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ABSTRACT 

Soil testing methods such as the Illinois Soil Nitrogen Test (ISNT) and Direct Steam 

Distillation (DSD) have been developed which measure alkaline hydrolyzable-N (AH-N) as a 

means of estimating potentially mineralizable-N. Crop residues play an important role in N 

cycling. However, the ability of the ISNT and DSD methods to determine AH-N within crop 

residues is unknown. Therefore, the first objective of this study was to determine the ability of 

the ISNT and DSD to quantify potentially mineralizable-N within five different crop residues 

common to Arkansas. Corn (Zea mays L.), soybean (Glycine max, L.), wheat, rice (Oryza sativa, 

L.), and grain sorghum (Sorghum bicolor, L.) residues were labeled with 15N using 10 atom% 

15N labeled-urea. A 0.2 g subsample of residue was subjected to both the DSD and ISNT. 

Hydrolyzed-N was captured and analyzed for atom % 15N to compare fertilizer atom % 15N to 

that of the original residue. Total N was quantified to establish percent recovery. Analysis of 

variance for percent N recovery showed a significant residue by method interaction (p<0.0001) 

indicating that the two methods recovered varying amounts of N based on the type of residue. 

Atom % 15N recovered from the soybean residue as AH-N was significantly lower than what was 

quantified in the plant tissue. Conversely, atom % 15N recovered from the rice residue as AH-N 

was significantly greater than that which was quantified in the original plant tissue. Comparison 

of atom % 15N in the residue and recovered AH-N suggested that certain crop species partition 

fertilizer N differently. The final objective of this study was to determine the influence of N rate 

and application time on fertilizer N uptake efficiency (FNUE) for winter wheat on a poorly-

drained silt loam soil. Six different fertilizer N-rates were applied by hand ranging from 0 to 225 

kg N ha-1 at three different times: Early-single, Late-single, and Split applications in 1.5 x 1.74 m 

microplots using 2.65 atom% 15N-labeled urea. There was a significant application time by rate 



 

 

interaction (p<0.0408). The greatest FNUE was achieved with the Early-single and Split 

applications at the 90 kg N ha-1 rate, and were 80.1% and 83.1%, respectively. The minimum 

yield-maximizing, N-rate was determined to be 135 kg N ha-1 applied as an Early-single or Split 

application. The Late-single application across all N-rates resulted in lower FNUE and yield. 

Soil N uptake was not significantly different for any of the treatments that received fertilizer 

regardless of N rate or timing of application, but were significantly higher than soil N uptake 

where no fertilizer was applied. Total N uptake by the wheat was directly related to fertilizer N 

uptake with the Early-single and Split application tending to have higher TN uptake than the 

Late-single application. Results of both the TN uptake and FNUE support the yield data obtained 

in these trials and indicate that current N rate recommendations for wheat produced in the delta 

region of Arkansas optimize fertilizer N inputs while maintaining high yields. These results 

highlight the importance of proper rate and application time for maximizing FNUE and yield in 

winter wheat production.   
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CHAPTER ONE 

Introduction and Literature Review 
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INTRODUCTION 

 United States agriculture is an extremely important industry contributing to almost one 

percent of the domestic GDP and the U.S. is the world’s largest agricultural exporter. Wheat 

(Triticum aestivum L.) is ranked as the third largest field crop, in terms of total acreage, with 

corn (Zea mays L.) and soybeans (Glycine max L.) holding the first and second rankings. In 2011 

alone, 18,490,000 ha of wheat were produced in the U.S. and approximately half was exported to 

countries around the world. With worldwide populations growing and diminishing farmland, due 

to the development of arable land, producers are faced with the challenge of growing more food 

on less cropland. Over the past 50 years, corn yields have tripled and wheat yields have doubled, 

despite fewer acres being farmed. Although wheat has continued to hold a considerable portion 

of the agricultural industry, its production has continued to decline due to changes in government 

policies that allow farmers more freedom in planting, increased corn planting for ethanol, and 

lower profits compared to other crops (Economic Research Service, 2012). 

Mississippi, Louisiana, and Arkansas play a significant role in U.S. wheat production. 

Although rice (Oryza sativa L.) is a dominant crop in Arkansas, over 210,000 ha of wheat were 

harvested in Arkansas in 2011 with a five-year average wheat harvest of 215,000 ha (National 

Agricultural Statistics Service, 2012). Southeastern wheat production is mainly located on 

poorly-drained silt-loam to clayey-textured soils. This presents no problem for rice production, 

but wheat is best suited for production on soils with adequate internal drainage and does not 

perform well under water-logged conditions. Typically, the seasons of wheat dormancy and 

growth (winter and spring) have greater total rainfall than summer or fall. Average seasonal 

rainfall in the Arkansas Delta Region, as reported by the National Oceanic and Atmospheric 



3 
 

Administration, for winter and spring seasons are 33.4 cm and 38.8 cm, respectively. Low 

temperatures combined with small plants and heavy precipitation allows for little 

evapotranspiration to alleviate potentially saturated soils of the excess moisture. Other problems 

associated with poorly drained soils are the buildup of Fe2+ and Mn2+ in the soil and wheat plant 

resulting in concentrations that may be toxic and severely limit wheat yields (Carver et al., 

1995). Wheat is successful grown on these poorly drained soils by placing the wheat on raised 

beds or through the use of drainage ditches to allow drainage of excess water from the field. 

In addition to dealing with less than optimal growing conditions, agriculture production 

costs continue to rise. Nitrogen (N) fertilizer represents one of the greatest costs of production 

agriculture, and prices of fertilizer N continue to rise as demand and manufacturing costs 

increase. With fossil fuel prices rising, there seems to be no decrease in fertilizer N prices in the 

foreseeable future, which raises the stakes for implementing greater fertilizer N uptake efficiency 

(FNUE) and management practices. World-wide, N is the most heavily applied nutrient in 

production agriculture, both in terms of tonnage and acreage. For cereal crops N is the most 

limiting nutrient to growth and therefore must be applied to most fields to maximize yield and, 

correspondingly, profit. In 2012 fertilizer N represented 31% ($1.50 kg-1) of the input production 

costs associated with Arkansas wheat production, and this fraction is larger than any other row 

crop produced within the state (University of Arkansas Cooperative Extension Service, 2012). 

Due to the large portion of input costs devoted to N it is imperative that FNUE is maximized in 

order for producers to remain profitable and stay in business. 

The majority of Arkansas wheat research to date has been conducted on well-drained 

soils, and a study is needed that establishes the fertilizer N needs and efficiency of wheat 

produced on poorly-drained soils, where most of the wheat in Arkansas is predominantly 
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planted. Incorporating a study using the stable isotope N15, will allow direct quantification of the 

FNUE. Marginal cost has become vital for producer profitability in wheat. With so little room 

for error, it is essential that maximum FNUE is achieved.  

Current averages reported by the National Agricultural Statistics Service (2011) for 

winter wheat fertilizer N are based on yield goal in bushels acre-1. Current Nitrogen rate 

recommendations can range from 85-225 kg N ha-1, but do not take into account the current 

levels of potentially mineralizable soil-N which may differ greatly from one location to the next. 

Over-application of fertilizer N can lead to yield decreases, and profit losses by both increased 

cost and decreased yield. Current fertilizer N recommendations for Arkansas wheat grain 

production range from 100 to 135 kg N ha-1 on loamy-textured soils following crops other than 

fallow (less N) or rice (more N). According to the 2011 Wheat Verification Program, producers 

participating in the program were applying approximately 135 to 145 kg N ha-1, which is slightly 

above the recommendation guidelines. 

The objective of the literature review is to give a brief overview of the previous research 

in wheat which relates to fertilizer N uptake and utilization on poorly-drained soils, and to 

summarize the research status which pertains to how crop residue type and placement affects its 

N content and the ability to quantify it by different chemical methods.  

 

  



5 
 

LITERATURE REVIEW 

Wheat Production 

 Wheat N uptake experiments in Arkansas using the stable isotope 15N were conducted by 

Bashir et al. (1997) on a Roxanna silt loam near Kibler, AR. Nitrogen fertilizer was applied at 

tillering in two applications at a rate of 112 kg ha-1. Bashir et al. (1997) concluded that a 

maximum fertilizer N accumulation of 74.4% occurred in the plant at flag leaf emergence then 

declined until maturity. This indicates that plant sampling should be conducted at the flag leaf 

emergence stage for accurate fertilizer N uptake measurements.  Approximately 86% of applied 

fertilizer was accounted for in the plant and the soil. A study by Daigger et al. (1976) showed 

that as the amount of fertilizer N applied increased, N losses became increasingly greater. A 

possible means of applied N loss is thought to be ammonia volatilization through the leaves and 

spikes of the wheat plants themselves. Parton et al. (1998) and Wetselaar and Farquhar (1980) 

showed that plants with larger leaf surface area have greater N losses (and lower NUE) than 

those with less leaf area. Hence, stomatal conductance, which is increased by high light intensity, 

high temperature, high N level, and plentiful moisture, increase N losses. Although a greater 

understanding of N assimilation was obtained, Bashir’s experiment was carried out on well-

drained soil, which does not give an accurate representation of typical soils used for wheat 

production in Arkansas. This poses a problem when trying to give recommendations to producers 

or base further research decisions off of the previously conducted ones. Hence, a study 

conducted on poorly drained soils more commonly used for wheat production needs to be 

initiated.  
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 Nitrogen is generally the most growth limiting nutrient and essential to crop quality 

because protein content in crops is directly related to N supply. Ecologically, efficient use of 

fertilizer N is important to long-term sustainability, ground water quality, greenhouse gas 

emission, and global warming due to NO3
- leaching and N2O emissions (Grant, 2002). Nitrogen 

management plays a substantial role in improving quality and yield in crops, ensuring 

environmental safety, and maximizing production economics (Campbell, 1993).  

Crop Residue Effect on Mineralization 

 Legume and cereal crop residue plays a significant role in soil N cycling. Type of 

residue, placement, level of incorporation, and water management can dictate potentially 

mineralizable soil-N. Many researchers have devoted studies to how crop residues affect 

denitrification and N mineralization in the soil. These studies report wide variations in 

mineralized-N associated between incorporated and surface-applied crop residues. In some cases, 

N immobilization actually increased (Doran, 1987; Aulakh, 1991). Aulakh et al. (1991) 

researched the effect of vetch (Vicia villosa), soybean, corn, and wheat crop residue on N 

mineralization and found that in crops possessing wide C:N ratios, a net N immobilization 

occurred, whereas crops with low C:N ratios (vetch, soybean) can increase N mineralization in 

the soil. Drury et al. concluded in 1991 that cover crop varies by type in amount of readily 

available C, and that this is related to denitrifying microbial activity and N mineralization later in 

the season.   

Illinois Soil Nitrogen Test 

 In order to make accurate fertilizer N recommendations, the proper soil-N fraction must 

be measured. Because of the dynamic nature of soil NO3
- concentrations, measuring the organic 
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soil N supply that mineralizes to feed the plant would be ideal rather than measuring only NO3
- . 

Mulvaney et al. (2001) identified amino sugar-N as this ideal measurable soil N fraction. He and 

his colleague then developed the Illinois Soil Nitrogen Test (Kahn et al., 2001) now referred to 

as the ISNT. Though the ISNT is able to identify soils cropped to corn with an amino sugar-N 

concentration above a critical level as nonresponsive to N-fertilizer applications (>250 mg kg-1) 

or responsive (<200 mg kg-1), it is unable to give N-fertilizer rate recommendations based on 

these results.  

 Previous techniques to determine potential N mineralization are based on anaerobic and 

aerobic incubation of the soil, and although these are consistent and relatively accurate, they do 

not lend themselves to routine laboratory analysis due to the ~ 14 d analysis time. Bushong et al. 

(2008) determined that the ISNT was a comparable N-testing technique that was more conducive 

for routine soil analysis due to its simplicity and rather quick analysis time. 

 Wall et al. (2010) and Steckler et al. (2008) both concluded that further ISNT studies 

were needed to calibrate site-specific recommendations.  Wall et al. (2010) inferred that because 

the ISNT measures the microbial fraction of soil N, variability in microbial populations among 

regions would make it impossible to apply the same ISNT-based fertilizer recommendations 

across a variety of soils. They stated that site-specific calibrations with defined sampling periods 

should be further investigated because of soil ISNT-N differences attributed to sampling depth, 

tillage, previous crop, soil texture, etc. Steckler et al. (2008) added to Wall’s investigations by 

concluding that ISNT results were also influenced by landscape positions. His study was able to 

use the ISNT to broadly categorize soils as either having high or low N fertility, but they found 

no relationship on a field-by-field basis. Some of his results attributed landscape position as a 
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possible culprit for ISNT-N variability due to differences in N loss mechanisms according to 

these positions.  

Direct Steam Distillation (DSD) 

 Roberts et al. (2009) identified Direct Steam Distillation (DSD) as a less variable and 

more time/resource efficient method than the ISNT. Although the ISNT recovers more amino 

sugar-N as a whole, DSD has less sample to sample variability and recovers a larger percentage 

of soil-N. The ISNT detects amino sugar-N and NH4-N, but does not measure any additional 

amino acid-N as the DSD does. The DSD method is also a more rapid analytical method, 

requiring only 6 to 7 min per sample, as opposed to a 5 h incubation with the ISNT. This time 

savings gives laboratories the ability to analyze a greater volume of samples in a given period of 

time. The original ISNT method was conducted on hot plates in an open environment which was 

prone to quantifying different levels of potentially mineralizable soil N, based on changing 

environmental laboratory conditions. The DSD also gives laboratories the ability to better control 

the analytical environment therefore decreasing sample to sample variability. 

N-STaR: Nitrogen Soil Test for Rice 

Roberts et al. (2009) took DSD a step further, by investigating the relationship between N 

mineralization and soil depth. They concluded that soil sampling depth was variable across both 

sites and depths and showed the importance of calibration based on soil texture and cropping 

system. From this, N-STaR was developed using correlation and calibration procedures, which 

made fertilizer N predictions possible for rice. Initially, N-STaR was based on calibration studies 

and DSD techniques for rice on silt loam soils. Similar studies have been conducted with wheat 

on silt loam soils, although the data have not been published. By analyzing crop residues using 
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N-STaR, conclusions can be drawn to further expand the capabilities of this technology and 

determine how much potentially-available N the N-STaR method is able to detect in plant 

material, as opposed to soil samples. After determining the amount of AH-N contained within 

these residues, further research will be able to determine the amount of potentially mineralizable-

N credited to soils through crop residues, and make N-STaR recommendations to producers 

accordingly. Therefore, the objective of this study was to compare the quantity of total nitrogen 

(TN) and atom % 15N recovered by the ISNT and DSD methods from crop residues commonly 

grown in Arkansas and to determine how the N proportions from crop residues as measured by 

AH-N methods compare with traditional crop residue analysis. 

SUMMARY 

Correct application of fertilizer N is crucial for maximizing yield and minimizing 

environmental N loss. Most wheat production in Arkansas is located on the poorly-drained 

loamy and clayey textured soils of the Mississippi Delta Region. To date, most literature on 

FNUE is based on experiments conducted on well-drained soils. By conducting a study on a 

poorly-drained silt loam soil, determination of the most efficient N rate and application time can 

be made which relate directly to the majority soils used for Arkansas wheat production. 

Additionally, including a lab study which defines the ability of ISNT and DSD to measure AH-N 

will allow N-STaR to make more accurate potentially mineralizable-N estimations and 

appropriate fertilizer N recommendations to producers in regards to crop residue management. 

Thus, the first objective of this study is to determine how soft red winter wheat yield and FNUE 

are influenced by N-rate and time of application on poorly-drained silt loam soils using 15N-

labeled urea. The second objective of this study is to establish to what degree the ISNT and DSD 

measure N in crop residues themselves, and determine if C:N ratio affects the ability to quantify 



10 
 

amino sugar-N. From there, further decisions can be made of what management practices, 

recommendations, and soil sampling instructions should be given to farmers who include crop 

residues as part of their production practices. 
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CHAPTER TWO 

Quantifying Alkaline Hydrolyzable-N in Crop Residues 
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ABSTRACT 

Crop residues play a significant role in soil nitrogen (N) cycling. The type of residue, 

C:N ratio, tillage, and soil moisture influence potentially mineralizable soil-N. This study was 

established to estimate the N mineralization potential of various crop residues using Direct 

Steam Distillation (DSD) and the Illinois Soil Nitrogen Test (ISNT). Corn (Zea mays L.), 

soybean (Glycine max, L.), wheat (Triticum aestivum, L.), rice (Oryza sativa, L.), and grain 

sorghum (Sorghum bicolor, L.) residues were labeled with 15N using 10 atom% 15N labeled-urea. 

To assess the N mineralization potential of various crop residues, 0.2g of residue was subjected 

to both the DSD and ISNT. Hydrolyzed-N was captured and analyzed for atom % 15N to 

compare fertilizer atom % 15N to that of the original residue. Total N was quantified to establish 

percent recovery. For percent N recovery there was a significant residue by method interaction 

(p<0.0001) indicating that the two methods recovered varying amounts of N based on the type of 

residue. Atom % 15N recovered from the soybean residue as alkaline hydrolyzable-N (AH-N) 

was significantly lower than what was quantified in the plant tissue. Conversely, atom % 15N 

recovered from the rice residue as AH-N was significantly greater than that which was quantified 

in the original plant tissue. Comparison of atom % 15N in the residue and recovered AH-N 

suggested that certain crop species partition fertilizer N differently. Specific estimation of N 

mineralization potential of crop residues could aid producers in determining fertilizer N needs 

and encourage the development and implementation of soil-based N tests. 
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INTRODUCTION 

Legume and cereal crop residue play a significant role in soil nitrogen (N) cycling. Type 

of residue, placement depth, level of incorporation, and water management can influence residue 

decomposition and potentially mineralizable soil-N. Many researchers have assessed how crop 

residues affect N mineralization and denitrification in the soil. These studies found wide 

variations associated with incorporated and surface-applied crop residues. Aulakh et al. (1991) 

researched the effect of vetch (Vicia villosa), soybean, corn, and wheat crop residue on N 

mineralization and found that crops possessing wide C:N ratios resulted in net N immobilization, 

whereas crops with narrow C:N ratios (vetch, soybean) can result in net N mineralization in the 

soil. Those in which a net N mineralization occurs provide readily available N for plant uptake, 

thus potentially decreasing fertilizer N needs. However, net N immobilization, due to the N 

required by the microbes to decompose the residue, could possibly increase fertilizer N needs in 

order to maximize crop yield.  Drury et al. (1991) concluded that cover crops vary widely in the 

amount of readily available C, and this is related to denitrifying microbial activity and N 

mineralization later in the season. If the soils where crop residues are incorporated experience 

net N mineralization during the season, the successive crop’s N needs are supplemented by the 

incorporated crop residues. Thus, fertilizer N needs are reduced by crop residues in which a net 

N mineralization occurs.  

Much research has been conducted to determine a chemical soil analysis procedure that 

could correctly quantify or estimate potentially mineralizable soil-N and in turn be calibrated to 

predict crop fertilizer N needs. Mulvaney et al., (2001) identified a soil organic-N fraction that 

was reportedly able to determine corn responsiveness to fertilizer N. A subsequent publication 

outlined a simpler version of the soil organic-N test, which was coined the Illinois Soil Nitrogen 



16 
 

Test (ISNT) (Kahn et al., 2001). The ISNT estimates potentially mineralizable soil-N based on 

alkaline hydrolysis which has been referred to as alkaline hydrolyzable-N (AH-N). Although the 

ISNT has been reported to be able to accurately predict N responsive versus N nonresponsive 

soils (Khan et al., 2001), Barker et al. (2006) concluded it was unable to provide fertilizer N rate 

recommendations for the responsive soils. The premise for ISNT is that it estimates potentially 

mineralizable soil-N by mimicking microbial N mineralization via estimating amino sugar-N, 

NH4-N, and some amino acid-N (Khan et al., 2001). However, it has been shown to suffer from 

sample analysis variability due to its susceptibility to environmental laboratory conditions and 

extensive analysis time (Bushong et al., 2008; Spargo and Alley, 2008). In response to the issues 

of sample variability and time requirement, a direct steam distillation (DSD) technique was 

developed by Bushong et al. (2008). The DSD method is a modified alkali distillation procedure 

which also measures AH-N, but reduces sample variability and analysis time from 5 hr to 

approximately 7 min. Later, the N-Soil Test for Rice (N-STaR) was developed to correlate soil 

AH-N concentrations obtained by DSD to specific fertilizer N recommended rates for rice 

produced on silt loam soils (Roberts et al., 2011).   

Understanding how crop residues interact with chemical estimates of N mineralization of 

potentially mineralizable-N compounds found in common crop residues will be important for the 

implementation of these new N soil test methods. It is known that crop residues contribute to N 

cycling in the soil and successive crop N needs. Traditionally, crop residue N availability has 

been estimated by means of incubation, but these are often untimely and laborious. The ISNT 

and DSD have shown to correlate well with N mineralization estimates from soil incubation 

studies (Bushong et al., 2008). However, it is unknown if AH-N methods correlate with crop 

residue incubations in a similar manner. Therefore, the objective of this study was to compare 
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the quantity of total nitrogen (TN) and atom % 15N recovered by the ISNT and DSD methods 

from crop residues commonly grown in Arkansas and to determine how the N proportions from 

crop residues as measured by AH-N methods compare with traditional TN analysis of crop 

residue. 

METHODS AND MATERIALS 

Labeling Crop Residues with 15N 

A greenhouse study was initiated to label crop residues with 15N for a series of laboratory 

studies to quantify the potentially mineralizable-N contained in the residues. Corn, soybean, rice, 

wheat and grain sorghum are the primary row crop species produced in Arkansas and thus, were 

selected as they represent the crop residues that would most likely influence N 

mineralization/immobilization and ultimately the successive crop’s fertilizer N needs. Pots were 

filled with air dried Captina (fine-silty, siliceous, active, mesic, typic fraguidults) silt loam soil 

that was obtained from the Arkansas Agricultural Experiment Station located in Fayetteville, 

AR. Routine soil analysis indicated a pH of 6.8 and although all nutrients were within the 

acceptable range for the crops species selected, a nutrient solution based on the work of Yoshida 

(1998) was used weekly throughout the growing season to ensure that nutrients other than N 

were non-limiting.  Urea labeled with 10 atom% 15N was obtained from Sigma Aldrich 

(Miamisburg, OH, USA) and used as the primary N source for all species including soybean. 

Fertilizer N additions were applied to each crop based on growth stages outlined by University of 

Arkansas recommendations for wheat, grain sorghum, corn, and rice (Johnson, 1992; Espinoza 

and Kelley, 2003; Espinoza and Ross 2003; Hardke, 2013) in the respective crop production 

handbooks. Crops were allowed to grow until physiological maturity, after which time the grain 
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was removed and the remaining crop biomass or residue was collected and oven-dried at 60˚ C 

until a constant moisture level was achieved. Following drying, the remaining plant biomass of 

the various crops were weighed and then ground to pass a 2-mm screen, and a subsample of 0.1 g 

was analyzed for total C (TC) and TN using an Elementar vario Max (Elementar 

Analysensysteme GmbH, Hanau, Germany). Atom % 15N of the plant biomass of the various 

crops were determined by the UC Davis Stable Isotope Facility (Davis, CA), using an elemental 

analyzer interfaced to a continuous flow isotope ratio mass spectrometer (Europa, Sercon, Ltd., 

Cheshire, UK).  

Quantification of Potentially Mineralizable Nitrogen 

Potentially mineralizable-N was determined using the DSD procedure developed by 

Bushong et al. (2008). Dried and ground crop residues were weighed (0.2 g) and placed in a 

micro-Kjeldahl flask (250 mL) and attached to the steam distillation apparatus. The addition of 

10 mL of 10 mol L-1 NaOH was added through the sample cup to prevent any loss of N prior to 

attachment of the flask to the steam distillation unit.  Distillation proceeded for approximately 5 

min at a rate of 7 mL min-1, or until 35 mL of distillate was collected in 5 mL of 4% w/v H3BO3 

acid indicator solution. An acidimetric titration technique was used to quantify the amount of 

NH4
+ captured. Sequential distillations were performed on all samples containing 15N to 

minimize cross-contamination error much like the duplicate aliquot technique described by 

Mulvaney (1986). That is, the first distillation conditioned the still and was collected in H3BO3-

indicator solution for quantification of NH4
+ and the second distillation was collected in 0.1 mol 

L-1 H2SO4 and used for 15N analysis.  

Crop residues were also analyzed according to the modified ISNT described by Spargo et 

al. (2008) for comparison. A 0.2 g oven-dried plant sample was placed into a corresponding 473 
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mL modified Ball jar (Broomfield, CO). The lid was pre-fit with cable ties and machine screws 

to suspend a 60-mm diameter Pyrex petri dish above the ground plant sample. Ten mL of 2 mol 

L-1 NaOH solution was added to the sample and mixed thoroughly. Immediately following 

NaOH addition, 5.0 mL of 4% w/v H3BO3 solution was added to the petri dish and apparatus was 

assembled to the jar and fastened securely with a metal band. Samples were then transferred to a 

Precision Model 815 low-temperature incubator (Thermo Fisher Scientific, Waltham, MA) set to 

50ºC for 15 h. Following incubation, 5.0 mL of deionized water was added and titration was 

completed to determine N content. Samples analyzed for atom % 15N were titrated and then 

treated according to the procedure outlined by Khan et al. (2001) where the H3BO3 was removed 

using methanol and the resulting (NH4)2SO4 solvated using deionized water and prepared for 15N 

analysis. 

As described above, following the DSD and ISNT procedures, AH-N was captured and 

analyzed for atom % 15N to compare to the atom % 15N of the recovered AH-N to that of the 

original crop residue.  Isotope analysis for the recovery and specificity tests were determined at 

the University of Illinois on a Nuclide/MAAS 3-60-RMS double collector mass spectrometer 

(Nuclide Corp., Bellefont, PA) using an automated Rittenburg system (Mulvaney et al., 1990). 

Statistical Analysis 

Percent recovery of the TN from the crop residues data were analyzed as a split-plot with 

analytical method (ISNT and DSD) representing the main plot and crop residue representing the 

sub-plot.  Crop residue following the greenhouse study had varying levels of 15N enrichment due 

to differences in plant uptake of labeled fertilizers and varying growth habits. Therefore, there 

was no comparison of crop residues, but rather a comparison of atom % 15N recovery based on 
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method. A simple one-way ANOVA was used to compare atom % 15N quantification by method 

within a given crop residue and means were separated using Fishers protected LSD at α=0.05 

level. Statistical analyses were conducted using JMP Pro 9 (SAS Institute Inc., Cary, NC).  

RESULTS AND DISCUSSION 

The C:N ratio of crop residues plays an important role in determining whether there will 

be net mineralization or net immobilization of soil N. Percent C, N, and C:N ratio of each of the 

crop residues is presented in Table 1 and indicates a wide range of values based on the different 

crop species used in this study. The N percentages obtained in this study were much higher than 

what would be typical of cereal crop residues, and consequently, the C:N ratios were much 

narrower than the 80:1 estimate suggested in previous literature (Stevenson and Cole, 1999).  It 

is unknown how the relatively narrow C:N ratio of the cereal crops used in this study influenced 

the N recovery and estimate of potentially mineralizable-N. Also, because soybean were 

provided with fertilizer N for 15N labeling purposes, soybean crop residue TN was larger than 

what would be found in the field following harvest for a typical production setting . Therefore, 

residue composition and AH-N values for this study are not necessarily indicative of what would 

occur in a conventional field setting. 

 The percent recovery of N as AH-N from the crop residues was significantly influenced 

by the crop residue × AH-N method interaction (p <0.0001) indicating that the methods varied in 

their ability to hydrolyze N from these crop residues.  Although the magnitude of difference 

between methods varied across crop residues, ISNT consistently recovered greater percentages 

of N as AH-N than did DSD (Table 3). The order of percent N recovery from the crop residues 

by the ISNT and DSD methods from highest to lowest was grain sorghum > rice > soybean > 
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wheat > corn (Table 2).  The methods recovered just a little more N from grain sorghum 

compared to rice, 1 to > 2 % of the N recovered for rice compared to soybean and wheat, and 

about twice as much from grain sorghum and rice as compared to corn.  Regardless of AH-N 

method, ISNT or DSD, the amount of TN recovered as AH-N was for all crop residues.  

Bushong et al. (2008) also reported that the ISNT recovered slightly greater amounts of 

glucosamine-N than did the DSD method.  Additionally, Bushong et al. (2008) compared the 

ISNT and DSD methods in recovering glucosamine-N in soil and measured percent recoveries 

much greater (85-94%) than those we measured from our crop residues presented here (4.39-

11.70%). Recovery of N from these crop residues by the methods as AH-N or potentially 

mineralizable-N is very low. Results by Norman et al. (1990) would support these results for rice 

and soybean which reported 3% and 11% of the N in 15N-labeled rice and soybean residue was 

accumulated in the subsequent rice crop, however, roughly 37% of the N was recovered in the 

rice crop from the 15N-labeled wheat residue which would oppose the results of this study for 

wheat residue.  

The atom % 15N recovery as TN and AH-N by the ISNT and DSD methods were 

determined for each of the crop residues (Table 3). The atom % 15N recovered by the TN method 

represents the atom % 15N label of all N compounds contained within the residue. Contrastingly, 

the atom % 15N values obtained using the ISNT and DSD represent only the atom % 15N label of 

the specific N compounds measured by the two AH-N methods. Unlike TN, the AH-N methods 

do not quantify all of the N compounds contained in the crop residue as evidenced by the percent 

N recoveries of the crop residues.  The ISNT and DSD only quantify elemental N compounds 

such as NH4
+, amino sugars and some amino acids that can be hydrolyzed with alkaline solutions 

(Kahn et al., 2001; Roberts et al., 2009). It is believed that the atom % 15N label of the crop 
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residue was influenced by the way the crops took up and assimilated the fertilizer N in the 

greenhouse. There was a range of initial 15N enrichments based on crop species, and was from 

0.67 atom % 15N for rice to 3.73 atom % 15N for soybean (Table 4). Due to these differences in 

15N enrichment there will be no comparison of crop residues, but rather a comparison of the atom 

% 15N recoveries by each method within a given crop residue.  

When comparing the 15N recovery as influenced by each method, the greatest differences 

were seen in rice, which had the lowest atom % 15N enrichment of all residues, but resulted in the 

highest atom % 15N quantified by the ISNT and DSD. Conversely, soybean had the highest atom 

% 15N enrichment, but the ISNT and DSD recovered the lowest atom % 15N labels from the 

soybean residue. Although soybean residue had the greatest numerical total atom % 15N 

enrichment, both the ISNT and DSD were unable to hydrolyze as much as with the other crop 

residues that possessed a lower 15N label. One potential explanation for this difference is the 

fertilizer N allocation by each specific crop. In legume or N2-fixing plants, such as soybean, a N 

compound known as a ureide (predominantly allantoin or allantoic acid) is produced in response 

to stress (King and Purcell, 2005). Typically the stressor is drought condition. However, other 

factors contributing to stress levels in plants could be elevated in plants confined to pots in 

greenhouse experiments, such as in this study. Soybeans use N2 fixation as a primary N source 

under low soil-N conditions (80-94%) but even under fertile conditions, 25-50% of the TN is a 

result of N2 fixation,  especially during seed development, (Harper, 1987). Although many of the 

ureides stored in the soybean plant are remobilized during seed fill, greater amounts of leaf N are 

redistributed to the seeds than stem N (Purcell et al., 1998; Purcell et al., 2012). Because well 

fertilized soybean residues can have a high stem N concentration, one would assume greater 

amounts of stem ureide concentration to affect the recovery of N by the ISNT and DSD methods. 
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The potential preferential allocation of 15N fertilizer N into ureides may have significantly 

influenced the ability of the ISNT and DSD to quantify the fertilizer N that was assimilated by 

the soybean plant. Although no previous studies have been conducted to determine the ability of 

the ISNT and DSD methods to quantify ureides such as allantoin, work by Mulvaney et al. 

(2001) and Roberts et al. (2009) suggest that these methods would not be able to hydrolyze much 

of the ureide-N due to the relatively low recovery of N from urea (<5% for ISNT and 11% for 

DSD). Based on strength of the cyclic structure of ureides, it is unlikely that the N in these 

compounds are readily mineralized in the soil. 

Contrastingly, in rice, the ISNT and DSD both recovered high numerical atom % 15N 

amounts of AH-N despite much lower initial enrichment. The N metabolism of rice is quite 

different than that of soybean. Literature suggests that a significant portion of N storage in rice 

plants is in the form of amino acids, NH4
+, and some NO3

- depending on the form of fertilizer-N 

applied (Marwaha and Juliano, 1976). The ISNT quantifies roughly 100% of NH4
+ and 50% of 

transition amino acid-N (asparagine and glutamine), whereas DSD is able to quantify 

approximately 100% of the NH4
+ and 30% of the transition amino acid-N. Neither ISNT nor 

DSD quantify NO3
- (Roberts et al., 2009). Therefore, the rice preferentially allocated the 

fertilizer N applied into compounds with a greater degree of quantification by the AH-N methods 

than those into which soybean allocated the fertilizer N. This would explain the differences 

between the soybean and rice crop residue extremes in atom % 15N results. Of the TN contained 

within the other residues, wheat, corn, and grain sorghum had similar atom % 15N recoveries 

intermediate between rice and soybean. This could be explained by the similarities in production 

systems. Although they are cereal crops like rice, they are upland crops and even if irrigated, are 

certainly not produced under continuous flooding conditions. The fertilizer-N source used in this 
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study was urea, and although it is an NH4
+ forming fertilizer, the management practices 

following fertilizer-N application could have a significant impact on the amount and ratio of 

NH4
+ and NO3

- taken up by the various crops and ultimately how they are partitioned in the plant 

(Buerkert et al., 1995). Direct-seeded, delayed-flood rice production uses urea as a fertilizer-N 

source, but the addition of a permanent flood immediately following fertilizer application 

minimizes nitrification and the majority of the N taken up by the rice crop is in the NH4
+ form. 

Upland crops such as corn, grain sorghum and wheat are more likely to take up a combination of 

both NH4
+ and NO3

- as the urea has ample time to hydrolyze and nitrify prior to crop uptake. 

Therefore, cereal crops that are grown under upland conditions appear to assimilate both NH4
+ 

and NO3
- in equal proportions of which the portion which remains in the 15N labeled NH4

+ form 

can only be quantified by AH-N methods.  

CONCLUSIONS 

The results of this study indicate that the ISNT and DSD are similar in AH-N recovery N 

from crop residues though the magnitude of difference between methods among crop residues is 

different. Both methods recovered <12% of N from the crop residues used in this study. Each 

crop allocates fertilizer N differently, and AH-N methods measure these N compounds according 

to N metabolism of the specific crop. Although these methods generally quantified <10% of the 

N within crop residues, the N that is quantified is potentially mineralizable-N, which should be 

available for the subsequent crop. Due to the narrow C:N ratios of the cereal crop residues used 

in this study, it was thought that a greater proportion of potentially mineralizable-N would be 

recovered than what would be recovered from crop residues in the field. However, the low AH-N 

recoveries indicated that this was not the case. 
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No studies have been conducted on ISNT or DSD’s ability to quantify ureides because 

the goal of these methods is to measure potentially mineralizable-N, which is in the form of AH-

N. The presence and persistence of compounds such as ureides in the soil has not been 

documented and their influence on N cycling is not known. It is thought that the ISNT primarily 

measures NH4
+

, amino sugar-N, and to a lesser extent, transition amino acids, and urea.  The 

DSD procedure measures NH4
+

, yet quantifies slightly less amino sugar-N, but greater amounts 

of amino acid-N and some urea-type compounds. With the chemical structure of ureides being 

drastically different than that of amides, more research needs to be conducted to determine how 

much, if any, is quantifiable using the ISNT or DSD as this could influence N rate 

recommendations using N-STaR where soybean is grown in the crop rotation.  

Further research is needed to identify the ability of ISNT and DSD to quantify the N 

contained in crop residues when incorporated into the soil. Data concerning the correct time to 

soil sample following crop residue incorporation will be essential to ensure that the proper N 

credits or deficiencies are accounted for and the correct N rate recommendation is made using 

AH-N soil analysis methods such as N-STaR.  
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Table 2. Comparison of percent nitrogen (N) recovery from crop residues by either the 
Illinois Soil Nitrogen Test (ISNT) or Direct Steam Distillation (DSD) analysis techniques. 
Crop Residue ISNT DSD 

 ----------------% N Recovery----------- 

Rice 11.54 9.59 

Corn 5.58 4.39 

Soybean 9.20 8.32 

Grain Sorghum 11.7 10.09 

Wheat 9.14 7.17 

LSD0.05 to compare % N recovery based on method and 

crop residue 

Same method across crop residues 0.06% 

Same crop residue across methods 0.12% 

 

 

 

 

Table 1. Percent total C (TC), total N (TN) and C:N ratio for the five crops used in this 
study. 
Crop Residue TC TN C:N ratio 

 ------------------%---------------  

Rice 37.43 0.73 51:1 

Corn 41.14 2.09 20:1 

Soybean 42.65 3.79 11:1 

Grain Sorghum 41.11 2.48 17:1 

Wheat 39.91 2.26 18:1 
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Table 3. Comparison of atom % 15N recovered by total N (TN), Illinois Soil Nitrogen Test 
(ISNT), and Direct Steam Distillation (DSD) methods for each crop residue. 
Crop Residue TN ISNT DSD LSD0.05 

 ------------------------ Atom % 15N ------------------------  

Rice 0.67 5.20 5.43 0.18 

Corn 2.09 2.99 3.04 0.05 

Soybean 3.73 0.86 0.86 0.04 

Grain Sorghum 2.50 2.52 2.58 0.09 

Wheat 2.26 2.39 2.41 0.03 
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CHAPTER THREE 

The Influence of Fertilizer 15N Rate and Application Time on Soft Red Winter Wheat Yield 
and Fertilizer N Uptake Efficiency 
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ABSTRACT 

Nitrogen represents 31% of the input costs associated with Arkansas wheat (Triticum 

aestivum L.) production. The only 15N wheat research to date in Arkansas has been conducted on 

well-drained soils, but the majority of production is located on poorly-drained silt loam soils. 

Therefore, a study was conducted during the 2011-2012 and 2012-2013 growing seasons to help 

establish the fertilizer N uptake efficiency (FNUE) of wheat produced on poorly-drained soils 

using the stable isotope 15N. Trials were conducted at the Pine Tree Research Station in Colt, 

Arkansas on a silt loam soil. Six different fertilizer N-rates were applied by hand ranging from 0 

to 224 kg N ha-1 at three different times: Early-single, Late-single, and Split applications in 1.5 x 

1.74 m microplots using 2.65 atom% 15N-labeled urea. There was a significant application time 

by rate interaction (p<0.0408). The greatest FNUE was achieved with the Early-single and Split 

applications at the 90 kg N ha-1 rate, and were 80.1% and 83.1%, respectively. Minimum yield-

maximizing N rate was determined to be 135 kg N ha-1 applied as an Early-single or Split 

application. The Late-single application across all N-rates resulted in lower FNUE and yield. 

Soil N uptake was not significantly different for any of the treatments that received fertilizer 

regardless of rate or timing of application, but were significantly higher than soil N uptake where 

no fertilizer was applied. Total N uptake by the wheat was directly related to fertilizer N uptake 

with the Early-single and Split application tending to have higher TN uptake than the Late-single 

application. Results of both the TN uptake and FNUE support the yield data obtained in these 

trials and indicate that current N-rate recommendations for wheat produced in the delta region of 

Arkansas optimize fertilizer N inputs while maintaining high yields. These results highlight the 

importance of proper rate and application time for maximizing FNUE and yield in winter wheat 

production.   
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INTRODUCTION 

Over 182,000 hectares of wheat were harvested in Arkansas in 2012, and that number 

increased to almost 249,000 hectares in 2013 (National Agricultural Statistics Service, 2013). 

Although wheat is best suited for well-drained soils, a significant amount of wheat is produced 

on Arkansas’ poorly-drained loamy and clayey-textured soils. Without adequate drainage, soil 

oxygen depletion can exceed diffusion of oxygen into the soil causing soil microbe populations 

to shift from aerobic microbe populations to facultative and anaerobic microbes. These microbes, 

which thrive under reduced conditions, use oxidized forms of plant nutrient elements as 

alternatives to oxygen as electron acceptors (Inglett, Reddy, and Corstanje, 2005). Thus, 

increased concentrations of Fe2+ and Mn2+ can lead to toxicity and reduce wheat yields (Carver 

and Ownby, 1995). Typically, the seasons of wheat dormancy and growth (winter and spring) 

have greater total rainfall than summer or fall. Average seasonal rainfall in the Arkansas Delta 

Region, as reported by the National Oceanic and Atmospheric Administration, for winter 

(December-March) and spring (March-June) seasons are 33.4 cm and 38.8 cm, respectively. 

Meager plant biomass during these months combined with low temperatures provide for little 

evapotranspiration which perpetuates elevated soil moisture. Compensation for these challenges 

is achieved by planting wheat on raised beds or incorporating drainage ditches to prevent 

extended periods of topsoil saturation due to low evapotranspiration.  

In addition to dealing with less than optimal growing conditions, agriculture production 

costs continue to rise. Nitrogen (N) fertilizer represents one of the greatest costs associated with 

production agriculture.  As fossil fuel prices rise, there is a greater need for informed 

management practices which maximize fertilizer N uptake efficiency (FNUE).  The majority of 

fertilizer consumption in the world is in the form of N fertilizer (International Fertilizer Industry 
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Association, 2014). For cereal crops N is the most limiting nutrient for growth and therefore 

must be applied to most fields to maximize yield. Nitrogen fertilizer costs producers 

approximately $1.50 kg N-1 or $33.0 ha-1 (135 kg N ha-1, current recommendation for the 

majority of Arkansas wheat production area), which accounts for 31% of total input costs 

associated with Arkansas wheat production (University of Arkansas Cooperative Extension 

Service, 2012). Due to the large portion of input costs devoted to N it is imperative that FNUE is 

maximized in order for wheat production to remain profitable. 

A prior study found maximum rate of N uptake by wheat to occur shortly after the plant 

breaks dormancy to resume growth in the spring (Baethgen and Alley, 1989a). In this study, 

Baethgen and Alley used the Zadoks scale for plant growth and attributed GS 30 to the period of 

rapid N uptake (Zadoks, et al., 1974). Current studies tend to utilize the Feekes scale for wheat 

growth stages, with Feekes 3 corresponding to Zadoks’ GS 26, and Feekes 6 corresponding to 

GS 31. Baethgen and Alley (1989) concluded that GS 30 immediately preceded a period of rapid 

N uptake and utilization due to the high yield of the single GS 30 application treatments.  

A study in England found a fertilizer N rate (100 kg N ha-1) split into two applications, at 

Feekes 2-3 and Feekes 6, increased grain yield and decreased lodging over a single application of 

200 kg N ha-1 at Feekes 2-3 (Dilz, 1971). A similar study by Dilz et al. (1982) later found an 

increase in grain yield when a fertilizer N application of 100 kg N ha-1 was split at Feekes 6 and 

Feekes 9 compared to a single application at Feekes 2-3 at the same rate. Bashir et al. (1997) 

found that dry matter accumulation increased from 1,001.5 g m2 at Feekes 10.1 to 1,514.0 at 

11.1-11.2 where fertilizer N accumulation decreased from 7.38 g m2 at Feekes 10.1 to 6.52 g m2 

at Feekes 11.1-11.2. Seeing that the plant dry matter accumulation increase (51.2%) during this 

time was inversely proportional to the fertilizer N accumulation (-11.7%), it could be assumed 
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that the plant continued to take up fertilizer N in decreasing amounts even past Feekes 10.1. 

Another study conducted on a poorly-drained clayey soil found that fertilizer N contributed to 

higher yield even when applied at Feekes 9 and 10. Fertilizer N at Feekes 9 was reported to 

contribute to increased kernels per spike and greater kernel weight whereas fertilizer N at Feekes 

10 was found to increase kernels per spike only (Mascagni and Sabbe, 1991). However, Bashir et 

al., (1997) showed that the greatest total N (TN) and fertilizer N accumulation increases 

happened between Feekes 4-5 and Feekes 6-7. Consequently, a fertilizer N application past 

Feekes 6-7 should have a lower efficiency than at Feekes 3. Sabbe (1978) found wheat yields to 

be greatest when applying fertilizer N in mid- to late-winter as dormancy broke. Baethgen and 

Alley (1989b) found that winter wheat response to early and late fertilizer N was dependent upon 

tiller density at the time of application. Greater tiller density at Feekes 2-3 responded in higher 

yields when fertilizer N was applied later (Feekes 4-5), but yield was negatively impacted in 

treatments with high tiller density where fertilizer N was applied early (Feekes 2-3). Conversely, 

treatments where less tillers were documented at Feekes 2-3 responded to early and split N 

treatments by creating more tillers and producing high grain yield.  

Both over- and under-application of fertilizer N can lead to yield decreases and profit 

losses with over-application contributing to lodging and increased disease pressure resulting in 

decreased yields. Current fertilizer N recommendations for Arkansas wheat grain production 

range from 100 to 135 kg N ha-1 on loamy-textured soils following crops other than fallow (less 

N) or rice (more N). According to the 2011 Wheat Verification Program, producers participating 

in the program were applying approximately 135-145 kg N ha-1, which is slightly above the 

recommendation guidelines (Grimes et al., 2011). 
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Previous research in Arkansas conducted on a Roxana sandy loam (coarse-silty, mixed, 

nonacidic, thermic Typic Udifluvent) showed a maximum fertilizer N accumulation of 74.4% 

when plant samples were taken at Feekes 8-9, and 15N-enriched fertilizer was applied in a single 

application at Feekes 2-3 (Bashir et al., 1997). This research was limited in scope having only a 

single N application time and a single N rate. Results were directed at determining how fertilizer 

N accumulated in the wheat plant throughout the course of the growing season and was not 

necessarily directed at maximizing FNUE by optimizing N rate and time or method of 

application. Currently, wheat production in Arkansas has been greatest in areas that are also 

typically cropped to rice and therefore are often produced on soils that are poorly-drained and 

have restricting soil horizons in the upper 30 cm of the soil profile. Research similar to Bashir et 

al., (1997) is needed on poorly-drained soil to determine if soil saturation would contribute to 

greater N loss in a single fertilizer N application as opposed to a split fertilizer N application. 

The cost of production associated with N fertilization coupled with environmental concerns 

increases the need for research identifying the yield-maximizing N-rate and application strategy. 

Therefore, the objective of this study was to determine how soft red winter wheat yield and 

FNUE is influenced by N-rate and time of application on poorly-drained silt loam soils using 

15N-labeled urea. 

METHODS AND MATERIALS 

Two field experiments, one in 2012 and one in 2013, were conducted to evaluate the 

responsiveness of wheat to fertilizer N rate and time of application. Trials took place at the Pine 

Tree Research Station (PTRS) near Colt, Arkansas on a Calloway silt loam (Fine-silty, mixed, 

active, thermic Aquic Fraglossudalfs) in 2012 and a Calhoun silt loam (Fine-silty, mixed, active, 

thermic Typic Glossaqualfs) in 2013. Soil series and classification were defined by Web Soil 
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Survey, by the Natural Resources Conservation Service (Soil Survey Staff, 2010). The Calloway 

and Calhoun soil series are both classified as poorly-drained soils and are representative of the 

standard production setting for wheat produced on poorly-drained silt loam soils in the Eastern 

Arkansas Delta Region.  

Soil samples were collected to a 10-cm depth prior to planting and submitted to the 

University of Arkansas Diagnostic Lab (Fayetteville, AR). Samples were subjected to Mehlich-3 

extractable nutrients analysis (Helmke and Sparks, 1996) to ensure P, K, S, and other 

micronutrients were not limiting to wheat growth (Table 1). Prior to planting 29 kg P ha-1 and 83 

kg K ha-1 were broadcast and incorporated at each location. Weeds, insects, and diseases were 

controlled using best management practices according to University of Arkansas wheat 

production recommendations (Johnson, 1992). The wheat cultivar Ricochet was drill-seeded at a 

rate of 118 kg ha-1 with 19 cm row spacing.  

Three different fertilizer-N application times for each rate were carried out as follows: 

Early-single (Feekes 3), Late-single (Feekes 6), and Split application (one-half of the N applied 

at Feekes 3 followed by one-half of the N applied at Feekes 6). Feekes 3 was selected for this 

study as the first fertilizer N application time because it is the period immediately following the 

resumption of growth from winter dormancy and prior to active tillering, and Feekes 6 was 

selected as the second fertilizer N application time to determine to what extent fertilizer N is able 

to be taken up by wheat past the optimum application time. 

 The yield study was conducted in 4.88 m long by 1.74 m wide plots that received six 

different fertilizer N-rates ranging from 0-225 kg N ha-1 using urea (460 g N kg-1) as the fertilizer 

N source. The FNUE study was conducted in separate 1.74 m wide by 1.5 m long microplots 
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which received the same rates as the yield component of this study. Urea fertilizer N used in the 

FNUE trial was obtained from Isotec (Miamisburg, OH) and was enriched to 2.65 atom% 15N. 

Adequate border spacing (1 m) was established to ensure no cross-contamination of N-rates. 

Fertilizer treatments were treated with the urease inhibitor n-(n-butyl) thiophosphoric triamide 

(NPBT), trade name Agrotain Ultra (Koch Fertilizer LLC, Wichita, KS), by mixing 1 kg of 

prilled urea with 4.2 mL Agrotain, consisting of 260 g NBPT kg-1 in order to reduce ammonia 

volatilization loss potential. Fertilizer treatments for both the yield and FNUE trials were applied 

by hand at the designated growth stages. Fertilizer application times were based on wheat growth 

stage and differed in both years due to differences in soil and climatic conditions (Table 2).  

 Plant samples were collected to determine the TN uptake of wheat by removing the 

aboveground portion of a 1.83 m section of a bordered row from every plot. Plant samples that 

were used to calculate TN uptake were taken at Feekes 8-9 (Flag Leaf Emergence), which was 

identified by Bashir et al., (1997) as the growth stage where maximum TN uptake occurred. 

Plant samples were oven dried at 60° C, ground to pass a 2-mm screen, and a subsample of 0.1 g 

was analyzed for TN using an Elementar vario Macro (Elementar Analysensysteme GmbH, 

Hanau, Germany). The TN uptake was determined as the product of TN concentration and 

biomass. Atom % 15N was determined by the University of California Davis Stable Isotope 

Facility (Davis, CA), using an elemental analyzer interfaced to a continuous flow isotope ratio 

mass spectrometer (Europa, Sercon, Ltd., Cheshire, UK).  Fertilizer enrichment within the plant 

was calculated from atom % 15N change according to the equation:  

 F = TN(x-y/z-y) 

Where F is the amount of fertilizer N taken up by the plant (kg N ha-1), TN is the total N uptake 

(kg N ha-1), x is the atom percent 15N measured in the plant, y is the average atom percent 15N 
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measured in the untreated control, and z is the atom percent 15N of the enriched urea fertilizer 

applied. The percent FNUE was calculated based on the equation:  

 FNUE = (F/A)×100 

Where F is the amount of fertilizer N taken up by the plant (kg N ha-1), and A is the fertilizer N 

application rate (kg N ha-1). 

Analysis of variance (ANOVA) was carried out using JMP PRO 9.0 (SAS Institute, Inc., 

Cary, NC). Statistical analysis of yield, TN uptake and soil N uptake was arranged as a 

randomized complete block design with a three (application time) by six (N rate) factorial 

treatment structure with four replications and year included as a random effect. Analysis of 

variance for the FNUE portion of the study was also arranged as a randomized complete block 

design with a three (application time) by five (N-rate) factorial treatment structure with four 

replications and year included as a random effect. Means were separated where appropriate using 

the least significant difference (LSD) test, assessing significance at p<0.05. 

RESULTS AND DISCUSSION 

Total Nitrogen Uptake 

 Total N uptake was significantly affected by the interaction between N-rate and 

application time (p=0.0014) (Table 3). Total N (Table 4) uptake consistently and significantly 

increased as N-rate increased for all Early-single and Split treatments, while the Late-single 

application seemed to reach a plateau in TN uptake around 135 kg N ha-1. There were no 

significant differences observed between the Early-single and Split applications within a given 

N-rate. No differences existed among any treatment until 135 kg N ha-1, which was numerically 

but not statistically lower than the Early-single or Split applications (10 and 20 kg ha-1 less, 
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respectively). However, for every rate above 135 kg N ha-1 the Late-single application produced 

less TN uptake than the Early-single or Split applications. The Late-single applications were also 

not significantly different from one another among the 135 kg ha-1, 180 kg ha-1, and 225 kg ha-1 

N-rates. Additionally, the 90 kg ha-1 and 180 kg ha-1 Late-single treatments were not different 

from one another, suggesting that TN uptake was less influenced by N rates greater than and 

equal to 90 kg ha-1 for the Late-single application than the Early-single or Split treatments were.  

Reduced biomass could have attributed to inhibition of further N uptake for plants which 

received only Late-single fertilizer N applications. Bashir (1997) reported TN uptake to reach 

maximum accumulation at Feekes GS 8-9 with no significant change in TN uptake through 

maturity when fertilizer N was applied in a single application during tillering. Contrastingly, 

fertilizer-N uptake was shown to peak at Feekes GS 8-9 then decline through maturity. Natural 

senescence of the wheat plant could contribute to top growth fertilizer N loss through ammonia 

volatilization, predominantly in leaf tissue. Although N uptake continues through maturity, the 

rate of additional N uptake slows in response to the decreasing rate of biomass accumulation. 

Thus, the concentration of fertilizer N would decrease even as TN concentration remains 

constant, according to Bashir et al., (1997) which only had an early single application. In 

contrast, for Late-single treatments fertilizer N uptake results (TN uptake – soil N uptake) might 

have been greater if more time had been allowed between fertilizer N application and plant 

sampling. However, it is likely that TN uptake results would not have drastically changed, since 

N loss through stomatal conductance would still occur influencing only the ratio of the fertilizer 

N concentration to TN concentration at maturity.  

 

 



40 
 

Soil Nitrogen Uptake 

An analysis of variance (Table 3) indicated that the only factor affecting soil N uptake 

was N rate (<0.0001). Soil N uptake significantly increased from the 0 kg N ha-1 N-rate to the 45 

kg N ha-1 N-rate then remained relatively constant as N rate increased for all the application 

strategies. There were no differences among any treatments within a given N rate. Contrastingly, 

fertilizer N uptake mirrored the trends of TN uptake for every N-rate and application time. Thus, 

the differences in TN uptake for this study can be attributed to the magnitude of difference in 

fertilizer N uptake as affected by N rate and application time alone, not soil N uptake. Research 

on wheat grown in a wheat-rice cropping system as compared to a wheat-corn cropping system 

has shown root mass in the wheat-rice cropping system to be reduced by up to 48% compared to 

the wheat-corn system. Researchers attributed this difference in part to the presence of a plow 

pan in the wheat-rice system. It is thought that the majority of the wheat root system was 

restricted to the top 5 cm of soil, though wheat roots are reported to penetrate nearly 180 cm in 

other cropping systems on light-textures soils (Jalota et al., 1980; Sur et al., 1980). It is likely, in 

this study, that fertilizer N encouraged development of a more extensive root system compared 

to treatments receiving no fertilizer N, but soil physical properties could have inhibited the full 

potential of the root systems for treatments receiving fertilizer N.  

Wheat Yield 

The ANOVA (Table 3) indicated that there was a significant N application time by rate 

interaction (p=0.0058). Overall, the minimum yield-maximizing N-rate and application method 

was 135 kg N ha-1 applied as an Early-single or Split application (Table 5). Yield tended to 

increase as N-rate increased within the Split-application treatments until N-rate reached 135 kg 
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N ha-1 at which time grain yield reached a plateau and declined when N-rate exceeded 180 kg N 

ha-1. Wheat receiving N as the Split application had similar yields as the equivalent amount of N 

applied as an Early-single, but the Late-single N application produced yields that were 

numerically and sometimes statistically lower for each N-rate >45 kg N ha-1. Over-fertilization 

with N can have an adverse effect on grain yield due to increased lodging, delayed maturity, and 

increased disease (Wells et al., 1995). Split application of N-rates greater than 180 kg N ha-1 

reduce wheat yield. For the Early-single application, yield tended to increase as N-rate increased 

until yield reached a plateau at rates of 135-225 kg N ha-1.  Although this study indicated that the 

Early-single N application timing could produce similar yields to the Split application at rates of 

90-180 kg N ha-1, N from the Early-single application could suffer substantial loss in years with 

greater rainfall increasing the risk associated with applying all the N prior to the Feekes 3 growth 

stage.  

For the Late-single application, the soil inorganic-N content was too low to produce 

significant tillering before fertilizer N was applied, and the fertilizer N was applied late enough 

that the wheat could not regain all of the yield potential exhibited by the treatments that received 

at least a portion of the N prior to the Feekes 6 growth stage. Except for the 45 and 90 kg N ha-1 

rates, wheat yields for the Late-single application were statistically lower within a N-rate than 

wheat yields from either the Early-single or Split application. The greatest yields for the Late-

single application were not achieved until 180 kg N ha-1 was applied, and even then grain yield 

was ~800 kg  ha-1 lower than the maximum yields attained with the Early-single and Split 

treatments. However, it is surprising that the Late-single applications were able to provide 

sufficient N to achieve the yields that they did.  Previous work on a silty clay soil has shown that 

fertilizer N applied as late as Feekes stage 10 can significantly increase wheat yield (Mascagni et 
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al., 1990). In light of these findings, it might be deduced that wheat yield is able to overcome 

inadequate tillering and recover some yield potential through other yield components (number of 

spikes per m-1, number of kernels per spike, and kernel weight) (Mascagni and Sabbe, 1991).   

Fertilizer Nitrogen Uptake Efficiency 

 The ANOVA (Table 6) showed a significant rate by application time interaction 

(p=0.0408). No statistical differences existed among the Split treatments from 45 kg N ha-1 to 

180 kg N ha-1, although the highest N rate of 225 kg N ha-1 (72.0%) was significantly lower than 

the 90 kg N ha-1 rate (83.1%) (Table 7). Likewise, for all Early-single treatments, no significant 

differences existed among the 45 to 180 kg N ha-1, with the only difference existing in 90 kg N 

ha-1 (80.1%) being greater than the 225 kg N ha-1 (68.8%) treatment. Unlike the other application 

times, Late-single applications had several significant differences within the treatment group, 

and all Late-single treatments had inferior FNUE compared within a rate to the other application 

times, with 45 kg N ha-1 being the only exception. For Late-single applications FNUE was 

greatest at the lowest N-rate (78.7%) and decreased as N-rate increased.  

Numerically, the Early-single and Split fertilizer N treatments had greater FNUE than the 

Late-single application. For the same reason, Late-single treatments tended to have inferior 

FNUE because plants at Feekes 6 which had not received any fertilizer N to contribute to growth 

were smaller than the Early-single or Split treatments which had received fertilizer N prior to the 

period of rapid growth. Also, Late-single treatments were allotted less time (3-4 wk) in between 

fertilizer N application (Feekes 6) and plant sampling (Feekes 8-9), which did not allow adequate 

time for fertilizer N uptake. Thus, Late-single application FNUE decreased with increasing N-
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rate. Split treatments received the benefit of early N application, which allowed the plants to take 

up the fertilizer N and utilize it during the period of rapid growth.  

Most treatments exhibited exceptional FNUE values with 10 of the 15 treatment 

combinations resulting in FNUE values of >75%. Timely rainfall (Figures 1 and 2) allowed for 

incorporation of fertilizer N, yet no exorbitant rainfall events occurred immediately following 

application. This allowed the urea to be incorporated into the soil, lessening N loss through 

ammonia volatilization, and avoiding N loss through denitrification. Additionally, lower 

temperatures at the time of fertilizer application and non-basic soils contributed to conservation 

of NH4
+ in the soil for plant uptake throughout the growing season (Stevenson and Cole, 1999). 

CONCLUSIONS 

Current Arkansas winter wheat recommendations (100-135 kg N ha-1 applied as a Split 

application) are based on N response trials closely associated with production settings, whereas, 

the only 15N research conducted in Arkansas were on soils which are not necessarily indicative 

of actual production settings. As a result, this study was established to verify the current 

recommendations on a poorly-drained soil. Wheat grain yields were maximized by application of 

135 to 225 kg N ha-1 as an Early-single application or 135 to 180 kg N ha-1 Split application. The 

Early-single fertilizer N application method is perhaps a less economically sound decision due to 

the potential for significant N loss in one or multiple events following application of all of the 

fertilizer N. Years with greater rainfall pose the greatest threat to increased fertilizer N loss 

through denitrification, runoff, and/or leaching. Although the results averaged across two years 

of research do not show clear differences between the Early-single and Split application N-

fertilization methods, applying the total N-rate in two splits may increase N recovery and reduce 

N loss compared to an Early-single application with little additional cost.   
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The results also support previous research (Baethgen and Alley, 1989a) which suggests 

that the initial fertilizer N application should be applied no later than Feekes stage 5. The Single-

late fertilizer N application method does not provide enough N to optimize early plant 

development on N-deficient soils. Though decreased spring tillering can be compensated for in 

other yield components, maximum yields require adequate tillering.  

Soil N uptake was consistent across all N-rates and application times for all treatments 

receiving fertilizer N. Therefore, differences in TN uptake was dictated by N-rate and application 

time alone and not affected by native soil N. Many soils in the Mississippi Delta region are 

traditionally cropped to rice, which can create a relatively restrictive plow pan. Soil physical 

properties could limit root growth potential, and therefore the ability of the wheat plant to fully 

exploit native soil N.  

Overall, FNUE was greatest for the Split application treatments, with maximum FNUE 

being achieved at 90 kg N ha-1 (83.1%). Although FNUE values for the Early-single application 

were slightly lower than the Split application treatment, this may not hold true in years with 

greater than average rainfall occurring early in the growing season shortly after wheat breaks 

winter dormancy. Possible reasons for such high FNUE values of this study are given by 

precipitation data for 2012 and 2013. All treatments received some amount of rainfall within two 

days of fertilizer application. This allowed for incorporation of urea, lessening the loss of N 

through ammonia volatilization and providing prolonged N availability for plant uptake. 

However, no excessive rainfall events occurred after application which would have resulted in 

fertilizer N loss through denitrification. Results of both yield and FNUE components of the study 

indicate that the 135 kg N ha-1 Split fertilizer application supplies adequate N for maximum yield 

while minimizing environmental N-loss risk. 
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Table 1. Selected soil chemical property means from 0-10 cm deep soil samples (n=4) 
collected from N-fertilization trials located at the Pine Tree Research Station (PTRS) near 
Colt, AR during 2012 and 2013 growing seasons. 

Soil Series  
Soil 
OMa 

Soil 
pH 

Mehlich-3 soil nutrients 

P K Ca Mg S Fe Mn Zn Cu 

 

 
%  - - - - - - - - - - - - - - parts per million (Mg kg-1) - - - - - - - - - - - -  

Calloway 2.8 7.7 35 112 1801 350 7 290 222 4.7 1.2 

Calhoun 2.6 7.1 29 133 2077 363 6 240 267 2.4 1.2 

a OM, Organic matter 

 

Table 2. Timing of Early-single, Late-Single and Split applications to wheat based on 
growth stage on a poorly-drained silt loam at the Pine Tree Research Station (PTRS) near 
Colt, AR during the 2012 and 2013 growing seasons. 

Year Planting Date Application Time†  

  Early-single and 

First Split 

Late-single and 

Second Split 

Days Between 

Applications 

2011-12 Oct. 7, 2011 February 21 March 15 21 

2012-13 Oct. 22, 2012 March 5 April 4 30 

† N treatments were applied 100% early at the tillering stage (Feekes 3), 100% late at the first 

visible node (Feekes 6) or a split application of 50% at Feekes 3 and 50% at Feekes 6. 
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Table 3. Analysis of variance for total N (TN) uptake, soil N uptake, and wheat yield as 
affected by N rate and application time. 

Source Degrees of 
Freedom 

TN uptake Soil N uptake Yield 

  p value p value p value 

N Rate (NR) 5 <0.0001 0.3077 <0.0001 

Application Time 
(AT) 

2 <0.0001 <0.0001 <0.0001 

NR x AT 10 0.0014 0.1896 0.0058 

 

 

Table 4. Total N uptake as influenced by fertilizer-N rate and application time, soil N 
uptake as influenced by the main effect of N-rate from samples taken at the Feekes 8-9 at 
the Pine Tree Research Station during the 2011-12 and 2012-2013 growing seasons. 

 Total N Uptake Soil N Uptake 

   Application time a  

N rate Early-single Late-single Split  

----------------------------------------------------kg ha-1------------------------------------------------------ 

0 ------------------------------------38.1b---------------------------------- 

45 80.2 84.6 85.4 49.5 

90 120.8 117.8 136.7 53.1 

135 157.7 146.3 166.7 55.6 

180 197.6 129.4 194.1 53.2 

225 229.7 147.8 222.3 57.1 

 LSD0.05 = 27 kg N ha-1 LSD0.05 = 7.7 kg N ha-1 

a  Single early applied at Feekes stage 3; Single late applied at Feekes stage 6; and Split involved 
applying one-half of the N at Feekes stage 3 followed by one-half of the N applied at Feekes 
stage 6. 

b 0 kg N ha-1 treatment TN uptake reported as an average across all applications. 
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Table 5. Winter wheat yield means, averaged across years, as influenced by the fertilizer N-
rate and application time interaction at the Pine Tree Research Station(PTRS) near Colt, 
AR during the 2012 and 2013 growing seasons. 
   Application time a 

N rate Early-single Late-single Split 

kg N ha-1 --------------------------------------kg ha-1------------------------------------- 

0 ------------------------------------- 3105b ------------------------------------- 

45 3734 3864 4390 

90 4902 4775 4913 

135 6193 5110 6590 

180 6061 5777 6493 

225 6592 5576 5843 

 LSD0.05 = 623 kg ha-1 

a  Single early applied at Feekes stage 3; Single late applied at Feekes stage 6; and Split involved 
applying one-half of the N at Feekes stage 3 followed by one-half of the N applied at Feekes 
stage 6. 

b 0 kg N ha-1 treatment yields reported as an average across all applications. 

 

 

Table 6. Analysis of variance P-values for fertilizer nitrogen uptake efficiency (FNUE) of 
wheat as affected by N-rate and N application time. 

Source Degrees of Freedom FNUE 

  p value 

N Rate (NR) 4 0.0018 

Application Time (AT) 2 <0.0001 

NR x AT 8 0.0408 
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Table 7. Fertilizer N uptake efficiency, averaged across years, as influenced by the fertilizer 
N rate and application time interaction at the Pine Tree Research Station (PTRS), near 
Colt, AR during the 2011-12 and 2012-2013 growing seasons. 
   Application time a 

N rate Early-single Late-single Split 

  FNUE  

kg N ha-1 ------------------------------------- % ------------------------------------- 

45 70.8 78.7 77.6 

90 80.1 69.6 83.1 

135 78.1 65.6 82.5 

180 77.7 47.4 76.8 

225 68.8 45.6 72.0 

 LSD0.05 = 10.8% 

a  Single early applied at Feekes stage 3; Single late applied at Feekes stage 6; and Split involved 
applying one-half of the N at Feekes stage 3 followed by one-half of the N applied at Feekes 
stage 6. 
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Figure 1. Daily precipitation in mm and fertilizer application days, reported from 
February 1, 2012 as measured by the National Oceanic and Atmospheric Administration 
(NOAA, 2014) weather station in Forrest City, AR. 

 

 

Figure 2. Daily precipitation in mm and fertilizer application days, reported from 
February 1, 2013 as measured by the National Oceanic and Atmospheric Administration, 
(NOAA, 2014) weather station in Forrest City, AR. 
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CHAPTER FOUR 

CONCLUSION 
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The purpose of these studies was to determine appropriate fertilizer N recommendations 

for producers in Arkansas in regard to both soil sampling with crop residues and fertilizer N rate 

and application time in soft red winter wheat production. The results indicated that the ISNT and 

DSD recover similarly low amounts of AH-N within a crop residue, though magnitude of 

difference varied between methods among crop residues. Due to each crop partitioning fertilizer 

N differently according to the different N metabolism for the crop, the magnitude of difference 

among crop residue fertilizer N recovery varied. Though little N was quantified by these 

methods, the amount of N which was quantified was potentially mineralizable-N, which should 

be available for the subsequent crop. Optimum results for potentially mineralizable-N were 

expected due to the nature of the greenhouse study. The C:N ratios of the cereal crops grown 

were much narrowed than would be anticipated from typical field settings, thus it was expected 

that a greater proportion of potentially mineralizable-N would be recovered, but the low AH-N 

recoveries indicated that this was not the case. Further research is needed to determine the ability 

of the ISNT and DSD to quantify crop residue N when incorporated into the soil. It is essential 

that correct soil sampling time is achieved after incorporation of crop residues in order for N 

credits or deficiencies to be accounted for when AH-N soil testing methods, such as N-STaR are 

used.  

Results from the field portion of this study determined that the current Arkansas fertilizer 

N recommendation of 135 kg N ha-1 applied as a split application to be the minimum yield-

maximizing N-rate. Overall, Split applications achieved the greatest FNUE. Early-single and 

Split applications were not significantly different from one another based on yield results as well 

as FNUE. The Early-single application time is thought to be a less economical decision due to its 

potential for substantial N-loss in years with greater rainfall. Late-single applications produced 
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inferior yields and FNUE overall. Total N uptake was found to be directly related to fertilizer N 

uptake due to no differences in soil N uptake in any treatments receiving fertilizer N. This 

supports previous research that initial fertilizer N should be applied no later than Feekes stage 5. 

This results indicate that the 135 kg N ha-1 Split fertilizer application minimizes environmental 

N-loss and supplies sufficient N for maximum yield. 
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