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Abstract 

 Industrial production of protein therapeutics demand rigorous testing and clearance of 

viruses.  The U.S. Food and Drug Administration dictate the purity of pharmaceuticals with 

regards to viral contamination.  As this testing is time consuming and expensive using 

mammalian cells and viruses, bacteriophages may provide a faster and cheaper alternative for 

membrane filtration processes.  We used ultrafiltration membranes to filter protein solutions with 

viruses.  Two bacteriophages were tested against membranes with two different pore sizes.  

These membranes were then tested by inverting the membrane’s orientation.  Flux measurements 

and log virus removal data were taken.  Flux and log virus removal were seen to be slightly 

higher than published data for mammalian virus analogue minute virus of mice.  Future testing 

would allow for more precise evaluation, but data suggests bacteriophages provide similar results 

to mammalian data.  
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1 Introduction 

Viruses are protein capsules that contain genetic material and have the capability to insert 

this material into a host’s genome.  Viruses are critical in the biopharmaceutical industry because 

of the potential danger of diseases through viral transmission.  The general order of processing 

steps necessary in the creation of a biopharmaceutical begins with cell culture, clarification, 

recovery, and purification followed by polishing. Additional steps for validation of virus clearance 

are often required during polishing [1].  A common virus separation technique is membrane 

filtration.  For the past twenty years, membrane filtration for viral rejection and capture has been 

applied on an industrial scale with obvious success.   

Virus clearance is fundamental in the creation of protein based drugs and vaccines for 

human consumption.  Industrial processes concerning biopharmaceuticals fall under federal 

regulation, and certain precautions are necessary to ensure safety for human usage as medical 

evidence has supported the need to prevent transmission of blood-borne pathogens [2-5].  The 

United States Food and Drug Administration (FDA) has strict guidelines on the testing and 

manufacture of such biopharmaceuticals.  One key factor of the FDA’s guidelines is validation of 

viral clearance.  Multiple and fundamentally separate or orthogonal steps must also be used in 

order to achieve greater reduction than what a single process is capable of doing alone [6].  An 

example of orthogonal steps would be a heat treatment step followed by a filtration step.  As each 

are different in their mechanisms of viral clearance, they can be considered orthogonal.  The FDA 

does not specify number or types of steps necessary for products and allows manufacturers to 

design their own processes.  Instead, final dosage and validation of clearance is mandated.   This 

standard for purity is mandatory and is greatly facilitated through viral filtration. 
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1.1 Virus Clearance  

At least two orthogonal steps are demanded by good manufacturing practice (GMP), 

though more can be necessary depending on if certain types of viruses are known to be present [7].  

Clearance is measured as the log10 removal value (LRV), or the log of the ratio of the feed viral 

concentration to the permeate viral concentration [8].  Operations are classified as ineffective if 

LRV is less than one, moderately effective if LRV is between one and four, and effective if LRV 

is above four.  Ineffective steps cannot be considered for total clearance, and orthogonal operations 

are considered additive to evaluate the total LRV.  Most industrial processes desire a single step to 

at least register as effective to be viable commercially. 

Specific categories of viruses must be considered for viral removal: endogenous and 

adventitious [9].  Endogenous viruses are present due to their use in creating the product.  

Adventitious viruses are brought in from by external contamination. Given that both may be 

present in a process, clearance of said viruses is important and must be tested.  Two specific viruses 

are important test markers: parvoviruses and retroviruses.  Viruses are sorted by either having a 

lipid envelope, like many retroviruses, or lacking an envelope, like parvovirus.  For example, HIV 

is an enveloped virus that can easily be inactivated by heat-treatment, as the heat degrades the 

envelope and reduces its infectivity [10,11].  However, parvoviruses are non-enveloped and are 

not as easily inactivated by such means.  Also given the similar size of the virus, on the range of 

20 nm, in comparison to some proteins, around 10 nm for IgG antibody, a process’ selectivity with 

regards to size is very critical [3,12].  Parvoviruses are among the smallest known viruses, and 

therefore relevant to size exclusion methods of separation as a useful benchmark to challenge a 

process.  Retroviruses are another class of virus that must be taken into consideration for virus 

clearance [5,9]. Retroviruses use RNA to create proteins that cause insertions into a host’s genome.  
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Many viruses that work in this manner are very efficient in infecting humans. Therefore, extreme 

care must be taken to reduce the concentration of viruses entering into patients through 

biopharmaceuticals.  Several methods of virus inactivation exist, as Table 1 demonstrates.  Only 

a few remain viable options considering some virions are more robust than the protein products 

desired, or the virus itself may be the intended product, as is the case with virus capture.  Membrane 

technology has greatly benefited virus clearance and capture considering that membranes allow 

for an easily scalable system, can distinguish products based on size, are low in energy cost, and 

could potentially be cheaper in comparison to additional chromatography steps [13]. 

Researchers testing industrial filters and virus removal techniques employ the use of 

smaller scaled experiments that can be representative of the full scale process.  Recent studies 

often use feeds that contain more impurities than real world processes [14].  This can de deduced 

considering filtration steps are regularly placed after a single or multiple chromatography steps 

and most studies do not perform filtrations after performing a chromatography step [8].  The 

impurities can cause a flux decline through pore blockage, and it could potentially overestimate 

the LRV properties of a membrane as the additional resistance from the membrane fouling will 

Table 1 

Virus Clearance Technologies 

Technology Log Removal Value Mechanism 

Chromatography 0-6 Adsorption or exclusion 

Filtration 3-6 Size exclusion 

Gamma irradiation >3-6 Inactivation 

Heat  Inactivation 

Low pH incubation 6+ Inactivation 

Membrane 

adsorber/membrane 

chromatography 

0-6 Adsorption/size exclusion 

Solvent/detergent 6+ Inactivation by lipid 

dissolutiom 

Ultraviolet inactivation >2-6 Inactivation 

Table 1: Various methods for viral clearance, LRV values, and mechanism for each [8]. 
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cause less viral passage.  The study recommended in addition to the regular spiking studies, a 

protein/virus mixture with a known concentration challenging a filter until a flow decay endpoint, 

to also use “pre-conditioning” step.  This method begins by using only the biologic against the 

filter until a given volume.  Afterwards, a combination of virus and biologic are filtered to a flow 

decay endpoint.  Comparison of the resulting LRV for the two methods provide a more 

conservative result that would better predict and represent industrial applications. 

1.2 Ultrafiltration/Virus Filtration 

Given the mechanism of membrane filtration is commonly size exclusion, membrane 

processes are based on the pore size or the size and type of particles excluded by a given membrane.  

Proteins and viruses fall under the designation of ultrafiltration (UF), which generally covers pore 

sizes from 10-6 to 10-8 m in diameter.  This is a pressure driven process, commonly used for 

separating macromolecules though it is not exclusive for that application.  Filtrations are 

performed in either tangential flow mode (TFF), or dead-end/normal flow mode (NFF).  TFF is a 

method that has the flow of the feed tangential to the membrane surface [6]. This allows for greater 

surface area due to membrane geometry and reduced fouling due to the sweeping motion of the 

feed solvent [15]. In operations where the feed contains a high load of foulants, this mode of 

filtration is valid. The already high purity of the feed reduces this benefit for virus removal 

considering the downstream placement of most virus filtration (VF) modules in industry. Use of 

TFF for protein recovery is often applied in other situations, considering the product and the 

contaminant must be greater than an order of magnitude to each other in size [16,17].  TFF is also 

predicated on the ability to reuse filters.  Though there are benefits to both modes, NFF is the 

predominant mode of filtration in regards to virus clearance, though it is not exclusive to VF 

[6,13,16]. In NFF, the entirety of the feed is pushed through the membrane surface. Flux 
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performance is usually lowered in this mode.  The specific restrictions on cleaning and validating 

virus clearance makes NFF the only practical and economical choice considering the high purity 

of streams in most operations.  This is also taking into account the simplicity of the unit in 

operations.  Table 2 presents some commercial VF filters. 

Fouling is a large issue with any filtration process, and virus filtration is no different [18]. 

One might normally consider fouling to be the result of impurities in the feed, but for protein based 

separations, the product is often the largest foulant. Normally, UF filtrations are run with the barrier 

facing the feed and a support structure underneath it for mechanical stability. However, VF 

experiments have shown improvements in flux if this orientation is reversed [13,18,19,20].  

It is generally assumed that the support structure acts as a kind of pre-filter to prevent protein 

aggregates from irreversibly fouling the membrane as this decreases flux, product recovery, and 

therefore cost of product [21].  VF has a special caveat that separates it from UF in a specific regard 

concerning fouling.  In most forms of filtration, it is not advantageous to irreversibly foul the 

membrane since it lowers flux and product recovery.  VF can actually be improved by irreversible 

fouling, assuming what is being irreversibly fouled is a viral contaminant as this fouling increases 

the rejection of particles [22].  The overall goals of industrial filtration are dictated by product 

Table 2  

Commercial Virus Filtration Products 

Company Product Log Removal Value 

Asahi Planova 15N (TFF/NFF) >6.2 parvovirus, >6.7 poliovirus 

Planova 20N (TFF/NFF) >4.3 parvovirus, >5.4 encephalomyocarditis  

Planova 35N (TFF/NFF) >5.9 bovine viral diarrhea virus, >7.3 HIV 

Millipore NFP (NFF) >4 PhiX-174 bacteriophage 

NFR (NFF) >6 retrovirus 

Viresolve 70 (TFF) >4 polio, >7 retrovirus 

Viresolve 180 (TFF) >3 polio, >6 retrovirus 

Pall DV20 (NFF) >3 PP7, >6 PR772 bacteriophage 

 DV50 (NFF) >6 PR772 bacteriophage 

Sartorius Virosart CPV (NFF) >4 PP7 bacteriophage, >6 retrovirus 

Table 2: Filters with mode of filtration and LVR by company [8]. 
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purity, potency, and quality [23]. In general, virus filters follow no standard in what manufacturers 

report concerning the performance or properties of the filters themselves [6]. Often researchers 

must perform specific experiments in order to accurately compare membranes, even with virus 

filtration filters [13]. The virus size is also substantial considering the larger the virus, the easier 

the separation will become, and accumulation of virus particles also supports the separation in the 

same manner [6]. Buffer solutions can play important roles in filtration as the main foulants are 

proteins, which have pH and ionic sensitive properties [6,27]. Protein passage and yield is 

extremely important and could vary the cost effectiveness of a process. Sizing membranes is also 

useful as the membranes demand high throughput before being disposed [3,6]. Balancing process 

time and volume demand are the factors in play, specifically with regards to protein flux versus 

volume. Location of viral clearance in the operations is critical as well [3]. These are generally 

placed after a chromatography step, but as there are several chromatography steps in place, 

placement can determine the amount and the kind of foulant load on the system. Many factors can 

be discussed in optimizing virus clearance, including previously mentioned modes and membrane 

orientation. 

While pore size was mentioned previously, manufacturers often describe membranes by 

their molecular weight cut-off (MWCO) as well.  This is the molecular weight of the particle 

having a rejection of at least 90%, and it represents another adequate membrane separation 

characteristic [24].  It is a good indicator for characterizing the sieving properties of a membrane, 

since a molecule’s separation depends on many complex parameters, such as three dimensional 

shape or its ability to form dimers or trimers in different solvents.  Thus the solvent properties, 

such as pH, temperature, ionic strength, etc are extremely significant when designing the filtration 

process.  However, MWCO is not an industry standard and can often be more of an estimation 
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than a prediction.  The aforementioned solvent pH can affect flow rate, product recovery, and run 

time [25].  Proteins carry different configurations at different pH values.  This configuration 

change can also affect how the biologic interacts with the virus, other biologic molecules, and the 

filter.  A study using antihemophilic factor IX as the biologic had longer run times and significantly 

reduced recovery rates as the NaOH used to raise the pH would actually inactivate the product.  

Testing is necessary for each biologic in question as denaturing a protein could allow for higher 

passage through a membrane’s pore, but should the protein not spontaneously refold it would likely 

be inactivated. 

Though this research attempts to investigate filtration through experimental work, 

numerical modeling of filtration is also used academically.  Recent work shows how capsule 

shaped objects, such as bacteria or viruses, behave in a cylindrical pore [26].  Smaller and more 

spherical objects have a larger impact from hydrodynamic interactions on rejection than larger 

species, which have more influence from steric restrictions.  This follows some logic as one could 

expect the fluid to essentially dominate the effects on the particle as small particles will “see” the 

fluid more in comparison to the walls of the pore or other particles.      

1.3 Viruses 

The main fear of mammalian virus usage is from zoonotic diseases, diseases found in 

animals that infect humans.  Large evolutionary distance is seen as a barrier for transferring 

zoonotic diseases.  Though this distance is an imperfect barrier, it is relevant concerning the use 

of bacteria as “safer” alternatives to mammalian hosts.  Mammalian cells and viruses demand more 

resources to test and cultivate in comparison to bacterial ones when considering the doubling time 

(>10 hours for mammalian cells in comparison to 20 minutes for E. coli ), biosafety standards, and 

robustness of the host.  Although bacterial validation cannot completely replace the use of 
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mammalian validation, preliminary testing for viral clearance using bacteriophages is possible to 

reduce the cost and difficulty of these tests, as the FDA allows specific bacteriophages as models 

for mammalian viruses [20,28].  

Specific bacteriophages mimic the size, envelope, and genome of these particles, which 

allows for comparison studies.  While this is less relevant for steps using chemical interactions 

such as packed-bed chromatography, it becomes significant for membrane filtration separations as 

these separations rely on size exclusion.  VF membranes, while similar in terms of pore size to UF 

membranes, demand less pore size variability than UF membranes.  Table 3 provides a list of 

viruses used for clearance studies.   

There are various considerations for clearance studies.  These include the health hazard to 

those workers performing the tests, the ability to create a high titer with that virus, and the ability 

to test with reliable sensitivity at every step of the manufacturing process [8].    Murine leukemia 

virus (MuLV) and minute virus of mice (MVM) are commonly used since they serve as appropriate 

Table 3  

Common Viruses for Viral Clearance Studies 

Virus Genome Enveloped Size (nm) 

BVDV RNA Yes 50-70 

Encephalomyocarditis 

virus 

RNA No 25-30 

MVM DNA No 18-25 

MuLV RNA Yes 80-110 

Parainfluenza RNA Yes 100-200 

Parvoviruses DNA No 18-24 

PhiX-174 DNA No 25-27 

Poliovirus sabin type I RNA No 25-30 

PR772 DNA No 53 

Pseudorabies virus DNA Yes 150-200 

Reovirus 3 RNA No 60-80 

Sindbis virus RNA Yes 60-70 

SV40 DNA No 40-50 

Table 3: Viruses commonly used for clearance studies with genome, envelope presence, and 

diameter [8,28] 
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retrovirus and parvovirus models.  Using bacteriophages to mimic these virus models would be 

the goal for such studies.  For the purposes of this study, UF membranes will be challenged using 

bacteriophages in order to compare MVM clearance studies.  Testing commercially available UF 

membranes has the benefit of reducing the cost in such filtrations in comparison to VF membranes, 

as well as ease of membrane running experiments.     

2 Methods 

2.1 Virus Stock Creation 

Host cells and viruses were purchased from ATCC (Manassas, Virginia).  The two bacterial 

hosts were Escherichia coli (Migula) Castellani and Chalmers (ATCC 13706) and Escherichia 

coli (Migula) Castellani and Chalmers (ATCC BAA-769).  The two virus types were purchased in 

conjunction with the host: phi X174 (ATCC 13706-B1), strain Phi X174 and Escherichia coli 

phage (ATCC BAA-769-B1), strain PR772 (HER 221).  The specific host was used to propagate 

its corresponding virus.  Phi X174 is reported as 25 nm in diameter and PR772 is reported as 53 

nm in diameter [29].  

Bacteria were grown in 2XYT medium broth (AMRESCO; Salon, Ohio, VWR Cat. 

#97063-442) until the media reached an optical density of 0.300 to 0.500 at a wavelength of 600 

nm.  All bacteria were grown at 37 degrees Celsius in aerobic conditions while shaking at 

approximately 200 rpms.  When it reached the appropriate optical density, the media was spiked 

with 1 mL of virus stock and allowed to shake overnight.  This culture was then centrifuged at 

9500 g for 30 minutes, and the supernatant was filtered with a 0.2 µm polyethersulfone filter 

membrane.  This resulted in a solution that was free from microbes while having a relatively high 

concentration of virus particles (generally around 4 to 6 log10 virus particles per mL).  This stock 

was used to create new stocks as well as run filtration experiments.  This procedure was performed 



10 
 

on both virus types with no deviation.  When not in use, the stocks were kept at 4 degree Celsius 

or stored long-term frozen.   

2.2 Filtration 

Filtration experiments used two polyethersulfone membranes of MWCO, 10 kDa MWCO 

Ultrafiltration membrane from Sartorius Stedim Biotech (Göttingen, Germany) and 300 kDa 

MWCO Omega Ultrafiltration membrane from Pall Life Sciences (Port Washington, New York).  

Both are asymmetric membranes, with a barrier or skin-side that faces the feed and an open, 

support-side.  These were selected for comparison to previous studies using similarly sized 

membranes.  Membranes were either rinsed or soaked in DI water according to manufacturer’s 

instructions.   All experiments using 10 kDa membranes were performed in an 8200 Amicon stirred 

cell without any stirring mechanism in dead-end filtration mode at a constant pressure of 300 kPa.  

All experiments using the 300 kDa membranes were performed in an 8050 Amicon stirred cell 

without any stirring mechanism in dead-end filtration mode at a constant pressure of 70 kPa.  The 

8200 cell has a reported filter diameter of 63.5 mm and the 8050 has a reported filter diameter of 

44.5 mm.  A total volume of 60 mL virus stock was run through both stirred cells in all 

experiments.  Fractions were taken at every 5 mL in permeate volume.  Water or media was 

generally run through the membrane before any virus stock was used.  Each membrane was tested 

in two different orientations, barrier side facing the feed and support side facing the feed.  Each 

membrane was tested with each virus strain and each orientation.  The 300 kDa membranes also 

were tested with 0% weight by volume [w/v] BSA virus stock and 1% w/v BSA virus stock.  After 

adding the solid BSA to the stock, the solution was stirred for thirty minutes and then filtered with 

a 0.2 µm polyethersulfone filter membrane.  A single experiment with the 10 kDa membrane 

utilized 1% BSA while the rest used 0% BSA.  A water flux and a media flux control were 
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performed for each membrane, and an additional control using 1% BSA in media was performed 

for the 300 kDa membrane.  This produced five experiments for the 10 kDa membrane and eight 

for the 300 kDa membrane.  Controls were performed using a mass balance as fractions were not 

necessitated for those runs.     

2.3 Titer Analysis 

Each fraction was tested for its concentration of virus particles using a culture plate and 

plaque count method.  Plate media was made of 2xYT medium broth (31g/L) and agar (15g/L).  

Host bacteria were grown to an optical density of 0.300-0.600 at a wavelength of 600 nm.  200 µL 

aliquots of the bacteria were spiked with 10 µL of either a diluted or an undiluted fraction.  Several 

sample plates were made for each filtration to determine what level of dilution, if any, was 

necessary for that result.  Dilutions were either 10-fold or 100-fold dilutions using 2xYT medium 

broth.  The 210 µL of bacteria and virus solution were vortexed and allowed to sit for five minutes 

to allow for infection.  An agar-media solution (31g/L 2xYT medium broth and 7g/L agar) was 

heated to melting.  3 mL of this solution was combined with the 210 µL of bacteria/virus solution 

and vortexed.  This was poured over a prepared culture plate and allowed to solidify.  This plate 

was placed in a 37 degree Celsius incubator overnight.  Each plate was made in triplicate.  Plaque 

counting was then performed on each plate.  Values below 10 plaques per plate or above 350 

plaques per plate were not considered, and the fraction was repeated at a different dilution.   This 

would produce a minimum of thirty six plates for each filtration.  If any plates failed to cultivate 

any growth or if the results were not discernable, the plates were repeated.  General methods for 

the titer analysis were derived from Benson’s Microbiological Applications [30].  Each data point 

is the average LRV of three titer plates. 
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2.4 Scanning Electron Microscope 

Scanning Electron Microscope (SEM) images were taken of both membranes.  Images 

were taken of the barrier layer, support layer, and a cross-section of the membrane.  The SEM is 

an FEI Novalab 200 Duo-Beam Workstation.  It was operated with an accelerating voltage of 15 

kV.  5 cm by 5 cm pieces of membrane were cut and coated in gold.  Membranes used for cross 

section images were immersed in liquid nitrogen and then fractured.  Images were taken at 500X 

and 10,000X magnification for both membranes and all orientations.  

3 Results 

3.1 SEM Images 

Fig. 1 shows the SEM images of the two membranes taken to show the barrier layer (B, G, 

H), the support layer (C, D, F), and the cross section (A, E).  Barrier layers for each membrane are 

nondescript at 500 times magnification.  A 10,000 times magnification for the 300 kDa membrane 

provided visibility to the pores (H).  Increasing the magnification 10,000 times for the 10 kDa 

membrane damaged the membrane while failing to provide any information about the pores, which 

is expected given the low molecular weight cut off.  Smoothness of the surface also did not allow 

for much visualization.  Cross-sectional views of the 10 kDa membrane show the widening of the 

pores from the barrier layer to the support layer, as well as some channel interconnection.  

Visualization for the 300 kDa cross-section is more difficult since the membrane was difficult to 

cleanly crack after being submerged in liquid nitrogen.  The various layers of the membrane inhibit 

much else from being seen.  Support structures can be seen for the 300 kDa membrane at 500 times 

magnification, but the 10 kDa membrane requires 10,000 times magnification to see the openness 

of the support layer.  Several of the cross section images of the 300 kDa membrane appear with a 

ring or halo like appearance in the background, such as Fig. 1 E.  These are not significant to the 
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image as a portion of the membrane was directed perpendicular to the resting surface of the rest of 

the membrane, and the background was likely the mount in the SEM.  

3.2 Flux Data  

Flux control experiments for the 10 kDa membrane are similar to the reported water flux by 

Sartorius, as seen in Fig. 2 [31].  Though the flux matches the reported flux, the reported flux has 

a pressure at 400 kPa.  The control experiment was performed at 300 kPa which should cause the 

flux to be roughly seventy five percent of the reported flux as flux should be linearly proportional 

to pressure.  A solution of 2xYT media shows a decline in the flux without the presence of virus 

or protein.  There is significant flux decline with media alone, but the addition of 1% BSA causes 

the flux to drop below 10 LMH.  The 300 kDa membrane control, Fig. 3, demonstrated a drop in 

flux with media in solution compared to water with a strong drop in flux with BSA also in solution.  

Pall’s product information is unclear about the concentration of BSA used, but the 300 kDa 

membrane solute flux was within the range of the reported flux [32].  Flux values for 10 kDa 

membrane experiments, Fig. 4, show a significant decrease in the flux when protein is used.  What 

was accomplished suggests little difference in the flux with or without virions.  For each virus 

type, inverting the membrane saw an improvement in the flux.  It is difficult to establish significant 

differences in flux between the virus types for this data set.  Considering the propensity for the 

membrane to be fouled by the protein, this is expected.  Fig. 5 provides the data for the 300 kDa 

membrane, and provides a more dramatic change in flux with the addition of 1% BSA.  All inverted 

flux experiments had higher fluxes than their non-inverted counterparts.  The large difference 

between the fluxes for the two different membranes either with water or the solute fluxes is clearly 

related to the pore openness and size.  The SEM images show that the 300 kDa have more open 

pores and its support structure is more open than the 10 kDa membrane even in design.  
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The 300 kDa membrane’s support is not composed of discrete pores like the 10 kDa 

membrane.  Rather, the support of the 300 kDa membrane shows individual fibers which are 

layered and overlapping.  The solution will flow around these fibers and allow for a higher flux.  

As proteins will foul membranes of these sizes, all solutions containing media or BSA will 

experience flux decline.  Table 4 provides the design of experiments.   

Table 4 

Design of Experiments 

10 kDa Pore Size 300 kDa Pore Size 

Inverted Membrane, Phi X174 Inverted Membrane, Phi X174 

Non-inverted Membrane, Phi X174 Non-inverted Membrane, Phi X174 

Inverted Membrane, PR 772 Inverted Membrane, PR 772 

Non-inverted Membrane, PR 772 Non-inverted Membrane, PR 772 

Table 4: Design of experiments.  Eight total experiments consisting of two different viruses, two 

different membranes, and two different membrane orientations. 

3.3 Viral Rejection 

Virus rejection data is presented in Fig. 6 and Fig. 7.  Except for the initial data points for 

non-inverted 10 kDa membrane with 0% BSA and the PR772 virus, all experiments showed a 

rejection beyond our methods to detect viable virions.  The aforementioned data set rises in LRV 

with each data point until it reaches the limit of detection likely due to an increase in membrane 

resistance.  The 10 kDa membrane showed it was proficient at rejecting both virus types.  The 300 

kDa membrane gave high viral rejection except in the presence of BSA.  Fig. 7 shows that all runs 

with BSA had reduced levels of rejection compared to those without BSA.  The major variations 

between all runs is the initial titer of each stock.  It also appears that for the inverted and non-

inverted Phi-X 174 with 1% BSA runs that the rejection increased with time as membrane 

resistance increased.   

4 Discussion 

Although one parameter tested was the inclusion of 1% BSA, it is obvious that protein was 
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present in every filtration regardless of the addition of BSA as 2xYT medium broth was used to 

grow the E. coli hosts for virus production [33].  Thus all filtrations contained the broth in solution.  

The broth was a product of AMRESCO and their product information gives the formula for the 

broth as containing per liter 16.0 g of tryptone and 10.0 g of yeast extract.  While perhaps it is 

possible to discern the common amount tryptone present in these solutions, each batch of broth 

produced would contain inconsistent amounts in part to the inclusion of yeast extract.  As such, it 

is not feasible to be able to accurately calculate the protein concentration of any filtrations using 

this broth.  This also complicates quantifying protein recovery.  One possible solution around this 

issue would be to use a bacterial host in combination with specific minimal media that could allow 

bacteria to thrive without containing a significant portion of protein already present in solution.  It 

would not, however, be able to remove the host proteins produced during the virus creation 

process.  Considering the comparison study does not attempt to remove these proteins and 

describes the solution as “low protein,” these are not considered significant contributions to the 

foulant load [13].  Another avenue would involve using BSA in phosphate buffer then adding virus 

to conduct control experiments since the feed would have much less protein.      

Comparing flux data with Wickramasinghe et al. shows the MVM feeds to have mostly 

higher fluxes for the Omega 300 membrane and fluxes between the Omega 10 and the Sartorius 

10kDa membrane [13].   Fluxes ranged from about 400 liters per meter squared per hour (LMH) 

to below 10 LMH in Fig. 5.  The comparison study maintained a flux of above 1000 LMH for 

Omega 300, even with 1% BSA, and at a lower pressure.  Obviously the fluxes from these 

experiments are expected to be lower simply due to the presence of protein in every run.  The 

Omega 10 and the Sartorius 10kDa membranes faired more comparably with protein fluxes falling 

below 10 LMH for both studies, regardless of viral presence.  The largest deviation between the 
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two studies’ data concerns LRV.  The MVM study showed two membranes as having substantial 

virus removal properties, which were DV20 and Omega 10.  DV20 is specifically designed for 

virus removal, unlike the ultrafiltration membranes used, and one of Omega 10’s suggested usage 

is for vaccine concentration.  What was significant in those experiments was the membrane 

orientation, as they showed a higher LRV when the separation surface was facing the feed.  Fig. 6 

and Fig. 7 show no effect when the orientation of the membrane is changed.  Only with the addition 

of BSA for the Omega 300 membrane is there any reduction in LRV.  Data for the 10 kDa 

membrane is insufficient to determine if the addition of BSA would have significant effects on 

LRV.  For the Omega 300 membrane, it follows that the increased protein concentration fouled 

enough of the smaller pores such that the larger ones were open enough to allow virus particles to 

reach the permeate.  This illustrates why having a narrow range of pore sizes is crucial for 

successful virus capture.  Without BSA, both ultrafiltration membranes were adequate at providing 

some level of virus removal for the two model viruses, which suggests the membranes are 

acceptable for future testing.  However, specific concentrations of protein would need to be 

quantifiable for future experiments.  Initial virus concentrations would need to be more consistent 

for greater analysis on specific membrane performance for each virus.   

5 Future Recommendations 

 Additional research concerning these experiments would benefit from several adjustments 

to the methodology discussed previously.  Duplication of fluxes should be made for all runs, and 

averages could be made for the runs.  Doubling or tripling the number of measurements taken 

during the run would provide protection against errant values from disrupting any analysis 

performed on the flux data.  More data concerning the 10 kDa membrane flux with 1% BSA is 

necessary, however care must be taken when using that combination.  The UF membranes used 
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are designed for non-inverted orientation.  Placing the support to face the feed could cause leakage 

as the solution is directed not through the membrane but rather around or over it.  The stirred cells 

used in these experiments are unlike the virus filtration cells used in industry, which are designed 

around not being susceptible to such leaking issues. 

 Protein concentration and quantification are useful parameters to control.  The viral stocks 

contained protein that was difficult to quantify.  Assays that could determine protein concentration 

before, during, and after runs would provide BSA rejection data and allow for standardization 

between runs.  This would allow for examination of fouling should different effects be seen for 

the various parameters.  Another method to reduce extra protein from the media could be obtained 

through centrifugation.  The methods previously used centrifugation to remove cellular debris.  If 

a second centrifugation was used to make the virus particles into a pellet and resuspend it in 

phosphate buffer solution.  Though it may not remove all of it, this technique would greatly reduce 

non-BSA protein in the feed solution. 

6 Conclusions 

 Virus filtrations were performed using commercially obtained asymmetric, ultrafiltration 

membranes with bacteriophages.  10 kDa and 300 kDa MWCO PES membranes exhibited virus 

removal capabilities for bacterial parvovirus and retrovirus, Phi X174 and PR772 respectively, in 

the presence of protein. These viruses are approved by the FDA as mammalian virus analogues.  

Results confirm that using the support structure as a pre-filter allows for better performance by 

reducing fouling on the separating surface of the membrane.  High protein concentration, greater 

than 1% w/v, negatively impacted the membrane’s flux, while virus size did not appear to affect 

either flux or LRV.  
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7 Figures

Fig. 1   SEM images of 10 kDa Sartorius PES membrane A) cross-section B) barrier 

C) support at 500 times magnification and D) support at 10,000 times 

magnification.  Remainder at 300 kDa Pall PES membrane E) cross-section F) 

barrier G) support at 500 times magnification and H) barrier at 10,000 times 

magnification. 
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