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Abstract

We will discuss necessary and sufficient conditons for the composition operator Cϕ to be

closed range on the weighted Bergman space Ap
α for 1 ≤ p < ∞ with weights of the form

(1 − |z|2)α for α > −1. The function ϕ is an analytic self-map of the unit disk D and our

results extend those previously intended for the classical Bergman space A2. We will also

give applications.
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1 Introduction

Let D denote the unit disk {z ∈ C : |z| < 1} and let T denote the unit circle {z ∈ C :

|z| = 1}. Let m denote normalized Lebesgue measure on T, and let A denote normalized

two-dimensional Lebesgue measure on the unit disk D. For a point a in D and r, 0 < r < 1,

let D(a, r) := {z ∈ D : |z − a| < r} and let ∆(a, r) := {z ∈ D : ρ(z, a) < r} where ρ(z, a)

denotes the pseudohyperbolic metric defined for z and a in D by

ρ(z, a) =
|z − a|
|1− z̄a|

.

For a in D and 0 ≤ b ≤ 1, let Db(a) denote a disk centered at a with radius b(1 − |a|). We

let H(D) be the set of all functions f which are analytic in D. A function ϕ is said to be an

analytic self-map of the unit disk D if ϕ ∈ H(D) and ϕ(D) ⊆ D. If ϕ is an analytic self-map

of D, then the composition operator Cϕ is defined on H(D) by Cϕ(f) = f ◦ ϕ. If X is a

Banach space of analytic functions in D, then we say that a composition operator Cϕ on a

space X is compact if every bounded set in X is mapped to a set whose closure is compact.

The composition operator Cϕ is said to be closed-range on X if Cϕ(X) is a closed subspace

of X. By the Open Mapping Theorem, for nontrivial ϕ, this occurs when there exists a

constant c > 0 such that ||f ◦ϕ||X ≥ c||f ||X for all f in X. For 1 ≤ p <∞, the Hardy space

Hp is the set of all functions f in H(D) such that

||f ||pHp := sup
0<r<1

∫
T
|f(rξ)|pdm(ξ) <∞

and H∞ is the set of all functions f in H(D) such that

||f ||H∞ := sup
z∈D
|f(z)| <∞.
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For α > −1 we define dAα by dAα := cα · (1− |z|2)αdA(z), where cα = α+ 1. The weighted

Bergman space Ap
α is given by:

Ap
α := {f : f ∈ H(D) and ||f ||pp,α =

∫
D |f |

pdAα <∞}.

In this chapter, we will discuss several classical Banach spaces of analytic functions on

the unit disk. We will review standard results describing when a composition operator is

bounded, compact, and closed-range on these spaces. In chapter 2, we will give a necessary

and sufficient condition for when Cϕ is closed-range on the weighted Bergman space Apα.

Note that in [28], Nina Zorboska gives conditions for when Cϕ is closed-range on the Hardy

space H2 and the weighted Bergman space A2
α. These conditions involve the Nevanlinna

counting function, which can be difficult to work with.

A good reference for the following discussion is [19]. For 0 < r < 1 and a point ξ in T,

let S(ξ, r) denote the interior of the convex hull of the union of {ξ} and {z ∈ D : |z| ≤ r}.

We call S(ξ, r) the Stolz region based at ξ ∈ T with contact angle 2 arctan(r).
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Figure 1: A stolz region

Note that if a curve approaches ξ from inside the region S(ξ, r), then this curve cannot be

tangent to the unit circle. For f in Hp, we say f has nontangential limit L at the point ξ

if for all r in (0, 1) and for every sequence {zn} in S(ξ, r) that converges to the point ξ, we

have limn→∞ f(zn) = L. Also, for r in (0, 1) and for any complex function f defined on D,

we define the nontangential maximal function Nrf on T by

Nrf(ξ) = sup{|f(z)| : z ∈ S(ξ, r)}.

For any f in Hp, 0 < p <∞ and any r in (0, 1), we have Nrf ∈ Lp(T). It is well known (see

[19]) that the nontangential limits of f in Hp, denoted f ∗(eiθ), exist almost everywhere [m]

on T and f ∗ ∈ Lp(T). Furthermore, ||f ∗||p = ||f ||p for all f in Hp. An inner function is a

function M in H∞ such that |M∗| = 1 a.e. [m]. A function of the form

Sµ(z) = exp{−
∫ π

−π

ζ + z

ζ − z
dµ(t)},

where µ is a positive Borel measure on T that is singular with respect to m, is known as a

3



singular inner function. Note that such a function does not have any zeros in D. Let {an}

be a sequence of points in D such that
∑∞

n=1(1− |an|) <∞. For such sequences, there is an

associated Blaschke product B defined on D by

B(z) =
∞∏
n=1

an − z
1− ānz

|an|
an

,

where |an|
an

is taken to be 1 if an = 0. The function B is in H∞ and |B∗(eiθ)| = 1 almost

everywhere on T. Hence, each Blaschke product is an inner function, as is each singular

inner function. Now, every inner function M can be factored uniquely as the product of a

Blaschke product and a singular inner function. That is, every inner function M may be

written in the form

M(z) = c ·B(z) · Sµ(z)

where c is a constant such that |c| = 1. An outer function is a function of the form

G(z) = c · exp

{
1

2π

∫ π

−π

eit + z

eit − z
logϕ(eit)dt

}
where c is a constant such that |c| = 1, and ϕ is a positive measurable function on T such

that logϕ ∈ L1(T). For 0 < p ≤ ∞ and f in Hp such that f is not identically zero, the

function log |f ∗| is in L1(T) and

Gf (z) = exp{ 1

2π

∫ π

−π

eit + z

eit − z
log |f ∗(eit)|}dt

is an outer function inHp. For such f , there exists an inner functionMf such that f = MfGf .

Thus, for all p > 0, every f in Hp may be factored uniquely into the product of an inner

function and an outer function. Thus, by our previous statement regarding the factorization

of inner functions, we have that every f in Hp may be written uniquely in the form

f(z) = c ·B(z) · Sµ(z) ·Gf (z)
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for z in D, where Gf is an outer function in Hp, see [19].) Note that any analytic self-map

ϕ of the unit disk D is in H∞. Hence, by our above discussion, ϕ may be factored as above

and so has only a few possible forms. The function ϕ may be written as a Blaschke product,

a singular inner function, an outer function, or it may be written as a product of these types

of functions.

It is natural to ask for which ϕ is the composition operator Cϕ bounded, compact, or

closed-range on a Banach space of analytic functions on D. We will now catalog such results

for various classical Banach spaces. These results are standard in the literature and more

information can be found in [22] and [27]. We begin by examining composition operators on

the Hardy space H2.

1.1 Composition Operators on the Hardy Space H2

Littlewood’s Subordination Principle (see [22]) states that if ϕ is an analytic self-map of D

with ϕ(0) = 0, then for each f in H2, Cϕ(f) ∈ H2 and ||Cϕ(f)|| ≤ ||f ||.

Thus, if ϕ fixes the origin, then Cϕ is bounded on H2. To see that this is the case for any

holomorphic self-map ϕ of D, we will use αλ(z) = λ−z
1−λz , the special automorphism of D where

αλ(λ) = 0, αλ(0) = λ, and α−1
λ = αλ. Letting λ = ϕ(0), we consider the function ψ = αλ ◦ϕ

which is a holomorphic self-map of D that fixes the origin. Then, ϕ = α−1
λ ◦ ψ = αλ ◦ ψ and

by Littlewood’s Subordination Principle, for all f in H2 we have

||f ◦ ϕ||2 =
1

2π

∫ 2π

0

|f(ϕ(eiθ))|2dθ

=
1

2π

∫ 2π

0

|f ◦ αλ ◦ ψ(eiθ)|2dθ

5



≤ 1

2π

∫ 2π

0

|f ◦ αλ(eiθ)|2dθ

=
1

2π

∫ 2π

0

|f(eit)|2|α′λ(eit)|dt

=
1

2π

∫ 2π

0

|f(eit)|2 1− |λ|2

|1− λeit|2
dt

≤ 1− |λ|2

(1− |λ|)2
· 1

2π

∫ 2π

0

|f(eit)|2dt

=
1 + |λ|
1− |λ|

· ||f ||2

Thus we have that Cϕ is bounded on H2 for every analytic self-map ϕ of D. 2

We may also address the question of compactness of composition operators. The First

Compactness Theorem (page 23 in [22]) states that the composition operator Cϕ is a compact

operator on H2 if ||ϕ||∞ < 1. In other words, Cϕ is a compact composition operator if ϕ(D)

is relatively compact. The Univalent Compactness theorem (see page 39 in [22]) says that if

ϕ is a univalent self-map of D, then, Cϕ is compact on H2 if and only if

lim
|z|→1−

1− |ϕ(z)|
1− |z|

=∞.

It should be noted that necessity in this theorem does not require univalence. As this require-

ment for compactness deals with a difference quotient, it is reasonable to think that there

may be some relationship between this condition and the derivative of ϕ at the boundary of

the disk.

Let ϕ be a holomorphic self-map of D, and let ω be a point on ∂D. We say that ϕ has

angular limit L = ∠ limz→ω ϕ(z) if ϕ(z)→ L as z → ω through any stolz region based at ω.

The map ϕ has an angular derivative at ω, denoted ϕ′(ω), if for some point η in ∂D,

∠ lim
z→ω

η − ϕ(z)

ω − z

6



exists. This suggests that the angular limit of ϕ at ω exists and is equal to η. Hence, if ϕ

has an angular derivative at any point on ∂D, then it must have an angular limit of modulus

one at that point.

The Julia-Caratheodory Theorem clarifies the relationship between compactness and the

existence of angular derivatives. This theorem states that the angular derivative ∠ limz→ω
η−ϕ(z)
ω−z

exists for some η in ∂D if and only if lim infz→ω
1−|ϕ(z)|

1−|z| = δ for some δ, 0 < δ <∞. But, by

the Univalent Compactness theorem, lim infz→ω
1−|ϕ(z)|

1−|z| <∞ implies that Cϕ is not compact

on H2.

Next, we discuss when Cϕ is compact on H2 for arbitrary self-maps ϕ of D. In other

words, we want a condition for compactness on H2 when ϕ is not necessarily univalent. For a

function ϕ holomorphic on D, the Nevanlinna Counting Funtion of ϕ, denoted Nϕ, is defined

as follows:

Nϕ(w) =


∑

z∈ϕ−1{w} log 1
|z| w ∈ ϕ(D)

0 w /∈ ϕ(D)

.

For a function f analytic on D, the Littlewood-Paley Identity (see[22]) gives that

||f ||2 = |f(0)|2 + 2

∫
D
|f ′(z)|2 log

1

|z|
dA(z).

The change-of-variable formula (see [22]) states that for any analytic map ϕ on D,

||Cϕ(f)||22 = |f(ϕ(0))|22 + 2

∫
D
|f ′(w)|2Nϕ(w)dA(w).

Notice that if ϕ is univalent, then the change-of-variable formula is just the Littlewood-Paley

Identity with the substitution w = ϕ(z).
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Theorem 2.3 in [20] gives the following result. Suppose ϕ is a holomorphic self-map of

D. Then, Cϕ is compact on H2 if and only if

lim
|w|→1−

Nϕ(w)

log 1
|w|

= 0.

If ϕ is univalent, we have

Nϕ(w) = log
1

|z|
≈ 1− |z|

for |z| large, where ϕ(z) = w. Thus, in the case that ϕ is univalent, this theorem is the same

as the Univalent Compactness Theorem stated above.

In [3], it is shown that this condition on ϕ involving the Nevalinna counting function is

equivalent to the condition

lim
|a|→1−

∫
T

1− |a|2

|1− āϕ(z)|2
dm(z) = 0.

In [28], Nina Zorboska gives conditions regarding when a composition operator Cϕ will

be closed-range on H2 and on A2
α for α > −1. The function πϕ(w), having domain D \ϕ(0),

is defined by

πϕ(w) =
Nϕ(w)

log 1
|w|
,

where Nϕ(w) is the Nevanlinna Counting Function as defined above. For a positive constant

c, the set Gϕ
c is defined by

Gϕ
c = {z : πϕ(z) > c}.

Theorem 3.4 in [28] states that a composition operator Cϕ will be closed-range on H2 if and

only if there exist positive constants c and δ such that

A(Gϕ
c ∩D(ξ, r)) > δ · A(D ∩D(ξ, r)) (1)

8



for all ξ in ∂D, where D(ξ, r) = {z ∈ D : |z − ξ| < r}. In [14], it is shown that condition (1)

may be restated as follows. There exist constants δ1 > 0 and b, 0 < b < 1, so that

A(Gϕ
c ∩Db(a)) > δ1 · A(Db(a)) (2)

for every a in D where Db(a) = {z ∈ D : |z − a| < b(1− |a|)}.

A good reference for the following discussion is [28]. Suppose ϕ is a univalent function

such that Cϕ does not have closed-range on H2. Let ψ be a holormorphic self-map of D

such that ψ(D) is contained in ϕ(D). Let ω be the self-map of D defined by ω := ϕ−1 ◦ ψ.

Then, ψ = ϕ ◦ ω. Let {fn} be a sequence of functions in H2 such that ||fn||H2 = 1 and

||Cϕfn||H2 → 0. Then,

||Cψfn||H2 = ||fn ◦ ϕ ◦ ω||H2 ≤ ||Cω||H2
˙||fn ◦ ϕ||H2 → 0.

Hence, Cψ will not be closed-range on H2.

Example 1 in [28] states that if there exists a point ξ ∈ T and a neighborhood Nξ about

the point ξ such that Nξ∩ϕ(D) = ∅, then Cϕ will not be closed-range on H2. To see that this

is the case, choose a Euclidean disk D(ξ, r) to be contained in Nξ. Then, for all z ∈ D(ξ, r),

we have that γϕ(z) = 0 and so the set Gϕ
c is empty for all c > 0. Hence, for any c > 0,

A(Gϕ
c ∩D(ξ, r)) = 0 and condition (1) above will not be satisfied.

9



Figure 2: Example

Another example described in [28] is the following. A composition operator Cϕ will not

be closed-range on H2 if there is a disk D1 that is tangent to ∂D such that D1 ∩ ϕ(D) = ∅.

In this case, for any choice of b, we can choose a point a in D close enough to the boundary

of the disk so Db(a) will be contained entirely in the disk D1. Then, similar to the previous

example, we have that γϕ(z) = 0 on Db(a). Hence, A(Gϕ
c ∩Db(a)) = 0 for any c > 0 and so

condition (2) above is not satisfied.

In [28], Zorboska also remarks that the composition operator Cϕ will not be closed-range on

H2 if ϕ(D) is a proper subset of D \ [0, 1).

We will now introduce several other classical spaces of analytic functions in D. For more

information on the following spaces, see [27].

10



1.2 Composition Operators on the Bloch space B

The Bloch space B is the space of analytic functions on D such that

sup
z∈D

(1− |z|2)|f ′(z)| <∞.

Under the norm

||f ||B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)|,

B forms a Banach space. By Proposition 5.1 in [27], H∞ is properly contained in B, and

||f ||B ≤ ||f ||∞ for all f ∈ H∞. The set of analytic functions in D having the property that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0

is called the little Bloch space and is denoted by B0. The little Bloch space is a closed

subspace of B.

For z in D, let τϕ(z) = (1−|z|2)|ϕ′(z)|
1−|ϕ(z)|2 . We can apply the Schwarz-Pick lemma to get

|τϕ(z)| ≤ 1 for all z in D. Now, for f in B,

(1− |z|2)|(f ◦ ϕ)′(z)| = (1− |z|2)|f ′(ϕ(z))||ϕ′(z)|

=
(1− |z|2)|ϕ′(z)|

1− |ϕ(z)|2
(1− |ϕ(z)|2)|f ′(ϕ(z))|

= |τϕ(z)|(1− |ϕ(z)|2)|f ′(ϕ(z))|

≤ (1− |ϕ(z)|2)|f ′(ϕ(z))|

Thus Cϕ is a bounded composition operator on B for every analytic self-map ϕ of D.

11



It is shown in Theorem 2 in [17] that Cϕ wll be compact on B if and only if for every ε > 0,

there exists r, 0 < r < 1, such that

τϕ(z) =
(1− |z|2)|ϕ′(z)|

1− |ϕ(z)|2
< ε

whenever |ϕ(z)| > r.

By theorem 2 in [26], for an analytic self-map ϕ of the unit disk D, the composition operator

Cϕ is compact on B if and only if

lim
n→∞

||ϕn||B = 0.

In [17], Madigan and Matheson give a similar condition for the compactness of a composition

operator on B0. Theorem 1 in [17] states that Cϕ is compact on B0 if and only if

lim
|z|→1−

|τϕ(z)| = 0.

In [11], a necessary and sufficient condition for a composition operator Cϕ to be closed-range

on B is given. Letting C be the closed subspace of constant functions, we have ||f ||B/C =

supz∈D(1−|z|2)|f ′(z)|. Theorem 0 in [11] states that Cϕ will be closed-range on B if and only

if

||f ◦ ϕ||B/C ≥ k · ||f ||B/C

for a constant k > 0.

For a subset K of D, if there exists k > 0 with

sup{(1− |z|2)|f ′(z)| : z ∈ D} ≤ k · sup{(1− |z|2)|f ′(z)| : z ∈ K}

for every function f in B, then K is called a sampling set for B. Define Fε := ϕ(Λε) where

Λε := {z ∈ D : τϕ(z) ≥ ε} and ε > 0. Theorem 1 in [11] says that a composition operator Cϕ

12



will be closed-range on the Bloch space B if and only if there exists ε > 0 such that Fε is a

sampling set for B. It is also shown in [11] that the set Fε is a sampling set for B if it satisfies

the reverse Carleson condition. That is, Fε is a sampling set for B if there exist constants

c and s with 0 < c, s < 1, such that A(Fε ∩ ∆(z, s)) ≥ c · A(∆(z, s)) for all z in the unit

disk D. Hence, by Theorem 1 and Proposition 1 in [11], if Fε satisfies the reverse Carleson

condition, then the composition operator Cϕ will be closed-range on B. If ϕ is univalent,

then, by theorem 2 in [11], the converse of the previous statement also holds.

Let ϕ be univalent and suppose that the composition operator Cϕ is closed-range on B.

Then, for some ε > 0, Fε satisfies the reverse Carleson condition and by Proposition 3 in

[11], there exists δ > 0 such that for every point ω in ∂D,

limϕ(z)→ω
dist(ϕ(z), ∂(ϕ(D)))

|ϕ(z)− ω|
≥ δ.

Example 1 in [11] shows that this condition is not sufficient for Cϕ to be closed-range. In

the second example given in [11], we let G = D \ [0, 1) and ϕ is chosen to be the Riemann

mapping onto G. By the Koebe One-Quarter Theorem, when ϕ is univalent, then

τϕ(z) ≈ dist(ϕ(z), ∂G)

1− |ϕ(z)|
.

As ϕ(z) approaches a point w on the boundary of the disk other than 1, this ratio ap-

proaches 1. Then, Fε contains all of D except for a pseudohyperbolic neighborhood of

the segment [0, 1). Thus, we can choose r large enough so that every point z in D is

within pseudohyperbolic distance r of Fε. So, there exists a constant c > 0 such that

A(Fε ∩∆(z, r)) ≥ c · A(∆(z, r)) for all z in the unit disk D. Hence, Fε satisfies the reverse

Carleson condition and Cϕ is closed-range.

13



Proposition 1 in [10] gives a necessary condition for the composition operator Cϕ to be

closed-range on B. The proposition states that if Cϕ is closed-range on B then there will exist

positive constants ε and r < 1 so that, for all z in D, ρ(ϕ(Λε), z) ≤ r. Recall that ρ denotes

the pseudohyperbolic metric. Theorem 2 in the same source ([10]) also gives a sufficient

condition. This theorem gives that Cϕ is closed-range on B if for some positive constants ε

and r with r < 1
4
, for all w in D there exists a point zw in D so that ρ(ϕ(zw), w) < r and

|τϕ(zw)| > ε.

1.3 Composition Operators on the Besov space Bp

For 0 < p <∞, the Besov space Bp is the collection of holomorphic functions in D such that

||f ||pBp =

∫
D
|f (n)(z)(1− |z|2)n|pdλ(z)

=

∫
D
|f (n)(z)|p(1− |z|2)npdλ(z) <∞

for any positive integer n satisfying np > 1 and where

dλ(z) =
1

(1− |z|2)2
dA(z).

Under the norm |f(0)|+ ||f ||Bp , Bp is a Banach space.

Theorem 5.17 in [27] gives the atomic decomposition for Bp. The theorem states that for

p > 0, there exists a sequence {ak} in D such that for b > max(0, p−1
p

), the space Bp is

comprised of functions of the form

f(z) =
∞∑
k=1

ck

(
1− |ak|2

1− zāk

)b

14



with ck ∈ lp := {{ck}∞k=1 ⊂ C :
∑∞

k=1 |ck|p <∞}.

Recall that αλ(z) = λ−z
1−λz is the special automorphism of the disk D with αλ(λ) = 0,

αλ(0) = λ, and α−1
λ = αλ. By Theorem D in [24], for an analytic self-map ϕ of D, Cϕ is a

bounded operator on the Besov space Bp if and only if

sup
λ∈D
||Cϕαλ||Bp <∞.

By theorem 3.5 in [24], for 1 < p ≤ q <∞, when ϕ is a holomorphic self-map of D then

the following are equivalent:

1. Cϕ : Bp → Bq is a compact operator.

2. ||Cϕαλ||Bq → 0 as |λ| → 1.

Not much is known about conditions for which ϕ will induce a compact composition

operator on Bp for p in general.

1.4 Composition Operators on the Dirichlet Space

The Dirichlet space D is the set of holomorphic functions f on D such that

||f ||2D =

∫
D
|f ′(z)|2dA(z) <∞.

That is, if f is in D, then its derivative is in A2. Note that D = B2, with an equivalent

norm.

For p > 0 and µ a finite positive Borel measure, if there exists a constant 0 < c < ∞

such that ∫
D
|f(z)|pdµ(z) ≤ c

∫
D
|f(z)|pdAα(z)
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for all f in Ap
α, then µ is called a Carleson measure for Ap

α. As is stated in [15], an equivalent

condition for µ to be a Carleson measure is

sup
z∈D

µ(∆(z, η))

|∆(z, η)|
<∞

where, again, ∆(z, η) denotes the pseudohyperbolic disk. We call µ a compact (or vanishing)

Carleson measure if

sup
r<|z|<1

µ(∆(z, η)

|∆(z, η)|
→ 0

as r → 1. Let nϕ denote the cardinality of the set ϕ−1(w). In [15], Luecking shows that a

composition operator Cϕ is bounded on the Dirichlet space D if nϕdA is a Carleson measure

for Ap
α for some p > 0. By Proposition 5.1 in [16], Cϕ is compact on D if nϕdA is a compact

Carleson measure. In [15], Luecking also shows that Cϕ is closed-range on the Dirichlet space

D if and only if there exists a constant c > 1 such that

1

c

∫
|f ′|2dA ≤

∫
|f ′|2nϕdA ≤ c

∫
|f ′|2dA

for every f in D. If this condition is satisfied, then there exists R, 0 < R < 1 and δ > 0 such

that ∫
∆(a,r)

nϕdA ≤ δ|∆(a, r)|

for all z ∈ D where, again, |∆(a, r)| denotes the area of the pseudohyperbolic disk ∆(a, r).

By part 2 of Corollary 2 in [11], when ϕ is univalent and the composition operator Cϕ is

bounded below on the Bloch space B, then Cϕ is also bounded below on the Dirichlet space.

That is, if ϕ is univalent and Cϕ is closed-range on B then it is also closed-range on D.
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1.5 Composition Operators on BMO

Let I denote an interval that is contained in T and let f be in L2(T). With |I| representing

the length of the interval I, the mean of the function f over I is given by

fI =
1

|I|

∫
I

f(θ)dθ.

The space of all functions f in L2(T) that have bounded mean oscillation is called BMO(T).

A function f has bounded mean oscillation if

||f ||BMO := sup
I

1

|I|

∫
I

|f(θ)− fI |dθ <∞.

The space BMOA(T) is the intersection of BMO and H2(T). For any function f in L1(T)

we can extend f to a function f̂ on the disk D via the Poisson extension,

f̂(z) =
1

2π

∫ 2π

0

f(θ)
1− |z|2

|1− z̄eiθ|2
dθ

for all z in D. Thus, BMOA(T) can be extended to BMOA(D), a space of analytic functions

on D. Recall the special automorphism of D,

αλ(z) =
λ− z
1− λ̄z

where αλ(λ) = 0, αλ(0) = λ, and α−1
λ = αλ. As is stated in [23], a function f in H2 is in

BMOA if

||f ||∗ = sup
λ∈D
||f ◦ αλ − f(λ)||2 <∞.

Under the norm ||f ||BMOA = ||f ||∗ + |f(0)|, BMOA forms a Banach space.

For r in (0, 1), let Φr denote the set {z : 1 > |ϕ(z)| > r}, and for the characteristic

function of Φr, we write χr(z). By Theorem 3.1 in [6], the composition operator Cϕ is
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compact on BMOA if and only if for all ε > 0, there exists an r ∈ (0, 1) such that

∫
R(I)

χΦr(z)(1− |z|2)|f ′(ϕ(z))|2|ϕ′(z)|2dA(z) ≤ ε|I|.

By Theorem 4.1 in [23], If ϕ is a univalent self-map of D, then Cϕ is compact on BMOA if

and only if it is compact on the Bloch space B.

By part 1 of Corollary 2 in [11], for univalent ϕ, if Cϕ is bounded below on BMOA, then

it is also bounded below on the Bloch space B. In other words, if ϕ is univalent and Cϕ is

closed-range on BMOA, then Cϕ is also closed-range on B.

We have defined πϕ(w) to be

πϕ(w) :=
Nϕ(w)

log( 1
w

)
,

where Nϕ(w) is the Nevalinna counting function. Let πϕ,α = (πϕ(w))α and

Gϕ,α
c = {z : πϕ,α+2 > c}.

Theorem 4.1 in [28] states that a composition operator Cϕ will be closed-range on the

weighted Bergman space A2
α, with α > −1 if and only if there exist constants c > 0 and

λ > 0 such that

A(Gϕ,α ∩D(ξ, r)) > δ · A(D ∩D(ξ, r)).

Notice that not only does the condition above involve the Nevanlinna counting function,

but it also depends on α. In the next section, we will give a necessary and sufficient condition

for when an analytic self-map ϕ of D induces a closed-range composition operator on the

weighted Bergman space Ap
α for all p and all α > −1. This will essentially render all the

above conditions equivalent for various values of α. In [1], J. Akeroyd and P. Ghatage give

a necessary and sufficient condition in the case p = 2 and α = −1.
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2 Closed-Range Composition Operators on Weighted Bergman Spaces

Let ϕ be an analytic self-map of D. For any ε, 0 < ε < 1, define Ωε := {z ∈ D : 1−|z|2
1−|ϕ(z)|2 > ε},

and let Gε(ϕ) = Gε = ϕ(Ωε). Note that, in the weighted Bergman space setting, Gε functions

in much the same way that Fε did in the Bloch space setting. The set Gε is said to satisfy

the reverse Carleson condition if there exists a positive constant η so that

∫
Gε

|f(z)|p(1− |z|2)pdA ≥ η

∫
D
|f(z)|p(1− |z|2)pdA

for f analytic in D and
∫
D |f(z)|p(1− |z|2)pdA <∞. As shown in [14], this is equivalent to

the following condition:

(∗) There exist constants c and s with 0 < c, s < 1, such that

A(Gε ∩∆(z, s)) ≥ c · A(∆(z, s))

for all z in the unit disk D. We will show in Theorem 2.3 that a composition operator Cϕ is

closed-range on Ap
α if and only if there exists an ε > 0 such that Gε satisfies condition (∗).

Recall that we defined the weighted Bergman Spaces Ap
α by

Ap
α := {f : f is analytic in D and ||f ||pp,α =

∫
D |f |

pdAα <∞}

where α > −1 and dAα := cα · (1− |z|2)αdA(z) where cα = α + 1.

Define Ap
α,0 by

Ap
α,0 = {f ∈ Ap

α : f(0) = 0},

a closed subspace of Ap
α. The following lemma is adapted from Lemmas 2.1, 2.2, and 2.3 in

[1], and will be stated without proof.
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Lemma 2.1 Let ϕ be an analytic self-map of the unit disk D, and let ψa be a conformal

automorphism of D. Then,

1. Cϕ is closed-range on Ap
α if and only if Cϕ is closed-range on Ap

α,0

2. If one of Cϕ, Cϕ◦ψa, or Cψa◦ϕ is closed-range on Ap
α, then so are the other two.

3. If there exists ε > 0 such that one of Gε(ϕ), Gε(ϕ ◦ ψa), Gε(ψa ◦ ϕ) satisfies condition

(∗), then there exists ε > 0 such that the other two also satisfy condition (∗).

Lemma 2.2 (Lemma 2.2 in [4]). Let ϕ be an analytic self-map of D. If Cϕ is closed-range

on Ap
α then it is closed-range on Anp

α for any n ∈ N.

Proof. Assume ϕ is not constant. Otherwise, the result is trivial. Suppose Cϕ is closed-range

on Ap
α. Then there exists a constant c such that ||f ◦ ϕ||Ap,α ≥ c · ||f ||Ap,α for all f ∈ Ap

α.

That is, ∫
D
|f ◦ ϕ|pdAα ≥ c ·

∫
D
|f |pdAα

for all f ∈ Ap
α. Now, if f ∈ Anp

α , then fn ∈ Ap
α. Thus,

∫
D
|f ◦ ϕ|npdAα =

∫
D
|fn ◦ ϕ|pdAα

≥ c ·
∫
D
|fn|pdAα

= c ·
∫
D
|f |npdAα.

and so Cϕ is closed-range on Anp
α . 2

Theorem 2.3 (1.3 in [5]) Let ϕ be an analytic self-map of the unit disk D. Suppose 1 ≤

p <∞ and α > −1. Then, the following are equivalent:
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1. Cϕ is closed-range on Ap
α.

2. There exists ε > 0 such that Gε = ϕ(Ωε) satisfies condition (∗).

Proof. By Lemma 2.1 we may assume that ϕ(0) = 0 and we may also restrict our attention

to Cϕ on Ap
α,0. By the proof of Theorem 4.28 in [27], there is a constant C > 1 such that

1

C
||f ||p,α ≤

{∫
D
|f ′(z)|p(1− |z|2)pdAα(z)

} 1
p

≤ C||f ||p,α

for all f in Ap
α,0. We will denote this by

||f ||pp,α ≈
∫
D
|f ′(z)|p(1− |z|2)pdAα(z).

We will first show that (2) implies (1). Note that this argument can also be found in

the proof of Theorem 2.3 in [4]. Suppose that for some ε > 0, Gε satisfies condition (∗).

First consider the case that 1 ≤ p < 2. By the Schwarz-Pick lemma (Lemma 1.2 in [8]),

0 ≤ (1−|z|2)|ϕ′(z)|
1−|ϕ(z)|2 ≤ 1 for all z in D. Hence, for all z in Ωε, ε|ϕ′(z)| < 1, and thus, since

1 ≤ p < 2, we have ε2|ϕ′(z)|2 ≤ εp|ϕ′(z)|p. Hence, ε2−p < |ϕ′(z)|p−2. Then,

||f ◦ ϕ||pp,α ≈
∫
D
|(f ◦ ϕ)′(z)|p(1− |z|2)pdAα(z)

≥
∫

Ωε

|f ′(ϕ(z))|p|ϕ′(z)|p(1− |z|2)p+αdA(z)

=

∫
Ωε

|f ′(ϕ(z))|p|ϕ′(z)|p−2|ϕ′(z)|2(1− |z|2)p+αdA(z)

≥ ε2−p
∫

Ωε

|f ′(ϕ(z))|p|ϕ′(z)|2(1− |z|2)p+αdA(z)

≥ εα+2

∫
Ωε

|f ′(ϕ(z))|p|ϕ′(z)|2(1− |ϕ(z)|2)p+αdA(z)

= εα+2
∑
n

∫
Ωε

⋂
Rn

|f ′(ϕ(z))|p|ϕ′(z)|2(1− |ϕ(z)|2)p+αdA(z)
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where Z := {z ∈ D : ϕ′(z) = 0} and {Rn} is a partition of D \ Z into at most countably

many polar rectangles so that ϕ is univalent on Rn for all n. Let Sn = ϕ(Ωε

⋂
Rn) and let

ψn denote the inverse of ϕ|Rn . Then, letting z = ψn(w), we have

εα+2
∑
n

∫
Ωε

⋂
Rn

|f ′(ϕ(z))|p|ϕ′(z)|2(1− |ϕ(z)|2)p+αdA(z)

= εα+2
∑
n

∫
Gε

|f ′(w)|p(1− |w|2)p+αχSn(w)dA(w)

= εα+2

∫
Gε

|f ′(w)|p(1− |w|2)p+α(
∑
n

χSn(w))dA(w)

≥ εα+2

∫
Gε

|f ′(w)|p(1− |w|2)p+αdA(w)

Since Gε satisfies condition (∗), we have

εα+2

∫
Gε

|f ′(w)|p(1− |w|2)p+αdA(w) ≥ ηεα+2

∫
D
|f ′(w)|p(1− |w|2)p+αdA(w)

≈
∫
D
|f(w)|pdAα(w)

= ||f ||pp,α

Hence, for 1 ≤ p < 2, we have that Cϕ is closed-range on Ap
α. We may apply Lemma 2.2 to

see that Cϕ is closed-range on Ap
α for 1 ≤ p <∞ and, thus, (1) is satisfied.

We will now show that (1) implies (2) by means of the contrapositive, as is also shown

in the proof of Theorem 1.3 in [5]. Suppose that condition (∗) is not satisfied. Then there

does not exist ε > 0 such that Gε satisfies the reverse Carleson condition. In other words,
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for any ε > 0, there does not exist a positive constant η such that

∫
Gε

|f(z)|p(1− |z|2)pdA ≥ η

∫
D
|f(z)|p(1− |z|2)pdA

for all f in Ap
α,0. So, we can find a sequence {fk}∞k=1 ⊂ Ap

α,0 such that

∫
D
|f ′k(w)|p(1− |w|2)pdAα(w) = 1

for all k, but ∫
Gk

|f ′k(w)|p(1− |w|2)pdAα(w)→ 0

as k →∞, where Ωk = {z ∈ D : 1−|z|2
1−|ϕ(z)|2 >

1
k
} and Gk = ϕ(Ωk).

First suppose that p ≥ 3. Note that for all z ∈ Ωj+1 \ Ωj, we have 1
j
≥ 1−|z|2

1−|ϕ(z)|2 >
1
j+1

and,

by the Schwarz-Pick Lemma, 0 ≤ (1−|z|2)|ϕ′(z)|
1−|ϕ(z)|2 ≤ 1 for all z in D. Thus, on Ωj+1 \ Ωj,

|ϕ′(z)|p−2 ≤ (j + 1)p−2.

Also, on Ωj+1 \ Ωj,

(1− |z|2)p+α−1 ≈ 1

(j + 1)p+α−1
· (1− |ϕ(z)|2)p+α−1.

Now, D is equal to the pairwise disjoint union Ωk ∪ (∪∞j=kΩj+1 \ Ωj). So,

||fk ◦ ϕ||pp,α ≈
∫
D
|f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)pdAα(z)

=

∫
Ωk

|f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)pdAα(z)

+
∞∑
j=k

∫
Ωj+1\Ωj

|f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)pdAα(z)
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Then, by the corollary on page 188 of [22], we have

∫
Ωk

|f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)pdAα(z)

=

∫
Ωk

|f ′k(ϕ(z))|p|ϕ′(z)|2|ϕ′(z)|p−2(1− |z|2)p+α−1(1− |z|2)dA(z)

≤
∫

Ωk
|f ′k(ϕ(z))|p|ϕ′(z)|2(1− |ϕ(z)|2)p+α−1 log 1

|z|dA(z)

≤
∫
Gk
|f ′k(w)|p(1− |w|2)p+α−1Nϕ(w)dA(w)

≤
∫
Gk
|f ′k(w)|p(1− |w|2)p+αdA(w)

=
∫
Gk
|f ′k(w)|p(1− |w|2)pdAα(w)→ 0

as k →∞. Then, again using the corollary on page 188 of [22], we have

∞∑
j=k

∫
Ωj+1\Ωj

|f ′k(ϕ(z))|p|ϕ′(z)|p(1− |z|2)pdAα(z)

≈
∞∑
j=k

∫
Ωj+1\Ωj

|f ′k(ϕ(z))|p|ϕ′(z)|2|ϕ′(z)|p−2(
1

(j + 1)p+α−1
)(1− |ϕ(z)|2)p+α−1 log

1

|z|
dA(z)

≤
∞∑
j=k

∫
Ωj+1\Ωj

|f ′k(ϕ(z))|p|ϕ′(z)|2((j + 1)p−2)(
1

(j + 1)p+α−1
)(1− |ϕ(z)|2)p+α−1 log

1

|z|
dA(z)

≤ 1

kα+1

∞∑
j=k

∫
Ωj+1\Ωj

|f ′k(ϕ(z))|p|ϕ′(z)|2(1− |ϕ(z)|2)p+α−1 log
1

|z|
dA(z)

=
1

kα+1

∫
D\Ωk
|f ′k(ϕ(z))|p|ϕ′(z)|2(1− |ϕ(z)|2)p+α−1 log

1

|z|
dA(z)

≤ 1

kα+1

∫
D
|f ′k(ϕ(z))|p|ϕ′(z)|2(1− |ϕ(z)|2)p+α−1 log

1

|z|
dA(z)

=
1

kα+1

∫
D
|f ′k(w)|p(1− |w|2)p+α−1Nϕ(w)dA(w)

≤ c

kα+1

∫
D
|f ′k(w)|p(1− |w|2)p+αdA
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=
c

kα+1

∫
D
|f ′k(w)|p(1− |w|2)pdAα → 0

as k → ∞. Thus, ||fk ◦ ϕ||p,α → 0 as k → ∞, even though ||fk||p,α = 1 for all k. Hence, it

must be that Cϕ is not closed-range on Ap
α,0 for p ≥ 3. By the contrapositive of the previous

lemma then, it must be that Cϕ is not closed-range on Ap
α,0 for any p ≥ 1. Thus, by means

of the contrapositive of what we have just shown, our proof is complete. 2

Corollary 2.4 If ϕ is univalent and Cϕ is closed-range on the weighted Bergman space Ap
α,

then Cϕ is closed-range on the Hardy space H2.

Proof. If Cϕ is closed-range on any weighted Bergman space Ap
α, then, by Theorem 2.3, Cϕ

is closed-range on A2. Then, by Corollary 4.3 in [28], Cϕ is closed-range on H2.
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3 Examples

3.1 An Outer Function

We note that an example of the same type as the following was developed concurrently by

P. Ghatage. We also note that ϕ in the following example is a purely outer function. J.

Akeroyd and P. Ghatage discuss the case when ϕ is a singular inner function in [1].

Let ψ be a conformal mapping of the unit disk D onto the semi-annulus

S = {reiθ :
1

2
< r < 1, 0 < θ < π}.

By Theorem 13.2.3 in [12], since D and S are bounded domains in C, each bounded by a

single Jordan curve, then ψ extends to a homeomorphism from D̄ onto S̄.

Figure 3: ψ : D→ S = {reiθ : 1
2
< r < 1, 0 < θ < π}

By the Schwarz-Pick Theorem (see [12]), for any z in D,

1− |z|2

1− |ψ(z)|2
≤ 1

|ψ′(z)|
.

We let ϕ be the analytic self-map of D given by ϕ(z) := (ψ(z))2+δ, δ ≥ 0. First, suppose
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that δ = 0. Then, ϕ maps the unit disk D to the set

S∗ := {z ∈ D : |z| > 1

4
} \ (

1

4
, 1).

As in the case of the square root function on the upper half plane, |ψ′(z)| grows without

bound for the points that ψ maps to the corner points of ∂S.

Figure 4: ϕ : D→ S∗ := {z ∈ D : |z| > 1
4
} \ (1

4
, 1)

Let ξ be a point in T such that ψ(ξ) is a corner point of ∂S. Then, for any ε > 0, we can

find a region R about ξ, such that, for all z in R,

1− |z|2

1− |ψ(z)|2
≤ 1

|ψ′(z)|
< ε.

Since |ψ(z)| < 1, for all z in R we have

1− |z|2

1− |ϕ(z)|2
=

1− |z|2

1− |ψ(z)|4
<

1− |z|2

1− |ψ(z)|2
≤ 1

|ψ′(z)|
< ε.

Thus, these points are not contained in

Ωε := {z ∈ D :
1− |z|2

1− |ϕ(z)|2
≥ ε}
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and, hence, the image of this set R under ϕ is not contained in Gε. To see that ϕ does not

induce a closed-range composition operator in this case, we need to show that the condition

(∗) is not satisfied. To this end, let {pn} be a sequence of points in [0, 1) converging to 1 and

consider the sequence of pseudohyperbolic disks, ∆(pn, r), of radius r with center pn. Each

pseudohyperbolic disk ∆(pn, r) is a Euclidean disk with radius

qn =
r(1− p2

n)

1− p2
nr

2

and center

cn =
pn(1− r2)

1− p2
nr

2
.

The Euclidean distance from the point 1 to the boundary of ∆(pn, r) is given by (1−pn)(1−r)
1+pnr

for each n. Notice that the ratio of this distance to the Euclidean radius of each k is r(1+pn)
1−r ,

which approaches the ratio 2r
1−r as pn → 1. Hence the sequence of pseudohyperbolic disks,

∆(pn, r) is approaching the unit circle T nontangentially. In other words, we can find a stolz

region which contains each of the disks.
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Figure 5: The Sequence ∆(pn, r) approaches ∂D nontangentially.

Then, for any ε > 0 and any r in (0, 1), there exists an N in N with the preimage of ∆(pn, r)

under ϕ contained in R whenever n > N . Therefore, ∆(pn, r)
⋂
Gε = ∅ and condition (∗)

fails.

Now, suppose that δ > 0. Then, ϕ(z) := (ψ(z))2+δ maps the unit disk D to the outer annulus

S∗ := {z ∈ D : |z| > 1
4
}. We will see that ϕ now maps a region of points contained in Ωε to

an outer annulus, and hence, condition (∗) will be satisfied. In fact, provided that ε > 0 is

sufficiently small, we will see that the entire annulus S∗ := {z ∈ D : |z| > 1
4
} is contained in

Gε. We define θε to be the smallest angle such that {reiθ : π − θε ≥ θ ≥ θε and r ≥ 1
2
} is

contained in the image of Ωε under ψ. For the given δ, we can choose ε small enough such

that θε <
δπ
4

. We let γ1 denote the set of points {reiθ : 0 < r < 1} and γ2 denote the set of

points {rei(π−θ) : 0 < r < 1}.
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Figure 6: The set of points {reiθ : π − θε ≥ θ ≥ θε and r ≥ 1
2
} is contained in the image of

Ωε under ψ.

Now, under ϕ, points in γ1 are mapped to points along the radius from 0 to ei(2θε+δθε).

Similarly, points in γ2 are mapped to points along the radius from 0 to ei(2+δ)(π−θε). Since

θε <
δπ
4

, we have that the reference angle δπ − θε(2 + δ) is greater than the angle (2 + δ)θε.

Figure 7: Gε contains the entire outer annulus S∗.
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Hence, the image under ϕ of the set {reiθ : π − θε ≥ θ ≥ θε and r ≥ 1
2
} overlaps itself and

we have that Gε contains the entire outer annulus S∗ := {z ∈ D : |z| > 1
4
}. Thus, condition

(∗) is satisfied and ϕ induces a closed-range composition operator when δ > 0.

3.2 Frostman Blaschke Products

Note that the following Frostman Blaschke product example appears in [4]. Remember that

we define a Blaschke product B to be a function of the form

B(z) =
∞∏
n=1

|an|
an

an − z
1− ān

where z ∈ D, {an} is a sequence of points in D with the property that
∑∞

n=1(1− |an|) <∞,

and |an|
an

is taken to be 1 if an = 0. For ζ in T, define gB(ζ) by

gB(ζ) =
∑
n

1− |an|2

|ζ − an|
.

By a theorem of Frostman, see [7], the Blaschke product B has a unimodular nontangential

boundary value at ζ in T exactly when gB(ζ) =
∑

n
1−|an|2
|ζ−an| < ∞. If gB(ζ) converges for

every ζ in T, then we call B a Frostman Blaschke Product. In other words, B is a Frostman

Blaschke product if B has unimodular nontangential boundary values at every point ζ in T.

Denote the set of accumulation points of the sequence {an} in T by σB. By Theorem 1 in

[18], if B is a Frostman Blaschke product, then σB is nowhere dense in T. For ζ in T, we

define hB(ζ) by

hB(ζ) =
∑
n

1− |an|2

|ζ − an|2
.

By page 183 in [22], B has an angular derivative at ζ in T exactly when hB(ζ) <∞. Hence,

a Frostman Blaschke product B will have an angular derivative at every point ζ in the dense
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open set T \ σB, but not necessarily at points in σB. Let {Iν} be the collection of subarcs

of T \ σB, and for each ν, define ων to be the (possibly infinite) number of radians through

which B wraps Iν . If, for some ν0, B(Iν0) = T, then the proof of Lemma 3.1 in [1] gives us

that

ων0 =

∫
Iν0

hB(ζ)|dζ| > 2π.

Therefore, by Theorem 3.4 in [1] and Theorem 2.3, we have that Cϕ is closed-range on every

weighted Bergman space Ap
α. Suppose, then, that such a ν0 does not exist. In that case,

for every ν, B(Iν) is an open subarc of T. If
⋃
ν B(Iν) = T, then, since T is compact, there

exists an integer N > 0 so that
⋃N
ν=1 B(Iν) = T. Then, there is a compact subset K of⋃N

ν=1 Iν such that B(K) = T. If ε > 0 is small enough, K will be contained in the closure of

Ωε := {z ∈ D : 1−|z|2
1−|B(z)|2 > ε}. Hence, by Theorem 2.3, the composition operator CB will be

closed-range on every weighted Bergman space Ap
α. Thus, a sufficient condition for CB to be

closed-range on each of the weighted Bergman spaces is that
⋃
ν B(Iν) = T.

Lemma 3.1 (Lemma 2.5 in [4]) Let B be a Frostman Blaschke product with infinitely many

zeros {an}∞n=1, listed according to multiplicity. Then, for any point ζ∗ in σB and for any

δ > 0, there exists a subsequence {ank}∞k=1 of {an}∞n=1 such that |ζ∗ − ank| < δ for all k and

sup
ζ∈σB

1− |ank|2

|ζ − ank|
→ 0

as k →∞.

Proof. Suppose there exists δ, c > 0 and ζ∗ ∈ σB such that

sup
ζ∈σB

1− |an|2

|ζ − an|
≥ c
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whenever |ζ∗ − an| < δ. Since ζ∗ is in σB, we can find ζ1 in σB and n1 > 0 such that

|ζ∗ − an1| < δ and

1− |an1|2

|ζ1 − an1|
>
c

2
.

So, by choosing an1 close enough to ζ∗, we can make ζ1 as close to ζ∗ as we want. Since ζ1

is in σB, we can find n2 > n1 so that an2 is close enough to ζ1 so that |ζ∗ − an2| < δ. Then,

there exists ζ2 in σB so that

1− |an2|2

|ζ2 − an2|
>
c

2
.

Thus, by choosing an2 close enough to ζ1, we can make ζ2 to be as close to ζ1 as we would

like. Hence, for j = 1, 2, we can force |ζ∗ − ζ2| < δ and

1− |anj|2

|ζ2 − anj|
>
c

2
.

In a similar manner, we can choose n3 > n2 so that an3 is close enough to ζ2 to ensure that

|ζ∗ − an3| < δ and we can find ζ3 in σB so that an3 is close enough to ζ2 to ensure that

|ζ∗ − an3| < δ, and we can choose ζ3 in σB so that |ζ∗ − ζ3| < δ and

1− |anj|2

|ζ3 − anj|
>
c

2

for j = 1, 2, 3. We may then continue in this manner to find a subsequence {anj}∞j=1 of

{an}∞n=1 and a sequence {ζj}∞j=1 in σB with the property that

1− |anj |2

|ζJ − anj |
>
c

2
,

where J ∈ N and 1 ≤ j ≤ J . By the compactness of σB, {ζj}∞j=1 has an accumulation point,

ζ0, in σB, which also fulfills the condition

1− |anj |2

|ζ0 − anj |
≥ c

2
.
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But this means that gB(ζ0) =
∑

n
1−|an|2
|ζ0−an| diverges, and hence, B cannot be a Frostman

Blaschke product. Thus, the result is proved. 2

Proposition 3.2 (Proposition 2.6 in [4].) Let B be a Frostman Blaschke product with in-

finitely many zeros {an}∞n=1, listed according to multiplicity, and let {Iν}ν be an enumeration

of the components of T \ σB. Let ων denote the number of radians through which B wraps

Iν, which may be infinite. Then, for any point ζ∗ in σB and any δ > 0, at least one of the

following hold.

1. There is a component Iν0 of T \ σB such that dist(ζ∗, Iν0) < δ and ων0 =∞.

2. There are infinitely many components {Iνk}∞k=1 of T\σB contained in {ζ ∈ T : |ζ−ζ∗| <

δ} such that lim infk→∞ ωνk ≥ 2π.

Proof. By Lemma 3.1, we can find a sequence {ank}∞k=1 ⊂ {an}∞n=1 such that each ank is as

close to ζ∗ as we wish. We can also find a corresponding sequence {Iνk}∞k=1 of not necessarily

distinct components of T \ σB such that

sup
ζ∈T\Iνk

1− |ank |2

|ζ − ank |
→ 0,

as k →∞. Since, for 0 < a < b,
∫ b
a

1
t2

= b−a
ab

< 1
a
, we have∫

T\Iνk

1− |a2
nk
|

|ζ − ank |2
|dζ| → 0

and so ∫
Iνk

1− |a2
nk
|

|ζ − ank |2
|dζ| → 2π

as k →∞. Since, by Lemma 3.1 in [1],

ων ≥
∑

{k:ν(k)=ν

∫
Iνk

1− |a2
nk
|

|ζ − ank |2
|dζ|,
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the proposition is proved. 2

If there is a ζ∗ in σB and a δ > 0 so that condition (1) in proposition 3.2 holds, then the

composition operator CB will be closed-range on Ap
α for every p, 1 ≤ p < ∞. But then, if

CB is not closed-range on Ap
α for every p, then it must be that condition (2) in proposition

3.2 holds. It must also be the case that
⋃
ν B(Iν) 6= T. If condition (2) and the previous

statement are both true, then, there exists ζ0 in T so that for and open arc γ in T having

nonempty intersection with ϕB, B (γ \ ϕB) = T \ {ζ0}. This does not seem very probably

and one may suspect that every Frostman Blaschke product will give rise to a closed range

composition operator CB on every Ap
α space. Indeed, J. Akeroyd and P. Ghatage have

constructed an example of a Frostman Blaschke product that does not do so. Suppose B is

a Frostman Blaschke product such that CB is not closed-range on Ap
α for any p. Since any

pertubation of a zero of B affects the image of each component under B of T\ϕB unequally,

then for a Blaschke product B∗ obtained by shifting the location of only one of the zeros

of B, CB∗ will be closed-range on Ap
α for any p. Thus, if the composition operator CB is

not closed-range on Ap
α for every p then there is a sequence of Frostman Blaschke products

{B∗k}∞=1 so that CB∗ is closed-range on Ap
α for every p.
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