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ABSTRACT 

The complexity in most engineering systems is constantly growing due to ever-increasing 

technological advancements. This result in a corresponding need for methods that adequately 

account for the reliability of such systems based on failure information from components that 

make up these systems. 

This dissertation presents an approach to validating qualitative function failure results 

from model abstraction details. The impact of the level of detail available to a system designer 

during conceptual stages of design is considered for failure space exploration in a complex 

system. Specifically, the study develops an efficient approach towards detailed function and 

behavior modeling required for complex system analyses. In addition, a comprehensive research 

and documentation of existing function failure analysis methodologies is also synthesized into 

identified structural groupings. 

Using simulations, known governing equations are evaluated for components and system 

models to study responses to faults by accounting for detailed failure scenarios, component 

behaviors, fault propagation paths, and overall system performance. The components were 

simulated at nominal states and varying degrees of fault representing actual modes of operation. 

Information on product design and provisions on expected working conditions of components 

were used in the simulations to address normally overlooked areas during installation. The 

results of system model simulations were investigated using clustering analysis to develop an 

efficient grouping method and measure of confidence for the obtained results. 

The intellectual merit of this work is the use of a simulation based approach in studying 

how generated failure scenarios reveal component fault interactions leading to a better 

understanding of fault propagation within design models. The information from using varying 

fidelity models for system analysis help in identifying models that are sufficient enough at the 



 
 

 
 

conceptual design stages to highlight potential faults. This will reduce resources such as cost, 

manpower and time spent during system design. A broader impact of the project is to help design 

engineers identifying critical components, quantifying risks associated with using particular 

components in their prototypes early in the design process and help improving fault tolerant 

system designs. This research looks to eventually establishing a baseline for validating and 

comparing theories of complex systems analysis. 
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CHAPTER 1 

INTRODUCTION 

This work discusses the successful advancements made in early design stage failure 

analysis using the Function Failure Identification and Propagation (FFIP) framework. The goal 

of this work is to explore ways by which the model representation can be used to successfully 

characterize behavioral and functional abstractions and their effect on design-stage predictions of 

functional analysis methods. Specifically, the approach in this work identifies critical 

components in system designs using different levels of model detail and fidelity. A clustering 

analysis research on FFIP results is also presented. 

Engineering systems such as vehicles, airplanes, drones, and most industrial systems are 

defined as collections of physical entities that comprise a component, device or subsystem [1]. 

Most of these systems generally consist of interacting mechanical and electrical components with 

nontrivial dynamic behavior and complicated interaction topology [2].These systems generally 

fail at some point in their lifecycle. This makes studies into failure analysis of complex system 

an important area of research to design engineers. 

Predicting and mitigating faults in engineering systems continues to be more complex 

due to the system complexities from increase in demand for more system operation 

functionalities. Different innovations are constantly being added to already complex systems to 

make them more robust in their applications. This however, increases the difficulty in studying 

the relationship between the components and subsystems of these systems. Many systems rarely 

have components operating independently such that failures in any part will affect neighboring 

parts. These systems have connecting links in function or behavior among neighboring parts 
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causing a significant change in performance due to failure in one or more constituting 

components transferring its effect to the next connecting part. Hence, as the level of interactions 

between components continue to increase, studies on fault identification and propagation, based 

on failure scenario data within complex systems becomes very important for the purpose of 

building safer and more reliable designs [3]. 

Depending on the amount and type of connections to any component, failures in such 

components are usually exhibited in diverse forms, making it difficult to predict their 

performance. Some components usually have typical ways of failing throughout their span of 

operation. For example, typical valve failure modes are often failure to open, failure to close, or 

leakage. The results of years of operation of engineering systems have provided evidence data on 

components and systems failing with different characteristic behaviors. Implementing this 

historical failure information to develop improved methods for failure analysis is important in 

identifying and eliminating possible failure modes in order to design highly reliable products [4]. 

Despite the ever-increasing complexities within systems, conventional failure analysis 

tests such as failure mode, effects analysis (FMECA) [5], fault tree analysis FTA[6] event tree 

analysis [7] and root cause analysis [8] are still being used in industry. The methods adopt a 

quantitative approach for analyzing system faults. Most of these comprehensive quantitative 

methods are mostly applied at later phases of the design process where information such as 

failure probabilities and detailed failure modes can be established [9, 10]. They are usually not 

cost or time effective approaches particularly with the possibility of required redesigns when 

faults are detected. The usefulness of these techniques have also come with some significant 

limitations such as the need for expert user knowledge, their application early in design stages, 
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their difficulty in identifying potential hazards when unexpected activities linked to unexpected 

faults occur and the deficiency of capturing multiple interacting faults  [11-14].  

Furthermore, due to the increase in the scrutiny that large-scale projects experience and 

the societal and program risks associated with catastrophic failures, risk and safety have become 

increasingly critical performance parameters for many systems. As a result, there have been a 

few model-based investigative failure analysis techniques implementing these parameters while 

addressing the limitations of the conventional tests at early conceptual stages of the design 

process of complex systems. Some of these methods adopt either a quantitative or a qualitative 

analysis with very few implementing both. 

Qualitative analysis methods are practiced based on function-failure methods. These 

methods concentrate on the function-based performance which a component has on an entire 

system. This performance is based on the nominal, degraded or other faulty states that can be 

characterized as representing the components physical state while in operation. The advantage of 

utilizing these methods is its application at the conceptual stage of the design process where little 

information is known about the system [10]. They help by decreasing redesign, time, cost while 

improving quality and safety of systems [15]. 

The improvements in modeling and simulation tool packages have boosted the use of 

qualitative means in carrying out failure analysis. It is crucial for design engineers to be able to 

reason at the functional level. This aids in identifying system functions that are likely to fail and 

what the overall effect of the loss of these functions will be on system behavior and performance. 

Qualitative methods often apply function modeling knowledge in order to utilize function failure 

methods [5]. These methods focus on whether an individual components function-based 
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performance is having the desired effect on the overall system, or if it is causing a degraded, or 

even totally defective, system performance state. The key effectiveness of these methods is that 

they can be implemented at concept level or later in design stages [10]. 

Using model-based systems design to perform a combination of quantitative and 

qualitative analysis offers a means of rapid evaluation and redesign with the overall goal of 

reducing risk of failures, design time, cost and effort. For example, in the early stages of a 

system design, using modeling tools, emphasis can be made on a system’s functional 

requirements to identify what functions are likely to fail, degrade or impact the overall system 

behavior and performance before the physical prototype of the system is built. Inserting such 

analyses into the early design process allows systems engineers to make informed, robust design 

decisions prior to the allocation of resources. The Function Failure Identification and 

Propagation (FFIP) framework tool has been developed to support this type of work [16, 17]. 

Based on available information at early design stages, a sufficient model that adequately 

represents the various stages of operation of a system with or without faults can be created to 

explore its failure space. Increase in the scrutiny that large-scale projects experience and the 

societal and program risks associated with catastrophic failures, risk and safety have become 

increasingly critical performance parameters for many systems.  

This research work uses an approach that implements a method to automatically input 

failure information obtained from conventional failure analysis tool database into a behavior-

based system model. Using the model-based approach, a function and component based structure 

of the system was built following a real-life system design process. The technique assesses the 

system model and introduces potential component faults from the list in the failure information 
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database, which is simulated to generate a list of possible failure scenarios. This work combines 

the effective strengths of conventional and qualitative failure analysis tools to identify what 

failure scenarios can or should be simulated for any type of engineering system at early design 

phases. 

1.2 Terminology 

Due to the need to use terms that are found and defined differently in multiple disciplines 

the following definitions are intended for this research work. 

 Component: Any physical, software, or human element in a system that has nominal and 

failure behavior. 

 Fault/Failure Mode: A discrete behavior of a component different from the nominal 

behaviors. 

 Fault Scenario: The set of nominal and faulty component modes provided to a system 

simulation.  

 Flow: The energy, material and signal that connects functions of a system. 

 Function: The action a designer intends in a system that affects the flow of material, 

energy, or signal. 

 Function Health State: The evaluation of the relationship between a component behavior 

and it’s intend function. With the following categories: 

 Healthy/Nominal: Function acts on flow as intended. 

 Degraded: Function acts on flow but not as intended. 

 Lost: Function does not act on flow. 

 No Flow: There is no ow on which the function could act. (A type of Lost) 
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 Overacting: There is too much output of flow on which a function acts.  

 System State: The set of health states for all functions resulting from the simulation of 

function health states. 

1.3 Dissertation Outline 

The outline of this research is highlighted as follows: 

Chapter one gives an introduction of what the research is all about, the goals, the 

justification or broader impact of the research; 

Chapter two gives a general background on what complex systems are, the challenges 

faced in complex system analyses, failure analysis tools (conventional /traditional) and the model 

based simulation approaches, as well as the type of result analysis being carried out; 

Chapter Three gives a review of existing FFIP–related researches and its state of the art. 

The main contribution of this chapter is a novel grouping of the different function-based failure 

analysis methodologies. This chapter starts with a discussion on what functional modeling and 

what FFIP is all about; 

Chapter Four presents the impact model details and fidelity abstractions have on system 

analyses particularly at the conceptual stages of such systems. Here, a detailed guide into how 

we propose failure analyses of a selected sample system (the Electric vehicle) was performed and 

the different results obtained are presented; 

Chapter Five is a presentation of a co-authored journal article, “Reasoning about 

System-Level Failure Behavior from Large Sets of Function-Based Simulations”. This chapter 
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focuses on the approach adopted in analyzing how function failure results are clustered before 

decisions can be made; 

Chapter Six is the concluding chapter which details the logical findings obtained from 

the results of work carried out.  
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CHAPTER 2 

RESEARCH BACKGROUND 

This chapter covers related research for this dissertation. First, general background 

knowledge is presented. Additional sections are then used to cover specific research as they 

relate to the following chapters. Finally, other research topics that are covered provide good 

knowledge for reliability engineers to consider in early design.  

2.1 Complex Systems 

Complex systems are generally not defined by their physical size but are systems that 

consist of complicated or multiple interacting mechanical and electrical components with 

nontrivial dynamic behavior [1]. As all systems fail at some point regardless of their level of 

complexity, study how to mitigate failure in complex systems is a key focus of this research. 

Failure analysis is important in identifying and eliminating possible failure modes in order to 

design highly reliable products [2]. 

Conventional data analysis tests such as failure mode, effects analysis (FMECA) [3-8], 

fault tree analysis FTA [9-11] event tree analysis [12-15], reliability block diagram [8, 16-18], 

probabilistic risk assessment [19-25] and root cause analysis [26-28]  are commonly used in 

industries such as the automobile, aviation and aerospace. These tools are useful in 

troubleshooting and carrying out maintenance works in many modern day systems and 

operations. However, the usage of these techniques have resulted in certain limitations such as 

the need for experts, limitation in conceptual design, failure to predict hazards due to emergent 

behaviors and the inability to capture multiple interacting faults [7, 29-31].  New and improved 
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ways that adequately predict failure scenarios in complex systems from early stage of the design 

process are currently been encouraged. 

Complexity in a system arises from the level of interconnectivity among the components 

within that system. Most components within a system usually have typical ways of failing 

individually through the span of their operation. For example, typical valve failure modes are 

often failure to open, failure to close, or leakage. The application in complex systems may vary 

but each component within them exhibits similar patterns when they fail. These systems 

generally have their components sub-divided into certain networks [2, 32, 33], which are in 

interaction with one another through hardware linkages (power cables, screws, bolts or even 

pipes). These interactions do not only imply functional partitions but also the potential failure 

functions. 

Systems rarely have components operating independently such that failures in any part 

will affect neighboring parts. Instead, most systems have connecting links in function or 

behavior among neighboring parts and would have a significant change in performance due to 

failure in one or more of its constituting components transferring its effect to the next connecting 

part. Hence, as the level of interactions between components continues to increase, the study of 

fault propagation paths and component behavioral states, based on compiling data on failure 

scenarios within complex systems, then becomes very important for the purpose of building safer 

and more reliable designs [34, 35]. 
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2.2 Concept of Modeling Faults 

Some component failures are often initiated from the effect of faults in other components. 

Commonly used conventional failure tests usually obtain their information on performance from 

data sources on the life-cycles of components in order to study a component’s failure modes. 

These tools then require the combination of engineering knowledge, experience and 

troubleshooting skills to detect component-level and system-level faults. Some recent approaches 

developed and adapted the use of system models to carry out similar tests through simulations 

that capture a close to exact operation of the system being observed [17].  

The conventional practices, still in use by NASA, DARPA, Boeing, Airbus, and Toyota 

[4, 36], are more generic in their method of application, while model-based failure tests are 

intended to be specific to particular systems under consideration. Through the advancement of 

design methodologies and simulation techniques, reliability is now being early in the design 

stages, even as early as in the conceptual design stage [37-39]. Much of these new model based 

tests have revolutionized design analysis especially in terms of the way product performance and 

reliability tests are now being carried out [40]. There has been extensive work in the modeling of 

different systems. However, due to the intrinsic complexities involved, modeling of the 

interaction between these systems has been limited [41, 42]. 

Today, the use of modeling techniques in design engineering has become an efficient and 

cost-effective way of representing real-world systems together with or without their working 

environment. Models generally represent vital aspects of a system, including underlying 

requirements, the components, existing sub-systems, and how those components and sub-

systems communicate with one another [43-46]. These models can then be simulated to enable 
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designers to test designs before system hardware becomes available, or to test conditions that are 

either difficult or too expensive to replicate in the real world. During the design process, iterating 

between modeling and simulation will improve the quality of most systems early enough to 

significantly reduce the number of errors that will be discovered later [47, 48]. 

Simulation tests can be difficult and time-consuming, and when different tools are used 

for individual domains, obtaining a system-level view of the design can be challenging. Hence, 

defects that could have been revealed during the modeling and simulation phase may often be 

seen during the implementation phase, when defects are more expensive to fix. Many leading 

modeling and simulation platforms have however been designed to address this issues; examples 

are the MATLAB-Simulink [48], Wolfram SystemModeler [49], and Phoenix Integration [50]. 

Simulink, for example, supports not only multi-domain modeling but also simulation, in 

addition to its own set of ordinary differential equation (ODE) solvers. A vital advantage of 

using this platform is its ability to represent different domains, including control systems, state 

machines, and environmental models, in a single model, and then run its simulations to verify 

that the model is built correctly. The simulation analysis capabilities available here include data 

displays, state animation, and conditional breakpoints. The completed simulation results of 

logged data can then be analyzed using MATLAB scripts and visualization tools [51]. 

2.3 Related Research 

The current approach in diagnostics and fault management has been on diagnostic 

reasoning to mitigate faults when they happen, based on matching data to models during 

operations [52]. Improved researches on functional design are currently being done into 

uncovering many hidden fault scenarios which have previously not been easily captured at 



 
 

13 
 

conceptual design phases. Design engineers now work on providing solutions with high 

confidence levels in their design analysis (during early stages) to predict failure scenarios 

resulting from faulty components and how these propagate throughout the system.  

Many types of risk analyses are used to study the lifecycle of complex systems [29, 53-

57] which includes quantitative and probabilistic methods [58], reliability analysis techniques 

applied to design [3, 9], or knowledge-based approaches such as lessons learned databases and 

hazard analyses [59]. However, a critical flaw of these methods is the difficulty in applying them 

at early design stages where the models are vague, the knowledge, decisions and probabilities 

about the system are difficult to capture, and hard to designate [60]. Also studies and design 

reviews have shown that early design stages are one of the best times to catch potential failures 

and anomalies [61]. This stage is crucial as many design decisions and tasks are still open such 

as sensor and measurement point selection, safeguards, redundancies, diagnosis, signature and 

data fusion schemes. These decisions are made to effectively reduce the cost of risk mitigation 

efforts and increase the safety of designed systems [21, 62, 63]. 

There is a lack of formal representations and methods for enabling risk analysis at early 

design stages. Commonly used risk analysis techniques (FMEA, FMECA, FTA) require very 

detailed, high fidelity models of system components in order to study faulty system behavior and 

its consequences. For example, Failure Modes and Effects Analysis (FMEA) [64] is a method 

that systematically examines individual system components and their failure mode characteristics 

to assess risk and reliability. However, the analysis requires a detailed level of system design, 

and thus is not optimal to be used during conceptual design [65].  
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Some researchers have modified existing conventional techniques into improved ones to 

capture failure scenarios in systems in order to address the limitation of multiple faults capture 

[66]. Pickard et al [67], proposed the mFMEA (multiple Failure Mode and Effects Analysis), 

which is an integration of the FMEA method (Failure Mode and Effects Analysis) and the FTA 

method (Fault Tree Analysis) that provides an inclusive reliability analysis of complex, 

mechatronic systems. This approach was done by using risk analysis, risk assessment and 

measure controlling, paralleling systematically to the product design cycle (applicable for single 

failures). Applying the information from the FMEA, allows the expansion of the FTA through a 

failure analysis with the help of its combination option to network failures according to Boolean 

logic. This enables an approach that allows for the consideration of multiple failures while 

retaining all the characteristics of FMEA and also uses failure networks quantitative information 

in deriving system’s availability along with the results of the mFMEA.  

Other researchers perform risk analysis on the risk priority numbers (RPN) obtained from 

from FMEAs to identify and prioritize failures in systems. The risk priority number (RPN) can 

be evaluated using the following: failure occurrence (O), effect severity (S), and detection 

difficulty (D) and are evaluated using a 10-point scale.  

        RPN = O × S × D                                                                  (1) 

Eq. (1) shows the RPN. Higher RPN values imply greater risks of failure modes. 

However, it has been argued that the RPN may not be a good measure of risk [68, 69]. 

This has led to other modifications of FMEA in order to deal with the difficulties of assigning 

risk factors. Wang et al. [70] proposed fuzzy risk priority numbers (FRPNs). Using the centroid 

defuzzification method, FRPNs are defuzzified to distinguish between failure modes. Chin et al. 
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[71] used the data envelopment analysis (DEA) to identify risk priorities of failure modes 

measured by overall risks. They also used interval DEA to solve the incomplete and imprecise 

assessment of FMEA. Also, in order to address the issue of integrating different types of 

information into the traditional RPN and fuzzy logic methods, Chin et al. [72] developed a new 

FMEA methodology for multiple attribute decision analysis using the group-based evidential 

reasoning (ER) approach. Most other fuzzy methods [73, 74] allow the addition of flexibility to 

FMEA, but still possess limitations from the use of subjective factors.  

Another important conventional tool for system reliability is the fault tree analysis (FTA). 

It is suitable for application in existing systems and new systems simple or complex engineering 

systems [75, 76]. Shalev and Tiran [75] proposed modifications to these tools and then 

developed a practical operative tool called condition-based fault tree analysis (CBFTA) to 

improve system reliability. Dynamic FTA (DFTA) [77] provides another extension of the FTA. 

This method defined additional gates called the dynamic gates to model complex interactions. 

Some researchers have also recently used the fuzzy set theory and evidence theory in FTA 

analysis [78] to reduce the error from the inaccuracy of primary event data. 

Inductive methodology tools such as reliability block diagrams (RBD) also help in 

performing system reliability analysis though the use of graphical representations [79]. The 

system structure is usually arranged in series or parallel or their combination. Extensions of the 

RBD method include the RBD method for repairable multi-state systems [80] and the RBD with 

general gates [81].  
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2.4 Conceptual Stage Failure Analysis Methodologies 

In conceptual design stages, very limited reliability information is usually available. 

Traditional statistical approaches restrict the information to what is obtained from current 

relevant data [82, 83]. Addressing the limitations previously discussed on the conventional 

failure analysis techniques, many Bayesian approaches perform better. All the information 

available with Bayesian approaches can be used, whether old or new, objective or subjective, or 

points or interval values. 

The Bayes’ Theorem is expressed by 

                π(θ y⁄ ) =
f(y θ)π⁄ (θ)

∫ f(y θ)π⁄ (θ)dθ
                                                       (2) 

Where θ is a parameter vector, y is a data vector, π(θ) is a prior probability density 

function, and f(y θ)⁄   is the probability density function of the data, referred to as the likelihood 

when viewed as a function of the parameter vector given the data. The result of integrating the 

data with prior information in Eq. (2) is the joint posterior distribution. Eq. (2) provides 

significant flexibility for various types of input information mentioned above [84, 85]. 

Bayesian methods are also able to integrate lifetime data collected at component, 

subsystem, and system levels with prior information at any level. A typical Bayesian model for 

assessing the reliability of such multicomponent systems is discussed in [83]. The model allows 

sourcing for information from similar components and expert opinions. Several sources of 

information relevant to estimating system reliability are assumed available such as lifetime data. 

The relationships between the state of the system and those of components is established and 

modeled as a series, parallel, or the combination system. Under the assumption that all the 
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component lifetimes are independent, the distribution of the system lifetime is analytically 

available given the distributions of component lifetimes.  

The Bayesian reliability methods have been further expanded by using the Bayesian 

Network (BN). BN is a probabilistic graphical model, which represents a set of random variables 

and their conditional dependencies through a directed acyclic graph (DAG). The BN 

methodology has become a popular approach applied to assess system reliability of nuclear 

power system, military vehicles, and sensors [86, 87]. Martz et al. [32, 88] used static Bayesian 

procedure to estimate the reliability of a complex system. Weber and Jouffe [89, 90] developed 

dynamic Bayesian networks (DBN) to dynamically model and control the complex 

manufacturing processes. Hamada et al. [91, 92] developed a fully Bayesian approach which 

automatically propagates the highest-level data to lower levels in the fault tree and developed 

YADAS software to assess system reliability. 

The introduction of simulation packages for use in system modeling has been successful 

in performing failure interaction studies to improving failure analyses of complex systems. Wang 

and Li [93] studied the redundancy allocation problems for multistate systems (containing a main 

subsystem and an auxiliary subsystem, and their possible backups) with failure interactions. 

They observed there were failure interactions from the auxiliary subsystem to the main 

subsystem; that is, when the auxiliary subsystem failed, the failure process of the main 

subsystem increased. They used semi-Markov process models in their system model with two 

cases; one where all auxiliary subsystems work sequentially and another with all auxiliary 

subsystems working in parallel and they also allowed their main subsystems work sequentially 

for both cases. They were able to use an enumeration method to solve the redundancy allocation 

problem. Through their case study, they were able to show that for the specific applications of 
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multistate systems with failure interactions, the optimal redundancy allocation schemes could be 

obtained considering different effects of adding redundancy under different failure rates and the 

repair actions of components that interact with each other. 

Innovative approaches to improving how faults are captured in complex system design 

have considered including fault propagation studies in their model analysis [1, 94]. These studies 

recommend including all system component in their model for analysis. Fault propagation 

considers nodes having physical or logical coupling, when any node fails, then adjacent nodes 

will also appear to have faults. In the conventional process of fault diagnosis, most 

considerations on fault propagation are done from the perspective of probability analysis. 

However, from a practical standpoint, the structure of complex system strongly affects the fault 

propagation of the entire system. Usually, if a node is connected to many nodes, failure of this 

node (even for nodes with low failure rates) will cause other number of nodes to become faulty. 

Also a good fault propagation path study will require adequate understanding of some 

uncertainties that can develop in the system being considered during the course of its operation 

[1, 94]. 

Other methods attempt to reconcile various approaches of performing sensitivity analysis, 

which another method used in conceptual design. Hutcheson and McAdams [95] presented a 

local sensitivity analysis used for screening a large number of concepts during conceptual design 

and a global sensitivity analysis performed during the later stages of design. Also, the concept of 

the multi-stage uncertainty quantification method [96], which was originally developed for 

model validation, could be modified for uncertainty quantification in conceptual design. 

Currently, the commonly used approach in industry for quantitative risk analysis is the 

Probabilistic Risk Analysis (PRA) [19].  



 
 

19 
 

2.5 Function-Based System Design 

Functional modeling is an important component in concept generation during the design 

process. It has been used extensively to aid engineers in the generation of system and product 

requirements, and in system-architectural decision making. Functional modeling is a technique 

that is used to represent the functionality of a system and it does not depend on the form of the 

system [97-100]. Functional models typically consist of functions and flows represented as verbs 

and nouns (such as transmit current, close valve, stir fluid, store data) [101]. Several efforts have 

been made to formalize the language and syntax used in functional modeling to enhance the 

usefulness and efficiency of such methods. These efforts are centralized around the idea of 

defining distinct levels of detail, or abstraction, that provide a contextual lens through which to 

observe and improve the design process [100, 102, 103]. One such approach is the Functional 

Basis framework, introduced by Wood et. al.[97]. As decisions are made during the design 

process, components and subsystems are generated and refined to accomplish the functions 

required by the product. These components may reveal additional functions that need to be 

completed. 

The Function Failure Design Method (FFDM) methodology was developed from utilizing 

the function modeling approach. It generates relationships between functional losses and system 

failure states. The FFDM approach allows for the identification of potential failures prior to 

commitment of resources to a particular physical design configuration by using historical data of 

component failures [104]. The Risk in Early Design method augments FFDM by the inclusion of 

consequence and likelihood values, allowing the designer to understand the results of potential 

failures [105-107]. Change prediction method applies failure analyses to the Design Structure 

Matrix (DSM) to evaluate the propagation path of failures [108]. By applying the DSM to the 



 
 

20 
 

evaluation process, the designer is able to connect changes in failure performance to system 

architectures. 

An extended version of the FFDM is the Functional Failure Rate Design Method 

(FFRDM) [109, 110]. It utilizes a robust knowledge base and repository data to effectively 

provide recommendations that mitigate failure modes having high likelihood of occurrence. The 

component’s function-flow failure rates and knowledge of the failure modes provided 

quantitative reliability results which assists the decision making process in early design phases. 

A combination of all these previous methodologies became the bedrock for the development of 

more robust frameworks that would be utilized for early fault assessment such as the Function 

Failure Identification and Propagation (FFIP). 

2.6 Function Failure Identification and Propagation (FFIP) 

The Function Failure Identification and Propagation (FFIP) framework [60, 65, 101, 111-

113] is an early design stage predictive method which effectively evaluates undesired behavior 

of complex systems [114, 115]. The functional, behavioral, and component architectural 

information of a system are generated in order to model and simulate discrete fault scenarios. 

The system behavior simulation is based on abstract, state-based descriptions of each component 

behavior. Functional reasoning obtained through the Function Failure Logic (FFL), is then 

applied to flows of energy, material, and signals (EMS) to confirm if specific component-level 

functions are influenced by deviations in the behavior of individual components within the 

system. FFL as a reasoning tool does not rely on form and architecture, which makes it ideal for 

early design stage decision making. The output of this analysis produces a set of the qualitative 

health states of each function in the system model. This technique has been effectively applied to 
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assess the fault tolerance, from the functional perspective, for various complex systems, such as 

aviation electronics [114, 116] and internal combustion engines [117].  

As described in Figure 1, the inputs of an FFIP analysis are: critical scenarios, functional 

and behavioral representations, and mapping logic between the behavior and intended function. 

The outputs that a designer uses are the system’s functional response to the scenario and the 

system’s behavioral response to the scenario. 

 

FIGURE 1:  FUNCTION FAILURE IDENTIFICATION AND PROPAGATION 

FRAMEWORK 

For complex systems, FFIP framework allows the system modeler to cluster models by 

high-level functions, adding detail and fidelity as design decisions and parameters are further 

identified [116]. Systems that share identical or similar components can reuse subsystems of the 

models, improving the efficiency with which analysis can occur. The overall goal of the FFIP 

analysis approach has always been to demonstrate the possibility of identifying faults and failure 

propagation paths by mapping component fault states to function ‘health,’ described by the 
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qualitative states ‘Healthy,’ ‘Degraded,’ ‘Lost,’ and ‘No Flow,’. These states are further 

described in the following list: 

1. Healthy - The function affects the flow as intended. 

2. Degraded - The function affects the flow differently than intended. 

3. Lost - The function does not affect the flow. 

4. No Flow - There is no flow present for the function to affect. 

The function failure reasoning introduced by the FFIP methodology is used as the 

primary logic within the simulation execution. The function failure logic (FFL) reasoning 

module and a flow state logic (FSL) provide the logic rule that determines the function states of 

components based on system levels and types. The health states listed above are used to describe 

the health of the system at any given point during the simulations. Evaluating failure scenarios as 

they are implemented in models of a system with different fidelity levels provides a different 

challenge, due to the highly specific demands of defining such scenarios.  

While the FFIP method has been shown to successfully reveal fault propagation paths in 

various systems, its validity is currently being evaluated next to physical platforms to evaluate 

the usefulness and applicability of a functional representation of system modeling in making 

system design decisions. However, in this work, previous researches carried out relating to the 

use of the FFIP methodology on systems will be reviewed. This will serve as primary guidance 

and validation to the robustness of utilizing the framework in our approach presented amongst 

other works in this dissertation. 
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CHAPTER 3 

FFIP METHODOLOGY APPLICATIONS IN CONCEPTUAL DESIGN RESEARCH 

This section is focused on reviewing various analyses relating to the application of the 

Functional Failure Identification and Propagation (FFIP) framework to complex systems over the 

past decade. The history of FFIP and its importance in the domain of failure analysis in different 

complex systems are illustrated. The contributions made by the FFIP methodology and the 

current research applications evolving from it for safety in complex engineering systems are 

discussed. Other works related works adapting the FFIP methodologies and its hybrids are also 

discussed.  

The key questions on function-based failure analysis research that are addressed in this 

chapter are: 

 What types of systems are evaluated? 

 What types of modeling are used? 

 What types of analysis are used in carrying out the researches?  

This will provide guidance to researchers and system designers towards aiding the 

decision-making process by understanding the importance of applying this method, suitable at 

the conceptual stage of designs. The researches relating to FFIP have all been grouped into the 

categories shown in Figure 2.1 below. 
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FIGURE 3.1: FFIP RESEARCH TREE 

 

3.1 A Graph-Based Representation of Complex System Models (FFIP) [1, 2]  

 The FFIP framework was introduced by Kurtoglu and Tumer [1, 2] as an approach that 

assesses the functional-failure risks of physical systems during the conceptual stage of the design 

process. In their paper, they described creating system models using graphical representations 

where FFIP system functions were represented as using function structures. A combination of 

hierarchical system models with behavioral simulation and qualitative reasoning, were used to 

develop their framework which highlights faults and their propagation paths when failure 

scenarios are triggered. 
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Graphical models, behavioral simulation and FFL reasoners were illustrated as three 

major components vital to the FFIP framework. Using a Hold-Up tank system model as case 

study, a functional model and configuration flow graph (CFG) [3] capturing a direct map 

between the functional and the structural architecture of the system [4] were built. The CFG is a 

specific implementation of the topology or the configuration layout of systems. It follows the 

general functional topology of a system and maps the desired functionality into the component 

configuration domain.  

The behavioral simulation was developed using high-level, qualitative models of system 

components at various discrete nominal and faulty modes. Transitions between these discrete 

modes were defined using mode transition diagrams. Component behaviors in each mode are the 

input-output relations and underlying first principles governing the components operation. All 

the models followed the form of the CFG hence, the state variables critical to the system 

behavior were incorporated into the representations by associating them with their respective 

CFG flows.  

The overall assessment of potential functional failures and fault propagation paths were 

made through a reasoner that translates the input and output variable state changes in the system 

configuration graph into functional failures. The function failure logic (FFL) reasoner defines a 

set of form-independent system function models that describe conditions under which functions 

deviate from their intended operation. The results of the FFL are used to classify each system 

function as operating, degraded, or lost. 

The sets of novel discoveries that were made using the FFIP approach to test faulty 

conditions on the Hold-Up tank are as follows: 
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  (1) FFL and FFIP conveniently reasons at the function level to assess the impact of 

failures on system performance;  

(2) FFIP does not require designers to make prior assumptions to speculate fault 

propagation paths of causal relationships;  

(3) FFIP has the ability to capture various non-trivial, non-linear fault propagation paths 

by adequately considering the maps between the function, the physical structure, and the 

behavior of a system; and  

(4) The extensive ability of FFIP to identify functional failures arising from global 

component interactions instead of direct component links. 

The authors concluded that by using a model paradigm capable of representing desired 

components functionality, structure and interactions, the FFIP method effectively integrates fault 

prevention and management. This is done by systematically exploring risks and vulnerabilities 

without committing to design decisions at the conceptual stages of system designs. 

3.2 Functional Failure Reasoning Methodology [56] 

Following the introduction of the FFIP framework, an effective reasoning methodology 

for comparing the input-output relationship of component models was evaluated. Kurtoglu et al 

[5], proposed a function failure reasoning (FFR) approach suitable for failure analysis at early 

design phases of complex systems. The method was based on two assumptions: that failure 

occurs when functional elements in a system deviate from performing intended tasks; and risk is 

dependent on the role of functionality in accomplishing designed tasks.  
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An aerospace vehicle’s electric power system (EPS) that supplies power to the vehicle’s 

subsystems was used as the case study for the FFIP analysis. A physical software-hardware 

testbed provided by the Advanced Diagnostic and Prognostic Testbed (ADAPT) at NASA Ames 

Research Center where automated fault diagnosis were recorded was utilized. Function criticality 

ratings (FCR) were used to identify system critical elements incorporated in EPS model needed 

for its effective operation. The FCR for each system sub-function were determined by comparing 

the criticality of individual system function and converting the ratings to a normalized coefficient 

based on the combined criticality of all system functions. The different components needed for 

redundancy and reconfiguration capability by the EPS to perform its functions of power storage, 

power distribution and load operation were identified.  

The functional model (for component function) and CFG (for component behavior) 

capturing the direct mapping between the functional and structural architecture of the system 

were created. The function-failure logic (FFL) module of the FFIP framework used its reasoner 

to determine the condition state of each system function (i.e. if operational, degraded, or lost). 

The FFL reasoner received information on the state of the system at the end of each time steps 

and the state of each system function gets evaluated at the discrete points. Thus, the FFL 

reasoner translates the dynamics within the system into function failure identifiers and facilitates 

the assessment of potential function failure and resulting fault propagation paths. By comparing 

the values of the input and output states of the CFG of a particular component, the FFL allows 

the assessment of the operability of its designated function.  

Upon running the FFIP analysis on the system, the functional failure impact (FFI) of 

selected scenarios were calculated by summing all the FCR for all elemental sub-functions 

classified as deviants from the systems’ nominal operating state and multiplying it by a 
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consequential cost factor. A Reduction in risk (RIR) value was also calculated to quantify the 

amount in risk reduction based on a specific architectural change. The implementation of the 

RIR is based on the assumption that the severity of consequence of failure can be reduced by 

making architectural changes to reduce the risks associated with certain functional elements in a 

system. The value helped in deciding what most efficiently mitigates risks associated with 

functional elements in a design. 

Thirty scenario cases for the EPS design were used to show how the FFR methodology 

evaluates different conceptual system architectures based on functional failure impact. This 

framework built to support tackling multiple failures, provided an analytical approach to quantify 

individual risk of basic functional elements in the system together with the combine risk 

emanating from the functional failures propagation.  

3.3 FFIP Related Behavior Description-based Research [6-8, 13, 63-65] 

 In this section, different works based on component behavioral model exploration in 

relation to their inherent systems are studied. A description of different methods employed in 

building behavioral models and the impact of such information has on the system analysis are 

highlighted. The following researches present works that have been done on behaviour model 

representations in relation to using the FFIP framework. 

3.3.1 Fault-based Behavior Modeling  

O’Halloran et al [6] worked on increasing design verification and validation during 

complex systems design as an alternative method to capture faulty behavior by developing a 

framework to create component behavior models. The behavior model adopted was built based 

on failure mechanisms using a gear as case study for system analysis. The performance of the 
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system was chosen for measurement rather than its functional health. This was done by defining 

an ideal output for a given input and assuming that a fault mechanism led to failure in 

performance of the system. They identified key elements of generating fault mechanism models. 

These elements involve generating faulty behavior variables, defining nominal behavior for a 

component using faulty behavior variables, linking component fault modes to fault interactions 

defining how to construct the fault mechanism model and how the fault model affects 

performance.  

The results of their analysis showed that taxonomy can be used to describe and catalogue 

fault events. Among the multiple steps that comprise the fault event description, hierarchical 

fault mechanism taxonomy was created to describe all potential fault mechanisms in primary, 

secondary and tertiary terms. These described fault mechanisms at different levels of abstraction 

to accommodate designers’ needs during fault analysis. The results further demonstrated that the 

number of fault modes and mechanisms increased with the addition of more components to the 

design. This highlighted a new challenge of modeling behaviour of complex systems with a large 

number of components. The paper proposed using hierarchical fault mechanisms taxonomy 

through which the fault-based behavior models generated could be organized. 

3.3.2 Building Dimensionless Behavioral Models  

Coatanea et al [7, 8] modelled component behavior in the context of the FFIP method in 

order to complement qualitative reasoning using the dimensional analysis. Dimensional analysis 

utilizes the properties of physical quantities (mass, length, time etc.) to model physical 

phenomena through the knowledge of their working relationship [9]. On the other hand, behavior 

models describe qualitative behavior for component types based on mode transitions used in the 
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function-based failure analysis [1, 10]. Also, behavior models provide a means to integrate with 

requirements engineering, functional models and configuration models.  

Using a fluidic system as case study [11], the capabilities of evaluating and assessing 

failure risk of physical systems during early design was demonstrated. A more developed version 

of the product theorem, the Vashy-Buckingham theorem, was used to provide the potential to 

generate complex interaction models through the composition properties. The theorem 

demonstrated that the physical description of a phenomenon can easily be reduced into its 

minimum set of variables by combining the dimensions involved in order to obtain only 

dimensionless variables. A function and configuration model of the fluidic system was 

developed using this theorem. 

Component behavior was modelled using dimensional analysis principles and causal 

ordering algorithm by integrating extracted requirement information to create behavioral 

component models driven by physical quantities and their compositions. The component 

behavioral models were then created based on key design variables and their physical quantities. 

The behavioral component models were presented in the form of an interaction graph between 

design variables associated with units and physical quantities. Performance and repeating 

variables were also used in modeling the interaction graphs. They were grouped as power 

variables (i.e., flow and effort), state variables (i.e., displacement and momentum) and 

connecting variables [12]. The power variable and state variable [11] sets were the two groups 

from which the performance variables were selected.  
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Upon running an FFIP analysis on the interaction model, failures and their propagations 

were identified. Amongst other result, their approach also helped in determining the variables of 

a design problem at early design stage using a representation of the configuration model. 

3.3.3 Implementing Failure Modes Models Into Behavior Models 

O'Halloran at al [13] assessed limitations of current libraries in modelling failures when 

accounting for the performance of a design in its intended operational environment. Transfer 

function with use case graphs and existing failure modes were utilized in building failure mode 

models to address these limitations. The approaches developed used the Modelica Standard 

Library (MSL) as the component library of nominal models while a basic vehicle powertrain 

model was used as case study. 

Figure 2.2 below summarizes the approach that was developed. It begins with 

information on how behavior variables are affected by a modeled failure. 

 

FIGURE 3.2:  FLOWCHART DESCRIBING THE SELECTION AND INSERTION OF 

FAILURE MODES INTO NOMINAL PHYSICS-BASED MODELS [13] 
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The behavior variables were derived based on functionality and they represent variables 

that affect behavior in the presence of a failure. The Failure Modes/Mechanism Distributions 

1997 (FMD-97) report [46] was utilized in generating a list of significant failure modes together 

with the information on how they occur. This was useful in defining the salient failure modes 

and it also helped in determining the impacts associated with each component/subsystem failure 

mode while helping to compute their risk values.  

Two approaches were used in implementing each failure mode into the corresponding 

component model. The first approach uses basic transfer function and use case graphs in 

understanding a component’s nominal and failure output. The Second approach uses existing 

literature to provide information about the failure mode of components. Using the literature 

approach limited the application to high fidelity that behavior models libraries are unable to 

capture.  

A validation of the built failure mode model was carried out to ascertain an accurate 

description of the failure space of the system. A simulation analysis from using the two 

approaches in the failure mode models provided significant results. A classification scheme was 

then done to identify the general characteristics of failure mode behavior when implemented in 

flow-based behavioral models. The classifications were derived from modeling different failure 

modes in multiple components using different domains. This procedure illustrated a broader 

application across components within model libraries. The classification results also included 

descriptions of failure mode behavior together with the variables affected by the failure mode for 

finding relationships between such parameters. 
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3.4 FFIP Related System Representation-based Research [66-73] 

An overview of how systems are represented during modelling and simulation analysis in 

existing function-based works is discussed below. 

3.4.1 Integrating Software and Hardware Systems for Failure Analysis 

Tumer and Smidts [14] presented a means of evaluating how a combination of software-

hardware system behaves and how failure propagation in them results in potential failures 

downstream, during the conceptual design stage. High-level system modeling and model-based 

reasoning approaches were used to model failure propagation in combined software-hardware 

systems, using Function-Failure Identification and Propagation (FFIP) analysis framework; this 

helped in formalizing the design of safety-critical systems. 

The intent of the work was to bridge the gap between hardware and software designers 

due to difference in background, knowledge, methods, or language which have significant 

impact in building software/hardware failure interactions. The FFIP framework offered a 

unification of the languages and modeling concepts suitable for system analysis. The redundancy 

management system of the Reaction Control System (RCS) jet from the NASA space shuttle was 

selected as the case study. The function of RCS jets is to help space vehicles with maneuvering 

during missions through controlled combustions of fuel and an oxidizer. 

The redundancy management software receives the signals from RCS of temperature, 

pressure and valve position for all jets and also receives a signal from their reaction jet drivers 

(RJDs) indicating the command sent to the fuel and oxidizer valves. During operation, leaks in 

either the fuel or the oxidizer lines are monitored with the use of temperature sensors on the 

injectors and in the jet exhaust. In the event of failure, the monitors will flag after three clock 



 
 

43 
 

cycles. Based on this knowledge, the software and hardware component models of the RCS jet 

were built together using the FFIP procedure.  

The identified components’ function and configuration models were mapped 

appropriately for the system. The primary flow within the software components for this work is 

the data being transferred. The software component components were represented in a functional 

model, this only allowed the component behavior to be limited to ”functioning” and ”not 

functioning” states. It was also noted that for complex distributed software systems, modeling 

software systems prone to intermittent failures can add ”intermittent functioning” state to the 

behavior models. 

In order for proper mapping to the software domain, the integration process involved the 

development of a software functional basis analogue to the FFIP hardware functional basis, a 

software component basis analogue to the FFIP hardware component basis and a matching 

hardware and software design representations. These were described as the main elements 

required to develop a truly integrated analogue representation that allow cross-connections 

between the software and hardware design spaces. 

Imitating the hardware components functional basis, a vocabulary of software functions 

was developed through the analysis of the specification of the RCS. Three generic control 

functions were identified namely, “control”, “configure”, and “measure” while a more specific 

instance of these functions was termed “open”, “close” or “regulate”. The main advantage of the 

software functional basis is the ability to represent a software system using a restricted number 

of terms/abstractions and the increasing degree of specificity allows for repeatable and 

systematic progressive refinement of the design. 
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A software component ontology organized around flows and structured from specific to 

generic was developed for the set of application interest [15-17]. The components were the 

logical components of the software application while the ontology maps relationship between 

software components and software functions. 

From the FFIP analysis performed using two failure scenarios, the dependency and 

inadequacy of two software monitors were found. The results of the analysis highlighted needs 

for making pertinent design changes. The advantages of integrating the FFIP underlying 

concepts and analysis mechanisms into software intensive systems using either functional 

development were discussed. It was concluded that with further research into incorporating 

software model into the FFIP framework, a useful software tool could be developed to assist 

design engineers in the analysis, evaluation, and comparison of complex systems in the 

conceptual design stage, where decisions are reversible and costs of changes are still minimal. 

3.4.2 A Functional Modeling-Based Methodology  

If the predictions of a fault detection system can be tested and confirmed or disproved, 

then their value is increased. This led to the development of an extension of the Hierarchical 

Functional Fault Detection and Identification (HFFDI) system by adding a test preparation and 

test-based verification phase. The method was introduced to generate tests that can confirm or 

disprove the existence of specific faults in a monitored process. Utilizing these tests will assist 

when testing predictions of the fault detection system. 

Verification is a process that reassures the correct function of a system according to its 

specification [18]. In this research, the focus was on checking that the system keeps being error-

free during operation. Formal verification techniques and model checking [19] are example 
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strategies for verification, which can prove the correctness of a system. When formal methods 

are not applicable or practical (e.g. complex systems), then testing can be used for verification 

[20]. The basic concepts of verification were extended to the HFFDI system using a test 

generation and a testing phase to verify the fault detection results. Relatively minor automation 

faults were targeted in redundant systems as this system can complement the emergency 

operating procedures designed to handle more serious events. A generic Nuclear Power Plant 

was used as case study for this research. It was used for training and testing the HFFDI system 

[21] and for testing predictions. 

The FFIP framework was utilized in determining the functional decomposition of the 

system. The framework was also used to develop the function-to-component and the function-to-

process signal mappings that are used in defining the tests. The functional model of the system 

was mapped to components of a Configuration Flow Graph (CFG). These models contained the 

behavioral logic, which describes how the system degrades during a specific fault or initiating 

event. Each system function is linked to a specific Functional Failure Logic (FFL), which uses 

the simulation signals from the CFG and reasons about the functional health of the function. 

A HFFDI system that combines a plant-wide FDI system and a set of function-specific 

FDI systems was used as the basis fault detection system due to its ability in overall system 

prediction and the possibility of testing function-specific predictions. The decision tree machine 

learning algorithm was used to generate tests for the predictions of a data-driven fault detection 

and identification system. The HFFDI development methodology required using functional 

decomposition and the function- to-component mappings of FFIP to generate function-specific 

training and testing data sets, which were used as source for training and testing a plant-wide 

FDI system and multiple function-specific FDI systems. The FDI systems were run in parallel, 
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and a reasoner combined their results to provide the final HFFDI fault prediction. The logic of 

the reasoner looks for agreement between the function-specific FDIs, and then its prediction 

overrides the prediction of the plant-wide FDI. Otherwise the plant-wide FDI prediction is used 

as the HFFDI output.  

The faults considered were pairings of a process component and a failure mode of that 

component. The knowledge of the information on the component name, the component type and 

the failure mode were used to force the component to the state of the failure and the transient 

response of the process was monitored. The monitored process signals were determined by the 

function the component was mapped to. The command driving components to failure states and 

the resulting transients were then saved to the library of tests. If, during the operation of the 

HFFDI, a fault was identified as a predicted fault, then the saved test was performed. If the 

results of the test match the transients stored in the library of tests, then it was concluded that the 

component was healthy. If the test results do not match the expected transients, then the 

component was identified as faulty. 

For the case study, two predictions in single fault scenarios and one prediction in a two-fault 

scenario were tested. The test results gave the correct output for every predicted fault, the 

successful predictions are confirmed, and the incorrect prediction was disproved. The test 

generation was done manually and the tests of the HFFDI predictions were also judged manually 

and subjectively. 
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3.5   FFIP Related Emergence Capturing Research [10, 23, 29, 74-76] 

Most times, complex systems exhibit behaviors from interactions within their subsystems 

that are not intended or planned by the original designer. These behaviors are called emergent 

behavior. These are often caused by poorly chosen design parameters in other subsystems. 

Examples of the use of function-based methodologies within the scope of studying emergent 

behavior are discussed below. 

3.5.1 Simulating Interactions and Emergent Failure Behavior  

Papkonstantinou et al [22, 23] addressed some identified technical challenges that arise 

during the design stages of large complex systems. The challenges identified for their resolution 

were codesign of the multiple domains of technology; determining emergent behavior effects; 

and determining risks across a system from fault propagation. 

Codesign was used in this work to reference technologies that require the close 

integration of electrical hardware and software systems similar to those in mechatronic and 

consumer electronic systems [24]. Some challenges exist in representing the necessary system 

design information across technical domains at similar and relatable abstraction levels. The 

advantage of developing different subsystems concurrently during the design stage is as a result 

of their existence at various levels of design refinement. Hence, the utilization of a formal model 

representation language such as Systems Modeling Language (SysML) [25] would help capture 

design information across domains when subsystems are at different levels of design refinement. 

Emergent behavior was defined as the degradation or loss of the functionality of a 

subsystem due to poorly chosen design parameters in other subsystems. Methods and tools for 

studying how changing several such parameters impact the occurrence of emergent behavior 
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were provided. An extension of the FFIP framework and its supporting tools were used to 

address challenges involving emerging behavior. The paper explains that since high fidelity 

simulation at an early design phase was not possible then the results should not totally depend on 

specific model parameter values. Hence, the simulation carried out varied the values of key 

design parameters and the timing of critical events; the simulation results revealed the impact of 

the variations on the emergent behavior. The use of the extended form of FFIP framework was 

demonstrated on a boiling water reactor (BWR) model. 

From the default FFIP approach, the component behavior models determine the output 

flows from the input flow values and the current state of the component. The previous works on 

the FFIP framework utilized discrete set of flow state values and a simple behavioral logic, 

which had the advantage of limiting the range of possible parameter values, but lacked the 

possibility of modeling continuous process dynamics. The previous approach did not sufficiently 

capture how several parameter changes influence each other to cause emergent behavior. This 

resulted in the modification of the framework to support continuous flow values in order to 

describe feedback loops. This extension of the FFIP approach to system representation addresses 

the first challenge identified earlier by allowing for more detailed subsystem behavior, while 

maintaining the equal abstraction system-level representation necessary for codesign. 

A summary of the general operation of the BWR was done to fully understand the 

subsystem functions. The methodology used to analyze the BWR started by defining a number of 

values of interest for the parameters to be varied and then systematically perform FFIP 

simulation to identify the combinations of parameter values leading to degradation or loss of 

functions. While applying the FFIP framework, the CFG and functional models of the BWR 

were created to have the same flows between functions and components. This allows the 
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function failure logic (FFL) to passively observe how abnormal flow levels propagate in the 

simulated CFG, and to use the information to determine if a function defined in the functional 

model becomes degraded or lost. 

The relationship between input and output flows of a component in the CFG were defined 

in a component behavioral model. The behavioral models in this work were a system of first 

order linear difference equations relating input flow, output flow and components internal 

variables. The behaviors of electromechanical components were described using the first order 

linear approximations, which were implemented as Simulink blocks. This approach provided an 

avenue for more sophisticated modelling that would be appropriate for early concept design 

phase. State charts were used to create the behavioral models and a state was defined for each 

nominal and failed mode of the component. An example of a sample-failed mode is a leaking 

tank. Critical events were injected to the simulation at any time, and these cause mode changes 

(e.g., the leakFailure event triggers a transition to the TankLeaking state.) 

The effects of utilizing different parameter values and different timing of critical events 

were investigated by running the FFIP simulation for each combination of parameter values. As 

more parameters were introduced into the scope of the study, the number of simulations runs 

grew exponentially. The identified parameters range from design parameters, timing of critical 

event scenarios or parameters of faults. A user-interface for specifying parameters and the 

variation ranges made the process feasible. A generic and scalable algorithm was used for 

automatically running complete sets of selected simulations. The algorithm and user-interface 

were implemented and interfaced through Matlab/Simulink based on the FFIP framework. The 

results were produced as Excel outputs for each run, that can be further filtered according to the 

health status of any specified function of interest. These tools were then used to identify relevant 
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parameters for hazards and identifying interesting ranges suitable for subsequent series of 

automatic simulation runs. 

The automated FFIP simulation solved many algorithmic and technical challenges related 

to the generation and simulation of various valid configurations. A sensitivity analysis to 

discover aspects of the design having the greatest impact on reliability was made available 

through this work. The extended FFIP framework results evaluated how the results of the FFIP 

analysis are impacted by changes in model parameters and the timing of critical events. 

3.5.2 Using a Functional Failure and Flow State Logic Reasoning Methodology 

The Flow State Logic (FSL) method as a means for reasoning on the state of EMS flows 

allows the assessment of failure propagation over potential flows that are not considered in a 

functional representation of a nominally functioning design [10, 26]. Their work asserts that 

when failures are modeled to propagate along energy, material, and signal (EMS) flows, a 

nominal-state functional model is insufficient for modeling all types of failures. To capture 

possible failure propagation paths, a function-based reliability method needs to consider all 

potential flows, and not be limited to the function structure of the nominal state.  

Configuration changes and environmental factors were identified with having the ability 

to cause a functional model, as designed, to no longer represent a system in its failed state 

accurately. However, a technical challenge being faced by design engineers while performing 

failure tests include the difficulty of analyzing potential failures that propagate along unknown or 

unintended paths and the assessment of effects of failure propagation on other elements of a 

system. In order to address this challenge, modelling the interactions between design elements 

and the effects of failure propagation along all potential paths needs to be formally analyzed. A 
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liquid fueled rocket engine system was chosen as case study for this work. The system was 

modeled using a failure identification and propagation analysis framework, and then the Flow 

State Logic (FSL) methodology was integrated to the FFIP. 

During the FFIP framework analysis, the Function Failure Logic (FFL) reasoner was 

used to capture the health of functions embodied by components; however it does not capture the 

state of flows between components. The paper discusses the implementation of the FSL 

methodology. First, the state of the designed and potential EMS flows in a system can be 

classified using this methodology. Second, the ability to map the failure propagation along the 

non-nominal paths provides a way of analyzing failure scenarios that introduce new EMS flows 

to the system. When combined with other function-based failure propagation methods, FSL 

provides a complete representation of the system state. The basis for this method is that EMS 

flows exist both as designed and as possibilities.  

It is necessary to distinguish between designed flows and non-designed or potential 

flows. Non-designed flows are the cause and/or effect of certain failure events. To capture the 

possibility of failure propagation of these potential flows, the Flow State Logic reasoner 

identifies the state of any flow in the system of interest for any given system state. 

The logic of both FFL and FSL operates on the inputs and outputs of component 

behavioral models called ports. FFL and FSL read port values to determine function health and 

flows respectively. The FSL reasons on both the designed and potential flows in a system. To 

accommodate the addition of the FSL reasoner, the behavioral model of a system was made to 

incorporate two features. A model element that corresponds to the environment around the 

system is created as a block. This environment block is the source for new flows created during 
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critical scenarios. The behavioral model is created by establishing a relationship between the 

component behavior mode and the propagation characteristics of a flow. The types of flows used 

in this method are the secondary level of flow as specified by the Functional Basis [27, 28]. 

For each component, the behavioral model is created by defining the relationship 

between designed input and output EMS flows based on component mode. Then for each type of 

potential flow that is considered, a designer specifies the critical level at which a component 

mode would change. If a critical level exists, then the component mode change is specified. This 

work concluded that a model of a system in a failed state may not exactly match the model of the 

system as it was designed to operate. If only the designed EMS flows in a system are considered 

as the paths for failure propagation, then failures propagating along new or different flow paths 

will not be captured.  

3.5.3 Model-Based FFIP Using Hazards 

The development of a model-based failure identification and propagation (MFIP) 

framework was done in order to identify early potential safety issues due to undesirable 

interactions between subsystems and components, and failures due to environmental factors 

within a complex avionic system design [29]. MFIP maps hazards and vulnerability modes to 

specific components in the system and analyzes failure propagation paths. This provides an 

automated means for system designers to detect multiple and cascading failures that are not 

limited to component interactions. 

Hazards was defined as potential sources of energy, material, and signal that cause harm 

and constitute deviations from the intended design or function. These hazards are results of 

undesired interactions between components or environmental impact on the system. An example 



 
 

53 
 

of unsuspected hazard comes from the sources and propagation paths of stored energy in 

electrical, chemical, or mechanical form. For any particular domain in a complex system, expert 

judgment is required to expand the types of hazards.  

Using hierarchical hazard types for reference, the hazard ontology was created for the 

EPS design to identify failure scenarios. The ontology contained hazard properties defining the 

types of hazards a component transmits, the types of hazards generated by a component, and 

component vulnerabilities to existing hazards. The fundamentals of hazard-vulnerability pairs 

and propagation path identification [30] and hazard ontology were used to expand design failure 

analysis. While using the System Modeling Language (SysML) and XMISearch tool for 

scripting hazardous scenarios, a satellite electrical power system (EPS) was used as case study. 

System Modeling Language (SysML) [25, 31], a graphical modeling language for 

systems engineering applications, was used to specify, analyze, design and verify requirements, 

structure, and functional be havior of the system. SysML was created as an extension of the 

Unified Modeling Language (UML), improved for systems engineering. It provides system 

engineers with a standard taxonomy of diagrams in two main categories of requirement and 

structural diagrams. These diagrams provide ontologies and component connection models for 

identifying and investigating system functions, threats, and safeguards. 

The EPS requirement diagram enables designers construct a system and model safety 

requirements from a text-based specification document in order to identify the relationship 

between constraints. The diagram also traces specifications to model elements, track model 

elements that satisfy a particular specification, and verify whether each model element fulfils 

requirement. The EPS block definition diagram (BDD) that describes the internal system 
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structure, connects components and defines properties, operations, relationships, hazards, 

vulnerabilities, and transmitted entities.  

The BDD is derived from the requirement diagram, which is also derived from the 

system specification document. The construction of the BDD diagram is based on each 

component, and decomposition established in the general failure analysis methods are naturally 

reused. In the BDD, the default hazard, vulnerability, and transmitted risks are associated with 

each component by the using the hazard ontology, which provides a structure for matching 

hazard and vulnerability types with each component in the system. The BDD highlights the fault 

propagation between components by describing the flow ports and the state of the flow.  

In the block definition diagram, all components and connections were associated with the 

hazard carrier type. Using a path analyzer, XML Metadata Interchange (XMI) file, the hazard 

types were compared with specifications of each component. When components could not 

mitigate the effect of failure, it gets propagated to the next component or connection otherwise 

the proposed path analyzer deems the specific hazard as resolved. The XML Metadata 

Interchange (XMI) file enabled quick and easy hazard path analysis through a java-based 

application called XMISearch. 

An evaluation of the design architecture and identification of potential hazards in 

assisting system designers to modify designs to mitigate identified safety issues was carried out. 

The process involves an iterative approach, where each cycle is repeated until no hazard is 

detected by the algorithm. In addition, the framework uses the function failure logic (FFL) 

similar to the one in use by the FFIP framework. This captures the impact of faults, based on the 

identification of hazard propagation paths and provides a logical assessment of the impact of 
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component level failures at the functional level. The FFL was utilized to create a relationship 

between the identified failures and the health of functional elements to provide additional failure 

information. In order to integrate the FFL reasoner into MFIP framework, each input and output 

flow ports in the BDD diagram was evaluated for identified vulnerable components. 

EMS flows need to be analyzed to investigate failures and impacts on system design. For 

a large number of failures such as explosions, leaks and operating environment, the functional 

model representations of the system being considered do not include the EMS flows that occur 

during system failure. This work transformed requirement and hazard information in enabling 

the investigation of system interactions and identification of hazard scenarios. 

3.6 FFIP Results Analysis Research [21, 32, 40, 57-62] 

This section explores different researches relating to how FFIP results are obtained and 

how they are being applied. 

3.6.1 Applying Fault Propagation Analysis on Cyber-Physical Systems 

Papkonstantinou et al [32] addressed the limitation of FFIP simulation results as only 

being specifically applied to a particular component model without the exploration of the impact 

of alternative modeling choices on such results. The limitations of utilizing the FFIP 

methodology during design to evaluate reliability rather than discovering more robust design 

alternatives were also considered. It was recommended for the FFIP component model to 

incorporate the capabilities of describing variation in design and the analysis of specific variants.  

Solutions to the identified limitations required formal semantics and syntax for describing 

design alternatives while supporting their automatic configuration and analysis through software 



 
 

56 
 

tools. The application of software configuration technology into the FFIP simulation model were 

considered through approaches such as incremental software development [33], software product 

lines [34], stepwise refinement [35], feature oriented programming and aspect oriented 

programming [36]. The purpose of selecting these methods ranged from improving the 

maintainability and scalability of codes and supporting the coordination of several software 

developers to mass customization of software products for different clients [32]. 

Feature modeling which underlies feature-oriented programming was used to describe 

possible options available to customers. Feature modelling is a generic technique for describing 

variability that can be equally used to describe design alternatives that are subjected to reliability 

analysis [37, 38]. The choice of feature modeling was done as it is scalable to complex 

applications and it supports further work for achieving full automatic reliability analysis of 

design configurations. A formal logic syntax help express unreliable configurations and a 

restricted feature model describing the reliable set of design alternatives can automatically be 

reverse engineered [39]. 

The results of the FFIP framework applied to the boiling water nuclear reactor (BWR) 

[23] with the added extension of a set of cyber-physical design alternatives was used as case 

study. A description of the system functions was given and the failures in the steam outlets of the 

reactor were selected for investigation. Under the automatic control system, there are two 

subsystems that are mandatory: coolant pump control and turbine protection. The coolant pump 

control has a mandatory feature: an algorithm for dropping the pumps’ rotations per minute 

(RPM) to a minimal level. For implementing this feature there are three alternatives (step, decay 

and ramp); the semantics of alternative features are that exactly one of them must be chosen. 

Each of these alternatives represented a software feature. The choice of software control 
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algorithm for meeting conflicting requirements relating to the nominal operation of BWR was 

the first set of design alternatives subjected to the FFIP analysis. 

The initial step taken in the FFIP-based design created a single functional model 

specifying the desired functionality in an implementation independent way. The proposed 

methodology for identifying reliable design alternatives for the functionality was described using 

a flowchart. The design alternatives in the feature model were then implemented as behavioral 

simulation alternatives in the Simulink environment. The FFIP simulation with the extended 

capability to incorporate a description of design alternatives and main feedback loops of the 

process was developed from first principle. 

The iterations were chosen by following the processes described in the flowchart for each 

valid configuration of the feature model. Combinations of design alternatives are then specified 

in order to subject a configuration to safety analysis. FeatureIDE which is open source was used 

with an extension to export Matlab model configuration script that automatically creates the 

FFIP simulation corresponding to the choice of features. A Function Failure Logic (FFL) within 

the FFIP simulation identified degradation and loss of function health in the functional model as 

simulations were run by monitoring the input and output flows. As some failures do not 

compromise the overall reliability of a system, using this approach, the functionality and not just 

the individual component failures is used to assess designs. The inputs for analysis were a set of 

design alternatives with the results expressed as a restricted set, from which unreliable 

alternatives had been removed [32].  

The results of the simulations for the entire feature model were obtained automatically. 

The results showed that the ramp algorithm had the most reliability which conforms to the linear 
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ramp being broadly used in boiling water reactors worldwide [32]. Hence, this showed that 

complex system risk analysis could be obtained from the conceptual level detail of the FFIP 

simulation model. These results can be passed on as information sources to the detailed design 

phase. This helps designers using FFIP to specify system structure and behavior at an arbitrary 

level of detail in order to achieve the best balance between early risk analysis and meaningfully 

detailed simulations.  

3.6.2 Simulation Based Machine Learning for Detecting Faults 

Papkonstantinou et al [40] continued efforts in applying the FFIP framework into 

improving fault detection in complex systems. A simulation based framework was utilized to 

identify a large number of faults, when there are no adequate historic data for training. An 

extension of the FFIP was used to generate training and testing data sets for developing fault 

detection systems based on data driven machine learning methods. This was done to support a 

simulation based framework for training and testing alternative machine learning based methods 

for fault detection. The case study used in this research was a generic nuclear power plant.  

Machine learning studies algorithms that help computers to learn from data [41]. 

Significant advancements have been made in machine learning research since the development 

of the first artificial neural networks [42]. This is due to increases in the availability of 

computing power and the development of new methods [43] with engineering applications. In 

this work, particular emphasis was made on data-driven quantitative machine learning methods 

for fault detection, such as artificial neural networks and decision trees [44]. Without utilizing 

the knowledge of structure or logic of a system, these methods are “trained” to detect faults using 

data sets with system variables that describe system behavior. The sources of the data sets are 
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either historical process data from real-life scenarios or data generated from simulated models. 

When any of the machine learning methods is trained to give good results, they are then 

evaluated with a “test” data set.  

The data-driven quantitative fault detection techniques used were the artificial neural 

networks (ANNs) and decision trees. For accurate fault identification, these techniques require 

being trained and tested with process data. The data used for training and testing were generated 

by process monitoring of key variables such as pressure and temperature in the presence of 

faults. For example, in the case of single faults, successful training and testing of more than one 

entry in the data set were. This information was obtained due to multiple occurrences of the fault, 

or by performing multiple simulations per fault using different simulation parameters. 

The FFIP functional failure results were used to generate training and testing input data 

for process history based quantitative fault detection methods. The data sets on the component 

faults to be detected by the fault detection system were prepared using information from the 

FFIP models. To increase the size of the data set, faults were simulated multiple times, using 

different process parameter. The functional health results for all the simulations were then used 

to compile the training and testing data sets. The Configuration Flow Graph from the FFIP was 

simulated for every pair of fault and process parameters. The simulation provided a time series of 

the monitored process variables (e.g. temperatures, pressures, flows). The simulation results were 

used by the FFL to generate the functional health results. 

The functional health results gave three statistical values per monitored signal connected 

to the FFL. The Functional Failure Logic (FFL) for every function of the process used one or 

more signals from the simulation results, as well as steady state reference values for these 
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signals, to calculate the functional health result. These values were the maximum positive 

deviation from Steady State (SS) average divided by the SS average, the maximum negative 

deviation from the SS average divided by the SS average and the maximum deviation of average 

signal value from the SS average divided by the SS average. All the functional health result 

values are expressed as percentages with the he higher percentages indicating high impact to the 

function in the simulation scenario. The functional results for every function of the functional 

model were serialized and classification attributes were added. 

From the nuclear power plant model used as case study, a set of 116 automation 

components (primarily valve and pump actuator controllers) were selected to obtain potential 

faults. Three failure modes were chosen for each automation component type (e.g. a pump 

actuator controller can be triggered to the “failed stop”, “failed start” or “no electric supply” 

failure modes which results in stopping, starting or stop controlling the pump). The combinations 

of the 92 detectable faults and the 11 power levels (a total of 1012 simulation scenarios) were 

used to create the data sets for developing the fault detection systems. The simulations were 

performed using the Simulation Server component of Apros 6, developed by VTT [44].  

A software tool was developed to parse all the simulation result files (a total of 1012 

files) generated by the simulation server. The result from the 1012 entries gave 111 functional 

health results generated by the FFL (related to 37 monitored signals) and the classification 

attribute. This data set was split to create the training and testing data sets. Six power plant FFL 

outputs were used to build the training data set while five power plant FFL outputs were used for 

the testing data set. The WEKA tool’s multi-layer perceptron ANN [45] and a decision tree were 

used to train and test the fault detection systems. WEKA is a tool developed by the Machine 

Learning Group at the University of Waikato which contains a set of machine learning 
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algorithms for data mining applications. The feedforward ANN used its input and output layers 

to train data using back propagation with momentum [45]. The decision tree was based on the 

J48 algorithm, an open source implementation of the C4.5 algorithm [46]. The training was for 

identifying 92 possible faults and locating 9 possible locations within the system. 

The results showed 64% accuracy in fault detection using ANN and 82% accuracy while 

using decision tree for machine learning. For detecting fault locations, the artificial neural 

network had a 93% success rate while the decision tree had 97% success rate. However, ANN 

took longer to train than the decision tree, while the speed for testing was fast for both. It was 

also concluded that the decision tree provided a readability advantage. 

3.6.3 Hierarchical Functional Fault Detection and Identification  

The Hierarchical Functional Fault Detection and Identification (HFFDI) system for fault 

identification in multiple fault scenarios was developed for complex mechatronic systems [21]. 

HFFDI is based on machine learning techniques, commonly used as a basis for Fault Detection 

and Identification (FDI) systems, and the functional system decomposition of the FFIP 

framework. The HFFDI was designed to identify multiple faults in multiple fault scenarios using 

only single fault data sets for training and testing. It combines a plant-wide FDI system and a set 

of function-specific FDI systems. 

Machine learning algorithms application is very important in the classification needed for 

the development of Fault Detection and Identification (FDI) systems. These support systems 

monitor the status of a system and try to determine the presence of faults based on past examples. 

"Qualitative models and search strategies" includes methodologies which use non-quantitative 

system models, such as fault trees and topographic templates of expert knowledge [44]. 
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"Quantitative model-based" methodologies utilize system models to analytically detect abnormal 

behavior and then decision rules help in fault identification [47]. The third category, "Process 

history based methods" are developed using data sets with examples of process signals in fault 

situations. These FDI systems can be qualitative, such as expert systems, or quantitative, such as 

Artificial Neural Networks [44].  

The HFFDI system was developed and tested using a generic Nuclear Power Plant (NPP) 

model as case study. The NPP model was built with the Apros 6 first principles dynamic process 

simulator [48], developed by Fortum and VTT Technical Research Centre of Finland. A modular 

method was used in this work as the FDI systems run in parallel and independently. This allows 

flexibility in using different machine learning algorithms for different functions (ANN, decision 

trees etc.).  

The method in this research allowed the use of use any data-driven quantitative fault 

detection technique, such as artificial neural networks (ANNs) or decision trees. These 

techniques were trained and tested using previous fault data sets gathered through simulation or 

historical sources to identify faults. The training and testing data set contained entries of 

simulation values for the plant signals and the “class” representing the failure mode of the 

simulation scenario (if no failure mode was present, then class is the “No fault”).  

FFIP was utilized to determine the functional decomposition of the system. The use of 

function-to-component mappings of the FFIP framework to generate function-specific training 

and testing data sets was a new research component that was introduced. The function-specific 

data set contained component faults relevant to a function, while other types of faults were 

replaced with “fault in other function” class. The data sets were then used to train the function-



 
 

63 
 

specific FDI systems. Each function-specific FDI system was trained using a custom version of 

plant-wide training data set. A written software utility was used by the function-to-component 

mapping of the FFIP algorithm and the plant-wide training and testing data sets to automatically 

generate all the function-specific data sets. The results of these FDI systems were used in 

addition to the plant-wide FDI results to provide the final HFFDI fault prediction result. The 

functional health results were used to identify faults and track failure propagation.  

A high level functional decomposition of the generic NPP model was carried out to 

obtain 17 functions. A set of 116 automation components, mainly valve and pump actuator 

controllers, were used to manifest the list of faults. Two failure modes were selected per 

component type (e.g. “failed open” and “failed closed” failure modes for the valve actuator, 

which result in fully opening or fully closing the valve). Faults were identified by component 

name – failure mode name pairs (e.g., “Valve A” – “Failed Open”). A fault list of 232 total 

failure modes (116 components x 2 failure modes per components) were developed but only 92 

failure modes had an effect on the NPP model when running at steady state. In all, only 84 faults 

were selected for detection by an FDI system for this research. A Software code was also written 

to produce the training and testing data sets, following the methodology presented in [40]. 

The fault detection results of the HFFDI system in single and multiple fault scenarios 

were compared to a plant-wide only decision tree based FDI system, similar to what was 

developed in previous research [40]. The fault detection accuracy result of the HFFDI system 

gave better outputs than the simple plant-wide FDI system when 510 entries training data set and 

425 entries testing data set was used. Since the difference between the two systems was small, a 

more extensive comparison was needed to determine whether there is a significant advantage for 

the HFFDI system. 
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The data set for 11 plant power levels was used for performing an 11 fold cross-

validation [49] of the plant-wide FDI system alone and of the HFFDI system (a combination of 

the plant-wide and the function-specific FDIs). The results from this validation showed that the 

HFFDI system had a minor accuracy gain, 1.4% on average, over the plant-wide only FDI 

system. However, the standard error based on the results of the 11 fold validation did not allow 

this gain to be conclusive. 

For fault detection in multiple fault scenarios, similar the training data sets with the single 

fault scenario case (i.e. the FDI systems are not trained to identify the combination of faults, but 

are trained to identify single faults) was used. These testing data sets were built by selecting a 

fault per function (for the 17 system functions of the case study) and the resulting set of faults 

was used to create combinations of two and three faults. These fault scenarios were used to test 

the multiple fault identification capability of the HFFDI system and compare to a plant-wide 

only FDI system for two fault scenarios (a total of 136 scenarios) and for three fault scenarios 

(680 scenarios). The results showed that in two fault scenarios the HFFDI was able to identify 

one of the faults with 79% accuracy and both faults with 13% accuracy. In three fault scenarios, 

the HFFDI was able to identify one of the faults with 69% accuracy, two faults with 22% 

accuracy and all three faults with 1% accuracy. 
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3.7 Human Applications of FFIP (Socio-Impact) [50, 52-55] 

This section is focused on researches involving the human interface with FFIP 

application 

3.7.1 A Feasibility Study of Humans Computing Failure Scenarios 

Arlitt et al [50] worked on a social component of engineering design in addressing how a 

distributed group of non-expert humans can outperform a brute force algorithm handling a 

failure scenario prediction task in tools such as FFIP. Human computation is a problem-solving 

paradigm that works well for problems that are computationally impossible [51].  

Potential component failures in systems are commonly identified through expert opinion. 

However, many experts miss a wide range of unprecedented failures. Computational approaches 

on the other hand are often limited by the availability of historical data and the static encodings 

of expert knowledge. In general, expert analysis provides quality information at the expense of 

speed and breadth, while computation offers speed at the expense of quality. As result, a need for 

failure analysis techniques that improves either speed or quality without harming the other is 

needed for reliable system designs.  

Arlitt et al [50] explored the possibility of applying human computation to failure 

analysis problems by examining non-expert reasoning about an abstracted complex system. A 

human computation approach to failure analysis was carried out using the reasoning abilities of 

non-experts in identifying failures based on abstracted system information. This is contrary to the 

popular approach of encoding knowledge as a set of heuristics into a failure analysis algorithm. 

Using this approach, a computer would perform an analysis task, and the human would interpret, 

synthesize, and iterate on the results. 
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The possibility of using human computation to augment experts’ identification of new 

failure mode classes using existing simulation tools were investigated. For scenarios involving 

multiple simultaneous component failures, subsets of individual failures differentiated the failure 

scenarios. Hence distinct failure scenario classes emerged based on those subsets. The intuitive 

problem solving abilities of non-experts, for the purpose of identifying a variety of critical failure 

scenarios were explored.  

Combinations of failures were identified in two ways; one by non-expert human subjects, 

and one at random. The results on the advantages and disadvantages of utilizing both were then 

compared. The FFIP framework, a function-based fault propagation framework used to quantify 

a system’s functional health was utilized by the subjects as the failure analysis tool.  

The software framework used consisted of a random critical event scenario generator, a 

simulation server, and a simulator that runs the process and automation model of the system 

under test. The simulation server acts as a proxy that can accept multiple requests for 

simulations, set up the critical event scenarios, run the simulations, and return the simulation 

results. The simulation request originated from human users and the automated scenario 

generators. 

A group of 14 mechanical engineering graduate students at Oregon State University were 

provided with a simplified diagrammatic representation of a nuclear power plant. A brief 

introductory lecture on failure, FMEA, and FFIP, was provided as the only source of formal 

failure analysis training to the students. The students were instructed to individually generate 

potential failure scenarios containing exactly six simultaneous component failures. Scores were 
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assigned to each student upon submitting a scenario for simulation indicating the level of damage 

severity with higher scores corresponding to more serious failure scenarios. Based on these 

scores, students were able to judge the relative utility of different failure scenarios, and iterate 

upon their failure mode scenarios. The scores by students were then compared to those of a 

Monte Carlo algorithm’s scenarios. 

It was discovered that the Monte Carlo algorithm did not outperform on the level of 

humans in identifying failure scenarios, suggesting a baseline of technical feasibility. Also the 

solution space of potential failure scenarios was sufficiently large, and the complex system 

simulation was sufficiently expensive. This highlighted the potential for beneficial synergy 

between failure mode analysis and common sense reasoning skills typically leveraged in human 

computation. The results obtained indicated that while non-expert reasoning may not be directly 

applicable to effective exploration of many possible failure modes, human computation has the 

potential to augment or compete with stochastic algorithms in a complex systems failure analysis 

context. 

3.7.2 Using Simulated Failure Models for Risk Assessment 

Nikula et al [52], acknowledged the lack of system representation supporting the study of 

hazards due to interactions between systems and their environment. Most previous works 

conclude that a complete system analysis can only be as detailed and informative as the 

simulation models. Three identified weaknesses of the FFIP method were tackled to address this 

issue.  

As most components or subsystems exhibit broad ranges of deviations from design intent, 

it was identified that applying FFIP without accounting for this weakens the effectiveness of the 
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tool. Qualitative flow state values in FFIP, such as no flow, low flow, or high flow are currently 

being used to model these deviations [53]. However, there had been no discussion on the set of 

qualitative values necessary to capture every deviation from the design intent. 

HAZOP was integrated into the process of building the FFIP models in this work. 

HAZOP which already is an important risk analysis method in many industries and processes can 

efficiently analyse the hardware and software components of systems [54]. The HAZOP analysis 

is usually carried out by matching a set of guidewords to attributes of the design representation 

and interpreting those combinations as hazards. The analysis was applied to the flows in the FFIP 

behavioral simulation, based on the functional basis taxonomy. The guidewords were applied as 

the possible flow state values. Using HAZOP, the results were introduced into the FFIP 

simulation model as the possible deviations from design intent.  

For the purpose of discovering new hazards, a designer can only build the models on 

limited foreseeable hazards. The authors identified a second weakness of FFIP as the inability of 

behavioral simulations in handling component failures due to abnormal process conditions. This 

was addressed by adding a capability of automatically transitioning components to failure modes 

while responding to abnormalities in system operations in the FFIP framework. This was done 

by integrating the FFIP simulation model building process with HAZOP. 

 The third weakness Identified was the need for the person performing FFIP analysis to 

be an expert on system domain, operating environment of the system, risk analysis, simulation 

and modeling techniques, and algorithms. The authors addressed this limitation by helping to 

define an information system that incorporates workflows with data models to help individuals 

from various backgrounds can work using the concepts from their fields of expertise.  
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The case study used in this research was a simplified boiling water nuclear reactor 

including a feed water line and emergency water line. The FFIP framework was used to model 

interactions between the system and its environment using an environmental flow graph (EFG) 

and the configuration flow graph (CFG). Failures were identified using combination of the 

HAZOP guide words and functional flows. The usefulness of HAZOP was manifested in 

capturing deviations that can later be incorporated into the simulation models. 

Since both the FFIP and HAZOP methodology are normally applied at stages where 

high-fidelity models of the system are not readily available, the flow values were discretized into 

a set of qualitative values. The selection of the FFIP framework and HAZOP were done as 

HAZOP has proven to be effective in identifying deviations from design intent in the design 

representation of FFIP. Using both the FFIP and HAZOP permits interfacing between tasks for 

different experts: the domain safety expert, information modeling expert, and the simulation 

expert.  

3.8 Software Implementations in FFIP 

From the research discussed above together with on-going works, a number of software 

tools have been used to successfully deploy the FFIP framework. Examples of the research tools 

include Python, MADE, Matlab, Simulink State machines, LabVIEW, Modelica, SysML and so 

on. This tools help in describing the function, structure and behaviour of inherent components 

within the complex systems to be analyzed. The results of the FFIP analysis carried out have also 

been evaluated using most of the tools listed above. 
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3.9 Conclusion 

This chapter contributes a novel grouping for function-based failure analysis research 

methodologies that are available for the research community. The different existing applications 

of the FFIP framework and history have been reviewed. The variation in its applications stems 

from the implementation of the framework to systems with different levels of complexities as 

well as the component types (software or hardware) in systems.  

The ability to conduct either quantitative or qualitative analysis using FFIP depends on 

the designer’s ability to detail the representation of physical components through simulation 

models (i.e. the Functional model, CFG, Behavior model) and the construction of an appropriate 

FFL. Nonetheless, the ability to identify all potential failure modes is needed to generate 

adequate simulation results Future works are still being pursued on FFIP applications. The 

impact of fidelity in the abstraction of model representation used for analysis has been 

investigated and presented in the subsequent chapter. The effective measure of confidence on 

samples from FFIP analysis is also among some of the researches currently being carried out. 

Early in the design stages where there is limited knowledge, FFIP is definitely a suitable failure 

analysis tool for prognostics and health management of systems. 
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CHAPTER 4 

THE IMPACT OF MODEL DETAIL AND ABSTRACTION ON SYSTEM MODELING 

4.1 Introduction 

When performing conceptual stage failure analysis of complex systems, two key 

questions are needed. What level of model detail is needed to make risk and safety decisions at 

early design stages of complex systems and how can the validity of the analysis tools enabling 

decision-making be characterized? This section addresses some important findings in attempting 

to answer these two design questions in the context of function-based analysis of complex 

engineered systems. The required level of detail needed by models and the abstraction level are 

explored in order to understand how they affect the validity of a model-based failure analysis 

method. The approach also supports how these systems can be designed to avoid failure. 

4.2 Background 

The many achievements of model-based system design include a means of providing 

faster system evaluation and redesign while reducing design cost, failure risks, design time and 

manpower. A lot of model-based analysis tools have been developed support works with this 

similar goal [1]. Now, using model-based systems, reasoning tools can be developed to evaluate 

parameters such as component performance, system performance or functional robustness in 

relation to the existence of different faults. Utilizing this type of analysis at the early design stage 

helps designers to make informed decisions before the allocation of design resources. 

The accuracy to which behavior can be modelled from actual objects through abstraction 

and the fidelity with which the functional analysis of a system model is represented for different 



 
 

78 
 

analyses impacts the measure of usefulness of a system model [2]. The concept of model fidelity 

has been established as an uncertainty source, yet it has not seen the level of extensive research 

as other aspects of model building and simulation [3]. Fidelity is defined as the degree of 

exactness of a model or simulation representation in comparison to the real world model [3]. 

Therefore, this research identifies and studies the various qualities and characteristics of a model 

which defines its abstraction level and determines how those characteristics affect usefulness of 

analysis using those models.  

By exploring the way that functional detail and behavioral detail affect the analysis 

results from using the Function Failure Identification and Propagation (FFIP) framework [4-7], 

we form insights into what level of modelling is needed for making particular design decisions. 

With emphasis on system architecture, design refinement and evaluation during the conceptual 

design stage, this research aims to characterize behavioral and functional abstractions and their 

effect on the design-stage predictions of functional analysis methods. Scaling systems to include 

large numbers of component and subsystem interactions are some of the challenges being tackled 

at the early design stages of complex engineered systems [8, 9].   

This work builds on the recognition of function as a means of generating system 

architecture and embodiment. Because function represents designer intent, functional 

representations are not entirely objective. Rather, there is a choice in the level of abstraction 

when defining a system’s functions. In this work, how the choice of abstraction affects the 

analysis using selected representations are investigated. 
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4.3 Detail and Fidelity in Functional Modeling 

Functional decomposition of systems has helped explore the concept of fidelity resulting 

in the high-level function of the system comprising several levels of functions [10-12]. Designers 

need the knowledge of fidelity levels in order to come up with right models that will provide 

precise and accurate analysis results suitable for decision making. 

Generating system architecture and product requirements has been boosted through the 

extensive use of function modeling. Current researches are being done to develop a formal 

language and syntax to improve functional modeling [2]. Most of the researches are based on 

defining distinct levels of detail, or abstraction, that accurately represents the intended physical 

system in an effort to improve the design process [10-12]. The Functional Basis framework [13] 

exists among these approaches and it has proven effective in the development of some failure 

analysis tools.  

During the design process, informed decisions are constantly needed on the type of 

components and subsystems needed to accomplish functions required by the proposed product. 

The Functional Basis framework which is described by three distinct abstraction levels of 

functions and flows assists in making these decisions.  Through this framework a component can 

be described using different forms of detail from simple to complex which are grouped as 

primary, secondary or tertiary levels.  

Increase in the level of specificity achieved by using each level of the Functional Basis 

framework decreases the potential physical means by which that function is achieved. This 

results in refining the behavior of the system to a smaller and smaller set of components that can 

achieve the specific level of functional description. In this work, the function and flow terms in 
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Functional Basis will be used to define the three distinct levels of abstraction to be considered in 

the functional representation [13]. Function is not the only aspect of function-based system 

analysis that can be represented with various levels of abstraction. Behavioral representation can 

have an entirely different degree of abstraction. 

4.4 Function-Based and Behavior-Based Failure Analysis  

Over the past decade, different methods have been developed to describe and predict the 

undesirable performance of systems at various stages of the design process that utilize functional 

representations, behavioral representations or both. Most of these methods have been discussed 

in the previous chapters. 

A key aspect of systems engineering design process is behavioral modeling. The process 

involves using quantitative models obtained from functional models to investigate the 

performance of a system relative to design requirements and specifications [14, 15]. Methods 

such as the function-based behavioural modeling (FBBM) permits internal iterations between the 

starting functional model and the end solution provided in the analysis [14, 15]. The application 

of behavioral models for model-based safety approaches have assisted in providing sufficient 

system details during failure analysis at early design stages. This approach usually requires 

language support for specifying fault modes and a method for introducing these modes into the 

nominally working system model [15].  

The use of the FFIP tool has previously revealed fault propagation paths in various 

systems although its validity has yet to be evaluated on physical platform in assessing its 

applicability in functional representation of systems to making design decisions. However, in this 

research, simple state machines and system dynamic simulations will be used for cross-
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evaluating the failure information obtained from behavior abstraction models and function-based 

models. The function failure reasoning logic will also be used as the primary logic within the 

FFIP simulation. The health states listed previously are used to represent the health of 

components of the system at given times during the simulations. This research uses the FFIP 

method in the evaluation of the functional health of the system. By exploring different behavioral 

and functional abstractions using this method, their impact on decision-making is illuminated.  

4.5 Abstraction, Fidelity, and Resolution 

In the scope of model generation and analysis abstraction, fidelity, and resolution often 

mean the same thing [2]. A model of any system is an abstraction or reduced reality of the actual 

system [16]. While abstraction can also be defined as the degree of separation with which a 

representation of a system deviates from the true system, fidelity measures the accuracy in the 

reproduction of a model, or a measure of the exactness of that same model [17]. Most design 

engineers often prefer high fidelity simulators and models for effective system analysis, leading 

to corresponding expensive model development. However, recent studies show that high fidelity 

simulators may not be as necessary in producing required results [18]. Also, high and low 

resolution models exist in the realm of fidelity description.  

Assessing the impact of failure scenarios within models of a system at different fidelity 

levels is always challenging as it requires specific demands of defining such scenarios. For 

complex systems, it is usually a daunting task to observe and compare each component between 

models [18]. However, simulation results within two models of different fidelity levels can be 

used to show and compare on correlation plots the results of experimentation [18, 19]. 
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4.6 A Study on Model Abstraction and Functional Analysis 

To explore the relationship between modeling abstraction and its effects on functional 

analysis, simulation, and reasoning capabilities we focus on the design-stage failure tool, FFIP 

(Function Failure Identification and Propagation framework). As discussed above, the intent of 

using this type of tool is to evaluate the functional robustness of a system design in response to 

scenarios of interest to the designer. As described in Figure 1, the inputs of an FFIP analysis are: 

critical scenarios, functional and behavioral representations, and mapping logic between the 

behavior and intended function. The outputs that a designer uses are the system’s functional 

response to the scenario and the system’s behavioural response to the scenario. These results can 

be used in many ways to aid decision-making as described in previous work. 

 

FIGURE 1:  FUNCTION FAILURE IDENTIFICATION AND PROPAGATION 

FRAMEWORK 
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The interest here is to identify the role that modeling abstractions plays in affecting 

analysis results and, therefore, the decision-making capabilities of this tool. The reasons for 

selecting this tool for analysis are: 

1. The current abstraction specification approach for FFIP and the set of tools related to it is 

ad-hoc. 

2. This tool relies on abstraction in both the function-flow paradigm as well as the 

behavioral paradigm, allowing for the exploration of both. 

In order to identify the impact of abstraction we need to establish a consistent 

terminology that will enable useful descriptions of the models. Table 1 summarizes the 

classifications chosen for this study. It should be noted that the consistent use of three levels of 

abstraction is arbitrary and is based on developing an experimental framework to explore the 

space of potential representations.  

For functional representation and reasoning, we build upon the descriptions established in 

the Functional Basis [11]. In the Functional Basis, there are three levels identified for both 

functions and flows and their naming was selected to avoid implying significance of one level 

over another. From a design synthesis perspective, the use of functional representations is based 

on the refinement of the artefact at the time of modeling.  
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Table 4.1:  DISTINCTIONS OF ABSTRACTION FOR FUNCTION, FLOWS AND 

BEHAVIOR 

Functional Abstractions 

Primary Secondary Tertiary 

General Principle Specific Principle Specific with Parameter 

Example: Channel Example: Guide Example: Translate 

Flow Abstractions 

Primary Secondary Tertiary 

Domain Type Characteristic Property 

Example: Energy Example: Electrical Example: Voltage 

Behavior Abstractions 

Primary Secondary Tertiary 

Qualitative Discrete Continuous 

Example: Signs Inequalities, 

Orders of Magnitude 

Example: Discrete State 

Machines 

Example: Time-based 

Calculus 
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In order to validate a system chosen for conceptual design stage analysis, the selected 

abstraction level used for system modeling will have during implementation. Hence, this work 

utilizes a combination of computer modeling simulation packages and techniques to evaluate the 

impact that abstraction and model fidelity have on the validation of early-design stage failure 

analyses. This specifically requires conceptual creation of system simulation models at multiple 

abstraction levels, and conducting an FFIP analysis on these system models using Matlab-

Simulink and WolframSystem Modeler. 

The level of fidelity that each set of FFIP reasoning results can provide is evaluated 

against possible measurable output parameters from dynamic simulations which are much 

similar to the physical prototype tests carried out at later stages of the design process. In the 

scope of this work, it is assumed that the designers will follow a design process similar to that 

which was articulated in the previous chapter. The engineering problem will be broken down 

into functional and behavioral model analysis of the desired solution and eventually carried 

through to product realization.  

The case study model for this research is an electric vehicle drivetrain. The electric 

vehicle drivetrain gives sufficient insights into the functional and behavioral effects of failures 

and their propagation. This information can later be incorporated into larger complex engineered 

systems which may include a team of similar vehicles operating in pursuit of mission completion 

(such as autonomous taxis) or include the manufacturing processes and operators that add 

complexity to the behavior of the system.  
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4.7 A Method to an Effective Failure Analysis 

Once there is a decision to create a system either based on identified customer needs (for 

product improvement) or to meet organization’s competitive goals (new product release), the 

identification of the proposed system’s requirement comes next. It is at this stage that an 

effective failure analysis method, such as shown in this research, needs to be put in place to 

reduce resources and improve the safety operation of the system. 

The following subsections will highlight the procedure on the approach to predicting 

faults in our case study, an electric vehicle (EV) powertrain which is a relatively new complex 

system within the automobile industry. 

 

FIGURE 4.1: RECHARGEABLE BATTERY ELECTRIC VEHICLE [20] 
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The concept behind battery electric vehicles is simple, as shown in Figure 2 above. The 

vehicle usually consists of an electric battery for energy storage, an electric motor and a 

controller. The battery is generally recharged from an electricity supply through a plug and a 

mobile battery charging unit or at a charging point. The controller would be in charge of 

regulating the amount of power supplied to the motor, correspondingly affecting the vehicle 

speed [20]. 

4.7.1 Model: Functional 

This model representation is usually done based on the information obtained from the 

proposed system’s components/subsystems requirement. In this work, an abstract functional 

model based on the general requirement for an electric vehicle’s powertrain (Table 2) was built. 

The electric vehicle is normally required to have the ability of traversing different road 

conditions, be equipped with an on-board power supply (with recharging capabilities) which can 

be regulated based on need, and the ability to respond to control from a driver. The EV may also 

be required to capture information about itself and its environment (for autonomous operations). 

The functions and flows for the model are generated from the primary levels of the Functional 

Basis [11].  

In order for the EV to meet its requirements, the functional model was made to contain 

Provide Energy, Control Signal, Control Energy, Channel Solid Material, and Direct Signal, as 

shown in Figure 3. Provide Energy and Control Energy can be described in less abstract terms by 

moving to the secondary level of the Functional Basis. This is shown in Fig. 4 and includes 

functions of Supply, Transfer, and Regulate Electrical Energy. The channel material function is 

further defined to include Convert Electrical Energy to Mechanical Energy and Guide Solid 
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Material. Figure 4 also includes swim lanes to indicate the physical component types that can 

implement those functions.  

The conversion of electrical energy to mechanical energy is required to interface between 

the electrical power source (the battery) and the wheels for motion. It should be noted that upon 

expansion of the functional model, the input and output flows to the environment, will usually 

remain the same. The implication is that, the energy flow going into ‘provide’ is similar to the 

input flow to ‘supply’ while the output flow of ‘provide’ is the output flow of ‘regulate’. This 

allows the sub-sections of the model to be assigned terms which are consistent with the 

secondary levels of the Functional Basis [11]. 

 

FIGURE 4.2: FUNCTIONAL MODEL OF AN ELECTRIC VEHICLE, DESCRIBED WITH 

THE PRIMARY LEVEL OF THE FUNCTIONAL BASIS 

To understand the effect of modeling and fidelity analysis on the validation of the early 

failure prediction methods, an interconnected model of behaviors and functions is needed. A 

mapping between the functional and behavioral models should be explored to establish a 

consistent approach. 
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FIGURE 4.3: EXPANDED VIEW OF THE FUNCTIONS: PROVIDE ENERGY, CONTROL ENERGY, DIRECT SIGNAL AND 

CHANNEL SOLID MATERIAL FROM FIGURE 3         
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TABLE 4.2: GENERAL REQUIREMENTS FOR AN ELECTRIC VEHICLE POWERTRAIN 

Battery 
7100 cells of 3.7V and 3400mAh  

or 403V and 220Ah (after assembly) 

Electric Motor 4-Pole, 3-phase Induction motor, 443lb-ft,  416Hp  

Differential Gear ratio: 4.27 

Inverter DC/AC, 50Hz ~ 60Hz 

Wheels 0.1905m radius 

Curb Weight 2000kg ~ 2200Kg 

 

4.7.2 Model: Behavior 

A behavioral model is a structure of connected components which shows the expansion 

within these components to include more fidelity as abstraction is removed from the model. It is 

a quantitative approach that uses physics, engineering knowledge and principles to describe the 

internal operations that make a component perform its task. Behavioral modeling is essentially a 

component-driven approach since immediately the intended functions of a system are identified, 

component solutions needed for the identified functionality are selected and then the behavioral 

models of the selected components are created [14]. 

When applying the mathematical equations to describe physical behavior, the description 

exists in certain states of abstraction from the true physical phenomena that is occurring. 

Describing a behavior in abstract terms may lead to over-simplifying or neglecting certain 

characters. In the early stages of the system design process, specific design parameters are often 
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unknown, leading to uncertainties in the model representation which depend on the functional 

model development and knowledge of system parameters [19]. 

In this research, the behavior model of the electric vehicle was created from the 

functional model information. The components needed to complete a vehicle’s powertrain were 

identified, sets of general requirements and capacities for each component were selected and 

physics based models on how the chosen components would behave while executing each of its 

functions were created. The electric vehicle components specification used for this work is given 

in the table 2. Using online and textbook resources, the values in the specification table are 

assumed only as a guide to the designer to ensure that outputs obtained from model simulations 

can be validated.  

Due to its quantitative nature, behavior modeling is not hierarchical where certain sets of 

component behavior can be ranked. It is usually up to the designer to pay significant importance 

to the intended component behaviors desired during modeling. For example, an electric vehicle’s 

battery will behave in different ways while performing its function of storage, transmitting, 

converting and recharging. All these functions would require different behavior models to 

represent them within the battery. However, this research will explore different levels of detail in 

describing a behavioral model that adequately describes complex systems. 

This work recognizes that different fidelity levels can be used to model component 

behaviour depending on level of expertise and knowledge base available to the designer. As such 

we show the various types of behaviour models that can be created for an EV powertrain at the 

early stage of design as shown in Figure 5. Using “Function 1”, “Function 2”, and “Function 3” 

level of detail is increased in describing component’s function behaviors. We will run various 
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analyses on these models to determine what level of modelling should be considered sufficient to 

predict faults at this stage. 

 

Function 1    

 

Function 2 

 

 

Function 3 

 

FIGURE 4.4: FIDELITY IN BEHAVIOR DESCRIPTIONS 

 

For each behavioral module, qualitative and quantitative physics can be used in 

describing the behavior of the component at different modes of operation [6]. The transitions 

between each state refer to the function health states. The health states are logical statements that 

evaluate the relationship between the input and output flow of the behavioral model. The 

functional health is calculated using a Function Failure Logic (FFL) at each time-step of the 

simulation, as the flows are adjusted by component behavior descriptions. Figure 6 illustrates 

how information from the behavior model is passed through a reasoning model to obtain function 

health state of the component.  
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FIGURE 4.5: BEHAVIORAL REASONING AT THE MOST ABSTRACT LEVEL 

 

4.7.3 Historical Failure Database: FMECA+ Mode Number 

An important section of this research developed a method to explain the possible 

component faults introduced into the simulation environment. To address this, an historical 

failure database based on the potential performance of the individual components in the 

powertrain of an electric vehicle was generated. This was carried out in order to derive a 

classification of fault modes. The modes describe the behavior of the component in their nominal 

states while also adequately capturing the deviations from desired states. 

Using engineering and practical knowledge, an FMECA of the electric vehicle powertrain 

model was constructed. This was done to include an additional column called “mode number” 

The mode number primarily highlights the magnitude of the effect of failure modes of the 

component on a number scale, where higher values indicate fault severity. This approach reflects 

a real world task of utilizing historic failure data as a starting point in failure analysis for our 

model. The information on the failure mode number of each component within the system was 
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implemented in the behavior models to simulate function faulty states in Matlab Simulink and 

Wolfram SystemModeler. 

The importance of this approach in this work is to bridge the gap between conventional 

tools (such as FMECA) and the simulation environment at early design phases. The individual 

failure modes are represented as mode numbers in the simulation environment. This makes the 

approach suitable for predicting faults at the early stages. The FMECA input addresses 

limitations surrounding its singular use such as being generic in application or being less 

considerate of the operating conditions of certain components within a system. The limitations 

are addressed by attaching the failure mode number of each component to a model of the actual 

system being investigated. The result from this work reduces reliance on arbitrary values given 

to probability rating, consequence rating and risk priority number (RPN). These are replaced 

with specific overall system performance values obtained from simulating the failure mode 

numbers. This crucial step helps in quantifying the actual degree of impact a failure mode has in 

the particular system being tested, thus reducing the uncertainty from the application of FMECA. 

A model of the system’s failure space from component failure information is modeled to 

capture various individual operational states within our system using abstract, state-based 

descriptions of component behavior and failure behaviour in the simulations of models. Different 

failure mode scenarios representing the different faults that would occur in the system were all 

injected into the simulations. From the failure mode database, series of single fault to multiple 

faults tests were introduced into the simulation environments by changing the abstract, nominally 

performing quantitative states value of components to correspond with faulty states. 

Investigations on how these faults are propagated and their paths across other interacting 

components thereby causing a change in operational states were carried out. 
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TABLE 4.3: AN EXCERPT OF THE FAILURE MODE DATA (FMECA) OF THE ELECTRIC VEHICLE POWERTRAIN 

Component Failure mode Effect(s) 
Mode 

Number 
Cause(s) 

Probabilit

y rating  

(1-9) 

Consequenc

e rating  

(1-9) 

Risk 

Priority 

Number 

Battery Damaged 

recharging 

contact 

No output power 3 

Improper installation, wear 

and tear, loose connections, 

manufacturing faults 

2 9 18 

Cell(s) damage 
Reduced output 

power 
1 

Manufacturing faults, 

mishandling during 

installation, overheating 

2 7 14 

Encasement/ 

cover impaled 

Reduced output 

power 
1 

Manufacturing faults, 

mishandling during 

installation, overheating 

1 9 9 

Damaged 

discharging 

contact 

No output power 3 

Improper installation, wear 

and tear, loose connections, 

manufacturing faults 

2 9 18 

Worn-out Battery No output power 3 Normal wear and tear 1 7 7 

Partial contacts 

Reduced/ 

inconsistent 

output power 

2 

Improper installation, cable 

wear and tear, loose 

connections, wiring faults, 

manufacturing faults 

2 9 18 

Over discharge 
Excessive output 

power 
4 Manufacturing faults 2 9 18 

Under discharge 
Inconsistent 

output power 
2 Manufacturing faults 2 7 14 

Overheating 
Reduced output 

power 
1 

Improper installation, loose 

wired connections, wiring 

faults, manufacturing faults 

2 9 18 

Overcharging 
Reduced output 

power 
1 

Wear and tear, wrong 

connection to charging 

supply, wiring faults, 

manufacturing faults 

2 9 

18 

 

9
5
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TABLE 4.3 (Cont.): AN EXCERPT OF THE FAILURE MODE DATA (FMECA) OF THE ELECTRIC VEHICLE POWERTRAIN 

Component Failure mode Effect(s) 
Mode 

Number 
Cause(s) 

Probabilit

y rating  

(1-9) 

Consequenc

e rating  

(1-9) 

Risk 

Priority 

Number 

Power 

Inverter 

Failure to convert 

DC to AC 
No output power 3 

No power from battery, 

wrong connections, 

windings and coil damage, 

manufacturing faults 

1 9 9 

Failure to transfer 

EE 
No output power 3 

No power from battery, 

wrong/loose connections, 

wiring faults, 

manufacturing faults 

2 9 18 

Damaged 

Inverter switch 
No output power 3 

Wear and tear, 

manufacturing faults 
2 9 18 

Partial contacts 

Reduced/ 

inconsistent 

output power 

1, 2 

Improper installation, cable 

wear and tear, loose 

connections, wiring faults, 

manufacturing faults 

2 9 18 

Loose 

Connections 

Reduced/ 

inconsistent 

output power 

1, 2 

Improper installation, cable 

wear and tear, loose 

connections, wiring faults, 

manufacturing faults 

2 7 14 

Old Inverter 

Reduced/ 

inconsistent 

output power 

1, 2 
Normal wear and tear, 

manufacturing faults 
1 7 7 

9
6
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4.8 FFIP Simulation  

The FFIP simulation of the system uses information from the functional model and the 

failure database into behavior models represented as simple state machines. The models were 

built using MATLAB Simulink Stateflow tools. Using state machines allows discrete and 

continuous modelling of system components within a times simulation. It also allows an easy 

assessment of the impact of individual component modification.  

Figure 8 shows a behavioral model of an electric motor performing a transmitting 

function as it exists in the detailed fidelity Function 3 described above. Inside the behavioral 

component model, the inputs consist of different input flows that each component needs to 

perform its in-built operations, as defined by the designer.  

In the case of the electric motor, there are several inputs needed to be considered for 

operation. There are also heat flow losses which are external flows to the environment. The 

Figure shows the executable state machine in accurate detail. As the model is operating at a high 

level of abstraction, with minimal parameter definition, physics, engineering and logical 

reasoning are employed. For example, In the case of the electric motor behaviour models, four 

operational modes were considered. These modes are enumerated as. 

1. Nominal - the energy out of the module is at its expected level. 

2. Overacting - the module is providing more energy than expected to the rest of the system. 

3. Lost - the module is providing no energy to the rest of the system. 

4. Degraded - the module provides energy to the rest of the system, but is less than required. 

This type of modelling and analysis was employed for all other component models in the 

powertrain system 
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FIGURE 4.6: A BEHAVIORAL MODEL OF THE ELECTRIC MOTOR IN AN ELECTRIC VEHICLE AT FIDELITY 

FUNCTION 3 

  

9
8
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4.9 FFIP Results 

 A number of results were obtained using the combination of models and tools in the 

approach discussed above. 

Nominal scenario test indicates the presence of no known faults or abnormal conditions 

affecting the simulations while other scenarios will have certain degree of faults as obtained from 

the failure database.  

 

TABLE 4.4: PARAMETERS USED IN MODELING COMPONENT BEHAVIOR 

Mode Number Function Healthy States Efficiency Values 

0 Nominal 100% 

1 Usable_Degraded 80% 

2 Bad_Degraded 25% 

3 Lost 0% 

4 Overacting Wheel 125% 

 

 

 

 

 

 



 
 

100 
 

4.9.1 Single Fault Scenario 1: Differential  

 The first scenario presented shows the results of the system simulations using different 

failure mode numbers for the EV’s Differential failures while other components were healthy. 

 

FIGURE 4.7: DIFFERENTIAL FAILURE PLOTS, ALL OTHER COMPONENTS ARE 

HEALTHY  

For example, a left wheel torque differential output will resemble a flat tire on the left 

side of the vehicle. Information of the other possible deformed conditions are obtained from the 

failure database and implemented in the model to analyse the possible effects. Abnormal 

environmental conditions were not created as inputs to all the models to limit uncertainties in our 

predictions. 
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4.9.2 Single Fault Scenario 2: Battery  

 The scenario shows the results of the system simulations using different failure mode 

numbers for the EV’s Battery failures while other components were healthy. 

 

FIGURE 4.8: BATTERY FAILURE PLOTS, ALL OTHER COMPONENTS ARE HEALTHY 

From the output results of the Single Fault Scenario 1 and Single Fault Scenario 2, it can 

be observed that there is a huge and significant drop in the wheel speed due to the battery being 

degraded than there was at any degradation at either wheel. 
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4.9.3 Double Fault Scenarios:  

 

 

FIGURE 4.9: DOUBLE FAILURE IN BATTERY AND INVERTER 

 

 

FIGURE 4.10: DOUBLE FAILURE IN THE INVERTER AND ELECTRIC MOTOR 
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From the output results of the Double Fault Scenarios, it can be observed that there is a 

higher impact caused by a combination faulty Battery and Inverter than there is with a 

combination of the Inverter and Electric motor when the latter are at faulty states. 

4.9.4 Triple Fault Scenarios: 

 

FIGURE 4.11: TRIPLE FAILURE IN THE BATTERY, INVERTER AND ELECTRIC MOTOR 

From the output results of the Triple Fault Scenarios, it can be observed that there are 

huge drops in the energy supply to the wheels than there are with Single and Double Faults. The 

degraded values with triple faults will render the electric vehicle in-operable at this state. 
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4.10 Significance of Design Details at the Conceptual Stage 

 At the conceptual stage in the design of the electric vehicle, minimal information on the 

intended components in the make-up of the vehicle system is known. However, failure modes of 

the electric vehicle can be identified from the functional models of the system. In order to 

mitigate failures early at this stage, a detailed model of the system at various abstraction levels 

will help in adequately predicting such faults as presented above.  

 The usefulness of the approach presented in this work goes beyond evaluating system 

performance in the presence of faults within the inherent components. Using the functional and 

behavioral models of the electric vehicles, parametric variations of component data can also be 

carried out during design selections. This allows the system designer to examine possible trade-

offs needed during component selection to optimize system performance in the electric vehicle. 

 

FIGURE 4.12: VARIATION IN SPEED AT DIFFERENT INVERTER FREQUENCY 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 51 52 53 54 55 56 57 58 59 60

Sp
e

e
d

 (
rp

m
) 

Inverter Frequency (Hz) 

Wheel rpm Electric Motor rpm



 
 

105 
 

 Figure 4.12 shows the possible rpm speed values that can be obtained from the wheel and 

the electric motors from 50 Hz – 60 Hz of inverter readings in the electric vehicle. By observing 

the values above, equilibrium in the wheel speed and motor speed can be obtained using a 55Hz 

inverter. However, a particular frequency may not independently be isolated as optimal due to 

the requirements from other parts within the system. The model will serve as an alternative guide 

to using generic tables in selecting components for the chosen system.  

Other trade-off analyses were carried out on the Electric vehicle’s component parameters. 

The effect of varying the gear ratio is shown below. 

 

FIGURE 4.13: EFFECTS OF VARYING GEAR RATIO  

Figure 4.13 shows that the speed obtained from the electric vehicle is increased with a 

corresponding increase in the gear ratio selected.  

   

0

200

400

600

800

1000

1200

1400

1600

3.31 3.42 3.55 3.73 3.91 3.97 4.11 4.27

Sp
e

e
d

 (
rp

m
) 

Gear Ratios 

Wheel rpm



 
 

106 
 

 

FIGURE 4.14: EFFECTS OF MULTIPLE PARAMETERS ON SYSTEM PERFORMANCE 

 A larger scenario of parameter variation within the electric vehicle is shown in Figure 

4.14. The figure shows the results of the wheels speeds obtained using a gear ratio of 4.27 in the 

electric vehicle while varying the health state, the inverter frequency and the number of poles (2, 

4, 6, 8, and 10) of the inverter. From the figure 4.14, it is observed that there is an approximately 

4% difference between the “Usable_degraded” health state of the electric vehicle when operating 

at 50 Hz and the “Healthy” health state of the electric vehicle when operating at 60 Hz. 

 The details highlighted in the examples above make the adoption of the approach 

presented in this work suitable for use at the conceptual stage. 
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4.11 Impacts of Flow Fidelity on Behavior Models 

Early in design stages, most components are often chosen without a prior knowledge of 

their performance before being integrated into the intended system. The level of detail to which 

designers may model these components for simulation can always vary depending on previous 

experience with such components. Regardless of this knowledge, an appropriate level of detail 

showing the intended behavior of components and their corresponding failure behavior needs to 

be captured to sufficiently conclude on components’ overall impact on the system in which they 

operate. 

In this section, the electric motor from the electric vehicle model is used for illustration. 

The principal aim of an electric motor is to convert an electrical energy input to a mechanical 

energy output. However, the electric motor used in most electric vehicles often provides several 

other operational outputs needed by other parts of the vehicle. Different interactions would 

normally take place within a system’s components for it to execute its overall functions. These 

interactions can be adequately captured using discrete and continuous modeling methodologies. 

Here, we explore different levels of discrete and continuous simulations in order to draw 

conclusions on what level of fidelity provides an adequate report on component performance. 

When creating models of a component such as the electric vehicle motor, the designer will need 

to expertly determine what level of information is needed to adequately quantify the behavior of 

such component.  

Based on components physics and the engineering knowledge available, various 

functional flows can be chosen to represent detailed interactions that take place from the input 

end to the output end of the component. The level of fidelity chosen to model such a component 
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will affect the degree of accuracy and information content obtained from behavioral analysis 

results. This method also helps prioritize needed design simulations by optimizing computational 

cost and time. 

 

FIGURE 4.15: E-MOTOR BEHAVIOR MODEL AT FIDELITY LEVEL OF FUNCTION 1 

 

FIGURE 4.16: E-MOTOR BEHAVIOR MODEL AT FIDELITY LEVEL OF FUNCTION 2 
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Different system information is obtained while using the component model 

representations utilized above. A tertiary function abstraction can effectively be utilized with the 

three levels of flow and behavior abstractions in creating a detailed component model. The 

tertiary levels for all modeling abstractions provide the design engineer with the most detailed 

information on system health states and overall performance. Time-based behavioral models 

using software tools such as ADAMS and Modelica make use of tertiary behavior abstractions. 

These models allow in-built physics that includes design criteria such as material types, 

properties, and operating cycles as inputs during simulation and analysis of the system. Other 

considerations such as the development of heuristics for all potential failure space in which the 

intended system will operate are also provided at this level. 

This research explores how failure prediction in systems at the early design stages despite 

the presence of some design constraints and limited knowledge of the intended system.  By using 

either the primary or secondary flow or behavior abstraction for modeling component behavior, 

Figure 4.15, the following information can be obtained: 

 Component and system faults can be predicted from the output information on health 

states (such as “Healthy”, “Degraded”, etc.) 

 There is limited information on how changing parameters will affect the system. 

While the use of the tertiary level of flow abstractions together with primary or secondary 

behavior abstractions, Figure 4.6 and Figure 4.16, provide the following information: 

 Component and system faults can be predicted from the output information on both the 

health states (such as “Healthy”, “Degraded”, etc.) and the actual reported values from 

the components and systems during operation 
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 Design selections and parameters can also be varied using this level of modeling 

 Detailed information on how changing parameter variables affect the system 

performance. This information helps when creating design redundancies and alternative 

routing of power to supplement failed components 

 

4.12 Dynamic System Model 

Upon the completion of an abstract-based simulation of function and behavior of 

components using simulink, the results obtained are usually compared with actual physical 

prototype tests for verification. In some cases, the knowledge or expertise of the designer in 

quantifying the needed parameters necessary to provide details on the system’s space (both 

nominal and failure) may be limited. There are usually certain levels of oversights during the 

early design stage. A dynamic simulation tool such as the Wolfram/SystemModeler software 

which uses a Modelica library of components with in-built physics equations to effectively 

capture the general physics associated with most commonly used engineering components and 

systems. This tool helps the designer to create actual prototypes of the desired system in a 

simulation environment while having exactly the same working principles as physical 

prototypes. 

This work effectively assembles the relevant components needed to build an electric 

vehicles powertrain using SystemModeler based on the general requirements set for the design 

that were stated above. Most of the built-in components have their physics set exactly similar to 

real life components. Some other needed components can also be built as an assembly of parts 

that make up the component while taking into account their constituting physics. SystemModeler 
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also has the added advantage of having built-in reliability modules (for example Weibull, 

Exponential and ChiSquare distributions), suitable for different components simulation. 

The failure modes of the components were injected to the system model by creating a set 

of tables with actual values representing nominal, degraded, Lost and overacting. These values 

can be preset and changed by the designer based on engineering judgement. The actual values 

needed for the vehicle to function normally are set as the nominal values while the deviations are 

percentage difference from this value. The purpose of this type of simulation is to get very 

precise response of the system to the set variables of the component before an actual physical 

prototype is built and the results can be compared.  
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FIGURE 4.17: DYNAMIC SIMULATION MODEL OF THE ELECTRIC VEHICLE USING 

SYSTEMMODELER 

 

4.12.1 Dynamic System Model Simulation and Results 

The output voltage from the battery was initially set at the nominal state using actual 

values from the specification above. However, various degraded failure conditions were set by 

percentage deviations from the otherwise healthy condition of the component. The results of the 

dynamic simulations on the entire system using different battery voltage are shown in Figure 

4.18 
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FIGURE 4.18: RESULTS OF SYSTEMMODELER SIMULATION 

 

The dynamic simulation provides a time-based impact of degradation from the healthy 

state for all system components and the system itself. The plots of the results in Figure 4.18 show 

the time taken for the electric vehicle to accelerate to reach top speed within a certain time. 

Reduced voltage supply from the battery limits the ability of the vehicle to accelerate as other 

components draws from the same low output. Other than being able to identify the existence of 

faults in the battery, these types of results have the potential of being useful to designers or 

drivers when planning missions such as driving uphill or downhill based on battery readings. 

Similar tests for failure in other components are also explored to study their impact on the system 

performance. 
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4.13 Conclusion 

This work uses the FFIP simulation to predict the performance of a system through the 

combination of traditional failure analysis tools and system simulation tools. Different levels of 

abstraction and model details were explored in order to determine the potential health status of a 

system based on the information available. From the results of the research, the primary level of 

abstraction details for function, flow and behavior, can provide information on possible health 

states of the system. However, using the secondary and tertiary behavior abstraction model detail 

will provide predictions on the health states and actual performance values. Information on 

impacts of varying component parameters in the intended system is also provided using the 

higher abstraction levels. The methodology provided is mostly conditioned and suitable for 

failure analysis at the conceptual stage. 

The FFIP simulation fails to capture the time-sensitive degradation introduced by the 

cascading failure effect while the Dynamic simulation used in this work effectively does. For 

example, the FFIP simulation successfully observes the degraded health state of a particular 

function but does not have a means to determine when a degraded state or lost state starts. The 

ability of the behavioral model simulation to mimic the severity or degree to which a functional 

impact is affected is determined by the amount of detail present in the behavioral descriptions. 
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CHAPTER FIVE 

REASONING ABOUT SYSTEM-LEVEL FAILURE BEHAVIOR FROM LARGE SETS 

OF FUNCTION-BASED SIMULATIONS [1] 

This chapter presents modified excerpts of a published co-authored work on the analysis 

and reasoning about FFIP simulation results. The electric vehicle health states clustering analysis 

from the research in Chapter 4 are included in this chapter. 

A version of this chapter has been published in the Artificial Intelligence for Engineering 

Design Journal.  

[1] Jensen, D., Bello, O., Hoyle, C., & Tumer, I. (2014). Reasoning about system-level failure 

behavior from large sets of function-based simulations. Artificial Intelligence for Engineering 

Design, Analysis and Manufacturing, 28(4), 385-398. doi:10.1017/S0890060414000547 

 5.1 Introduction 

The primary objective of this work is to develop a design-stage simulation and analysis 

tool set that uses simulation data to reason about the functional robustness of systems to potential 

component faults and fault propagation. This type of approach is intended to enable designers to 

compare potential system architectures, identify component and subsystem behaviors that lead to 

undesired system states, and assess the impact of complex fault scenarios. In order to achieve 

this high-level objective there are three specific objectives that this presented method addresses. 

These are: 

1. Characterize the impacts of a large space of the potential complex failure scenarios. (In 

what types of ways does the system fail?) 
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2. Identify the system-level importance of the sets of potential system failures. (What does 

each type of failure mean in terms of system functionality?) 

3. Determine how this analysis can be used to make system design decisions. (Can we use 

this data for a systems view of functional robustness?) 

By addressing the first objective, this method moves beyond single scenarios analysis and 

begins to develop a system-level characterization based on simulation of component behavior. 

The result of completing the first objective is distinct types of system failure analogous to failure 

modes for the system. However, since these are identified through simulation and data analysis, 

the types of system failure must be related to the system-level functionality. In this way, 

objective two enables this method to link top-down and bottom-up analysis methods. Finally, the 

third objective begins to address how this approach can fit within the overall systems design 

processes. 

5.2 Background 

This section discusses the three technical areas used in this paper and presents some 

detail of the example system.  

The FFIP section of this article which is the source of the data on which the analysis and 

clustering methods are applied has been extensively discussed in the previous chapters of this 

work. A brief background on the method of clustering data using a k-means algorithm is 

provided. Finally, a categorical data clustering approach for identifying an underlying 

probabilistic model for the structure of the data, namely, Latent Class Analysis is presented. 
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5.2.1 Data Clustering 

Separating data into clusters or partitions has been a useful activity in the data mining 

community to elicit meaning from large data sets [2]. Starting with the classification of human 

traits and personality in the 1930-40s, clustering analysis continues to be an important tool to 

enable machine learning. Multiple methods and algorithms have been developed based on 

different perspectives on the meaning of a cluster [3]. There are three main approaches to 

clustering with multiple methods and algorithms supporting them. 

Hierarchical clustering assumes that some category or classification captures all the data 

and that data points can further be sub-classified into more specific groups in a tree structure. In 

biology, the Linnaeus taxonomy of living things is an example of hierarchical clustering. 

Hierarchical methods often relate one or more data points by their similarity. 

In contrast to hierarchical methods, partitioning methods separate the data space into 

different clusters without implying a higher level relationship between those clusters. Data points 

are related based on a measure of the distance between values. Algorithms that implement 

partitioning identify centroids of the clusters and then group all data points into a predetermined 

number of clusters based on their distance from that centroid. K-means clustering is one method 

of data partitioning that evaluates the Euclidean distance between data points [4]. 

Two significant issues of k-means clustering are that the number of clusters must be 

selected first and that data points may only have membership in one cluster. To address the first 

issue, heuristic rules such as choosing k based on the square root of half the data set size can 

provide an initial assessment [5]. Evaluation of the correctness of the value of k can be done 
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through heuristic metrics as well. Variations of k-means known as soft or fuzzy clustering 

methods use a similar approach but instead provide membership percentages. 

The third category of data clustering methods is model-based. These methods assume 

some structure to the data and try to find the correct statistical model to match that structure. 

Methods in this category use different means of estimating and finding the maximum likelihood 

of the data fitting the parameters of a statistical model [6, 7].These methods assume that the 

reason some data points are related to other data points is due to some unobserved (or latent) 

variable. Unlike k-means, data points have a probability of being within a particular cluster based 

on their dependence to that unobserved variable. There are many variations of model-based 

clustering depending on the form of the data and the likely form of the clusters. For the analysis 

of function-based failure simulation data, the most appropriate model-based method is Latent 

Class Analysis. The details of this analysis and the justification for its use in this work are 

presented next. 

5.2.2 Latent Class Analysis 

Social scientists have used the concept of latent classes since the 1950s [8]. Manifest (or 

observed) variables are the data of empirical studies. A latent variable is one not directly tested 

but is nevertheless correlated to observations of the manifest variables. If the latent variable is 

continuous then methods such as factor analysis and multivariate mixture estimation can be used 

to find this structure. However, if the latent variables have discrete categories then the structure 

fits a latent class model [9]. 

As an example, survey questions on personal views of several political topics can form 

the parameters of a statistical model. Latent class analysis (LCA) on the survey data could be 
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used to identify subgroups into which the respondents are classified. Groups identified within 

this data would likely correspond to labels like “conservative", “liberal", etc. There are three 

main results from performing an LCA. First, each data point has a probabilistic membership to 

each class of the latent variable (e.g., the respondent's likely political leaning). Secondly, each 

discrete variable state is correlated to a latent class (e.g., liberals have a high probability of 

answering affirmatively to question three.) The final component of the LCA output is class 

membership percentages for the entire data set (e.g., 40% conservative, etc.)  

Formally, the latent class model is based on the concept that the probability of observing 

a specific pattern (Y) of manifest variable states y, denoted P(Y = y), is a weighted average of 

the C class-specific probabilities P(Y = y / X = x), where X is a latent variable with C number of 

classes. Weighting with the proportion of that class to the latent variable P(X = x) results in 

Equation 1. 

P(Y = y) =   ∑ P(X =  x) P(𝐘 =  y / X =  x)𝐶
𝑋=1       (1) 

Further, the manifest variables within a class, Yl are assumed to be locally independent. 

Therefore, Equation 2 defines the probability of observing a pattern in the L manifest variables 

within a class. 

P(Y = y / X = x) =   ∏ P(𝑌𝑙  = 𝑦𝑙  / X =  x)𝐿
𝑙=1       (2) 

Using the political example above, (Y) is the pattern of answers associated with a 

political group answering the specific questions y. This pattern is independent within each of the 

discrete political groups in X.  
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As with k-means data clustering, algorithms for implementing LCA use expectation 

maximization for a predefined number of groups. Therefore, LCA must be executed iteratively in 

order to identify the correct number of classes for the latent variables. Identifying the goodness 

of fit of the latent class model is typically accomplished by examining either the Akaike 

Information Criterion (AIC) or the Bayesian Information Criterion (BIC). These are metrics to 

estimate the information entropy (information lost) when a statistical model is used to describe 

reality. The AIC formulation modifies the log-likelihood estimation by the number of 

parameters, punishing over-fitting models. The objective in checking goodness of fit with AIC is 

to find the minimum of Equation 3, where K is the number of parameters and L the likelihood 

function for the statistical model. The BIC formulation is similar but accounts for the sample 

data size. 

AIC = 2K – ln (L)          (3) 

LCA was chosen as a clustering method over other clustering methods because the 

manifest variables are the discrete health states of each function in the system. Additionally, the 

hypothesis of this work is that the failure behavior of a system is also categorical. This 

categorical system-level failure is the latent variable in our analysis. The discrete (and ordinal) 

nature of the variables rules out other multivariate mixture models. 

5.2.3 Example System Case Study 

To demonstrate the clustering approaches applied to function failure analysis results, we 

perform an FFIP analysis on a design concept of an electrical power system (EPS). This example 

system will be used to simulate numerous fault scenarios, identify the set of functional impacts 

for each scenario and apply the clustering algorithms to find patterns of system failure behavior. 
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This EPS example is an early design-stage model that uses batteries to provide power for a set of 

AC and DC loads. This example is based on the design of the Advanced Diagnostic and 

Prognostic testbed located at the NASA Ames Research Center [10]. In previous work, various 

potential design architectures were compared using a quantified interpretation of the FFIP results 

[11]. The example used in this work expands upon a similar but less complex example [12]. 

As seen in Figure 5.1, the concept for the EPS is a fault tolerant software controlled 

hardware system. At the system level, three operational states are recognized. Specifically, 

“Nominal”, when both load banks of AC and DC loads are operational; “Degraded”, when only 

one of the load banks is operational; and “Lost”, when neither load bank is operational. The 

purpose of the software control is to automatically maintain operation at a nominal state if 

possible and a degraded state otherwise. By evaluating the voltage levels in both the load banks 

and both battery banks the controller decides to open or close Relays 1 through 4. The first rule 

implemented in the software control is that no two batteries can be connected together. For 

example, Relays 1 and 4 cannot both be closed while there is power available from both batteries 

or an electrical over current will occur. After this rule, the controller observes the voltage and 

relay position sensor values to determine which relays to open or close to ensure continued 

operation. In a fault scenario, the controller can decide to swap power so that the first battery 

powers the second load and vice versa or simply to shut down one line and run at a degraded 

state. The control logic is implemented with a truth table where values of sensors correspond to 

specific relay positions. The control attempts to keep the system in the best operating state as 

described in Table 5.1. In this table the term “Batt1 Load1" indicates that Battery Bank 1 is 

powering Load Bank 1. 
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TABLE 5.1: OPERATIONAL STATES THE SOFTWARE CONTROL ATTEMPTS TO 

MAINTAIN 

Nominal Degraded Lost 

State 1 State 2 State 3 State 4 State 7 

Batt1  Load1 

Batt2  Load2 

Batt1 Load2 

Batt2 Load1 

Batt1  Load1 

 

Batt2  Load2 

 

No Action 

 

 

State 5 State 6 

 Batt1  Load2 Batt2  Load1 

 

This fault tolerant example system enables the identification of high-level system goals 

such as maintain load operation and illustrates fault propagation over both software and 

hardware components. This example system is complicated enough to demonstrate the clustering 

methods yet still provides clarity in the impact of complex faults. The FFIP analysis has also 

been demonstrated on a more complicated system (nuclear power generation [13, 14] ). 
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FIGURE 5.1: ARCHITECTURE OF THE ELECTRICAL POWER SYSTEM (EPS) USED 

FOR FUNCTION-BASED FAILURE ANALYSIS AND RESULTS CLUSTERING 

 

 

5.3 Methods 

The development and justification of the functional effect analysis using the FFIP 

methodology is documented in previous work [11, 14-16] and will not be repeated here. Because 

the motivation of this work is to use data analysis techniques to identify underlying system 

behavior, we begin with collecting the analysis results from the FFIP-based simulation. Other 

methods of design analysis and simulation could be used instead. The two things that are needed 

to apply these techniques is a large number of behaviors to simulate (many scenarios) and 

multiple data points to describe each scenario.  

FFIP provides this by the ability to simulate single and multiple fault scenarios as well as 

variations in ow parameters. Further, for each scenario simulated, the result is the health state of 
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each component-level function in the system. These function health states are the variables that 

describe the system state in response to the simulated scenario. In the following sections we 

discuss the simulation and collection of functional effect failure data and the application of the 

similarity clustering and probabilistic latent class analysis. 

5.3.1 Identifying the Functional Impact of Component Faults and Interactions 

The impact of different component fault modes is identified for the EPS using a 

simulation of the system built by connecting component models created with the Stateflow 

toolbox in Matlab Simulink. A scenario is simulated where one or more faults are triggered and 

the resulting changes in system dynamics are allowed to propagate. The output of each 

simulation is the function health state of each component-level function.  

For example, one scenario includes triggering the failure behavior for both batteries. To 

simulate this scenario, the system simulation begins with all components operating nominally. 

Then after 25 time steps the first battery's operating mode is changed to “Failed-Disconnected." 

The effect of this change is the loss of current and voltage from that component. After 50 time 

steps the second battery's operating state is changed in the same way. The effect of these changes 

is allowed to propagate through the system. In this example, the software controller attempts to 

switch between sources by changing which relays are closed. Finding no solution that provided 

power to the loads, the software controller by default opens all relays as a failure safety measure. 

After 100 time steps, the simulation is ended and the final function health state for each 

component-level function is recorded as the result for that scenario. The injection of failures at 

25 and 50 time steps is arbitrary. Through analysis of numerous simulations it was found that the 

state machines used need four to eight time steps to reach a steady state. Further, reducing the 
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time between failure mode insertions resulted in no change to the final system state. However, 

the order of the fault mode changes did affect the final system state results for many scenarios 

(excluding the one above). Therefore, every order of faults is also simulated. Because this system 

has 58 component-level functions, the result of simulating a scenario is a vector where each 

element corresponds to the health state of each of the 58 functions. These function health states 

are recorded as integers from 1 to 4 to ease data handling. 

Using a Matlab script, a large set of scenario results is generated; first simulating each 

component fault mode as a single fault scenario and then two fault combinations. Three or more 

fault scenarios can also be generated in the same manner. While simulating three or more 

scenarios is possible, for this example system the limited number of components resulted in few 

unique system states for more than two failure scenarios. For this system, simulating every 

possible combination of two faults is not computationally expensive. However, for more 

complex systems there are three possible ways for guiding the scenario selection and simulation 

process. First, expert knowledge can provide direction on the components that are likely to 

negatively interact and have known fault causation or simply using proximity. An alternative to 

this approach is simulating fault modes based on the relationship between causes and symptoms 

of faults [17]. This latter approach is based on triggering failure modes in components with fault 

symptoms (e.g. leaking) which are of the same type as fault causes (e.g. exposure to liquid). 

Finally, the clusters generated using the approach may provide guidance in identifying fault 

modes that should be simulated together in an iterative approach. 

Function failure analysis results are collected from each scenario in a matrix where each 

row is a separate scenario and the columns correspond to the resulting identified health state of 

the component functions. For the clustering analysis, three sets of scenarios were generated. The 
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first set of results tested each failure mode of each component resulting in 193 simulations. The 

second and third set of scenarios tested two fault scenarios. The difference between these last 

two sets was a reversal of the order in which the faults where tested (e.g., battery fault then relay 

fault, and reversed order in the third set). For the three sets this generated 37,299 fault simulation 

records. Both fault orderings were included because it is possible that the order of faults may 

change the system level effects. 

5.3.2 Pre-processing to Enhance Clustering Effectiveness 

The clustering methods demonstrated in this work are applied to find similarities and 

structure between different fault scenarios. However, the first level of grouping is to identify 

which fault scenarios resulted in identical functional results. These represent scenarios that 

cannot be functionally distinguished from each other. For example, faults in two loads that both 

cause high current draw can trip a breaker. The large number of combination of two load faults 

results in a large set of identical faults, that is, they all result in the same tripped breaker and 

subsequent loss of power. This grouping is accomplished through a simple sorting algorithm 

which groups identical scenario results into bins. Selecting one scenario result from each bin 

represents the set of unique system states.  

When applied to the EPS example system the 37,299 total scenarios were sorted and 

3,509 unique system states were identified. The significant reduction reflects a large number of 

identical functional impacts. Many of these identical impacts are related to faults in the sensors 

which all had five failure modes but resulted in little effect to the system because the controllers 

that use those sensors were not simulated. The exception to this was failures in the sensors used 

by the controller, where faults did result in a change in the behavior of the system. The unique 
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system states represent one or more failure scenario results and are the data provided to the 

clustering methods. 

5.3.3 Clustering of Results Based on Functional Similarity 

The motivation for implementing similarity clustering is to identify groupings of failure 

scenarios and aid designers in creating robust mitigation methods. For example, if a system 

designer knows of a particular undesirable system state, then finding all scenarios that lead to a 

similar functional state can identify if adequate control methods have been implemented. In order 

to identify the relationship between two system states we must develop a metric of distance 

between function health states. In data clustering methods, the distance between variables can be 

determined based on the Euclidean distance between the variable values (Distance = √(a2 +b 2)).  

However, the values chosen to represent health states are categorical numbers not 

nominal numbers, which violates an underlying assumption in the Euclidean formulation. 

Therefore, we introduce a functional distance metric based on functional impact. A relational 

table (Table 5.2) is generated to define the similarity between function health states. For this 

analysis, we identify “Lost" and “No Flow" as having no significant functional difference to the 

system. Here, designers could choose to increase the distance of off-nominal states to effectively 

punish and group those scenarios as being worse. Since a low system-knowledge approach is 

being used for this example, all states have a single unit of difference. For example we can 

consider a system with two functions and compare the similarity of two fault scenarios. If the 

resulting system state from scenario 1 is {Healthy; Lost} and the system state from scenario 2 is 

{Degraded; NoFlow}, then the Euclidean distance between these two using the relation matrix in 

Table 5.2 is √(12 + 02)  or 1. 
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TABLE 5.2: RELATIONAL MATRIX FOR IDENTIFYING THE DISTANCE BETWEEN 

FUNCTION HEALTH STATES 

State Healthy Degraded Lost No Flow 

Healthy 0 1 2 2 

Degraded 1 0 1 1 

Lost 2 1 0 0 

No Flow 2 1 0 0 

 

Table 5.2 is one way to quantify the qualitative distance between functional health states. 

The k-means clustering algorithm was also applied to the same simulation results using different 

distance values and where “No Flow" and “Lost" were not equivalent. The cluster centroid and 

distances between centroids changes when this scale is changed. However, when comparing the 

population of scenarios between clusters using different distance matrices, the average error is 

about 0.5%. This is within the normal variation of the algorithm when repeated with the same 

relational matrix. As a result of this finding, it is clear that the concept of functional similarity is 

strongly dependent on the scale used in this relational matrix. However, population of the 

clusters and the resulting meaning of those clusters are consistent across scales. 

5.3.3.1 Results of Similarity Clustering 

The total distance is calculated by summing over the distance for each function health 

state. A weighting for functional importance could be incorporated into this step. However, for 

this analysis each function is given equal importance. This algorithm identifies the functional 

similarity using Table 5.2 for each low-level function. Since there is no way to know a priori 

how many clusters to expect, we repeatedly call the k-means algorithm to cluster the data using 
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1-10 clusters. Additionally, the algorithm is replicated 100 times for each clustering to avoid 

local minimums.  

There are several recognized methods of identifying the appropriate number of clusters. 

The first approach implemented is the “knee method" [7], where the within cluster sum of square 

(WCSS) distance to the cluster centroid is plotted. When additional clusters do not substantially 

change the WCSS there is no need to further cluster the data. Using the EPS example data, the 

inflection point appears between 5 and 7 clusters (see Figure 5.2a). This ambiguity results in the 

need for a second cluster validation method. By comparison of the dispersion of the scenario 

similarities within a cluster and the dispersion of the impacts of those scenarios it is possible to 

identify the appropriateness of the clustering groups.  

For this work a plot is developed where cluster centroids are plotted against the sum of 

their function health states normalized by the total number of functions. That is, a vertical value 

of 1 indicates that all functions are at the healthy state (a nominal scenario). If all component 

functions in the system had failed in a scenario then the normalized impact would be 4. Vertical 

position gives an estimate of the scope of the system affected by the fault. Each scenario in a 

cluster is then plotted based on a horizontal position representing the distance of that scenario to 

the cluster centroid and a vertical position based on the normalized sum of function health states. 

Selecting to use five clusters for the k-means algorithm, the plot shown in Figure 5.2b illustrates 

the variance of the distances from the cluster centroid in the horizontal direction and the variance 

of the scenario impacts in the vertical direction. 
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TABLE 5.3: EVALUATING CLUSTER DISTANCE AND IMPACT MEAN AND 

COEFFICIENT OF VARIATION 

Metric Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Distance 

Centroid 

Mean = 11.99 

CV= 0.39 

Mean = 7.54 

CV= 0.3 

Mean = 7.48 

CV= 0.90 

Mean = 8.03 

CV= 0.26 

Mean = 5.73 

CV= 0.92 

Normalized 

Scenario 

Impact 

Mean = 1.44 

CV= 0.10 

Mean = 1.11 

CV= 0.02 

Mean = 1.28 

CV= 0.18 

Mean = 1.08 

CV= 0.02 

Mean = 1.31 

CV= 0.04 

 

For this example system, Table 5.3 records the mean and coefficient of variation for each 

cluster for the distance from the centroids and the normalized impact of the scenario. The 

coefficient of variation (CV) is the ratio of the standard deviation and the mean of a population 

where larger numbers indicate greater dispersion of the data. For the distance metric, the CV 

indicates how similar the scenarios in the cluster are to each other. For the impact metric, the CV 

shows the variation in the impact for scenarios in that cluster based on this data that the scenarios 

with the least similarity are in clusters 3 and 5. Similarly, the most diverse set of impacts is in 

found in clusters 1 and 3. Based on this analysis cluster 3 has the potential to have very 

dissimilar scenarios with somewhat significant differences in total functional impact. Since there 

was ambiguity in the correct number of clusters between 5 and 7 and the potential for cluster 3 to 

be subdivided, 6 clusters where selected for the analysis of scenario similarity. 
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5.3.4 The Latent Class Analysis Method 

The second method of grouping the failure results is focused on identifying patterns of 

failure behavior. For this method a Latent Class Analysis (LCA) is performed on the 3,509 

unique fault simulation results using the package poLCA [18, 19] for the statistical software tool 

R [20]. The poLCA package treats the manifest variables as categorical. The manifest variables 

in this analysis are the function health states and the latent variable describes the system failure 

behavior. Similar to the k-means clustering, the number of latent variable classes must be 

specified prior to the analysis. Therefore, an iterative approach is also taken to fit multiple latent 

class models with different numbers of classes. In order to avoid local maxima, the poLCA 

classification algorithm is executed 10 times for each specified number of classes. The correct 

number of classes is identified as the LC model with the lowest Akaike Information Criterion 

(AIC) and lowest Bayesian Information Criterion (BIC). 

 

FIGURE 5.2(A): THE SUM OF THE WITHIN CLUSTER SQUARE DISTANCE OF 

SCENARIOS TO THE CENTROID OF THEIR RESPECTIVE CLUSTER. 
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FIGURE 5.2(B): GRAPHING CLUSTERS BASED ON THEIR DISTANCE FROM 

CENTROID AND TOTAL SCENARIO IMPACT WITH 5 CLUSTERS. CLUSTER 3 HAS 

BOTH VERTICAL (IMPACT) VARIANCE AND HORIZONTAL (SIMILARITY) 

VARIANCE AND COULD BE SEPARATED INTO TWO CLUSTERS. 

FIGURE 5.2: SUMMARY OF RESULTS FOR APPLYING A MODIFIED K-MEANS 

CLUSTERING TO THE UNIQUE SYSTEM FAILURE STATES. 

 

Once the correct latent class model is identified, there are three desired outputs from the 

LCA. The first output is a set of conditional probability tables for each manifest variable. These 

tables identify the probability of finding a manifest variable at a specific state for each category 

of the latent variable. In the context of this analysis, this indicates that if a failure event is of a 

particular class of system failure then the function is likely to be in a specific state (healthy, 

degraded, etc.) The second output uses these probability tables to identify the posterior 

probability of a scenario belonging to each class of the latent variable. This is the output used for 

the probabilistic classification of the failure events. Finally, the proportion of each classification 
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is reported. This leads to the identification of the class with the largest membership of failure 

events.  

5.3.4.1 Results of Model-Based Clustering 

The AIC and BIC tend to flatten when evaluating latent models with more classes. 

Implementing a LCA on the example system data set, minima of AIC and BIC can be seen at 5 

classes and 8 classes. Unlike k-means clustering, LCA can identify probabilistic membership of 

scenarios into each class. Due to the low level of emergent behavior in this system, scenarios 

were classified into each class with very high confidence. The classification of individual 

scenarios in both 5 or 8 latent classes was compared and 5 classes was selected due to the 

tendency to split 100% confident classification in the 5 class model into two or more groups with 

partial classification in the 8 class model.  

The meaning of the different classes is not directly found but must be inferred from the 

resulting groups. That is, if the system is found to have 5 different classes of failure, providing a 

description of those failure classes cannot be generated from the analysis but requires expert 

knowledge. The normal approach in an LCA is to compare the probabilities of observing a 

particular variable (function) state within a class to develop descriptions for that class. However, 

given 58 function variables that each have 4 different states, this task can be very challenging 

and is not scalable to large systems. Instead, by comparing the classification provided by LCA to 

the clustering found through the modified k-means, these groups can be readily identified. This 

will be discussed in the next section. 
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5.3.5 Comparing and Validating Clustering Methods 

The modified k-means clustering partitioned all of the unique scenario result states into 6 

clusters. Each scenario result then has two properties: 1) The normalized total impact of that 

scenario; and 2) The distance of that scenario from the theoretical centroid of the cluster in which 

it belongs. This distance is a measure of functional similarity over the identified 58 functions in 

the space. Scenarios very near the centroid are the “typical" scenarios for that cluster. 

The result of the LCA model is a predictive description of the latent failure behavior and 

the probabilities of observing a particular function's state. Comparing this model-based approach 

to the k-means approach has two benefits. First, LCA provides a mathematical validation of the 

partitioning of the k-means method when the two clustering methods agree. Second, the centroid 

of the k-means cluster can be used to identify the meaning of the matching LCA cluster. 

In Figure 5.3, the k-means clusters are plotted based on total normalized impact and their 

distance from the cluster centroid. The classification of scenarios by the LCA and the modified 

k-means was inconsistent for 26 of the 3509 unique scenarios. The scenarios that were classified 

differently by the two methods are noted with diamonds in Figure 5.3. Because this plot 

compares similarity and normalized impact, some of the markers overlap. This means that these 

scenarios are equally different from the cluster centroid and have affect the same number of 

functions. It does not mean that the final system state of these scenarios is identical. 
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FIGURE 5.3: COMPARING THE CLUSTERING FOUND THROUGH THE K-MEANS AND 

LCA METHOD. DISCREPANCIES ARE MARKED WITH DIAMONDS. NOTE THAT 

SOME MARKERS OVERLAP. 

There are two metrics for evaluating the consistency of the clusters found by the two 

algorithms. In Table 5.4 both metrics are shown for the 5 class LCA results and the 6 clusters 

from the k-means algorithm. First, to compare if the scenario populations are consistent, the 

union of cluster membership is evaluated. In Table 5.4, the number below each cluster name is 

the total number of scenarios classified into that cluster or class. The integers within the table 

show the membership union.  

For example, 2 of the scenarios found in the third LCA class are also found in second 

cluster from the k-means algorithm. The numerical order provided by the algorithm is random. 

The second metric for comparing clusters is the distance between centroids. Since the LCA gives 

a probability distribution of health states for each function as the centroid, it cannot be directly 

compared to the single value centroids from the k-means algorithm. Instead, the centroid of the 
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resulting classification from the LCA is used. That is, if a class contained scenarios 1-3, then the 

centroid is based on the centroid of those three scenario results and not the probabilistic centroid 

of the model of that class which the LCA algorithm used to fit scenarios 1-3.  

In Table 5.4, the centroid to centroid distance is reported for each cluster and class as a 

real number in units of the distance between functional states. From Table 5.4, both metrics 

identify the same overlap in the k-means clusters and LCA classes (as indicated in the colored 

cells). Using this example it is clear that the fourth LCA class is the combination of first and 

third k-means cluster.   

TABLE 5.4: COMPARING THE CENTROID TO CENTROID CLUSTER DISTANCE AND 

SCENARIO MEMBERSHIP OVERLAP 
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5.3.6 Relating Clusters to System-Level Functionality 

The centroid of each cluster found through the modified k-means analysis represents a 

point in the functional state space defined by 58 functions. In this space each function may have 

the value between 1-3 representing Nominal, Degraded, and Lost or Now Flow respectively. By 

observing what scenario is closest to the cluster centroid and what functional dimensions have 

the largest impact for a cluster, the meanings of the clusters become apparent.  

In Table 5.5 the k-means clusters are sorted so that the highest functional impacts are 

grouped together. All component functions that do not appear in Table 5.5 have values near 1 

and are considered predominately “Nominal” for the scenarios in that cluster. Additionally, the 

representative scenario for that cluster is also listed in the second row. The non-nominal 

functions are listed for each cluster along with the centroid's location along that functional axis. 

By looking at these characteristic functions and the health states for each cluster centroid, the 

clusters can be described in terms of their dominant system level effects. Thus each cluster is 

defined by a set of functions in some off-nominal health state.  

While the clustering algorithm identifies that there are dependencies between these 

functions (and thus clusters them together), it can not directly reveal causality. For this reason we 

take the component-level functions identified in each cluster and use the model to organize the 

connectivity of the graph shown in Figure 5.4. Care should be taken not to interpret this as the 

direction of fault propagation. Instead Figure 5.4 shows the relationship between the functional 

dependencies in the clusters and the physical system architecture.  

Finally, as can be seen in Table 5.5, the K3 cluster centroid does not have any 

characteristic functions in the degraded or lost state. This means that scenarios within this group 
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have few failures that affect multiple functions and there is a minimal dependency between the 

faulty states of functions. Since the degraded and lost state functions are used to characterize the 

clusters, the K3 cluster is not included in Figure 5.4. 

TABLE 5.5: OFF-NOMINAL FUNCTIONAL IMPACT FOR EACH CLUSTER AND 

REPRESENTATIVE SCENARIO 

 

5.4 Clustering Analysis of the Electric Vehicle (EV) Health States 

The ability to group the results of the electric vehicle health states help in identifying 

common and associated faults among components of the system. This analysis is done to further 

support the use of clustering analysis in different engineering systems. Once, failure is observed 

at the system level, the likely scenarios exhibiting similar behavior leading to such faults are 

effectively predicted by studying the clustering algorithm. A silhouette plot of clusters of the 

functional health states data from the electric vehicle components is shown below. 
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FIGURE 5.4: A SILHOUETTE PLOT OF CLUSTERING THE EV HEALTH STATE DATA 

Figure 5.4 shows the similarity of points within each cluster. High silhouette values 

indicate how close a point is to members of its own clusters and different the point is to 

neighboring clusters. 

Clustering results demonstrate similarities in fault properties among components that 

have no direct relationships or connections or similarity in the way they function. From EV 

health state data, it is observed that the differential and wheels failures are more prominent 

within Cluster 1, which is evident in the relationship between the two components. However, 

there are about 4 contributions of “Usable_degraded” and “Bad_degraded” failure modes for 

each of the Battery, Inverter, and the Electric Motor in Cluster 1. This shows that for most 

system level faults associated to a differential failure or wheel failure, there is a small chance of 

such system level faults being attributed to failure in any of the other three components 
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highlighted above. This type of relationship can also be seen the cluster within clusters plots in 

Figure 5.5. 

 

FIGURE 5.5: A PLOT OF CLUSTERS WITHIN CLUSTERS OF THE EV HEALTH STATES 

 

5.5 Results 

In this section we will present how the results of conducting the clustering approach 

address the three objectives of: 1) characterizing the impacts of a large number of failure 

scenarios; 2) Identifying the system-level meaning of those characterizations; and 3) determining 

how this analysis can be used to make system design decisions.  

The first objective of characterization is accomplished through identifying an underlying 

pattern of failure behavior exhibited in the system states that result from numerous fault 
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simulations. This underlying pattern of behavior is found through applying the Latent Class 

Analysis (LCA) to the set of unique systems states. The result of applying the LCA to the 3,509 

unique systems states that result from fault scenario simulation for the example system best fit a 

model with 5 discrete classes of system failure. Further, the probability of scenarios fitting 

exactly one of the five classes is very high (most are 100%). This confirms that five different 

patterns of system failure emerge from the simulation of combinations of component fault 

behavior.  

Because the LCA approach fits a structure to the data, each class is fully defined by the 

probability of a function being at a health state. The health state of a function as a result of 

simulating a scenario is deterministic and has a known value after simulation. However, the class 

of system failure is a model where each function has a probability of being at each health state. 

The system-level failure behavior classes are the result of the interactions of component 

behaviors. For this reason the five classes represent emergent failure behavior observed at the 

system level in the scenarios simulated. This does not represent all potential emergent behaviors 

of the system. 

The clustering algorithm uses the simulation data and thus if the behavior is not present 

in the simulation it will not be identified by the algorithm. However, due to the large number of 

scenarios that form the data for each class model, this approach does provide some confidence 

that this system will not experience significantly different behavior. While the LCA-based 

clustering was able to address the first objective by finding underlying classes of system 

behavior to characterize scenarios, those classes must also be related to the system level 

functions of interest. 
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FIGURE 5.6: THE CLUSTERS IDENTIFIED THROUGH THE MODIFIED K-MEANS AND 

LCA ARE MAPPED TO THE SYSTEM MODEL. 

 

The second objective, to identify the system-level meaning (for designers) of the classes 

of behavior, is accomplished using a k-means clustering on scenario impact similarity. By using 

the cluster centroids, each cluster is described with a set of functions and their health state. 

Limiting the focus to degraded and lost functionality provided five of six clusters that can be 

used to relate the system functionality to the scenario clusters. Figure 5.4 shows the characteristic 

functions and their health states for each cluster and uses the system model to identify physical 



 
 

145 
 

connections. The third cluster centroid did not exhibit consistently degraded or lost functionality 

and is not included.  

By comparing the system model to the cluster's representative functions, the relation to 

system-level functions begins to emerge. For example, the scenarios classified in Cluster 4 are 

predominately scenarios affecting the first load bank. When certain fault scenarios result in loss 

of power to that load bank the function of those components is lost or degraded. For this simple 

system this demonstrates that, without a prior knowledge of component connectivity, the 

clustering approaches identified behavior-based connections. For more complex systems with 

emergent behavior, these connections could be identified in components in different subsystems 

where interactions may be harder for designers to predict. 

The third objective of this work was to determine whether the discrete failure behavior of 

the system identified through the clustering analysis could be used for system-level design 

decision making. As described in Section 2.4, the example system is designed to be fault tolerant 

where the software control attempts to operate as many of the loads as possible. The software 

control was designed to recognize and operate the system at the best available of the 7 potential 

states identified in Table 5.1. Comparing these 7 control action states to the clusters provides an 

assessment of the effectiveness of the system architecture and control. Table 5.6 shows how the 

degraded control states address faults from certain clusters. 

One example of a design decision that could be made after application of this analysis is 

to redesign the architecture and control to address the individual load faults that are seen in 

Cluster 3. The application of this approach has shown that the current control method addresses 
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four of the fundamental failure behaviors of the system, but has no specific action states to 

address the other two.  

TABLE 5.6: RELATION OF DEGRADED SOFTWARE CONTROL STATES TO SCENARIO 

CLUSTERS 

State 3 

Batt1  Load1 

State 4 

Batt2  Load2 

State 5 

Batt1  Load2 

State 6 

Batt2  Load1 

Cluster 6 

Cluster 2 

Cluster 5 

Cluster 4 

Cluster 4 Cluster 2 

 

Finally, the small set of scenarios that k-means classified in Cluster 5 and that the LCA 

grouped in cluster 6 (see Figure 5.3), correspond to scenarios where both battery banks could 

provide no power. These special scenarios that are hard to cluster indicate important scenarios 

for the system designer to investigate. For this system, scenarios where both batteries are 

disconnected (and other similar scenarios) are unrecoverable by the software control. Based on 

the probability, and the consequence of those faults, designers may want to redesign the system 

redundancies.  

5.6 Conclusion 

This paper proposed two different approaches for clustering the results of a function-

based failure analysis method in the early design stage. In contrast to others methods which focus 

on single faults or single failure scenarios, the goal of this work is to characterize a design's 

overall failure behavior. The results of implementing these clustering approaches on an example 

fault tolerant, software-controlled electrical power system (EPS) an the electric vehicle 
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demonstrates the ability to both identify system-level failure behavior and utilize the 

classification of that behavior for decision making during the design process.  

The first clustering approach was a modified k-means algorithm where the distance 

between failure scenarios was determined based on the functional similarity of the impact of 

those scenarios. This method partitions the fault scenarios into discrete clusters. Each cluster has 

a centroid which is the representative set of functions and their health states for that cluster. The 

second clustering approach was a model-based method that used Latent Class Analysis (LCA) to 

identify a latent variable with a set of discrete classes. The latent variable is a single 

unmeasurable variable that describes the system's failure state or failure modes. The LCA 

provides a probabilistic model that is used to characterize the system behavior. By comparing 

these methods the k-means clustering was mathematically validated when the scenario groupings 

agreed with the LCA classifications. Further, the challenge of describing the system failure 

modes found through LCA is addressed by using the centroids of the corresponding k-means 

clusters. 

The example EPS describes how the designed control addressed some but not all of the 

system failure behavior modes. When informed by other variables such as cost, this could be 

used in a multi-objective decision making process. A future challenge that this work can address 

is that large-scale system modeling may be impossible at the component fidelity level. However, 

the LCA classes are models of the system state and could be used as abstractions for the 

component details. For example, the EPS can be described as having a few nominal modes and 

the identified five failure modes. This simplified model can then be incorporated into a larger 

model without the need to specify low-level component behavior.  
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Additionally, more work is needed in applying the presented methodology to complex 

systems to develop a relationship between the completeness of the analysis and the number and 

types of failures to simulate. The objective of this work is to aid designers in identifying the 

potential system-level failure behaviors and use the classification of those behaviors to improve 

system design. By using data analysis techniques on large sets of design-stage analysis data, 

designers can make better risk-informed decisions and provide stake-holders with safer systems. 

References 

[1] Jensen, D., Bello, O., Hoyle, C., & Tumer, I. (2014). Reasoning about system-level failure 

behavior from large sets of function-based simulations. Artificial Intelligence for Engineering 

Design, Analysis and Manufacturing, 28(4), 385-398. doi:10.1017/S0890060414000547 

[2] Han, J., Kamber, M., and Pei, J., 2006, "Mining Frequent Patterns, Associations, and 

Correlations," Data Mining: Concepts and Techniques (2nd Ed., Pp.227-283).San Francisco, 

USA: Morgan Kaufmann Publishers.  

[3] Estivill-Castro, V., 2002, "Why so Many Clustering Algorithms: A Position Paper," ACM 

SIGKDD Explorations Newsletter, 4(1) pp. 65-75. 

[4] Lloyd, S., 1982, "Least Squares Quantization in PCM," IEEE Transactions on Information 

Theory, 28(2) pp. 129-137. 

[5] Mardia, K. V., Kent, J. T., and Bibby, J. M., 1980, "Multivariate Analysis (Probability and 

Mathematical Statistics)". 

[6] Pearl, J., 2000, "Causality: models, reasoning and inference," Cambridge Univ Press.  

[7] MacKay, D.J., 2003, "Information theory, inference and learning algorithms," Cambridge 

university press.  

[8] Lazarsfeld, P.F., and Koch, S., 1959, "Latent Structure Analysis in Psychology: A Study of a 

Science," New York: McGraw-Hill.  

[9] Vermunt, J.K., and Magidson, J., 2004, "Latent Class Analysis in The Sage encyclopedia of 

social science research methods," Sage Publications, Inc, pp. 549-553.  

[10] Poll, S., 2007, "Advanced Diagnostics and Prognostics Testbed," 18th International 

Workshop on Principles of Diagnosis},   



 
 

149 
 

[11] Kurtoglu, T., Tumer, I. Y., and Jensen, D. C., 2010, "A Functional Failure Reasoning 

Methodology for Evaluation of Conceptual System Architectures," Research in Engineering 

Design, 21(4) pp. 209-234. 

[12] Jensen, D., Hoyle, C., and Tumer, I. Y., 2012, "Clustering Function-Based Failure Analysis 

Results to Evaluate And Reduce System-Level Risks," ASME 2012 International Design 

Engineering Technical Conference and Computers and Information in Engineering Conference.   

[13] Sierla, S., and Tumer, I. Y., 2011, "Capturing interactions and emergent failure behavior in 

complex engineered systems and multiple scales," Proceedings of the ASME Design 

Engineering Technical Conferences; Computers in Engineering Conference},   

[14] Sierla, S., Tumer, I. Y., Papakonstantinou, N., 2012, "Early Integration of Safety to the 

Mechatronic System Design Process by the Functional Failure Identification and Propagation 

Framework," pp. do:10.1016/j.mehatrons.2012.01.003. 

[15] Kurtoglu, T., and Tumer, I. Y., 2008, "A Graph-Based Fault Identification and Propagation 

Framework for Functional Design of Complex Systems," Journal of Mechanical Design, 130(5) 

pp. 051401. 

[16] Jensen, D., Tumer, I. Y., and Kurtoglu, T., 2009, "Design of an Electrical Power System 

using a Functional Failure and Flow State Logic Reasoning Methodology," San Diego, CA.  

[17] Jensen, D., Tumer, I. Y., and Kurtoglu, T., 2009, "Flow State Logic (FSL) for analysis of 

failure propagation in early design," Proceedings of the ASME Design Engineering Technical 

Conferences; International Design Theory and Methodology Conference},   

[18] Linzer, D. A., and Lewis, J., 2011, "poLCA: An R Package for Polytomous Variable Latent 

Class Analysis," 42(10) pp. 1-29. 

[19] Linzer, D.A., and Jeffrey Lewis, 2011, "poLCA: Polytomous Variable Latent Class 

Analysis," R package version 1.3.1. http://userwww.service.emory.edu/~dlinzer/poLCA.  

[20] Team, R.D.C., 2011, "R: A Language and Environment for Statistical Computing," R 

Foundation for Statistical Computing, Vienna, Austria.  

  

http://userwww.service.emory.edu/~dlinzer/poLCA


 
 

150 
 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

The work carried out in this research contributes new knowledge into how quality failure 

information is to be extracted from complex systems especially at the conceptual design stage or 

when there is limited information about the intended system.  

The key aspects of this dissertation are (1) Understanding the significant contributions of 

existing function-based failure analysis methodologies, (2) Building accurate system model 

representations that capture actual failures at the conceptual stage, (3) Generating failure 

scenarios using failure analysis models to help forecast system performance, (4) Analyzing 

predicted system results to identify, qualify and quantify faulty component behaviors in order to 

improve system designs. These issues have all been addressed in this dissertation. 

Chapter 3 provides a novel grouping for the existing Function Failure Identification and 

Propagation (FFIP) related researches that are available to the research community. The 

function-based failure analysis research were grouped as (1) Graph-Based, (2) Functional Failure 

Reasoning (FFR) Architecture, (3) Behavior Descriptions, (4) System Representation, (5) 

Results Analysis, (6) Capturing Emergent Behavior, (7) Socio-Impact (Human), and (8) 

Software Implementation. A review of the various researches has been presented as a form of 

FFIP history showing how the framework has contributed to improving prognostics and health 

management (PHM) methodologies.  
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Chapter 4 provides a detailed description of the recommended failure analysis 

methodology to be carried out in exploring a system for vulnerabilities. The impact of model 

details and abstractions on system modeling has been presented by carefully identifying key 

structures of system modeling. A description and importance of the Functional and Behavioral 

models were presented in Chapter 4. The modeling choices used in behavior modeling 

contributes significantly to the output obtained from the system. Also a synthesized 

conventional/traditional failure analysis tool (FMECA) that automatically introduces a mode 

number into the simulation environment has also been introduced.   

The Primary, Secondary and Tertiary levels of abstraction for Function, Flow and 

Behavior models were investigated and their findings presented. It was concluded that at the 

earliest stage of the design process, using the primary levels of abstraction for modeling would 

give information on the predicted functional health states of the system. However, from the 

secondary levels of behavior abstraction to the tertiary level, adequate information on a system’s 

functional health states, actual system performance and the effects of varying component 

parameter choices can be obtained. This information is suitable to designers at the early design 

stages before committing resources to certain designs. 

Chapter 5 presented how to reason about FFIP simulation results using clustering analysis 

and latent class analysis. The two analyses that were utilized were explained in detail. Significant 

focus in this chapter was made on characterizing a design's overall failure behavior. The results 

of implementing the clustering approaches on the electrical power system (EPS) and the electric 

vehicle demonstrates the ability to both identify system-level failure behavior and utilize the 

classification of that behavior for decision making during the design process. 
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Other research focuses that can be carried on from this dissertation are recommended. 

The recommended researches for future work include: The investigation of failure in systems 

using continuous time-based system modeling in order to establish instances of fault initiation in 

the failure space; Utilizing a cyber-physical testbed for investigating actual system performance 

and for validating the FFIP framework; Establishing measures of confidence analysis on FFIP 

simulation results; Quantifying uncertainty in the parameter used in FFIP simulation models; and 

Investigating failure predictions in autonomous vehicles using function-based failure analysis.  

Overall, this research effectively applies design theory and methodology concepts in 

designing, simulating and analyzing systems in order to help designer’s decision-making in 

building safer and more reliable systems. 
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