-inch diameter stainless
steel telltale. Within test shaft SS-C6, three telltale casings were specified to rest upon the side of
the bottom O-Cell steel plate at a depth below ground surface of 19.8-feet, and two telltale

casings were specified to rest upon the side of the top O-Cell plate at a depth of 18.6-feet.

Figure 5.7. Photograp of installed vibrating wire strain gauge utilizing welded mount and
zip ties.

5.3. Construction of Test Shafts
In Section 5.3 the materials and equipment utilized to construct the test shafts are
described. The construction process of SS-W4 (Section 5.3.1), SS-C6 (Section 5.3.2), and SS-

C6 (Section 5.3.3) is also discussed (including the excavation, reinforcement cage and O-Cell
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assembly, placement, concrete pouring, and formwork). The errors associated with the
construction of test shafts SS-C6 and SS-E4, and the solutions to these errors are addressed.

Each test shaft was constructed, by personnel from Aldridge Construction, at 53 feet
center to center spacings using a Caterpillar AF 240 drill rig. The rig was selected for having a
vertical clearance of 22 feet, enabling site access under the existing bridge (Figure 5.8). The steel
utilized to construct the reinforcement cages for each shaft was provided by Aldridge
Construction, while the concrete utilized to pour each shaft was provided by GCL and
Midcontinent. Additionally, the spacers utilized to center each shaft were provided by

Foundation Technologies.

e ,
(a) (b)
Figure 5.8. Photograph of Caterpillar AF 240 drill rig (a) mobilizing at the Siloam Springs
site, and (b) in full operation at the Siloam Springs Site.
The concrete mix utilized to pour each shaft was specified to contain a water cement ratio
of 0.45, a slump of eight inches (plus or minus one inch), an entrapped air content of 2 percent, a
maximum aggregate size of one inch, and a unit weight of 146.7 pounds per cubic foot.

Constituents of the concrete mix are presented in Table 5.1. Water reducing admixtures and

hydration stabilization admixtures (provided by Grace Concrete Products) were introduced in
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accordance with ASTM C494 (2013). Each shaft was poured utilizing a Mantex R-232 concrete
pump truck (Figure 5.9a) and a 4-inch diameter, tremie pipe supplied by Western Concrete
Pumping (Figure 5.9b). To verify the concrete quality, UofA personnel cast 10 four-inch
diameter cylinders composed of concrete obtained from each concrete truck to perform uniaxial
compressive strength and modulus of elasticity testing. (A minimum required uniaxial
compressive strength of 3500 psi is specified by current AHTD regulations.) UofA personnel
also performed slump and air content testing on a portion of the concrete from each truck (Figure
5.10). Each sample was obtained from samples that had been previously ran through the pump
truck (not directly from the concrete truck). An as-built schematic of each test shaft is presented
in Figure 5.11.

Table 5.1. Concrete mix constituents.

Material Type Description 22;{15 (?lleaillil‘zy
Cement ASTM C-150 Type I/Il Cement 3.15 452 b
Fly Ash ASTM C-618 Class C Fly Ash 2.65 192 b
Coarse Aggregate [ASTM C-33 #57 Limestone 2.65 1765 b
Fine Aggregate ASTM C-33 Natural Sand 2.63 1260 Ib
Water Water (35 gal) 1.00 292 b
Admixture ASTM C-494 Type A/D Water Reducer - -
Admixture ASTM C-494 B Recover - -
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(a) Fio, 8 g0 2 *b) AT
Figure 5.9. Photograph of the concrete placement equipment utilized during construction
including the (a) Mantex R-232 concrete pump truck, and (b) tremie pipe.

@ : P a0y o)
Figure 5.10. Photograph of concrete quality assurance testing including (a) slump and
cylinder casting, and (b) air content testing.
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5.3.1. Test Shaft SS-W4

Section 5.3.1 describes the construction process associated with test shaft SS-W4. This
shaft, situated closest to the Illinois River, had the largest rock socket depth of 10.2 feet. The
equipment utilized and the excavation process involved with test shaft SS-W4 is described
(Section 5.3.1.1). Assembly of the steel reinforcement cage and O-Cell are discussed in Section
5.3.1.2. Additionally addressed in Section 5.3.1.2 are the placement of the completed cage within
the excavation, the concrete placement, and cap formation of test shaft SS-W4.
5.3.1.1. SS-W4 Excavation

Personnel from Aldridge Construction excavated soil and rock at the location of Test
Shaft SS-W4 from June 16th through June 19th, 2013, using the previously mentioned
Caterpillar AF-240 drill rig. To prevent caving, upon an excavation depth of five feet, a five-foot
ten-inch inner diameter, ten-foot temporary steel casing was inserted into the top of the cherty-
clay top soil. Upon reaching an excavation depth of 15-feet, a second temporary casing
measuring 20-foot long four-foot inner diameter steel casing was inserted. Water percolation in
the bottom of the excavation was noted at a depth of 8.8 feet below the ground surface.
Limestone was encountered at a depth of approximately 16 feet, upon which the flight auger
(Figure 5.12a) was exchanged for a rock core barrel (Figure 5.12b). Due to the strength of the
limestone (around 18,000 pounds per square foot between depths of 16 and 30 feet), the rock
socket excavation of 10 feet extended for a duration of four days. This time was furthered due to
the need for frequent teeth replacement on the rock core barrel excavator. Because of the
extenuated excavation time encountered with Test Shaft SS-W4, the excavation depths for Test

Shafts SS-C6 and SS-E4 were reduced.
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(@) o (o)
Figure 5.12. Photographs of Caterpillar AF-240 drill rig utilized to excavate Test Shaft SS-
W4 with (a) a flight auger, and (b) a rock core barrel.

5.3.1.2. SS-W4 Rebar Cage and Concrete Placement

Upon completion of the 26-foot deep excavation, the rebar and concrete for Test Shaft
SS-W4 were placed on June 20, 2013, in conjunction with Aldridge Construction and Loadtest,
Inc. The O-Cell, composed of a ten inch tall hydraulic jack encompassed by a two-inch thick
steel plate mounted on the top and bottom of the assembly, was then welded to the bottom of the

reinforcement cage (Figure 5.13).

15& ‘ 2.

Figure 5.13. Photograph of installed O-Cell on bottom of SS-W4 reinforcement cage.

The cage, measuring 27 feet in length after installation of the O-Cell, was lowered into the

excavation using the Caterpillar AF-240 and a Builtrite 2200-TM material handler (Figure 5.14a)
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. Following concrete placement within the excavation, a shaft reveal length of three feet was
formed by placing a pre-constructed four foot wide by four foot long wooden form over the
poured shaft. Upon lowering the additional reinforcement (as outlined in the previous section)
and placing the lateral polyvinylchloride pipe to elevation, concrete was poured within the
assembly (Figure 5.14b). Upon setting of the concrete within the block, the wooden forms were

removed.

(a) (b)

Figure 5.14. Photograph of Test Shaft SS-W4 (a) poured excavation casing removal and
prior to placement of the square cap, and (b) three foot reveal placing form
work for square cap.

Twenty-seven cubic yards of concrete was utilized to complete the construction of this
shaft. Exempting the following, all other as-built features met the design specifications outlined

in Section 5.2.1:

1) an increase in shaft excavation depth from 25 feet to 26.2 feet due to the

installation of the O-Cell,
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2) a decrease in the reveal length of the shaft from 4 feet to 3 feet to align the
vertical elevations of all shafts for potential future lateral load capacity testing,
and

3) an increase in telltale pipe length for the bottom O-Cell plate.

The total length of Test Shaft SS-W4 measured 29.2 feet from the bottom of the excavation to
the top edge of the three-foot tall concrete block reveal. A photograph of the finished shaft is

presented in Figure 5.15.

Figure 5.15. Photographs ofest Shaft SS-W4 (a) rebar cage, and (b) finished
construction.

5.3.2. Test Shaft SS-C6

Section 5.3.2 describes the construction process associated with test shaft SS-C6. Test
Shaft SS-C6 was constructed from June 21th through June 25th, 2013, and was situated centrally
between SS-W4 and SS-E4. This shaft had a rock socket depth of 5.5 feet. Along with reducing
the time of construction, the rock socket depth of Test Shaft C6 was reduced to aid in data

collection regarding rock/socket load transfer relationships. The equipment utilized and the
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excavation process involved with test shaft SS-C6 is described (Section 5.3.2.1). Assembly of
the steel reinforcement cage and O-Cell are discussed in Section 5.3.2.2. Additionally described
in Section 5.3.2.2 are the placement of the completed cage within the excavation, the concrete
placement, and cap formation of test shaft SS-C6.
5.3.2.1. SS-C6 Excavation

Test Shaft SS-C6 was excavated by personnel from Aldridge Construction from June 21
through June 24, 2013. To prevent caving, upon an excavation depth of six feet, a seven-foot ten-
inch inner diameter, 10-foot long temporary steel casing was inserted into the top of the cherty-
clay top soil. Upon reaching an excavation depth of 16 feet, a second temporary casing with
measurements of six-foot ten-inch inner diameter by 15-foot long was inserted (Figure 5.16).
Water percolation in the bottom of the excavation was noted at a depth of 12.5 feet. Limestone
was encountered at a depth of 16 feet, upon which the flight auger was exchanged for a rock core
barrel. The rock socket excavation extended a depth of 5.5 feet below the cherty clay/limestone
interface, and required approximately two days of drilling. Upon completion of the 21.5-foot

deep excavation on June 24, the hole was covered with lumber and left open overnight.

@ (b)
Figure 5.16. Photographs of Test Shaft SS-C6 (a) during the 15 foot length casing
installation, and (b) after completed casing installation.
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5.3.2.2. SS-C6 Rebar Cage and Concrete Placement

The rebar and concrete for Test Shaft SS-C6 were placed on June 25, 2013, in
conjunction with Aldridge Construction, and Loadtest, Inc. The rebar cage, measuring 24 feet in
length after installation of the O-Cell on the bottom of the rebar cage, was lowered using the
Caterpillar AF-240. During installation of the O-Cell tell-tale mounts to the rebar cage, a
construction error was made. All three tell-tale mounts originally intended to be welded to the
side of the bottom O-Cell steel plate were welded to the side of the top O-Cell steel plate (Figure
5.17). This error inhibited the measurement of the displacement of the bottom O-Cell plate (a
crucial measurement in determining the load/displacement relationships of the construction).
Actions taken to resolve this problem are presented in Section 5.6.2. Concrete was placed using a
Manitex R-232 pump truck and a 4-inch diameter tremie. A shaft reveal length of four-feet was
formed by placing a pre-constructed six-foot wide by six-foot long wooden form over the poured
shaft (Figure 5.18). Soil was placed around the outsides of the wooden form to reinforce the

shape while the concrete hydrated.
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Figure 5.17. Photograph of Test Shaft SS-C6 (a) rebar cage and (b) tell-tale mount
installation error.

Figure 5.18. Photograph est Shaft SS-C6 four-foot reveal construction.

151



Forty-four cubic yards of concrete was utilized to complete the construction of this shaft.
Exempting the following, all other as-built features met the design specifications outlined in
Section 5.2.2:
1) a decrease in rebar cage length from 25 feet to 22.5 feet due to drilling time and
load transfer considerations,
2) a decrease in excavation depth from 25 feet to 21.5 feet due to load transfer
considerations, and
3) telltale pipe length for bottom plate
The total length of Test Shaft SS-C6 measured 25.5 feet from the bottom of the excavation to the
top edge of the 4 foot tall concrete block reveal. Photographs of the a) poured excavation and b)

finished shaft are presented in Figure 5.19.

:

Figure 5.19. Photograph of the Test Shaft S5-C6 finshed construction.

5.3.3. Test Shaft SS-E4

Test Shaft SS-E4 was constructed from June 21 through June 25, 2013. This shaft,
located furthest East from the Illinois River was embedded to create a rock socket depth of eight
feet. Similar to Test Shaft SS-C6, the rock socket depth of Test Shaft SS-E4 was reduced to aid

in data collection regarding rock/socket load transfer relationships. Section 5.3.3 describes the
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construction process associated with test shaft SS-E4. Test Shaft SS-E4 was constructed from
June 21th through June 25th, 201, and had a rock socket depth of 5.5 feet. The equipment
utilized and the excavation process involved with test shaft SS-E4 is described (Section 5.3.3.1).
Assembly of the steel reinforcement cage and O-Cell are discussed in Section 5.3.3.2.
Additionally described in Section 5.3.3.2 are the placement of the completed cage within the
excavation, the concrete placement, and cap formation of test shaft SS-E4.
5.3.3.1. SS-E4 Excavation

Test Shaft SS-E4 was excavated by Personnel from Aldridge Construction June 21 and
June 22, 2013. To prevent caving, upon an excavation depth of five-feet, a temporary steel
casing with measurements of a five-foot ten-inch inner diameter by 10-foot long was inserted
into the top of the cherty-clay top soil. Upon reaching an excavation depth of 15 feet, a second
temporary steel casing with measurements of a five-foot four-inch inner diameter by 20-foot
long was inserted. Water percolation in the bottom of the excavation was noted at a depth of 12
feet. Limestone was encountered at a depth of 16 feet, upon which the flight auger was
exchanged for a rock core barrel. The rock socket excavation extended a depth of 5.5 feet below
the cherty clay/limestone interface, and required approximately 18 hours of drilling. Upon
completion of the 23-foot excavation on June 22nd, the hole was covered with lumber and left
till June 25th.
5.3.3.2. SS-E4 Rebar Cage and Concrete Placement

The rebar and concrete for Test Shaft SS-E4 were placed on June 25, 2013 in conjunction
with Aldridge Construction and Loadtest, Inc. The rebar cage, measuring 25-feet in length after
installation of the O-Cell to the bottom of the reinforcement cage, was lowered using a

Caterpillar AF-240. During installation of the O-Cell tell-tale mounts to the rebar cage of Test
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Shaft SS-E4, a construction error was made. All three tell-tale mounts originally intended to be
welded to the side of the bottom O-Cell steel plate were welded to the side of the top O-Cell steel

plate (Figure 5.20). Actions taken to resolve this problem are presented in Section 5.6.3.

SS-E4 tell-
' ‘tale mounts ~ |

&

Figure 5.20. Photograph of Test Sh‘éft SS-E4 rebar cage- and teII tale mount installation
error.

Concrete was placed using a Manitex R-232 pump truck and a 4-inch diameter tremie. A
shaft reveal length of four feet was formed by placing a pre-constructed four-foot wide by four-
foot long wooden form over the poured shaft (Figure 5.21). Soil was placed around the block

form to reinforce the mold, and was removed upon hydration of the concrete.
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Twenty-three cubic yards of concrete were poured to complete the construction of Test Shaft SS-
E4. Exempting the following, all other as-built features of the shaft met the design specifications
outlined in Section 5.2.1:
1) a decrease in rebar cage length from 25 feet to 24 feet due to drilling time and
load transfer considerations, and
2) a decrease in excavation depth from 25 feet to 23 feet due to load transfer
considerations.
The total length of Test Shaft SS-E4 measured 27-feet from the bottom of the excavation to
the top edge of the four-foot tall concrete block reveal. Photographs of the a) poured excavation

with square cap formwork and b) finished shaft are presented in Figure 5.22.
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Figure 5.22. Photogrgghs of the Test Shaft SS-E4 (a) rebar cage anélbg)ipe for lateral load
testing, and (b) finished construction.

5.4. Concrete Testing

Concrete testing, including uniaxial compressive strength and modulus of elasticity, were
performed on the cylinders (four-inches in diameter and eight-inches in height) that were cast in
the field. Four trucks of concrete were required to pour Test Shaft SS-W4 (resulting in four
batches of ten cylinders). Three trucks of concrete were required to pour Test Shaft SS-E4
(resulting in three batches of ten cylinders). From the remains of the contents of the last truck
used to pour Test Shaft SS-E4, the pour for Test Shaft SS-C6 commenced. Including this last
truck, six trucks of concrete were required to pour Test Shaft SS-C6 (resulting in six batches of
ten cylinders). The cylinders from every batch were transported in water-containing coolers or
plastic sheeting-lined boxes to the laboratory at the University of Arkansas, and stripped of their
forms after seven days. The cylinders were then submerged in a water bath until testing was

performed. The designated testing regiment for each batch is presented in Table 5.2.

Table 5.2. Designated concrete testing regiment per batch.
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Number of Tests
Test Performed Performed Per Batch
Seven-Day Uniaxial Compressive Strength 3
Fourteen-Day Uniaxial Compressive Strength 3
Twenty-Eight Day Uniaxial Compressive Strength 3
Modulus of Elasticity 1

5.4.1. Uniaxial Compressive Strength

Uniaxial compressive strength testing was performed in accordance with ASTM C39
(2012) was performed after seven, fourteen, and twenty-eight days from the date of the
construction of the cylinders. A Forney F Series standard compression machine was utilized to
complete the testing (Figure 5.23a). Each batch of cylinders, for each shaft was tested at a rate of
35 +/- 7 pounds per square inch (psi) per second.
5.4.2. Modulus of Elasticity

Modulus of elasticity testing was performed after 28 days in accordance with ASTM 469
(2010). The test was performed on one cylinder per batch using a Forney F Series standard
compression machine and a compressometer (Figure 5.23b). Load was applied to each cylinder

at a rate of 35 +/- 7 psi per second, and the modulus of elasticity was calculated using Equation

5.1
. (51 —3S,) (ASTM C469, 2010) Equation 5.1
~ (g, — 0.000050)
Where: E = chord modulus of elasticity of concrete (psi),

S1 = stress corresponding to a longitudinal strain, €1, of 50 millionths (psi),
S2 = stress corresponding to 40% of ultimate load (psi), and

& = longitudinal strain produced by stress Sz.
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Figure 5.23. Photographs g})(a) uniaxial compression testing, and(lz%)) compressometer used
for modulus of elasticity testing.
5.5. Cross-Hole Sonic Logging
On Thursday, September 12, 2013, personnel from GEI, performed cross-hole sonic
logging on each drilled shaft. Following calibration, two piezoelectric probes were inserted in
multiple sequences into the aforementioned four diametrically opposed, two-inch diameter CSL

tubes. The sequence utilized on each shaft (composed of six soundings) is presented in Figure

5.24, and commenced from the Northern-most oriented CSL tube.
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Test Shaft W4

Figure 5.24. Summary of (a) plan view of six-step CSL testilr)1)g sequence commencing from
the north, and (b) photograph of testing performed on Test Shaft SS-W4.

The probes were lowered to rest upon the bottom cap of the water-filled tubes, located
directly above the two inch thick steel plate attached to the top of the O-Cell in each shaft. Upon
commencement of the test, the probes were simultaneously extracted at a rate of about one foot
per second. A photograph of the piezoelectric probes utilized to transmit and receive the sonic

waves through the length of the shaft is presented in Figure 5.25. A photograph of the CSL test

in progress on Test Shaft SS-E4 is presented in Figure 5.26.
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Figure 5.26. Photograph of CSL testing performed on Test Shaft SS-EA4.

5.6. Load Test Setup and Procedures
From Tuesday, September 17, through Friday September 20, 2013, in conjunction with
personnel from Loadtest Inc., Osterberg load Cell (O-Cell) testing was performed on each drilled

shaft. Upon individual setup, each test consisted of the following general procedure:
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1) calibration of the hydraulic pump,

2) separation of O-Cell tell-tale bonds,

3) the loading stage,

4) the unloading stage, and

5) monitoring of shaft while at rest.
While performing the O-Cell tests, an automatic pressure regulator (Figure 5.28) was utilized to
maintain a constant pressure for each load increment. Displacement of the 1/8- inch tell-tale rods
that were positioned within the 2-inch pipe connected to the top and bottom plates of the O-Cell
were monitored using linear variable displacement transducers (LVDTs) (Figure 5.27a). The
displacement of the top of the shaft was monitored using automated surveying levels (Figure
5.27b) taking readings on an Invar sight that was clamped to one of the cross-hole sonic tubes.
Strain within the strain gauges that were previously installed within sonic tubes were monitored
using an automated data acquisition system. All measurements were recorded using the

automated data acquisition system.
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(a) (b)
Figure 5.27. Photographs of (a) LVDT displacement instrumentation that was attached to
the top of each telltale, and (b) survey levels used to record the shaft head
displacement.

@ | (b)
Figure 5.28. Photographs of (a) data acquisition system, and (b) automated pressure
regulator and hydraulic pump utilized to perform the O-Cell testing.
5.6.1. Test Shaft SS-W4
On September 17, 2013, full-scale 1 load testing was performed on Test Shaft SS-W4.

The shaft was loaded every eight minutes at increments of 1000 psi for fifteen intervals (peaking
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at 15,000 psi). The shaft was then unloaded using four minutes increments, decreasing the
pressure by 3000 psi for each of the five intervals (reducing pressure back to zero pounds psi).
Following unloading, the shaft was monitored at rest for a period of eight minutes. Displacement
readings were acquired for the top of the shaft, and for the top and bottom of the O-Cell (two
within the piped mounted to the top plate of the O-Cell, and three within the piped mounted to
the bottom plate of the O-Cell. A photograph of the testing setup and the test in progress are
presented in Figure 5.29.

T ¥ D ‘E. e
[VDTs A utomatic

Invaz R evels

Target

Figure 5.29. Photograph of the Test Shaft SS-W4 O-Cell test in progress.
5.6.2. Test Shaft SS-C6

O-Cell load testing for Test Shaft SS-C6 was originally scheduled to be performed on
September 17, 2013. However due to an error that occurred during construction, testing was
delayed (as previously discussed in Section 5.3.2.2). In the design plans, five (quantity) 0.25-
inch diameter telltales were specified to measure O-Cell displacements. Each telltale (installed

immediately before testing) required a 0.5-inch diameter access housing and mount to be
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installed during construction. The housing for the two tell-tales, specified to be located (at 18.6
feet below ground surface) on the top plate of the O-Cell, was successfully welded to the top
plate of the O-Cell. The housing for the remaining three tell-tales, specified to be located (at
19.8 feet below ground surface) and welded to the side of the bottom plate of the O-Cell, were
welded to the side of the top plate of the O-Cell rather than to the side of the bottom plate. If not
identified prior to testing, this crucial error may have resulted in five top plate displacement
measurements and no bottom plate displacement measurements. To resolve this problem, 3/8-
inch diameter holes were extended through the original three improperly welded mounts using a
hammer drill until the depth of the hole was at the top of the to the bottom plate of the O-Cell at
18.9-feet below the ground surface (Figure 5.30a). Each hole extended through the plug at the
bottom of the 0.5-inch diameter housing and then through twelve inches of 7500 psi strength
concrete (the material surrounding the O-Cell). Due to the torque generated by the hammer drill
occasionally shearing the all-thread connections of the drill bit extension within the drill hole
(effectively blocking the hole) installation of only one of the three tell-tales was achieved. A
new mount was not installed inside the bottom of the successful boring, rather the weight of the
telltale itself, and the trimmings surrounding the telltale inside the boring, were utilized to
stabilize the assembly. A photograph of the resulting (three total) telltales utilized for testing is

presented in Figure 5.30b.
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Figure 5.30. Photographs of (a) telltale depth extension using a 3/8- inch diameter bit

hammer drill , and (b) the resulting telltale assemble prior to O-Cell testing of
Test Shaft SS-C6.

- 0.5-Inch Housing

On September 20, 2013, O-Cell load testing was performed on Test Shaft SS-C6. The
shaft was loaded every eight minutes at increments of 500 psi for nine intervals (peaking at 4,500
psi). The shaft was then unloaded using four minute increments, decreasing the pressure by 900
psi for each of the five intervals (reducing pressure back to zero pounds per square inch).
Following unloading, the shaft was then monitored at rest for a period of eight minutes.
Displacement readings were acquired for the top of the shaft and for the top and bottom of the O-
Cell (two within the pipes mounted to the top plate of the O-Cell, and one placed on the bottom
plate of the O-Cell after the retrofit). A photograph of the testing setup while the test is in

progress is presented in Figure 5.31.
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Figure 5.31. Photograph of t Test Shaft SS-C6 O-Cell test in pres.
5.6.3. Test Shaft SS-E4

O-Cell load testing for Test Shaft SS-E4 was originally scheduled to be performed on
September 17, 2013 (as described previously in Section 5.3.3.2). However, similar to Test Shaft
SS-C6, due to an error occurring during construction, testing was delayed. Although, five
(quantity) 0.25-inch diameter telltales were specified to measure O-Cell displacements, the
housing for three tell-tales, specified to be located (at 21.5 feet below ground surface) on the
bottom plate of the O-Cell, was welded to the side of the top plate of the O-Cell rather than the
side of the bottom plate. Like with Test Shaft SS-C6, only one hole was utilized in Test Shaft

SS-E4, as only one hole was drilled due to time constraints. A photograph of the resulting (three

total) telltales utilized for testing for Test Shaft SS-E4 is presented in Figure 5.32.
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Figure 5.32. Photograph of the resulting telltale assembly in Test Shaft SS-E4 prior to O-
Cell testing.

On September 20, 2013, O-Cell load testing was performed on Test Shaft SS-E4. The
shaft was loaded every eight minutes at increments of 500 psi for twenty intervals (peaking at
10,000 psi). The shaft was then unloaded using four minute increments, decreasing the pressure
by 2000 psi for each of the five intervals (reducing pressure back to zero psi). Following
unloading, the shaft was then monitored at rest for a period of eight minutes. Displacement
readings were acquired for the top of the shaft and for the top and bottom of the O-Cell (two tell-
tales within the pipes mounted to the top plate of the O-Cell, and one tell-tale within the pipe and
hole to the bottom plate of the O-Cell). A photograph of the testing setup and the test in progress

is presented in Figure 5.33.
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Figure 5.33. Photograph of the Test Shaft SS-E4 O-Cell test in progress.
5.7. Interpretation of Load Test Data

After O-Cell testing, data sheets were generated that contained displacement
measurements acquired from the LVDTs, automatic levels, survey stations, and strain gauges (in
relation to time). These data sheets also contained O-Cell loading information as a function of
time. From the data, load displacement curves (Section 5.7.1), load transfer curves (Section
5.7.2), and unit side friction plots were generated (Section 5.7.3).
5.7.1. Load Displacement Curves

From the data collected from each O-Cell test, two load displacement curves were
generated. As previously discussed in Chapter 2, the upper curve describes the upward
displacement of the top of the cell (skin friction resistance), and the lower curve represents the
downward displacement of the bottom of the cell (end bearing resistance). At certain values of
displacement, the values of load were added together to generate an equivalent top-down load

displacement curve. However, in cases where resistances could not be fully developed, a
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hyperbolic extrapolation of the load-displacement curve was performed to complete the
equivalent top-down load displacement curve.
5.7.2. Load Transfer (t-z) Curves

Load transfer curves showing the distribution of force along the shaft with depth were
obtained from the strain-gauge data. The modulus of elasticity (Ec) of the concrete was
determined from one sample from each batch of cylinders cast by UofA personnel. After
determining the modulus of elasticity of the concrete, an equivalent shaft modulus was
determined by accounting for the contributions of the area of steel and the area of concrete

(Equation 5.2).

EA;+ EAq (modified from Miller, 2003) Equation 5.2
Esnase = A
Shaft
Where: Eshaft= equivalent shaft modulus (psi),

Ec= modulus of concrete (psi),

Es= modulus of steel (psi),

Ac= cross sectional area of concrete (in?),

As= cross sectional area of steel (in?), and

Ashaft= gross cross sectional area of drilled shaft (in?).
From the equivalent shaft modulus, the average axial stress at given depths (oci) was then
calculated (Equation 5.3).

0; = Eshagt; €axial (modified from Miller, 2003) Equation 5.3
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Where: oi = average axial stress at given depth i (psi),

Eshaft-i= equivalent shaft modulus at depth i (psi), and

&axial- = axial strain within the shaft at depth i.
Axial strain within the shaft (gaxial-i) was determined from the average value of strain from the
two strain gauges placed in the shaft at a given elevation. From the average axial stress at a given
depth, the axial force (Fi) at a given depth, i, was computed (Equation 5.4).

Fi= 0, A (Miller, 2003) Equation 5.4

pi
Where: Fi= axial force within the shaft at depth i,
oi = average axial stress at given depth i (psi), and

Api = shaft cross sectional area at elevation i (in?).

The distribution of axial force within the shaft at a given elevation was determined upon
calculation of the axial force at each strain gauge.
5.7.3. Unit Side Friction Resistance

The determination of average unit side friction resistance for each drilled shaft over a

given length was determined from the load distribution along the shaft using Equation 5.5.

f = AF; (Miller, 2003) Equation 5.5
S Shaft Perimeter * Az
Where: fs= average unit side friction resistance,

AFi= the change in axial force over a given length of shaft, and

Azi= shaft segment length.
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The values of the average unit side shear were then plotted as a function of O-Cell displacement
to evaluate the amount of attained of maximum unit side friction resistance.
5.8. Summary

The design, construction, testing, and data analysis processes associated with the Siloam
Springs Arkansas Test Site were discussed in this Chapter. Design depths for the three drilled
shafts (SS-W4, SS-C6, and SS-E4) to be constructed were originally specified to penetrate 25
feet, with percentages of longitudinal steel not exceeding 1.5 percent. The O-Cells for each shaft
were designed to be placed within the bottom of the excavation, with two feet of unreinforced
concrete separating the bottom plate of the O-Cell from the base of the limestone rock socket.
Sonic cross hole logging was performed on each shaft prior to O-Cell testing to ensure the
concrete utilized for construction was free from anomalies. The longest rock socket (10.2 feet)
was located at Test Shaft SS-W4 (situated furthest West on site and having a diameter of four
feet). This socket was the only socket constructed which currently meets AHTD requirements of
a minimum of a ten-foot rock socket length. However, due to the depth of the socket,
construction time was extenuated, and testing results indicated minimum displacement
(suggesting a possible overdesign of the shaft). This resulted in the decision to shorten Test
Shafts SS-C6 and SS-E4. During the construction of Test Shafts SS-C6 and SS-E4 however, a
construction error was discovered related to the telltale placement of three tell-tales for each
shaft. This error further extenuated the testing time, but was resolved by drilling a hole through
the original telltale housing location to an appropriate depth of the top of the bottom plate of the
O-Cell. Test Shaft SS-C6 was situated centrally between SS-W4 and SS-E4, had a diameter of
six feet, and extended to a depth of 21.4 feet. Test Shaft SS-E4 was situated furthest East on site,

had a diameter of four feet, and extended to a depth of 23.3 feet. The data from the load tests
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performed on each shaft was analyzed, and the procedures for determining load displacement

curves, load transfer curves, and unit side friction curves were described.
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Chapter 6: Construction and Testing at the Turrell Arkansas Test Site

6.1. Introduction

Osterberg load cell tests (O-Cell) were performed at the Siloam Springs and Turrell
Arkansas Test Sites. For the Turrell Site (TATS), the design considerations and construction
processes for each shaft are described in Sections 6.2 and 6.3, respectively. Concrete testing
(Section 6.4) and cross hole sonic logging (Section 6.5) were performed prior to testing. The
testing configuration and testing procedures for each of the shafts at the Turrell Arkansas Test
Site are discussed in Section 6.6. An explanation of the data interpretation process for evaluating
load transfer characteristics is presented in Section 6.7.
6.2. Foundation Design

Three drilled shaft foundations, two measuring four-feet in diameter, and one measuring
six-feet in diameter were designed to support a design load of 987 tons. The North four-foot
diameter shaft at the TATS (hereinafter referred to as T-N4), the South four-foot diameter shaft
at the TATS (hereinafter referred to as T-S4), and the central six-foot diameter shaft at the TATS
(hereinafter referred to as T-C6) were designed using the O’Neill and Reese (1999) methods to
predict drilled resistance of the drilled shaft foundation against cohesive and noncohesive
materials, as described in AASHTO (2012). The skin friction resistances and end bearing
resistances were utilized to determine ultimate shaft capacity. As previously discussed, ultimate
side friction resistance was determined using Equations 2.9 through 2.11 and Equations 2.15
through 2.17. Likewise, as previously discussed, ultimate end bearing resistance was determined
using Equations 2.12 through 2.14 and Equations 2.18 through 2.19. Based on the geotechnical
investigations performed at the TATS (as discussed in Chapter 3) the high plasticity clay present

at the ground surface is underlain by 10-feet of a low plasticity silt, which is underlain by poorly
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graded sand. Based on the results obtained from the prediction, the design requirements were
met when the tips of the four-foot and six-foot diameter shafts reached depths of 86.5 feet (four-
foot diameter), and 61.5 feet (six-foot diameter). From the specified depths, additional drilled
shaft properties including rebar quantities and configurations, spacer quantities and locations,
CSL tubing quantities and locations, and mix design considerations were developed using
procedures found in ACI 318 (2008), AASHTO (2012), and O’Neill and Reese (1999). A
typical schematic for the four-foot diameter and six-foot diameter test shaft designs is presented

in Figure 6.1 and Figure 6.2, respectively.
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Figure 6.1. Schematic of four-foot diameter shaft design.
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Figure 6.2. Schematic of six-foot diameter shaft design.
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6.2.1. Test Shafts T-N4 and T-S4

Test shaft T-N4 (measuring nominally four-feet in diameter and oriented at the furthest
North position on the test site) and test shaft T-S4 (measuring nominally four-feet in diameter
and oriented at the furthest South position on the test site) were designed to extend 86.5-feet
below the ground surface, and have a reveal length of four-feet, equaling a total shaft length of
90.5-feet. The longitudinal steel of each shaft was chosen to equal less than 1.0 percent of the
gross cross-sectional area of the shaft with 16 (quantity) Number 11 bars of Grade 60 steel
centered at 16.185-inches from the center of the shaft (separated at 30 degrees), as presented in
Figure 6.3. Transverse reinforcement within each of the T-N4 and T-S4 shafts included two-bar
bundled, Grade 60, Number 5 steel spirals spaced at a 0.5-foot pitch to a depth of 62-feet below
ground surface, then spaced at a one-foot pitch to the bottom of the shaft (Figure 6.3). The tubing
for cross hole sonic logging consisted of four (quantity), two-inch diameter, Schedule 40 black
steel pipe centered 17-inches from the center of the shaft (separated at 90 degrees), as presented
in Figure 6.4. One pair of diametrically opposing CSL tubes were also specified to be united at
the bottom of each rebar cage using a sleeve fitting to enable future drilled shaft thermal transfer
testing.

ATiVW. M B ATAV.VAD "
LFiTE NG

1-ft. Pitchto .

“Bottom of Shaft

Bundled No.5 Spiral i e Pl
: “Transverse Steel 16 Quantity No. 11
P s s * Longitudinal SteeliBars

Fige 6.3, Photograph of a four-foot diameter shaft reinforcement cage from the side view.
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Six-inch diameter plastic spacers, attached to the transverse steel, were specified at eight-
foot increments to provide six-inches of clearance between the outer transverse steel and the
surrounding soil. The top four-feet of reveal of each shaft consisted of a four-foot cubic block of
concrete. This block contained extra reinforcement including four (quantity) Number 11
longitudinal bars and six (quantity) Number 5 transverse bars. A photograph of the reinforcement
utilized within the top block is presented in Figure 6.5. A four-foot long piece of 3.5-inch
diameter Schedule 40 polyvinylchloride pipe was also specified to be installed across the center
of the shaft and located eighteen inches below the top of each block (oriented North to South).
This pipe (located at the same vertical elevation in each shaft) was included to enable future

lateral testing.
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Figure 6.5. Photc;g.f-'ajsﬁi.of.' (;;t;’.a[' r;r%gorcen;gntfor the | t.ést shdf't"!T-4N top block
reinforcement cage.

Also specified within each shaft for housing telltales were five 0.5-inch diameter
Schedule 40 black steel pipes spaced 17.125 inches from the center of the shaft. Specifically,
each casing was specified to house a string of 0.125-inch diameter stainless steel telltale rods.
Within test shaft T-N4, three telltale casings were specified to rest upon the side of the bottom O-
Cell steel plate at a depth of 66.2-feet below ground surface, and two telltale casings were
specified to rest upon the side of the top O-Cell plate at a depth of 65.0-feet below ground
surface. Within test shaft T-S4, three telltale casings were specified to rest upon the side of the
bottom O-Cell steel plate at a depth below ground surface of 66.3-feet, and two telltale casings
were specified to rest upon the side of the top O-Cell plate at a depth of 65.25-feet below ground

surface. A photograph of the telltale casings that were installed installed is presented in Figure

6.6.
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Linear vibrating wire strain gauges were specified to monitor strains within the shaft at
given locations to better understand the load transfer characteristics. One set of diametrically
opposed strain gauges were specified to be installed (utilizing zip ties and welded mounts) within
each four-foot diameter shaft at ten locations. Strain gauges were located at depths 12, 19.9,
27.9, 35.9, 43.0, 50.25, 58.0, 71.0, 79.0, and 86.5-feet from the top of the rebar cage of test shaft
T-N4. Within test shaft T-S4, displacement transducers were located at depths 12.3, 20.4, 28.3,
36.25, 43.25, 50.3, 58.3, 71.3, 79.3, and 87.25-feet from the top of the rebar cage. A photograph

of a linear vibrating wire strain gauge is presented in Figure 6.7.

180



R s = (

Figure 6. htogah of th linear viri |re strain ages utilized |chs.
6.2.2. Test Shaft T-C6

Test shaft T-C6 (measuring nominally six-feet in diameter and centrally oriented on the
test site) was designed to extend 61.5-feet below the ground surface, and have a reveal length of
four-feet, equaling a total shaft length of 65.5-feet. The longitudinal steel of the shaft was chosen
to equal less than 1 percent of the gross cross-sectional area of the shaft with 35 (quantity)
Number 11 bars of Grade 60 steel centered at 28.53 inches from the center of the shaft (separated
at 10.3 degrees) [Figure 6.8]. Transverse reinforcement within the T-C6 test shaft included a
two-bar bundled Grade 60, Number 5 steel spiral consisting of loops spaced at a 0.5-foot pitch to
the bottom of the drilled shaft (Figure 6.8). The tubing for cross hole sonic logging consisted of
four (quantity), two-inch diameter, Schedule 40 black steel pipe centered 28.19 inches from the
center of the shaft (separated at 90 degrees) [Figure 6.9]. One pair of diametrically opposing
CSL tubes were specified to be united at the bottom of the rebar cage using a sleeve fitting to
enable future drilled shaft thermal energy transfer testing. Tied, plastic spacers were specified at

eight-foot increments to provide six-inches of clearance between the outer transverse steel and
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the surrounding soil. The top four-feet of reveal of the shaft consisted of a four-foot high by six-
foot by six-foot block of concrete. This block contained extra reinforcement including four
(quantity) Number 11 longitudinal bars and 6 (quantity) Number 5 transverse bars. A six-foot
long piece of 3.5-inch diameter Schedule 40 polyvinylchloride pipe was also specified to be
installed across the center of the shaft and located 18 inches below the top of the block (oriented
North to South). This pipe (located at the same vertical elevation as the pipes in test shafts T-N4

and T-S4) was included to enable future lateral testing.

35 Quantity No. 11
Longitudinal Steel Bars

Bundled No.5 Spiral Transverse Steel
Spaced at 0.5-ft. Pitch to Bottom of fl 7 -*TT"

-~

Fe 6.8. Phtograph ofa ie view of the six-foot diameteshaft reinforcement cage. |
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Figue 6.9, Ptoraph of a end view of the six-foot diameter shaft reinforcement ce.
Linear vibrating wire strain gauges were also specified to monitor strains within test shaft
T-C6 at given locations to better understand the load transfer characteristics. One set of
diametrically opposed strain gauges were specified to be installed (utilizing zip ties and welded
mounts as presented in Figure 6.10) within the six-foot diameter shaft at various locations.
Displacement transducers were located at depths below ground surface of 8.0, 16.0, 24.0, 30.0,
35.0, 40.0, 45.0, 50.0, 57.5, and 60.0-feet from the top of the rebar cage. Also specified within
this shaft were five 0.5-inch diameter Schedule 40 black steel pipes. Each casing was specified
to house a string of 0.125-inch diameter stainless steel telltale rods. Within test shaft T-C6, three
telltale casings were specified to rest upon the side of the bottom O-Cell steel plate at a depth of
55.0-feet below ground surface of, and two telltale casings were specified to rest upon the side of

the top O-Cell plate at a depth of 53.8-feet below ground surface.
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Figure 6. 10 Photograph of strain gauge installation utilizing welded bracket and zip ties.

6.3. Construction of Test Shafts

The materials and equipment utilized to construct the test shafts are described in this
Section. The construction process of the T-S4 (Section 6.3.1), T-C6 (Section 6.3.2), and T-N4
(Section 6.3.3) drilled shaft foundations are also discussed (including the excavation,
reinforcement cage and O-Cell assembly, placement, concrete pouring, and formwork). Each of
the test shafts were constructed by personnel from McKinney Drilling. The shafts were
constructed on 53-feet center to center spacings. Equipment utilized for the construction of each
shaft included a CZM EXI125 drill rig (exempting part of the test shaft T-C6 excavation), a
TEREX crane, and an American 7260 crane (Figure 6.11). The steel utilized to construct the
reinforcement cages for each shaft was provided by West Memphis Steel Corp., while the
concrete utilized to pour each shaft was provided by Razorback Concrete Co. Additionally, the

spacers utilized to center each shaft were provided by Foundation Technologies.
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(a) (b) ©
Figure 6.11. Photographs of the (a) CZM EX125 drill rig, (b) TEREX crane, and (c)
American 7260 crane utilized at the Turrell Arkansas Test Site.
Slurry construction methods were utilized to excavate each shaft. Materials utilized during the

slurry construction process included a polymer stabilizer called Super Mud Dry provided by PDS

(Figure 6.12a), and light density soda ash provided by DEAL Inc. (Figure 6.12b).

(a) a (b)
Figure 6.12. Photographs of (a) polymer stabilizer utilized for slurry construction and (b)
light density soda ash at the Turrell Arkansas Test Site.
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The concrete mix utilized to pour each shaft was specified to contain a water cement ratio of 0.46
(max of 0.49), a slump of seven-inches (plus or minus one-inch), an entrapped air content of 2
percent, a maximum aggregate size of one-inch, and a unit weight of 136 pounds per cubic foot.
Constituents of the concrete mix are presented in Table 6.1. Water reducing admixtures and
hydration stabilization admixtures (provided by Razorback Concrete Company) were introduced
in accordance with ASTM C494 (2013).

Table 6.1. Concrete mix constituents.

Material Type Description Speciﬁc Design
Gravity | Quantity
Cement Buzzi Unicem Type I Cement 3.15 | 489 Ib/cy
Fly Ash Headwaters Resources Class C Fly Ash 2.67 | 122 bb/cy
Coarse Aggregate |RazorRock Materials #67 Gravel 2.55 |1625 b/cy
Fine Aggregate  |RazorRock Materials C-33 Natural Sand 2.64 |1433 bb/cy
Water City Water (34 gal) 1.00 | 34 gallcy
Admixture BASF-Polyheed 900 Mid-Range Water Reducer - 22 oz/cy
Admixture Delvo Stabilizer (as required for set control) - -

Each shaft was poured utilizing a Putzmeister 52M concrete pump truck (Figure 6.13) along with
a 4-inch inner diameter tremie supplied by McKinney Drilling (Figure 6.14). The concrete was
poured from the bottom of the shaft with the tremie being moved to maintain approximately 30-
feet of head above the bottom of the treime. To ensure concrete quality, the tremie was plugged

with a rubber ball.
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Figure 6.13. Photograph of the Putzmeister 52M pm truck at the Turrell Arkansas Test

Site.

To verify the concrete quality on site, UofA personnel cast four-inch diameter by eight-
inch tall cylinders from a portion of the concrete obtained from each concrete truck. The
cylinders were later tested to determine values of uniaxial compressive strength and modulus of
elasticity. On one truck per shaft (selected towards the middle of the pour), UofA personnel cast
11 cylinders to perform additional testing. UofA personnel also performed slump and air content
testing on a portion of the concrete from each truck. Each sample was obtained directly from the
concrete mix truck (prior to placing the concrete into the pump truck). An as-built schematic of

each test shaft is presented in Figure 6.15.
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Figure 6.14. Photograph of installation of t four-inch inner diamer tri pipe for test
shaft T-6C.
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Figure 6.15. As-built schematic of the each test shaft at the TATS.

189



6.3.1. Test Shaft T-S4

The construction process associated with test shaft T-S4 is described in this section. This
shaft, situated furthest South from Interstate 55, had an excavation depth of 86-5 feet below
ground surface. The equipment utilized, and the excavation process involved with test shaft T-
S4 is described (Section 6.3.1.1). Assembly of the steel reinforcement cage and O-Cell are
discussed in Section 6.3.1.2. The placement of the completed cage within the excavation, the
concrete placement, and cap formation of test shaft T-S4 are also discussed in Section 6.3.1.2.
6.3.1.1. T-S4 Excavation

Personnel from McKinney Drilling excavated soil at the location of test shaft T-S4 from
November 18 through November 21, 2013, using the previously mentioned CZM EX125 drill rig
(Figure 6.16a). To prevent caving, a four-foot seven-inch outer diameter, 22.5-foot long
temporary steel casing was inserted into the open excavation, reaching a depth of 18.5-feet
(Figure 6.16b). Upon installation of the casing and reaching a depth of 20-feet, the excavation
was flooded, and four canisters of slurry polymer, and two (quantity) 50-1b bags of soda ash were
added (Figure 6.17a). Due to seasonal water table fluctuations, water percolation within the
excavation was not observed prior to slurry addition. Silty sand was encountered at a depth of

approximately 36-feet (Figure 6.17b).
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4-foot 7-inch
outer diameter,
22.5-foot long
temporary steel
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Figure 6.16. Photographs of the (a) flight auger, and (b) temporary casing utilized during
construction of test shaft T-S4.

(a) )

Figure 6.17. Photographs of (a) polymer addition, and (b) the resulting silty sand sand
slurry obtained from the excavation.

On November 18, at 1:27 p.m. and at a depth of approximately 72-feet below ground

surface, the flight auger was exchanged for an excavation bucket (Figure 6.18a). Excavation was

continued to a depth of 80.5-feet (2:10 p.m.). The exaction was plugged utilizing the auger
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bucket, and left till Novemebr 19", However, during the final stages of the excavation (at a depth
of approximately 82-feet below ground surface), the auger bucket detached from the kelly bar
and descended to the bottom of the excavation [due to a defective pin connecting the auger to the
sub]. The bucket was retrieved utilizing a hook mounted to the American 7260 crane (Figure
6.18b). Following retrieval of the auger bucket, a new pin was inserted and the excavation was
completed to a final depth of 86.5-feet below ground surface. Upon completion of the
excavation, the temporary casing was left in place, and the exposed excavation was covered with

railroad ties until insertion of the rebar cage on December 4, 2013 (approximately 14 days later).

(a) (b)
Figure 6.18. Photographs of (a) auger bucket during excavation, and (b) auger bucket
retrieval.

On November 26 around 8:40 a.m. the CZM EXI125 drill rig overturned during the
repositioning process. As a result, a new AGBO G150 drill rig was imported to complete the T-
C6 excavation while the CZM EX125 drill rig was reoriented and remobilized. Photographs of
the overturned CZM EX125 drill rig and of the subsequent replacement rig (Watson AGBO

G150) are presented in Figures 6.19 and 6.20, respectively.
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Figure 6.20. Pho‘tograph of the imported Watson AGBO G150 drill rig.
6.3.1.2. T-S4 Rebar Cage and Concrete Placement

Upon completion of the 86.5-foot deep excavation, the rebar and concrete for test shaft T-
S4 were placed on December 4, 2013, by personnel from with McKinney Drilling with oversight

by personnel from Loadtest, Inc. and the University of Arkansas. The O-Cell, composed of a 12-
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inch tall hydraulic jack encompassed by two-inch thick steel plates mounted on the top and
bottom of the jack, was inserted and welded to the reinforcement cage (upon temporary removal
of the transverse reinforcement surrounding the area). The O-Cell was centered at approximately
65-feet and one—inch from the top of the rebar cage (Figure 6.21). The assembly was inserted
into the rebar cage by cutting away select segments of longitudinal steel to slide the O-Cell and
plates into place. The cut pieces were extracted from the shaft, and the remaining pieces were
welded to the side of the top and bottom O-Cell plates (Figure 6.21). The lengths of longitudinal
steel that were left uncut were also welded to the side of the top and bottom plates of the O-Cell
(Figure 6.21). Each of the aforementioned telltale pipes was also welded to the O-Cell. As
previously discussed, three telltale pipes were welded to the side of the bottom plate, while two

of the telltale pipes were welded to the side of the bottom plate of the O-Cell (Figure 6.21).

Figure 6.21. Photograph of the installed O-Cell within the reinforcement cage for test shaft
T-S4.



Upon placement of the O-Cell within the cage, and placement of the CSL tubes and
telltales around the O-Cell, rubber CSL sleeve fittings were secured around each end of the CSL
pipes, covering the breaks in the pipes. These fittings were installed to ensure that each pipe
remained water tight during the placement of concrete around the CSL pipes (Figure 6.22).
Strain gauge wires were also overlaped through a greased 12-inch length of 2-inch inner
diameter PVC pipe. This PVC pipe served as a spacer to protect the wires, as well as enable
displacement of the O-Cell without damaging the wires (Figure 6.22). Following installation of
the strain gauge wire spacer, the hydraulic hoses were installed from the connection on top of the
O-Cell to the top of the rebar cage, then the transverse reinforcement was repositioned and tied

above and below the O-Cell assembly.
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Figure 6.22. Photograph of instrumented assembly near the O-Cell portion of the T-S4
reinforcement cage.
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A diagram (Figure 6.23a) of a completed top-down view and a photograph of the instrumented
(Figure 6.23b) test shaft T-S4 is presented. Yellow tape on the end of gauge wire indicated the
“B” side of the shaft.
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(b)
Figure 6.23. Schematic of (a) top-down view of test shaft T-4S, and (b) photograph of
instrumented assembly.
The total cage, measuring 90-feet and one-inch in length after installation of the O-Cell,

was picked up from a horizontal position to a vertical position using the American 7260 crane
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and the TEREX crane. The American 7260 crane was also utilized to lower the rebar cage into
the excavation (Figure 6.24a). During concrete placement within the excavation, the tremie and
temporary casing were removed. The aforementioned shaft reveal length of four-feet was formed
by placing a pre-constructed four-foot wide by four-foot long wooden form over the poured shaft
(Figure 6.24b). Upon lowering the additional reinforcement for the top cap (as outlined in the
previous section) and placing the lateral polyvinylchloride pipe at the proscribed elevation,
concrete was poured within the assembly. The wooden forms were removed after the concrete

within the block was hardened.

(a) (b)
Figure 6.24. Photograph of (a) the placement of the rebar cage for test shaft T-S4 into
excavation, and (b) four-foot by four-foot by four-foot reveal form work.

Sixty-three cubic yards of concrete were utilized to complete the construction of the T-S4
shaft. All as-built features met the design specifications outlined in Section 6.2.1, except that the
one pair of diametrically opposing CSL pipes at the bottom of the rebar cage were not united,

and 18 (instead of 16) No. 11 longitudinal bars were utilized to construct the reinforcement cage.
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The total length of test shaft T-S4 measured 90.5-feet from the bottom of the excavation to the

top edge of the four-foot tall concrete block reveal. The finished assembly is presented in Figure

6.25.

\ 4————-—"" bundled strain gauge

y ";g "|

Figure 6.25. Photograph of completed test shaft T-S4.
6.3.2. Test Shaft T-C6

The construction process associated with test shaft T-C6 is described in this Section.
Test Shaft T-C6 was constructed from November 26 through December 17, 2013, and was
situated centrally between the T-S4 and T-N4 drilled shaft foundations. This shaft was
constructed to a depth of 62-feet below ground surface. The equipment utilized and the
excavation process involved with test shaft T-C6 is described (Section 6.3.2.1). Assembly of the
steel reinforcement cage and O-Cell are discussed in Section 6.3.2.2. Additionally, the placement
of the completed cage within the excavation, the concrete placement, and cap formation of test

shaft T-C6 are also discussed in Section 6.3.2.2.
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6.3.2.1. T-C6 Excavation

Test Shaft T-C6 was excavated by personnel from McKinney Drilling from November 26
through December 17, 2013. To prevent caving, upon reaching an excavation depth of 20-feet, a
six-foot outer diameter, 24-foot long temporary steel casing was inserted into the top of the
excavation. Upon reaching an excavation depth of 25-feet, the excavation was flooded, and
canisters of slurry polymer, and 50-1b bags of soda ash were added. As with test shaft T-S4,
water percolation within the excavation was not observed prior to slurry addition. Upon
completion of the 62-foot deep excavation, the cased-excavation was covered with railroad ties
and left until successful installation of the rebar cage on December 17. Delay for the rebar cage
installation was attributed to the previously mentioned overturn of the CZM EX125 drill rig.
6.3.2.2. T-C6 Rebar Cage and Concrete Placement

The rebar and concrete for test shaft T-C6 were placed in the excavation on December
17, 2013 by personnel from McKinney Drilling, with oversight by Loadtest Inc. and University
of Arkansas personnel. The O-Cell assembly (O-Cell and plates) was welded to the completely
severed reinforcement cage at 53-feet (centered) from the top of the cage. The O-cell assembly
was inserted by disjointing each length of longitudinal steel with a welding torch. The cut pieces
(forming the intact lower 8.5-feet of the shaft including transverse reinforcement) were welded to
the side of the bottom plate of the O-Cell (Figure 6.26). The remaining 54-feet of the upper
portion of the shaft was welded to the side of the top plate of the O-Cell (Figure 6.26). Upon
placement of the O-Cell within the cage, the CSL tubes and telltales were installed above and
below the O-Cell. Rubber sleeve fittings were secured around each end of CSL pipe, covering

the breaks in the pipes, to prevent water leakage. All five telltale pipes were welded to the O-
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Cell. Three of the telltale pipes welded to the side of the bottom plate, and two of the telltale

pipes welded to the side of the bottom plate (Figure 6.26).
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Figure 6. 26 Photograph of the lower portion of the test shaft T C6 mstrumented |
reinforcement cage.

Strain gauge wires were installed throughout the length of the rebar cage using plastic zip
ties. Black tape was applied to the end of one of each pair of gauge wires to indicate the “B” side
of the shaft. At the location of the O-Cell, the strain gauge wires connected to gauges located
below the O-Cell were folded to overlap through a greased 12-inch long of 2-inch inner diameter
PVC pipe spanning the height of the O-Cell. This PVC pipe served as a spacer to protect the
wires, as well as enable displacement of the O-Cell without damaging the wires. Following
installation of the PVC strain gauge wire spacer, hydraulic hoses were installed from the
connection on the top of the O-Cell to the top of the rebar cage, and secured with plastic zip ties.
During installation of the hydraulic hoses, the transverse reinforcement was repositioned and re-
tied above and below the O-Cell assembly. A diagram (Figure 6.27a) of a completed top-down

view and a photograph of instrumented rebar cage (Figure 6.27b) for test shaft T-S4 is presented.
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Figure 6.27. Schematic of (a) top-down view of test shaft T-C6, and (b) photograph of
instrumented assembly.

The instrumented cage, measuring 66-feet and 4-inches in length, was picked using the

American 7260 cane and the TEREX crane. Two unsuccessful attempts were completed before
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the reinforcement cage was left vertically suspended using the American 7260 crane. After the
first unsuccessful pick (performed at 8:41 a.m. on December 16), welds connecting the bottom
8.5-ft long segment of the reinforcement cage to the bottom O-Cell plate were severed, and the
bottom 8.5-foot cage was racked (Figure 6.28a). As a result, each longitudinal bar connecting
the bottom segment to the bottom plate were repositioned and re-welded. Additionally, partial
deformations in lengths of the telltale pipe at the location of the O-Cell were observed after the

first pick attempt, and were welded (Figure 6.287b).

(@) | " (b)
Figure 6.28. Photograph of the rebar cage for test shaft T-C6 during the (a) first pick
attempt, and (b) subsequent CSL pipe damage and longitudinal bar re-welds.

During the second unsuccessful pick (performed at 12:23 p.m. on December 16), the
entire bottom segment of the reinforcement cage detached from the bottom plate of the O-Cell
and collapsed/pancaked (Figure 6.29a). Despite the collapse, the remainder (top segment and O-
Cell) of the cage was further elevated and vertically suspended. The collapsed bottom segment

was transported to and positioned within the wooden form of the test shaft T-C6 top cap. After
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being lowered into the form, personnel from McKinney Drilling proceeded to realign the
longitudinal and transverse steel of the bottom segment in preparation for another re-attachment
(Figure 6.29b). The longitudinal steel was then once again welded to the bottom plate of the O-
Cell, and the transverse steel was re-tied near the vicinity of the O-Cell. The completed vertical

assembly was then transported to hang above the excavation.

Figure 6.29. Photograph of test shaft T-C6 during the (a) second un-successful pick, and (b)
second re-assembly process.

Following the second pick, all previously installed strain gauge wires located within the bottom
segment were torn from their original mounts, and replacement of the strain gauges was required.
After being positioned above the excavation (Figure 6.31a), four new vibrating wire strain
gauges (and their respective wires) were acquired from test shaft T-N4 and installed below the
O-Cell (Figure 6.18). A photograph of the suspended instrumented reinforcement cage for test

shaft T-C6, prior to concrete placement, is presented in Figure 6.30a.
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Figure 6.30. Photograph of the lower sectlon of the T-C6 test shaft mcludmg segment
strain gauge re-installation.

Concrete placement commenced at 10:40 a.m. on December 17, 213. During concrete
placement in test shaft T-C6, the reinforcement cage was noted to have raised approximately 1.5-
feet after Truck 3, due to uplift from too much concrete being pumped by the pump truck
operator. Following concrete placement within the excavation, a shaft reveal length of four-feet
was formed by placing a pre-constructed six-foot wide by six-foot long wooden form over the
poured shaft (Figure 6.31b). Upon lowering the additional reinforcement for the square cap (as
outlined in the previous section), removing the tremie, removing the temporary casing, and
placing the lateral polyvinylchloride pipe to elevation, concrete was poured within the assembly.
Nine trucks total (each carrying nine cubic yards of concrete) were required to complete the

pour. The wooden forms were removed after the concrete within the box was hardened.
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(a) (b)
Figure 6.31. Photograph of test shaft T-C6 (a) suspended reinforcement cage prior to
concrete placement, and (b) after the four foot reveal construction placement.

Eighty-one cubic yards of concrete were utilized to complete the construction of test shaft
T-C6. All as-built features met the design specifications outlined in Section 6.2.2 except that the
prescribed one pair of diametrically opposing CSL pipes at the bottom of the rebar cage were not
united. Also, due to the uplift observed during concrete placement, the bottom 1.5-feet of the
shaft was unreinforced, and the top foot of the reinforcement cage was cut off to encapsulate the
top of the rebar in concrete. The total length of test shaft T-C6 measured 65.5-feet from the
bottom of the excavation to the top edge of the four-foot tall concrete block reveal. A photograph

of the finished shaft is presented in Figure 6.32.
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\Figure 6.32. Photograpf the test shaft T-C6 finished construction.
6.3.3. Test Shaft T-N4

Test Shaft T-N4 was constructed from November 26 and December 23, 2013. This shaft,
located closest to the northbound lanes of Interstate-55, was embedded to a depth of 88-fee. The
equipment utilized and the excavation process involved with test shaft T-N4 is described in
Section 6.3.3.1. Also discussed in Section 6.3.3.1 is the blowout that occurred within the
excavation of test shaft T-N4. Assembly of the steel reinforcement cage and O-Cell are
addressed in Section 6.3.3.2. Additionally, the placement of the completed cage within the
excavation, the concrete placement, and cap formation of test shaft T-N4 are described in Section

6.3.3.2.
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6.3.3.1. T-N4 Excavation

Test shaft T-N4 was excavated by personnel from McKinney Drilling between November
26 and December 23, 2013. To prevent caving, a temporary steel casing with measurements of a
four-foot by seven-inch outer diameter by 22.5-foot long was inserted into the top of the
excavation. Upon reaching an excavation depth of about 20-feet, the excavation was flooded and
slurry polymer and soda ash were added. Due to seasonal water table fluctuations, water
percolation within the excavation was not observed prior to slurry addition. Upon completion of
the 86.5-foot deep excavation, the cased-excavation was left open until insertion of the rebar

cage on December 18. A photograph of the T-N4 excavation process is presented in Figure 6.33.

-

Figure 6.33. Photograph of the test shaft T-N4 excavation process utilizing the CZM 1-25.

Prior to the end of the day on December 18, 2013, the bottom of the rebar cage was
lowered to a depth of approximately 35-feet below ground surface into the excavation, and left
overnight. On the following morning of December 19, 2013, it was discovered the T-N4
excavation had collapsed, partially embedding the bottom of the rebar cage into soil. Upon

retrieval of the reinforcement cage from the excavation (utilizing both cranes), the assembly was
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suspended 30-feet away from the shaft, and inspected for damage (Figure 6.34a). No damage to
the cage or instrumentation was observed; as a result the silty sand-slurry mixture that was
aatached to the rebar cage was removed. During inspection of the rebar cage, the 22.5-foot
temporary casing began to sink further into the excavation, from a depth of 1.5-feet above
ground surface to a depth of approximately 13-feet below ground surface. As a result, a 39-foot
long, 54-inch outer diameter temporary steel casing was imported onto site and installed at the
same location. After the 23-foor casing was removed, a safety chain was attached to the 39-foot
casing to prevent the casing from descending into the excavation (Figure 6.34b). After
installation of the 39-foot casing, the re-excavation process was initialized. At a depth of 22 feet,
polymer slurry and soda ash were added to stabilize the excavation (Figure 6.35a) prior to
furthering the flight auger (Figure 6.35b) to a final depth of 88-feet. The additional depth was

drilled to ensure a competent bottom of the excavation.
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Figure 6.34. Photograph obtained during construction of test shaft T-N4 with (a) the
suspended reinforcement cage after collapse, and (b) newly installed 39-foot
long casing.
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Figure 6.35. Photograph of test shaft T-N4 (a) soda ash addition for slurry formation, and
(b) second excavation process.

6.3.3.2. T-N4 Rebar Cage and Concrete Placement

Upon completion of the 88-foot deep excavation, the rebar and concrete for test shaft T-
N4 were placed December 23, 2013, by personnel from McKinney Drilling with oversight from
Loadtest, Inc. and University of Arkansas personnel. As with test shaft T-S4, the O-Cell,
composed of a 12-inch tall hydraulic jack encompassed by two-inch thick steel plates mounted
on the top and bottom of the jack, was inserted and welded to the reinforcement cage (upon
partial removal of the transverse reinforcement surrounding the area). The O-Cell was centered
at approximately 65-feet and one—inch from the top of the rebar cage (Figure 6.36). The
assembly was inserted into the reinforcement cage by cutting away select segments of
longitudinal steel to slide the O-Cell and plates into place, similar to test shaft T-S4. The cut
pieces were then extracted from the shaft, and the remaining pieces were welded to the side of
the top and bottom O-Cell plates (Figure 6.36). The uncut lengths of longitudinal steel were also
welded to the side of the top and bottom plates of the O-Cell (Figure 6.36). Five aforementioned

telltale pipes were welded to the O-Cell. Three of the previously discussed telltale pipes were
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welded to the side of the bottom plate, while two of the telltale pipes were welded to the side of
the top plate of the O-Cell. Upon placement of the O-Cell within the cage, and placement of the
CSL tubes and telltales around the O-Cell, rubber CSL sleeve fittings were secured around each
end of CSL pipe, covering the breaks in the pipes. These fittings were installed to ensure each

pipe remained water tight during placement of the concrete (Figure 6.36).

(]
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Fig 6.36. Phtoh of intaIIe O-CeII 'he tes shaft T-N reinfcement cage.

Four new strain gauge wires (two pairs, located at 58- and 71-feet below the top of the
reinforcement cage) were imported to replace those unexpectedly utilized on test shaft T-C6
(Figure 6.37a). These new gauges (as indicated by the blue wires in Figures 6.38 and 6.40b)
were installed directly above and beneath the O-Cell. Once bundled, the strain gauge wires were
installed to overlap through a greased 12-inch long 2-inch inner diameter PVC pipe. Following
installation of the strain gauge wire spacer, hydraulic hoses were installed from the connection
on top of the O-Cell to the top of the rebar cage. Then the transverse reinforcement was

repositioned and tied in the vicinity of the O-Cell assembly. Unlike test shaft T-4S and T-C6,
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one pair of CSL pipes was united at the bottom of test shaft T-4N (Figure 6.38) to enable future

temperature studies.

(a) b
Figure 6.37. Photograph of the (a) imported sister bar strain gauges, and (b) the mounted
gauges upon the test shaft T-N4 reinforcement cage.

Figure 6.38. Photograph of CSL union at the bottom of the T-N4 reinforcement cage.
A diagram of a completed top-down view and a photograph of the instrumented test shaft T-N4

are presented in Figure 6.39. Black tape on the end of the gauge wire indicated the “B” side of

the shaft.
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Figure 6.39. Schematic of (a) top-down view of test shaft T-N4, and (b) photograph of

instrumented assembly.
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The total cage, measuring 90-feet and ten-inches in length after installation of the O-Cell,
was picked using the American 7260 and the TEREX cranes. The American 7260 crane was
utilized to lower the rebar cage into the excavation following the blow-out (Figure 6.40a).
Concrete placement commenced at 9:31 a.m. on December 23, 2013. During concrete placement
in test shaft T-N4, two lengths of the tremie were removed from the excavation at a depth of 38-
feet below ground surface (following Truck 4). It was also observed while placing the contents
of Truck 7 that five cubic yards of concrete were lost at the sand/clay layer interface at
approximately 30-feet below ground surface. During concrete placement, the tremie and
temporary casing were removed from the excavation. Following concrete placement, a shaft
reveal length of four-feet was formed by reutilizing the pre-constructed four-foot wide by four-
foot long by four-foot high wooden form over the poured shaft (Figure 6.40b). Upon lowering
the additional reinforcement (as outlined in the previous section) and placing the lateral
polyvinylchloride pipe to elevation, concrete was poured within the assembly. Nine trucks were
required to complete the pour, with each truck carrying nine cubic yards of concrete (exempting
Truck 9, which only carried five cubic yards). The wooden forms were removed after the

concrete was hardened.
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(a) (b)
Figure 6.40. Photograph of (a) the lifting of the rebar cage for test shaft T-N4, and (b) the
four-foot cube reveal form work.

A total of 63 cubic yards of concrete were utilized to complete the construction of test
shaft T-N4. All as-built features met the design specifications outlined in Section 6.2.1 except
the bulb of concrete developed at a depth of approximately 30-feet below ground surface. The
total length of test shaft T-N4 measured 92.5-feet from the bottom of the excavation to the top
edge of the four-foot tall concrete block reveal. A photograph of the finished shaft is presented in

Figure 6.41.
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Figure 6.41. Photogr - copleed tes shaft T-N4.
6.4. Concrete Testing

Concrete testing, including uniaxial compressive strength and modulus of elasticity, were
performed on the cylinders that were cast in the field ( the sampled were four-inches in diameter
and eight-inches in height). Seven trucks of concrete were required for test shaft T-S4 (resulting
in six batches of cylinders). Cylinders were not cast for the concrete from Truck 1, and each
batch consisted of five cylinders (exempting Truck 5, for which eleven cylinders were cast). A
photograph of the test shaft T-S4 cylinders is presented in Figure 6.42. Nine trucks of concrete
were required for test shaft T-C6 (resulting in nine batches of cylinders). Each batch consisted of
five cylinders (exempting Truck 4, for which eleven cylinders were cast). Nine trucks of concrete
were also required for test shaft T-N4 (resulting in nine batches of cylinders). Each batch cast
consisted of five cylinders (exempting Truck 5, for which eleven cylinders were cast). The

cylinders from every batch were stored on-site (in molds) in a 100-gallon water tank covered
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with a plastic tarp. Upon hardening, the molds were removed, and the cylinders were re-
submerged until transport to the laboratory at the University of Arkansas (exempting cylinders
for test shaft T-N4, which were directly transported). The cylinders were then re-submerged in a
water bath until testing was performed. The designated testing regimen for each batch is

presented in Table 6.2.

.F.

Figure 6.42. 'F"hotograph of test shaft T-S cIinders prio to transport.

Table 6.2. Designated concrete testing regimen per batch for the Turrell Arkansas Test

Site.
No. of Tests per 11- No. of Tests
Test Performed Cylinder Batch Performed per 5-
T-S4 [ T-C6 | T-N4 | Cylinder Batch
7 Day Uniaxial Compressive Strength 0 0 0 0
13 Day Uniaxial Compressive Strength 0 3 0 0
14 Day Uniaxial Compressive Strength 0 0 0 0
21 Day Uniaxial Compressive Strength 0 0 3 0
28 Day Uniaxial Compressive Strength 3 3 3 3
56 Day Uniaxial Compressive Strength 4 3 3 0
Modulus of Elasticity 1 1 1 1
Date of Testing Uniaxial Compressive Strength 1 1 1 1
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6.4.1. Uniaxial Compressive Strength

Prior to compressive strength testing, the ends of each cylinder were ground to ensure
even pressure distribution using a Marui Triple Hi Kenma cylinder end grinder. Laboratory
uniaxial compressive strength testing was performed in accordance with ASTM C39 (2012). A
Forney F Series standard compression machine was utilized to complete the testing (Figure
6.43a). Each batch of cylinders, for each shaft was tested at a rate of 35 +/- 7 pounds per square
inch (psi) per second.

6.4.2. Modulus of Elasticity

Modulus of elasticity testing was performed after 28 days in accordance with ASTM 469
(2010). The test was performed on one cylinder per batch using a Forney F Series standard
compression machine and a compressometer (Figure 6.43b). Load was applied to each cylinder

at a rate of 35 +/- 7 psi per second, and the modulus of elasticity was calculated using Equation

6.1.
. (51 —353) (ASTM C469, 2010) Equation 6.1
~ (g, — 0.000050)
Where: E = chord modulus of elasticity of concrete (psi),

S1 = stress corresponding to a longitudinal strain, €1, of 50 millionths (psi),
S2 = stress corresponding to 40% of ultimate load (psi), and

& = longitudinal strain produced by stress Sa.
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(a) (b)
Figure 6.43. Photographs of (a) uniaxial compression testing, and (b) compressometer used
for modulus of elasticity testing.
6.5. Cross-Hole Sonic Logging

On January 9 2014, personnel from GEI performed cross-hole sonic logging on test shafts
T-S4 and T-C6. On January 10 2014, personnel from GEI performed cross-hole sonic logging on
test shaft T-N4. Two piezoelectric probes were inserted in multiple sequences into the
aforementioned two-inch diameter CSL tubes. The sequence utilized on each shaft (composed of
six soundings) is presented in Figure 6.44, and commenced from the Northern-most oriented

CSL tube (Tube 1).
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CSL Tubes

Test Shaft T-C6

Figure 6.44. Summan(/ac))f (a) plan view of six-step CSL test(ilr)1)g sequence commencing from
the North, and (b) photograph of testing performed on test shaft T-C6.

The probes were lowered to rest upon the bottom cap of the water-filled tubes, located at
the bottom of the reinforcement cage of each shaft (exempting test shaft T-N4). Upon
commencement of the test, the probes were simultaneously extracted at a rate of about one-foot
per second. A photograph of the piezoelectric probes utilized to transmit and receive the sonic
waves through the length of the shaft is presented in Figure 6.46a. Prior to CSL testing on test
shaft T-N4, it was observed CSL pipes 2, 3, and 4 were clogged below a depth of approximately
67-feet below ground surface. This was due to the CSL tubes detaching and filling with soil
when the T-N4 reinforcement cage was lifted from the prior collapse (as discussed in Section

6.6.3). As a result, the pipes were cleaned out using an air compressor attached to a 0.5-inch

diameter strung pipe (Figure 6.45), and all CSL testing performed on test shaft T-N4 was
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executed from a depth of 67-feet below ground surface. A photograph of the CSL testing in

progress for test shaft T-N4 is presented in Figure 6.46b.

gy plume 0.5-inch
p— pressurized

Figure 6.45. Photograph of test shaft T-N4 clean out.
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Figure 6.46. Photograph of (a) piezoelectric probes utilized for CSL testing, and (b) the
CSL testing performed on test shaft T-N4.

6.6. Load Test Setup and Procedures
Osterberg load Cell (O-Cell) testing was performed by Loadtest Inc. personnel on each
drilled shaft at the TATS with assistance from University of Arkansas personel. Testing on Test
shaft T-S4 was performed on January 10, 2013. Testing on test shafts T-C6 and T-N4 was
performed on January 11, 2013. Each test consisted of the following general procedure:
6) calibration of the hydraulic pump,
7) separation of O-Cell welds,
8) loading stage,
9) unloading stage, and
10) monitoring of shaft while at rest under no load.
While performing the O-Cell tests, an automatic pressure regulator (Figure 6.48a) was

utilized to maintain a constant pressure for each load increment. The displacement of the top of
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the shaft was monitored using automated surveying levels and an Invar target that was clamped
to one of the cross-hole sonic tubes (Figure 6.47a). Displacement of the 0.125-inch diameter
telltale rods that were positioned within the 0.5-inch pipe, connected to the top and bottom plates
of the O-Cell, were monitored using linear variable displacement transducers (LVDTs) [Figure
6.47b]. Strain within the strain gauges that were previously attached to the rebar cages were
monitored using an automated data acquisition system. All measurements were recorded using

the automated data acquisition system (Figure 6.48b).

@ ()
Figure 6.47. Photographs of (a) automated survey levels used to record the shaft head
displacement, and (b) LVDT displacement instrumentation that was attached
to the top of each telltale.
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(b)
Figure 6.48. Photographs of (a) automated pressure regulator and hydraulic pump utilized
to perform the O-Cell testing, and (b) data acquisition system.

6.6.1. Test Shaft T-S4

On January 10, 2014, full-scale load testing was performed on test shaft T-S4. The shaft
was loaded every eight minutes at increments of 1000 psi for thirteen intervals (peaking at
13,000 psi). The shaft was then unloaded ever four-minutes, decreasing the pressure by 2600 psi
for each of the five intervals (reducing pressure back to zero psi). Following unloading, the shaft
was monitored at rest for a period of eight minutes. Displacement readings were acquired for the
top of the shaft and for the top and bottom plates of the O-Cell (two for the compression of the
top plate of the O-Cell, and three for tension of the bottom plate of the O-Cell). Due to the
weather conditions on site, a rain gazebo was installed above the data acquisition system to
prevent electrical shortages. A photograph of the test, while in progress, is presented in Figure

6.49.
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Figure 6.49. Photograph of the test shaft T-S4 O-Cell test in progress.
6.6.2. Test Shaft T-C6

On January 11, 2013, full-scale load testing was performed on test shaft T-C6. The shaft
was loaded every eight minutes at increments of 800 psi for twelve intervals (peaking at a
pressure of 9600 psi). The shaft was then unloaded at four-minute increments, decreasing the
pressure by 3400 psi for each of the five intervals (reducing pressure back to zero psi). Following
unloading, the shaft was then monitored at rest for a period of eight minutes. Displacement
readings were acquired for the top of the shaft and for the top and bottom plates of the O-Cell
(two for the compression of the top plate of the O-Cell, and three for tension of the bottom plate
of the O-Cell). It was observed during testing that readings for strain gauge level two fluctuated

during the initial load increments (to a pressure of 7000 psi). Pressure gauge problems were also
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noted at approximately 10:57 a.m. A photograph of test, while in progress, is presented in Figure

6.50.
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6.6.3. Test Shaft T-N4

On January 11, 2014, full scale load testing was performed on test shaft T-N4. The shaft
was loaded every eight minutes at increments of 1000 psi for thirteen intervals (peaking at
13,000 psi). The shaft was then unloaded using four-minute increments, decreasing the pressure
by 2600 psi for each of the five intervals (reducing pressure back to zero psi). Following
unloading, the shaft was then monitored at rest for a period of eight minutes. Displacement
readings were acquired for the top of the shaft and for the top and bottom plates of the O-Cell

(two for the compression of the top plate of the O-Cell, and three for tension of the bottom plate

of the O-Cell). A photograph of the test in progress is presented in Figure 6.51.
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Figure 6.51. Photograph of the test shaft T-N4 O-Cell test in progress.

6.7. Interpretation of Load Test Data

After completion of the full scale O-Cell testing, data sheets were generated. The data
sheets contained displacement measurements acquired from the LVDTs, automatic levels,
pressure transducers, and strain gauges (as a function of time). From the data, load displacement
curves (Section 6.7.1), load transfer curves (Section 6.7.2), and unit side friction plots were
generated (Section 6.7.3).
6.7.1. Load Displacement Curves

From the data collected from each O-Cell test, two load displacement curves were
generated. As previously discussed in Chapter 2, one upper curve describes the upward
displacement of the top of the cell (skin friction resistance), and one lower curve represents the

downward displacement of the bottom of the shaft (end bearing resistance). Values of load were
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added together at certain values of displacement to generate an equivalent top-down load
displacement curve. However, in cases where resistances could not be fully developed, a
hyperbolic extrapolation of the load-displacement curve was performed to complete the
equivalent top-down load displacement curve.
6.7.2. Load Transfer (t-z) Curves

The distribution of force along the shaft with depth were obtained from the strain-gauge
data via load-transfer curves. The modulus of elasticity (Ec) of the concrete was determined from
one sample from each batche of cylinders cast by UofA personnel. After determining the
modulus of elasticity of the concrete, an equivalent shaft modulus was determined by accounting

for the contributions of the area of steel and the area of concrete (Equation 6.2).

EA;+ EAg (modified from Miller, 2003) Equation 6.2
Esnase = A
Shaft
Where: Eshaft= equivalent shaft modulus (psi),

Ec= modulus of concrete (psi),

Es= modulus of steel (psi),

Ac= cross sectional area of concrete (in?),

As= cross sectional area of steel (in?), and

Ashaft= gross cross sectional area of drilled shaft (in?).
From the equivalent shaft modulus, the average axial stress at given depths (oi) was then
calculated (Equation 6.3).

0; = Eshart; €axial; (modified from Miller, 2003) Equation 6.3

Where: oi = average axial stress at given depth i (psi),
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Eshatt-i= equivalent shaft modulus at depth i (psi), and

&axial- = axial strain within the shaft at depth i.

Axial strain within the shaft (gaxial-i) was determined from the average value of strain from the
two strain gauges placed in the shaft at a given elevation. From the average axial stress at a given
depth, the axial force (Fi) at a given depth, i, was computed (Equation 6.4).

F;y = 0; Ay, (Miller, 2003) Equation 6.4

Where: Fi= axial force within the shaft at depth i,
oi = average axial stress at given depth i (psi), and

Api= shaft cross sectional area at elevation i (in?).

The distribution of axial force within the shaft at a given elevation was determined from the
calculation of the axial force at each strain gauge.
6.7.3. Unit Side Friction Resistance

The determination of average unit side friction resistance for each drilled shaft over a

given length was determined from the load distribution along the shaft using Equation 6.5.

£ = AF; (Miller, 2003) Equation 6.5
S Shaft Perimeter * Az;
Where: fs= average unit side friction resistance,

AFi= the change in axial force over a given length of shaft, and

Azi= shaft segment length.
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The values of the average unit side shear were then plotted as a function of average upward shaft
displacement to evaluate the amount of attained of maximum unit side friction resistance.
6.8. Summary

The site conditions, design, construction, testing, and data analysis processes associated
with the TATS were discussed in this chapter. Design depths for test shafts T-S4, T-C6, and T-
N4 were specified to penetrate 86.5-, 61.5-, and 86.5-feet, respectively, with percentages of
longitudinal steel not exceeding 1.0-percent. These depths were selected to satisty the required
design load of 987 tons. O-Cell assemblies for test shaft T-S4, T-C-6, and T-N4 were placed
within the lower segment for each reinforcement cage (at depths of 68.5-, 53-, and 65.6-feet,
respectively, from the top of the reinforcement cage). Slurry construction methods were utilized
to construct each shaft. Four thousand psi compressive strength concrete was prescribed at the
TATS (which contained a mid-range water reducer, 3% by weight Class C fly ash, and an as-
required set controller) to fill the excavations.

Test shaft T-S4 was constructed from November 18 to December 4, 2013. During
excavation of this shaft, the auger bucket was lost and retrieved from the excavation, and an
excavator was tipped over. Upon lowering the instrumented reinforcement cage into the
excavation, sixty-three cubic yards of concrete (including placement of a four-foot tall reveal
length) were utilized to complete test shaft T-S4. The total length of test shaft T-S4 measured
90.5-feet from the bottom of the excavation to the top of the concrete block.

Test shaft T-C6 was constructed between November 26 and December 4, 2013. During
excavation of this shaft, no construction errors were recorded. However, while hoisting the
instrumented reinforcement cage, two unsuccessful attempts were made to vertically align the

assembly. The first unsuccessful pick resulted in the welds uniting the O-Cell and the lower
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segment of the reinforcement cage. The second unsuccessful pick resulted in a total collapse and
detachment of the lower segment of the reinforcement cage. Upon reattachment of the lower
segment to the already vertically hoisted remainder of the reinforcement cage, the assembly was
lowered into the excavation. All strain gauges beneath the O-Cell were replaced with gauges
originally intended for test shaft T-N4. Eighty-one cubic yards of concrete (including the
placement of a four-foot tall reveal length) were utilized to complete test shaft T-C6. The total
length of test shaft T-C6 measured 65.5-feet from the bottom of the excavation to the top of the
concrete block.

Test shaft T-N4 was constructed between December 3 and December 23, 2013.
Following the excavation of this shaft, the excavation collapsed (with the reinforcement cage
partially embedded) the morning prior to anticipated concrete placement. As a result, three of
the four CSL tubes mounted to the reinforcement cage were detached during extraction and filled
with soil. Although the CSL pipes were unoperational, the strain gauges mounted to the bottom
segment of the cage remained operational. As the reinforcement cage was cleaned of soil, the
hole was re-excavated. After lowering the instrumented reinforcement cage into the newly re-
opened excavation, eighty-one cubic yards of concrete (including placement of a four-foot tall
reveal length) were utilized to complete test shaft T-N4. During concrete placement, it was
observed the five cubic yards of concrete were lost at the clay interface at a depth of
approximately 30-feet below ground surface. The total length of test shat T-N4 measured 92-feet
from the bottom of the excavation to the top of the concrete block.

Concrete testing composed of uniaxial compressive strength and modulus of elasticity
testing. Uniaxial compressive strength testing was performed at approximately 7, 28, and 56

days following concrete placement for each shaft (or as close as permitted by scheduling and
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weather conditions). Testing was performed on sets of three cylinders per batch (i.e. per truck).
Modulus of elasticity testing was performed on one cylinder per batch (i.e. per truck).

Cross-hole sonic logging was performed on each shaft prior to O-Cell testing to ensure
the concrete utilized for each shaft was free from anomalies. Diametrically opposed probes were
inserted and raised at a rate of about one-foot per second. In test shaft T-S4 and test shaft T-C6
probes were raised from the bottom of the reinforcement cage at depths of 86.5- and 61.5-feet
below ground surface, respectively to the ground surface. In test shaft T-N4, three of the four
CSL tubes were clogged with soil resulting from extraction of the cage after the excavation blow
out. As a result, after cleaning, probes were raised from a depth of 67-feet below ground surface
to the ground surface.

O-Cell testing was performed in by personnel from Loadtest Inc. from January 10
through January 11, 2013. Test shaft T-S4 was loaded every eight minutes at incremented of
1000 psi to a maximum pressure of 1300 psi. Test shaft T-C6 was loaded every eight minutes at
incremented of 800 psi to a maximum pressure of 9600 psi. Test shaft T-N4 was loaded every
eight minutes at incremented of 1000 psi to a maximum pressure of 13000 psi. The data from
the load test performed on each shaft was analyzed, and the procedures for determining load

displacement curves, load transfer curves, and unit side friction resistance curves were described.
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Chapter 7: Results from Geotechnical Investigations, Predictive Methods, and Cost-benefit
Analyses
7.1. Introduction

The ultimate axial capacity values that were obtained by ingesting the data from the
geotechnical investigations into the predictive methods to determine drilled shaft ultimate axial
capacity are discussed in this chapter. Specifically, the results obtained from the Siloam Springs,
Turrell, and Monticello Arkansas Test Sites are presented in Sections 7.2, 7.3, and 7.4,
respectively. The differences between the values by using data obtained from the UofA, AHTD,
and MODOT sampling and testing methods, as well as the ranges in data are reported and
discussed. The impacts of these data ranges upon the predicted axial capacity, as evaluated
utilizing Ensoft SHAFT, Bridge Software Institute FB-Deep, and Microsoft Excel®, are also
reported and discussed.

Results of the cost-benefit analyses preformed for the Siloam Springs (Section 7.5) and
Turrell (Section 7.6) test sites are presented. Cost-benefit results include a value of unit cost per
ton of resistance utilizing the UofA, AHTD, and MODOT sampling and testing methods, and a
discussion of the cost implications of UofA, AHTD, and MODOT sampling and testing methods
on various types of infrastructure. The results of the fiscal impact of the concrete mix design are
also discussed within these sections. Due to the nature of MODOT CPT testing, this method was
not included in the Siloam Springs cost-benefit analysis.

7.2. Siloam Springs Arkansas Test Site

As discussed previously in Chapter 3, the Siloam Spring Test Site (SSATS) was

underlain by competent limestone. Therefore, the prediction of the ultimate axial capacity for the

drilled shaft foundations was predominantly influenced by the presence of competent limestone
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below an average depth of 16-feet below ground surface. The comparisons performed were
based on the results of predictions of ultimate axial capacity at the SSATS focus below a depth
of 16-feet. Results of the geotechnical investigation performed at the SSATS are presented in
Section 7.2.1. While comparisons of predicted axial capacity utilizing SHAFT, FB-Deep, and a
spreadsheet are discussed in Section 7.2.2.
7.2.1. Siloam Springs Arkansas Test Site Geotechnical Investigation Results

From the geotechnical investigations performed at the SSATS (as previously discussed in
Chapter 3), acquired soil properties acquired included moisture content, total unit weight,
corrected blow count, undrained shear strength, friction angle, percent fines, rock quality
determination (RQD), unconfined compressive strength, and modulus of elasticity. Rock quality
designations were performed by AHTD personnel to depths of 38 to 99 feet below ground
surface, respectively (Figure 7.1). Exempting the depths to a depth of approximately 20-feet, the
ranges of RQD values, to a depth up to 38-feet, as obtained using the UofA method, were
observed to be nine-percent lower than those obtained from the AHTD method. Additionally (to
a depth of 38-feet), the mean RQD values, as obtained from the UofA procedure, averaged to be
nine-percent greater than those obtained from the AHTD method. These differences may be
attributed to variations in objective determination or attributed to uncertainties associated with
the sampling locations. Both the AHTD and UofA methods utilized double swivel core barrel
samplers. In general, values of RQD were observed to increase with depth by about 20-percent

until the limestone/shale interface was reached at a depth of 75-feet.
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Figure 7.1. Values of RQD as a function of depth for the UofA and AHTD sampling and
testing methods.

Values of unconfined compressive strength (qu) and modulus of elasticity (Ec)
encountered at the SSATS, as obtained from the UofA method, are presented in Figure 7.2. As
opposed to the increasing values of RQD as a function of depth, the values of unconfined
compressive strength were observed to decrease with depth. Although all of the values of
unconfined compressive strength in the limestone exceed 11,000-pounds per square inch (psi),
the observation contradicts the usually assumed relationship of compressive strength increasing
with increasing values of RQD. This observation should be considered when evaluating the
effectiveness of only utilizing RQD values to obtain strength estimations within the rock.

Average values of modulus of elasticity remained relatively consistent (1900 psi per percent)
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within the limestone. For completeness, the additional properties of the soil and rock, as found at

the SSATS, are summarized in Appendix A.

Interpreted Soil Profile Unconfined Compressive Stress, q,, [psi]  Young's Modulus, E,, [psi/%o]
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Figure 7.2. Values of a) interpreted soil profile, b) unconfined compressive strength, and c)
modulus of elasticity, as a function of depth, as collected by UofA personnel.

Due to current design practices, values of unconfined compressive strength for AHTD were from
a correlation with RQD using Table 10.4.6.4-1 from the AASHTO LRFD Bridge Design
Manual. The use of this correlation may result in overly-conservative designs.
7.2.2. SSATS Predictive Results

Predictions of the ultimate axial capacity for the drilled shaft foundations were made
utilizing three technologies (Ensoft SHAFTv2012, Bridge Software Institute FB-Deep, and
Microsoft Excel®) utilizing data collected during the geotechnical investigations at the SSATS.
Results obtained from two sensitivity analyses that were performed to better understand rock
property inputs are presented in Section 4.2.2.1. Results of the comparisons draw focus upon

three characteristics including a) the range in the input data (Section 4.2.2.2), b) the predictive
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method utilized to evaluate capacity (4.2.2.3), and c) the testing and sampling method (4.2.2.4).
Specifically, various methods for predicting the components of the axial capacity of foundations
(end bearing resistance and side friction resistance) were compared (Section 4.2.2.5). The
MODOT testing and sampling method was not included in analyses for the SSATS because of
the nature of CPT testing is only applicable in sands and clays.

7.2.2.1. Sensitivity Analysis

Two sensitivity analyses were performed to assess the impact of inputting various rock
engineering properties from the SSATS. The objective of the first analysis was to distinguish
previously unknown a) rock joint discontinuity spacing (s) and b) rock joint discontinuity
thickness (t) values. The objective of the second analysis was to determine the engineering
property of the rock that had the greatest impact on the predicted load-settlement characteristics
for a particular drilled shaft foundation (SS-E4) as situated at the SSATS.

The first analysis, utilizing only SHAFT, was performed to determine the impacts of s-
and t-values on axial capacity. These two properties, omitted from the Siloam Springs
geotechnical investigations, were required inputs in the SHAFT program and were required to
perform an analysis. Results of the sensitivity analysis on the rock joint characteristics are

presented in Figure 7.3.
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Figure 7.3. Values of axial capacity for a UofA mean four-foot diameter shaft as a function
of rock discontinuity spacing and rock discontinuity thickness.

Values evaluated for rock joint discontinuity spacing and rock joint discontinuity
thickness ranged from 10-feet to one-foot and 0.02-feet to 0.0001-feet, respectively. As
expected, values of axial capacity were observed to be the greatest when the values of joint
thickness were minimized and when the values of joint spacing were maximized. From the
previously performed geotechnical investigations (as discussed in Chapter 3), the limestone
encountered at the SSATS was determined to be “competent” due to the following:

1) inspection of the recovered rock cores,
2) RQD% values generally exceeding 70%, and

3) uniaxial unconfined compressive strength values generally exceeding 10,000 psi.
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Because the competent limestone was determined to be “competent”, conservative (regarding
end bearing resistance only) values of 6-feet and 0.0001-feet were selected as the appropriate
inputs for s- and t-values, respectively. These values were then utilized for all sampling and
testing methods (as indicated by the solid black data series presented previously in Figure 7.3).
These s- and t- values were also selected based on the guidelines presented in Table 10.4.6.4-1 of
AASTHO (2012).

The second sensitivity analysis, utilizing SHAFT and FB-Deep, was performed to
determine the engineering property of the rock that had the greatest impact on the predicted load-
settlement characteristics (and thus the predicted axial capacity) of drilled shaft foundations at
the SSATS. Predicted-settlement curves were generated using the UofA and AHTD sampling
and testing methods for the SS-E4 drilled shaft foundation. The rock characteristics were
modified within the SHAFT program for the UofA Mean sampling and testing method and
compared to the original curves (Figure 7.4). Upon the analyses, it was observed that a 20
percent increase in the RQD values yielded load-settlement curves that were similar to those
generated by increasing the RQD values and all other rock characteristics by 20 percent. It was
indicated, utilizing SHAFT for the SSATS, that changes in input RQD values had the greatest
effect on the shape of the generated load-settlement curve (and thus, the axial capacity).
Increasing or decreasing the uniaxial unconfined compressive strength, joint thickness, joint
spacing, or the compressive strength of the concrete by 20 percent had negligible effects upon
the original curve developed using UofA data in SHAFT. Results of the sensitivity analyses of

the engineering properties of the rock are presented in Figure 7.4.

238



Gross Load, P, [kips]
0 5000 10000 15000 20000 25000 30000

L e B A B
l l —&— Predicted Load-Settlement Curve SHAFT (UofA Data)
—a— Predicted Load-Settlement Curve FB-Deep (UofA Data)
—»— Predicted Load-Settlement Curve SHAFT (AHTD Data)
—e— Predicted Load-Settlement Curve FB-Deep (AHTD Data)
+20% RQD

-20% RQD

+20% Em

-20% Em

Discontinutiy Thickness = 0.000001

Discontinuity Thickness= 0.01

Discontinuity Spacing = 10 ft

Discontinuity Spacing = 4 ft

+20% f'c

-20% f'c

+20% qu

-20% qu

+20% RQD and +20% Em

+20% RQD, Em, Thickness = 10 ft Spacing =0.00001
+20% RQD, Em, Thick=10', Space=0.00001, f'c=6500psi
---- Upper Bound of SHAFT (UofA Data)

---- Lower Bound of SHAFT (UofA Data)

0.00

<
[
O

<
[
(V)]

>eE++HEPIPOI] | 00

0.25
0.30

Settlement, 8, [inches]
O
\©]
(e}

0.35

N
\
N T T T O A Y Y Y [N R R A N R R T S A N A A O N A A O A A AN N AR A

0.40

Figure 7.4. Values of predicted gross load, for UofA test shaft SS-E4, as a function of
settlement for various combinations of engineering properties of the rock.

7.2.2.2. Data Ranges

Values of ultimate axial capacity were influenced by ranges in data entry for four- and
six-foot diameter shafts at given depths. Utilizing SHAFT and the UofA data, an average RQD
and qu value change of 33 percent resulted in an average change in ultimate axial capacity of 39
percent. Utilizing FB Deep, an average RQD and qu value change of 33 percent resulted in an
average change in ultimate axial capacity of 33 percent (Figure 7.5). Larger impacts on the
values of axial capacity were noted by deducting (rather than adding) the change in RQD and qu
values in FB Deep. This trend was also observed utilizing a spreadsheet (Figure 7.5). Input data

ranges were observed to have the least amount of impact utilizing a spreadsheet; an average
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RQD and qu value change of 33 percent in the spreadsheet resulted in an average change in
ultimate axial capacity of only 18 percent (Figure 7.5). The AHTD unconfined compressive
strength input data, as determined from AASTHO (2012), resulted in the largest fluctuations in
axial load (up to 152 percent). These larger fluctuations are attributed to the conservatism of the
correlated unconfined compressive strength values from RQD percentages. Changes in
unconfined compressive strength values, for the UofA data, were observed to have the greatest

impact on the results from SHAFT and least impact on the results from the spreadsheet.
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Figure 7.5. Differences in axial load with respect to (a) RQD inputs, (b) unconfined
compressive strength inputs.
The effects of the data range within the input values on ultimate axial capacity for four-

and six-foot diameter shafts are presented in Figures 7.6, 7.7, and 7.8. Ranges of axial capacities

were noted to increase with shaft diameter, as expected. This change in axial capacity is

240



attributed to the effects of increased levels of side friction resistance and increased base
resistance. As a result, the magnitude of the uncertainty associated with increasing shaft diameter
increases, but remains proportional, suggesting the possibility of successfully scaling full-scale
load tests in Boone Formation limestone by using FB-Deep as a prediction tool.
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Figure 7.6. Values of (a) interpreted soil profile, and ultimate axial capacity as a function
of depth for FB-Deep (b) four-foot and (c) six-foot diameter shafts using the
UofA and AHTD testing and sampling methods.

As presented in Figure 7.7, scaling full-scale load tests is also a possibility utilizing a

spreadsheet.
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Figure 7.7. Values of (a) interpreted soil profile and ultimate axial capacity with respect to
depth for spreadsheet (b) four-foot and (c) six-foot diameter shafts for the
UofA and AHTD testing and sampling methods.

No clear relationships were observed between four- and six-foot diameter capacities
utilizing the SHAFT predictions for UofA and AHTD sampling and testing methods (Figure
7.8). However, a decrease in capacity around a depth of 25-feet was noted despite an observed
increase in RQD and Young’s modulus values between depths of 20- and 30-feet for both UofA
and AHTD sampling and testing methods. This observation contradicts the results of the second
sensitivity analysis that indicated the changes in RQD would more significantly impact axial
capacity than the impact from uniaxial unconfined compressive strength. The values of uniaxial
unconfined compressive strength were observed to decrease between these depths (20- and 30-

feet). As previously stated in Section 4.2.2.2., constant values of joint spacing and joint thickness

were utilized. Constant values of concrete compressive strength were also utilized. Therefore,
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the decrease in capacity, utilizing SHAFT, at these depths indicates the change in axial capacity
is associated with the change in uniaxial compressive strengths. As current AHTD practices do
not include the use of uniaxial compressive strength testing data, the uncertainties associated
with the ranges of all data outputs are increased.
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Figure 7.8. Values of (a) interpreted soil profile and ultimate axial capacity as a function of
depth for SHAFT (b) four-foot and (c) six-foot diameter shafts for the UofA
and AHTD testing and sampling methods.

7.2.2.3. Predictive Technologies

The effects of the predictive technologies (SHAFT, FB-Deep, and a spreadsheet) utilized
to predict ultimate axial capacities at the SSATS were compared (Figure 7.9 and 7.10). For four-
foot diameter shafts, outputs generated by SHAFT were observed to be less conservative. This

may be due to proprietary reasons only understood by Ensoft. Specifically, the analytical

methods utilized to develop SHAFT capacity predictions in rock were based on regional load-
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test data associated with the regional geology of Texas. This regional geology exhibits rock with
more competent characteristics than that of the Floridian limestone associated with the load-test
database for which of FB-Deep was developed. The outputs generated utilizing a spreadsheet
were observed to be the most conservative. This may be a result of the method utilized in
AASHTO (2012) because the axial capacity is predicted as a function of rock mass quality
material constants m and S. For this study, the predictions were based on values of the constants
that were indicative of good quality jointed rock masses. For the six-foot diameter shafts, the
outputs generated by SHAFT were observed to be more consistent with outputs generated
utilizing FB-Deep (Figure 7.10). However, the values predicted using a spreadsheet were still

longer than those obtained from SHAFT and FB-Deep.
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7.2.2.4. Sampling and Testing Methods

The effects of the sampling and testing methods including (UofA, AHTD) utilized to

predict ultimate axial capacities at the SSATS were compared. The capacities generated using

the data from the AHTD method were observed to fluctuate more than for those generated by

using UofA obtained data (Figure 7.11). This increased fluctuation is attributed to the large range

in uniaxial unconfined compressive strength values input that were utilized within each method

because of the correlations from AASHTO (2012). The UofA generated capacities were

observed to be generally greater than those generated by AHTD. This increase may be

accounted for again by the direct input of the values of measured uniaxial unconfined

compressive strength.
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Figure 7.11. Values of (a) interpreted soil profile and ultimate axial capacity as a function
of depth for (b) four-foot and (c) six-foot diameter shafts for the UofA and
AHTD testing/sampling methods.
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7.2.2.5. Methodology Predictions for Rock

Various methods for predicting the components of rock-socketed drilled shaft axial
capacity were compared at the SSATS utilizing a spreadsheet for UofA data. Methods for
predicting side friction resistance are presented in Section 4.2.2.5.1. Methods for predicting end
bearing resistance are presented in Section 4.2.2.5.2. Upon acquisition of full-scale load test
data, a best-fitting method for both side friction and end bearing resistance shall be chosen to
develop a more accurate rock-socketed drilled shaft design process for the state of Arkansas. All
predicted capacities were calculated utilizing The uniaxial unconfined compressive strength data
obtained from the UofA sampling method. A five-percent displacement failure criterion was also
utilized. Summarizing figures for additional predictive results as presented in Appendix A.
7.2.2.5.1. Side Friction Resistance

Seven methods were selected to compare side friction resistance based on criteria
previously discussed in Chapter 4. All methods assumed a smooth rock socket and intact rock
mass. Results of the comparison between methods of predicting unit side friction resistance are
presented in Figure 7.12. The Reynolds and Kaderabek (1980) method was observed to predict
the largest amount of unit side friction resistance. The values predicted utilizing the Gupton and
Logan (1984) method provided a unit side friction resistance equivalent to 66.7-percent of the
Reynolds and Kaderabek (1980) method. Compared to previous estimations for ultimate axial
capacity utilizing FB-Deep, SHAFT, and a spreadsheet, (all of which fail to exceed 38,000 tons)
these methods generate a significantly higher amount of unit side friction resistance. However,
(as previously stated in Chapter 4) the side friction capacities generated utilizing FB-Deep,
SHAFT, and a spreadsheet all utilized more conservative prediction methods such as O’Neill and

Reese (1999) and Reese and O’Neill (1988). The AASHTO (2012) method was observed as the
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most conservative method of predicting unit side shear resistance. This AASTHO (2012)
method was developed from Horvath and Kenney (1979) and includes a reduction factor (o)

from O’Neill and Reese (1999) method.
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Differences in side friction resistance, with respect to differences in uniaxial unconfined
compressive strength, for a 23-foot long, four-foot diameter shaft (SS-E4) are presented in
Figure 7.13. As predicted, results obtained using the Reynolds and Kaderabek (1980) and
Gupton and Logan (1984) methods tended to be the most sensitive to changes in rock
compressive strength values. These methods are utilized to calculate side friction resistance as a
linear function of unconfined compressive strength. The O’Neill and Reese (1999) method was
observed to be the least sensitive to changes in values of rock compressive strength, with only a
5.8 percent change in side friction resistance calculated from a change in rock compressive
strength values of 33.8 percent.
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Figure 7.13. Differences in side friction resistance with respect to differences in unconfined
compressive strength.
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7.2.2.5.2. End Bearing Resistance

Five methods were utilized to compare values of end bearing resistance based on criteria
previously discussed in Chapter 4. All methods, exempting those associated with AASTO
(2012), assumed an intact rock mass up to depths greater than two diameters below the base of
the shaft. The O’Neill and Reese (1999) methodology (and therefore one of the AASHTO [2012]
methodologies for predicting end bearing resistance) was omitted from this comparison, as it
refers to Rowe and Armitage (1987). However, two additional methods were included from
AASHTO (2012) to account for a jointed rock mass up to depths that were greater than two
diameters below the base of the shaft. The first additional method accounted for very good
quality jointed rock, and the second accounted for good quality jointed rock. Results of the

comparison between methods of predicting end bearing resistance are presented in Figure 7.14.
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The Kulhawy and Prakaso (2006) method was observed to have the largest values of
predicted end bearing resistance, with the Rowe and Armitage (1987) method being used to
predict end bearing resistance values that were equivalent to 74 percent of the Kulhawy and
Prakaso (2006) method. Compared to previous estimations for ultimate axial capacity that
utilized a spreadsheet and the AASHTO (2012) “jointed good quality rock™ method, these
methods generate a significantly higher amount of end bearing resistance. The capacities
generated utilizing SHAFT also utilized more conservative prediction methods such as and
O’Neill and Reese (1999). The capacities generated utilizing FB-Deep were produced utilizing a
proprietary method in which unit end bearing resistance is defaulted to equal one-half of the
value of input uniaxial unconfined compressive strength. The AASHTO (2012) “jointed good
quality rock” method was observed to produce the smallest values of end bearing resistance.
Differences in end bearing resistance, with respect to differences in uniaxial unconfined
compressive strength, for a 23-foot long, four-foot diameter shaft (SS-E4) are presented in

Figure 7.15.
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7.3. Turrell Arkansas Test Site

At the Turrell Arkansas Test Site (TATS), the prediction of the ultimate axial capacity of
the drilled shaft foundations was predominantly influenced by the presence of poorly graded
sand at an average depth of 32-feet below ground surface. Comparisons performed upon the
predicted values of ultimate axial capacity at the TATS focus on differences between inputs.
Results of the geotechnical investigation performed at the TATS are presented (Section 4.3.1).
Comparisons of the predicted axial capacity values, as obtained by utilizing SHAFT, FB-Deep,
and a spreadsheet, are also discussed (Section 4.3.2).
7.3.1. Turrell Arkansas Test Site Geotechnical Investigation Results

From the geotechnical investigations performed at the TATS, the acquired soil properties
included the following: moisture content, total unit weight, plastic limit, liquid limit, corrected
blow count, undrained shear strength, friction angle, percent fines, CPT tip resistance, CPT side
friction resistance, and shear wave velocity. Comparisons between the UofA, AHTD, and
MODOT sampling and testing methods are presented in Figure 7.16, as a function of depth, for
the engineering properties of corrected blow count, total unit weight, undrained shear strength,

and correlated friction angle.
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Values of UofA and AHTD corrected blow count coincide well with each other (Figure
7.16b), which affirms the empirical transfer function that was previously discussed in Chapter 3
applied to UofA raw blow count values to obtain a standard blow count (Figure 7.17).
Compared to the UofA obtained unit weight from bulk samples, the AHTD values of total unit
weight (obtained through corrected blow count correlations) were determined to be over-
conservative in clays and under-conservative in sands by approximately 13 and 21 percent,
respectively (Figure 7.16c). This observation indicates the possibility of cost savings through
measured rather than blow count-correlated total unit weight values in clay (as discussed in
Chapter 9). Correlated MODOT CPT values of total unit weight were observed to coincide well
with UofA values in clay. In sand, the correlated MODOT CPT total unit weight values were
observed to consistently plot between the correlated AHTD and the measured UofA values.

Values of undrained shear strength were generally observed to decrease with depth
(especially at depths lower than 10-feet below the ground surface near the location of the ground
water table). The AHTD method (also correlated from corrected blow count values) was
observed to produce values of undrained shear strength not exceeding 0.6-kips per square foot
(ksf), nearly 77-percent less than average values obtained by UofA UU triaxial testing. MODOT
CPT undrained shear strength values were observed to plot between the values obtained from the
UofA and AHTD methods (Figure 7.16d). As all values of friction angle were correlated from
blow count (Figure 7.16e), these values coincided well with each other as a function of depth.
Values of correlated friction angle for the MODOT sampling and testing regime were plotted to

a depth of approximately 71.5-feet below ground surface due to refusal of the cone in the dense
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sand at this depth (as previously discussed in Chapter 4). For completeness, summarizing figures

for additional soil properties are presented in Appendix A.
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Figure 7.17. Comparison of values from a standard split spoon sampler and a California
split spoon sampler in adjacent boreholes at the TATS, from Race and
Coffman (2013).
7.3.2. Turrell Arkansas Test Site Predictive Results
From data collected during the geotechnical investigations at the TATS, the ultimate
axial capacity of drilled shaft foundations were predicted utilizing three technologies (Ensoft
SHAFTv2012, Bridge Software Institute FB-Deep, and Microsoft Excel®). Comparisons of the
results draw focus upon three characteristics including a) the range in input data (Section
7.3.2.1), b) the method utilized to evaluate capacity (7.3.2.2), and c) the testing and sampling
regime conducted (7.3.2.3). For the clay at the TATS, the FB-Deep predictions utilized

correlated blow count values (Neo) or CPT tip resistance (qc) values. For sand at the TATS, the

SHAFT predictions utilized blow count values, or correlated effective friction angles (¢’) values.
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7.3.2.1. Data Ranges

Values of ultimate axial capacity were influenced by ranges in the ingested data for the
four- and six-foot diameter shafts at given depths (Figure 7.18). Utilizing the FB-Deep program,
the UofA shear strength (cu) data ranges had a greater influence on the axial capacity than the
ranges in the AHTD and MODOT cu values. This phenomenon is expected, as UofA cu values
were directly measured, rather than being correlated values from Neo vales or calculated values
from CPT tip resistance (qc) and sleeve friction resistance (fs). However, it was noted that a
large decrease in cu does not equate to a large decrease in axial capacity (approximately 34
percent) despite a large increase in cu significantly increasing axial capacity (approximately 71
percent). It was further observed that for data obtained from the MODOT method, utilizing cu
values calculated from fs and qc values, rather than directly inputting values of qc had little effect
on capacity. Changes in the values of ultimate axial capacity utilizing SHAFT and the
spreadsheet were consistent (exempting changes in MODOT input data from Mean to Mean +1
SD) with the SHAFT obtained axial capacity differences generally exceeding those of the

spreadsheet by approximately 15 percent.
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Figure 7.18. Differences in axial load with respect to various soil engineering properties
inputs for (a) four-foot diameter and (b) six-foot diameter shafts at the TATS.

The effects of the range in the data inputs on the ultimate axial capacity, as a function of
depth for the four- and six-foot diameter shafts are presented in Figures 7.19, 7.20, and 7.21. As
with the SSATS, ranges of axial capacities in FB-Deep were noted to increase with shaft
diameter, however not as linearly. Within the clay and silt strata, capacity values predicted
utilizing the UofA [cu] and MODOT [qc] data were noted to be the largest and have the greatest
ranges, as expected. The smaller capacity values predicted utilizing AHTD and MODOT [cu]
data had much smaller ranges in the data due to the input values for these methods being
developed from correlations or calculations. Within the sand stratum, capacity value ranges

increased for all methods, with the greatest ranges observed within predictions obtained using the

UofA [cu] and MODOT [qc] data.

261



Interpreted Soil Profile Axial Capacity, R, [ton] Axial Capacity, R, [ton]
0 500 1000 1500 2000 ¢ 500 1000 1500 2000

0 - ‘ — — -
ngh \l Uof/i Mean
L T . A = = UofA Mean +1 SD ]
GWT Plasticity ¥ h — - -UofA Mean -1 SD ]
o — Clay (CH) ' | —AHTD Mean Turrell -
— Yy ' |- = AHTD Mean +1 SD FB Deep
E 20 \‘ — - -AHTD Mean -1 SD 6 ft. Di
- — ——MODOT Mean [cu] . 1a.
N - Low Plasticity ‘ i |- = MODOT Mean +1SD [cu] || §=5% i
5 r . | i — -MODOT Mean -1 SD [cu] | il
8 30 r Sllt (ML) il ‘\ ——MODOT Mean [qc] ‘? ]
3 : — M \ |~ = MODOT Mean +1 SD [q¢] || 2
US) E .° E j \\\—vMODOTMean-lSD[qc] : §" ]
L ENAY 4 il
= 40 e ; Turrell 2
2 e E =
=] BN Sk FB Deep SaN &
L. N
g 50 e O ‘| 4 ft. Dia. SRR
L . | L \ =]
= C 1 v 8=5% N &
2 60 - Poorly Graded |- -1+ R o —=
m r Sand (SP) 1 r \ N - ——UofA Mean 1
o 70 - . e . \ \ T = = UofA Mean +1 SD i
-05_ L . . q \ g = - -UofA Mean -1 SD R
k) L \" = \ — —— AHTD Mean
e - K> \ = — = AHTD Mean +1 SD N
80 no | \,‘l A g Vo - - -AHTD Mean -1 SD
r ] L AR K ‘\ 8 ——MODOT Mean [cu] ]
r 7 ' = Ky = = MODOT Mean +1 SD [cu] N
90 i L o — -MODOT Mean -1 SD [cu] ]
3 9 r gs_‘ ——MODOT Mean [qc] 4
r 3 — — MODOT Mean +1 8D [qc] ]
100 SKEARK S A L S —-MODOTMewASDlael | |

(a) (b) (c)

Figure 7.19. Values of (a) interpreted soil profile and ultimate axial capacity as a function
of depth for FB-Deep (b) four-foot, and (c) six-foot diameter shafts for various
testing and sampling methods.

As presented in Figure 7.20, the predicted values of axial capacity as obtained from the
spreadsheet were noted to have larger variations of mean values, yet overall decreased ranges
within the data for the MODOT and AHTD methods. This observation was expected within the
clay and silt strata. However within the sand stratum, the ranges of capacity between UofA and

AHTD were expected to be similar to the UofA and AHTD corrected blow count profiles were

not observed.
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Figure 7.20. Valuéz)of (a) interpreted soil prof(ill)()a and ultimate axial capa(cci)ty as a function
of depth using a spreadsheet b) four-foot and (c) six-foot diameter shafts for
the various testing and sampling methods.

Utilizing the SHAFT software, comparisons of the values of axial capacity, as obtained
using blow count and friction angle inputs, were performed (Figure 7.21). For four-foot
diameter UofA shafts, capacity ranges from the friction angle inputs were observed to be 36.2
percent less than those obtained from blow count inputs. This result was expected, as all input
friction angles were correlated from corrected blow count values. This trend was also observed
for the AHTD regime, suggesting the precedence of measured blow count input data when
utilizing SHAFT. However, utilizing the MODOT CPT data, correlated friction angle capacities

were observed to be greater (especially in dense sands) and exhibit larger amounts of uncertainty

than capacities generated from the calculated blow count inputs. Less variation was observed
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within the mean AHTD capacities than within the UofA capacities was noted. This may be due

to the correlation of unit weight from correct blow count values.
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7.3.2.2. Predictive Technologies

The results obtained from the predictive methods (SHAFT, FB-Deep, and a spreadsheet)
that were utilized to predict the ultimate axial capacity for drilled shaft foundations at the TATS
were compared (Figure 7.22 and 7.23). For the four-foot diameter shafts, the outputs for the
UofA drilling and sampling method were observed to display a pattern (Figure 7.22a). Although
the mean values of axial capacity (as a function of depth) for the UofA showed little distinction
between technologies (with SHAFT capacity values plotting 10.6 percent greater than FB-Deep
or spreadsheet capacities, on average, for depths below 32-feet below the ground surface), the
range of capacities generated by each technology were distinctive. Utilizing the same (measured)
UofA input data within each method, the FB-Deep generated capacities were observed to have

the largest range (spread) within the results, followed by SHAFT, followed by the spreadsheet.
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Significantly smaller ranges within the results, at respective depths, were generated by
utilizing the values obtained from the AHTD method without any observed pattern (Figure
7.22b). This is attributed to all of the AHTD values being correlated from the corrected blow
count values. The axial capacity outputs that were obtained using the MODOT method were
also noted to display smaller ranges within the results; however less distribution between values
of mean predictions than those for the AHTD regime were observed (Figure 7.22¢). Within the
clay and silt strata, the MODOT predicted capacities were notably larger as predicted using FB-
Deep [qc] than those predicted utilizing SHAFT or the spreadsheet. The MODOT FB-Deep [qc]
predictions display larger ranges of uncertainty than those generated using SHAFT or the
spreadsheet, however these values are still greater (by approximately 74-percent) than the others.

For six-foot diameter shaft, the outputs obtained using the UofA method were observed
to display a similar trend to outputs generated for four-foot diameter drilled shafts below a depth
of 32 feet below ground surface (Figure 7.23a). Above this depth, the mean capacity values as
obtained from FB-Deep were observed to be greater (by approximately 18 percent). Utilizing
the same (measured) input data into each method, the FB-Deep generated capacities were
observed to have the largest range within the results, followed by SHAFT, followed by the
spreadsheet. As with the four-foot diameter shafts, smaller ranges of results were generated by
utilizing each of the prediction techniques for the AHTD method, as well as an increased range
between mean predictions (Figure 7.23b). Outputs obtained utilizing results from the MODOT
method were noted to display smaller ranges within the results (Figure 7.23c). Within the clay
and silt strata, FB-Deep [qc] predictions were notably larger for MODOT than those utilizing

SHAFT or the spreadsheet. This trend also supports the precedence of utilizing measured
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property input values instead of correlated property values. A table comparing the overall
differences between each of the prediction programs is presented in Table 7.1.

Table 7.1. Summary of differences between each axial capacity prediction program.

Program Pros Cons
user friendly interface

enables a user-defined displacment input | enables only one diameter per output

FB-Deep values of side friction resistance and end
bearing resistance at user-defined
settlements are seperated
enables a range of lengths per output

utilizes only input values of q, (not
RQD)

requires values of rock joint spacing and
rock joint length

utilizes input values of q, and RQD inefficent soil property input inerface

requires the use of itterations to produce
SHAFT values of capacity at a given

displacement
values of side friction resistance and end

bearing resistance at user-defined
settlements are not seperated
enables only one length per output

computes a range of diameters per output

easy to edit input values based on AASHTO (2012) for
Spreadsheet program versitility prediction of capaICIty values only at 5
percent displacments
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7.3.2.3. Sampling and Testing Methods

The effects of the sampling and testing methods (UofA, AHTD, and MODOT) that were
utilized to predict the ultimate axial capacity values for the drilled shaft foudnations at the TATS
were compared (Figure 7.24). It was observed that the predicted capacities (as obtained from
FB-Deep, SHAFT, and the spreadsheet) utilizing the UofA data were greatest. Again, the
difference between the direct input of measured values rather than correlations is the cause for
the discrepancy. The AHTD capacities obtained using the AHTD drilling and sampling data
within all three of the predictive programs were observed to be greater than the MODOT
generated capacities in clay (exempting MODOT FB-Deep [qc]). However, below a depth of 32-
feet, the MODOT data generated capacity values were observed to surpass those generated using
the AHTD data. Summarizing figures for additional predictive results were generated are

presented in Appendix B.
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Figure 7.24. Mean values of (a) the interpreted soil profile and of ultimate axial capacity
as a function of depth for (b) four-foot and (c) six-foot diameter shafts for the
UofA, AHTD, and MODOT testing and sampling methods.

7.4. Monticello Arkansas Test Site

At the Monticello Arkansas Test Site (MATS), the prediction of the ultimate axial

capacity for the drilled shaft foundations was attributed to by the presence of poorly graded sand

between depths of 27- and 42-feet below ground surface and beneath 60-feet below ground

surface. Comparisons between the predicted ultimate axial capacity values at the MATS focus on

the amount of difference within the input values. Results of the geotechnical investigation

performed at the MATS are presented (Section 7.4.1). Comparisons of the predicted axial

capacity, as obtained utilizing SHAFT, FB-Deep, and a spreadsheet, are also discussed (Section

7.4.2).
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7.4.1. Monticello Arkansas Test Site Geotechnical Investigation Results

From the geotechnical investigations performed at the MATS, the acquired soil properties
included the following: moisture content, total unit weight, plastic limit, liquid limit, corrected
blow count, undrained shear strength, friction angle, percent fines, CPT tip resistance, CPT side
friction resistance, and shear wave velocity. Comparisons between the UofA, AHTD, and
MODOT sampling and testing methods are presented in Figure 7.25, as a function of depth, for
the engineering properties of corrected blow count, total unit weight, undrained shear strength,
and correlated friction angle. For the respective depths, values of AHTD corrected blow count
averaged 36.0 percent greater than the values calculated from the correlated MODOT CPT data
(Figure 7.25a). Below a depth of 60-feet below the ground surface, the values of UofA corrected
blow count averaged 12 percent greater than those obtained from the AHTD method (Figure
7.25b). This increase is the result of the empirical transfer function being applied to the raw blow
count values that were obtained with a modified California split spoon sampler (Figure 7.26).

As observed at the TATS, the AHTD values of total unit weight (obtained through
corrected blow count correlations) were determined to be under-conservative in clays and over-
conservative in sands by approximately 15 percent and 8 percent, respectively, as compared to
the UofA measured bulk sample values (Figure 7.25c). This observation also indicates the
possibility of cost savings through measured rather than blow count-correlated total unit weight
values in sand (as discussed in Chapter 9). Correlated MODOT CPT values of total unit weight
were observed to coincide well with UofA values in clay (exempting one outlier at a depth of
approximately 51.5-feet below the ground surface). In sand, the correlated MODOT CPT total
unit weight values were observed to consistently plot between the correlated AHTD and the

measured UofA values.

273



'SLVIN 8y} Je suonebnsaaul [ed1uyde1osb 10dON pue ‘'dLHY
‘40N woJy patsylehd se sjbue uonoliy paye|adiod (p) pue ‘yibuaais aeays paureapun (2) ‘ybiam
11un 2101 (g) 2uNod MOo|q Pa199.4.409 (B JO San|eA Ul SaduaJlayip Yyuim ajijoad [1os payaadisiul (B) syl 'Gz'/ 94nbi4

(® (p (©
i (0587A WLSY) |
SIS9L _NMXNT_ NN woiy pue - 4
auun, 0>\u£ _0}/ mm—&Eﬁm <
v==m ﬂmk—.—wmnz .\An_ ﬁOG_NuDO = _.A
eleq vjon I
88'Ly X [9]"0=[eqoi]" I
8/N=[y]" <[
[ eled 1dS ALHY F —_
i ] @
0
)
N\
- - +
. o
‘. w
PI="IN s r e
I . | _v—z N Qw
LT T o B .
JAN- eled 1dd M\ S
8% 05< NV
9¢ 05-0¢ 7 P =
| og 0€-0l | X . A
8T 01y B
s v> = e z =
[3ob] [smold] N
®~ME< EO:OCH— «—-SOU Boﬁm ..:OU -
“m:OW wwo_ﬂommmsou kom [ N N .
[ 6 9 € 0 091 ol 0cl 001 08

0s oy 0¢ 0C OI O

[Bap] ‘¢ ‘a16uy uondLI4 parejasIo)

[1s3] ‘™0 ‘yaBuans Jeays paurelpun

[30d] “*4 ‘3ybramn 1un resoL

(g (e
(ds) pues
papeln A[1004
e LOQON—
¥ LOGOW « (HO) Ae1D J311S
T LOdON =
1 LOAON - 1
UBIN VIO —
(dS) pues
s vjon -
¥ vion = ﬁwﬁw‘—o -—.\5@\
gvion - Ap1004
zvion - |
1vion -
uedN ALHV
sg9 ALHY (10) |
¥4 ALHV Ae 9)JBIISD,
¢d dLHV 1D pereatsed
d dLHV
1d dLHV

S§¢r o0l SL 0S5 ST O
[smo1q] ‘°N ‘JunoD mo|g pe1datio)d

a11J01d 1105 pajaadiaiu

001

09

0S

[Ug

[4] ‘z ‘a0e4anS punous mojag yideqg

256



—_—
S
o

5 S

= 90 r 9 .

[ ~N

e @&k &

@ O

280 | S ]

S NN

Q Y S

& 70 L Q&@ E

E &Q} 4

oy * Q% n) |

'(g 60 &&‘b b‘b?jﬁb‘ (\"’h

e :DX /Q' Q SN
. 7 4

_cg &o /QZ/ &Q

< 3

S 50 | . RS R ]

wn ,bl'(,\ Q-

© * \Al' %

- - N <

L 40 . \)‘bo y

2 79N * *

- *s .

% 30 ¢ e :"‘ * % . ]

Q ** -

@) 4 * -

E 20 . ]

o * Lacroix and Horn (1973) |1

c% 10 [+ #» and UofA lines lie ontop |-

o _ of one another

O Y L 1 1 1
0 30 60 90 120 150

Raw Blow Count, N, from
CaliforniaSampler
(D, =7.6cmand D; =6.1cm)

Coffman, (2013).

Values of undrained shear strength were generally observed to decrease with depth for

obtained by UofA UU triaxial testing).

The AHTD undrained shear strength values (as
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Figure 7.26. Comparison of values from a standard split spoon sampler and a California
split spoon sampler in adjacent boreholes at the MATS, from Race and

the MODOT CPT sampling and testing method. Additionally, the MODOT method was
observed to yield the greatest values within the topmost clay stratum, with mean values of

undrained shear strength peaking at 8.7 ksf (nearly 61 percent greater than the average values

correlated from corrected blow count values) were observed to be the smallest within the lower
clay stratum, with AHTD values plotting an average 44.7 percent less than those obtained from

the UofA method (Figure 7.25d). As all values of friction angle were correlated from corrected



blow count (Figure 7.25¢), the arrangement of values of correlated friction angle is similar to the
arrangement of the values plotted in corrected blow count. The MODOT method was observed
to yeild the smallest values of correlated friction angle, plotting an average 13.0 and 15.8 percent
lower than the values obtained from the AHTD and UofA methods, respectively. Summarizing
Additional soil properties, as a function of depth, are presented in Appendix A.
7.4.2. Monticello Arkansas Test Site Predictive Results

From data collected during the geotechnical investigations at the MATS, the ultimate
axial capacity of the drilled shaft foundations were predicted utilizing three technologies (Ensoft
SHAFTv2012, Bridge Software Institute FB-Deep, and Microsoft Excel®). Comparisons of the
results draw focus upon three characteristics including a) the range in input data (Section
7.4.2.1), b) the method utilized to evaluate capacity (7.4.2.2), and c) the testing and sampling
method conducted (7.4.2.3). As with the TATS, for the clay at the MATS, the FB-Deep
predictions utilized correlated blow count values (Neo), or CPT tip resistance values (qc). For the
sand at the MATS, the SHAFT predictions utilized blow count values, or correlated effective
friction angle (¢’) values.
7.4.2.1. Data Ranges

Values of ultimate axial capacity were influenced by ranges in the ingested data for the
four- and six-foot diameter shafts at given depths (Figure 7.27). Utilizing the FB-Deep program,
the UofA cy data ranges had little effect on axial capacity. Little effect was observed by using the
cu values calculated from CPT fs and qc values rather than directly inputting values of qe.
Changes in ultimate axial capacity values as obtained from SHAFT [¢’] were consistent among
the input parameters, with smaller changes in the AHTD inputs (9 percent) having larger effects

on capacity (22 percent) than larger changes in the UofA inputs (15 percent). This phenomenon
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was not expected, as UofA and AHTD correlated friction angle inputs had similar ranges within
the data. Changes in axial capacity between SHAFT [N] and the spreadsheet were observed to
be similar to those at the TATS. Although there were similar changes in the input values, the
output from the SHAFT program was observed to exhibit larger changes in axial capacity (by

about 22.5 percent) with the exception of the MODOT Spreadsheet.
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Figure 7.27. Differences in axial load with respect to various soil engineering properties
inputs for (a) four-foot diameter and (b) six-foot diameter shafts at the
MATS.

The effects of rang in the data inputs on the ultimate axial capacity, as a function of depth
for the four- and six-foot diameter shafts, are presented in Figures 7.28, 7.29, and 7.30. Utilizing
the FB-Deep program, the predicted capacity values from the MODOT [cu] and MODOT [qc]
data were noted to be the largest and have the greatest ranges. Smaller capacity values were

predicted utilizing AHTD and UofA data, and also were observed to have smaller ranges in the

capacity values. Offset decreases in axial capacity were observed within sand strata for the six-
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foot diameter shafts. This is a result of an end bearing reduction factor being applied, as

discussed in Reese and O’Neill (1988).
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Figure 7.28. Values of (a) the interpreted soil profile and ultimate axial capacity as a
function of depth for FB-Deep (b) four-foot and (c) six-foot diameter shafts
for various testing and sampling methods.

As presented in Figure 7.29, the predicted values of axial capacity as obtained from the
spreadsheet were noted to be the smallest when the MODOT inputs were utilized. The MODOT
inputs also resulted in the largest ranges of capacities (exempting depths below ground surface
between 42- and 52-feet on the four-foot diameter shaft and the outlier encountered at 52-feet on

the six-foot diameter shaft). Unlike the TATS, the UofA data inputs resulted in the smallest

ranges of output capacities.
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Figure 7.29. Valuc(;sl,) of (a) the interpreted s((})i? profile and ultimate axi(;l) capacity as a
function of depth for spreadsheet (b) four-foot and (c) six-foot diameter
shafts for various testing and sampling methods.

Utilizing the SHAFT predictive software, comparisons of the values of axial capacity
between blow count and friction angle inputs were performed (Figure 7.30). For four-foot
diameter shafts, the ranges in the values of capacity from the friction angle inputs (UofA) were
observed to be similar, with output capacities generated from blow count values (UofA)
exceeding the output capacities generated from friction values (UofA) by 10.3 percent. For four-
foot diameter AHTD and MODOT shafts, capacity ranges from the friction angle inputs (AHTD
and MODOT) were also observed to be comparable, with output capacities generated from blow

count values (AHTD and MODOT) exceeding those from friction values by 7.1 percent and 5.4

percent, respectively. It was further observed between depths of 6- and 18-feet and 35- and 59-
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feet below ground surface, the capacity values for all the methods coincided. This is believed to

be attributed to the presence of water at these depths.
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7.4.2.2. Predictive Technologies

The results obtained from the predictive methods (SHAFT, FB-Deep, and a spreadsheet)
that were utilized to predict the ultimate axial capacity for the drilled shaft foundations at the
MATS were compared (Figure 7.31 and 7.32). For the four-foot diameter shafts, mean capacity
values obtained using the UofA method showed little difference between software programs.
Utilizing the same (AHTD) input data into each software program, the FB-Deep software
program generated capacities that were observed to have the largest range of results, followed by
the spreadsheet.

Larger ranges within the capacity values were generated by each software program using
the AHTD data, as well as an increased variation between mean predictions (Figure 7.31c).
Outputs from the AHTD method were noted to display larger ranges of results; however the
ranges were smaller than the ranges observed for the capacity values obtained using MODOT
data (Figure 7.31d). The capacity values from the MODOT data also exhibited the largest
deviation between mean values; particularly for those capacities predicted utilizing the
spreadsheet. Within the lower sand stratum, the capacity values that were obtained utilizing the
spreadsheet were 9.9 percent greater than capacities generated from FB-Deep or SHAFT (Figure

7.31d).
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For the six-foot diameter shaft, output values obtained by using the UofA drilling and
sampling method were not observed to display a similar trend to outputs generated for four-foot
diameter drilled shafts (Figure 7.32b). However, utilizing the data from the AHTD drilling and
sampling method, more consistency between mean capacity values was observed (Figure 7.32c¢).
The largest ranges within the results was observed for the MODOT drilling and sampling method

(Figure 7.32d).
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7.4.2.3. Sampling and Testing Methods

The effects of the sampling and testing methods (UofA, AHTD, and MODOT) that were
utilized to predict the ultimate axial capacity values for drilled haft foundations at the MATS
were compared (Figure 7.33). It was observed that the predicted capacity values (as obtained
from FB-Deep, SAHFT, and the spreadsheet) [exempting the 6-foot diameter spreadsheet
anomaly at 51-ft] were the greatest by utilizing the MODOT data. This may be attributed to the
advantages of continuous in-situ testing (as exemplified with MODOT CTP data) at sites
featuring high soil variability. At the MATS, the predicted capacities (UofA and AHTD) for all
three of the software programs were observed to be more consistent than the capacities generated
at the TATS. This may also be attributed to the high amount of soil variability as the MATS.
Capacity predictions for all methods were observed to stabilize below a depth of 60-feet below
ground surface (the location of the final sand stratum). Summarizing figures for additional

predictive results are presented in Appendix B.
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Figure 7.33. Mean values of (a) the interpreted soil profile and ultimate axial capacity with
respect to depth for (b) four-foot and (c) six-foot diameter shafts for the
UofA, AHTD, and MODOT testing and sampling methods.
7.5. Siloam Springs Arkansas Test Site Cost-benefit Results
From the cost-benefit analyses performed at the Siloam Springs Arkansas Test Site
(SSATS), results regarding the unit cost per ton of resistance for AHTD and UofA sampling and
testing methods are presented in Section 7.5.1. Results of cost implications of UofA and AHTD
sampling and testing methods at the Siloam Springs Site are also discussed (Section 7.5.2.).
Results of the cost implications of using fly ash supplemented concrete are presented in Section
7.5.3. It is important to again note that values of maximum measured capacity were intended to
be reported at settlements of five percent, however due to scheduled lateral load testing,

displacements during testing were minimalized. Instead, results of the SSATS cost-benefit

analysis for the UofA sampling and testing method were developed utilizing measured load test
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values ranging between 0.02 and 0.18 percent. As a result, the cost savings associated with the
SSATS are conservative estimates.
7.5.1. Unit Cost of UofA and AHTD Sampling and Testing Methods in Rock

The unit costs per ton of resistance utilizing the UofA and AHTD testing and sampling
methods of the SSATS are presented in this Section. Overall, values of unit cost per ton of axial
capacity for the UofA and AHTD testing and sampling methods were found to equal $24.11 and
$82.70, respectively (Table 7.2). This large difference in values is due to multiple reasons. First,
the shaft selected to represent the entire SSATS for the UofA sampling and testing method was
SS-E4, which had a seven-foot rock socket. The typical shaft for the AHTD sampling and testing
method had a ten-foot rock socket. It was observed concrete costs for the ten-foot rock socketed
shaft were $590.4 greater than that of the seven-foot rock socketed shaft. More noticeably, costs
associated with the drilling of the ten-foot rock socket were observed to be $14,582 greater for
the ten-foot socket, compared to the seven-foot rock socket. Additionally, the measured capacity
of test shaft SS-E4 was observed to be 2.0 times greater than the design capacity of the AHTD

shaft.

It was also noted that despite the UofA geotechnical investigation including uniaxial
compressive strength testing, costs associated with this investigation were $4,011 less than that
of the AHTD geotechnical investigation. This may be attributed to the time spent on site
acquiring RQD values. The AHTD geotechnical investigation included at least 13 boreholes
extending an average of 38-feet. The UofA geotechnical investigation included only six
boreholes (three extending less than 17 feet, two extending less than 69 feet, and one extending

116.9 feet). As a result, the AHTD geotechnical investigation logged approximately 1.8 times

288



more linear feet of geomaterial than the UofA geotechnical investigation. However, as no values
of compressive strength were measured, cost surfeits were still observed (Table 7.2).

The fiscal advantage of performing full-scale load testing was observed to equal a cost
savings of approximately $15,173 per shaft or $8.97 per ton of resistance. This difference is
contributed to the difference in rock socket depths (the UofA originally designed 10-foot socket
and the UofA load tested seven-foot socket). However, the design capacity for the 10-foot
socketed shaft was observed to be greater than that of the seven-foot socketed shaft by 215.5

tons, indicating the potential for an even greater amount of cost savings (Table 7.2).
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7.5.2. Cost Implications for Infrastructure in Rock

Utilizing the unit cost per ton of resistance factors (as previously discussed in Section

7.5.1.) generated for the UofA and AHTD sampling and testing method, the total project
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foundation cost of each load condition was calculated and compared. Results of the fiscal
infrastructure impact analysis are presented in Table 7.3. Overall, the UofA Measured method
(which utilizes the benefits of advanced sampling and testing and advanced full-scale load
testing) was observed to be the least expensive method, saving an average of 47 and 46 percent
more than the AHTD and UofA Designed methods, respectively, for the original load condition.

Utilizing unit cost per ton values for each method in hypothetical situations, the degree of
potential savings using the UofA Measured Method was noted to increase compared to the
AHTD method and decrease compared to the UofA Designed method. The UofA Measured
method averaged a savings of 220 percent and 28 percent, compared to the AHTD and UofA
Designed methods, respectively. These fluctuations were a result of two factors. First, values of
unit cost per ton of resistance values for the AHTD sampling and testing method were based
upon provided design loads that were conservative. Additionally, although UofA Designed
values of unit cost per ton of resistance utilized larger values of capacity than those from the
UofA Measured method, the labor costs associated with the excavation of the UofA Designed
shaft were also significantly larger. As a result, the UofA designed unit cost per ton or resistance
value was noted to exceed the UofA measured value. This result verifies the advantage of full-
scale load testing, even at small settlements.
Table 7.3. Summary of the cost implications of UofA, MODOT, and AHTD sampling and

testing methods on various types of infrastructure at the SSATS.
Project Cost

UofA Measured| AHTD UofA Designed
AHTD - Provided |Single-lane Bridge Superstructure $ 556,983 |8 819,789 | § 815,778
Hypothetical 1* Heavy Building with Concentrated Loads $ 2,130,618 | % 7039419 8% 2,817,869
Hypothetical 2* Large Stucture with Less Concentrated Loadd $ 3,155,339 [ $ 10,554,036 | $§ 4,223,715

Hypothetical 3* Medium Structure with Moderate Loads $ 563,397 | § 1,664,124 | $ 667,750
* Evaluated utilizing cost/ton values

Load Condition Description
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7.5.3. Concrete Cost-benefit Results at the SSATS

From the cost-benefit analyses performed on the concrete utilized at the Siloam Springs
Arkansas Test Site (SSATS), results regarding the costs of the traditional AHTD Class S
(containing 20 percent fly ash) and the Mid Continent/GCC Concrete (containing 30 percent fly
ash) concrete mixtures are presented in this Section. Current specifications for AHTD Class S
concrete allow a maximum Class C fly ash replacement of 20 percent in rock socketed drilled
shafts. The fiscal benefits of 30 percent fly ash replacement were investigated by UofA
researchers (in conjunction with Mid Continent/GCC Concrete) at the SSATS. Performance
characteristics of the Mid Continent/GCC mix are discussed in Chapter 8. Results of the cost
implications of using 30 percent fly ash supplemented concrete are presented in Tables 7.4
through 7.5.

On a mix design level, cost savings between the AHTD and Mid Continent/GCC are
primarily realized through the 10 percent additional fly ash replacement. Savings equal to $1.85
and $1.40 per cubic yard of cement were observed for concrete and fly ash components,
respectively (Table 7.4). However, savings were also realized through reduced portions of
aggregate, and the use of a water reducer rather than a high range water reducer. Overall, using a
30 percent fly ash substitution, a savings of $2.66 per cubic yard of concrete was observed,
compared to the traditional 20 percent fly ash substitution currently utilized by AHTD.

Table 7.4. Summary of the costs associated with AHTD Class S concrete and GCC concrete
utilized at the SSATS.
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Table 7.5.

Material Traditional Mid Contnent | Difference in
AHTD Class S GCC Concrete | Cost Per Cubic
Cement [Ib/cyd] 489 452 $ 1.85
Fly Ash [Ib/cyd] 122 192 $ 1.40
Rock [Ib/cyd] 1850 1765 $ 0.51
Sand [Ib/cyd] 1320 1260 $ 0.36
Water [gal/cyd] 31 35 $ -
Admixture High Range Water Reducer | Water Reducer| $ 1.34
Admixture Retarder Retarder $ -
Total [Ib/cyd] 3812 3704 $ 2.66

At the SSATS, cost savings between the AHTD and Mid Continent/GCC mixes were

foot and six-foot diameter shafts, respectively.

calculated for each of the test shafts on site (Table 7.5). As expected, cost savings were observed
to increase with shaft size, with test shaft SS-C6 incurring approximately 56.8 percent greater

savings. An average cost savings of $2.7 and $5.57 per linear foot were calculated for the four-

Summary of the costs associated with AHTD Class S concrete

concrete utilized at for each test shaft.
) Cost of Cost of ) )
Test Shaft C;L?Sh::ergs Traditional GCC Concrete Dﬂfecrzl;:e n
AHTD Class S | Drilled Shaft

SS-W4 27 $ 3,14488 [$ 3,073.06 | $ 71.82

SS-C6 44 $ 5,125.00 [ $  5,007.96 | $ 117.04

SS-E4 23 $ 2,67897 |8  2,617.79 | $ 61.18

Total 94 $ 10,94885|$ 10,698.81 %  250.04

Although the magnitude of savings observed at the SSATS may seem small, the potential
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cost savings associated with the concrete utilized for an entire level of foundation infrastructure
is significant. Utilizing the UofA (Mid Continental/GCC Concrete) mix design alone, a cost
savings of $680 was observed at the SSATS for the AHTD originally planned single-lane bridge
(Table 7.6). Pairing the UofA design methodology with this mix increases these savings to
$4176. As the level of infrastructure associated with a project increased, cost savings were

observed to reach a potential of $28,476 for large structures with less concentrated loads.

and GCC



Table 7.6. Summary of the costs associated with AHTD Class S concrete and GCC concrete
for various levels of infrastructure at the SSATS.

Load Condition Description Concrete Cost
UofA [Mix Only]|UofA [Mix + Design] AHTD
AHTD - Provided| Single-lane Bridge Superstructure $ 29,135 | $ 25,640 | § 29,816
Hypothetical |  |Heavy Building with Concentrated Loads $ 66,216 | $ 58,272 | $ 67,764
Hypothetical 2 |Large Stucture with Less Concentrated Loads| $ 198,648 | $ 174,815 | $ 203,291
Hypothetical 3 |Medium Structure with Moderate Loads $ 52973 | $ 46,617 | § 54,211

7.6. Turrell Arkansas Test Site Cost-benefit Results

From the cost-benefit analyses performed at the Turrell Arkansas Test Site (TATS),
results regarding the unit cost per ton of resistance for UofA, MODOT, and AHTD sampling and
testing methods are presented in Section 7.6.1. Results of the cost implications of the UofA,
MODOT, and AHTD sampling and testing methods upon various levels of infrastructure at the
TATS are also discussed (Section 7.6.2.). Results of the TATS cost-benefit analysis for the
UofA and MODOT sampling and testing methods were developed utilizing measured load test
values, the proposed cost savings associated with the TATS are conservative estimates. A cost-
benefit analysis of the concrete utilized at the TATS was not performed, as the concrete utilized
was within specifications for AHTD Type S concrete (20 percent fly as substitution). Values of
maximum measured capacity were intended to be reported at settlements of five percent,
however due to scheduled lateral load testing, displacements during testing were minimalized
(between 1.02 and 3.06 percent).
7.6.1. Unit Cost of UofA and AHTD Sampling and Testing Methods in Soil

The unit costs per ton of resistance utilizing the UofA, MODOT, and AHTD testing and
sampling methods of the TATS are presented in this Section. The costs associated with the
construction of each UofA (MODOT) shaft, as well as a typical AHTD constructed pile group
are presented in Table 7.7. Overall, values of unit cost per ton of axial capacity for the UofA,

MODOT, and AHTD testing and sampling methods were found to equal $75.47, $75.47, and
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$141.57, respectively (Table 7.7). This difference in values was due to the measured capacity of
test shaft T-S4, which was observed to be about 2.1 times greater than the design capacity of the
AHTD pile group.

The UofA (MODOT) shaft selected to best represent the test site was test shaft T-S4.
Although this shaft was not observed to reach the required design strength, the maximum
measured capacity of 818 tons was recorded at a settlement of 1.19 percent. UofA geotechnical
investigation costs were observed to be $1,913 greater than AHTD geotechnical investigation
costs (Table 7.7). This was attributed to the time spent recovering the crushed Shelby tube
during the UofA investigation. MODOT geotechnical investigation costs were observed to be
the most costly, with fees exceeding those of the UofA and AHTD sampling and testing methods
by $5,133 and $7,046.

AHTD total costs for the foundation project were observed to be $137,398 (8.78%) and
142,263 (9.11%) less than costs for the selected UofA and MODOT methods, respectively. This
may be due to the unexpected cost incurred with the extended labor schedule from McKinney
Drilling Co. constructing UofA shafts. Despite the AHTD piling method being less expensive, a
benefit of constructing drilled shafts utilizing the UofA design method includes the increased
lateral stability of the construction. Given the seismic hazards associated with the TATS, this

benefit is considerable.
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7.6.2. Cost Implications for Infrastructure in Soil

Utilizing the unit cost per ton of resistance factors (as previously discussed in Section
7.6.1.) generated for the UofA, MODOT, and AHTD sampling and testing methods, the total
project foundation cost of each load condition was calculated and compared. Results of the fiscal
infrastructure impact analysis are presented in Table 7.8. Overall, the MODOT method (which
utilized the benefits of MODOT CPT testing and UofA advanced full-scale load testing) was
observed to be the most expensive method, costing an average of 9.1, 5.1, and 0.3 percent more
than the AHTD, UofA Designed, and UofA Measured methods, respectively, for the original
load condition.

Utilizing unit cost per ton values for each method in hypothetical situations, the degree of
potential savings using the UofA Measured Method was noted to increase compared to the
AHTD method and decrease compared to the UofA Designed method. The UofA Measured
method averaged a savings of 83 percent compared to the AHTD method, a savings of 0.15
percent compared to the MODOT method, and a surfeit of 18.9 percent compared to the UofA
Design method (Table 7.8). Savings compared to the AHTD method can be attributed to the fact
that values of unit cost per ton of resistance values for the AHTD sampling and testing method
were based upon provided design loads that were conservative. Savings compared to the
MODOT method can be attributed to the increase in MODOT geotechnical investigation costs.
Surfeits compared to the UofA Design method can be attributed to two factors. First, unit cost
per ton values for the UofA Design method were calculated utilizing a design load that measured
169 tons greater than that of the UofA Measured Method. Also, (as previously stated in Section
7.6.1) labor costs associated with the construction of each test shaft were unexpectedly greater

than those estimated due to an extended construction schedule.
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Table 7.8. Summary of the cost implications of UofA, MODOT, and AHTD sampling and
testing methods on various types of infrastructure at the TATS.

Dia. Design Measured | Depth of | Total Cost of No. of Total Cost of
TATS 1D [ft] Capacity Capacity | Shaft [ft] Shaft Costton Shafts Drilled Shaft
S4 4 987 818 865 |$ 61,73537 |8 7547 24 $  1,565,576.85
Measured UofA | N4 4 987 1065 88 § 75239.14 | $ 70.65 24 $  1,889,668.37
Cé6 6 987 1050 62.5 $ 106,297.37 | $ 101.24 24 $  2,635,066.91
MODOT| S4 4 987 818 86.5 |$ 61,73537|§ 7547 24 $ 1,570,709.50
AHTDa | NA|[ 1.5 395 N/A 85 $ 52,632.00 | $ 133.25 14
Designed AHTDb | NJA| 1.5 395 N/A 85 $ 65,790.00 | $ 166.56 8 $ 1,428,078.84
AHTDc | NA | 1.5 395 N/A 85 § 78,948.00 | $ 199.87 2
UofA [ N/A 4 987 N/A 865 |$ 61,73537 |8 62.55 24 $  1,490,576.85
*Load test cost based upon Brown (2008) AHTD Avg  § 141.57

7.7. Conclusion

Predicted results as obtained from software programs utilizing soil properties obtained
from geotechnical investigations preformed to estimate drilled shaft ultimate axial capacity at the
Siloam Springs, Turrell, and Monticello Arkansas Test Sites were discussed herein Chapter 7.
From each geotechnical investigation, the differences between UofA, AHTD, and MODOT
sampling and testing methods, as well as ranges in data were compared. Ultilizing the results
from the geotechnical investigation, the impacts of the data on predicted axial capacity of drilled
shaft foundations were evaluated utilizing Ensoft SHAFT, Bridge Software Institute FB-Deep,
and Microsoft Excel®.

At the SSATS, the predicted ultimate axial capacity of drilled shaft foundations (only
predicted using data from the UofA and AHTD methods) was predominantly influenced by the
presence of competent limestone at an average depth of 16-feet below ground surface. As a
result, the geotechnical investigation soil properties of interest, at the SSATS, were focused on
rock quality properties such as RQD, Em and qu. RQD values were observed to increase with
depth and in depths up to 38-feet below ground surface, the difference in the range of values
were observed to be nine percent lower, as obtained by the UofA, than the values obtained by

AHTD. Additionally the mean RQD values averaged nine percent greater for UofA data than the
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AHTD data. Values of unconfined compressive strength and modulus of elasticity were only
tested for the UofA method. The values of unconfined compressive strength were observed to
decrease with depth.

Two sensitivity analyses were performed to understand the dominant rock quality inputs
utilized to predict axial capacities within the SHAFT software program. From the first analysis,
s- and t-values of 6- and 0.0001-feet were selected as the rock joint inputs. From the second
analysis, comparing load-settlement behavior with various changes in input data, values of RQD
were determined to have the largest impact on the predicted axial capacity (although these results
contradict the results generated by utilizing the program at the SSATS).

The values of the ultimate axial capacity were influenced by ranges in in input data, at
given depths, for the four- and six-foot diameter shafts. The AHTD unconfined compressive
strength input data was determined from AASTHO (2012), and resulted in larger fluctuations in
the predicted axial capacity as compared to the measured UofA data. These larger fluctuations
are attributed to the correlation function between unconfined compressive strength values and
RQD percentages. Changes in unconfined compressive strength values for the UofA were
observed to have the greatest impact on the SHAFT obtained results and the least impact on
spreadsheet obtained results.

Utilizing a spreadsheet and the UofA rock data, seven methods for predicting side friction
resistance and five methods for predicting end bearing resistance were compared. For side
friction resistance, the results obtained using the Reynolds and Kaderabek (1980) and Gupton
and Logan (1984) methods were the most sensitive to changes in rock compressive strength
values. Although values of capacity obtained using the AASTHO (2012) method were observed

to be the smallest, the O’Neill and Reese (1999) method was observed to be the least sensitive to
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changes in values of rock compressive strength. For end bearing resistance, the Kulhawy and
Prakaso (2006) method was observed to yield the highest values, and the AASHTO (2012)
Jointed Good rock method was observed to yield the lowest values.

At the TATS, the prediction of drilled shaft ultimate axial capacity was predominantly
influenced by the presence of poorly graded sand below an average depth of 32 feet below
ground surface. From the geotechnical investigations performed at the TATS, comparisons
between the UofA, AHTD, and MODOT sampling and testing methods for major soil
engineering properties indicated AHTD values of total unit weight (obtained through corrected
blow count correlations) were determined to be under-conservative in clays and over-
conservative in sands, compared to UofA measured properties. The values of undrained shear
strength, within the clay layer, were generally observed to decrease with depth. Values of
correlated friction angle for the MODOT sampling and testing regime plot to a depth of
approximately 71.5-feet below ground surface due to practical refusal within the dense sand at
this location.

The values of ultimate axial capacity, at given depths, were influenced by ranges in data
entry for the four- and six-foot diameter shafts. The ranges within the UofA cu data were
observed to affect the axial capacity more than the ranges of the AHTD and MODOT shear
strength values. This phenomenon is expected, as UofA cu values were directly measured, rather
than correlated from N60-vales or calculated from CPT qc and fs values. For the MODOT
obtained data, utilizing the cu values calculated from CPT fs and qc values, rather than directly
inputting values of qc had little effect on the predicted capacity values. Within the clay and silt
strata, the predicted capacity values that were obtained by using the UofA and MODOT [qc] data

were noted to be the highest and have the largest ranges. Within the sand stratum, the ranges in
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the capacity values increased for all of the drilling and sampling methods, with the greatest
ranges being observed for the UofA and MODOT [qc] methods.

Although the mean capacity values as obtained using UofA drilling and sampling
methods showed little difference between software programs (with SHAFT capacity values
plotting an average 10.6 percent greater than FB-Deep or spreadsheet capacities below a depth of
32-feet below ground surface), the range of capacities generated by each technology was unique.
Using the same (measured) input data in each software program, the FB-Deep generated
capacities were observed to have the largest range within the results, followed by SHAFT,
followed by the spreadsheet. = Smaller ranges of results were generated by each software
program within the data using the AHTD data, as well as an increased difference between mean
predictions. Capacity predictions from the MODOT method were also noted to display smaller
ranges of results; however less difference between the mean predictions was observed, as
compared to the results obtained using the AHTD data. Within the clay and silt strata at the
TATS, the predictions using the MODOT data were notably larger from FB-Deep [qc] than those
from SHAFT or the spreadsheet. The predictions from MODOT FB-Deep [qc] data displayed
larger ranges of uncertainty than those generated using SHAFT or the spreadsheet, however
these values are still higher than either (shaft and the spreadsheet). The UofA generated
capacities obtained from all three software programs were observed to be the highest. This is
attributed to the direct input of measured values rather than the input of correlated values. The
generated capacities, in clay, for all three software programs, using the AHTD data, were
observed to be higher than generated capacities obtained using the MODOT data (exempting FB-

Deep MODOT [qc)).
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At the MATS, the predicted ultimate axial capacity values for drilled shaft foundations
was attributed to the presence of poorly graded sand between depths, below ground surface, of
27- and 42-feet and below 60-feet. From the geotechnical investigation, the values of the AHTD
corrected blow count averaged 36.0 percent larger than those correct blow count values
calculated from MODOT CPT data. Below a depth of 60-feet, the values of the UofA corrected
blow count averaged 12 percent larger than those measured from the AHTD data. As was
observed at the TATS, AHTD values of total unit weight (obtained through corrected blow count
correlations) were determined to be under-conservative in clays and over-conservative in sands
by approximately 15 and 8 percent, respectively, as compared to UofA measured bulk sample
values. Values of undrained shear strength obtained from the MODOT method were observed to
be the highest within the topmost clay stratum, with mean values of undrained shear strength
peaking at 8.7 ksf (nearly 61 percent larger than the average values obtained from the UofA UU
triaxial testing).

Values of ultimate axial capacity at the MATS were influenced by ranges in the input
data, at given depths, for four- and six-foot diameter shafts. For FB-Deep MODOT method,
utilization of cu values calculated from CPT fs and qc values, rather than directly inputting values
of qc, had little effect on the capacity. Changes in values of ultimate axial capacity for the
SHAFT [¢’] method were consistent, with smaller changes in AHTD inputs (9 percent) having
larger effects on capacity (22 percent) than changes in UofA inputs (15 percent). This
phenomenon was not expected, as the UofA and AHTD correlated friction angle inputs had
similar ranges. For the four-and six-foot diameter shaft utilizing the SHAFT program , it was

observed that between depths of 6- and 18-feet and 35- and 59-feet below ground surface, the
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predicted capacity values for all methods coincided. This coincidence is attributed to the
presence of water at these depths.

The effects of the predictive software programs (SHAFT, FB-Deep, and a spreadsheet)
that were utilized to predict ultimate axial capacities at the MATS were compared. The outputs
for the UofA method were observed to display similar patterns to those exhibited at the TATS.
utilizing the same (measured) input data into each technology, the FB-Deep program using the
AHTD data generated capacity values were observed to have the largest range within the results,
followed by the spreadsheet. Larger ranges of results were generated by each software program
using the AHTD data, as well as an increased difference between mean predictions.  The
MODOT method exhibited the largest deviation between mean values, as obtained from the
different programs; particularly for those capacities predicted utilizing the spreadsheet.

The effects of the sampling and testing methods (UofA, AHTD, and FB-Deep) utilized to
predict ultimate axial capacities at the MATS were compared. = The MODOT generated
capacities (exempting the 6-foot diameter spreadsheet anomaly at 51-ft) from all three software
programs were observed to be the highest. This is attributed to the advantages of continuous in-
situ testing (as exemplified with MODOT CTP data) at sites featuring high soil variability. The
capacity predictions for all drilling and sampling methods were observed to stabilize below
depths of 60-feet below ground surface (the location of the final sand stratum).

Results of the cost-benefit analyses performed for the constructed drilled shafts at the
SSATS indicated the UofA sampling and testing method to be 47 percent less expensive than the
AHTD sampling and testing method. Results not only confirmed the fiscal benefits of
performing advanced sampling and testing techniques, but also advanced full-scale load testing

(even at small values of settlement). Unit costs per ton of resistance for the UofA and AHTD
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sampling and testing methods were calculated to be $24.11 and $82.70, respectively. Results of
the infrastructure cost analyses indicated the UofA sampling and testing method had the potential
to save (conservatively) an average of 220 percent. A savings of $2.66 per cubic yard of
concrete was observed utilizing a 30 percent fly ash replacement, rather than the current standard
(AHTD Class S) of 20 percent fly ash replacement. Potential total savings associated with the
concrete utilized for the originally planned construction at the SSATS utilizing the UofA design
methodology amounted to $4176, and increased with the scale of infrastructure (to a potential
savings of $28,476).

Results of the cost-benefit analyses performed for the constructed drilled shafts at the
TATS indicated the UofA sampling and testing method to be 8.8 percent more expensive than
the pilings associated with AHTD sampling and testing method. This was attributed to the
unexpected labor costs associated with the extended construction of the TATS test shafts.
Although more expensive, drilled shafts at the TATS offer more lateral support in the event of a
seismic event. Unit costs per ton of resistance for the UofA and AHTD sampling and testing
methods were calculated to be $75.47 and $141.57, respectively. Results of the infrastructure
cost analyses indicated the UofA sampling and testing method had the potential to save an

average of 83 percent.
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Chapter 8: Measured Results

8.1. Introduction

Comparisons between the predicted and measured resistance values for the drilled shaft
foundations at the Siloam Springs and Turrell Arkansas Test Sites are presented in Sections 8.2
and 8.3, respectively. Due to time limitations, the comparisons between predicted and measured
values of resistance for the foundations at the Monticello Arkansas Test Site (MATS) are not
discussed because the full-scale load tests at the MATS have not yet been completed. For
completeness, additional information is presented in Appendix C. This additional information,
from Loadtest Inc., includes the formal reports for each of the O-Cell load tests.
8.2. Siloam Springs Arkansas Test Site

Comparisons between the predicted and measured resistances at the Siloam Springs
Arkansas Test Site (SSATS) are presented in this section. Interpretations of the obtained results
from the O-cell tests, as performed on the western most four-foot diameter drilled shaft
foundations (SS-W4), the centrally oriented six-foot diameter drilled shaft foundation (SS-C6),
and eastern oriented four-foot diameter drilled shaft foundation (SS-E4) are discussed in Section
8.2.1. Results of the concrete testing that was performed for each drilled shaft are also presented
and discussed (Section 8.2.2). The comparisons between the predicted and measured axial
capacities, the side friction resistance in rock, and the end bearing resistance are presented in
Sections 8.2.3 through 8.2.5, respectively.
8.2.1. Interpretations of O-Cell Tests at SSATS

An interpretation of the results obtained from the O-cell testing performed at the SSATS
is presented in this section. Specifically, results from the tests performed on SS-W4 (Section

8.2.1.1), SS-E4 (Section 8.2.1.2), and SS-C6 (Section 8.2.1.3) drilled shaft foundations are
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presented and discussed. As previously mentioned, additional information that may have
influenced the results of the O-cell testing (including the site conditions and construction
practices) was presented in Chapters 3 (Test Sites and Investigations) and 5 (Construction and
Testing at the Siloam Springs Arkansas Test Site), respectively.
8.2.1.1. Test Shaft SS-W4

Test shaft SS-W4, the first shaft that was constructed and the first shaft tested at the
SSATS, extended to a depth of 26 feet below the ground surface and was constructed with the
longest rock socket length (10.2 feet). This shaft, the only shaft that met the current AHTD
design requirement of a 10-foot rock socket, was observed to exhibit the least amount of side
friction displacement (less than 0.03 inches). Test shaft SS-W4 was also the only shaft on site to
displace more in end bearing than side shear (Figure 8.1a). This was attributed to concrete
placement practices, which were subsequently modified to improve the quality of concrete
placement for test shafts SS-C6 and SS-E4. Based on the developed equivalent top-down load-
displacement curve, the elastic limit of the limestone was not exceeded during the loading of SS-
W4, as the curve was observed to return along the loading line during unloading (Figure 8.1b).
The required axial capacity of 1112.5 tons was attained at a top-down vertical displacement of
0.065 inches (equal to 0.135 percent of shaft diameter). The creep limit for test shaft SS-W4 was
defined as a load in which the observed displacements between four and eight minute increments
of loading become non-linear. No creep limit values for test shaft SS-W4 were observed to
develop at the tested loads (Figure 8.1c). As presented in Figure 8.1d, significant load transfer
for test shaft SS-W4 was observed below a depth of sixteen-feet below the ground surface (the
location of the cherty-clay/limestone interface), as presented in Figure 8.1d. Compared to SS-E4,

reduced amounts of load transfer were exhibited between depths of 16- and 20-feet below ground
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surface for SS-W4. This was attributed to strain gauge placement, and the presence of weathered
limestone within the top five-feet of the stratum. Test was halted after the pump stroke for the
O-Cell was maximized. Testing was also halted after the required design capacity had been
achieved to limit upward movement of the drilled shaft foundation to facilitate future lateral load

testing.
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8.2.1.2. Test Shaft SS-C6

Test shaft SS-C6 extended to a depth of 21.5 feet below ground surface, and was
constructed with the shortest rock-socket length (5.4 feet). This shaft was observed to exhibit the
greatest amount of displacement in the upward direction (0.47 inches) and negligibly displaced
in the downward direction, resulting in the most rapid mobilization of axial capacity (Figure
8.2a). Based on the equivalent top-down load-displacement curve for test shaft SS-C6, the
elastic limit of the limestone was not exceeded, as the curve was observed to return along the
loading line during unloading (Figure 8.2b). The required design axial capacity of 1112.5 tons
was not attained, with a maximum recorded top-down displacement of 0.012-inches at 500.12
tons (equal to 0.017 percent of the shaft diameter). Based upon the creep limit curve that appears
to go non-linear, an upper side shear creep limit of 250 tons was determined for test shaft SS-C6
(Figure 8.2c). Significant load transfer for test shaft SS-C6 was observed below a depth of 16-
feet (2.7-feet below the location of SG-1), as presented in Figure 8.2d. Testing was halted at a
displacement of 0.01 inches due to maximization of the pump stroke for the O-Cell and to limit

upward movement of the drilled shaft foundation to facilitate future lateral load testing.
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8.2.1.3. Test Shaft SS-E4

Test shaft SS-E4 extended to a depth of 23.3 feet below the ground surface and was
constructed with a rock-socket length of 7.3 feet. Test shaft SS-E4 was observed to displace
more in the upward direction than the downward direction, with 0.307 inches of top plate
displacement (Figure 8.3a). This displacement was noted to be 0.16-inches less that that
measured for test shaft SS-C6, despite a 63.77 square foot (ft?) decrease in rock socket surface
area. Based on the equivalent top-down load-displacement curve for test shaft SS-E4, the elastic
limit of the limestone was not exceeded, as the curve was observed to return along the loading
line during unloading (Figure 8.3b). The required axial capacity of 1112.5 tons was not attained,
with a maximum recorded top-down displacement of 0.07 inches at 897 tons recorded (equal to
0.15 percent of the shaft diameter). Based upon the creep limit curve that appears to go non-
linear, an upper side shear creep limit of 615 tons was determined for test shaft SS-E4 (Figure
8.3¢). Significant load transfer for test shaft SS-E4 was observed below 17 feet below ground
surface, as presented in Figure 8.2d. Testing was halted at a displacement of 0.07 inches due to a
lack of daylight remaining to properly perform testing, a maximization of the O-Cell pump

stroke, and intent to limit the upward movement of the shaft to enable future lateral load testing.
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8.2.2. Concrete Testing Results

A compressive strength of 4500 pounds per square inch (psi) was specified for the
concrete that was utilized in drilled shaft foundations constructed at the SSATS. Unconfined
uniaxial compressive strength and modulus of elasticity testing was performed on selected
cylinders from the cylinders that were cast in the field on the date of construction (as discussed
previously in Chapter 5). The results of these tests are presented in Table 8.1. Although 30
percent fly ash was used within the concrete, the concrete that was utilized for the drilled shaft
foundations met the design specifications, with the compressive strength values for all shafts
exceeding the required strength by over 1700 psi. The concrete within these shafts also exceeded
the minimum design requirement for concrete compressive strength, as required by the state of
Arkansas, by over 2700 psi. Concrete compressive strength for each drilled shaft foundation as a
function of depth is presented in Figure 8.4. As aforementioned in Chapter 7, cost-benefits were
achieved with the concrete utilized at the SSATS.

Table 8.1. Average unconfined uniaxial compressive strength and Young’s modulus testing

results.
28 Day Unconfined Unaxial| 28 Day Modulus of
Shaft Compressive Strength Elasticity
[psi] [ksi]
SS-w4 6,900 5,637
SS-C6 6,932 5,560
SS-E4 6,228 4,700
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Figure 8.4. Average unconfined uniaxial compressive strength and modulus of elasticity as
a function of depth for the drilled shaft foundations at the SSATS.
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8.2.3. Predicted and Measured Axial Capacity

Axial capacity predictions for drilled shafts at the SSATS were determined at a five-
percent displacement criterion. However upon testing, the top-down displacement values were
not observed to exceed 0.15 percent. As a result, only eh results obtained from the software
programs were utilized to compare the predicted and measured results (FB-Deep and SHAFT).
To ensure adequate comparisons, these programs were utilized to generate predicted capacity
values at the measured settlements. The spreadsheet was not utilized due to the nature of the
analysis methods within the program. Specifically, the axial capacity at a user defined settlement

value is not enabled using the AASTHO method that was within the spreadsheet. The predicted
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mean values of axial capacity (at the actual measured values of displacement) were compared
utilizing FB-Deep, and SHAFT. Comparisons between predicted and measured axial capacities

for the UofA and AHTD testing and sampling methods are presented in Tables 8.2 through 8.4.
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The predicted capacities values at a displacement of five percent of the shaft diameter
were observed to be significantly greater than those generated for the measured settlement. This
difference was expected, as the shafts tested in the field were not loaded to failure (5% D) to
enable the shafts to be used again for future lateral load testing. Also, the O-Cells were not large
enough to develop the required load, and values of side shear were not great enough to develop
the required load. All of the shafts were expected to exceed the required axial capacity, although
only test shaft SS-W4 was observed to do so because of the field changes. At least 46 percent of
the required capacity was generated in vertical movements that were less than 0.181 percent of
the respective shaft diameter.

The predicted capacities, as obtained from the FB-Deep software program at the
measured value of maximum displacement, were observed to be 289 percent greater than the
measured capacity (Table 8.2). This large difference is attributed to the load-transfer database,
for Floridian limestone, that was used to develop the FB-Deep software program. Capacities
predicted utilizing SHAFT at measured values of maximum displacemet were generally
observed to be closer to measured capacities, and less than axial capacity values that were
predicted using the FB-Deep program (Tables 8.2 and 8.3). The predicted capacity values, as
obtained by using the SHAFT software program at the measured values of maximum
displacements, were observed to be 32 percent less than the measured capacities (Table 8.3).
Predictions obtained using the mean values of the UofA sampling and testing data were closer to
the measured values than the predicted capacity values obtained using the mean values of the
AHTD sampling and testing data (Tables 8.2 through 8.4).

Comparisons between the measured capacity values and predicted capacity values, at the

measured displacements are presented in Figures 8.5 and 8.6. As previously discussed in Chapter
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7, utilizing the SHAFT and FB-Deep predictive programs, the magnitude of he predicted values
using the UofA testing and sampling method were greater than those for the predicted values
using the AHTD sampling and testing method (Figure 8.5). However, unlike the predictions from
Chapter 7, the values of predicted capacity at the measured displacements as obtained using FB-
Deep were observed to be greater than those obtained using SHAFT. While values of qu and
RQD were ingested into FB-Deep, only values of qu were observed to impact the output results.
Conversely, ingested values of qu and RQD were both observed to impact predicted axial
capacity values from SHAFT. Other input values ingested into SHAFT, which may have
impacted the predicted capacity values were either kept constant, or shown to have little impact
on the predicted capacity (as previously discussed based on the results of the sensitivity analysis
that were reported in Chapter 7). Therefore, the differences between predicted and measured
observations were attributed to proprietary methods and the differences in measured

displacements (less than 0.2 percent of the shaft diameter to 5 percent of the shaft diameter).
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The measured capacity value (1271 tons) for test shaft SS-W4 was observed to be less
than the predicted capacity values obtained from FB-Deep (by approximately 381 and 43.9
percent for the UofA and AHTD sampling and testing methods, respectively), as presented in
Figure 8.5b. However, this measured value was observed to be greater than the predicted
capacity values obtained from SHAFT (by approximately 58.6 and 87.25 percent for the UofA
and AHTD sampling and testing methods, respectively). The measured capacity value (520
tons) for test shaft SS-C6 was observed to be less than the predicted axial capacity values

obtained from FB-Deep (by approximately 542 and 33.9 percent for the UofA and AHTD

322



sampling and testing methods, respectively), as presented in Figure 8.5c. However, this
measured value was also observed to be greater than the predicted axial capacity values obtained
from SHAFT (by approximately 48.8 and 93.4 percent for the UofA and AHTD sampling and
testing methods, respectively). The measured capacity value (897 tons) for test shaft SS-E4 was
observed to be less than the predicted capacity values obtained from FB-Deep (by approximately
523 and 70.3 percent for the UofA and AHTD sampling and testing methods, respectively), as
presented in Figure 8.5d. However, this measured value was also observed to be greater than the
predicted capacity values obtained from SHAFT (by approximately 61.4 and 80.6 percent for the
UofA and AHTD sampling and testing methods, respectively).

A comparison between the ranges values of measured capacities and predicted capacities
at measured settlements for the UofA sampling and testing method is presented in Figure 8.6.
Ranges of predicted axial capacity values for the UofA data were observed to be significantly
greater when using the FB-Deep program than when using the SHAFT program. Furthermore,
the SHAFT obtained values of predicted capacity for UofA data were observed to be closer to
the value of measured axial capacity, with values produced from FB-Deep software
overestimating the axial capacity by 831 percent. This result opposes the results of the
predictions made in Chapter 7, where values of predicted axial capacity for SHAFT data were
observed to be significantly greater than those using FB-Deep. This is believed to be attributed to
the influence of the amount of displacement (6 = 0.15% D instead of 6 = 5% D), and lack of end
bearing resistance utilization.

A comparison between the ranges values of measured capacities and predicted capacities
at the constructed depth and at measured displacements for each test shaft, using each of

sampling and testing methods, is presented in Table 8.5. As with the UofA testing method,
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ranges of predicted axial capacity values obtained using the AHTD data were observed to be
significantly greater when using the FB-Deep program than the SHAFT program. Unlike the
UofA testing method, the FB-Deep values of predicted capacity for AHTD data were observed to
be closer to the value of measured axial capacity, with values produced using SHAFT software
underestimating the measured axial capacity by an average of 87 percent. This result also
opposes the results of the predictions made in Chapter 7, where values of predicted axial capacity
for SHAFT data were observed to be significantly greater than those using FB-Deep. This again
is believed to be attributed to the influence of the amount of displacement (6 = 0.15% D instead
of 6 = 5% D). Overall, the AHTD method utilizing FB-Deep was observed to produce values of
axial capacity closest to the measured values. Although the method over predicted values of
axial capacity for the four-foot diameter shafts, these predictions were still the closest by
comparison. Overall, AHTD data using the FB-Deep predictive program was observed to best
predict values of axial capacity at the SSATS. Although the method over predicted values of
axial capacity for the four-foot diameter shafts, these predictions were still the closest by
comparison (Table 8.5). Predicted values, as obtained by averaging the AHTD/FB-Deep data
and the UofA/SHAFT data, were within 41.3 percent of the measured capacity and typically
under predicted the capacity (with the exception of SS-E4, which was 4.4 percent greater than

the measured capacity).
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Table 8.5. Comparisons between mean predicted and measured axial capacities and

subsequent data ranges at the given constructed depth of each test shatft.

Test Shaft SS-W4 Test Shaft SS-C6 Test Shaft SS-F4
Depth=26f, 6 =0.15% D | Depth=21.5f, § =0.017% D | Depth=23 f, 5 =0.18% D
Mean Range Mean Range Mean Range
[u] [A R] [u] [A R] [u] [AR]
FB-Deep UofA | 6122.1 4649.0 3342.8 4015.3 5590.7 4032.3
AHTD [ 1829.0 3919.0 343.6 1170.4 1528.0 3843.1
SHAFT UofA 525.7 441.2 266.3 148.1 345.5 202.5
AHTD | 256.0 605.9 34.2 138.5 157.4 212.9
UofA
Actual AHID 1271.0 - 520.0 - 897.0 -
Average 1177.3 305.0 936.8

8.2.4. Predicted and Measured Side Friction Resistances in Rock

Measured unit side friction resistances for test shafts SS-W4, SS-E4, and SS-C6 are
presented in Figure 8.7. As previously discussed, the rock socket depths for test shafts SS-W4,
SS-E4, and SS-C6 were 10, 7.3, and 5.5 feet, respectively. Accordingly, the unit side friction
resistances, at the base of the shafts, were observed to increase with rock socket length. Test
shaft SS-W4, was observed to exhibit over 14 tons per square foot (tsf) of unit side shear
resistance at an average upward movement of less than 0.03 inches. Values of unit side friction
resistance for test shaft SS-E4, which were generated at ten times the amount of upward average
movement than SS-W4, were observed to reach a maximum value of 10.5 tsf. Because all of the
strain gauges within test shaft SS-C6 were placed at depths above rock, and because the rock
socket was the shortest, the values of unit side friction resistance for this shaft were observed to

be the smallest, with an observed maximum unit side shear resistance of 6.0 tsf.
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shafts (a) SS-W4, (b) SS-C6, and (c) SS-EA4.

N

Unit Side Shear Resistance, f, [tsf]
oo

The amount of side friction resistance was predicted for drilled shaft foundations at the
SSATS for the largest common vertical displacement (0.012 inches) using the FB-Deep program.
Results of the comparisons between the predicted and measured side friction resistance values
for the four-foot and six-foot diameter shafts, using data from the UofA and AHTD testing and
sampling methods, are presented in Figure 8.8. All comparisons were made utilizing the FB-
Deep program, because it was the only program that enabled the determination of the side
friction resistance at user defined settlement. Compared to the values obtained from the side
friction predictions at the measured displacement and the design length, the side friction values
for the SS-W4 and SS-E4 drilled shaft foundations were observed to be an average of -117 and
67 percent different than the measured values, when using the data from the UofA and AHTD

sampling and testing methods, respectively (Figure 8.8b). The measured side friction value for
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SS-C6 was observed to be an average of 744 and 19 percent less than the predicted values that
were obtained using the UofA and AHTD sampling and testing methods, respectively (Figure
8.8¢). Overall, the measured values of side friction resistance for the six-foot diameter drilled
shaft foundation were observed to compare most closely with predicted values generated
utilizing the AHTD sampling and testing method. Measured values of side friction resistance for
the four-foot diameter drilled shaft foundations were observed to compare almost equally with

predicted values generated utilizing the AHTD and UofA sampling and testing methods.
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Figure 8.8. Measured and predicted side friction resistances for (a) a given interpreted soil
profile for (b) four-foot diameter and (c) six-foot diameter shafts utilizing FB-
Deep (at 0.016% settlement).

8.2.5. Predicted and Measured End Bearing Resistance in Rock
Measured unit end bearing resistances for the SS-W4, SS-C6, and SS-E4 drilled shaft

foundations are presented in Figure 8.9. The SS-W4 drilled shaft foundation was the only shaft
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to mobilize significant displacement at the end of the shaft. Although more displacement was
observed for the SS-W4 shaft, the unit end bearing resistances that were developed at the base of
each of the shafts were observed to increase with rock socket depth. Test shaft SS-W4 was
observed to exhibit over 69 tsf in unit end bearing resistance at an average downward movement
of less than 0.35 inches. The value of unit end bearing resistance for test shaft SS-C6 was
observed to be the smallest, with an observed maximum unit end bearing resistance of 17.6 tsf.
The value of unit end bearing resistance for test shaft SS-E4, which was generated at a
movement of 0.025 inches, (14 times less downward average movement than SS-W4) was

observed to reach a maximum value of 48 tsf.
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Figure 8.9. Measured unit end bearing resistance, as a function of displacement, for test
shafts (a) SS-W4, (b) SS-C6, and (c) SS-E4.

Predicted values of end bearing resistance were determined at the largest common value
of measured vertical displacement (0.009 inches) for the drilled shaft foundations at the SSATS.
Comparisons between predicted and measured values of end bearing resistance, using the data

obtained from the UofA and AHTD testing and sampling methods for the four-foot and six-foot
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diameter drilled shaft foundations, are presented in Figure 8.10. The measured values of end
bearing resistance the SS-W4 and SS-E4 drilled shaft foundations were observed to be an
average of -31 and 61 percent different than the predicted values that were obtained using the
UofA and AHTD sampling and testing methods, respectively (Figure 8.10b). The measured
values of end bearing resistance for test shaft SS-C6 were observed to be an average of -720 and
47 percent different than the predicted values that were obtained using the UofA and AHTD
sampling and testing methods, respectively (Figure 8.10c). Overall, measured values of end
bearing resistance were observed to most closely compare with the predicted values generated

utilizing the AHTD sampling and testing method.
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Figure 8.10. Measured and predicted end bearing resistances given the (a) interpreted soil
profile for (b) four-foot and (c) diameter shafts utilizing FB-Deep (at 0.013%
settlement).
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8.3. Turrell Arkansas Test Site

Comparisons between the predicted and measured resistances at the Turrell Arkansas
Test Site (TATS) are presented in this section. Interpretations of the obtained results from the O-
cell testing performed on the southernmost four-foot diameter drilled shaft foundation (T-S4),
the central six-foot diameter drilled shaft foundation (T-C6), and the northern most four-foot
diameter drilled shaft foundation (T-N4) are discussed in Section 8.3.1. Results of the concrete
testing that was performed for each drilled shaft are also presented and discussed (Section 8.3.2).
The comparisons between the predicted and measured axial capacities, the side friction
resistance, and the end bearing resistance are presented in Sections 8.3.3 through 8.3.5,

respectively.
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8.3.1. Basic Interpretation of O-Cell Tests at the TATS

An interpretation of the results obtained from the O-cell testing performed at the TATS is
presented in this section. Specifically, the results from the tests performed on the T-S4 (Section
8.3.1.1), T-N4 (Section 8.3.1.2), and T-C6 (Section 8.3.1.3) drilled shaft foundations are
presented and discussed. As previously mentioned, additional information that may have
influenced the results of the O-cell testing (including the site conditions and construction
practices) was presented in Chapters 3 (Test Sites and Investigations) and 6 (Construction and
Testing at the Turrell Arkansas Test Site), respectively.
8.3.1.1. Test Shaft T-S4

Test shaft T-S4, the first shaft at that was constructed and the first shaft that was tested at
the TATS extended a depth of 86.5-feet below the ground surface. Construction errors
associated with the excavation of this shaft included hole size irregularity from a lost excavation
bucket and the excavation being open an extended period of time. Despite these errors, the least
amount of upward displacement (less than 0.47 inches) was observed for the T-S4 drilled shaft
foundation (Figure 8.11a). Based on the developed equivalent top-down load-displacement
curve, the elastic limit of the soil was exceeded during loading of the T-S4 drilled shaft
foundation, as the curve was observed to exhibit a displaced regression during the unloading
stages of the testing program (Figure 8.11b). The required design axial capacity of 987 tons was
not attained due to limitations with the pump at 13,000 psi, however a top-down vertical
displacement of 0.62 in (equal to 1.29 percent of the shaft diameter) was observed at an axial
load of 818 tons. The creep limit for test shaft T-S4 was defined as a load in which the observed
displacements between four and eight minute increments of loading become non-linear. Creep

limits for test shaft T-S4 were observed to develop at loads equal to 400 tons and 500 tons for
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total creep and side shear creep, respectively (Figure 8.11c). The load transfer for T-S4 was
observed to increase with depth to the location of the O-Cell (62.3-feet below ground surface), as

presented in Figure 8.11d.
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8.3.1.2. Test Shaft T-C6

Test shaft T-C6 extended to a depth of 65.5-feet below the ground surface. No known
construction errors were associated with the excavation of this shaft. A maximum nominal load
within the O-Cell of 638 tons (with a side friction displacement of 0.64 inches), was observed
(Figure 8.12a). Based on the developed equivalent top-down load-displacement curve, the
elastic limit of the soil was exceeded during loading of the T-C6 drilled shaft foundation, as the
curve was observed to exhibit a displaced regression during the unloading stages of testing
(Figure 8.12b). The required design axial capacity of 987 tons was attained at a top-down
vertical displacement of 0.65-inches (equal to 0.902 percent of the shaft diameter). Creep limits
for test shaft T-C6 were observed to develop at loads equal to 500 tons for both total and side
shear creep (Figure 8.12c). The load transfer for T-C6 was observed to increase with depth to

the location of the O-Cell (55 feet below ground surface), as presented in Figure 8.12d.

334



‘aAIN? Juswsde|dsip peoj umop-doy JusjeAinba (q) ‘eAand Juawade|dsip peoj |199-0 (B) 9D-1 Weys1sal 'Z1'8 a4nbiH

(P)

T T

JJeyS Jo wonog

BIA Y9
90-L
[foumg,

00¢I

006 009 00€
[uoy] 'd ‘peo

00T

(=
O

(=2
)

=
F

[
o

S
N

(e}
—

['u1] ‘z ‘a2egung sunoa mojag yidaq

()

doax) 1eoys opIS
[e10], doar)-=-

BId Y9
90-L
[feumg,

00ZI 006 009 00€
[uoy] 'd ‘peoT

'SO11S14810RARYD d8)jsued) peo] (p) pue ‘wij dssuo (2)

000

00

¥0°0

< [q\l o [ee] O
- — - < S
S (=) S () (e}
['u] dsau1d "unA 613 03 Ano-

O
—
(e

@

'S BIQ Y9
2 90-1
"m :eé

\! ur 690

006 009 00€
[uol] 4 ‘peOTT 18N

0°¢-
8¢
ST
€T
0¢C
81"
S'1-
€1-
0°1-
80"
S0
€0-
00

['u1] ‘Q quawsdeldsia

(®)
BId Y9
90-L
[feumy,

00¢I

006 009 00¢€
[uo1] ‘4 ‘peo] ssou

00°¢-

0sC-

00°C-

0s°I-

00°I-

05°0-

000

050

00°1

[u1] ‘@ ‘quawaoe|dsiq

335



8.3.1.3. Test Shaft T-N4

Test shaft T-N4 extended to a depth of 88-feet below ground surface. Construction errors
associated with the excavation of this shaft included a blowout within the silt stratum. As a
result of the incident, the side walls of the excavation were coated/smeared with a thin layer of
silt below a depth of approximately 20 feet below ground surface and the effective stress within
these stratum were also reduced. Test shaft T-N4 was observed to exhibit a maximum nominal
top plate load of 562.8 tons at an upward displacement of 1.31 inches (Figure 8.13a). Based on
the equivalent top-down load-displacement curve, the elastic limit of the soil was exceeded
during loading of the T-N4 drilled shaft foundation, as the curve was observed to exhibit a
displaced regression during the unloading stages of testing (Figure 8.13b). The required design
axial capacity of 987 tons was attained at a top-down vertical displacement of 1.05-inches (equal
to 2.18 percent of the shaft diameter). Creep limits for test shaft T-N4 were observed to develop
at loads equal to 425 tons and 450 tons for total and side shear creep, respectively (Figure 8.13c).
The load transfer for test shaft T-N4 was observed to increase with depth to the location of the

O-Cell (61.6 feet below ground surface), as presented in Figure 8.13d.
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8.3.2. Concrete Testing Results

The design compressive strength was specified to be 4000 psi for the concrete utilized in
the drilled shaft foundations constructed at the TATS. Unconfined uniaxial compressive strength
and modulus of elasticity testing was performed on selected cylinders from the cylinders that
were cast in the field on the date of construction (as discussed previously in Chapter 6). The
results of these tests are presented in Table 8.6. Although 20% fly ash was used within the
concrete, the concrete that was utilized for the drilled shaft foundations met the design
specifications, with the compressive strength values for all shafts exceeding the required strength
by over 1700 psi. The concrete within these shafts also exceeded the minimum design
requirement for concrete compressive strength, as required by the state of Arkansas, by over
2200 psi. As concrete with 20% fly ash replacement is included within the specifications for
AHTD Class S concrete, no cost savings due to fly ash replacement were realized. Concrete

compressive strength for each drilled shaft foundation as a function of depth is presented in

Figure 8.14.
Table 8.6. Average unconfined uniaxial compressive strength and Young’s modulus testing
results.
28 Day Unconfined Unaxial | Modulus of
Shaft Compressive Strength Elasticity
[psi] [ksi]

T-S4 5,739 4,983

T-N4 6,642 4,913

T-C6 6,673 5,522
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Figure 8.14. Average unconfined uniaxial compressive strength and modulus of elasticity
as a function of depth for the drilled shaft foundations at the TATS.

8.3.3. Predicted and Measured Axial Capacity

Axial capacity predictions for drilled shafts at the TATS were determined at a five-
percent displacement criterion. However upon testing, none of the top-down load-displacement
values were not observed to exceed 3.06 percent. To ensure adequate comparisons between the
measured and predicted values, the measured axial capacity values were compared to the
predicted mean axial capacity values, at the actual measured displacement, as obatined utilizing
the FB-Deep and SHAFT software programs.

Comparisons between measured and predicted axial capacity values, as obtained for the

UofA, AHTD, and MODOT testing and sampling methods, are presented in Tables 8.7 through

8.9, respectively. The predicted capacity values, at a displacement of 5 percent of the shaft
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diameter, were observed to be an average of 25 percent greater than those generated at the
measured settlement. This difference was expected, as the shafts tested in the field were not
loaded to failure (5% D) to enable the shafts to be used again for future axial and lateral load
tests. However, the T-S4 drilled shaft foundation was observed to generate 82.8 percent of the
required resistance at a vertical displacement of less than 1.19 percent of the shaft diameter.
Likewise, the T-N4 drilled shaft foundation was observed to generate 108 percent of the required
resistance at a vertical displacement of less than 3.06 percent of the shaft diameter. Furthermore,
the T-C6 drilled shaft foundation was observed to generate 106 percent of the required resistance
at a vertical displacement of 1.02 percent of the shaft diameter. The capacity values that were
predicted utilizing the spreadsheet were calculated at displacement values of 5 percent of the
diameter of the drilled shaft (following the AASHTO recommendations), and were therefore

considered not to be comparable with the measured results (Table 8.9).
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The predicted capacity values, as obtained from the FB-Deep software program at the
measured value of maximum displacement using the UofA, AHTD, and MODOT testing and
sampling methods, respectively, were observed to be 13, 43, and 38 percent less than measured
axial capacity values (Figure 8.15). The Capacity values that were predicted using SHAFT at the
measured values of displacement for UofA, AHTD, and MODOT testing and sampling methods,
respectively, were observed to be similar to those predicted using FB-Deep, and were observed
to be 9, 37, and 32 percent less than values of measured capacity (Figure 8.15). Overall, values
of predicted capacity for the UofA sampling and testing method were observed to be the closest
to the measured values, being closer than the values obtained when using the data obtained from

the AHTD and MODOT sampling and testing methods (Tables 8.5 through 8.7).
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As previously discussed in Chapter 7, although UofA capacities were observed to exhibit
increased ranges in capacities for all programs, the magnitudes of these predictions were greater
than those for either AHTD or MODOT sampling and testing methods. A comparison between
the ranges values of measured capacities and predicted capacities at measured displacements for
the UofA sampling and testing method is presented in Figure 8.16. Ranges of predicted axial
capacity values when using the UofA data were observed to be greater when using the FB-Deep
program than when using the SHAFT program. Although the mean values of predicted axial
capacity for both programs were very close to the measured value of axial capacity, the SHAFT
obtained values of predicted capacity for UofA data were observed to be generally closer (due to

the decreased range in values) to the value of measured axial capacity.
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Figure 8.16. Predicted ranges of axial capacities and measured axial capacity for (a) the

interpreted soil profile using UofA sampling and testing data for (b) test shaft
T-S4.

Comparisons between the ranges values of measured capacities and predicted capacities
at the measured settlement values and the design lengths, for each drilled shaft foundation when
using each of sampling and testing methods is presented in Table 8.10. Ranges of predicted axial
capacity values for UofA data were observed to be greater when using the FB-Deep program
than when using the SHAFT program. Ranges of predicted axial capacity values for AHTD data
were observed to be greater when using the SHAFT program than when using the FB-Deep
program. Furthermore, ranges of predicted axial capacity values for MODOT data were
observed to be greater when using the FB-Deep program than when using the SHAFT program.

Overall, the UofA method, utilizing SHAFT or FB-Deep, was observed to produce values of
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axial capacity that closely matched the measured values. Due to the increased ranges of predicted
capacity values using FB-Deep, the SHAFT program was selected as the overall best. However,
difficulties producing values of predicted capacity using the SHAFT program were encountered.
To generate values of predicted axial capacity using SHAFT, interpolations of load-displacement
curves at various depths had to be generated, which proved time-costly. Furthermore, at these
user-interpolated displacement values of predicted capacity, end bearing and side friction
resistance could not be separated.

Table 8.10. Comparisons between mean predicted and measured axial capacities and
subsequent data ranges at the given constructed depth of each test shaft.

Test Shaft T-S4 Test Shaft T-C6 Test Shaft T-N4
Depth=86.5f, 5 =1.19% | Depth=61.5f, § =1.01% | Depth=88 f, § =3.06%

Mean Range Mean Range Mean Range

[u] [AR] (1] [AR] [u] [AR]
UofA 814.2 926.5 798.0 962.3 901.8 1010.4

FB-Deep| AHTD | 533.9 287.4 499.5 293.7 624.8 330.5
MODOT| 717.6 327.7 660.3 456.8 848.1 337.3

UofA 853.1 597.9 849.6 608.1 965.8 624.2

SHAFT | AHTD | 584.5 393.8 549.9 408.1 699.5 528.9
MODOT| 634.0 257.3 596.6 310.7 776.0 322.3

Actual 818.0 1050.0 1065.0

8.3.4. Predicted and Measured Side Friction Resistance

Measured unit side friction resistances for the T-S4, T-N4, and T-C6 drilled shaft
foundations are presented in Figure 8.17. The bottom depths for T-S4, T-N4, and T-C6 were
recorded at 86.5, 88, and 61.5 feet, respectively. Unit side friction resistances within each
stratum were observed to increase with upward average movement (exempting the lower sand
stratum for T-N4, and the silt stratum for T-S4). This decreased unit side friction resistance
within the lower sand stratum for T-N4, as previously discussed in Chapter 6, was believed to be

due to a thin silt film coating the wall of the excavation. For T-S4, 1.7 tsf of unit side shear
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resistance was observed within the lower sand stratum at an average upward movement of less
than 0.47 inches (Figure 8.17a). Values of unit side friction resistance for T-N4 were observed to
be generally less than those for test shaft T-S4, as expected due to the collapse, with the
maximum recorded value within the lower sand stratum being 1.0 tsf (Figure 8.17b). The T-N4
drilled shaft foundation was also observed to be the only shaft which mobilized side friction
resistance (based on the regression of side friction values with increased values of displacement).
Values of unit side friction resistance for test shaft T-C6 were observed to be greater, with an
observed maximum unit side shear resistance value of 2.8 tsf occurring within the lower sand

stratum (Figure 8.17¢c).
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Figure 8.17. Measured unit side friction resistances for (a) T-S4, (b) T-C6, and (c) T-N4
drilled shaft foundations.

Side friction resistance predictions for drilled shaft foundations at the TATS were
determined at the measured largest common displacement (0.5 inches) using the FB-Deep

program. Results of the comparisons between the predicted and measured side friction resistance
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values for the four-foot and six-foot diameter shafts, using the data from the UofA, AHTD, and
MODOT testing and sampling methods, are presented in Figure 8.18. All comparisons were
made utilizing the FB-Deep program, because it was the only program that enabled the
determination of the side friction resistance at user defined settlement. Compared to the values
obtained from the side friction predictions, at the measured displacement and design length of
the drilled shaft foundation, the side friction resistance values for the T-S4 and T-N4 drilled shaft
foundations were observed to be an average of 30, 57, and 56 percent different than the measured
values, when using the data obtained from the UofA, AHTD, and MODOT sampling and testing
methods, respectively (Figure 8.18b). The measured side resistance values for the T-C6 drilled
shaft foundation was observed to be an average of 12, 50, and 55 percent greater than the
predicted values that were obtained using the UofA, AHTD, and MODOT sampling and testing
methods, respectively (Figure 8.18c). Overall, the measured values of side friction resistance
were observed to compare most closely with predicted values generated utilizing the UofA
sampling and testing method, but were still significantly different for the four-foot diameter

shafts.

350



Interpreted Soil Profile

Side Friction Resistance, R, [ton] Side Friction Resistance, R, [ton]

0 300 600 900 1200 0 300 600 900 1200
0 S ‘ . -
i NN —UofA Mean
r High A \'\\ - - UofA Mean +1 SD Turrell
1o GWT Plasticity . [aawas — -UofA Mean -1 SD FBuge
N > —AHTD Mean ce
— Clay (CH) N - - AHTD Mean +1 SD 1 no P
£ 5 - AN — AHTD Mean -1 SD 6=1.0%D
- — —MODOT Mean i
N Low Plasticity - - MODOT Mean +1 SD 6 ft. Dia.
3 Silt (ML) — -MODOT Mean -1 SD
< 30 ——Test Shaft T-S4 1
b= Test Shaft T-N4
>
7} Turrell
= 40 .
c N
> N <
° 50 . ]
V] N
260 - N\ N
= Poorly Graded :
om Sand (SP) [| — UofA Mean ]
< 70 - r H = = UofA Mean +1 SD 5
a || = -UofA Mean -1 SD ]
8 i —AHTD Mean
80 - . H - - AHTD Mean +1 SD .
H — -AHTD Mean -1 SD g
L | —MODOT Mean ]
90 el el - ] | = = MODOT Mean +1 SD .
L — MODOT Mean -1 SD
I [ ] b Test Shaft T-C6
100 e

Figure 8.18. MeaSl(Jar)ed and predicted side frict?gzl resistances for (a) a give(rf )interpreted
soil profile for (b) four-foot diameter and (c) six-foot diameter shafts utilizing
FB-Deep (at 1.0% D).
8.3.5. Predicted and Measured End Bearing Resistance
Measured unit end bearing resistances for the T-S4, T-N4, and T-C6 drilled shaft
foundations are presented in Figure 8.19. Unit end bearing resistances, within the sand stratum,
were observed to increase with increased amounts of average downward movement, as expected.
The amount of unit end bearing resistance observed for the T-S4 drilled shaft foundation was 4.7
tsf at an average upward movement of one inch (Figure 8.19a). Values of unit end bearing
resistance for the T-N4 drilled shaft foundation were observed to be greater than those for the T-
S4 drilled shaft foundation, with a maximum recorded value at 26.7 tsf (Figure 8.19b). This was
attributed to the excavation being extended an additional 1.5 feet due to the blowout at T-N4.

The values of unit end bearing resistance for the T-C6 drilled shaft foundation were observed to

reach a maximum value of 10.4 tsf (Figure 8.19¢).

351



Average Downward Movement, 8, [in] Average Downward Movement, 8, [in] Average Downward Movement, §, [in]

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
40 o —] 40 ‘ ] 40 ]
1 Turrell Turrell Turrell
' T-S4 T-C6 T-N4
35 ¢ ! 4 ft. Dia. ] 351 6 ft. Dia. ] 3T 4 ft. Dia. ]

(98]
(e}
T
w
[}
T
(98
(e}
T

N
()}
T
[\
W
T
N
W

s
()}
T
s
W
T
Ju—
W

—
(e
T
—
(=]
—_
(=]

Unit End Bearing Resistance, Q,, [tsf]
=

Unit End Bearing Resistance, Q,, [tsf]
[\e}
S

Unit End Bearing Resistance, Q,, [tsf]
[y}
(e

W
\."-g,l
]
]
]
]
L ]
]
]
]
]
]
]
1
]
1
]
L 1
W
T
]
]
1
]
1
]
1
]
]
]
]
]
]
]
]
]
[ 1
wn
T
]
]
1
)
]
1
]
]
]
]
]
]
]
]
]
]
1
[ 1

0 : e 0 * : : 0 :
(a) (b) ()
Figure 8.19. Measured unit end bearing resistances for test shafts (a) T-S4, (b) T-C6, and
(c) T-N4.

The amount of end bearing resistance was predicted for the drilled shaft foundations at
the TATS for the measured largest common vertical displacement (1.02 inches). Results of the
comparisons between predicted and measured end bearing resisance values for the four-foot and
six-foot diameter shafts using the data from the UofA, AHTD, and MODOT testing and
sampling methods, are presented in Figure 8.20. When compared to end bearing prediction
values that were predicted at the measured displacements generated utilizing the UofA, AHTD,
and MODOT sampling and testing methods, respectively, the T-S4 and T-N4 drilled shaft
foundations were observed to be an average of 83, 69, and 183 percent less than the measured
values (Figure 8.20a). The measured axial capacity value for the T-C6 drilled shaft foundation
was observed to be an average of 31, 26, and 10 percent greater than values generated utilizing
the UofA, AHTD, and MODOT sampling and testing methods, respectively (Figure 8.20b).

Overall, the measured values of end bearing resistance were observed to most closely compare
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with the predicted values generated utilizing the AHTD sampling and testing method (again only
for FB-Deep daa).
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Figure 8.20. I\/I(taagsured and predicted side fr(ibc)tion resistances for (a) a gi(\sgn interpreted
soil profile for (b) four-foot diameter and (c) six-foot diameter shafts utilizing
FB-Deep (at displacements of 2.1% D).
8.4. Conclusion
Comparisons between the values of predicted and measured drilled shaft resistances at
the SSATS and TATS were presented in this chapter. Greater gross loads could have been
applied to each shaft, but were not, due to scheduled future lateral load testing, pump capacity
limits, or shorted uplift resistances. As a result, the measured values of axial capacity, side shear
resistance, and end bearing resistance for displacements less than 0.3 inches were not compared
with the original predictions performed at displacements equal to five percent of the diameter of
the shaft. Instead, predictions of shaft capacity were conducted for the displacement values

utilizing FB-Deep and SHAFT. However, difficulties producing values of predicted capacity
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using the SHAFT program were encountered. To generate values of predicted axial capacity
using SHAFT, interpolations of load-displacement curves at various depths had to be generated,
which proved time-costly. Furthermore, at these user-interpolated displacement values of
predicted capacity, end bearing and side friction resistance could not be separated. Based on the
predictions, at measured displacements, more reliable comparisons were evaluated.

Based on the available data at the SSATS, the FB-Deep program utilizing the data from
the AHTD sampling and testing method was observed to best predict overall shaft axial capacity.
The SS-W4 drilled shaft foundation was the only foundation that met the required design load of
1112.5 tons at a displacement value equal to 0.065 inches. The overall capacity was more heavily
impacted by the amount of rock side friction resistance than initially anticipated. The FB-Deep
program utilizing the data from the AHTD sampling and testing method was observed to best
predict side friction resistance. The overall capacity was significantly less impacted by the
amount of end bearing resistance than initially anticipated. However, this under-development of
end bearing resistance is attributed to the previously stated under-mobilization of load during
testing. As with the side friction, the FB-Deep program utilizing the data from the AHTD
sampling and testing method was observed to best predict overall end bearing resistance.

As with the SSATS (however not to the same degree of severity), greater gross loads
should have been applied to each shaft, but were not, due to scheduled future axial and lateral
load testing and maximization of the pump. Predictions of shaft capacity, at the measured
displacement values, were performed utilizing the FB-Deep and SHAFT programs. Based on the
predictions, at the measured displacements, more reliable comparisons were evaluated.

Based on the available data, the SHAFT program utilizing the data from the UofA

sampling and testing method was observed to best predict overall shaft axial capacity. However,
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it should be noted the FB-Deep program utilizing the UofA sampling and testing method may
also be utilized. The T-C6 and T-N4 drilled shaft foundations met the required design load of
987 tons at displacement values equal to 0.65 and 1.05 inches, respectively. The FB-Deep
program utilizing data from the UofA sampling and testing method was observed to best predict
values of unit side friction resistance. Furthermore, the FB-Deep program utilizing the data from
the AHTD sampling and testing method was observed to best predict the values of unit end

bearing resistance.
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Chapter 9: Conclusions and Recommendations

9.1. Introduction

Conclusions and recommendations, based on the results from the preformed predections
and cost-benefit analyses (Chapter 7) and the results from full-scale field testing (Chapter 8), are
presented in his chapter. Conclusions for the Siloam Springs, Turrell, and Monticello Arkansas
Test Sites are presented in Sections 9.2., 9.3., and 9.4., respectively. Finally, a global conclusion
highlighting the overall “take-aways” from this document and recommendations for future
research are discussed in Section 9.5.
9.2. Siloam Springs Arkansas Test Site

Conclusions and recommendations, based on the Siloam Springs Arkansas Test Site
(SSATS) are presented in this section. Predictive results from the SSATS illustrated the need for
measured unconfined compressive strength data, as this parameter is just as important as RQD
and has a significant impact on the predicted on axial capacity value for sites that contain rock.
The FB-Deep program actually uses values of qu instead of RQD to generate values of predicted
axial capacity. The UofA sampling and testing method produced the highest predicted values for
axial capacity, as well as the smallest range in values. This was attributed to the range of input
qu values. The range of the correlated qu values, as utilized for the AHTD sampling and testing
method was greater than the range in the measured qu values obtained from the UofA method,
and resulted in more sporadic predictions. At displacements that correspond to five percent of
the shaft diameter, the SHAFT program utilizing the UofA sampling and testing method
produced the highest values of predicted axial capacity, and the FB-Deep program utilizing the
data from the AHTD sampling and testing method produced the lowest values of predicted axial

capacity. Conversely, when predictions were modified to better represent actual displacements
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at the SSATS, the FB-Deep program utilizing data from the UofA sampling and testing method
produced the highest values of predicted axial capacity, and the SHAFT program utilizing data
from the AHTD sampling and testing method produced the lowest values of predicted axial
capacity.

Full-scale load testing at the SSATS was not performed to the full potential for multiple
reasons. First, not enough side resistance was generated due to difficult drilling, not enough
pump capacity was available to optimize displacements, and displacements at the SSATS were
controlled to enable future lateral load testing. Although predictions of ultimate axial capacity
were performed at displacement values equal to five percent of the diameter for the drilled shaft
(which assumed an unreasonable amount of displacement for rock geology), measured
displacement values for the SSATS did not exceed 0.18 percent of the diameter of the drilled
shaft foundations. From the full-scale load testing performed at the SSATS, the SS-E4 drilled
shaft foundation (that had a rock socket length of 7.0-feet) and the SS-C6 drilled shaft foundation
(that had a rock socket length of 5.0-feet) displaced upward in side friction before displacing
downward to generate enough resistance to engage full end bearing resistances. As a result, the
top five-feet of limestone at the SSATS were determined to be weathered limestone. From the
data gathered from test Shaft SS-W4 (that had a rock socket length of 10-feet), values of unit end
bearing resistance reached 70 tsf before testing was halted, and were not observed to exhibit any
signs of mobilization (or non-linearity). Current MODOT (2011) regulations allow a maximum
design unit end bearing resistance of 50 tsf, while current AHTD regulations require a minimum
rock socket length of ten feet. Based on the results of the O-Cell testing, a ten-foot rock socket
length is recommended for data acquisition when conducting an O-Cell test to develop enough

side resistance to balance the end bearing resistance, thereby utilizing the full capacity of the O-
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Cell; or additional weight should be added to the top of the shaft to counter balance the end
bearing force to utilize the full capacity of the O-Cell. However, a 10-foot long rock socket is
not necessary for production shafts constructed within this moderately strong to strong
limestone.

Compared to values of predicted axial capacity at measured displacements at the SSATS,
measured values of axial capacity were smaller than anticipated. The FB-Deep program utilizing
data from the AHTD sampling and testing method best predicted values of axial capacity.
However, this conclusion was generated using the available data. As previously mentioned, the
full-scale load tests failed to fully illustrate the potential of the strength associated with the end
bearing resistance of the Boone Formation. Additional load-displacement information may lead
to different conclusions. Therefore, additional load tests, specifically modified O-Cell/top down
load tests are recommended for the current shafts at the SSATS (Section 9.5).

Based on the results of the concrete testing performed on concrete samples obtained from
the SSATS, the concrete utilized at the SSATS (which contained 30 percent fly ash replacement)
met all the strength requirements set forth by UofA researchers and AHTD regulations.
Therefore, concrete containing up to 30 percent fly ash replacement may be utilized for drilled
shaft foundations within the state of Arkansas, instead of the standard AHTD Class S concrete
(which contains up to 20 percent fly ash replacement). Using this additional fly ash replacement,
a cost savings of $2.66 per cubic yard was achieved. The savings associated with the use of
additional fly ash replacement was equivalent to a site savings of $4,176, and can be increased to
$28,476 depending upon the scale of the planned infrastructure.

In consideration to the construction practices and testing performed at the SSATS, the

SS-E4 drilled shaft foundation was selected as the most appropriate shaft to perform the cost-
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benefit analysis. Although the AHTD method was selected as the most appropriate method to
predict values of resistance at displacements less than 0.18 percent, by utilizing the UofA
sampling and testing method (which is believed to better portray the strength, specifically end
bearing, characteristics of the limestone present at the SSATS upon top-down load testing), a
minimum potential savings of $327,800 (32 percent of the cost associated with the planned
foundation systems) may be achieved using a 7.0-foot rock socket length instead of a 10-foot
rock socket length at the SSATS. This savings includes the additional costs associated with the
full-scale load testing and the additional effort involved with the geotechnical investigation. By
simply performing a full-scale load test, a minimum potential savings of $323,800 may be
achieved. This large sum is attributed to the time and labor required to bore excessive depths
through competent limestone. Actually knowing how much a foundation will hold is a
significant additional benefit associated with full-scale load testing. The unit cost per ton of
resistance for the UofA and AHTD sampling and testing methods were found to equal $24.11
and $82.70, respectively. When related to the costs associated with various scales of
infrastructure, a savings of 67 percent may be realized for the foundation systems by employing
the UofA method (full-scale load tests, uniaxial unconfined compression testing of rock, and 30
percent fly ash replacement).
9.3. Turrell Arkansas Test Site

Conclusions and recommendations, based on the testing performed at the Turrell
Arkansas Test Site (SSATS), are presented in this section. From soil property results at the TAS,
the UofA and AHTD methods for determining values of Neo were similar, indicating the validity
of using the empirical transfer function for the UofA sampling and testing method to obtain blow

count values while using a modified California split spoon sampler instead of a split spoon
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sampler. Predictive results from the TATS illustrated that the current AHTD sampling and
testing practices of correlating soil properties using blow count data may prove costly. The
AHTD testing and sampling method (a method that is used to correlate all soil property values
from corrected blow count values) that was utilized to obtain values of unit weight was deemed
to be under-conservative for clay stratigraphy by 13 percent when compared to the UofA testing
and sampling method. The possibility of current AHTD design practices being inadequate for
clay stratigraphy may be indicated by these under-conservative values. The same AHTD testing
and sampling method was deemed over-conservative in sand stratigraphy, by 21 percent, when
compared to the UofA testing and sampling method. Therefore, cost savings may be obtained by
implementing UofA testing and sampling methods.

For the predicted values of axial capacity at movement corresponding to five percent of
the shaft diameter, the same measured UofA testing and sampling method data was input data
into each program/spreadsheet. The capacity values that were generated at a depth of 86.5-feet
below ground surface utilizing FB-Deep had a range of 103 percent. The capacity values that
were generated utilizing SHAFT and the spreadsheet had ranges of 62.7 and 63 percent,
respectively. Likewise, the same correlated AHTD testing and sampling method data was input
into each program/spreadsheet. The capacity values generated had smaller ranges than those
produced utilizing the UofA method. Although the ranges in the capacity data were larger for
the UofA method, mean values of axial capacities, using the UofA data, still averaged 44, 43.9,
and 23.9 percent greater than AHTD method generated capacities for SHAFT, FB-Deep, and the
spreadsheet, respectively. Although measured input values produce a larger range within the
values of the predicted capacity, than those generated using correlated values, these predicted

capacity values are still greater than the “correlated” predicted values.
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For the predicted values of axial capacity at movements corresponding to the measured
displacements, the capacity values generated at a depth of 86.5-feet below ground surface, as
obtained utilizing FB-Deep, also had the largest range of results when using the UofA and
MODOT sampling and testing methods (approximately 35.7 and 21.4 percent greater than than
those values obtained from SHAFT, respectively). However, ranges of capacity values
generated at a depth of 86.5-feet below ground surface, as obtained from FB-Deep, when using
the AHTD sampling and testing method were 37 percent less than those generated using SAHFT.
Mean values of predicted axial capacity, as obtained from the UofA method, averaged 32.9 and
18.7 percent greater than AHTD and MODOT method values of predicted capacity, respectively.
As with the predicted results for movements corresponding to displacements of the diameter of
the drilled shaft foundation at five percent, although the “measured” input values produce a
larger range of predicted capacity values than those generated from “correlated” input values,
these “measured” capacity predictions are still greater than “correlated” capacity predictions.

Full-scale load testing at the TATS was not performed to the full potential extent.
Although predictions of ultimate axial capacity were performed at displacement values that were
equal to five-percent of the diameter of the drilled shaft foundations, measured displacement
values for the TATS did not exceed 3.06 percent. As with the SSATS, the amount of
displacement at the TATS was limited due to pump difficulties, and to enable future axial and
lateral load testing. From the full-scale load testing performed at the TATS, the T-N4 drilled
shaft foundation exhibited the most displacement due to a collapse and redrilling during
construction. The T-N4 and T-C6 drilled shaft foundations were the only shafts observed to
mobilize (or go non-linear) side friction resistances, however, values of side friction resistance

for T-N4 were observed to be lower than those of T-C6 (also attributed to the collapsed
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excavation/re-drilling during construction of the T-N4 drilled shaft foundation). Values of end
bearing resistance for each shaft were similar, with approximately 5 tsf of resistance observed at
displacement values of one-inch.

Compared to the predicted axial capacity values, at the measured displacements recorded
for the drilled shaft foundations at the TATS, the measured axial capacity values were larger than
anticipated. The SHAFT program utilizing the UofA sampling and testing method best predicted
the axial capacity values. However, the values of predicted axial capacity using FB-Deep and the
UofA testing and sampling method were very similar to the as obtained using SHAFT and the
UofA sampling and testing method, and therefore may also be utilized. Due to the more user
friendly interface of FB-Deep, the capability of the program to generate predicted values of
capacity based on user-specified values of settlement, and the capability of the program to
separate values of end bearing and side friction resistance at a user-defined value of settlement,
FB-Deep was selected as the preferred prediction program (as previously presented in Table 7.1).

In consideration of the construction practices and testing performed at the TATS, the T-
S4 drilled shaft foundation was selected as the most appropriate shaft to perform the cost-benefit
analysis. The drilled shaft foundations that were designed using the UofA testing and sampling
method, for the TATS, were 8.8 percent ($137,500) more expensive than the driven piles that
were designed using the AHTD method. This estimate includes the additional costs associated
with the full-scale load testing and the additional effort involved with the geotechnical
investigation. However, this estimate does not account for the additional lateral support
provided by utilizing drilled shaft foundations instead of driven pile foundations. As the TATS
is located in a region prone to seismic activity, this benefit may be considerable. A unit cost per

ton of resistance for the UofA and AHTD sampling and testing methods were found to equal
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$75.47 and $141.57, respectively. It is interesting to note that although it is cheaper to construct
drilled shaft foundations at the Turrell Arkansas Test Site from a design standpoint, the expertise
of the contractor also plays an important role in the costs incurred. When related to the costs
associated with increasing scales of infrastructure, a cost savings of 86 percent can be obtained
for the foundations system by employing the UofA method (utilizing unit cost per ton of
resistance values).
9.4. Monticello Arkansas Test Site

At this time, only predicted results are available for conclusion for the Monticello
Arkansas Test Site (MATS). Based on the predicted results from the MATS, it is hypothesized
that the MODOT CPT testing method is an effective method for gathering soil properties in areas
with highly variable soil profiles. Utilizing FB-Deep, SHAFT, and the spreadsheet fpr
displacements corresponding to five percent of the diameter of the drilled shaft foundations, the
MODOT method predicted the highest values of axial capacity, followed by the UofA and
AHTD methods.
9.5. Global Conclusion

Overall, the use of full-scale load testing, within the state of Arkansas, can and will
produce cost savings based on the following recommendations:

a) utilizing the UofA testing and sampling methods that were described in Chapter 3,

b) utilizing the FB-Deep program to estimate the values of axial capacity (as
described in Chapter 4),

c) utilizing 30% fly ash replacement in drilled shafts,

d) the performance of hybrid top-down/O-Cell load testing on the SS-E4 and SS-C6
drilled shaft foundations, and

e) further development of a full-scale load test database for the state of Arkansas, by

conducting more full-scale load tests.
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Though the UofA testing and sampling method involves more up-front expenditures, it
has been proven to benefit the overall cost of construction (assuming the use of a qualified and
experienced contractor). This method also encourages the continual development of a load-test
database, in which soil properties and the predicted and measured performances for foundations,
for the various regions of the state, can be referred to by designers, aiding in the design process.
To further aid in the design process, researchers at the University of Arkansas advocate the use
of FB-Deep as a prediction tool for estimating drilled shaft axial capacity due to the following:

a) the performance of the program in predicting capacity compared to SHAFT and a
spreadsheet,

b) the user-friendly interface of the program, and

c) the capability of the program to separate the end bearing and side friction

resistance components at a given settlement value.

Future top-down load testing on these shafts is recommended to fully gauge the potential
of end bearing resistance in the Boone Formation. Top-down load testing on test shafts SS-E4
and SS-C6 may help to determine a maximum unit end bearing resistance value for geological
regions of the state that are similar to the geologic conditions at the SSATS, and help to better
understand the necessity of using a ten-foot length rock socket length. It is recommended for
future research to be performed which enables the impact of load settlement on the prediction of
capacity to be incorporated into the AASHTO design regulations.

Given the time scope of the research project, measured friction angle capacity values
were not entered into the input database, as the testing was still in progress. Upon acquisition of
this data, to fully utilize SHAFT predictions utilizing the UofA data, it is suggested that the
estimated capacity values obtained by measured friction angle values (rather than correlated

friction angle values) be compared to the capacity values as obtained using the measured blow
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count values. Further, to fully utilize SHAFT predictions utilizing the MODOT data, it is
suggested that eh estimated capacity values obtained by using calculated friction angle values
(rather than correlated friction angle values) be compared to the capacity values as obtained

using the measured blot count values.
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